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Abstract
Electrical resistance tomography (ERT)-based distributed surface sensing sys-
tems, or sensing skins, offer alternative sensing techniques for structural health
monitoring, providing capabilities for distributed sensing of, for example, dam-
age, strain, and temperature. Currently, however, the computational techniques
utilized for sensing skins are limited to planar surfaces. In this paper, to over-
come this limitation, we generalize the ERT-based surface sensing to nonpla-
nar surfaces covering arbitrarily shaped three-dimensional structures; we con-
struct a framework in which we reformulate the image reconstruction problem
of ERT using techniques of Riemannian geometry, and solve the resulting prob-
lem numerically.We test this framework in series of numerical and experimental
studies. The results demonstrate the feasibility of the proposed formulation and
the applicability of ERT-based sensing skins to nonplanar geometries.

1 INTRODUCTION

A component of structural health monitoring (SHM) is
a sensor network consisting of variety of sensors utiliz-
ing a variety of techniques that continuously monitor the
condition of the infrastructure (Worden & Dulieu-Barton,
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2004). Some of these techniques focus on monitoring
global properties of the structure (Z. Li et al., 2017; Oh
et al., 2017; Ozdagli & Koutsoukos, 2019; Perez-Ramirez
et al., 2019; Rafiei & Adeli, 2017), while other techniques
focus on localized damage detection (Hampshire & Adeli,
2000).
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One important aim of SHM is the automatic detection
of cracks in concrete structures. For example, crack detec-
tion from photographs of concrete structures has under-
gone significant developments in recent years (Deng et al.,
2020; S. Li et al., 2019; Nayyeri et al., 2019; Ni et al., 2019;
X. Zhang, Rajan et al., 2019). Some of this research focused
on specific applications, such as monitoring bridges (Y.-F.
Liu, Nie et al., 2020; C. Zhang et al., 2020) or road pave-
ments (Bang et al., 2019; J. Liu, Yang et al., 2020; Ni et al.,
2019; Rodriguez-Lozano et al., 2020; A. Zhang, Wang et al.,
2019).
While the sensing techniques have advanced signifi-

cantly over the past 20 years, utilization of SHM to real-
life infrastructure is still relatively rare. Many factors con-
tribute to the slow adaptation of SHM for infrastructure,
including the high cost of implementing and maintaining,
as well as difficulty in the interpretation of measurements.
For a review on interpretation of nonlinearmeasurements,
see Amezquita-Sanchez and Adeli (2019). The interpreta-
tion of the measurements is especially challenging when
a large number of discrete sensors are used without the
utilization of a model-based interpretation approach. Dis-
tributed sensors and sensing systems may offer an alter-
native that at times can be more cost effective. Especially,
distributed sensors that aremodel based and provide direct
visualization of the data can overcome many of the limita-
tions of discrete sensors. An example of such a system is an
electrical resistance tomography (ERT)-based sensing skin
(Hallaji & Pour-Ghaz, 2014).
ERT-based sensing skin is a distributed surface sens-

ing system that uses a layer of electrically conductive
material—such as colloidal metallic paint (Hallaji & Pour-
Ghaz, 2014; Hallaji et al., 2014) or carbon nanotube film
(Loh et al., 2007, 2009)—which is applied to a surface of
a structure. Also, a set of electrodes is placed on the sur-
face, and based onmultiple electric current/potential exci-
tations and measurements from the electrodes, the spa-
tially distributed electrical conductivity of the sensing layer
is reconstructed. The surface coating material is designed
so that the changes in its electrical conductivity give infor-
mation on physical or chemical conditions of the underly-
ing structure.
One application of the ERT-based sensing skins is dam-

age detection (Hallaji & Pour-Ghaz, 2014; Hallaji et al.,
2014; Loh et al., 2007, 2009). Cracking of the structure sur-
face breaks also the sensor layer, decreasing the conduc-
tivity of the layer material locally. The ERT reconstruction
that represents the electrical conductivity of the layer thus
reveals the crack pattern on the surface. ERT-based sensing
skins have also been developed for detection of pressure
changes (Chossat et al., 2015), strains (Loh et al., 2009; Tall-
man et al., 2014), pH changes (Hou et al., 2007), chloride
ions (Seppänen et al., 2017), and temperature distributions

