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Abstract
1.	 Riparian forests are commonly advocated as a key management option to mitigate 

the effects of agriculture on headwater stream biodiversity and ecosystem func-
tions. However, the benefits of riparian forests might be reduced by uninterrupted 
catchment-scale pollution.

2.	 We studied the effects of riparian land use on multiple ecological endpoints in head-
water streams in an agricultural landscape. We studied stream habitat characteristics, 
water temperature and algal accrual, and macrophyte, benthic macroinvertebrate and 
fish communities in 11 paired forested and open agricultural headwater stream reaches 
that differed in their extent of riparian forest cover but had similar water quality.

3.	 Hydromorphological habitat quality was higher in forested reaches than in open 
reaches. Riparian forest had a strong effect on the summer water temperature 
regime, with maximum and mean water temperatures and temperature variation 
in forested reaches substantially lower than in open reaches.

4.	 Macrophyte communities differed between forested and open reaches. The mean 
abundance of bryophytes was higher in forested reaches but the difference to open 
reaches was only marginally significant, whereas graminoids were significantly more 
abundant in open reaches. Within-stream dissimilarity of benthic macroinvertebrate 
community structure was significantly related to the difference in riparian land use 
between reach pairs. The relative DNA sequence abundance of pollution-sensitive 
Ephemeroptera, Plecoptera, and Trichoptera species tended to be higher in forested 
reaches than in open reaches. Finally, fish densities were not significantly different be-
tween forested and open reaches, although densities were higher in forested reaches.

5.	 This unequivocal evidence for the ecological benefits of forested riparian reaches 
in agricultural headwater streams suggests that riparian forest can partly mitigate 
the adverse impacts of agricultural diffuse pollution on biota. The strong effect of 
forests on stream water temperature suggest that riparian forest could also miti-
gate harmful effects on headwater stream biodiversity and ecosystem functions 
of the predicted more frequent high summer temperatures.
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1  | INTRODUC TION

Despite their small size, headwater streams account for a large por-
tion of the total basin area and the biodiversity of river ecosystems 
(Bishop et al., 2008; Finn et al., 2011). Small catchment sizes and iso-
lation within river networks cause spatial and temporal stochastic-
ity of environmental conditions and species dispersal. This results in 
larger between-stream variation and higher species turnover than in 
higher order channels (Brown & Swan, 2010; Sarremejane et al., 2017). 
Moreover, many headwater streams are heavily influenced by 
groundwater discharge (Jyväsjärvi et al., 2015; Turunen et al., 2020; 
Winter, 2007) and could thus provide thermal refugia for cold steno-
thermic species during heat waves, highlighting their key importance 
for the biodiversity of the entire catchment.

However, the very same reasons that make headwater stream 
habitats and their biota unique in the riverine landscape, leave them 
particularly vulnerable to anthropogenic disturbance. Land use, such 
as agriculture, can result in nutrient and pesticide pollution, acidifi-
cation, excessive sedimentation, and changes of thermal conditions 
(Allan, 2004; Buck et al., 2004; Sponseller et al., 2001), which—ex-
acerbated by the small water volume of headwater streams—quickly 
exceed species’ tolerance levels.

In headwater streams, agricultural land use not only adversely af-
fects water quality and benthic habitat conditions, it also causes the 
loss of natural riparian vegetation, which has profound consequences 
for the stream's ecology (Burrel et  al.,  2014; Hawkins et  al.,  1983; 
Hladyz et  al.,  2011). Headwater streams and their riparian forests 
are deeply connected (e.g. Nakano et al., 1999; Turunen et al., 2017). 
Riparian forests stabilise stream banks and have the ability to reduce 
nutrient run off, thereby mitigating erosion and eutrophication (Feld 
et al., 2018). Leaf litter and terrestrial insects fuel the heterotrophic 
food webs (Perkins et  al.,  2018; Wallace et  al.,  1997). Shading and 
inputs of woody debris affects stream metabolism, nutrient cycling, 
and water temperature (Johnson & Almlöf, 2016; Warren et al., 2016). 
Shade and reduced wind speeds in forested riparian zones also create 
cooler and more humid microclimates with fitness consequences for 
riparian biota and adult aquatic insects (Carlson et al., 2016; Collier & 
Smith, 2000; Remsburg et al., 2008). Reciprocally, hatching aquatic in-
sects are a crucial energy subsidy for riparian ecosystems and flooding 
represents a key disturbance that provides nutrients and increases soil 
moisture in riparian zones (Baxter et al., 2005; Hjältén et al., 2016).

The influence of reach scale riparian forests on stream water tem-
perature, benthic habitat conditions, water quality, and ecological 
status in extensively altered catchments has been frequently studied, 
but results have been highly variable. Some studies report stronger 
influence of catchment scale land use (Death & Collier, 2010; Harding 
et al., 2006; Roth et al., 1996; Wahl et al., 2013), while others sug-
gest that reach scale land use and integrity of local riparian forests is 
a more influential factor (Jones et al., 1999; Lammert & Allan, 1999; 
Storey & Cowley, 1997). There are at least two factors that may gov-
ern the strength of effects that riparian forests have on streams. First, 
it is likely that under intensive catchment land use and high water pol-
lution, reach scale variation in riparian forest cover will have limited 

influence on the ecological conditions of a stream because its eco-
system is degraded by intense pollution (Osborne & Kovacic, 1993; 
Walsh et al., 2007; Feld et al., 2018). However, in slightly to moder-
ately polluted streams, local riparian forests could improve reach scale 
ecological conditions. Turunen et al. (2019) found that in moderately 
polluted mid-order streams, occurrence of riparian forests improved 
the ecological status of macrophytes and increased the abundance of 
leaf shredding invertebrates despite having no effect on water chem-
istry, temperature, or benthic habitat conditions. Second, according 
to predictions of the river continuum concept (Vannote et al., 1980), 
influence of riparian forests on stream ecosystems should be higher 
for headwater streams, suggesting that in agricultural headwater 
streams, the positive effects of riparian forests on stream habitat and 
ecological status should be stronger than for mid-order channels.

