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a b s t r a c t 

In this paper, we propose a speed-up approach for subclass discriminant analysis and formulate a novel 

efficient multi-view solution to it. The speed-up approach is developed based on graph embedding and 

spectral regression approaches that involve eigendecomposition of the corresponding Laplacian matrix 

and regression to its eigenvectors. We show that by exploiting the structure of the between-class Lapla- 

cian matrix, the eigendecomposition step can be substituted with a much faster process. Furthermore, 

we formulate a novel criterion for multi-view subclass discriminant analysis and show that an efficient 

solution to it can be obtained in a similar manner to the single-view case. We evaluate the proposed 

methods on nine single-view and nine multi-view datasets and compare them with related existing ap- 

proaches. Experimental results show that the proposed solutions achieve competitive performance, often 

outperforming the existing methods. At the same time, they significantly decrease the training time. 

© 2020 The Authors. Published by Elsevier Ltd. 
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1

i

e

m

b

c

a

e

d

p

t

d

w

p

a

d

v

t

j

m

n

w

t

t

o

t

c

t

c

c

u

c

d

t

f

a

d

m

d

h

0

. Introduction 

In the modern world, large amounts of data available for train- 

ng of machine learning algorithms result in their applicability and 

fficiency in different subject areas [1,2] . However, when the di- 

ensionality of data is high, the algorithms can become suscepti- 

le to the well-known curse of dimensionality, stating that in the 

ases of high-dimensional data, its representation becomes sparse 

nd, therefore, huge amounts of training data are required for the 

stimation of the parameters of a machine learning method. To ad- 

ress this problem, many dimensionality reduction methods were 

roposed over the recent years, acquiring an important role within 

he machine learning field. The objective of the dimensionality re- 

uction methods is to determine a feature space, projection onto 

hich results in a lower dimensionality of data, while preserving 

roperties of the data that are of interest for the problem at hand. 

Subspace learning methods can be divided into unsupervised 

nd supervised ones, i.e., those relying solely on the structure of 

ata and those exploiting additional class label information pro- 

ided by experts. Among the unsupervised dimensionality reduc- 

ion methods, probably the most common one is Principal Compo- 
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ent Analysis (PCA) [3] , that projects the data onto the subspace 

here the data has the highest variance. 

Supervised subspace learning methods assume that during 

raining the data is given with class labels. Therefore, they lead 

o enhanced class discrimination compared to unsupervised meth- 

ds and they are more suitable for classification problems. One of 

he most well-known methods incorporating the information on 

lass distribution is Linear Discriminant Analysis (LDA) [4,5] , where 

he optimal subspace is obtained by optimizing the Fisher - Rao’s 

riterion [6] that is defined over the within-class and between- 

lass scatter matrices, under the assumption that the classes are 

nimodal and follow normal distribution. While incorporating the 

lass label information, LDA can only define a subspace of at most 

 dimensions, where d is the rank of the between-class scatter ma- 

rix, which is equal to C − 1 for the case of C classes. 

The assumption of the class unimodality in LDA limits its per- 

ormance in problems where classes form subclasses, i.e., classes 

re represented by multiple disjoint distributions. In order to ad- 

ress this limitation, approaches incorporating the subclass infor- 

ation in the optimization problem solved for determining the 

iscriminant subspace have been proposed. Methods following this 

pproach are the Subclass Discriminant Analysis (SDA) [7] , Cluster- 

ng Discriminant Analysis (CDA) [8] , and Subclass Marginal Fisher 

nalysis (SMFA) [9] . In addition to better describing the classes’ 

istributions, these methods are also able to determine discrimi- 

ant subspaces of higher dimensionalities, since the maximum di- 

ensionality of the learned feature space is limited by the rank of 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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 modified between-class scatter matrix which is bounded by the 

otal number of subclasses. 

One of the main drawbacks of the subspace learning methods 

ies in the low speed for high-dimensional data and large datasets. 

or speeding up the training process several approaches have been 

roposed, including approximate solutions [1] , incremental learn- 

ng [10] , and speed-up solutions [11–15] . However, none of these 

pproaches are able to overcome the assumption of unimodality 

nd limitations related to limited dimensionality of the learnt sub- 

pace. Therefore, we aim to bridge the speed-up and multi-modal 

olutions and propose a method that can overcome all of the main 

imitations of LDA and related methods at once. We achieve this by 

roposing a speed-up approach for Subclass Discriminant Analysis 

hat already allows to overcome the unimodality assumption and 

imited potential dimensionality of the learned subspace. In this 

aper, we propose a speed-up approach for SDA and its kernel- 

zed form, i.e., Kernel Subclass Discriminant Analysis (KSDA) [16] . 

he proposed approach is based on graph embedding [9,17] and 

xploitation of the structure of the between-class Laplacian matrix. 

In some problems, the descriptions of the same items from 

ultiple differently distributed modalities might be available, re- 

ulting in multiple modalities of the data. Such problems are re- 

erred to as multi-view or multimodal problems. The nature of 

ulti-view problems is similar to the way humans perceive the 

orld and take decisions, as the real-world data is not limited to 

ne source, but consists of, e.g., visual and audio signals, tactile 

ensations. The data from different modalities is perceived by hu- 

an and the decision is made by combining information from dif- 

erent sources. A similar approach is followed by multi-view sub- 

pace learning methods, where the combination of the information 

oming from different views is performed by defining a latent fea- 

ure space, jointly determined using data from all available views 

uring the training process. Moreover, the views can have different 

imensionalities. An example of a multi-view problem is the clas- 

ification of video sequences using their two views, i.e., audio and 

isual signals. 

Extensions of supervised subspace learning methods to the 

ulti-view case include the Multi-view Discriminant Analysis 

MDA) [18] that defines a variant of the LDA criterion to incorpo- 

ate information from multiple views. In [18] , the between-class 

catter is maximized regardless of the difference between inter- 

iew and intra-view covariances, while the within-class scatter is 

inimized. Multi-view Common Component Discriminant Analysis 

roposes a way to address the nonlinearity, view discrepancy and 

iscriminability jointly by incorporating both label information 

nd geometric information during subspace learning [19] . In order 

o address the problem of multi-label classification with a high 

umber of classes on a multi-view dataset, a Multi-view Label 

mbedding model was proposed [20] . Besides, for the problems 

ith incomplete or incompletely labeled multi-view data, a unified 

ubspace learning framework has been proposed [21] . In addition, 

everal multi-view extensions of LDA have been recently proposed, 

ncluding Standard Multi-view Discriminant Analysis (SMvDA) 

nd Multi-view Modular Discriminant Analysis (MvMDA) [22] . 

eing extensions of LDA, these methods have similar limitations: 

he assumption of the unimodality of data within each view 

nd maximal number of dimensions bounded by the number 

f classes. In this work, we propose an approach to overcome 

hese limitations by introducing Multi-view Subclass Discriminant 

nalysis, as well as its kernelized form, and show that the solution 

or its optimization problem can be obtained by following a fast 

nd efficient process. 

The proposed work brings the following contributions: 

• First, we define the Graph Embedding and Spectral Regression 

-based formulations of Subclass Discriminant Analysis and Ker- 

nel Subclass Discriminant Analysis. 
2 
• Second, based on the previously-defined formulations, we show 

how the exploitation of the properties of constant-sum block 

matrices and the specific structure of the between-class Lapla- 

cian matrix can be utilized for speeding up the method. The 

speed up is achieved by solving the slow eigendecomposition 

step, which is the main computational bottleneck of SDA, using 

a fast process of creation of target vectors based on the above- 

mentioned properties. 
• Third, we define a novel multi-view formulation of SDA and 

KSDA that allows to apply the methods on multi-view data and 

take into account the potential multi-modalities present in dif- 

ferent views. We show how the speed-up approach defined for 

the single-view formulation can be modified for the multi-view 

case, resulting in a speed up of the algorithm. 

. Related work 

This section describes the previous works related to the pro- 

osed supervised subspace learning methods. 

Let us consider a set of N D -dimensional vectors X = 

 x 1 , x 2 , . . . , x N ] ∈ R 

D , each belonging to a class indicated by the

orresponding label c i . We define the subspace learning problem 

s searching for the d -dimensional feature space, with d < D , that 

rovides the highest class separability of the data in X when pro- 

ected onto that space. Most dimensionality reduction methods, in- 

luding LDA, SDA, CDA, and SMFA optimize the Fisher-Rao’s crite- 

ion [6] : 

 (W ) = argmin 

W 

T W = I 

T r(W 

T S w 

W ) 

T r(W 

T S b W ) 
, (1) 

here Tr () denotes the trace operator, S w 

and S b are symmet- 

ic positive semi-definite matrices, referred to as within-class and 

etween-class scatter matrices. The main differences between the 

ubspace learning methods lie in the definition of these matrices. 

DA [4] assumes that each class is unimodal and seeks to find a 

pace, projection onto which would result in compact classes ly- 

ng far from each other, hence, resulting in high discrimination be- 

ween classes. The within-class and between-class scatter matrices 

re defined as 

 w 

= 

C ∑ 

i =1 

N i ∑ 

j=1 

(x i j − μi )(x i j − μi ) 
T , (2) 

 b = 

C ∑ 

i =1 

(μi − μ)(μi − μ) T , (3) 

here C is the number of classes, μ is the mean of data, μi is the

ean of class i, N i is the number of samples in class i and x ij is

he j th sample of class i . 

Many extensions to LDA have been proposed over the recent 

ears. Methods relaxing the assumption of LDA about normally dis- 

ributed classes and the limitations on the dimensionality of the 

earned subspace in binary problems have been recently proposed 

n [23–25] . 