(Rashetnia et al., 2017). We note that for strain imaging,
a different type of sensing skin based on electrical capac-
itance measurements has also been recently introduced
(Downey et al., 2016; Laflamme et al., 2016).
One of the potential advantages of the sensing skin tech-

nique in SHM is its excellent scalability: ERThas been used
for imaging objects with spatial dimensions ranging from
millimeters (Wu et al., 2018) to kilometers (He et al., 2020).
Thus far, the largest sensing skin has been of size 4 m2

(Rashetnia et al., 2018).
In the above cited papers, ERT-based sensing skins were

applied to planar geometry only. In many applications,
however, the structures of interest have a complex three-
dimensional (3D) geometry, and the surface to be moni-
tored is nonplanar; examples of such target structures are
pipelines, pumps, and pressure vessels.
In addition to SHM, ERT-based sensing systems have

been applied to robotics, where the sensing skin is used
for detecting and localizing touch via pressure sensing
(Alirezaei et al., 2007, 2009; Yousef et al., 2011). In a pub-
lication (Silvera Tawil et al., 2012), an ERT-based touch
sensor made of conductive fabric was wound around an
artificial arm. The winding did not cause wrinkles to the
fabric, but since the fabric was bent, the geometry was
nonplanar. The computational model used in the study,
however, assumed a planar geometry. Although earlier
studies have indicated that at least certain sensing skin
materials are very sensitive to stretching and bending
(Alirezaei et al., 2007, 2009), neglecting these effects by
the use of planar approximation did not cause significant
reconstruction artifacts in the study of Silvera Tawil et al.
(2012). Nevertheless, it is not guaranteed that the planar
approximation works with all materials, especially when
aiming at imaging the electrical conductivity quantita-
tively (Hallaji et al., 2014). Evenmore importantly, inmany
potential SHM applications, the planar approximation of
the sensor is impossible, because of the nontrivial topology
of the surface. This is the case, for example, with all the
geometries considered in the numerical and experimental
studies of this paper (Figure 1).
Another application, very similar to SHM with sens-

ing skin, is the use of ERT with self-sensing materials
(Tallman et al., 2014, 2015). Recently, ERT was used for
damage detection on a nonplanar structure using a sen-
sor made of self-sensing composite tubes (Thomas et al.,
2019). In this case, the 3D structure of the target mate-
rial was modeled as in other 3D ERT applications (Brown,
2003; Loke & Barker, 1996; Vauhkonen, 2004). While in
self-sensing applications, the structures—and thus also
sensors—are inherently 3D, in sensing skin applications,
the thickness of a sensor is several orders of magnitudes
lower than its other dimensions. Clearly, this type of sen-
sor can be modeled as a surface in 3D space, and a full
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F IGURE 1 An illustration of how the shortest path between
two points in the nonplanar 2D model differs from the shortest path
between these points in the 3D model. Essentially the Riemannian
metric determines how the distance is defined in the domain

3Dmodelwould be unnecessarily complicated,making the
computations more complex andmore prone to numerical
errors.
In this paper, we formulate the problem of imaging

a thin, electrically conductive surface material—sensing
skin—applied on an arbitrarily shaped 3D object by mod-
eling it as a 2D surface in the 3D space, or, mathematically
as a two-manifold. Themathematical treatment of this for-
mulation is shown in the Appendix. The main focus of
this paper is the numerical and experimental evaluation of
this approach. We study the approach in three nonplanar
geometries. In these studies, we consider two target appli-
cations: crack detection and imaging of diffusive processes
(such as heat conduction on solid materials).