In this study, we explored the effect of reach scale riparian forest 
cover on stream water temperature, habitat characteristics, periphy-
ton accrual, as well as macrophyte, macroinvertebrate and fish com-
munity structure in 11 agricultural headwater streams. We compared 
forested and open reaches within and across streams. We specifically 
asked if riparian forest has any influence on species composition and 
algal accrual irrespective of diffuse pollution, or if diffuse pollution 
negates potential positive effects of riparian forests. Due to shading 
effects of the forests, we expected mean and maximum water tem-
peratures and water temperature variation to be lower in forested 
reaches and that the presence of riparian forest leads to a decrease 
of algal accrual. Moreover, due to differences in their affinity to light, 
macrophyte communities were expected to be dominated by gram-
inoids in open reaches, whereas bryophytes were expected to be 
more abundant in forested reaches. Forests reduce water tempera-
ture, improve stream and riparian habitat quality, and provide input 
of leaf detritus, all of which are expected to have positive effects on 
the abundance of leaf-shredding invertebrates (especially on stonefly 
shredders due to their preference for forested riparian habitats) as 
well as Ephemeroptera, Plecoptera, and Trichoptera (EPT) species. 
Similarly, we expected higher fish density in forested reaches as a 
consequence of improved stream habitat quality, terrestrial inputs of 
prey items and reduced water temperatures.

2  | METHODS

Our study area is located in lowland (<200 m above sea level) catch-
ments of western Finland (63.2–64.8°N, 23.8–25.5°E; Figure  1). 
Streams in the area are typically slightly acidic and coloured due to 
dissolved organic carbon and suspended solids. Catchment forests 
typically consist of half coniferous and half mixed boreal forests that 
are mostly managed. A substantial proportion of catchment areas 
is used for agriculture (Table  1). The main anthropogenic impact 
on these streams comes from diffuse agricultural pollution, chan-
nelisation, and conversion of riparian areas to pasture and fields. 
The agriculture in the area is mostly crop (oat, barley) and animal 
feed production (Phleum pratense, Festuca pratensis, Lolium perenne, 
Dactylis glomerata).
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We selected 11 small (mean catchment area 38 km2) first-order 
streams that were distinctly impacted by diffuse agricultural pollu-
tion (Table 1). These are small perennial low gradient streams that 
drain former seabed areas with flat terrain. Due to their catch-
ment characteristics, the composition of biological communities 
in those streams is somewhat atypical in comparison with classic 
steep gradient headwater streams (sensu Vannote et  al.,  1980). 
We used aerial images and conducted field visits to select two 
40-mreaches for each stream, one having an extensive cover of 
riparian forest (hereafter referred to as forested reach) and one 
having an altered riparian vegetation with reduced forest cover, 
with shrubs, few trees, and fields (hereafter referred to as open 
reach). Each reach contained some distinct riffle areas and pool 
habitat. We aimed to select reaches that would only differ by the 
integrity of their riparian forest within each stream and were lo-
cated close to each other (mean distance 1.9 km) to ensure simi-
lar diffuse loading and water quality conditions (Table 1). In five 
of the 11 streams, open reaches were upstream of the forested 
reaches and in six cases downstream to avoid systematic effects 
related to relative positions of the reach pairs. The extent of field 
cover around open reaches was similar to the extent of forests in 
forested reaches.

2.1 | Water chemistry and physical habitat

Field surveys and sampling were conducted between July and 
September 2018. We measured several water quality variables for 
each stream at both open and forested reaches to verify that the 
level of diffuse pollution was similar between sites (Table  1). The 
chemical water quality parameters were measured in the labora-
tory using national standards (https://www.finas.fi/Docum​ents/
T003_M38_2018.pdf). Water pH and electrical conductivity were 
measured in situ using a YSI-professional-plus meter (YSI Inc.).

Water temperature was recorded at an hourly interval using log-
gers (iButton; Thermochron, Maxim Integrated) from mid-July to the 
end of August, which typically represents the warmest period of 
the year in Finland. Loggers were fixed to the river bed at 10–30 cm 
depth within 0.5 m from the stream margin using iron bars.

Water depth, bank-full channel width, and current velocity were 
measured at three points in three transects placed evenly along the 
sampling reach and mean values were calculated for each reach. 
Substratum size distribution was estimated for 12 randomly placed 
0.25-m2 squares as percentage cover of 10 size classes ranging from 
fine sediments (ø < 0.2 cm) to large boulders (ø > 25 cm; modified 
Wentworth scale, see Turunen et  al.,  2019). The amount of large 
woody debris (LWD) was quantified by measuring the length and 
average diameter of all wood pieces with >5 cm diameter from the 
40-m reach. The canopy cover of riparian trees was estimated at 10 
transects (five transects on each side of the channel). For each tran-
sect, we visually estimated the percentage cover of canopy vegeta-
tion through a 15 cm diameter cylindrical tube at three points: at the 
centre of the channel, the stream margin and within the riparian zone 
5 m from the margin. Mean cover was calculated for the whole reach.

Hydromorphological conditions were evaluated at eight spots 
along the 40-m reach (every 5 m). We used the metrics for channelisa-
tion and hydromorphological degradation to score habitat conditions 
as many moderately channelised streams in the area have retained suf-
ficient hydromorphological variability to support near-natural species 
composition (Turunen et al., 2016). Channelisation was estimated as 
removal of boulders and degree of straightening and ditching of the 
channel form (scale 0–2, 0 representing unaltered state and 2 severely 
channelised). For the hydromorphological degradation score (scale 
0–2, 0 representing good status and 2 low status), we evaluated width, 
depth, flow, and substratum variability. Mean scores across each reach 
were calculated for both variables.

We used the ArcMapTM (ESRI) GIS software to calculate the per-
centage of agricultural land in stream catchments by using Corine 

F I G U R E  1   A map showing the 
study area, dominant land uses, and 
spatial arrangement of the study sites in 
Finland [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://www.finas.fi/Documents/T003_M38_2018.pdf
https://www.finas.fi/Documents/T003_M38_2018.pdf
www.wileyonlinelibrary.com
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Land cover 2012 data. In addition, we calculated the riparian forest 
cover within stream catchments with 100  m long and 25  m wide 
riparian buffers upstream of the sampling site.

2.2 | Biological sampling

We measured algal accrual at each reach by placing eight unglazed clay 
tiles in riffle habitat for eight weeks (from mid-July to early September). 

After incubation in the streams we measured the amount of algae on 
the tiles using a BenthoTorchTM fluorometer that estimates algal abun-
dance on surfaces in situ (Harris & Graham, 2015). The area measured 
by the fluorometer was 1 cm2 for each tile.