CDA [8] relaxes the assumption on unimodal classes and ap- 

lies clustering techniques to incorporate the subclass structure of 

he data in the training process. SMFA relies on a framework of 

ubclass Graph Embeddings [9] , where the dimensionality reduc- 

ion problem is described from a graph embedding perspective. 

he problem is defined by intrinsic and penalty graph matrices, 

hich are built relying on the label information of k nearest neigh- 

ors of the data points, as defined by the Euclidean distance or 

ome other distance metric. The intrinsic graph matrix represents 

he compactness within the subclass, while the penalty graph ma- 

rix enforces penalization to ensure inter-class separability. 
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.1. Graph embedding framework 

A framework that considers different subspace learning algo- 

ithms from a graph embedding perspective has been proposed in 

26] . A further extension to subclass-based methods has been pro- 

osed in [9] . In both of these frameworks, data is described us- 

ng two undirected weighted graphs: an intrinsic graph G = { X , �} 
ith vertex set X and similarity matrix �, and a penalty graph 

 

p = { X , �p } that represents the similarity characteristics of the 

ata that are desired to be suppressed in the learned space. Each 

ertex in X corresponds to a data sample. For each pair of vertices 

n X, � measures their similarity by means of some similarity cri- 

erion, e.g., Gaussian similarity. Then, the diagonal degree matrix 

 , the Laplacian matrix L are defined as 

L = D − �, 

 

ii = 

∑ 

j � = i 
�i j , (4) 

.e., the degree matrix D at position ( i, i ) has the value of the sum

f all values of � across i ’ th row or column, as � is symmetric. 

he penalty Laplacian matrix L b can be defined similarly using the 

enalty matrix �p . The goal of graph embedding is to find such a 

ow-dimensional representation relationship among the vertices in 

 that incorporates the similarity relationship outlined in G in the 

est way. 

Let us define a low-dimensional representation of vertices in 

 as y = [ y 1 , . . . , y i ] . Then, the objective function that solves the

roblem of finding such a projection matrix W that would incor- 

orate the similarity between the vertices in X can be defined as 

ollows: 

 

∗ = argmin 

∑ 

i � = j 
|| y i − y j || 2 �i j = argmin y T Ly = argmin w 

T XLX 

T w , 

(5) 

iven y = X 

T w is the projection of the data point to a subspace.

imilarly, a maximization problem can be defined using L b . Such 

ormulation allows to reformulate various subspace learning meth- 

ds and take advantage of the new formulations, as will be shown 

urther. 

.2. Subclass discriminant analysis 

In order to relax the class unimodality assumption of LDA, SDA 

7] expresses each class by a set of subclasses that are obtained by 

pplying clustering on the class data. The difference between CDA 

nd SDA lies in the definition of the within-class and between- 

lass scatter matrices. In SDA, the total scatter matrix S t is mini- 

ized instead of the within-class scatter as S t = S b + S w 

. SDA uses

he following definitions: 

 t = 

N ∑ 

q =1 

(x q − μ)(x q − μ) T , (6) 

 b = 

C−1 ∑ 

i =1 

C ∑ 

l= i +1 

d i ∑ 

j=1 

d l ∑ 

h =1 

p i j p lh (μi j − μlh )(μi j − μlh ) 
T , (7) 

here μ is the mean of data, i and l are class labels, j and h are

ubclass labels, p ij and p lh are the subclass priors, p i j = 

N i j 

N , where 

 ij is the number of samples in subclass j of class i and N is the to-

al number of samples in X . The solution of (1) is given by solving

he generalized eigendecomposition problem 

 t w = λS b w . (8) 

he obtained eigenvectors [ w 1 , w 2 , . . . , w d ] that correspond to d

inimal eigenvalues form a projection matrix W . The projected 

ata point y can be computed as y = W 

T x . 
i i i 

3 
It is trivial to see that for the data centered at μ, S t = XX 

T . In

ddition, the representation of S b can be defined using the Graph 

mbedding framework as follows: 

 b = XL b X 

T , (9) 

 b (i, j) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

N−N c i 
N 2 N ch 

, if z i = z j = h 

0 , if z i � = z j , c i = c j 

− 1 
N 2 

, if c i � = c j 

, (10) 

here c i is the class label of x i , and z i is the subclass label of x i ,

 c is the number of samples in class c and N ch is the number of

amples in subclass h of class c . 

The objective function of SDA can be reformulated into a max- 

mization problem (11) , and exploiting the formulations in (9) and 

10) , the solution is given by the generalized eigendecomposition 

roblem (12) , and the projection matrix is obtained by selecting 

he eigenvectors corresponding to maximal eigenvalues. 

 (W ) = argmax 
W 

T W = I 

T r(W 

T S b W ) 

T r(W 

T S t W ) 
, (11) 

 b X 

T v = λX 

T v . (12) 

.3. Kernel subclass discriminant analysis 

Kernel methods are widely used in machine learning to over- 

ome the limitation of the linear separability, which is rarely 

resent in real-world problems. In order to nonlinearly map each 

ata point x i from the space R 

D to its image φi in some space F , 

he nonlinear function φ( x ) is defined, i.e., φ(x i ) ∈ F . The dimen-

ionality of F depends on the choice of the function and can be ar- 

itrary. A linear projection is then defined in F , i.e. y i = W 

T φ(x i ) . 

The conventional approach to solving the nonlinear problems 

nvolves the exploitation of kernel function defined over a pair of 

ata points in X that maps them to the dot product of their projec- 

ions in F : k (x 1 , x 2 ) = φ(x 1 ) 
T φ(x 2 ) and formulating the problem

ccordingly. By exploiting the dot product representation, the ex- 

licit mapping of each data point x i in X to its image φi = φ(X )

an be omitted, hence, avoiding the issues related to the arbitrary 

imensionality of F . The N × N kernel matrix K is defined as K i j =
 (x i , x j ) . It is easy to note that since k (x i , x j ) = φ(x i ) 

T φ(x j ) , K =
T �, where � = [ φ(x 1 ) , φ(x 2 ) , . . . , φ(x N )] . According to the Rep-

esenter Theorem [27] , W can be represented as a linear combina- 

ion of data in F

 = �A . (13) 

herefore, y i = W 

T φ(x i ) = A 

T �T φ(x i ) = A 

T k i . 

The kernelization of the SDA can be easily obtained by exploit- 

ng the modified representation of S b and S t (9) [16] . Here we can 

ssume that data is centered in F . The kernel matrix of the cen- 

ered data can be obtained as in (14) [28] 

 

c = (I − E N ) K (I − E N ) , (14) 

 N = 

1 

N 

1 N 1 

T 
N , (15) 

here 1 N ∈ R 

N is a vector of ones. 

After mean-centering φ( X ), S kt and S kb are given as follows: 

 kt = 

N ∑ 

i =1 

(φi − φ̄)(φi − φ̄) T = φφT , (16) 

 kb = 

C−1 ∑ 

i =1 

C ∑ 

l= i +1 

d i ∑ 

j=1 

d l ∑ 

h =1 

p i j p lh ( ̄φi j − φ̄lh )( ̄φi j − φ̄lh ) 
T = φL b φ

T , (17) 
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here φ̄i j is the mean of the subclass j of class i in F , L b is the

etween-class Laplacian matrix defined in (10) , and φ̄ is the mean 

f the data in F . Exploiting ( (13), (17) - (18) ), the solution to KSDA

s given by the generalized eigendecomposition problem 

L b �
T �a = λ��T �a = > (18) 

L b Ka = λKKa = > L b Ka = λKa . (19) 

.4. Multi-view extensions to linear discriminant analysis 

In multi-view learning, the data X = diag(X 1 , X 2 , . . . , X V ) is de-

cribed from V views and we seek to find V matrices W v that 

roject the data X v from all views v = 1 , . . . , V to a common (la-

ent) space, where the separability between the classes is the high- 

st. A generalized framework for multi-view subspace learning, 

hat includes many of the existing methods as special cases, was 

roposed in [22] . Here, the optimization problem is defined as 

 (W ) = argmax 
W 

T W = I 

T r(W 

T PW ) 

T r(W 

T QW ) 
, (20) 

here P and Q are the inter-view and intra-view covariance ma- 

rices. The solution is obtained by solving the generalized eigende- 

omposition problem 

W = ρQW , (21) 

 = 

⎛ 

⎜ ⎜ ⎝ 

W 1 

W 2 

. . . 

W V 

⎞ 

⎟ ⎟ ⎠ 

, (22) 

here W v is the projection matrix of the view v . The feature vec- 

ors in the latent space are obtained as Y v = W 

T 
v X v , where X v is

ata representation in the view v . Here, 

 = XL b X 

T , (23) 

 = XL w 

X 

T , (24) 

 = 

⎛ 

⎝ 

X 1 0 . . . 0 

0 X 2 . . . 0 

0 0 . . . X V 

⎞ 

⎠ , (25) 

 b = 

⎛ 

⎜ ⎜ ⎝ 

L b11 L b12 . . . L bV 1 

L b12 L b22 . . . L bV 2 

. . . . . . . . . . . . 

L b1 V L b2 V . . . L bV V 

⎞ 

⎟ ⎟ ⎠ 

, (26) 

 w 

= 

⎛ 

⎜ ⎜ ⎝ 

L w 11 0 . . . 0 

0 L w 22 . . . 0 

. . . . . . . . . . . . 

0 0 . . . L w vv 

⎞ 

⎟ ⎟ ⎠ 

, (27) 

here L bij is either L ∗
bi j 

or ˆ L bi j , as defined below, i and j are the

iew labels, and V is the number of views. 

Using the above notations, SMvDA aims to maximize the dis- 

ance between the class means regardless of the view and defines 

 bij as 

 

∗
bi j = 

⎧ ⎨ 

⎩ 

2 

∑ C 
p=1 

∑ C 
q =1 
q � = p 

( V 
N 2 p 

e p e 
T 
p − 1 

N p N q 
e p e 

T 
q ) , if i = j 

−2 

∑ C 
p=1 

∑ C 
q =1 
q � = p 

1 
N p N q 

e p e 
T 
q , if i � = j 

, (28) 
4 
here e p is N -dimensional class vector with 1s at the positions 

orresponding to the samples belonging to class p and 0s else- 

here, i and j are views, and C is the number of classes. 