2 NONPLANAR ERT IMAGING

In ERT imaging, the conductivity of the target is recon-
structed from the voltage and current data obtained
through a set of electrodes placed on the surface of the tar-
get. Typically, the target is treated as a 3D or as a planar 2D
domain. However, in order to reconstruct the conductivity
of an arbitrary shaped sensing skin, we consider the target
as an arbitrary surface in three dimensions.
In this section, we first introduce a model that describes

the ERTmeasurements given the surface conductivity; this
is referred to as the forward model of ERT, and it is approx-

imated numerically using the finite element method
(FEM). The inverse problem of ERT is to reconstruct the
conductivity given the current/potential measurements.
The inverse problem is ill-posed in the sense that the “con-
ventional” solutions to this problem are nonunique and
extremely intolerant to measurement noise and modeling
errors. For this reason, the solutions of the inverse problem
require a priori information on the conductivity, or regular-
ization of the problem (Kaipio & Somersalo, 2006). In this
paper, we formulate the inverse problem as a regularized
least squares problem, where the data fidelity term utilizes
the FEM approximation of the forward model.

2.1 Modeling of measurements

Consider a measurement setup in which the measure-
ment data are obtained by sequentially setting each elec-
trode to a known potential, grounding others, and mea-
suring the electric current caused by potential difference
through all of the grounded electrodes. Given 𝐿 elec-
trodes, this amounts to 𝐿 − 1 current measurements for
each excitation and 𝐿 × (𝐿 − 1)measurements in total. We
note that many of the existing ERT measurement systems
operate the other way round—using current excitations
and potential measurements. However, for such a system,
the formulation of both the forward and inverse problem
are analogous with the formulation written in this sec-
tion. The choice of using potential excitations and current
measurements is made because the commercial measure-
ment device employed for the experiments (Section 4) uses
this procedure.
The measurement setting described above constitutes

the following forward problem: solve the electric cur-
rent 𝐼𝑝

𝑘
(𝜎) through each electrode 𝑘, given the spatially

distributed conductivity 𝜎(𝑥) (where 𝑥 = (𝑥1, 𝑥2, 𝑥3) is
the spatial variable) and a set of electric potentials 𝑈

𝑝

𝑘
corresponding to an excitation 𝑝 = 1, 2, … , 𝐿. We model
this relation using the complete electrode model (CEM)
(Cheng et al., 1989), which consists of a partial differential
equation and a set of boundary conditions,

∇ ⋅ (𝜎(𝑥)∇𝑢𝑝(𝑥)) = 0 𝑥 ∈ 𝑀 (1a)

𝑢𝑝(𝑥) + 𝜁𝑘𝜎⟨∇𝑢𝑝(𝑥), 𝑛̂⟩𝑔 = 𝑈
𝑝

𝑘
𝑥 ∈ 𝜕𝑀𝑒𝑘 (1b)

∫
𝜕𝑀𝑒𝑘

𝜎⟨∇𝑢𝑝(𝑥), 𝑛̂⟩𝑔 𝑑𝑆 = −𝐼
𝑝

𝑘
(1c)

𝜎⟨∇𝑢𝑝(𝑥), 𝑛̂⟩𝑔 = 0 𝑥 ∈ 𝜕𝑀 ⧵

𝐿⋃
𝑘=1

𝜕𝑀𝑒𝑘 (1d)
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where 𝑢𝑝 is the inner electric potential, 𝑀 ⊂ ℝ3 is a sur-
face with boundary 𝜕𝑀, 𝜕𝑀𝑒𝑘 is the part of the 𝜕𝑀 repre-
senting the edge of the 𝑘th electrode, 𝜁𝑘 is contact resis-
tance, and ⟨⋅, ⋅⟩𝑔, which we will shortly define precisely, is
an inner product on the tangent vectors of the surface M,
−𝑛̂ is an inward unit normal of 𝜕𝑀 (i.e., a vector tangent to
𝑀, pointing inward), and 𝐿 is the number of electrodes. In
addition, the currents 𝐼𝑝