Macrophytes were surveyed for the 40-m reaches. We defined 
macrophytes as any vascular plant or bryophyte growing in the 
stream channel or directly at the water-land interface. Each reach 
was visually divided into 100 squares and the frequency of occur-
rence for each species was estimated by counting the squares of 
species occurrence (Rääpysjärvi et al., 2016). Species abundance was 
estimated as average cover per square in which a species occurred. 
For a summary data analysis, we multiplied abundance estimates 
with frequency estimates of macrophyte species. Bryophytes were 
sampled in 12 randomly placed 0.25-m2 squares across each reach 
and both species identity and percentage coverage were recorded 
for each square to calculate mean cover.

For benthic macroinvertebrates, we took four 30-s kick-net sam-
ples covering most microhabitats present at a reach. This method is 
known to capture about 75% of taxa present in a given reach, mainly 
missing species with sporadic occurrence (Mykrä et  al.,  2006). 
Invertebrate sampling was conducted in early September. Samples 
were preserved in 96% ethanol in the field and the ethanol was 
replaced within 24  hr to assure a final 96% concentration (Stein 
et al., 2013). Samples were kept cool (8°C). All individuals were sorted 
in the laboratory and again preserved in 96% ethanol. Specimens 
were kept cool (8°C) for subsequent species identification by molec-
ular analyses (see below).

Fish were sampled in mid-July from the riffle habitat of each 
reach using backpack electrofishing equipment (Hans Grassl, IG200-
2). The reaches were fished once, all fish caught recorded (identified 
to species and their total length measured) to calculate total fish 
density for each reach.

2.3 | Macroinvertebrate identification

We used the DNA metabarcoding to identify macroinvertebrate 
species and quantify their relative abundance following workflow 
described by Elbrecht and Steinke (2019). To detect potential cross-
contamination, eight negative controls and one empty well were 
incorporated in extraction, subsequent polymerase chain reactions 
(PCRs), and sequencing. Samples of different studies were included 
for library assembly and high throughput sequencing (Malaise trap 
samples, spider gut content, and lake grab samples, see Table S1 for 
a plate map).

Samples were dried over night at 40°C in single-use 20-ml homo-
genisation chambers. We used the IKA ULTRA-TURRAX Tube Drive 
Control System (IKA, Staufen im Breisgau, Germany) at 45  g for 
30 min with 10 steel beads (diameter, 5 mm) added to tubes to grind 
bulk macroinvertebrate samples to a fine powder. Approximately 
15 mg of tissue powder from each respective sample was used for 
DNA extraction with the DNeasy 96 Blood & Tissue Kit (Qiagen). To 
prevent cross-contamination between samples, tissue was digested 

TA B L E  1   The mean values and range of the key environmental 
variables. LWD, large woody debris; CV, coefficient of variation

Variable Forested reaches Open reaches

Catchment agricultural 
land use (%)

10 (2–31) 11 (3–28)

Riparian forest cover 
(100 m) (%)

78 (41–100) 24 (4–82)

Canopy cover (%) 53 (35–64) 19 (0–49)

Bryophyte cover (%) 13 (0–42) 5 (0–15)

Fine sediment cover (%) 19 (0–59) 39 (2–100)

Substrate size 5.6 (2.7–7.3) 3.6 (0.3–6.9)

Volume of LWD (dm3/m2) 1.6 (0–8.6) 0.1 (0–0.5)

Channelisation score 
(0–2)

1.5 (0.8–2) 1.9 (1.5–2)

Hydromorphological 
degradation score (0–2)

0.8 (0–1.8) 1.4 (0.6–2)

Current velocity (m/s) 0.1 (0.02–0.2) 0.1 (0.04–0.2)

Depth (cm) 12 (8–19) 9 (5–15)

Width (cm) 360 (210–550) 280 (180–460)

Electrical conductivity 
(uS/cm)

94 (43–202) 81 (40–162)

pH 6.5 (5.3–7.2) 6.6 (5.7–7.3)

Al (μg/L) 360 (150–830) 440 (200–1000)

Fe (μg/L) 7,500 (4800–12,000) 8,000 
(3,800–11,000)

S (μg/L) 2,800 (580–7,500) 2,800 
(910–7,100)

Suspended solids (mg/L) 14 (4–26) 17.9 (5–46)

Turbidity (FNU) 19.4 (6.1–43) 21.4 (5.1–38)

Total N (μg/L) 503 (280–870) 510 (270–720)

NH4 (μg/L) 37 (5–190) 38 (3–210)

NO2/NO3 (μg/L) 290 (82–960) 280 (42–1000)

Total P (μg/L) 153 (73–300) 167 (67–390)

PO4 (μg/L) 98 (29–190) 100 (26–260)

Mean water temperature 
(°C)

17.0 (16.2–18.4) 17.7 (16.3–18.7)

Minimum water 
temperature (°C)

9.2 (8.4–10) 8.6 (6.1–9.6)

Maximum water 
temperature (°C)

20.9 (19.2–23.2) 23.5 (21.9–25.6)

Temperature variation 
(CV)

0.19 (0.18–0.22) 0.21 (0.19–0.23)
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according to manufacturer recommendations in individual 1.5-ml 
reaction tubes at 56°C for 3 hr, and then transferred into the spin 
column plate.

For DNA metabarcoding, we utilised a two-step fusion primer 
strategy (Elbrecht & Steinke, 2019). During the first PCR step a 421-
bp fragment of the cytochrome c oxidase subunit I gene was ampli-
fied using the BF2 + BR2 primer pair (Elbrecht & Leese, 2017). We 
used the Qiagen Multiplex PCR Plus Kit (Qiagen, Hilden, Germany) 
with 0.5  μl DNA (concentration not quantified), 0.2  μM for each 
primer, 2× Multiplex PCR Master Mix and ddH2O for a total reac-
tion volume of 25  μl. Polymerase chain reactions were run on an 
Eppendorf Mastercycler Pro Thermo Cycler with the following pro-
gram: 95°C for 5 min; 25 cycles of 95°C for 30 s, 50°C for 30 s, and 
72°C for 50 s; and final extension at 72°C for 5 min. Amplification 
success was evaluated on a 1% agarose gels. For the second PCR 
step, 1 μl PCR product from the first PCR was used as template, and 
each sample tagged with a unique fusion primer combination (see 
Table  S1 for tagging combinations, Elbrecht & Steinke,  2019). The 
PCR setup was identical to the previous PCR, but the cycle number 
was reduced to 20 cycles, the PCR volume increased to 35 μl and the 
extension time in each cycle was increased to 2 min. Amplification 
success was again checked with a 1% agarose gel. Products from the 
second PCR step were cleaned up and normalised using SequalPrep 
Normalisation Plates (Thermo Fisher Scientific; Harris et al., 2010) 
following manufacturer protocols. Normalisation success was 
checked on a 1% agarose gel. Ten µl of each normalised sample were 
pooled, and the resulting library cleaned up using left-sided size se-
lection with 0.76× SPRIselect (Beckman Coulter), to remove primer 
dimers from the negative controls. Sequencing was carried out by 
the Genomics Facility at the University of Guelph using a 600 cycle 
Illumina MiSeq Reagent Kit v3 and 5% PhiX spike in. Both indexing 
read steps were skipped, as we used inline tags. The read length of 
read one was increased to 316 bp, while keeping read 2 at 300 bp.