The MvMDA maximizes the distances between the centers of 

ifferent classes across different views: 

ˆ 
 bi j = 2 

C ∑ 

p=1 

C ∑ 

q =1 

( 
1 

N 

2 
p 

e p e 
T 
p −

1 

N p N q 
e p e 

T 
q ) . (29) 

n both cases, the intra-view Laplacian matrix L w 

is defined as in 

27) , where 

 wii = I −
C ∑ 

c=1 

1 

N c 
e c e 

T 
c , (30) 

here i is the view label, c is the class label, C is the total number

f classes, and I is the identity matrix. Similarly, the solution to 

ernel MvMDA and Kernel SMvDA is given by optimizing 

 (A ) = argmax 
A T KA = I 

T r(A 

T P 

k A ) 

T r(A 

T Q 

k A ) 
, (31) 

 

k = KL b K 

T , (32) 

 

k = KL w 

K 

T , (33) 

here L b is defined using L ∗
bi j 

or ˆ L bi j and K is a block-diagonal ma- 

rix having K v as its v th block. The solution is then given by solving

he eigendecomposition problem 

 

k A = ρQ 

k A . (34) 

.5. Spectral regression 

In this section, we focus on the spectral regression approach 

hat was introduced as a way of speeding up the eigendecomposi- 

ion step of LDA [29] . It has been shown that the solution of the

eneralized eigendecomposition problem (12) is equivalent to the 

roblem Jt = λt with the same eigenpairs, for t = X 

T w and J = L b :

t = JX 

T w = λX 

T w = λt . (35) 

xploiting this fact, the solution of (12) can be obtained by solving 

n eigenvalue decomposition problem Jt = λt and finding such w 

hat X 

T w = t . In practice, such w may not always exist, but it can

e approximated with the closest value in the least squares sense: 

 = argm in ‖ W 

T X − T ‖ 

2 
F . (36) 

he solution to (36) is given by W = ( XX 

T ) −1 XT T . In the cases

here XX 

T is singular, regularized solution is applied: 

 XX 

T + αI ) W = XT 

T 
, (37) 

 = ( XX 

T + αI ) −1 XT 

T 
, (38) 

here α ≥ 0 is a regularization parameter and T = [ t 1 , . . . , t d ] 
T . 

Spectral Regression Discriminant Analysis (SRDA) was proposed 

s an extension to LDA based on the spectral regression [29] . It has

een shown that in the case of LDA the matrix J (35) has C eigen-

ectors corresponding to nonzero values, all of which correspond 

o the eigenvalue of 1 and have the form of 

 i = [ 0 , . . . , 0 ︸ ︷︷ ︸ ∑ p−1 
i =1 

N i 

, 1 , . . . , 1 ︸ ︷︷ ︸ 
N p 

, 0 , . . . , 0 ︸ ︷︷ ︸ ∑ C 
i = p+1 N i 

] T , (39) 

here p is the class label, N p is the number of samples in class p

nd C is the number of classes. Therefore, the solution can be ob- 

ained by selecting the vector of ones as the first eigenvector and 
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btaining the rest by orthogonalization of the vectors of the struc- 

ure as in (39) . A tensor extension to SRDA has been recently pro-

osed in [30] , where the eigendecomposition problem of Higher 

rder Discriminant Analysis is transformed into a regression prob- 

em. 

.6. Kernel regression 

A kernelized version of the spectral regression was proposed in 

11] . In this case, the objective is to solve the eigendecomposition 

roblem J Ka = λKa , which is equivalent to solving the eigende- 

omposition problem of Jt = λt given Ka = t : 

 Ka = Jt = λt = λKa . (40) 

hen the kernel regression is applied to obtain 

 

∗ = argmin 

W 

|| W 

T � − T || 2 F , (41) 

 = argm in ‖ A 

T �T � − T ‖ 

2 
F = argm in ‖ A 

T K − T ‖ 

2 
F . (42)

o take into account possible singularity of KK 

T , regularized solu- 

ion is used to obtain A : 

 = ( KK 

T + αI ) −1 KT 

T 
, (43) 

here α is the regularization parameter. 

.7. Approximate kernel regression 

For large-scale datasets, kernel regression method can be sub- 

tituted by an approximate kernel regression, where W is ex- 

ressed as a linear combination of r reference vectors ( r < N ) [1] .

e define W = �A , where � is a set of reference vectors in F .

he reference vectors in F correspond to r prototype vectors from 

 

D that can be randomly selected training vectors from X , random 

ata following the same distribution as data in X , subclass cen- 

ers obtained by clustering all data, or subclass centers obtained 

y clustering data in each subclass separately. 

Given W = �A , (42) becomes 

 

∗ = argm in ‖ A 

T �T � − T ‖ 

2 
F = argm in ‖ A 

T ˆ K − T ‖ 

2 
F , (44) 

here ˆ K = ��. Then, 

 = ( ̂  K ̂

 K 

T + αI ) −1 ˆ K T 

T , (45) 

here α is a regularization parameter. It should be noted that in 

he case � = �, the problem becomes equivalent to (43) . 

.8. SDA with spectral regression 

Subclass Discriminant Analysis has not been previously used to- 

ether with Spectral Regression, but their combination is straight- 

orward. The process of solving SDA using Spectral Regression can 

e defined as follows: 

1. Create the between-class Laplacian matrix (10) 

2. Solve the generalized eigendecomposition problem L b t = λt and 

create the matrix T out of the obtained vectors 

3. Regress T to W as in (38) 

4. Orthogonalize W such that W 

T W = I 

Equivalently, for the kernel case, the steps 3–4 are the re- 

ression of T to A as in (43) or (45) and orthogonalization of A

uch that A 

T KA = I . Alternatively, the projection matrix can be l2- 

ormalized instead of applying orthogonalization. 

The above-described process for solving the SDA optimization 

roblem provides several advantages. Firstly, as we will show in 

he next section, the eigendecomposition step (35) can be substi- 

uted with a much faster process. Secondly, the eigendecomposi- 

ion step (12) or (19) is avoided and substituted with the least 

quares regression, for which several efficient solutions exist [31] . 
5 
. Proposed approach 

In this section, the proposed methods are described. Firstly, we 

ropose a speed-up approach for single-view SDA that relies on 

he structure of the Laplacian matrix L b and allows to substitute 

he eigendecomposition step of (35) by a much faster process. Sec- 

ndly, we propose a linear and kernel solutions for multi-view 

DA. Thirdly, we show that the solution to multi-view SDA can be 

btained by a faster process that is similar to the one described for 

he single-view case. 

.1. Speeding up the eigendecomposition step 

In this section, we show how the specific block structure of the 

aplacian matrix L b in SDA allows to replace the eigendecomposi- 

ion step with a much faster process. 

Without loss of generality, we assume that the data in X is 

ean-centered and sorted according to the class and subclass la- 

els, i.e., [1 , . . . , N 11 , 1 , . . . , N CZ ] , where [1 , . . . , N CZ ] are the subclass

abels of class C and subclass Z . 

It can be observed that L b has a block structure with constant 

alues in the blocks, as described in (10) , with different blocks 

f L b corresponding to different classes. The class blocks are fur- 

her divided into the subclass blocks. Since L b has a block struc- 

ure, its eigenvectors have the block structure as well. Moreover, 

igger eigenvalues show larger differentiation and correspond to 

he eigenvectors discriminating class blocks, while smaller eigen- 

alues discriminate subblocks of class blocks, hence, representing 

ubclasses. L b has a rank of C ∗ Z − 1 and, therefore, it has C ∗ Z − 1

onzero eigenvalues, where Z is the number of subclasses in each 

lass. 

Assuming the eigenvectors are sorted according to the eigen- 

alues in decreasing order, the first C − 1 eigenvectors share sim- 

lar values at indices corresponding to one class. The rest of the 

igenvectors correspond to different classes, and in each of them 

he subclass structure of a certain class can be observed - the in- 

ices corresponding to data of the same subclass have the same 

onzero value, while the indices corresponding to other classes 

ave the value of 0. We observe that bigger eigenvalues correspond 

o the eigenvectors showing the subclass discrimination of classes 

ith smaller number of samples; and the classes having the same 

mount of samples share the eigenvectors, i.e., samples at positions 

f both classes have nonzero values, that are the same within a 

ubclass, while positions corresponding to other classes have the 

alue of zero. In this case, such eigenvectors are repeated a num- 

er of times equal to the number of classes with the same amount 

f samples. 

As an example, let us consider a problem of 2 classes, where 

lass 1 contains 8 samples and class 2–9 samples. Each class con- 

ains 2 subclasses, where class 1 has 3 samples in the first subclass 

nd 5 in the second, and class 2 has 4 samples in the first subclass

nd 5 samples in the second subclass. Then the three eigenvectors 

f the between-class Laplacian matrix of this data that correspond 

o nonzero eigenvalues have the structure outlined in (46) , where 

 corresponds to the class label, z - to subclass label and r i - to i th

andom value. 

Moreover, L b is a symmetric weightless constant sum matrix. 

herefore, all of its eigenvectors are orthogonal and a vector of 

nes is an eigenvector with eigenvalue 0 [32] . In addition, we can 

bserve that for the data with a subclass structure, the eigenvec- 

ors maximizing the criterion (11) are those with the block struc- 

ure as described. Following this, the orthogonalization can be per- 

ormed on random vectors that follow the block structure as de- 

cribed above [33] . Therefore, we can choose the vector of ones 

s our first eigenvector and obtain the remaining C ∗ Z − 1 vectors 

y orthogonalizing the random vectors of the described structure 
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Algorithm 1: Target vectors calculation, single-view case. 

Function 

getSingleviewTargets( cl ass _ l abel s, cl uster _ l abel s, C, Z, N, D ) : 
Input : cl ass _ l abel s : N × 1 vector with class 

labels; cl uster _ l abel s : N × 1 vector with the cluster 

labels; Z : number of clusters in each class; C : 

number of classes; N : number of elements; D : 

dimensionality of data; 

d ← min (C ∗ Z − 1 , D, N) ; 

%class-level vectors ; 

T ← N × ( min (d, C − 1)) matrix with random values at 

positions of different classes, such that values are 

repeated within the class in one column, but distinct 

between classes and columns; 

L ← unique numbers of elements in each class sorted in 

ascending order; 

%cluster level vectors ; 

for l ← iterate through L do 

k ← classes with l elements; m ← length( k ); 

if size (T , 2) + m ∗ (Z − 1) > d then 

m ← (d − size (T , 2)) / (Z − 1) 

end 

T clust ← N × m ∗ (Z − 1) matrix with random values 

at positions of all subclasses of classes in k , such that 

the values are shared within the subclass in one 

column, but distinct between subclasses and columns. 

