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DUTTA ET AL.

ABSTRACT

Planck Galactic Cold Clumps (PGCCs) are contemplated to be the ideal targets to probe the early
phases of star formation. We have conducted a survey of 72 young dense cores inside PGCCs in the
Orion complex with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3mm (band
6) using three different configurations (resolutions ~ /35, 170, and 770) to statistically investigate
their evolutionary stages and sub-structures. We have obtained images of the 1.3 mm continuum and
molecular line emission (2CO, and SiO) at an angular resolution of ~ 0735 (~ 140au) with the
combined arrays. We find 70 substructures within 48 detected dense cores with median dust-mass ~
0.093 Mg and deconvolved size ~ 0727. Dense substructures are clearly detected within the central
1000 au of four candidate prestellar cores. The sizes and masses of the substructures in continuum
emission are found to be significantly reduced with protostellar evolution from Class0 to ClassI. We
also study the evolutionary change in the outflow characteristics through the course of protostellar
mass accretion. A total of 37 sources exhibit CO outflows, and 20 (>50%) show high-velocity jets in
Si0. The CO velocity-extents (AVs) span from 4 to 110 km/s with outflow cavity opening angle width
at 400 au ranging from [©,ps]a00 ~ 076 to 3”9, which corresponds to 33°4—125°7. For the majority of
the outflow sources, the AVs show a positive correlation with [©,ps]400, suggesting that as protostars
undergo gravitational collapse, the cavity opening of a protostellar outflow widens and the protostars
possibly generate more energetic outflows.

Keywords: stars: formation, star: evolution, stars: protostars, stars: low-mass, stars: jet, ISM: jets

and outflows, astrochemistry

1. INTRODUCTION

Stars form within dense cores (typical size ~ 0.1
pc, density ~ 10* cm™3, and temperature ~ 10 K) in
the clumpy and filamentary environment of molecular
clouds (Myers & Benson 1983; Williams et al. 2000).
In past decades, observations revealed the presence of
embedded protostars within dense cores, which has also
led to the classification of “prestellar” and “protostellar”
phases of dense cores (Beichman et al. 1986; Bergin &
Tafalla 2007). The puzzle begins with the understand-
ing of how a prestellar core condenses to form a star
or multiple system and how a protostar accumulates its
central mass from the surrounding medium during its
evolution. Studies of extremely young dense cores at
different evolutionary phases offer the best opportunity
to probe the core formation under diverse environmen-
tal conditions, as well as determine the transition phase
from prestellar to protostellar cores, protostellar evolu-
tion and, investigate the outflow/jet launching scenario
and physical changes with the protostellar evolution.

In addition, a significant fraction of stars are found
in multiple systems. Thus, our understanding of star
formation must account for the formation of multiple
systems. In one popular star formation theory, the “tur-
bulent fragmentation” theory, turbulent fluctuations in
a dense core become Jeans unstable and collapse faster
than the background core (e.g., Padoan & Nordlund
2002; Fisher 2004; Goodwin et al. 2004), forming multi-
ple systems. Turbulent fragmentation is likely the dom-
inant mechanism for wide-binary systems (Chen et al.

2013; Tobin et al. 2016a; Lee et al. 2017b). Observations
indicate that the multiplicity fraction and the compan-
ion star fraction are highest in Class 0 protostars and
decrease in more evolved protostars (Chen et al. 2013;
Tobin et al. 2016a), confirming that multiple systems
form in the very early phase.

The “turbulent fragmentation” theory predicts that
the fragmentation begins in the starless core stage
(Offner et al. 2010). Small scale fragmenta-
tion/coalescence processes have been detected within 0.1
pc scale regions of some starless cores in nearby molec-
ular clouds (Ohashi et al. 2018; Tatematsu et al. 2020;
Tokuda et al. 2020). To shed light on the formation
of multiple stellar systems, however, we ultimately need
to study the internal structure and gas motions within
the central 1000 AU of starless cores. Over the past
few years, several attempts have been made to detect
the very central regions and possible substructures of
starless cores (e.g., Schnee et al. 2010, 2012; Dunham
et al. 2016; Kirk et al. 2017; Caselli et al. 2019a). How-
ever, no positive results on the fragmentation within the
central 1000 AU of starless cores have been collected so
far. Probing substructures of a statistically significant
sample of starless cores at the same distance will put
this theoretical paradigm (“turbulent fragmentation”)
to a stringent observational test. If no substructure is
detected, this will raise serious questions to our cur-
rent understanding of this framework. Irrespective of
the theoretical framework, these observations will em-
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pirically constrain, at high resolution, the starless core
structure at or near collapse.

After the onset of star formation, a (Keplerian) rotat-
ing disk is formed, feeding a central protostar. However,
the detailed process of the disk formation and evolution
(growth) is unclear. In theory, material in a collapsing
core will be guided by magnetic field lines towards the
midplane, forming an infalling-rotating flattened enve-
lope called a “pseudodisk” (Allen et al. 2003). A rotat-
ing disk is then formed in the innermost (<100 au) part
of the pseudodisk. In the pseudodisk, magnetic braking
may be efficient, affecting the formation and growth of
the disk (Galli et al. 2006). Therefore, high-resolution
(x10 au) dust polarization and molecular line observa-
tions of Class 0 protostars (the youngest known accret-
ing protostars) and their natal cores are key to constrain
theoretical models for the formation of protostellar disks
by unveiling their magnetic fields and gas kinematics.

However, disks in young Class 0 protostars have
largely remained elusive to date. We have lacked the
observational facilities capable of probing this regime in
these extremely young objects. As a consequence, we
do not know when disks form or what they look like
at formation. Recently, large high-resolution continuum
surveys have revealed several tens of Class 0 disk candi-
dates (Tobin et al. 2020). So far, however, only several
Class 0 protostars (e.g., VLA 1623, HH 212, L. 1527, and
L 1448-NB) have been suggested to harbor Keplerian-
like kinematics at scales 40 < r < 100 AU (Murillo et al.
2013; Codella et al. 2014; Ohashi et al. 2014; Tobin et al.
2016b). The most convincing case for a resolved Class
0 protostellar disk was found in the HH 212 Class 0 pro-
tostar, evidenced by an equatorial dark dust lane with
a radius of ~60 AU at submillimeter wavelengths (Lee
et al. 2017a). A systematic high-resolution continuum
(polarization) and molecular line survey of Class 0 pro-
tostars is urgently needed to search for more Class 0 disk
candidates and study disk formation. Collimated bipo-
lar outflows together with fattened continuum emission
(pseudodisk) can help identify Class 0 disk candidates.

Low-velocity bipolar outflows are nearly ubiquitous in
accreting, rotating, and magnetized protostellar systems
(Snell et al. 1980; Cabrit & Bertout 1992; Bontemps
et al. 1996; Dunham et al. 2014; Yildiz et al. 2015; Kim
et al. 2019). The lower transitions of CO are the most
useful tracers of molecular outflows since their low en-
ergy levels are easily populated by collisions with Hy and
He molecules at the typical densities and temperatures
of molecular clouds (Bally 2016; Lee 2020). The outflows
appear as bipolar from the polar regions along the axis
of rotation at the early collapsing phase, driven by the
first core (Larson 1969), and remain active throughout

the journey of protostellar accretion from the outer pseu-
dodisk region (Bate 1998; Masunaga & Inutsuka 2000;
Tomisaka 2002; Machida et al. 2014; Lee 2020). As pro-
tostars evolve, the physical properties of outflow com-
ponents diversify significantly based on the natal envi-
ronment. Both numerical simulations and observations
have revealed that the opening angle of the outflow cav-
ity widens with time as more material is evacuated from
the polar region and the equatorial pseudodisk grows
(Arce et al. 2007; Seale & Looney 2008; Frank et al.
2014; Kuiper et al. 2016). Typically, sources in the Class
0 phase exhibit CO outflow opening angles of 20° — 50°,
which increase for Class I (80° — 120°) and Class II
(100° — 160°). The outflow velocity is also expected to
increase with time as the mass loss increases with accre-
tion rate (Hartigan & Hillenbrand 2009; Bally 2016).

A significant number of Class 0, I, and early II pro-
tostars are observed to exhibit extremely high veloc-
ity (EHV) collimated molecular jets (or typically high-
density knots) within the wide-angle low-velocity out-
flow cavities. These high-velocity jets mainly originate
from the inner edges of the disk and jet velocities in-
crease with the evolutionary stage of the protostars in
the range of ~ 100 km s~! to a few ~ 100 km s~! in the
later phases (Anglada et al. 2007; Hartigan et al. 2011;
Machida & Basu 2019). The gas content of the jets
also transitions from molecular predominant to mostly
atomic (Bally 2016; Lee 2020). The jets in the younger
sources, like Class 0, are mainly detectable in molecular
gas, e.g., CO, SiO, and SO at (sub)millimeter and Hs in
the infrared wavelength. Conversely, in the older popu-
lation like evolved Class I and Class II sources, the jets
are mainly traceable in atomic and ionized gas e.g., O,
Hea, and S II (Reipurth & Bally 2001; Bally 2016; Lee
2020).

To summarize, more high resolution observations are
needed to study the fragmentation and structures (e.g.,
disks, outflows) of dense cores in the earliest phases of
star formation, i.e., from prestellar cores to the youngest
protostellar (Class 0) cores.

1.1. Observations of Planck Galactic Cold Clumps in
the Orion complex

The low dust temperatures (~ 14 K) of the Planck
Galactic Cold Clumps (PGCCs) make them ideal tar-
gets for investigating the initial conditions of star for-
mation (Planck Collaboration et al. 2016). Through ob-
servations of ~1000 Planck Galactic Cold Clumps in the
JCMT large survey program “SCOPE: SCUBA-2 Con-
tinuum Observations of Pre-protostellar Evolution” (PI:
Tie Liu), we have cataloged nearly 3500 cold (T, ~6-
20 K) dense cores, most of which are either starless or
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in the earliest phase of star formation (Liu et al. 2018;
Eden et al. 2019). This sample of “SCOPE” dense cores
represents a real goldmine for investigations of the very
early phases of star formation.