Raw sequencing data were quality checked using FastQC v0.11.8 
and then processed using the R-based JAMP v0.59 pipeline (https://
github.com/Vasco​Elbre​cht/JAMP) which mostly relies on Usearch 
v11.0.667 (Edgar, 2010). The data processing commands are avail-
able as supporting information (Supporting information, Script S1). 
Reads were demultiplexed based on fusion primer in-line tagging 
(Elbrecht & Steinke,  2019) and paired end merged using Usearch, 
while allowing mismatches of up to 25%. To orient all sequences 
in forward direction, samples were converted to reverse com-
plement where needed. Primers were trimmed from both ends 
with Cutadapt v1.18 using default settings, and reads for which 
no primer could be detected on either side were discarded. Only 
reads between 411 and 431 bp were retained for further analysis. 
To discard reads with poor read quality, expected error filtering was 
applied (Edgar & Flyvbjerg, 2015), using a max expected error of 1. 
Sequences of all samples were subsequently pooled, dereplicated 
(minuniquesize = 2), and clustered into molecular operational taxo-
nomic units (OTUs), using cluster_otus with a 97% identity threshold 
(Edgar, 2013) (includes chimera removal). Individual reads (including 
singletons) were mapped against the OTU list using usearch global 

with a minimum match of 97%. OTUs with less than a minimum of 
0.01% read abundance for both replicates of one sample, were re-
moved and reads again mapped against the OTU subset. The high-
est read count in the negative controls for each individual OTU was 
multiplied by two and subtracted from all other samples, to account 
for low level tag switching and cross-contamination. OTU taxonomy 
was assigned using the BOLD reference database (Ratnasingham & 
Hebert, 2007).

2.4 | Statistical analyses

We calculated standardised effect sizes (Cohen's d) (Cohen, 1988) to 
quantify and compare the responses of univariate variables (water 
temperature measures, hydromorphological degradation, volume 
of LWD, algal accrual rate, bryophyte cover, graminoid abundance, 
macroinvertebrate and EPT richness, EPT and shredder sequence 
abundance, fish density) to the presence of riparian forest.

To test for differences between forested and open reaches in the 
univariate response variables, we used linear mixed-effects models 
(LMM; function lme in R-package nlme; Pinheiro et  al.,  2017). In 
LMM, reach type (forested vs. open) was defined as fixed factor and 
stream identity was treated as random effect. We also included the 
VarIdent function in the model to allow for heterogeneity in variance 
structure among treatments. The fit of models was inspected using 
residual plots and were found to satisfy the assumptions of normal-
ity and heterogeneity of residuals for parametric analysis.

To study whether community compositions in forested 
reaches differed from open reaches we used non-parametric mul-
tidimensional scaling (NMDS). First, we visualised the commu-
nity structure in NMDS ordination space and subsequently ran 
a permutational multivariate analysis of variance (PERMANOVA; 
Anderson,  2001) to explore whether observed differences have 
statistical significance. The permutations were constrained within 
streams (strata option in adonis function) to account for the nested 
design of the study. We ran NMDS ordination for all biological 
endpoints, except for fish due to a low number of species and lim-
ited density, restricting the use of NMDS. NMDS plots were calcu-
lated with Bray–Curtis dissimilarities using the function metaMDS 
in the vegan package (Oksanen et  al.,  2018, version 2.5–2). 
Environmental variables were fitted using the function envfit. Both 
macrophyte community data (frequency × abundance) and macro-
invertebrate sequence abundance were log10 (x + 1) -transformed 
prior to analysis. In addition, we explored whether within-stream 
community dissimilarity of macrophytes and macroinvertebrates 
between forested and open reaches was related to difference in 
riparian forest cover (measured as Euclidean distance of canopy 
and riparian forest cover difference).

We further used the indicator species analysis (IndVal; Dufrêne 
& Legendre, 1997) in the R package labdsv (Roberts, 2012) to iden-
tify potential indicator taxa for the reach types. IndVal analysis 
yields an indicator value (IV) for a species for each a priori defined 
site group. The IV for a taxon varies from 0 to 100, and attains its 

https://github.com/VascoElbrecht/JAMP
https://github.com/VascoElbrecht/JAMP
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maximum value when all individuals of a taxon occur at all sites of a 
group. Significance of the indicator value for each taxon was tested 
through a Monte Carlo randomisation test with 1,000 permutations. 
We considered species with an IV > 50 (and significant at α = 0.05) 
as strong indicators. All analyses were performed using R software 
(version 3.6.2; R Core Team, 2019).

3  | RESULTS

The mean riparian forest cover was 78% and the canopy cover 53% 
in forested reaches, whereas open reaches had coverages of 24% 
and 19%, respectively (Table 1). Water chemistry was very similar 
among reaches and thus the difference in local land use did not have 
an effect on the level of diffuse agricultural pollution between the 
reaches (Table 1).

The hydromorphological degradation score was lower for for-
ested reaches compared to open reaches (d = −1.4; LMM: t = −3.5, 
p < 0.001; Figure 2, Table 2) indicating better instream habitat con-
ditions. Forested reaches also exhibited larger volumes of LWD but 
the difference to open reaches only bordered significance (d = 0.8; 
LMM: t = 2.0, p = 0.078).