𝑘
are required to satisfy Kirchhoff’s

law
∑𝐿

𝑘=1
𝐼
𝑝

𝑘
= 0. We write 𝑑𝑆 for the infinitesimal length

elements of the 1D boundary 𝜕𝑀𝑒𝑘 .
By calling𝑀 a surface, we mean that we can parameter-

ize 𝑥 = (𝜙1(𝑦1, 𝑦2), 𝜙2(𝑦1, 𝑦2), 𝜙3(𝑦1, 𝑦2)) locally for some
(𝑦1, 𝑦2) ∈ 𝑈 ⊂ ℝ2 and some 𝑥 ∈ 𝑉 ⊂ 𝑀. This means
that the functions and differential operators in (1) are
2D, and can be formally defined through Riemannian
geometry.
Formally, we equipmanifold𝑀 with a Riemannianmet-

ric 𝑔. The metric 𝑔 defines an inner product on the tan-
gent planes of𝑀. Specifically, for tangent vectors 𝑣, 𝑤, we
take ⟨𝑣, 𝑤⟩𝑔 ∶= 𝑔(𝑣, 𝑤), which can be locally computed by
𝑔(𝑣, 𝑤) =

∑2

𝑖=1

∑2

𝑗=1
𝑔𝑖𝑗𝑣

𝑖𝑤𝑗 . In practice 𝑀 is an embed-
ded manifold and we define 𝑔 as the pullback of the stan-
dard dot product inℝ3 to𝑀, so that 𝑔 induces the geodesic
distance on 𝑀, as illustrated in Figure 1. Furthermore, 𝑔
defines the divergence and the gradient operators on𝑀;

∇ ⋅ 𝑓 =
1√|𝑔|

2∑
𝑖=1

𝜕𝑖

(√|𝑔|𝑓𝑖
)
and ∇𝑓 =

2∑
𝑖=1

2∑
𝑗=1

𝑔𝑖𝑗𝜕𝑗𝑓𝜕𝑖

(2)

where 𝑓 ∶ 𝑀 → ℝ2 (e.g., 𝑓 = 𝜎∇𝑢𝑝), 𝑓 ∶ 𝑀 → ℝ (e.g.,
𝑓 = 𝑢𝑝). The maps 𝜕𝑖 generalize directional derivatives to
𝑀; technically 𝜕𝑖 ∶ 𝐹(𝑀) → 𝐹(𝑀), where 𝐹(𝑀) is a collec-
tion of differentiable functions on 𝑀 and 𝑖 = 1, 2, form a
local basis for the tangent plane. On this basis, 𝑔𝑖𝑗 are the
components of matrix that represent 𝑔, 𝑔𝑖𝑗 are the compo-
nents of the inverse of this matrix, and |𝑔| is the determi-
nant of this matrix. Furthermore, 𝑑𝑆 in (1) is the Rieman-
nian volumemeasure of a curve (length inℝ3) in (𝜕𝑀, 𝑔𝜔),
where 𝑔𝜔 is the pullback of 𝑔 to 𝜕𝑀.
Finally, we note that since the conductivity 𝜎 is dis-

tributed on the surface 𝑀, which is locally 2D, it repre-
sents a 2D (surface) conductivity instead of volumetric con-
ductivity considered in 3D ERT. As in the planar sens-
ing skin cases (Hallaji et al., 2014), this model is a nat-
ural choice, because the thickness of the imaged paint
layer is several orders of magnitude smaller than its other
dimensions.

2.2 Variational form and numerical
approximation of the forward model

We approximate (1) with a Galerkin FEM, as described in
detail in the Appendix. Indeed, by introducing test func-
tion (𝑣, 𝑉), we can write (1) in a variational form

∫
𝑀

𝜎⟨∇𝑣,∇𝑢𝑝⟩𝑔𝑑𝑆 +

𝐿∑
𝑘

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

(𝑢𝑝𝑣 − 𝑢𝑝𝑉𝑘)𝑑𝑆

−

𝐿∑
𝑘

∫
𝜕𝑀𝑒𝑘

𝜎⟨∇𝑢𝑝(𝑥), 𝑛̂⟩𝑔𝑉𝑘𝑑𝑆

=

𝐿∑
𝑘

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑈𝑘(𝑣 − 𝑉𝑘)𝑑𝑆 (3)