The Orion complex contains the nearest giant molec-
ular clouds (GMCs) that harbor high-mass star forma-
tion sites. As a part of the SCOPE survey, all the dense
PGCCs (average column density > 5 x 10%° em~2) of
the Orion complex (Orion A, B, and A Orionis GMCs)
were observed at 850 ym using the SCUBA-2 instrument
at the JCMT 15 m telescope (Liu et al. 2018; Yi et al.
2018). A total of 119 dense cores were revealed inside
these PGCCs, which includes protostars and gravita-
tionally unstable starless cores (Yi et al. 2018). This
sample represents the dense cores of mass spectrum in
the range 0.2 - 14 Mg with a median mass of ~ 1.4 Mg
and mean radius ~ 0.05 pc as estimated from SCUBA-2
850 pm continuum observations (Yi et al. 2018). Their
centrally peaked emission features in the SCUBA-2 850
pm continuum attribute them to likely be gravitation-
ally unstable and possible for imminent collapse (Ward-
Thompson et al. 2016).

These Orion dense cores were further investigated in
multiple molecular lines (e.g., NoDT, DCO™*, DNC in
J=1-0 transitions) with the NRO 45-m telescope (Kim
et al. 2020; Tatematsu et al. 2020). This follow-up
molecular line survey toward 113 of these 119 SCUBA-2
objects with the Nobeyama Radio Observatory (NRO)
45m telescope revealed nearly half of these SCUBA-2
objects showing strong emission from young, cold, and
dense gas tracers, such as NoDT, DCO™T, DNC (Kim
et al. 2020; Tatematsu et al. 2020).

In particular, high spatial resolution observations with
interferometers have already reported very young stel-
lar objects inside some of these SCUBA-2 dense cores.
With the Submillimeter Array (SMA), Liu et al. (2016)
reported the detection of an extremely young Class 0
protostellar object and a proto-brown dwarf candidate
in the bright-rimmed clump PGCC (G192.32-11.88 lo-
cated in the A Orionis cloud. Very recently, Tatem-
atsu et al. (2020) observed a star-forming core (PGCC
(G210.82-19.47 Northl; hereafter, G210) and a starless
core (PGCC G211.16-19.33 North3; hereafter, G211) in
the Orion A cloud with the 7m Array of the Atacama
Compact Array (ACA) of the Atacama Large Millime-
ter/submillimeter Array (ALMA). The two cores show
a relatively high deuterium fraction in single-pointing
observations with the Nobeyama 45 m radio telescope.
In ACA observations, the starless core G211 shows a
clumpy structure with several sub-cores, which in turn
show chemical differences. In contrast, the star-forming
core G210 shows an interesting spatial feature of two

NyDT peaks of similar intensity and radial velocity lo-
cated symmetrically with respect to the single dust con-
tinuum peak, suggesting the existence of an edge-on
pseudo-disk.

All of the previous observations indicate that those
Orion SCUBA-2 cores inside PGCCs are ideal for in-
vestigating the initial conditions of star formation in a
GMC environment.

1.2. ALMASOP: ALMA Survey of Orion PGCCs

In ALMA cycle 6, we initiated a survey-type project
(ALMASOP: ALMA Survey of Orion PGCCs) to sys-
tematically investigate the fragmentation of starless
cores and young protostellar cores in Orion PGCCs with
ALMA. We selected 72 extremely cold young dense cores
from Yi et al. (2018), including 23 starless core candi-
dates and 49 protostellar core candidates. We call them
candidates because they were classified mainly based on
the four WISE bands (3.4-22 pum) in Yi et al. (2018). In
this work, we will further classify them with all available
infrared data (e.g. Spitzer, Herschel) as well as our new
ALMA data. All 23 starless core candidates of this sam-
ple show high-intensity NoD™¥(1-0) emission with peak
brightness temperature higher than 0.2 K in 45m NRO
observations (Kim et al. 2020; Tatematsu et al. 2020),
a signpost for the presence of a dense core on the verge
of star formation. Intense NoDT emission was also ob-
served in 21 protostellar core candidates (Kim et al.
2020; Tatematsu et al. 2020). The remaining 28 proto-
stellar core candidates were not detected in NoDT (Kim
et al. 2020; Tatematsu et al. 2020), suggesting they are
more evolved than those detected in NoD*. These dense
cores, therefore, design a unique sample to probe the
onset of star formation and the early evolution of dense
cores. The observed target names and coordinates are
listed in columns 1, 2, and 3, respectively, in Table 1
and their spatial distribution is shown in Figure 1.

In this paper, we present an overview of the ALMA-
SOP survey including the observations and data prod-
ucts, and mostly qualitative previews of the results from
forthcoming papers. We have incorporated some per-
spectives of detection of multiplicity in protostellar sys-
tems and the physical characteristics of their outflow
lobes. More detailed quantitative results of multiplic-
ity formation in prestellar to protostellar phase, out-
flow and jet characteristics, disk formation, astrochem-
ical changes from the prestellar to protostellar phases
will be presented in the forthcoming papers. Section 2
discusses the details of the observations in the survey
and data analyses. In section 3, the science goals of this
survey and early results are described. Section 4 delin-
eates the discussion on the evolution of dense cores and
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Figure 1. Spatial distribution of the observed cores (red
“+7) on the three-color composite image (red: Planck 857
GHz; green: IRAS 100 pum; blue: Hy) of the Orion complex.
The images are smoothed with a gaussian kernel. The white
contours represent the flux density of Planck 857 GHz con-
tinuum emission. The contour levels are 14.8, 29.7, 44.5 and
59.4 MJy/sr.

protostellar outflows. Section 5 deals with the summary
and conclusions of this study.

2. OBSERVATIONS

The ALMA observations of ALMASOP (Project
ID:2018.1.00302.S.; PI: Tie Liu) were carried out with
ALMA band 6 in Cycle 6 toward the 72 extremely young
dense cores, during 2018 October to 2019 January. The
observations were executed in four blocks in three differ-

ent array configurations: 12m C43-5 (TM1), 12m C43-2
(TM2) & 7Tm ACA. The execution blocks, date of obser-
vations, array configurations, number of antennas, ex-
posure times on the targets, and unprojected baselines
are listed in Table 2. For observations in the C43-5,
C43-2, and compact 7Tm ACA, the unprojected baseline
lengths range from 15 to 1398, 15 to 500, and 9 to 49 m,
respectively. The resulting maximum recoverable scale
was 25",

The ALMA band 6 receivers were utilized to simulta-
neously capture four spectral windows (SPWs), as sum-
marized by the correlator setup in Table 3. The ALMA
correlator was configured to cover several main targeted
molecular line transitions (e.g., J=2-1 of CO and C*®0;
J=3-2 of NyD*, DCO™T and DCN; and SiO J=5-4) si-
multaneously. A total bandwidth of 1.875 GHz was set
up for all SPWs. The velocity resolution is about 1.5
km s~!. Different quasars were observed to calibrate
the bandpass, flux, and phase, as tabulated in Table 4
with their flux densities.

In this paper, we present the results of the cold dusty
envelope+disk emission tracer 1.3 mm continuum, low-
velocity outflow tracer CO J=2-1 (230.462 GHz) and
high-velocity jet tracer SiO J=5-4 (217.033 GHz) line
emission. The acquired visibility data were calibrated
using the standard pipeline in CASA 5.4 (McMullin
et al. 2007) for different scheduling blocks (SB) sepa-
rately. We then separated visibilities for all 72 sources,
each with their three different observed configurations.
For each source, we generated both 1.3 mm continuum
and spectral visibilities by selecting all line-free chan-
nels, fitting, and subtracting continuum emission in the
visibility domain. Imaging of the visibility data was
performed with the TCLEAN task in CASA 5.4, us-
ing a threshold of 3¢ theoretical sensitivity, and “hog-
bom” deconvolver. We applied Briggs weighting with
robust +2.0 (natural weighting) to obtain a high sensi-
tivity map to best suit the weak emission at the outer
envelope, and it does not degrade the resolution much
in comparison with robust +0.5. We generated two sets
of continuum images. One set includes all configura-
tions TM1+TM2+ACA to obtain continuum maps with
a synthesized beam of ~ 0738 x 0”33 and typical sen-
sitivity ranging from 0.01 to 0.2 mJy beam™!; where
TM1, TM2 configurations contributed to improve res-
olution, and the compact ACA configuration improves
the missing flux problem. For the large scale structures,
we also obtained a second set of continuum images from
only the 7-m ACA configuration visibilities with a syn-
thesized beam of 776 x 4”1 and typical sensitivity of
0.6 to 2.0 mJy beam~!. The detections of dense cores
are listed in combined configurations (column 5), with
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rms (column 6), plus in ACA only (column 7) with rms
(column 8) in Table 1.

On the other hand, since CO J=2-1 and SiO J=5-
4 emission are strong, a robust weighting factor of
+0.5 was used to generate CO and SiO channel
maps using a combination of three visibilities (i.e.,
TM1+TM2+ACA) with typical synthesized beam sizes
of ~ 0741 x 0735 and ~ 0744 x 0737, respectively.
We binned the channels with a velocity resolution of
2 km s~! to improve the signal-to-noise ratio and thus
we obtained typical sensitivity ranging 0.02 to 0.2 mJy

beam™!.

3. SCIENCE GOALS AND EARLY RESULTS
3.1. Continuum emission at 1.3 mm

The main science goal of the ALMASOP project is to
study the fragmentation of these extremely young dense
cores with high resolution 1.3 mm continuum data from
ALMA. We will investigate the substructures of star-
less cores and the multiplicities of protostellar cores. In
this work, we only present the 1.3 mm continuum images
and briefly discuss the properties of the detected cores.
We leave the detailed discussions of the substructures of
starless cores and the multiplicities of protostellar cores
to forthcoming papers.