Mean (d = −0.9; LMM: t = −3.8, p = 0.003) and maximum (d = −2.1; 
LMM: t = −5.9, p < 0.001) water temperatures and their coefficient 
of variation (d = −1.3; LMM: t = −4.0, p = 0.003) were significantly 
lower in forested compared to open reaches (Table 2, Figure 2, Figure 
S1). Algal accrual was not significantly different between reach types 
(d = −0.4; LMM: t = 1.0, p = 0.333; Table 2, Figure 2).

The PERMANOVA indicated that macrophyte community com-
position was distinctly different between the forested and open 
reaches (F1,20  =  3.4, p  <  0.001; Figure  3a). Community change 
correlated with canopy cover, riparian forest cover and hydromor-
phological degradation score along the NMDS axis 1 and current 
velocity, pH, and various trace elements (Ba, Ca, K) along the NMDS 
axis 2 (Figure 3b). The within-stream community dissimilarity of mac-
rophytes was not significantly related to differences in riparian land 
use between reach types (Figure 4a). Indicator value analysis iden-
tified Viola palustris as a significant indicator for forested reaches 
and Sparganium emersum, Carex acuta, Calamagrostis purpurea, 
Poa nemoralis, and Juncus filiformis as indicators for open reaches 
(Table 3). Bryophytes were more abundant in forested reaches but 
the difference from open reaches was not significant (d = 0.8; LMM: 
t  =  2.2, p  =  0.050; Table  2, Figure  2), whereas graminoids domi-
nated the open reaches (d = −1.3; LMM: t = −3.1, p = 0.010; Table 2, 
Figure 2).

DNA extractions of three macroinvertebrate samples did show 
low quantity and highly fragmented DNA as well as comparatively 
weak bands in the PCR. These samples only recovered a few species 
with low read abundance and were considered failed samples, prob-
ably due to DNA degradation. Therefore, the samples were excluded 
from statistical analysis of the DNA metabarcoding data. All other 
samples did show good DNA quality and metabarcoding results with 
an average of 287k (SD = 44k) paired end reads per sample.

The PERMANOVA indicated that macroinvertebrate commu-
nities were not significantly different between forested and open 
reaches (F1,17 = 0.96, p = 0.177; Figure 3c). Community change cor-
related with fine sediment cover, minimum water temperature and 
catchment area along NMDS axis 1 and with turbidity, current ve-
locity, aluminium and manganese concentration along NMDS axis 2 
(Figure 3d). Within-stream community dissimilarity was significantly 
related to differences in riparian land use between reach types (i.e. 
the more different the riparian forest cover between the reaches of 
a stream the more different were the communities; Figure 4b).

The stoneflies Diura bicaudata and Diura nanseni were deter-
mined as indicators for forested reaches (Table 4). The coleopteran 
Platambus maculatus and chironomids Orthocladius dentifer and 
Psectrocladius octomaculatus were identified as indicator species for 
open reaches (Table 4). Neither total macroinvertebrate (d = −0.4; 
LMM: t = −0.9, p = 0.380) nor EPT richness (d = 0.6; LMM: t = 1.3, 
p = 0.230) differed between reach types (Figure 2) but relative DNA 
abundance of EPT species was marginally higher for forested reaches 
than open reaches (d = 0.9; LMM: t = 2.2, p = 0.059; Figure 2, Table 2). 
The relative abundance of shredders was not significantly different 
between the reach types (d = −0.7; LMM: t = −1.5, p = 0.181). When 
analysing shredders in two groups, stonefly and other shredders, the 
relative abundance of other shredders (isopod Asellus aquaticus and 
the crane flies Tipula couckei and Tipula pierrei as well as trichopter-
ans) was marginally higher in open compared to forested reaches 
(d = −0.9; LMM: t = −2.1, p = 0.068; Figure 2, Table 2), whereas the 

F I G U R E  2   Standardized mean effect sizes (Cohen's d) and their 
95% confidence intervals for different response variables. The 
effect size describes the influence of riparian forest relative to open 
reaches so that negative values indicate smaller variable values in 
forested reaches than in open reaches, and positive values indicate 
larger variable values in forested reaches than in open reaches. 
The variable Other shredders (%) consists of macroinvertebrate 
crustacean, dipteran, and trichopteran shredders. *Significant 
effect (p < 0.05) of the reach type according to linear mixed effect 
models. EPT, Ephemeroptera, Plecoptera, and Trichoptera; LWD, 
large woody debris
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mean of relative sequence abundance of stonefly shredders was 
higher in forested reaches, but the difference to open reaches was 
not significant (d = 0.7; LMM: t = 1.5, p = 0.181; Figure 2, Table 2).

The fish assemblages consisted of stone loach (Barbatula bar-
batula), European bullhead (Cottus gobio), pike (Esox lucius), burbot 
(Lota lota), and perch (Perca fluviatilis). In addition, brook lamprey 
(Lampetra planeri) larvae were caught in two streams. Total fish den-
sity was higher in forested reaches than in open reaches although 
the difference was not significant (d = 0.5; LMM: t = −1.9, p = 0.091; 
Figure 2, Table 2).

4  | DISCUSSION

Riparian forests strongly influence local water temperatures, light con-
ditions and input of allochtonous nutrients and detritus and thereby 
shape community structure in streams (Jones et al., 1999; Sponseller 
et al., 2001; Turunen et al., 2019). However, local forest patches in ex-
tensively altered catchments do not necessarily improve water quality 
but provide other benefits that can improve the ecological conditions 
in streams (Harding et  al.,  2006; Storey & Cowley,  1997; Turunen 
et al., 2019). For freshwater and biodiversity managers, it is important 

Response variable Fixed effects Estimate SE df t p

Mean substratum size 
(Wentworth)

Intercept 3.6 0.5 10 6.6 <0.001

Reach type 2.0 0.7 10 2.8 0.019

Fine sediments (%) Intercept 38.7 9.8 10 4 0.003

Reach type −20.0 11.5 10 −1.7 0.111

HyMo degradation 
(0–2)

Intercept 1.4 0.1 10 10.8 <0.001

Reach type −0.6 0.2 10 3.5 <0.001

Volume of LWD  
(dm3/m2)

Intercept 0.1 0.05 10 2.1 0.058

Reach type 1.5 0.8 10 2 0.078

Mean water 
temperature (°C)

Intercept 17.7 0.2 10 71.9 <0.001

Reach type −0.7 0.2 10 −3.8 0.003

Maximum water 
temperature (°C)

Intercept 23.5 0.4 10 61.6 <0.001

Reach type −2.6 0.4 10 −5.9 <0.001

Water temperature 
variation (CV)