Values at positions of other classes are 0s; 

T ← append T clust as columns on the right; 

if size (T , 2) == d then 

break 

end 

end 

T ← append N×1 vector of ones as a column on the left; 

Orthogonalize T ; remove first column of T ; 

return T T 
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ollowing the Gram-Schmidt process [34] . As d ≤ min (D, N) , in the 

ase C ∗ Z − 1 > min (D, N) we can stop after min ( D, N ) target vec-

ors are created. The vector of ones can then be removed as being 

seless. The detailed process of target vectors creation is outlined 

n Algorithm 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r 1 r 3 0 

r 1 r 3 0 

r 1 r 3 0 

r 1 r 4 0 

r 1 r 4 0 

r 1 r 4 0 

r 1 r 4 0 

r 1 r 4 0 

r 2 0 r 5 
r 2 0 r 5 
r 2 0 r 5 
r 2 0 r 5 
r 2 0 r 6 
r 2 0 r 6 
r 2 0 r 6 
r 2 0 r 6 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

c = 1 , z = 1 

c = 1 , z = 1 

c = 1 , z = 1 

c = 1 , z = 2 

c = 1 , z = 2 

c = 1 , z = 2 

c = 1 , z = 2 

c = 1 , z = 2 

c = 2 , z = 1 

c = 2 , z = 1 

c = 2 , z = 1 

c = 2 , z = 1 

c = 2 , z = 2 

c = 2 , z = 2 

c = 2 , z = 2 

c = 2 , z = 2 

. (46) 
r 2 0 r 6 c = 2 , z = 2 

6 
.2. Multi-view subclass discriminant analysis 

In this section, we propose a novel method for multi-view sub- 

pace learning - Multi-view Subclass Discriminant Analysis along 

ith the kernelized version. Unlike previously described SMvDA 

nd MvMDA methods that similarly to LDA assume that data 

ithin each view follows a unimodal Gaussian distribution, we 

ropose a method that would take into account potential multi- 

odalities present in the data of each view and hence lead to a 

ore robust solution. This is done by modelling data of each view 

ith multiple subclasses. Therefore, the idea behind multi-view 

ubclass Discriminant Analysis is the maximization of the distance 

etween the subclass means of different classes, while minimizing 

he distances between the samples of the same subclass. The total 

catter matrix for the mean-centered data is defined as 

 t = 

V ∑ 

i =1 

N ∑ 

k =1 

y i k y 
i 
k 

T = YY 

T = W 

T XX 

T W , (47) 

here y i 
k 

is the k th sample of view i in the latent space. The

etween-class scatter matrix is defined as 

S b = 

V ∑ 

i =1 

V ∑ 

j=1 

C ∑ 

p=1 

C ∑ 

q =1 
q � = p 

d p ∑ 

l=1 

d q ∑ 

h =1 

p i pl p 
j 

qh 
(μi 

pl − μ j 

qh 
)(μi 

pl − μ j 

qh 
) T 

= 

V ∑ 

i =1 

V ∑ 

j=1 

W 

T 
i X i L 

m v 
bi j X 

T 
j W j = W 

T XL m v 
b X 

T W , (48) 

 = 

( 

X 1 0 . . . 0 

0 X 2 . . . 0 

0 0 . . . X v 

) 

, (49) 

 = 

⎛ 

⎜ ⎝ 

W 1 

W 2 

. . . 

W v 

⎞ 

⎟ ⎠ 

, (50) 

 

m v 
b = 

⎛ 

⎜ ⎝ 

L m v 
b11 

L m v 
b21 

. . . L m v 
bV 1 

L m v 
b12 

L m v 
b22 

. . . L m v 
bV 2 

. . . . . . . . . . . . 

L m v 
b1 V 

L m v 
b2 V 

. . . L m v 
bV V 

⎞ 

⎟ ⎠ 

, (51) 

 

m v 
bi j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 

C ∑ 

p=1 

C ∑ 

q =1 
q � = p 

d p ∑ 

l=1 

d q ∑ 

h =1 

V N 

j 

qh 

N 

i 
pl 

N 

2 
e i pl e 

i 
pl 

T − 1 

N 

2 
e i pl e 

j 

qh 

T 
, if i = j 

−2 

C ∑ 

p=1 

C ∑ 

q =1 
q � = p 

d p ∑ 

l=1 

d q ∑ 

h =1 

1 

N 

2 
e i pl e 

j 

qh 

T 
, otherwise 

, 

(52) 

here i and j are view labels, p and q are class labels, l and h are

ubclass labels, p i 
pl 

= 

N i 
pl 

N is the prior of the subclass l of class p in

he view i , μi 
pl 

is the mean of the subclass l of class p in view i ,

 

i 
pl 

is the vector of length N with ones at positions corresponding 

o subclass l of class p in view i and zeros elsewhere. 

The solution is then obtained by optimizing the Fisher-Rao’s cri- 

erion: 

 (W ) = argmax 
W 

T 
i 

W i = I ,i =1 , ... ,V 

T r(W 

T XL b X 

T W ) 

T r(W 

T XX 

T W ) 
, (53) 

here X and W are defined as in (49) and (50) , respectively, and

 is centered. Equivalently, solution to the kernel version of the 

ethod is obtained by optimizing 

 (A ) = argmax 
A T KA = I 

T r(A 

T KL b K 

T A ) 

T r(A 

T KK 

T A ) 
, (54) 
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Algorithm 2: Target vectors calculation, multi-view case. 

Function 

getMultiviewTargets( cl ass _ l abel s, cl uster _ l abel s, V, C, Z, N, D ) : 
Input : cl ass _ l abel s : V ∗ N × 1 vector with class 

labels; cl uster _ l abel s : V ∗ N × 1 vector with the 

cluster labels; V : number of views; Z : number of 

clusters in each class; C : number of classes; N : 

number of elements; D : vector of dimensionalities 

of data in each view; 

d ← min (V ∗ C ∗ Z − 1 , min (D ) , N) ; 

%class-level vectors ; 

T ← V ∗ N × ( min (d, C − 1)) matrix with random values at 

positions of different classes, such that values are 

repeated within the class in one column, but distinct 

between views, classes, and columns; 

L ← unique numbers of elements in each class sorted in 

ascending order; 

%cluster level vectors ; 

for l ← iterate through L do 

k ← classes with l elements; m ← length( k ); 

if size (T , 2) + m ∗ (V ∗ Z − 1) > d then 

m ← (d − size (T , 2)) / (V ∗ Z − 1) 

end 

T clust ← V ∗ N × m ∗ (V ∗ Z − 1) matrix with random 

values at positions of all subclasses of classes in k , 

such that the values are shared within the subclass in 

one column, but distinct between subclasses, views, 

and columns. Values at positions of other classes are 

0s; 

T ← append T clust as columns on the right; 

if size (T , 2) == d then 

break 

end 

end 

T ← append N × 1 vector of ones as a column on the left; 

Orthogonalize T ; remove first column of T ; 

return T T 
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here K is a block-diagonal matrix having K v as its v th block. 

The solution to (53) is obtained by solving the eigendecomposi- 

ion problem L b X 

T v = λX 

T v . Similarly, the solution to (54) is given

y L b Ka = λKa . Both of these problems can be solved by the pro-

ess equivalent to the one described in 3.1. 

.3. Speeding up the eigendecomposition step: multi-view case 

In this section, we describe a speed-up approach for the Multi- 

iew Subclass Discriminant Analysis, based on the specific struc- 

ure of the Laplacian matrix L m v 
b 

. The process of speeding up the 

igendecomposition step for the multi-view case is similar to the 

ingle-view one. The Laplacian matrix L m v 
b 

is the constant sum 

ymmetric block matrix, thus having orthogonal eigenvectors, one 

f which is the vector of ones corresponding to eigenvalue of 0. 

he matrix has a block structure, where different blocks corre- 

pond to different views, and inside of each diagonal view block 

e can observe the block structure that is the same as in the 

ingle-view case. Due to this block structure the eigenvectors of 

 

m v 
b 

have the block structure as well. Assuming that the number of 

lusters is the same in all views, the rank of the L m v 
b 

is C ∗ Z ∗ V − 1 ,

nd that is the maximum number of nonzero eigenvalues. 

Let us consider the data of 2 views and 2 classes. Let 1 con- 

ain 2 subclasses, with 2 samples in the first subclass and 2 sam- 

les in the second subclass in both views. Let class 2 contain 2 

ubclasses, with 3 samples in the first subclass and 4 samples in 

he second subclass in the first view, and 4 samples in the first 

ubclass and 3 samples in the second subclass in the second view. 

hen the eigenvectors of the between-class Laplacian matrix of the 

roposed multi-view SDA will have the structure outlined in (55) , 

here c corresponds to the class label, z corresponds to the sub- 

lass label, v corresponds to the view label and r i corresponds to 

 th random value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r 1 r 5 r 9 r 13 0 0 0 

r 1 r 5 r 9 r 13 0 0 0 

r 1 r 6 r 10 r 14 0 0 0 

r 1 r 6 r 10 r 14 0 0 0 

r 2 0 0 0 r 17 r 21 r 25 

r 2 0 0 0 r 17 r 21 r 25 

r 2 0 0 0 r 17 r 21 r 25 

r 2 0 0 0 r 18 r 22 r 26 

r 2 0 0 0 r 18 r 22 r 26 

r 2 0 0 0 r 18 r 22 r 26 

r 2 0 0 0 r 18 r 22 r 26 

r 3 r 7 r 11 r 15 0 0 0 

r 3 r 7 r 11 r 15 0 0 0 

r 3 r 8 r 12 r 16 0 0 0 

r 3 r 8 r 12 r 16 0 0 0 

r 4 0 0 0 r 19 r 23 r 27 

r 4 0 0 0 r 19 r 23 r 27 

r 4 0 0 0 r 19 r 23 r 27 

r 4 0 0 0 r 19 r 23 r 27 

r 4 0 0 0 r 20 r 24 r 28 

r 4 0 0 0 r 20 r 24 r 28 

r 4 0 0 0 r 20 r 24 r 28 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

c z v 
1 1 1 

1 1 1 

1 2 1 

1 2 1 

2 1 1 

2 1 1 

2 1 1 

2 2 1 

2 2 1 

2 2 1 

2 2 1 

1 1 2 

1 1 2 

1 2 2 

1 2 2 

2 1 2 

2 1 2 

2 1 2 

2 1 2 

2 2 2 

2 2 2 

2 2 2 

. (55) 

It can be observed that the first C − 1 eigenvectors have the 

lass block structure similar to the one in the single-view case, 

nd the blocks are repeated across the positions corresponding to 

he different views. In the same way as in the previously described 

ingle-view case, the rest of the eigenvectors correspond to differ- 

nt classes and each of them exposes the subclass structure of spe- 

ific class - the values corresponding to the same subclass are the 

ame within each view in the eigenvector and the values corre- 

ponding to other classes are 0 in all the views. We observe that 
7 
he classes with the same amount of samples share the eigenvec- 

ors in a similar way to the single-view case, and these eigenvec- 

ors are repeated for the number of times equal to the number of 

lasses sharing the number of elements. The eigenvectors show- 

ng subclass discrimination of smaller classes correspond to bigger 

igenvalues. 