Figure 2a-d shows some selected examples of the
1.3mm continuum maps toward the dense cores with
a typical resolution of ~ 0735 (~ 140 au). The con-
tinuum maps reveal diverse morphologies of the dense
cores. For example, Figure 2(a) displays 1.3 mm contin-
uum emission of G209.29-19.6551, which is a candidate
prestellar core. It shows an extended envelope that con-
tains a dense blob-like structure. In Figure 2(b), the
compact core of G191.90-11.21S is likely protostar with
a much brighter peak than the candidate prestellar core
(G209.29-19.65S1 (Figure 2a) as it is surrounded by ex-
tended emission, and this source was later classified as
Class 0 (section 3.3). Whereas Figure 2(c) contains the
compact emission of G205.46-14.56S3 with a relatively
fainter surrounding envelope than typical Class 0, and
this source was later found to be a Class I source (sec-
tion 3.3). Some protostellar continuum structures ex-
hibit close multiplicity on the present observed scale, as
shown in Figure 2(d).

The full 1.3mm continuum images for targets in A-
Orionis, Orion A and Orion B GMCs are presented in
Figures A1, A2 and A3, respectively.

Out of 72 targets, 48 have been detected in the com-
bined 3-configurations (~ 66 %), where a total of 70
compact cores have been revealed including the mul-
tiple systems. In the other 24 targets, there is either
no emission or only 3o level emission in the combined

TM1+TM2+ACA continuum maps, where the dense
cores may have larger sizes than the maximum recover-
able size (MRS ~ 14”) of the combined data, although
they could be detected in ACA maps (MRS ~ 25”). As
an example, Figure 3 (left panel) does not display signif-
icant emission in its combined map, although we can see
significant emission in ACA only (right panel of Figure
3). We, therefore, checked those targeted positions in
ACA only (see Figure A4), which reveals an additional
10 detections (> 50). Thus from the present survey, we
are able to detect the emission of 80% of the targeted
sources (58, out of 72).

We performed one component two-dimensional Gaus-
sian fitting in TM14+TM24+ACA maps within the 5-
sigma contour level to those 70 core structures detected
in the combined configurations. Here we do not com-
pare the measurement from ACA-only detections due
to different resolutions and these results of ACA con-
figurations will be presented in a separate paper. The
fitting parameters are listed in the Table 5, which in-
cludes deconvolved major axis, minor axis, position an-
gle, integrated flux density (Fi.3 mm), and peak flux
(Peaky 3 ;um). The source sizes' (Sq,) were obtained
from the geometrical mean of major and minor axes (i.e.,
Sab = Vmajor X minor).

Assuming optically thin emission, the (gas and dust)
mass of the envelope+disk can be roughly estimated us-
ing the formula

D?F,
BV (Tdust)"'@u

where D is the distance to the sources, which is ~ 389
+ 3, 404 £+ 5, and 404 + 4 pc for Orion A, Orion B
and A-Ori sources, respectively (Kounkel et al. 2018).
B, is the Planck blackbody function at the dust tem-
perature Ty, Fy observed flux density, and &, is the
mass opacity per gram of the dust mass. We assume
the dust temperature as 25 K for candidate protostellar
disk-envelopes? (Tobin et al. 2020) and 6.5 K* for can-

(1)

MEnvDisk ~

1 Here, these sizes are analogous to diameters of the sources.

2 The protostellar systems may show different dust temperatures
of the envelope+disk system based on the stellar luminosity. If
these sources also have an extended but colder envelope, the mass
of the cold envelope will be underestimated by this assumption
of warm temperature. For instance, if we vary the temperature
from 15 to 100 K of the protostars, the masses will change by a
factor of 1.7 to 0.25 times of the present estimated masses at 25
K.

Due to the heating effect from the environment, the temperature
of the starless core is relatively higher (~ 10 K) than the denser
inner part (e.g., Bergin & Tafalla 2007; Sipila et al. 2019). When
the starless cloud collapses and density increases at the central
region (as in the prestellar core) then the temperature can reach
as low as ~ 6.5 K at the central dense portion.

w
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Figure 2. Example images of ALMA 1.3 mm continuum toward selected dense cores. The typical beam sizes ~ 0”35 are drawn
in the lower left of each panel in red ellipse. The contour levels are at 5x (1, 2, 10)o. The source sequences are (a) starless core
(G209.29-19.65S1, where o = 5 x 107° Jy beam™', (b) Class 0 system G191.90-11.21S, where ¢ = 4 x 107° Jy beam™!, (c)
Class I system (G205.46-14.53S3, where ¢ = 6 x 107° Jy beam ™' (d) binary system G211.47-19.27N, where o0 = 12 x 107° Jy
beam™!. Notice that the extended emission turns more compact as we evolve from starless, Class 0 to Class I, interestingly the
peak emission is also increasing on the same sequence (see text for more details).

didate starless cores (Crapsi et al. 2007; Caselli et al.
2019b). Taking a gas-to-dust mass ratio of 100, the the-
oretical dust mass opacity at 1.3 mm is considered as
K, = 0.00899(r/231 GHz)? cm? g=! (Lee et al. 2018)
in the early phase for coagulated dust particles with no
ice mantles (see also, OH5: column 5 of Ossenkopf &
Henning 1994), where we assume the dust opacity spec-
tral index, 8 = 1.5 for this size scale. Table 5 lists the
estimated masses from these analyses.

Figure 4a-d (black steps) shows the distribution of all
the measured Fi 3mm, MgEnvDisk, Peaky s mm and Sgp
with median values of 32.10 mJy, 0.093 Mg, 14.33 mJy
beam ™!, 0727, respectively. More than 80% of this sam-
ple have 1.3 mm flux densities < 100 mJy, peak fluxes <

50 mJy beam ™! and average sizes < 0”/6. Note that the
ALMA emission peaks (Table 5) are shifted from JCMT
peaks (Table 1), which is mainly due to resolution dif-
ference of the two telescopes.

3.2. Outflow and Jet profiles

The ALMASOP project will investigate the jet
launching mechanisms and the evolution of outflows in
the earliest phases, i.e., Class 0 stage, of star formation.
Using the 2CO(2-1) and SiO(5-4) transitions at ~ (/35
(~ 140 AU) angular resolution, we have performed a
systematic search for low-velocity outflow components
and high-velocity collimated jet components driven by
protostellar objects.
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Figure 3. Example images of 1.3 mm continuum observations for combined TM1+TM2+ACA in the left panel, and ACA only
in the right panel are shown. Typical beam sizes are shown at the lower left in each panel with the red ellipses. The combined
resolution resolved out the emission, whether a compact structure is clearly seen in ACA only with contour levels 5x (1, 2, 10)o,

where ¢ = 0.001 Jy beam ™.

3.2.1.

Outflow components from CO emission

One common way to distinguish young protostars
from a sample of the dense cores embedded in the molec-
ular cloud is to identify the molecular outflowing gas
in the lower rotational transition 2CO (2-1). We have
traced such blue- and redshifted outflow wings through
visual inspection of velocity channel maps and their
spectra. An example of a bipolar 2CO outflow total in-
tensity map integrated over the full blueshifted and red-
shifted velocity range is shown in Figure 5 for the source
(G205.46-14.535S3. The blue- and redshifted components
(grey color and black contours) shows V-shaped struc-
tures toward the NE and SW directions, respectively.
The 1.3 mm continuum (magenta contours) exhibits a
compact continuum with its continuum inner core (>
200 in Figure 5) nearly elongated in a direction nearly
perpendicular to the outflow axis.

The velocity extents of the blue- and redshifted lobes
are selected from the channel where it appears for the
first time at 30 level, to the channel of disappearance
at the same the 30 limit (e.g., Cabrit & Bertout 1992;
Yildiz et al. 2015). As an example, Figure 6 shows the
position-velocity (PV) diagram, derived along the out-
flow axis. The object systemic velocity is likely 12 £ 4
km s~!. The maximum outflow velocity or extent of the
blue component is estimated as AVp = 11475, km s7*,
where the redshifted components have a velocity extent
of AVp = 10615, km s~!, without any inclination cor-
rection. The average velocity extent (AV) is estimated
from both components. We have identified 37 outflow
sources with CO emission wings. The extents of both

blue- and redshifted lobes observed in CO are tabulated
in Table 5. However, these AVs are the lower limits in
small field-of-view (FOV) of our combined configuration
maps, and we do not know the actual spatial extension
of the outflow wings. The CO outflow images for all the
protostellar samples are shown in Figure A5.

These velocity extents are different for blue- and red-
shifted lobes with high uncertainties, which could be
due to the missing short velocity-spacing on both ends of
the lobes in the present poor velocity-resolution observa-
tions, unknown inclination angle, complex gas dynamics
of ambient clouds, or global infall in the protostar bear-
ing filaments. In some cases, such as G211.01-19.45S,
the outflow is identified as monopolar where the other
part could be disregarded due to low velocities, or con-
fused with emission from other sources. Estimated AVs
range from 4 to 110 km s~!, with a median value 26.5
km s~!. In some cases, complex structures are observed,
where it is difficult to distinguish the outflow wings from
the complex cloud environment (marked “cx” in Table
5). These sources can not be ruled out from the outflow
candidates, and further investigations are needed at high
velocity and spatial resolution with numerical analysis
to extract their features from the cloud dynamics.

3.2.2. Identification of high velocity knots

The large impact of the Orion cloud kinematics on the
outflows makes it difficult to elucidate the original out-
flow morphology in CO(2-1) tracer. SiO(5-4) has been
found to provide more insights into the outflow chem-
istry (Louvet et al. 2016). The excitation conditions of
the SiO(5-4) emission line have a high critical density
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Figure 4. Histograms of (a) integrated flux densities (b) en-
velope+disk mass (c¢) peak emission and (d) geometrical sizes
derived with 2-D Gaussian fitting of 1.3 mm continuum emis-
sion for all the sources (black steps), which includes starless
(blue), Class 0 (green), Class I (red) and unclassified sources.

of (5-10) x 10% cm™2 (Nony et al. 2020), which could
be reached in high-density knot components. The colli-
mated jets frequently appear as a series of knots, which
are interpreted as made by the internal shocks originated
by episodic accretion/ejection at the protostellar mass-
loss rate (Bachiller et al. 1991). An example of blue-
and redshifted SiO emission is shown in Figure 5. The
identification of the jet-components is marked in Table
5 (column 14), and these sources are considered as jet
sources throughout the paper.