Intercept 0.2 0.003 10 63.7 <0.001

Reach type −0.010 0.004 10 −4.0 0.003

Algal accrual rate  
(μg/cm2)

Intercept 4.3 1.1 10 4.0 0.003

Reach type −1.2 1.1 9 −1.0 0.333

Fish density log10  
(ind. 100 m−2)

Intercept 0.3 0.1 10 2.1 0.063

Reach type 0.3 0.2 10 1.9 0.091

Bryophyte abundance 
(%)

Intercept 5.2 1.6 10 3.3 0.009

Reach type 8.1 3.6 10 2.2 0.050

Graminoid abundance 
(f*a) a

Intercept 560.3 169.3 10 3.3 0.008

Reach type −531.2 169.0 10 −3.1 0.011

Macroinvertebrate 
richness

Intercept 67.1 3.9 9 17.2 <0.001

Reach type −4.9 5.3 8 −0.9 0.380

EPT richness Intercept 13.8 1.5 9 9.5 <0.001

Reach type 2.0 1.6 8 1.3 0.233

EPT abundance (%) Intercept 42.7 7.0 9 6.1 <0.001

Reach type 16.0 7.3 8 2.2 0.059

Total shredder 
abundance (%)

Intercept 23.3 5.1 9 3.8 0.004

Reach type −9.8 6.7 8 1.5 0.181

Stonefly shredder 
abundance (%)

Intercept 3.8 0.9 9 4.2 0.002

Reach type 3.2 2.2 8 1.5 0.181

Other shredder 
abundance (%) b 

Intercept 19.7 6.6 9 3.0 0.015

Reach type −13.2 6.2 8 −2.1 0.068

Statistically significant differences are bolded.
aGraminoid abundance is a product from frequency and abundance (f*a) estimates.  
bOther shredders include isopod, dipteran and trichopteran shredder taxa.  

TA B L E  2   The linear mixed-effects 
models for different response variables. 
The estimate for the reach type is the 
effect of riparian forest relative to open 
reaches and the intercept denotes the 
mean of the response variable in open 
reaches. EPT, Ephemeroptera, Plecoptera, 
and Trichoptera; LWD, large woody 
debris; CV, coefficient of variation
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to understand if widely advocated local riparian forest buffers have 
benefits as a management tool in largely degraded stream catch-
ments. One of those benefits is their potential to mitigate excessive 

warming of stream water during heatwaves (Bowler et al., 2012; Feld 
et al., 2018; Johnson & Almlöf, 2016). Our study confirms this as we 
found that the presence of riparian forest had a distinctly lowering 

F I G U R E  3   Non-parametric 
multidimensional scaling (NMDS) 
ordinations of macrophyte (a, b) and 
macroinvertebrate (c, d) communities 
of the study sites with 95% confidence 
ellipses around the group centroid. 
Vectors indicate the direction and 
strength of correlation of environmental 
variables that were significantly (p < 0.05) 
related to community structure

F I G U R E  4   Relationships of Bray–
Curtis dissimilarities of macrophyte 
(a) and macroinvertebrate community 
(b) structure, and riparian forest cover 
differences between two reaches with 
contrasting riparian land use in agricultural 
streams. The line shows a fitted significant 
linear regression model

TA B L E  3   Macrophyte indicator taxa for each stream reach type, 
together with their indicator values (IV) and associated p-values

Stream reach type Species IV p-value

Forested Viola palustris 0.83 0.009

Open Sparganium emersum 0.73 0.001

Carex acuta 0.72 0.002

Poa nemoralis 0.64 0.005

Juncus filiformis 0.54 0.023

TA B L E  4   Macroinvertebrate indicator taxa for each stream reach 
type, together with their indicator values (IV) and associated p-values

Stream reach type Species IV p-value

Forested Diura bicaudata 0.59 0.040

Diura nanseni 0.54 0.043

Open Platambus maculatus 0.75 0.043

Orthocladius dentifer 0.66 0.008

Psectrocladius 
octomaculatus

0.53 0.045
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effect on stream water temperatures. This effect was particularly 
strong for maximum water temperatures. Another benefit is that 
forested riparian zones support higher biodiversity and thus provide 
better ecological status. Contrary to our expectations we did not ob-
serve any differences in algal accrual while macrophyte communities 
were expectedly different among reach types. The overall macroin-
vertebrate community structure showed no significant differences 
between the reach types, but within-streams community change 
was strongly related to reach-pair differences in riparian forest cover. 
Particularly, the relative DNA sequence abundance of sensitive EPT 
species was marginally higher in forested reaches.

Streams contain a hierarchy of spatially nested habitats where 
large-scale features (e.g. catchment geology, topography, and land 
use) control the characteristics of local scale habitats such as rif-
fles (Frissell et  al.,  1986). Considering the constraints of catch-
ment-scale land use, the importance of reach scale habitat factors 
(e.g. riparian forests) for the ecological status of degraded streams 
has been subject of extensive research with varying results (e.g. 
Lorenz & Feld, 2013; Roth et al., 1996; Storey & Cowley, 1997; Wahl 
et al., 2013). This ambiguity is probably rooted in differences of land 
use pollution. The benefit of riparian forests for local ecological 
conditions might be overruled by heavy pollution (Wahl et al., 2013; 
Walsh et  al.,  2007). Our results are in line with observations of 
studies (e.g. Johnson & Almlöf, 2016; Jones et al., 1999; Lammert & 
Allan, 1999) reporting higher instream habitat quality and ecological 
status in reaches with high riparian forest integrity despite having at 
least partly modified catchments. Overall, our results suggest that 
riparian forests are beneficial management tools for agricultural 
catchments at least in cases where pollution is moderate.