We write 𝑑𝑆 for the infinitesimal area elements of the 2D
surface𝑀. Notationwise, the variational form (3) is almost
the same as the one written for the 3D ERT (Voss, 2020).
However, the functions in (3) are defined on only the sur-
face𝑀 ⊂ ℝ3, the differential operators are defined accord-
ing to (2), and inner product is defined with respect to the
Riemannian metric 𝑔.
Furthermore, by approximating𝑢𝑝 =

∑𝑁

𝑗
𝑢
𝑝

𝑗
𝑣𝑗 and 𝐼

𝑝

𝑘
=

(
∑𝐿−1

𝑗
𝐼𝑗𝑛𝑗)𝑘, where 𝑣𝑗 is piecewise linear and 𝑛𝑗 ∈ 𝑅𝐿,

such that the first component of 𝑛𝑗 is always 1 and the 𝑗 + 1

component is−1 and other indices are zero, (3) admits the
matrix form [

𝐷1 0

𝐷2 𝐷3

] [
𝑢̄

𝐼

]
=

[
𝑈̃1

𝑈̃2

]
(4)

where the matrices

(𝐷1)𝑖,𝑗 = ∫
𝑀

𝜎⟨∇𝑣𝑖, ∇𝑣𝑗⟩𝑔𝑑𝑆 +

𝐿∑
𝑘

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑣𝑗𝑣𝑖𝑑𝑆,

(𝐷2)𝑖,𝑗 =
1

𝜁𝑖+1 ∫𝜕𝑀𝑒𝑖+1

𝑣𝑗𝑑𝑆 −
1

𝜁1 ∫𝜕𝑀𝑒1

𝑣𝑗𝑑𝑆,

(𝐷3)𝑖,𝑗 =

{
2, 𝑖 = 𝑗

1, otherwise

and the vectors (𝑢̄)𝑖 = 𝑢
𝑝

𝑖
, (𝑈̃1)𝑖 =

∑𝐿

𝑘

𝑈𝑘

𝜁𝑘
∫
𝜕𝑀𝑒𝑘

𝑣𝑖𝑑𝑆, (𝐼)𝑖 =

𝐼𝑖 , and (𝑈̃2)𝑖 = −
∑𝐿

𝑘

1

𝜁𝑘
∫
𝜕𝑀𝑒𝑘

𝑈𝑘(𝑛𝑖)𝑘𝑑𝑆.
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2.3 Inverse imaging problem

We can now concatenate the simulated measurements
to form a vector 𝐼(𝜎) = (𝐼1

1
(𝜎), … , 𝐼𝐿

𝐿−1
(𝜎))𝑇 . Further, we

denote the vector containing the corresponding measured
data by 𝐼𝑀 .
The typical approach to solve the inverse problem of

ERT is to solve a conductivity that minimizes the sum of
a so-called data term, 1

2
(𝐼(𝜎) − 𝐼𝑀)2, and a regularization

functional 𝐹(𝜎). The norm of the data term is 𝐿2 norm, due
to the assumption of Gausssian distributed noise, while
the regularization may contain nonsmooth terms, such as
𝐿1 norms.
In sensing skin applications, however, we may improve

the reconstruction quality by utilizing measurements 𝐼𝑀
ref
,

measured from an initial stage where the sensing skin is
intact (Hallaji et al., 2014), to compute a homogeneous esti-
mate 𝜎ref for the initial (background) conductivity of the
sensing skin;

𝜎ref ∶= arg min
𝜎∈ℝ+

1

2
‖𝐼(𝜎) − 𝐼𝑀ref‖2 (5)

Based on this estimate, we compute a discrepancy term
𝜖 ∶= 𝐼𝑀ref − 𝐼(𝜎ref), which gives an approximation of the
modeling error caused by neglecting the inhomogeneity of
the background conductivity of the sensing skin. To com-
pensate for this modeling error in the reconstruction of the
conductivity 𝜎 in the subsequent stages, we add this term
into the model 𝐼(𝜎) (Hallaji et al., 2014), and reconstruct
the conductivity 𝜎 as a solution of aminimization problem