Out of 37 outflow sources, 18 (~ 50%) are detected
having knots in the SiO line emission within the CO
outflow cavities. Additionally, two non CO emitting
sources are also identified with SiO emission, where CO
emission is possibly non-detectable due to complex cloud

G205.46-14.56S3, Class |
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Figure 5. Example of molecular outflow detected at ALMA
1200(2-1) (grey) is shown for a Class I source (G205.46-
14.56S3. The black contours are at 3no, where n = 1, 2,
..... and o = 0.14 Jy/beam km/s. The blue and red ar-
rows indicate the blueshifted and redshifted emissions, re-
spectively. The magenta contours are 1.3 mm continuum
emission at levels 6x (1, 3, 8, 16)a, where 0 = 6 x 107° Jy
beam™!. The blue and red contours are blue- and redshifted
integrated SiO(5-4) emission at 3x (1, 2, 3, 6, 9)o, where o =
0.03 Jy beam™!. The average tangents through the 3¢ out-
ermost contours at ~ 1’ and ~ 2" from the continuum peak
are drawn in cyan dashed lines. The yellow and green dou-
ble headed arrows indicate the opening angle width [90bs]400
and [Oobs]s00, respectively, which are at different distance of
~ 1” and ~ 2" from the continuum peak, respectively. A
schematic of opening angle (o)) measurement is also shown
(see text for details).

environment, as discussed above. High-mass molecular
clumps are reported to have ~ 50-90% jet detection in
low-angular resolution surveys in SiO(2-1), (3-2), (5-4)
emission lines (e.g., Csengeri et al. 2016; Li et al. 2019;
Nony et al. 2020). It is to be noted that the high-density
shock components could also be detected in more high-
density tracers e.g., SiO (8-7). So the higher transitions
of SiO could reveal more knot ejecting sources. Addi-
tionally, the knot tracers may vary with the evolution of
the protostars (Lee 2020).

3.2.3. Outflow Opening Angle

Among the main characteristics of outflows, opening
angle («) is one of the less-explored observational pa-
rameters to date. In the low-velocity regime, the CO
delineates two-cavity walls open in the blue and red-

Flux (Jy beam~! kms™1)
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Figure 6. Position-Velocity diagram of *>CO molecular out-
flow emission along jet-axis for G205.46-14.56S3. The black
contour levels are at 3x(1, 2, 3, 4, 6, 10, 15)o, where o
= 0.001 Jy beam~'. The systemic velocity of the source
is ~ +12+4 km s~!. Prominent nearly-continuous emission
can be seen up to —98 and +108 km s~! in the blue- and
redshifted lobe, respectively. Including the near-source over-
lapping blue- and resdhifted emission, the velocity extents
are obtained as AV ~ 114 km s™! and AVg ~ 106 km s~ *
for blue- and redshifted lobes, respectively.

shifted directions. Measuring the « is quite complicated
for the sources with no well-defined cavity walls through-
out the full observed extent due to the presence of a com-
plex cloud environment (e.g., G200.34-10.97N, G205.46-
14.56S1, G209.55-19.68S1), or secondary outflows (e.g.,
(G209.55-19.68N1) (see Appendix, Figure A5). For both,
blue- and redshifted directions, if the conical structures
appear to be symmetrical, then one can find the apex
by extrapolating the cavity boundaries (e.g., Wang et al.
2014). However, the real complexity of finding the apex
position appears for asymmetrical outflow lobes, even if
we assume the continuum peak to be the apex position,
the tangent will be needed to allow us to trace back to
that apex location. Hence we may miss a significant
fraction of the cavity-width near the source. In that
case, we also do not know the outflow-launching radius
for the source, which essentially varies from source to
Thus, we adopt a consistent approach for all
the sources, where the outflow cavity width (Ous) is
measured perpendicular to the outflow axis.

Firstly, the outflow axis of each lobe is derived from
their knot structures in SiO emission (Figure 5). For
the sources having no SiO emission, CO-jets are uti-

source.

(Jy/beam)

lized to find the jet-axis from the dense CO-emission
near the middle of the outflow cavity walls. Some of the
sources show neither SiO knots nor CO jets; in those
cases, their outflow axis was assumed to be in the mid-
dle of the outflow cavity. Secondly, we draw an average
tangent at the outermost 30 contours at the local point
of consideration (cyan dashed lines in Figure 5). Now,
the width perpendicular to jet-axis of the 30 cavity wall
at 17 (i.e., [Oops|a00 at ~ 400 au; yellow double headed
arrow) and 2" (i.e., [Oups]s00 at ~ 800 au; green double
headed arrow) distance from continuum peak represents
the opening angle at the corresponding distance from
the stellar core. As shown in the schematic diagram on
top of Figure 5, if the opening angle width is measured
as [Oups]p at a distance D from the continuum peak,
from right angle trigonometry the half of opening an-
gle is, § = tan_l(w). We also measured [0pps]p
at distances > 2", and found that « measurements are
quite consistent for the outflows with well-defined cavity
walls. However, we prefer to present [fops]p close to the
source, i.e. at 1’ and 2”, for all the sources to minimize
the environmental effects on the measurements, and as
shown in Figure 7a-b, the overall trends of [f,ps]p With
Tpor remain the same for both the distances. The exact
envelope boundaries and other environment effects to-
wards each of the outflow lobes are also unknown, which
could lead to unequal deformation on both the outflow
lobes. Thus, we have taken an average of blue- and
redshifted opening angles to measure the final ©,,5 to
reduce the unknown contamination. From the present
analyses, we are able to estimate [Oups]p of 22 outflow
sources, and the values of the final [O,s]p are listed in
Table 5.

The CO outflow cavities have an opening angle width
at 1”7 (~ 400 AU) ranging from 0/6—3"9 (i.e., typically
a = 33°4 — 125°7 near the source) with a median value
1764. The median value for 19 Class 0 sources is 1760
and 3 Class I sources is 2770 (see section 3.3 for objects
classification).

These measured quantities of opening angles are not
corrected for inclination angle, . As in Figure 5, the
continuum emission is apparently shifted towards the
the blueshifted lobes, which is most probably an inclina-
tion effect, and at the same distance from the continuum
peaks, the blue lobes appear wider than the red lobes.
Measuring inclination angle needs well-defined outflow
cavity walls with their full spatial extent. We, therefore,
need high-velocity resolution and wide field-of-view for
the outflows, which we lack in the present datasets. Note
that, we need to define the exact shell structure to esti-
mate the real-age opening angle, for a rotating outflow
it is complex to search the corresponding shell cavity in
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Figure 7. Opening angle O,, ('), that is the average width of blue- and redshifted outflow cavity (a) at ~ 400 AU and (b) at
~ 800 AU from continuum peak, as a function of Ty (K) for the protostars of the survey sample. (¢) Lyoi(Le) as function of
Tror (K). The blue data points with grey error bars represent all the outflow sources having a good detection in both, blue and
redshifted, outflow lobes. The red squares indicate the sources with SiO knot detection (i.e., jet emission). The dotted vertical
lines in all three panels are indicating Tsor = 70 K, a boundary between Class 0 to Class I sources (see text for details).

low-velocity resolution observations. In such cases, we
assume the outer boundary as the outflow shell, which
introduces error in the ©,,. Thus, theoretical mod-
els are necessary to reduce the environmental effects of
complex cloud dynamics, envelope emission, and inter-
acting outflows. Further high velocity resolution and
single dish observations are also very important to de-
termine the envelope boundary and inclination angle.

3.3. Protostellar Signatures
3.3.1. Multiwavelength catalog

The surrounding envelopes are dissipated during pro-
tostellar evolution. They gradually appear from sub-
mm, mid-infrared (MIR) to near-infrared (NIR) wave-
lengths hence they become less sensitive to 1.3 mm
emission. Thus, we searched for the sub-mm, MIR
and NIR counterpart of each dense core in the archived
Two-Micron All-Sky Survey (2MASS; Cutri et al. 2003),
UKIRT Infrared Deep Sky Survey (UKIDSS; Lawrence
et al. 2007), Spitzer Space Telescope survey of Orion A-
B (Megeath et al. 2012), Wide-field Infrared Survey Ex-
plorer (WISE; Wright et al. 2010), AKARI (Doi et al.
2015), Herschel Orion Protostellar survey (HOPS; Stutz
et al. 2013; Tobin et al. 2015), Atacama Pathfinder Ex-
periment (APEX; Stutz et al. 2013), the 850 um JCMT
(Yiet al. 2018). In addition to these catalogs, we include
our present ALMA 1.3 mm emission to estimate a more
accurate bolometric temperature (Tp;) and luminosity
(Lpor) than that of Yi et al. (2018).

The final multiwavelength catalogue was obtained by
cross-matching all the catalogues described above. Ini-

tially, we adopted a matching radius of r,, ~ 3" for
all the catalogues (see also Dutta et al. 2015, for de-
tails), which best suits the relatively high resolution cat-
alogues, 2MASS, UKIDSS, Spitzer and ALMA. For the
relatively poor resolution catalogues, WISE, AKARI,
Herschel, APEX, JCMT, we further checked the images
within their corresponding resolution limits to consider
the counterpart of an object. For the possible close
binary in the present analysis, with the available ob-
servations, it is difficult to determine the exact source
of infrared emission since the binary system is embed-
ded in a common envelope. We therefore assigned the
same measurements to both protostars. The final cross-
matched catalogue is presented in Table 6. Finally, the
objects with good photometric accuracy (signal-to-noise
ratio: SNR > 10 for 2MASS, UKIDSS, Spitzer-IRAC
and Spitzer-MIPS; SNR > 20 for WISE and ALMA;
SNR > 50 for AKARI, JCMT, Herschel, APEX) were
utilized for the further analyses (e.g., Dutta et al. 2018).
For the HOPS fluxes, we adopted the uncertainty flags
as provided in Furlan et al. (2016).