4.1 | Stream habitat and water temperature

The presence of riparian forests showed no clear effect on stream 
water quality, which was also observed in previous studies (Harding 
et al., 2006; Osborne & Kovacic, 1993; Turunen et al., 2019). Both 
the small extent of riparian forest buffers and tile drainage practices, 
where excessive subsurface water from fields is drained directly into 
streams or open ditches, are the likely reasons for the lack of any ef-
fect on water quality (Harding et al., 2006; Wahl et al., 2013). In con-
trast, the physical stream habitat was clearly different for forested 
and open reaches. The hydromorphological stream habitat status 
and the average substratum size were significantly higher in forested 
reaches. Several studies reported more silted stream beds in stream 
reaches that drain within agricultural fields compared to reaches 
that maintain riparian forests (e.g. Jones et  al.,  1999; Sponseller 
et al., 2001; Stanford et al., 2019). In comparison, mid-order agricul-
tural streams in the same area exhibited no physical stream habitat 
condition differences among forested and open reaches (Turunen 
et al., 2019). Headwater streams are often channelised much more 
severely than mid-order channels in order to enhance agricultural 
drainage. Furthermore, the channelisation practice has typically 
been more extreme in stream sections that are within farm fields 

than those that drain in uncultivated forested areas. More extensive 
channelisation in open reaches is likely to be the main reason for a 
more homogenous and silted habitat structure rather than erosion 
due to land use.

The volume of LWD tended to be larger in forested compared to 
open reaches as was expected. Large woody debris is generally con-
sidered to have positive effects on stream biodiversity by providing 
habitat and inducing geomorphological changes in stream channels 
(Pilotto et al., 2014; Louhi et al., 2016). However, volumes of LWD 
were several orders of magnitude lower even in forested reaches 
compared to near-natural headwater streams in Finland (Turunen 
et al., 2017), indicating that the riparian forests are young and have 
been used for forestry and that the LWD has been cleared from the 
channels to enhance drainage.

The summer of 2018 was the hottest summer in Finland in re-
corded history (Finnish Meteorological Institute, https://en.ilmat​
ietee​nlait​os.fi/press​-relea​se/61091​8514). Water temperatures 
were generally lower in forested reaches (difference in means of 
daily mean of 0.7°C) with a very distinct difference of maximum 
water temperatures (2.6°C). The overall variation of water tem-
perature was also lower for forested reaches, suggesting more 
stable thermal conditions. Meta-analyses and empirical studies 
either found decreased water temperatures when local riparian 
forests are present (e.g. Johnson & Almlöf, 2016; Quinn & Wright-
Stow, 2008; Sponseller et al., 2001) or no significant effects (Harding 
et al., 2006; Turunen et al., 2019). Our results are in line with the 
meta-analysis of Bowler et al. (2012) who showed that riparian for-
est buffers have a more pronounced effect on maximum rather than 
mean water temperatures. The much cooler stream water tempera-
tures we observed for forested reaches are surprising given the 
proximity to open reaches and the small size of the forests. Ryan 
et al. (2013) also reported that only 300 m of seminatural riparian 
vegetation resulted in up to 1°C cooling of headwater stream water 
during summer months. Similarly, Stanford et al. (2019) found that 
only 1  km of riparian tree corridor could counteract 1.5°C water 
temperature warming in intermittent Mediterranean streams. In 
mid-order channels in our study area (Turunen et al., 2019), the ri-
parian forest did not affect stream water temperature, probably 
because of wider channels (less shading effect in forested reaches) 
and larger water volume causing higher thermal inertia (Quinn & 
Wright-Stow, 2008; Ryan et al., 2013).

Water temperature variation was lower in forested reaches than 
in open reaches suggesting that forests can stabilise thermal con-
ditions in streams. This effect was particularly driven by the damp-
ening impact of forests on maximum water temperatures, although 
forested reaches had also higher minimum temperatures, suggest-
ing that forested reaches retain heat better during cold periods 
(See Figure S1). Similar findings have been observed by Malcolm 
et  al.  (2008) who reported a more moderated temperature ampli-
tude in forested woodland stream reaches when compared with 
those in open moorland streams.

It is difficult to disentangle how reach scale variation of water 
temperature might affect species composition as temperature 

https://en.ilmatieteenlaitos.fi/press-release/610918514
https://en.ilmatieteenlaitos.fi/press-release/610918514
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variation, riparian land use, and habitat structure are correlated. 
However, the differences in maximum water temperatures were 
high and thus probably have ecological significance.

4.2 | Algal accrual and stream communities

Catchment scale land use and the resulting diffuse pollution is typi-
cally the dominating factor affecting species composition in agri-
cultural streams (Death & Collier, 2010; Roth et al., 1996; Turunen 
et al., 2016; Wahl et al., 2013). However, there is evidence that reach 
scale riparian forests have a distinct impact on species composi-
tion and ecosystem function which improves the ecological status 
of agriculturally disturbed streams (Jones et  al.,  1999; Lammert & 
Allan, 1999; Turunen et al., 2019).

Contrary to our expectation of lower algal accrual in shaded 
forested reaches, we did not find differences between reach types. 
It is unlikely that nutrient limitation restricted the algal growth as 
concentrations of key nutrients of stream water were high. Perhaps 
open reach algal production did not increase because fine and insta-
ble sediments scoured and buried algal growth (Louhi et al., 2017; 
Turunen et al., 2018). In mid-order streams of the region, the ben-
thic habitat structure was not different between reach types, which 
could explain the discrepancy to the mid-order streams where algal 
accrual was higher in open reaches (Turunen et al., 2019). Water tur-
bidity was also high in both open and forested reaches which could 
partly limit the response of algae to shading of riparian forests.

As expected, macrophyte community structure was distinctly 
different between forested and open reaches. Water temperature, 
hydromorphological conditions, riparian forest, and canopy cover 
were significant correlates of macrophyte community structure. 
Shading by riparian forests, riparian land use and their effect on ri-
parian microclimate (Moore et al., 2005) are likely to be the major 
drivers for macrophyte communities irrespective of the diffuse 
pollution level of a stream (Bunn et al., 1998; Turunen et al., 2019). 
However, the community change within a stream (measured by 
Bray–Curtis dissimilarity) was not correlated to the magnitude of 
change in riparian forest cover between the reach pairs. Although 
the effect of riparian forests on community structure was strong, it 
was similar across the streams within reach type which is contrary 
to the response of invertebrates (see discussion below). Similarly to 
mid-order streams (Turunen et al., 2019), open reaches were dom-
inated by graminoids (grasses and sedges) and forested reaches 
showed a tendency to higher abundance of aquatic bryophytes. 
Several graminoid species were indicators for open reaches (Carex 
acuta, Poa nemoralis, Juncus filiformis), which highlights the affinity 
of many graminoids to well-lit environments. In general, bryophytes 
favour shaded stream reaches (Longton, 1988) and thus their higher 
occurrence in forested reaches was expected. Bryophytes are a key 
species in boreal streams in structuring biodiversity and influencing 
the ecosystem functions (Turunen et al., 2018). Thus, higher cover-
age of bryophytes in forested reaches is a clear ecological benefit to 
headwater stream ecosystems.