Following the procedure described for single-view case, the 

igenvectors can be obtained by forming the random vectors of 

he structure described, and orthogonalizing starting from the vec- 

or of ones following the Gram-Schmidt process [34] . The vector of 

nes can then be removed. The detailed procedure is described in 

lgorithm 2 . 

.4. Computational complexity analysis 

In this section, we discuss the complexity analysis of the origi- 

al Subclass Discriminant Analysis and the proposed speed-up ap- 

roach. The complexities are described using flam - a compound 

peration denoting one addition and one multiplication [35] . Com- 

lexity of SDA can be defined as follows: 

• Calculation of total scatter matrix S t is ND 2 + DN
2 
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• Calculation of between-class scatter matrix S b is 
Z 2 C (C −1) 

2 ( D (D +1) 
2 + 1 + D ) + 2 DN, where Z is the number of

subclasses and C is a number of classes 
• Solving the eigendecomposition problem in (8) is 9 

2 D 

3 + 2 D 

3 + 

D 

3 = 

15 
2 D 

3 [29,35] 

It should be noted here that we do not perform the calculation 

f the stability criterion defined in [7] as the number of subclasses 

s defined explicitly for fair comparison with other methods - fix- 

ng the same cluster labels for data points in all the methods en- 

ures that clustering accuracy plays no effect on overall accuracy 

nd fine-tuning the number of clusters does not affect the speed. 

esides, implementation following the SDA stab algorithm requires 

ultiple iterations with different subclass numbers therefore mak- 

ng the algorithm more computationally intensive. 

The computational complexity of fastSDA depends on three 

teps: mean-centering of data, creation of target vectors, and re- 

ression step. Let us first consider the regression problem in (38) . 

irst, we can notice that for a positive definite matrix ( XX 

T + αI ) ,

nversion can be performed efficiently via Cholesky decomposition, 

.e., ( XX 

T + αI ) −1 = (R 

−1 )(R 

−1 ) T , where R is an upper triangular

atrix, s.t., ( XX 

T + αI ) = R 

T R . Further, when N < D , the problem

n (38) can be transformed into X (X 

T X ) −1 T T . Thus, the complexity

f fastSDA can be calculated as follows: 

• Complexity of target vector creation is essentially equal to com- 

plexity of Gram-Schmidt process = Nd 2 − 1 
3 d 

3 , where d = ZC −
1 is the dimensionality of the projection space (number of tar- 

get vectors), d < D [29,35] . 
• Complexity of mean-centering data is DN 

• If N ≤ D , complexity of the regression step is DN 2 

2 + 

N 3 

6 + dN 

2 +
DNd, where DN 2 

2 is the complexity of X 

T X , N 3 

6 is the complexity 

of Cholesky decomposition [29,35] , and d 2 N + DNd is the com- 

plexity of the remaining regression steps (i.e., calculation of in- 

verse and multiplication). 

• If N > D , complexity is ND 2 

2 + 

D 3 

6 + dD 

2 + DNd, where ND 2 

2 is the

complexity of XX 

T , D 3 

6 is the complexity of Cholesky decompo- 

sition [29,35] , and d 2 D + DNd is the complexity of the remain- 

ing regression steps (i.e., calculation of inverse and multiplica- 

tion). 

• Normalization of W has complexity of d 2 D 
2 + dD + d

In the case N < D , the most computationally intensive term of 

astSDA depends on relation of d to N . It is equal to DN 2 

2 for N > 2 d

nd DNd for N < 2 d . Both of these terms are smaller than D 

3 as

oth N and d are smaller than D . In turn, the computational com- 
Fig. 1. Dependancy of speed up ratio

8 
lexity of SDA is at least 15 
2 D 

3 . Therefore, fastSDA will always out- 

erform SDA in this scenario. The dependency of speed-up on di- 

ensionality and the number of samples can be seen from Fig. 1 . 

ere we show the ratio of SDA training time to fastSDA training 

ime for four different cases of D, N, C, Z , where we consider cases

f large and small number of classes/subclasses for larger/smaller 

 . As can be observed, the speed up ratio increases with the in- 

rease of D . 

In the case N > D , the highest term of SDA is at least ND 2 

2 if

 > 15 D and 

15 
2 D 

3 otherwise. Besides, the complexity term of cal- 

ulation of between-class scatter becomes significant for higher C 

nd Z . For fastSDA the largest term is ND 2 

2 if d < 

D 
2 and DNd other-

ise. Thus, the speed-up ratio depends on the five parameters of 

, N, C, Z, d . The dependency of training time on C and Z is shown

n Fig. 2 where four cases are considered: two for a small dataset 

nd two for a large dataset, where in each case we show the sub- 

ases where N > 15 D and N < 15 D and the ratio of training time

f SDA to that of fastSDA is shown. It can be observed that for big

nough D fastSDA always results in a speed up that becomes more 

ignificant with higher D, C , and Z . For the case where D is small,

 < < N , and both C and Z are small, the speed-up might not

lways be achieved or be close to 1, as can be observed from the 

op-left subplot. However, we argue that scenario where D < < N 

s not a common case where dimensionality reduction is applied 

n the first place. Experimentally we also show that our methods 

esults in superior speed for both large-scale datasets with many 

lasses (e.g., SoF) and small low-dimensional datasets with lower 

umber of classes (e.g., Ionosphere, Monks2). 

In the kernel case, the regression step (43) is equivalent to (K + 

I ) −1 T T for normalized A . The complexity of kernel fastSDA can 

hen be calculated as follows: 

• Complexity of kernel matrix calculation is DN 

2 

• Complexity of mean-centering of K is N 2 

2 + 

N 3 

2 

• Complexity of target vectors creation is Nd 2 − 1 
3 d 

3 

• Complexity of regression step is N 3 

6 + dN 

2 

• Complexity of normalization of the projection matrix is dN 

2 + 

d 2 N + dN + d

For kernel SDA, the step of kernel matrix creation is added as 

ell. Besides, as kernel SDA formulation is based on graph embed- 

ing framework, the complexity of KSDA becomes at least equal to 

he complexity of eigendecomposition (19) which is equal to 15 
2 N 

3 , 

hile the largest term of fastSDA complexity becomes 2 
3 N 

3 (here 

e exclude the kernel matrix creation term as it is equal for both 

ethods). The complexity of multi-view fastSDA can be computed 
 based on N, D, C, Z for N < D . 
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Fig. 2. Dependancy of speed up ratio based on N, D, C, Z for N > D . 
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imilarly, following N = 

∑ V 
i =1 N i and D = 

∑ V 
i =1 D i ( D = 

∑ V 
i =1 N i in

he kernel case), where V is the number of views. 

We can conclude that fastSDA outperforms SDA in terms of 

omputational complexity and the speed-up increases with the 

imensionality of data. Besides, another speed-up factor comes 

rom the computation of the between-class scatter matrix that be- 

omes much more computationally intensive with larger number 

f classes and/or subclasses in SDA. 

. Experimental results 

In this section, the experimental results are presented. The 

esults are compared with other subspace learning techniques, 

amely SDA, CDA, SMFA, and SRDA, as well as the kernel SDA, CDA, 

nd SMFA. After feature extraction, classification is performed with 

 -Nearest Neighbors classifier with k = 5. In addition, we verify 

ome of the assumptions regarding the proposed approach by per- 

orming eigendecomposition of L b , regressing the obtained eigen- 

ectors following (38) and projecting the data onto the obtained 

ectors that correspond to larger criterion values (11) . 

For the kernel version of the methods, we exploit the RBF ker- 

el function: 

 (x i , x j ) = exp 

(
−|| x i − x j || 2 2 

2 σ 2 

)
, (56) 

here we set the Gaussian scale σ to the mean Euclidean distance 

etween the training vectors. 

In our experiments, we assume that the subclass label of each 

ata point in each class is known and is determined by apply- 

ng the k-means clustering in R 

D . The performance is tested for 

he different numbers of clusters Z = { 1 , 2 , 3 , 4 , 5 , 6 } , and the same

umber of clusters is used for each class. We perform clustering 

n the original space and use the same cluster labels in the ker- 

el methods. The same subclass labels are used for all subclass- 

ased methods to guarantee that the differences in performance 

bserved between the methods are not related to the specific clus- 

ering solutions of K-Means, but on the optimization problem each 

ethod adopts for determining the corresponding subspace. In the 

ulti-view case, data in each view is clustered separately. The di- 

ensionality d of the projection space is defined by the rank of the 

 b or L m v 
b 

matrix and is equal to C ∗ Z − 1 and V ∗ C ∗ Z − 1 , respec-

ively, where V is the number of views, C is the number of classes, 

nd Z is the number of clusters. 

For each experiment, 5-fold stratified cross-validation was used, 

ith 60% of data of each class belonging to training set, 20% to 
9 
alidation set, and 20% to test set, where the validation set is used 

or hyperparameter tuning, and results are reported by training on 

he training set and testing on the test set. All experiments were 

erformed on a computer with 4-core Intel i7-4800Q CPU and 32 

B of RAM. 

For single-view approaches, prior to using any method, we ap- 

lied PCA, preserving the eigenvectors corresponding to 98% of the 

otal energy and the data was standardized. The hyperparameters 

f all methods, if any, were tuned with the grid search. For SMFA, 

 Int and k Pen were selected from the range of [2,14] with step 3 and 

20,100] with step 20, respectively. 

For calculating the distance matrix in SMFA/KSMFA, Gaus- 

ian similarity (56) with σ equal to the mean Euclidean dis- 

ance between the training vectors was used. The regularization 

arameter for the kernel regression was chosen from the set 

1 e −3 , 1 e −2 , . . . , 1 e 3 ] . For the regularization of the other single-

iew kernel methods and multi-view methods the same parame- 

er range was used. Cholesky decomposition was used for efficient 

atrix inversion. 

In the multi-view kernel case, the solutions for the datasets 

ontaining more than 2500 samples were obtained with approx- 

mate kernel regression with the kernel matrix formed with 1500 

andom vectors from the training data. In the single-view kernel 

ase, the approximate kernel regression [1] with the prototype vec- 

ors formed by clustering all data with cardinality of 10 0 0 was 

sed on a large-scale SoF dataset for the proposed approach. On 

his dataset, the Nyström-based approximate kernel [36] was used 

or KSDA, KCDA, and KSMFA methods with cardinality 10 0 0. 

.1. Single-view datasets 

We conducted experiments on 4 facial image datasets, one 

arge-scale facial image dataset, and 4 other datasets of various 

ata types. The Jaffe [37] dataset contains facial images of Japanese 

emales with 7 different facial expressions: anger, happiness, fear, 

isgust, sadness, surprise, and neutral. The dataset consists of 213 

mages and several examples can be seen from Fig. 3 . 