The Ty and Ly, were estimated with trapezoid-rule
integration over the available fluxes, assuming the dis-
tance as ~ 389 + 3, 404 + 5, and 404 + 4 pc for Orion
A, Orion B and A-Ori sources, respectively (Kounkel
et al. 2018), and the measured values are listed in Table
5. Following Myers & Ladd (1993), the flux weighted
mean frequencies in the observed spectral energy distri-
butions (SEDs) were utilized to obtain Tp,;. We assume
Tyor = 70 K as a quantitative transition temperature
from Class 0 to Class I (e.g., Chen et al. 1995). Our dis-
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line in panel (c).

tribution of Ty,; and Ly,; are close to the measured val-
ues of the HOPS catalog (Furlan et al. 2016), the HOPS
IDs are marked in column 18 of Table 5. Some differ-
ences are expected since we are using [additional] mid in-
frared data not included in the HOPS catalog. For some
sources, the mid-infrared observations (e.g., AKARI and
Herschel) are not available, therefore our measurements
should give the lower limit for those sources (Kryukova
et al. 2012).
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Figure 9. Maximum outflow velocity (AV) for (a)
blueshifted, (b) redshifted and (c) average of both velocity
components as a function of Tye;. The symbols are same as
Figure 7. The majority of the Class 0 sources (i.e., Tpor <
70 K) follow an increasing trend in all three panels.

The distribution of Ty, can be seen in Figure 7(a),
(b) (see also Figure 9 and Figure 10). Figure 7(c) shows
the distribution of Ly, with the Ty,; of our protostel-
lar sample. Two separate wings are prominent in Figure
7(c), where the nearly horizontal wing represents the in-
crement from Class 0 to Class I sources. The nearly ver-
tical wing possibly originates from the combined lumi-
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nosity of multiple stellar components, since they possess
a common envelope and the present available infrared
resolution is not enough to distinguish their emission
components. We estimated the bolometric temperature
of 53 sources, those having 5 or more wavelength detec-
tions, which also includes all sources in multiple systems.

3.3.2. Outflows in protostellar candidates

The detection of infrared emission could be biased
by the high-background emission from the ambient
cloud. In addition, Herschel does not have cover-
age of all the Orion dense cores. Hence, some of
the protostars in this ALMASOP sample could not
be detected from the infrared only catalog. Out-
flows are another potential tool to identify pro-

tostars. As such, eight sources (G192.32-11.88N,
G205.46-14.56M1_B, G205.46-14.5651_B, G208.68-
19.20N3_A, (G208.89-20.04W,  (G209.55-19.68N1_A,

G211.47-19.27N_B, G215.87-17.62M_A) are not listed
in the infrared catalog, however they have bipolar CO
outflows. We consider these sources are likely young
Class 0 sources. However, the complex cloud dynamics
prevent the detection of less extended and evolved out-
flows in CO (2-1), which are marked as “cx” in Table
5.

Finally, we classify 56 sources based on Ty, estima-
tion and outflow detection. Out of them, 19 are can-
didate Class I sources, the other 37 sources are candi-
date Class 0 sources. However, higher resolution multi-
band infrared observations would more effectively refine
the classification. For some sources in multiple sys-
tems (e.g., G196.92-10.37_C, G205.46-14.56M2_A and
(G206.93-16.61E2_A - D), we obtain Tp,;, but there are
no clear signatures of outflows. The infrared emission
for those sources are also confusing with others. These
sources are not classified in this paper.

3.4. Candidates for Class 0 Keplerian-like disks

The ALMASOP project also aims to search for
Keplerian-like disks surrounding Class 0 protostars. Fig-
ure 11 presents a candidate for Keplerian-like disk sur-
rounding a Class 0 protostar, G192.12-11.10. Its '2CO
J=2-1 emission reveals a collimated bipolar outflow (see
left panel of Figure 11). As shown in the right panel of
Figure 11, the 1.3 mm continuum emission of G192.12-
11.10 shows a flattened structure, that may be a candi-
date disk. The redshifted and blueshifted C'*0 J=2-1
emission clearly shows a rotation pattern of the disk-like
structure. We have identified a handful of disk candi-
dates surrounding Class 0 protostars such as G192.12-
11.10. The properties of these disk candidates will be
discussed in a forthcoming paper (Dutta et al., in prepa-
ration).

3.5. Chemical Signatures

As illustrated in Table 3, the four spectral windows
cover a suite of molecular species and transitions, most
of which are of importance for the chemical diagnos-
tics of young star-forming regions. The successful detec-
tion and imaging of these tracers enables the analysis of
chemical compositions of our diverse sample of objects
from starless to young Class 0 and Class I protostellar
cores.

It has been suggested that the deuterium fraction in-
creases at the cold starless core phase and then decreases
as the protostar warms up the surrounding material in
the protostellar phase (e.g., Tobin et al. 2019; Tatem-
atsu et al. 2020). As shown in Figure 12 and 13, NoD™
and DCO™ are detected toward both starless and pro-
tostellar cores. The emission morphology will aid in di-
agnosing their thermal structure and history, which will
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Figure 11. (left panel) ALMA 2CO(2-1) integrated intensity (moment zero) color-scale map of the source G192.12-11.10.
The white contours start from 10% to 70% in steps of 10% of the intensity peak. The CO intensity peak is 2.3 Jy beam ™! km
s~!. The synthesized beam size is shown in the bottom left corner in red. (right panel) A zoomed view of the central part. The
blueshifted component (blue contours), and the redshifted component (red contours) of C**0(2-1) emission are overplotted on

top of 1.3 mm continuum images. The blue- and red-contours are at 10, 20, 300, where the noise level is 0 ~ 0.017 Jy beam™
The gray scale is the 1.3 mm continuum emission with contour levels at (n?*41)x50 o, with ¢ = 0.06 mJy beam™!.

km s~1.

1

The synthesized beam sizes are shown in the bottom left corner in gray (continuum) and red (C**0).

be discussed in forthcoming papers (Sahu Dipen et al.
in preparation; Liu Sheng-Yuan et al. in preparation).

Some low- to intermediate mass Class 0/1 protostars,
dubbed “hot corinos”, exhibit considerably abundant
saturated complex organic molecules (COMs: CH30H,
H,CO, HCOOCH3, HCOOH) in the compact (< 100
au) and warm (~ 100 K) regions immediately surround-
ing the YSO (e.g., Kuan et al. 2004; Ceccarelli 2004),
as shown in Figure 14. By utilizing our ACA 7m
data, Hsu et al. (2020) has readily identified four new
hot corino candidates (G192.12-11.10, G211.47-19.278S,
(G208.68-19.20N1, and G210.49-19.79W) in the sample.
A more detailed study of hot corinos with high resolu-
tion 12-m array data will be presented in a forthcoming
paper (Hsu Shih-Ying et al. in preparation)

As discussed in section 3.2.1 and 3.2.2, the outflow and
jet components and their interaction with the core can
be traced both in position and velocity by *2CO and SiO
line emission. The other molecular species such as CS,
C'80, CH3;0H, C3H,, OCS, HCOT could be utilized to
trace the dense structures underlying protostellar winds
(e.g., Maret et al. 2005; Jorgensen et al. 2004; Codella
et al. 2005; Arce et al. 2007; Lee 2020). The molecu-
lar species available in observed spectra are displayed in
Figures 13 and 14. The shock chemistry with ALMA-
SOP data will be presented in a forthcoming paper (Liu
Sheng-Yuan et al. in preparation).

4. DISCUSSION
4.1. FEwvolution of the dense cores

From the 1.3 mm continuum morphology of the 70
dense cores and their infrared counterpart, we perceived
three categories; one, 48 dense cores are relatively com-
pact in 1.3 mm continuum with protostellar signatures,
either low-velocity outflow, high-velocity jet, or infrared
detections. In the second category, 4 dense starless cores
exhibit extended emission and compact blobs (see Ta-
ble 5). They are likely prestellar cores with substruc-
tures, and deserve detailed investigation. The physical
and chemical properties of these 4 cores will be further
discussed in forthcoming papers (Sahu et al., in prepa-
ration; Hirano et al., in preparation). In the third cat-
egory, another 16 dense cores are not classified due to
their complex cloud dynamics and confusing infrared de-
tection. Moreover, out of 72 targeted JCMT positions,
24 show no emission in the combined TM1+TM2+ACA
continuum maps. They are likely the starless cores with
low density and with sizes larger than the maximum re-
coverable size, as discussed above (see section 3.1 and
Figure 3). However, 10 out of the 24 starless cores are
detected with ACA alone. The detailed properties of
all the starless cores will be presented in a forthcoming
paper (Sahu et al., in preparation).
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Figure 4a-d shows the histogram distribution of all
types of sources, which includes starless, Class 0, Class
I, and unclassified sources. The starless, Class 0, and
Class I have median values of F1 3 ym ~ 59.65, 46.42,
and 14.96 mJy, respectively, whereas the median val-
ues of Mpp,pisk are 1.34, 0.13, 0.04 Mg, respectively.
A similar sequence was observed at 4.1 ¢cm and 6.1 ¢cm
fluxes in Tychoniec et al. (2018), where Class 0 sources
exhibit larger flux than Class I in both wavelengths. The
geometrical sizes, S, of the starless cores (deconvolved
median size ~ 4”77) are found to be larger than Class 0
(median deconvolved size ~ (/32) and Class I (median
deconvolved size ~ (/18). The Gaussian 2-D integrated
flux and sizes of the dense cores basically depend on
the power-law indexes, which vary from starless, Class
0 to Class I (e.g., Lee et al. 2019). So, the above out-
comes could be interpreted as varying density profiles
(e.g., Aso et al. 2019). The starless cores have a flat
density distribution in the inner regions, so we get larger
sizes and hence larger masses. On the other hand, the
small sizes from Class 0 to Class I sources suggest that
pseudodisk/disks are dominating the 1.3 mm fluxes and
the apparent mass-supplying radius of the continuum
reduces with the evolution from Class 0 to Class I (see
also Figure 10c, section 4.2.3). These decreasing sizes
and masses findings from Class 0 to Class I could also
indicate the dissipation of the envelope due to accretion
and ejection activity of the protostars from Class 0 to
Class I evolution. Although, our present analyses of 1-
component 2D-Gaussian fitting could not infer to the
presence of secondary sources within the common enve-
lope. Therefore, the actual envelope size of the individ-
ual sources could not be specified, in those cases two or
more component 2D-Gaussian fittings are required. It
is also not clear only from our present sample consist-
ing of a small fraction of Class I sources whether these
are the intrinsic correlations of dense core evolution or
biased by the sample selection, more statistical studies
may explain this more comprehensively.