𝜎̂ ∶= argmin
𝜎∈𝑉

1

2
‖(𝐼(𝜎) − 𝐼𝑀 + 𝜖)‖2 + 𝐹(𝜎) (6)

where 𝑉 = {𝑓(𝑥) ∈ 𝐻𝑁(𝑀) ∣ 𝜎min ≤ 𝑓(𝑥) ≤ 𝜎max, 𝑥 ∈ 𝑀},
𝐻𝑁(𝑀) is a finite dimensional function space on𝑀, and 
is amatrix forwhich𝑇 is so-called data precisionmatrix,
that is, the inverse of the noise covariance matrix. Fur-
thermore, the lower constraint 𝜎min > 0 comes from the
natural, physics-based limit for the positivity of the con-
ductivity and the upper constraint 𝜎max restricts the con-
ductivity from above whenever the maximum conductiv-
ity is known. In cases where the maximum conductivity is
unknown, we set 𝜎max to an arbitrary large number.
The regularization function 𝐹(𝜎) in (6) is chosen

depending on the information that is available about the
conductivity prior to the measurements. In the numeri-
cal and experimental cases of the following sections, we
consider two choices of regularization functionals (7) and
(8). We note, however, that the nonplanar ERT scheme
proposed in this paper is not restricted to any particular
choices of regularization. Although the above modeling
error correction method based on the discrepancy term 𝜖

F IGURE 2 Geometries of the sensing skins used in the
numerical simulation studies (left and middle columns) and in
experimental study (right column). The surface triangulations
correspond to the finite element meshes used in the respective
image reconstructions. The square-shaped nontriangulated patches
of the surface represent the electrodes for the electrical
measurements

is highly approximative, it has been shown to be useful
in several cases, especially when the background conduc-
tivity is inhomogeneous (Hallaji et al., 2014), and is thus
used also in this paper. A more advanced formulation of
the inverse problem for detecting complex crack patterns
in the presence of inhomogeneous background was pro-
posed in Smyl et al. (2018). If needed, this computational
method would also be directly applicable to the nonplanar
ERT model described above.

3 NUMERICAL SIMULATION
STUDIES

We evaluate the proposed ERT imaging scheme with
numerical simulation studies using two nonplanar geome-
tries; one resembles a pipe segment (first column in
Figure 2) and one resembles a pressure vessel (second col-
umn in Figure 2). These geometries represent a thin con-
ductive layer, a sensing skin, on a solid object or the surface
of this object itself. This object, however, is not necessar-
ily hollow.
Figure 2 also illustrates the locations of the electrodes.

We note that majority of them are internal electrodes, in
the sense that they are surrounded by the sensing skin.
These electrodes are modeled by creating holes on the sur-
face, and the boundaries of these holes are treated as elec-
trodes. Indeed, themathematical formulation does not dis-
tinguish between the internal or the “typical” electrodes
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(or “internal” and “external” border for thatmatter) as they
are both simply located on the boundary of the domain.
The use of internal electrodes improves the quality of ERT
reconstructions from the case where all electrodes are in
the perimeter of the sensing skin even in planar geometries
(Rashetnia et al., 2018)—in nonplanar imaging, the effect
is presumably even stronger.
Generally, the sensitivity of ERT measurements

decreases as a function of distance from the (nearest)
electrodes. For this reason, we attempted to place the elec-
trodes evenly, so that the sensitivity would be somewhat
uniform. In this paper, we did not explore the problem of
optimal experimental design in ERT systematically, but
we note that the optimal placement sensors and other
related devices (Gutierrez Soto & Adeli, 2013) are topics
of great importance in engineering. In ERT, most of this
research has focused on optimizing the current injections.
For current pattern optimization in deterministic and
Bayesian frameworks, respectively, we refer to Isaacson
(1986) and Kaipio et al. (2004). The optimal electrode
positioning in ERT has been studied in Hyvonen et al.
(2014). In the context of sensing skins, the effect of internal
electrodes to the sensitivity of measurements has been
addressed in Rashetnia (2017).
In this section, we consider two target applications:

crack detection and imaging of diffusive processes (such
as distributed temperature sensing; Rashetnia et al., 2017).
Both geometries are used to study crack detection (Cases