BU [38] dataset contains 700 images of individuals with the 

ame 7 facial expressions. 

The Cohn-Kanade [39] dataset contains 245 images of different 

eople with different facial expressions of the same 7 classes as 

U and Jaffe datasets. Example images can be seen in Fig. 4 . 

The Extended Yale-B dataset [40] contains 2432 grayscale fa- 

ial images of 38 people and, therefore, defines a face recognition 

roblem with 38 classes. Each class is represented by 64 images of 
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Fig. 3. An example of images from Jaffe dataset. 

Fig. 4. Examples of images from Cohn-Kanade dataset. 

Fig. 5. Examples of images from Yale dataset. 

Fig. 6. Examples of images from SoF dataset. 
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he same person under different illumination conditions, positions, 

nd view angles. Example images can be seen in Fig. 5 . 

The large-scale SoF dataset [41] consists of 42,592 images of 

12 persons (66 male and 46 female) collected under different il- 

umination conditions and containing images with occlusions (e.g. 

lasses). Example images can be seen in Fig. 6 . All the facial image

atasets mentioned above (i.e., Jaffe, Cohn-Kanade, BU, Yale-B, SoF) 

ere reshaped to images of 30 × 40 pixels and flattened to obtain 

200 × 1 vectors. 

The Ionosphere dataset [42] contains radar data represented 

s 351 34-dimensional vectors, along with the information on 

hether they contain evidence of some type of structure in the 

onosphere or not, hence posing a binary classification problem. 

he Semeion dataset [43] contains 1593 instances of handwritten 

igits produced by 80 persons, each of whom had written each 

igit twice, in a normal way and in a fast way. The digits are rep-

esented by 16x16 binarized images flattened to 256 × 1 vectors. 

The MONKS2 dataset [44] is derived from a domain, where each 

nstance is represented by 6 discrete features corresponding to one 

f the two classes. The artificially generated data describes cer- 

ain physical properties of robots, and the task is to predict the 

ype of the robot based on these characteristics. The PIMA Indi- 

ns Diabetes dataset [45] contains information on various medical 

ttributes of patients, including the number of pregnancies the pa- 

ient has had, their BMI, insulin level, age, along with the informa- 

ion on whether the patient has diabetes. The dataset contains 768 

nstances. 
10 
.2. Multi-view datasets 

For the evaluation of the multi-view methods seven datasets 

ere used: Handwritten digits [46] , Caltech-101 [47,48] , NUS- 

IDE [4 8,4 9] , Human Action Recognition Using Smartphones [50] , 

obots Execution Failures [51] , Healthy Old People Action Recog- 

ition [52] , Million Song Dataset with Images (MSDI) [53] . The 

andwritten digits dataset (HWD) [46] contains 20 0 0 instances of 

andwritten digits of 10 classes. The images are represented by 6 

iews: Fourier coefficients (1 × 128), profile correlations (1 × 76), 

arhunen-Love coefficients (1 × 64), pixel averages (1 × 240), 

ernike moments (1 × 47), and morphological features (1 × 6). 

The Caltech-101 dataset [47] is an image classification dataset 

epresented by 6 views: Gabor features (1 × 48), wavelet mo- 

ents (1 × 40), CENTRIST features (1 × 254), Histogram of ori- 

nted gradients features (1 × 1984), GIST features (1 × 512), local 

inary pattern features (1 × 928). Due to imbalanced data between 

lasses, the dataset is divided into two subsets of 7 and 20 classes, 

esulting in 1474 and 2386 instances, respectively. Examples of im- 

ges can be seen in Fig. 7 . 

NUS-WIDE dataset [49] is a large-scale image classification 

ataset of 31 classes described from 5 views: color histogram 

1 × 65), color moments (1 × 226), color correlation (1 × 145), 

dge distribution (1 × 74), wavelet texture (1 × 129). Due to the 

arge amount of samples, a subset of 11,288 instances is selected 

or the experiments. Examples of images can be seen in Fig. 8 . 
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Fig. 7. Examples of images from Caltech-101 dataset. 

Fig. 8. Examples of images from NUS-WIDE dataset. 

Table 1 

Classification results of linear methods in single-view datasets: accuracy/number of clusters per class. 

Dataset SDA CDA SMFA SRDA SDA, fastSDA 

sort. vec. (our) 

BU 62.8 1 60.1 1 59.9 1 62.6 63.3 1 63.3 1 

Jaffe 65.2 1 58.1 1 63.8 1 65.7 65.2 1 66.2 1 

Ionosphere 89.7 3 89.4 5 89.4 4 83.1 87.8 6 88.3 2 

Kanade 63.3 1 61.6 1 55.1 1 65.3 64.0 1 65.7 1 

Semeion 87.8 1 83.2 1 86.7 1 88.9 89.0 1 89.4 1 

Yale 86.8 2 86.6 2 87.6 2 88.6 88.7 1 89.4 1 

PIMA 71.2 5 72.0 5 72.8 2 71.2 71.2 1 71.6 4 

Monks2 55.8 2 53.9 1 61.2 1 50.9 58.8 6 52.7 3 

SoF 98.6 1 98.9 1 98.5 1 99.0 98.0 1 99.0 1 

Table 2 

Classification results of linear methods in single-view datasets: training time (in sec). 

Dataset SDA CDA SMFA SRDA SDA, sort. vec. fastSDA (our) 

BU 0.019 0.017 0.030 0.013 0.09 0.005 

Jaffe 0.013 0.004 0.005 0.005 0.013 0.002 

Ionosphere 0.008 0.002 0.005 0.005 0.017 0.002 

Kanade 0.012 0.005 0.006 0.005 0.02 0.002 

Semeion 0.045 0.041 0.147 0.015 1.148 0.013 

Yale 0.063 0.056 0.216 0.010 4.1 0.007 

PIMA 0.003 0.009 0.016 0.005 0.081 0.001 

Monks2 0.004 0.002 0.002 0.005 0.005 0.001 

SoF 9.52 18.3 86.0 0.831 0.801 0.611 
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The Human Action Recognition Using Smartphones dataset 

HARS) [50] contains 3-axial angular velocity and linear accelera- 

ion data taken from the accelerometer and gyroscope data of a 

mart phone attached to a person’s waist while the person is per- 

orming one of the 6 activities. Actions are described from 9 views: 

ngular velocity of each of 3 axes, total acceleration of each of 3 

xes, and body acceleration of each axis. Each view has the di- 

ensionality of 128. Data was gathered from a group of 30 vol- 

nteers, resulting in 7352 instances. The cross-validation splits in 

ur experiments were done such that the subjects performing the 

xperiments are not repeated between training, validation, and test 

plits. 

Healthy Old People Action Recognition dataset (HOPAR) 

52] contains 2 datasets, each containing the information from a 

ireless sensor worn by a person, while performing one of the 4 

ctivities: sitting on a bed, sitting on a chair, lying, ambulating. The 

ata is organized into 4 views, where views 1–3 represent the ac- 

eleration from each of the 3 axes and view 4 contains information 

bout the received signal strength indication, frequency, and phase 

f the signal, obtained from the sensor. The first dataset consists 

f data obtained from 60 subjects, out of which 25% of each class 

nstances were selected, resulting in 10,495 instances. The second 

ataset contains information obtained from 27 subjects, resulting 

n 9057 instances. 
u

t

11 
The Robot Execution Failures dataset [51] consists of 5 subsets, 

ach describing a different problem. For our experiments, subsets 1 

nd 4 were combined, resulting in a dataset of failures in approach 

o grasp or ungrasp position. The data is represented by 4 classes: 

ormal, collision, frontal collision and obstruction, and described 

rom 6 views: force on each of the 3 axes and torque on each of

he 3 axes. Each view has 15 dimensions. The dataset consists of 

05 instances. 

The Million Song Dataset with Images (MSDI) [53] poses a mu- 

ic genre classification task for 15 different genres. Each instance 

epresents a song, that is described from two views: audio spec- 

rograms from audio signal and CNN features of the corresponding 

lbum cover. Both views have the dimensionality of 200. We per- 

orm evaluation on the subset of 7468 instances, chosen randomly 

rom the dataset and preserving the initial class proportions. 

.3. Results 

Tables 1 and 2 show the results for the single-view linear meth- 

ds, where Table 1 depicts the accuracy and the number of sub- 

lasses resulting in the best accuracies, and Table 2 shows the 

raining time in seconds. Tables 3 and 4 show similar information 

or the kernel methods. We performed experiments on 9 datasets 

sing the proposed approach, which is compared to the conven- 

ional eigendecomposition-based approaches of SDA, CDA, SMFA 
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Table 3 

Classification results of kernel methods in single-view datasets: accuracy/number of clusters per class. 

Dataset kernel SDA kernel CDA kernel SMFA kernel fastSDA (our) 

BU 63.7 1 64.7 1 62.4 1 64.2 1 

Jaffe 69.0 1 69.0 1 63.8 1 68.5 1 

Ionosphere 83.4 6 94.5 5 84.6 3 94.9 6 

Kanade 59.6 2 60.4 1 57.9 1 61.2 1 

Semeion 91.2 2 91.5 1 91.6 1 90.6 1 

Yale 89.4 6 91.4 1 75.2 4 91.4 1 

PIMA 63.1 6 66.9 6 64.8 5 72.3 3 

Monks2 46.0 6 56.4 5 55.2 2 52.7 3 

SoF 77.4 2 79.2 2 98.3 2 98.4 2 

Table 4 

Classification results of kernel methods in single-view datasets: training time (in sec). 

Dataset kernel SDA kernel CDA kernel SMFA kernel fastSDA (our) 

BU 0.036 0.068 0.432 0.01 

Jaffe 0.004 0.010 0.015 0.001 

Ionosphere 0.012 0.026 0.049 0.002 

Kanade 0.005 0.007 0.020 0.001 

Semeion 0.275 0.479 11.5 0.043 

Yale 1.00 0.886 39.5 0.103 

PIMA 0.040 0.392 0.368 0.012 

Monks2 0.02 0.127 0.007 0.001 

SoF 188.9 190.3 167.7 1.55 

Table 5 

Classification results of linear methods in multi-view datasets: accuracy/number of clusters per class. 