In line with observations from mid-order channels (Turunen 
et al., 2019), the overall community structure of benthic macroinver-
tebrates did not differ between reach types across streams. However, 
the Bray-Curtis dissimilarity of community structure between for-
ested and open reaches was significantly related to the magnitude 
of reach-pair difference in riparian forest cover. The results suggest 
that riparian forest cover does have an influence on invertebrate 
community structure but natural between-stream variation in in-
vertebrate assemblages causes differing community change trajec-
tories in response to forests and thus across the streams there is 
no clear distinction of communities between reach types (Turunen 
et al., 2019). In this respect, the response of invertebrates is opposite 
to macrophytes where overall community structure is strongly cor-
related with riparian forest cover and a similar community structure 
is found within the reach types across the streams. It is likely that the 
better dispersal abilities of plants compared to benthic invertebrates 
(Alahuhta & Heino, 2013; Alahuhta et al., 2014) homogenises com-
munity structure across the streams within reach types. Macrophyte 
communities are environmentally filtered from a larger species pool 
to similar assemblages in similar habitats, whereas dispersal limita-
tion result in more varying community responses in invertebrates. 
Community structure, while influenced by riparian forest cover, is 
structured within a stream rather than across them.

Certain macroinvertebrate species were associated with differ-
ent reach types. The relative sequence abundance of EPT species 
was higher in forested reaches than in open reaches, although the 
difference only bordered significance. Among the EPT, the pred-
atory stoneflies D. nanseni and D. bicaudata were identified as in-
dicators for forested reaches whereas the chironomid midges O. 
dentifer and P. octomaculatus were indicators for open reaches. 
Across the streams, substratum size and fine sediment cover were 
more important correlates of invertebrate community structure 
than riparian canopy or forest cover, highlighting that excessive 
siltation of stream beds is one of the key stressors for benthic in-
vertebrates (Piggot et  al.,  2015; Stanford et  al.,  2019; Turunen 
et al., 2017). Excessive sedimentation typically reduces EPT abun-
dance and favours chironomids (Townsend et  al.,  2008; Turunen 
et al., 2017) as also observed for this study. It was surprising that 
the total shredder sequence abundance tended to be higher for 
open reaches, contrary to observations from mid-order channels 
(Turunen et al., 2019). Riparian forests provide abundant leaf detri-
tus resources to leaf-shredding invertebrates (Thomas et al., 2016; 
Wallace et  al.,  1997) and this should be especially pronounced in 
headwater streams where instream primary production is limited 
by the narrowness of the stream channel and the shade of trees 
(Cummins et  al.,  1989; Vannote et  al.,  1980). However, it seems 
that at least for shredders different taxonomic groups show dif-
fering responses to the presence of riparian forests. The isopod 
Asellus aquaticus, Tipula sp., craneflies, and caddis flies were the 
dominant shredders in open reaches whereas stonefly shredders 
were more common in forested reaches. Both trends, however, 
were not significant. It is likely that inputs of fine organic matter 
from agricultural fields (Burrel et  al.,  2014) can support abundant 
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shredder populations in open agricultural stream reaches, whereas 
it is the leafy detritus, the shade, and the cooler riparian microcli-
mate that in general benefit stoneflies in forested reaches (Collier 
& Smith, 2000). In addition, the finer sediment structure found in 
open reaches could also contribute to these differences.

The total abundance of fish was higher in forested reaches 
but the difference to open reaches was not statistically signifi-
cant. Overall fish diversity was very low (maximum of three spe-
cies per site), which is typical for boreal headwater streams (Sutela 
et al., 2010). However, salmonid fishes (mostly brown trout, Salmo 
trutta) were completely absent; although there is no apparent nat-
ural reason why trout should not inhabit most of the investigated 
streams. It is thus likely that the water quality is inadequate to 
support trout populations or gravel beds are silted, which greatly 
limits reproduction success (Sear et  al.,  2016). The marginally 
higher total abundance of fishes in forested reaches could be a 
result of fish seeking cooler water and shade during summer heat-
waves, a behaviour that is commonly reported in cold water fish 
that seek optimal bioenergetic conditions (e.g. Petty et al., 2012). 
The electrofishing was conducted during the summer heatwave, 
which could have induced this type of behaviour. Moreover, the 
better hydromorphological conditions and coarser sediment found 
in forested reaches favour benthic rheophilic fish species such as 
bullhead and stone loach.

5  | CONCLUSIONS AND IMPLIC ATIONS 
FOR MANAGEMENT

A paradigm in stream restoration ecology states that reach scale 
habitat enhancements are unlikely to provide sustainable improve-
ments for the ecological status of streams if catchment scale pol-
lution is not addressed first (Bernhardt & Palmer,  2011). Overall, 
riparian forest has several positive effects on the ecological status 
of agricultural headwater streams and could induce partial eco-
logical recovery of such streams even if catchment-scale nutrient 
and sediment pollution is not addressed. In this respect, conserva-
tion of remnant riparian forests or replanting riparian trees can be 
supported as a management tool to improve ecological status of 
agricultural headwater streams, at least in cases when the diffuse 
pollution is moderate. However, it is apparent that catchment land 
use, resulting in diffuse pollution and flow alterations are the major 
causes for ecological degradation in many streams and patchy ripar-
ian forests cannot completely reverse the negative impacts of agri-
culture in these streams (Harding et al., 2006; Stanford et al., 2019). 
While the benefits of local forested areas on the ecological status 
of streams reaches were evident in our study, forests did not have 
an effect on water quality, highlighting that it is mostly catchment 
scale land use that controls water quality variation. Moreover, the 
wide-spread use of tile drainage poses a significant limitation for 
mitigation efforts of nutrient and fine sediment pollution within ri-
parian buffer areas (e.g. Puustinen et al., 2005; Uusitalo et al., 2005).

Finally, forestation of riparian zones of headwater streams in 
agricultural areas could provide an essential thermal refuge for 
stream fishes, especially salmonids (Ryan et  al.,  2013), and sen-
sitive aquatic invertebrates. As climate change scenarios pre-
dict more frequent occurrence of extensive summer heat waves 
(IPCC, 2018), the riparian forests could partly help to mitigate the 
effects of climate change on headwater stream biodiversity and 
ecosystem functions.
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