1 and 2). In each geometry, we consider five stages of crack-
ing. In the first stage, stage 0, the sensing skin is intact
and the conductivity is homogeneous. Measurements sim-
ulated in this stage are used as the reference measure-
ments 𝐼𝑀

ref
and utilized for computing the homogeneous

background estimate (5). In the subsequent stages, to sim-
ulate evolving crack pattern, we lower the conductivity
at the locations that correspond to the cracks. The dif-
fusive process imaging is studied in Case 3, where the
geometry is same as in Case 1. Here, the conductivity dis-
tribution is spatially smooth, and it evolves in the dif-
fusive manner, mimicking an application where the sur-
face temperature distribution is monitored using a sensing
skin.

3.1 Specification of geometries and
simulation of data

The first column in Figure 2 shows the pipe segment geom-
etry. The radius of the pipe segment is 0.100 m and it
consists of three 0.100-m-long straight cylindrical sections
connected by two curved sections that both turn 90 degrees
to form an “S”-shaped geometry. The three straight sec-
tions each have eight symmetrically placed electrodes on

themand the two curved sections both have four electrodes
on their convex side. These electrodes are square shaped
with 0.010 m side length.
The second column in Figure 2 shows the geometry

of a pressure vessel. The diameter of the pressure vessel
is 1 m and the length of the cylindrical middle section is
1.500 m. The radius of curvature for the spherical top
section is 2.125 m. Furthermore, the chamber has three
cylindrical extensions. One of the extensions is attached to
the top section of the chamber. The radius of this extension
is 0.300 m. The other two extensions are attached on the
cylindrical section. The radius of the larger horizontal
extension is 0.250 m and the radius of the smaller diagonal
extension is 0.200 m. On each extension, eight electrodes
are placed radially. Furthermore, the cylindrical sec-
tion of the chamber has four layers of radially placed
electrodes. The topmost and bottommost layers have
14 electrodes each, and the two layers in between have
seven and six electrodes. The total number of electrodes
is 65. The inner electrodes on the main chamber are
square shaped with side length of 0.050 m. The rest of the
electrodes are rectangular with side lengths of 0.050m and
0.025 m.
The FE mesh that we use in the data simulation for the

pipe segment geometry has 92,578 nodes and 184,057 ele-
ments, and the FEmesh for the pressure vessel has 491,679
nodes and 980,160 elements. In each case, we initially set
the surface conductivity to𝜎(𝑥) = 1 S and use it to generate
the reference measurements (stage 0). Subsequently, we
generate measurements from four stages of varying con-
ductivities, each stage being a continuation of the previ-
ous one (stages 1–4). In Cases 1 and 2, stages 1–4 consist
of spatially narrow areas of low conductivity, 𝜎(𝑥crack) =
10−7 S (top rows in Figures 3 and 4). In Case 3, we set
the minimum conductivity to 0.89 S in a single point on
the curved surface, and it gradually increases to the back-
ground value of 1 S as function of space. To mimic the dif-
fusive process, the size of the area with lowered conductiv-
ity is increased between consecutive stages from 1 to 4 (top
row in Figure 5). For every simulatedmeasurement, we set
all contact resistances to 𝜁𝑘 = 10−5 Ω, and we add Gaus-
sian noise with a standard deviation of 10−4|𝐼𝑝

𝑘
| to each

simulated current.