Likewise, if we compare the Peaki 3 ,nm, the Class
0 sources have larger values of peak emission (median
~ 28.20 mJy beam™!) than Class I (median ~ 10.41
mJy beam™!) and starless cores (median ~ 0.52 mJy
beam™1). This result suggests a possible evolutionary
trend of the dense cores, where the starless cores exhibit
a lower peak and as they form a Class 0 system, their
emission heats up the surrounding disk-envelope mate-
rial and making them brightest in this wavelength. On
the other hand, as they evolve to the Class I system,
their surrounding material may also dissipate and the
stellar core becomes more luminous towards the shorter
wavelength regime, hence they tend to show a fainter

peak in the 1.3mm wavelength. However, it could be
also an interferometric effect. As starless cores are more
diffuse, so the emission is resolved out. Protostellar
cores are denser with a different density profile, that
can be recovered by the interferometer because they are
compact.

Figure 10a-b display the distribution of 1.3 mm flux
densities and peak flux, respectively as a function of
Tpor - The Class I (i.e., Tpoy > 70 K) sources are mostly
concentrated at log(Fi.3 mm) ~ 1.3 to 1.8 mJy and
log(Peaky 3mm) ~ 1.25 to 1.70 mJy beam ™!, whereas
the Class 0 flux densities and peaks are wide spread.
Figure 10c shows the decreasing size distribution of 2D
Gaussian fitting with T  Despite of fewer Class 1
sources and unresolved disk-scale geometry, one can see
it is significantly smaller sizes than Class 0. Figure 10c
points towards a transition from Class 0 to Class I at
Thor = 60—70 K for envelope+disk size < 072 (i.e. 80
au) in this sample, which is also an empirical boundary
temperature between Class 0 to Class I sources. These
findings also support either the possible density varia-
tion according to power-law index or envelope dissipa-
tion with protostellar evolution could contribute towards
such flux, peak, and size variation from Class 0 to Class
L

4.2. FEvolution of protostellar outflows

The bolometric temperature and luminosity derived
from SED analyses can be somewhat questionable due to
inconsistent multiwavelength data catalogs and misiden-
tification due to multiplicity. Rather than exclusively
depending on the SED results, we also searched for pos-
sible evolutionary trends from the physical appearance
of the outflows from their opening angle, and maximum
outflow velocity in the ISM.

4.2.1. Time Sequence Outflow Opening Angle

Protostellar jets and winds propagate into the enve-
lope as its immediate environment. As the protostars
evolve, the collapsing material settles into the equato-
rial pseudodisk along with the magnetic field lines. With
the growing size of pseudodisk, the matter is evacuated
by the magnetic field from the polar region. It is to be
noted that the envelope mass declines typically a few
orders of magnitudes during the evolution from Class 0
to Class I (Bontemps et al. 1996; Arce & Sargent 2006).
The excavated surroundings set off the widening opening
of wind-blown outflow lobe with time (e.g., Bachiller &
Tafalla 1999; Arce & Sargent 2006; Shang et al. 2006).

The outflow opening angle remains narrower than
20° independent of the launching protostar’s properties
(e.g., mass of the protostars, ejection to accretion mass
ratio) during the early stages (Kuiper et al. 2016), and
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the low-velocity outflow appears from the first core (Lar-
son 1969), without any high-velocity component. The
high-velocity jet catches up to the outflow after a few
hundred years, and the jet speed increases with time
(e.g., Machida & Basu 2019). With the emergence of the
jet, a strong radiation pressure pushes the outflow mate-
rial outward (Kuiper et al. 2016; Machida & Basu 2019).
The observed opening angles are observed to span over
20° in early accretion phases and up to 160° at later
phases (Beuther & Shepherd 2005; Frank et al. 2014).
For example, HH 211 is among the youngest known Class
0 protostars with narrow opening angle (Bachiller &
Tafalla 1999), while the evolved Class 0 or embedded
Class I systems (e.g., HH 46/47; van Kempen et al. 2009)
have relatively wider opening angles of their outflow cav-
ity (van Kempen et al. 2009). The older outflow cavities
driven by Class I sources, such as L.43, L1551, and B5
(Richer et al. 2000), appear characteristically with low-
velocity CO outflows from wider opening cavities up to
90° (Lee et al. 2002; Arce & Sargent 2006). Observations
of a large number of outflows at different evolutionary
stages from Class 0 and Class I to Class II, revealed a
systematic widening of opening angle with the stellar
evolution (Arce & Sargent 2006; Velusamy et al. 2014;
Hsieh et al. 2017).

In Figure 7a-b, the opening angles are plotted as a
function of the Ty,;. The Class I sources exhibit a higher
opening angle range (median [©,ps]100 ~ 277) than Class
0 ([Oobs]a00 ~ 176). However, from the present scattered
distribution, a linear regression suggests a minor corre-
lation only, which may be due to a limited number of
opening angle measurements at > 70 K (i.e., only three
in Class I and none in Class IT), high uncertainty in Ty
estimation, and/or unknown inclination of the outflow
axis. Additional observations of more Class I and early-
Class II are required to obtain the evolutionary changes
of opening angle accurately, as observed in Arce & Sar-
gent (2006); Velusamy et al. (2014); Hsieh et al. (2017).

4.2.2. Age Dispersal velocity Distribution

Several outflow models have been proposed to demon-
strate the formation of molecular outflow driven by pro-
tostars and how they propagate in the ambient cloud
environment (See review by Arce et al. 2007; Frank
et al 2014). The two more broadly accepted are (a)
disk-wind model (e.g., Konigl & Pudritz 2000), where a
wind-driven outflow launched from the entire protostel-
lar disk surface and, (b) a two-component protostellar
wind model or X-wind model (e.g., Shu et al. 2000), ini-
tiated from the innermost region of the disk. In the X-
wind model, the disk wind could drive a slow wide-angle
outflow along with a collimated central fast-moving jet-

component. This model also predicts that the wide-
opening angle near outflow launching protostar could
escalate a large radial velocity extent (Pyo et al. 2006;
Hartigan & Hillenbrand 2009). One potential interesting
constraint from Figure 5 is that a fraction of blueshifted
emission occurs on the redshifted side, and similarly, a
fraction of redshifted emission occurs on the blueshifted
side. This could be explained either by the wider line
width produced by disk wind (Pesenti et al. 2004) or
inclination angle of the outflow axis.

We can infer something about the flow plateau with
the velocity extent, assuming that all the outflow wings
provide consistent measurements for equal FOV (see also
section 3.2.1). The outflow velocity V,eqr = Vops/cos(i),
where V5 is the observed radial velocity. The velocity
extent of the outflow caused by the observed opening
angle (Oups), AV = Vi sin(i)Oups; implying AV =
Vobs tan(i)©pps, where ©pps = Oyeqr sin(i). Thus, to es-
tablish a correlation between AV and ©,,s, we need a
reliable estimation of inclination angle, which we are
lacking. Moreover, if we assume a random distribu-
tion of inclination angles, the mean value is given by,
i= [T i sin(i)di = 1 rad = 57.3°, it will lead to a
homogeneous projection effects. So, we adhere to the
observed value of velocity extent and O,y to search for
a correlation.

Figure 8 displays that the AV, increases with ©,ps.
A linear regression provides:

AVps = 25.45(£6.55) [Opps]a00 — 10.45(+11.63),

It can be explained by considering the opening angle as
an age indicator (see also section 4.2.1). In the early
stages of the protostars, the outflow is detected in small
velocity ranges around the systemic velocity. With pro-
tostellar evolution, the central mass of the protostars
keeps growing, and then higher energetic outflows/jets
are likely to originate from a deeper gravitational po-
tential well, thus one can expect a higher AV,s. In Fig-
ure 8, two non-jet sources, G192.12-11.10 and G212.10-
19.15S, exhibit smaller AV,,s with higher ©,,s, which
are possibly evolved Class 0 sources ejecting weak disk
winds. However, they deserve to be probed at evolved
outflow tracers and more high-density jet tracers like
higher transitions of SiO.

Such a correlation could be largely contributed from
the unknown inclination angle of the observable param-
eters. In absence of proper inclination measurements,
we have applied the major-to-minor axis aspect ratio of
the 1.3 mm continuum emission as a proxy to the incli-
nation correction, and the above correlation is found to
be more scattered although the overall increasing trend
remains the same. However, this aspect ratio could also
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show larger value for geometrically thick disk-envelope
systems (e.g., Lee et al. 2018).

In Figure 9, the AV,ss for Class 0 sources are found
to be distributed from 4 - 110 km s~!, whereas evolved
Class I sources show mostly toward smaller CO AV,,.
Additionally, all jet sources have higher values of AV,
(median ~ 24 km s™1) than the non-jet sources (me-
dian ~ 16 km s™!), suggesting more active accretion and
mass-loss rate of jet sources in comparison to non-jet
sources. One exception occurs for the source G208.89-
20.04E, which is located in a complex cloud environment
and it also has overlapping blue- and redshifted velocity
channels, possibly indicating a high inclination angle to
the line-of-sight.

In summary, as the protostar evolves, the outflow cav-
ity opening widens and the protostar ejects more ener-
getic outflowing material, as expected if outflow origi-
nates from a deeper gravitational potential well of an
evolved protostellar.