Dataset SMvDA MvMDA MvSDA (our) single-view fastSDA (our) 

HWD 98.9 98.6 98.8 1 98.5 4 

HARS 62.6 31.9 67.3 1 63.0 3 

Robots 66.8 57.5 74.6 5 46.4 6 

Caltech-7 98.2 98.2 98.2 1 97.0 1 

Caltech-20 93.7 94.6 95.0 1 89.7 1 

HOPAR 1 84.9 84.8 85.4 1 84.8 2 

HOPAR 2 81.9 81.9 82.3 2 82.3 6 

MSDI 57.6 57.0 58.4 6 58.3 2 

NUS-WIDE 48.6 47.3 56.0 3 26.0 3 

Table 6 

Classification results of linear methods in multi-view datasets: training time (in sec). 

Dataset SMvDA MvMDA MvSDA (our) single-view fastSDA (our) 

HWD 3.3 2.3 0.10 0.03 

HARS 27.4 22.3 1.34 0.22 

Robots 0.029 0.028 0.01 0.002 

Caltech-7 21.5 22.4 1.35 0.65 

Caltech-20 23.4 20.2 2.0 1.0 

HOPAR 1 7.14 6.2 0.04 0.008 

HOPAR 2 5.75 4.41 0.06 0.008 

MSDI 58.4 50.9 0.2 0.024 

NUS-WIDE 133.2 130.2 0.54 0.09 
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nd with SRDA in the linear case; and KSDA, KCDA and KSMFA for 

he kernel case. 

Tables 5 and 6 show the results for the multi-view case in the 

inear formulations, while Tables 7 and 8 show the same infor- 

ation for kernel formulations. The results are presented similarly 

o Tables 1 and 2 . The following methods are compared: single- 

iew SDA, where features from different views are concatenated, 

vMDA, and SMvDA. For the single-view SDA we use the proposed 

ast approach. We report the accuracy, time taken for training, and 

he number of subclasses that resulted in the highest accuracy. 

n the multi-view datasets, the clustering time is included in the 

otal time, as the comparison is done with the methods that do 

ot require clustering. In the single-view datasets, total time does 

ot include the time used for clustering, as comparison is done 
12 
o other clustering-based methods, where the same subclass labels 

re used. It can be seen that the proposed single-view method is 

erforming better or close to the conventional methods, while al- 

ays taking less time. 

Figs. 9 and 10 show the dependency of the training time on 

he number of training samples in the dataset based on training 

n the datasets used in this work: Fig. 9 depicts the single-view 

ethods, and Fig. 10 depicts the multi-view methods. Note that 

he speed of the methods is dependent on multiple factors, includ- 

ng the dimensionality, the number of samples, number of classes, 

nd subclasses. Besides, in multi-view cases, the number of views 

n the dataset affects the training time significantly. Therefore, the 

raining time is not always increasing gradually with increase in di- 

ensionality/number of samples, as can be observed especially in 
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Table 7 

Classification results of kernel methods in multi-view datasets: accuracy/number of clusters per class. 

Dataset kernel SMvDA kernel MvMDA kernel MvSDA (our) kernel fastSDA (our) 

HWD 99.0 98.5 99.3 1 99.0 3 

HARS 79.4 86.5 89.5 3 89.5 2 

Robots 68.3 75.2 81.5 2 77.6 4 

Caltech-7 97.6 97.9 97.7 1 97.8 1 

Caltech-20 87.2 93.6 93.9 1 94.7 1 

HOPAR 1 85.4 86.0 86.0 2 85.8 2 

HOPAR 2 83.1 79.0 80.2 4 82.7 3 

MSDI 51.3 31.6 61.5 1 63.9 1 

NUS-WIDE 32.9 42 61.3 1 62.7 1 

Table 8 

Classification results of kernel methods in multi-view datasets: training time (in sec). 

Dataset kernel SMvDA kernel MvMDA kernel MvSDA (our) kernel fastSDA (our) 

HWD 72.4 70.5 5.7 0.07 

HARS 561 554 97 4.3 

Robots 0.14 0.14 0.03 0.001 

Caltech-7 30.9 30 2.78 0.03 

Caltech-20 244 236 9.57 0.11 

HOPAR 1 76.7 74.4 10.9 4.49 

HOPAR 2 65.9 74.1 8.89 2.8 

MSDI 69.9 48.6 1.16 2.3 

NUS-WIDE 259.5 235.3 24 7.7 

Fig. 9. Dependency of training time on the dimensionality of data (left, dimensionality shown on log scale) and dependency of training time on the number of samples in 

the linear methods (middle) and kernel methods (right). 

Fig. 10. Dependency of training time on the dimensionality of data (left, dimensionality shown on log scale) and on the number of samples (middle) in the linear multi-view 

methods and dependency of training time on the number of samples in the kernel multi-view methods (right). Numbers of samples and dimensionalities are summed across 

the views. 
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he plots corresponding to linear formulations. However, it can be 

bserved that the proposed methods outperform the existing ap- 

roaches in terms of training time and the margin becomes higher 

ith larger dataset sizes and dimensionalities. This can be seen es- 

ecially well from the kernel formulation plots. 

In the single-view linear case, the training time of fastSDA is 

imilar to that of SRDA. However, accuracy-wise the proposed ap- 

roach outperforms SRDA because of SRDA’s assumptions on uni- 
13 
odality. This can be seen from Table 1 . Otherwise, in the ker- 

el formulation and in the multi-view scenarios, the proposed ap- 

roach outperforms other methods in terms of computational com- 

lexity by a significant margin. 

In addition, by performing the projection onto the sorted by cri- 

erion value (11) regressed eigenvectors of L b , we verify that for 

he data with subclass structure the eigenvectors corresponding 

o larger criterion values are those following the described struc- 
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ure. The only exceptions were observed in the Monks2 and PIMA 

atasets, where some of the eigenvectors had random structure - 

his is due to the samples of different subclasses being mixed with 

ach other. However, even in this case, it can be observed that 

he proposed approach results in competitive accuracy and higher 

peed. The accuracy obtained by projecting data using the transfor- 

ation matrix comprised of eigenvectors corresponding to largest 

riterion values is shown in the second last column of Table 1 . 

For the multi-view case we compared the proposed multi-view 

DA to other multi-view methods that assume unimodality of data. 

t can be seen that the proposed approach results in significant 

peed-up and competitive accuracy, often outperforming compet- 

ng methods. 

. Conclusions 

This work presents two contributions, proposing a fast and ef- 

cient solution for Subclass Discriminant Analysis and introducing 

ulti-view Subclass Discriminant Analysis with a fast solution. As 

an be seen from the experimental results, the proposed speed- 

p approach allows to reduce the training time significantly, while 

eing competitive in accuracy and often outperforming the con- 

entional methods. Our findings allow performing the analysis on 

arge-scale datasets, where conventional solutions are not feasible. 

he proposed multi-view Subclass Discriminant Analysis provides 

uperior accuracy compared to the methods relying on the as- 

umption of unimodality of data. In addition, the proposed speed- 

p approach can be applied to this formulation, resulting in a sig- 

ificant gain in speed. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

cknowledgement 

This work was carried out within the Center for Visual and De- 

ision Informatics (CVDI) project AMALIA jointly sponsored by Ti- 

to Oy Finland and CA Technologies; project VIRPA-D sponsored 

y Tieto Oy Finland; and project 5G Vertical Integrated Industry 

or Massive Automation (5GVIIMA). Business Finland and company 

unding are gratefully acknowledged. 

eferences 

[1] A. Iosifidis , M. Gabbouj , Scaling up class-specific kernel discriminant analy- 
sis for large-scale face verification, IEEE Trans. Inf. Forensics Secur. 11 (2016) 

2453–2465 . 

[2] C. Zhao , X. Wang , D. Miao , H. Wang , W. Zheng , Y. Xu , D. Zhang , Maximal gran-
ularity structure and generalized multi-view discriminant analysis for person 

re-identification, Pattern Recognit. 79 (2018) 79–96 . 
[3] R. Duda , P. Hart , D. Stork , Pattern Classification, second ed., Wiley, New York,

NY, USA, 20 0 0 . 
[4] J. Ye , Least squares linear discriminant analysis, Int. Conf. Mach. Learn. 1 

(2007) 1087–1093 . 

[5] H. Wang , X. Lu , W. Zheng , Fisher discriminant analysis with l1-norm, IEEE
Trans. Cybern. 4 (2014) 828–842 . 

[6] R. Fisher , The statistical utilization of multiple measurements, Ann. Eugen. 8 
(1938) 376–386 . 

[7] M. Zhu , A. Martinez , Subclass discriminant analysis, IEEE Trans. Pattern Anal. 
Mach. Intell. 28 (2006) 1274–1286 . 

[8] X. Chen , T. Huang , Facial expression recognition: a clustering-based approach, 
Pattern Recognit. Lett. 24 (2003) 1295–1302 . 

[9] A . Maronidis , A . Tefas , I. Pitas , Subclass graph embedding and a marginal fisher

analysis paradigm, Pattern Recognit. 48 (2015) 4024–4035 . 
[10] N. Kwak , Implementing kernel methods incrementally by incremental nonlin- 

ear projection trick, IEEE Trans. Cybern. 47 (2017) 40 03–40 09 . 
[11] D. Cai , X. He , J. Han , Speed up kernel discriminant analysis, VLDB J. 20 (2011)

21–33 . 
14 
[12] A. Iosifidis , M. Gabbouj , Class-specific kernel discriminant analysis revisited: 
further analysis and extensions, IEEE Trans. Cybern. 47 (2017) 4 485–4 496 . 

[13] A. Iosifidis , M. Gabbouj , On the kernel extreme learning machine speedup, Pat- 
tern Recognit. Lett. 68 (2015) 205–210 . 

[14] H. Ye , Y. Li , C. Chen , Z. Zhang , Fast fisher discriminant analysis with random-
ized algorithms, Pattern Recognit. 72 (2017) 82–92 . 

[15] A . Iosifidis , A . Tefas , I. Pitas , Approximate kernel extreme learning machine for
large scale data classification, Neurocomputing 219 (2017) 210–220 . 

[16] B. Chen , L. Yuan , H. Liu , Z. Bao , Kernel subclass discriminant analysis, Neuro-

computing 71 (2007) 455–458 . 
[17] A . Maronidis , A . Tefas , I. Pitas , Graph embedding exploiting subclasses, in: IEEE

Symposium Series on Computational Intelligence, Cape Town, South Africa, 
2015, pp. 1452–1459 . 

[18] M. Kan , S. Shan , H. Zhang , S. Lao , X. Chen , Multi-view discriminant analysis,
IEEE Trans. Pattern Anal. Mach. Intell. 38 (2016) 188194 . 

[19] X. You , J. Xu , W. Yuan , X. Jing , D. Tao , T. Zhang , Multi-view common compo-

nent discriminant analysis for cross-view classification, Pattern Recognit. 92 
(2019) 37–51 . 

20] P. Zhu , Q. Hu , Q. Hu , C. Zhang , Z. Feng , Multi-view label embedding, Pattern
Recognit. 84 (2018) 126–135 . 

[21] Q. Yin , S. Wu , L. Wang , Unified subspace learning for incomplete and unlabeled
multi-view data, Pattern Recognit. 67 (2017) 313–327 . 

22] G. Cao , A. Iosifidis , K. Chen , M. Gabbouj , Generalized multi-view embedding

for visual recognition and cross-modal retrieval, IEEE Trans. Cybern. 48 (2017) 
2542–2555 . 

23] A . Iosifidis , A . Tefas , I. Pitas , On the optimal class representation in linear
discriminant analysis, IEEE Trans. Neural Netw. Learn. Syst. 24 (9) (2013) 

1491–1497 . 
24] A . Iosifidis , A . Tefas , I. Pitas , Kernel reference discriminant analysis, Pattern

Recognit. Lett. 49 (2014) 85–91 . 

25] A . Iosifidis , A . Tefas , I. Pitas , Class-specific reference discriminant analysis
with application in human behavior analysis, IEEE Trans. Hum. Mach. Syst. 45 

(2015) 315–326 . 
26] Y. Shuicheng , X. Dong , B. Zhang , H. Zhang , Q. Yang , S. Lin , Graph embedding

and extensions: a general framework for dimensionality reduction, IEEE Trans. 
Pattern Anal. Mach. Intell. 29 (2007) 40–51 . 

27] B. Scholkopf. , S. Mika , C. Burges , P. Knirsch , K. Muller , G. Ratsch , A. Smola ,

Input space versus feature space in kernel-based methods, IEEE Trans. Neural 
Netw. (1999) 10 0 01017 . 

28] B. Scholkopf , A. Smola , K. Muller , Nonlinear component analysis as a kernel 
eigenvalue problem, Neural Comput. 10 (1998) 12991319 . 

29] D. Cai , X. He , J. Han , Srda: an efficient algorithm for large scale discriminant
analysis, IEEE Trans. Knowl. Data Eng. 20 (2007) 1–12 . 

30] M. Idaji , M. Shamsollahi , S. Sardouie , Higher order spectral regression discrim-

inant analysis (HOSRDA): a tensor feature reduction method for ERP detection, 
Pattern Recognit. 70 (2017) 152–162 . 

[31] C. Paige , M. Saunders , LSQR: an algorithm for sparse linear equations and 
sparse least squares, ACM Trans. Math. Softw. 8 (1982) 43–71 . 

32] S. Hill , M. Lettington , K. Schmidt , Block representation and spectral properties
of constant sum matrices, Electron. J. Linear Algebra 34 (2018) 170–190 . 

33] D. Cai , X. He , J. Han , Spectral regression for efficient regularized subspace
learning, in: IEEE International Conference on Computer Vision, Rio de Janeiro, 

Brazil, 2007, pp. 1–8 . 

34] R. Horn , C. Johnson , Matrix Analysis, first ed., Cambridge University Press, 
1985 . 

35] A. Ruhe, Matrix algorithms volume 1: basic decompositions, 20 0 0. 
36] A. Iosifidis , M. Gabbouj , Nyström-based approximate subspace learning, Pat- 

tern Recognit. 57 (2016) 190–197 . 
37] M. Lyons , S. Akamatsu , M. Kamachi , J. Gyoba , Coding facial expressions with

Gabor wavelets, in: IEEE International Conference on Automatic Face and Ges- 

ture Recognition, Nara, Japan, 1998, pp. 200–205 . 
38] L. Yin , X. Wei , Y. Sun , J. Wang , M. Rosato , A 3d facial expression database for

facial behavior research, in: IEEE International Conference on Automatic Face 
and Gesture Recognition, Southampton, UK, 2006, pp. 211–216 . 

39] T. Kanade , J. Cohn , Y. Tian , Comprehensive database for facial expression anal- 
ysis, in: IEEE International Conference on Automatic Face and Gesture Recog- 

nition, Grenoble, France, 20 0 0, pp. 46–53 . 

40] K. Lee , J. Ho , D. Kriegman , Acquiring linear subspaces for face recognition
under variable lightning, IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005) 

684–698 . 
[41] M. Afifi, A. Abdelhamed, AFIF4: deep gender classification based on 

an adaboost-based fusion of isolated facial features and foggy faces, 
arXiv preprint arXiv:1706.04277 (2017). 

42] V. Sigillito , S. Wing , L. Hutton , K. Baker , Classification of radar returns from

the ionosphere using neural networks, Johns Hopkins APL Tech. Dig. 10 (1989) 
262–266 . 

43] M. Buscema , Metanet: the theory of independent judges, Subst. Use Misuse 33 
(1998) 439–461 . 

44] J. Wnek , R. Michalski , Comparing symbolic and subsymbolic learning: three 
studies, Mach. Learn. A Multistrategy Approach 4 (1993) . 

45] J. Smith , J. Everhart , W. Dickson , W. Knowler , R. Johannes , Using the ADAP

learning algorithm to forecast the onset of diabetes mellitus, in: Proceed- 
ings of the Symposium on Computer Applications and Medical Care, 1988, 

pp. 261–265 . 
46] M. van Breukelen , R. Duian , D. Tax , J. den Hartog , Handwritten digit recogni-

tion by combined classifiers, Kybernetika 34 (1998) 381–386 . 

http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0001
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0002
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0003
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0004
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0005
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0006
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0007
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0008
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0009
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0010
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0011
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0012
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0013
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0014
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0015
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0016
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0017
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0018
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0019
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0020
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0021
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0022
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0023
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0024
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0025
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0026
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0027
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0028
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0029
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0030
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0031
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0032
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0033
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0034
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0035
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0036
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0037
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0038
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0039
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0039
http://arxiv.org/abs/1706.04277
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0040
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0041
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0042
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0043
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0044
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0044


K. Chumachenko, J. Raitoharju, A. Iosifidis et al. Pattern Recognition 111 (2021) 107660 

 

[  

[  

[  

[  

[  

K

U

R
i

U

J
T

T
l

b

A

v

A
i

s

M

P
P

H

t

[47] L. Fei-Fei , R. Fergus , P. Perona , One-shot learning of object categories, IEEE
Trans. Pattern Recognit.Mach. Intell. 8 (2006) 594–611 . 

48] Y. Li , F. Nie , H. Huang , J. Huang , Large-scale multi-view spectral cluster-
ing via bipartite graph, in: AAAI Conference on Artificial Intelligence, 2015, 

pp. 2750–2756 . 
49] T. Chua , J. Tang , R. Hong , H. Li , Z. Luo , Y. Zheng , NUS-WIDE: a real-world web

image database from National University of Singapore, in: ACM International 
Conference on Image and Video Retrieval, Greece, 2009, p. 48 . 

50] D. Anguita , A. Ghio , L. Oneto , X. Parra , J. Reyes-Ortiz , A public domain dataset

for human activity recognition using smartphones, in: European Symposium 

on Artificial Neural Networks, Computational Intelligence and Machine Learn- 

ing, Bruges, Belgium, 2013, pp. 437–442 . 
[51] M. Afifi, A. Abdelhamed , Integration and learning in supervision of flexible as- 

sembly systems, IEEE Trans. Rob. Autom. 12 (1996) 202–219 . 
52] S. Torres , D. Ranasinghe , Q. Shi , A. Sample , Sensor enabled wearable RFID tech-

nology for mitigating the risk of falls near beds, in: IEEE International Confer- 

ence on RFID, 2013, pp. 191–198 . 
53] S. Oramas , F. Barbieri , O. Nieto , Multimodal deep learning for music genre clas-

sification, Trans. Int. Soc. Music Inf. Retr. 1 (2018) 4–21 . 

ateryna Chumachenko received her B.Eng. degree from South-Eastern Finland 

niversity of Applied Sciences, Mikkeli, Finland, and Kharkiv National University of 

adio Electronics, Ukraine, in 2017 and 2018, respectively. She is currently obtain- 
ng a Master of Science degree within department of Computing Sciences, Tampere 

niversity, Finland. 
15 
enni Raitoharju is a postdoctoral research fellow in Unit of Computing Sciences, 
ampere University, Finland. She received her Ph.D. in Information Technology in 

ampere University of Technology in 2017. Her current projects deal with machine 
earning and pattern recognition in applications such as biomonitoring, intelligent 

uildings, and autonomous boats. 

lexandros Iosifidis received his Ph.D. degree in Informatics from the Aristotle Uni- 

ersity of Thessaloniki in 2014. He an Associate Professor of Machine Learning at 

arhus University, Denmark. His research interests include statistical machine learn- 
ng and artificial neural networks with applications in Computer Vision and time- 

eries analysis problems. 

oncef Gabbouj received his MS and Ph.D. degrees in electrical engineering from 

urdue University, in 1986 and 1989, respectively. Dr. Gabbouj is Professor of Signal 
rocessing at the Department of Computing Sciences, Tampere University, Finland. 

is research interests include Big Data analytics, multimedia analysis, artificial in- 

elligence, machine learning, pattern recognition. 

http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0045
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0045
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0045
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0045
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0046
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0047
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0048
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0049
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0049
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0049
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0050
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0051
http://refhub.elsevier.com/S0031-3203(20)30463-5/sbref0051

	Speed-up and multi-view extensions to subclass discriminant analysis
	1 Introduction
	2 Related work
	2.1 Graph embedding framework
	2.2 Subclass discriminant analysis
	2.3 Kernel subclass discriminant analysis
	2.4 Multi-view extensions to linear discriminant analysis
	2.5 Spectral regression
	2.6 Kernel regression
	2.7 Approximate kernel regression
	2.8 SDA with spectral regression

	3 Proposed approach
	3.1 Speeding up the eigendecomposition step
	3.2 Multi-view subclass discriminant analysis
	3.3 Speeding up the eigendecomposition step: multi-view case
	3.4 Computational complexity analysis

	4 Experimental results
	4.1 Single-view datasets
	4.2 Multi-view datasets
	4.3 Results

	5 Conclusions
	Declaration of Competing Interest
	Acknowledgement
	References