5. SUMMARY AND CONCLUSION

We have conducted a survey toward 72 dense cores in
the Orion A, B, and A Orionis molecular clouds with
ALMA 1.3mm continuum in three different resolutions
(TM1 ~ 0”35, TM2 ~ 1”0 and ACA ~ 7”0). This unique
combined configuration survey enables us to characterize
the dense cores at unprecedented high sensitivity at this
high resolution. The main outcomes are as follows:

e We are able to detect emission in 44 protostellar
cores and 4 candidate prestellar cores in the com-
bined three configurations, where another 10 star-
less cores have detection in the individual ACA ar-
ray configurations. The starless, Class 0 and Class
I sources have continuum median deconvolved size
of ~ 4777, 0/32, and 0718, respectively decreas-
ing with dense core evolution. The peak emission
of Class 0, Class I, and starless cores are 28.20,
10.41, 0.52 mJy beam™!, respectively, suggesting
that with protostellar formation, the envelope is
heated up in Class 0 and the envelope loses mate-
rial while transitioning from Class 0 to Class 1.

e A total of 37 sources show CO outflow emission
and 18 (~ 50%) of them also show high velocity
jets in SiO. The CO velocity extends from 4 to
110 km s~!, with a median velocity of 26.5 km
s~ The CO outflow cavities have opening angle
widths at 1”7 (~ 400 au) ranging from [O,ps]s00
~ 076 - 379 (ie., 33%4 — 125°7 near the source)
with a median value 1764. The median value of
[Oops)aoo for 19 Class 0 sources is 1760 and 3 Class
1 sources 2770.

e From the present analysis, the outflow opening an-
gle shows a weak correlation with bolometric tem-
perature in our limited sample observations.

e The AVs exhibit a correlation with [O,ps]a00- As
the protostar evolves, the envelope depletes from
the polar region and the cavity opening widens,
the outflow material possibly becomes more ener-
getic.

e The 2D Gaussian fitted 1.3 mm continuum size is
found to be reduced in Class I (i.e., beyond the
Class 0 to Class I transition region, T}, = 60-70
K), which could be due to either varying density
profiles depending on power-law indexes or enve-
lope dissipation with protostellar evolution. The
overall mass distribution of Class 0 (median ~ 0.13
Mg) and Class I (median ~ 0.04 Mg) also sup-
ports the same conclusion.

e Potential pseudo-disks are revealed in 1.3 mm con-
tinuum, and C'®O line emission in some Class 0
sources (e.g., G192.12-11.10). Further investiga-
tion in higher spatial and higher velocity resolu-
tions are required to probe the Keplerian rotation.

e The spectral coverage of this survey incorporates
a suit of important diagnostic molecular transi-
tions from the astrochemical perspective. Emis-
sion from deuterated species such as NoDT and
DCO™ are detected and serves, for example, as
a particularly useful tracer for highlighting the
transition from starless to protostellar phases. A
subset of protostellar objects with rich features of
CH30H, H5CO, and other COMs like HCOOCH;
and CH3CHO signifies the presence of hot corinos.
Broad CO and SiO spectral lines seen towards pro-
tostellar sources further delineate active outflows
and shocked gas.

This survey provides statistical studies performed to
explore the correlation between envelope material, out-
flow opening angle, and outflow velocity extent with the
evolution of protostars. The spectral coverage comprise
the importance of astrochemical diagnosis molecular
species for tracing the transition from starless to proto-
stellar phases. Further high-angular and high-velocity
resolutions observations covering different evolutionary
stages can apprise these observational findings. In ad-
dition, numerical simulations of protostellar outflows
launching from variable envelope sizes are definitely re-
quired to proceed beyond the qualitative hints given by
this analysis.
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Figure 12. Spectra of the starless dense core G209.29-19.65S1 in 4 spectral windows (SPWS; see Table 3) observed in combined
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Table 1. Details of targeted dense cores in the Orion Complex
ALMA RA (J2000) Dec (J2000) JCMT Detection rms Detection rms
Targets (h:m:s) (d:m:s) name (TM14+TM24+ACA) (mJy beam™") (ACA only) (mJy beam™1)
(1) (2) () (4) () (6) (M (8)
A-Orionis
G191.90-11.21N 05:31:28.99 +12:58:47.16 G191.90-11.21N NO 0.03 NO (weak?) 0.24
G191.90-11.218 05:31:31.73  +12:56:14.99 G191.90-11.21S YES 0.04 YES 3.3
G192.12-11.10 05:32:19.54  +12:49:40.19 G192.12-11.10 YES 0.06 YES 2.1
G192.32-11.88N 05:29:54.47 +12:16:56 (G192.32-11.88N YES 0.08 YES 1.0
G192.32-11.88S 05:29:54.74 +12:16:32 G192.32-11.88S YES 0.03 YES 1.0
G196.92-10.37 05:44:29.6  +09:08:54 G196.92-10.37 YES 0.04 YES 1.8
(G198.69-09.12N1 05:52:29.61 +08:15:37  G198.69-09.12N1 NO 0.06 NO 0.3
(G198.69-09.12N2 05:52:25.3  408:15:09  G198.69-09.12N2 NO 0.06 NO (weak?) 0.4
(G200.34-10.97N 05:49:03.71  405:57:56 G200.34-10.97N YES 0.04 YES 1.0
Orion A

G207.36-19.82N1 05:30:50.94 -04:10:35.6  G207.36-19.82N1 YES 0.06 YES 1.2
G207.36-19.82N2 05:30:50.853 -04:10:13.641 G207.36-19.82N2 NO 0.04 YES 1.2
G207.36-19.82N4 05:30:44.546 -04:10:27.384 G207.36-19.82N4 NO (weak?) 0.035 YES 0.5
G207.36-19.82S 05:30:47.199 -04:12:29.734 G207.36-19.82S NO 0.04 NO 0.4
(G208.68-19.20N1 05:35:23.486 -05:01:31.583 G208.68-19.20N1 YES 0.45 YES 4.0
(G208.68-19.20N2 05:35:20.469 -05:00:50.394 G208.68-19.20N2 YES 0.14 YES 6.0
(G208.68-19.20N3 05:35:18.02 -05:00:20.7  G208.68-19.20N3 YES 0.2 YES 6.0
(G208.68-19.20S 05:35:26.32  -05:03:54.393 G208.68-19.20S YES 0.1 YES 7.0
(G208.89-20.04E 05:32:48.262 -05:34:44.335 G208.89-20.04E YES 0.1 YES 2.5
G208,89-20.04WalmaT 05:32:28.03 -05:34:26.69 — — — YES 0.04 YES 1.8
(G209.29-19.65N1 05:35:00.379 -05:39:59.741 G209.29-19.65N1 NO (weak?) 0.04 YES (weak?) 2.2
G209.29-19.6551 05:34:55.991 -05:46:04 G209.29-19.6551 YES 0.05 YES 3.3
G209.29-19.6552 05:34:53.809 -05:46:17.627 G209.29-19.6552 NO (weak?) 0.04 NO (weak?) 1.5
(G209.55-19.68N1 05:35:08.9  -05:55:54.4  (G209.55-19.68N1 YES 0.09 YES 4.0
(G209.55-19.68N2 05:35:07.5  -05:56:42.4  G209.55-19.68N2 NO (weak?) 0.04 YES 0.9
(G209.55-19.6851 05:35:13.476 -05:57:58.646 G209.55-19.6851 YES 0.2 YES 4.2
G209.55-19.6852 05:35:09.076 -05:58:27.378 G209.55—19.6883* YES 0.08 YES 1.9
G209.77-19.40E2 05:36:31.977 -06:02:03.765 G209.77-19.40E2 NO 0.05 NO 0.5
(G209.77-19.40E3 05:36:35.9  -06:02:42.165 G209.77-19.40E3 YES 0.04 YES 0.7
G209.79-19.80W 05:35:10.696 -06:13:59.318 G209.79-19.80W NO 0.04 NO (weak?) 0.7
G209.94-19.52N 05:36:11.55 -06:10:44.76 G209.94-19.52N YES 0.09 YES 2.0

Table 1 continued
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Table 1 (continued)

ALMA RA (J2000) Dec (J2000) JCMT Detection rms Detection rms
Targets (h:m:s) (d:m:s) name (TM1+TM24+ACA) (mJy beam™) (ACA only) (mJy beam™?)
(1) (2) () (4) () (6) (M (8)
G209.94-19.52S1 05:36:24.96 -06:14:04.71 G209.94-19.5251 NO 0.05 YES (weak?) 1.0
G210.37-19.53N 05:36:55.03 -06:34:33.19 G210.37-19.53N NO 0.04 YES 1.0
G210.37-19.53S 05:37:00.55 -06:37:10.16 G210.37-19.53S YES 0.05 YES 2.3
G210.49-19.79W 05:36:18.86 -06:45:28.035 G210.49-19.79W YES 0.7 YES 4.0
G210.82-19.47N2 05:37:59.989 -06:57:15.462 G210.82-19.47N2 NO (weak?) 0.05 YES 1.0
G210.82-19.47S 05:38:03.677 -06:58:24.141 G210.82-19.47S YES 0.07 YES 0.5
G210.97-19.3352 05:38:45.3  -07:01:04.41 G210.97-19.3352 YES 0.05 YES 1.0
G211.01-19.54N 05:37:57.469 -07:06:59.068 G211.01-19.54N YES 0.07 YES 2.3
G211.01-19.54S 05:37:59.007 -07:07:28.772 G211.01-19.54S YES 0.05 YES 0.8
G211.16-19.33N2 05:39:05.831 -07:10:41.515 G211.16-19.33N2 YES 0.04 YES 0.5
G211.16-19.33N4 05:38:55.68 -07:11:25.9  G211.16-19.33N4 NO 0.05 YES (weak) 0.7
G211.16-19.33N5 05:38:46 -07:10:41.9  G211.16-19.33N5 NO (other?) 0.07 YES 0.7
G211.47-19.27N 05:39:57.18 -07:29:36.082 G211.47-19.27N YES (Close Binary?) 0.12 YES 2.0
G211.47-19.27S 05:39:56.097 -07:30:28.403 G211.47-19.27S YES 0.25 YES 11.0
(}211.72—19.2581alrna]L 05:40:21.21 -07:36:08.79 — — — NO 0.05 NO 1.0
G212.10-19.15N1 05:41:21.34 -07:52:26.92 (G212.10-19.15N1 YES 0.04 YES 1.0
G212.10-19.15N2 05:41:24.03 -07:53:47.51 G212.10-19.15N2 YES 0.04 YES 1.0
G212.10-19.15S 05:41:26.446 -07:56:52.547 G212.10-19.15S YES 0.25 YES 3.0
G212.84-19.45N 05:41:32.146 -08:40:10.45 G212.84-19.45N YES 0.12 YES (weak?) 4.5
G215.44-16.38 05:56:58.45 -09:32:42.3  (G215.44-16.38 NO 0.04 YES (weak?) 0.7
G215.87-17.62M 05:53:32.4  -10:25:05.99 G215.87-17.62M YES 0.04 YES 2.0
G215.87-17.62N 05:53:41.89 -10:24:02 G215.87-17.62N YES 0.04 YES 0.8
G215.87-17.62S 05:53:26.249 -10:27:29.473 G215.87-17.62S NO (other?) 0.04 YES (weak?) 0.8
Orion B

G201.52-11.08 05:50:59.01 +04:53:53.1 (G201.52-11.08 YES 0.03 YES 0.5
G203.21-11.20E1 05:53:51.004 +03:23:07.3 G203.21-11.20E1 NO (weak?) 0.03 YES 1.0
G203.21-11.20E2 05:53:47.483 +03:23:11.3 G203.21-11.20E2 NO 0.04 NO (weak?) 0.4
G203.21-11.20W1 05:53:42.702 +03:22:35.3 (G203.21-11.20W1 YES 0.04 YES 3.0
G203.21-11.20W2 05:53:39.492 403:22:24.9 G203.21-11.20W2 YES 0.04 YES 0.3
(G205.46-14.56M1 05:46:08.053 -00:10:43.712 G205.46—14.56N3* YES 0.5 YES 2.0
G205.46-14.56 M2 05:46:07.9  -00:10:01.82 G205.46—14.56N2* YES 0.08 YES 2.0
G205.46-14.56 M3 05:46:05.66 -00:09:33.64 (G205.46-14.56N1 ¥ YES 0.05 YES 1.0
G205.46-14.56N1 05:46:09.75 -00:12:16.45 G205.46-14.56M1 * YES 0.15 YES 1.0
G205.46-14.56N2 05:46:07.4  -00:12:21.84 GQO'{').46-14.561\/[2>l< YES 0.15 YES 2.5
(G205.46-14.5651 05:46:07.048 -00:13:37.777 G205.46-14.56S1 YES 0.15 YES 4.0

Table 1 continued
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Table 1 (continued)

ALMA RA (J2000) Dec (J2000) JCMT Detection rms Detection rms
Targets (h:m:s) (d:m:s) name (TM1+TM24+ACA) (mJy beam™) (ACA only) (mJy beam™?)

(1) 2) () (4) () (6) (M (8)

G205.46-14.5652 05:46:04.49 -00:14:18.81 G205.46-14.5652 YES 0.08 YES 1.5

G205.46-14.5653 05:46:03.385 -00:14:51.715 G205.46-14.5653 YES 0.06 YES 2.0

G206.12-15.76 05:42:45.358 -01:16:13.262 G206.12-15.76 YES 0.3 YES 12.0

G206.21-16.17N 05:41:39.544 -01:35:52.212 G206.21-16.17N NO (weak?) 0.04 YES 1.0

G206.21-16.17S 05:41:36.373 -01:37:43.61 G206.21-16.17S NO (weak?) 0.03 YES 0.4

G206.93-16.61E2 05:41:37.31 -02:17:18.135 G206.93-16.61E2 YES 0.15 YES 4.0
*

G206.93-16.61W2 05:41:25.132 -02:18:06.455 G206.93-16.61W3 YES 0.15 YES 10.0
*

G206.93-16.61W4 05:41:28.77 -02:20:04.3 G206.93-16.61W5 NO 0.04 NO 3.0

NOTE—In column 5 & 7, weak emission detections are marked, whereas the ~ 3o level emissions or questionable detections
are marked with weak?. These are not included in the final detection count. In few targeted positions, no emission detected
around the dense core coordinates but some other compact emission detected. They are marked with other?.

fIn ALMA archive, they are listed as G208.89-20.04W and G211.72-19.2551, respectively. These objects are different than
JCMT dense cores catalog in Yi et al. (2018), with the same names. These objects are selected directly from JCMT images
for ALMA observations.

*Note that, the ALMA archive names are different than the JOMT dense core names in Yi et al. (2018).
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Table 2. Log of Observations

Scheduling Number of Date Array Number of Time on Unprojected
Block Execution Configuration Antennas Target (S) Baselines (m)

) (10) (11) (12) (13) (14) (15) (16)

1 1 2018 Oct 24 C43-5 48 3430 15-1398
2 2018 Dec 21 C43-2 46 1394 15-500
3 2018 Nov 19 ACA. 12 4590 9-49

2 1 2018 Oct 29 C43-5 47 4569 15-1398
2 2018 Nov 01 C43-5 44 4654 15-1358
3 2018 Nov 01 C43-5 44 4655 15-1358
4 2019 Jan 16 C43-2 46 3542 15-313
5 2018 Nov 21 ACA 12 5324 9-49
6 2018 Nov 27 ACA 12 5201 9-49
7 2018 Nov 27 ACA 12 5185 9-49
8 2018 Nov 27 ACA 12 5320 9-49
9 2018 Nov 28 ACA 11 5200 9-49

3 1 2018 Oct 29 C43-5 47 1918 15-1398
2 2019 Mar 05 C43-2 48 1086 15-360
3 2018 Nov 21 ACA 12 2634 9-49
4 2018 Nov 26 ACA 12 2635 9-49

4 1 2018 Oct 25 C43-5 47 3134 15-1398
2 2019 Jan 24 C43-2 51 1252 15-360
3 2018 Nov 21 ACA 12 4330 9-49
4 2018 Nov 26 ACA 12 4048 9-49

NoTeE—This table is organised according to execution block and Array configuration, not with date of observations.

Table 3. Correlator Setup

Spectral Central Main molecular Lines Bandwidth  Velocity
Window Frequency Resolution
(GHz) (GHz) (km s™1)
(6) (7) (8) (9) (10)
0 231.000000 1200 J=2-1; NyDT J=3-2 1.875 1.465
1 233.000000 CH;3OH transitions 1.875 1.453
2 218.917871 C180 J=2-1; H,CO transitions 1.875 1.546
3 216.617675 SiO J=5-4; DCN J=3-2; DCO* J=3-2 1.875 1.563
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Table 4. Calibrators and Their Flux Densities

Scheduling Date Bandpass Calibrator Flux Calibrator Phase Calibrator
Block (Quasar, Flux Density) (Quasar, Flux Density) (Quasar, Flux Density)
(6) (7) (8) 9) (10)
1 2018 Oct 24 J0423-0120, 2.68 Jy  J0423—0120, 2.68 Jy  J0607—0834, 0.78 Jy
2018 Dec 21 J0522—-3627, 3.65 Jy J0522—-3627, 3.65 Jy J0542—-0913, 0.47 Jy
2018 Nov 19 J0522—-3627, 4.91 Jy J0522—-3627, 4.91 Jy J0607—0834, 0.78 Jy
2 2018 Oct 29  J0423—0120, 2.53 Jy J0423-0120, 2.53 Jy J0541—-0211, 0.095 Jy
2018 Nov 01  J0423—0120, 2.53 Jy J0423-0120, 2.53 Jy J0541—-0211, 0.095 Jy
2018 Nov 01  J0423—0120, 2.53 Jy J0423-0120, 2.53 Jy J0541-0211, 0.095 Jy
2019 Jan 16  J0522—3627, 3.14 Jy J0522—-3627, 3.14 Jy J0542—0913, 0.47 Jy
2018 Nov 21 J0854+2006, 2.77 Jy J0854+4-2006, 2.77 Jy J0607—0834, 0.78 Jy
2018 Nov 27  J0423—0120, 2.30 Jy J0423-0120, 2.30 Jy J0542—0913, 0.47 Jy
2018 Nov 27  J0522—3627, 4.39 Jy J0522—-3627, 4.39 Jy J0542—0913, 0.47 Jy
2018 Nov 27 J0854+2006, 3.06 Jy J0854+4-2006, 3.06 Jy J0607—0834, 0.78 Jy
2018 Nov 28  J0423—0120, 2.29 Jy J0423-0120, 2.29 Jy J0542—0913, 0.47 Jy
3 2018 Oct 29 J05104-1800, 1.40 Jy J0510+1800, 1.40 Jy J0530+1331, 0.31 Jy
2019 Mar 05 JO750+1231, 0.65 Jy JO750+1231, 0.65 Jy J0530+1331, 0.30 Jy
2018 Nov 21 J0423—0120, 2.40 Jy  J0423-0120, 2.29 Jy  J0530+1331, 0.30 Jy
2018 Nov 26 J0423—0120, 2.40 Jy J0423-0120, 2.29 Jy J0530+1331, 0.30 Jy
4 2018 Oct 25  J0510+1800, 1.54 Jy J0510+1800, 1.54 Jy J05524-0313, 0.35 Jy
2019 Jan 24  J0423—0120, 2.68 Jy J0423-0120, 2.68 Jy J05524-0313, 0.35 Jy
2018 Nov 21  J0522—3627, 5.07 Jy J0522—-3627, 5.07 Jy J05324+-0732, 1.13 Jy
2018 Nov 26 J0423—0120, 2.40 Jy J0423—-0120, 2.40 Jy J05324+0732, 1.13 Jy
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Figure A1l. A-Orionis: The combined TM1, TM2 & 7m ACA continuum images of non-detected dense cores and Class 0
systems (including multiples). The contours are are at 6 and 30 o, where the corresponding os are tabulated in Table 1.
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Figure A3. Orion A: The combined TM1, TM2 & 7m ACA continuum images of non-detected, starless dense cores, Class 0
and Class I systems (including multiples). The contours are are at 6 and 30 o, where the corresponding os are tabulated in

Table 1.
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Figure A4. All the 7Tm ACA continuum maps of the non-detected and starless dense cores in combined TM1, TM2 & 7m ACA
continuum images. The contours are are at 3, 6, 9 and 30 o, where the corresponding os are tabulated in Table 1
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Figure A5. Velocity-integrated CO maps showing the outflow structures of the protostellar sources. The magenta contours
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in Table 1.
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