3.2 Image reconstruction

We reconstruct the conductivity by solving the minimiza-
tion problem of (6). In the crack detection problems in
Cases 1 and 2, we utilize total variation (TV) regularization
(Rudin et al., 1992)

𝐹(𝜎) = 𝑇𝑉(𝜎) (7)
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F IGURE 3 Case 1: True conductivity distribution of the sensing sensing skin (top row) and the ERT-based reconstructions of the
conductivity (bottom row) corresponding to four stages of cracking. Note that the viewing angle varies between two views (View 1 and View 2)
in order to show the relevant conductivity changes

F IGURE 4 Case 2: True conductivity distribution of the sensing skin (top row) and the ERT-based reconstructions of the conductivity
(bottom row) corresponding to four stages of cracking. Note that the viewing angle varies between two views (View 1 and View 2) in order to
show the relevant conductivity changes



JAUHIAINEN et al. 1495

F IGURE 5 Case 3: True conductivity distribution of the sensing skin (top row) and the ERT-based reconstructions of the conductivity
(bottom row) corresponding to four stages of cracking

TV regularization penalizes the magnitude of the spatial
gradient of 𝜎 in 𝐿1 norm and is often suitable for cases
where the conductivity features sharp edges on a relatively
homogeneous background. TV regularization is shown to
be feasible in ERT-based crack detection (Hallaji et al.,
2014).
In Case 3, we utilize Gaussian smoothness regulariza-

tion

𝐹(𝜎) = ‖𝑅Γ(𝜎 − 𝜎ref)‖2 (8)

where 𝑅Γ is given by 𝑅Γ = Γ−1∕2, Γ𝑖,𝑗 = 𝑎𝑒
−

‖𝑥𝑖−𝑥𝑗‖2
2𝑏2 (Lippo-

nen et al., 2013), 𝑥𝑖, 𝑥𝑗 ∈ ℝ3 are the locations of the nodes 𝑖
and 𝑗 in the FEmesh, 𝑎 = 100, and 𝑏 = 0.075. This is often
a feasible choice of regularization functional in cases of
diffusive phenomena, because it promotes spatial smooth-
ness of the conductivity distribution.
In all the studies, the matrix  is diagonal with []𝑖,𝑖 =

1000 and the minimum conductivity is 𝜎min = 10−4 S. In
addition, we compute a homogeneous estimate 𝜎ref using
the measurements 𝐼𝑀ref at the reference stage (stage 0). We
use this estimate to compute the approximation error term
𝜖 = 𝐼𝑀ref − 𝐼(𝜎ref) as described in Section 2.3. In Cases 1 and
2, we also use the homogeneous estimate as the maximum
constraint 𝜎max = 𝜎ref, which encompasses the idea that
the cracks can never increase the conductivity of the con-

ductive layer (Hallaji et al., 2014). In Case 3, we set 𝜎max =

∞, that is, the conductivity distribution is not constrained
from above. The meshes used in the image reconstruction
are sparser than those used when simulating the data. For
example, the mesh for the pipe segment has 10,358 nodes
and 20,389 elements while themesh for the pressure vessel
mesh has 20,565 nodes and 40,532 elements.
We utilize the recently published iterative Relaxed Inex-

act Proximal Gauss-Newton (RIPGN) algorithm (Jauhi-
ainen et al., 2020) to solve the minimization problem (6).
RIPGN is aGauss–Newton variant; it linearizes the nonlin-
ear operator 𝐼(𝜎) of (6) at each iterate, finds an approximate
solution to the associated proximal problem using a so-
called block-adapted version of primal dual proximal split-
ting (PDPS), and interpolates between this solution and
the one computed at the previous iteration step. The PDPS
algorithm was originally introduced by Chambolle and
Pock (2011) and the block-adapted version was later intro-
duced by Valkonen (2019). The RIPGN algorithm supports
𝐿𝑝, 𝑝 ≥ 1, functionals for the nonlinear data term and any
proper, convex, and lower semicontinuous (i.e., even indi-
cators) regularization functionals. A version of the RIPGN
algorithm, specialized for this study, is described in detail
in Appendix A.2.
After computing each iterate, we check the convergence

of the algorithm by comparing the value of the objective
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function in (6) at the current iterate to the value objective
function at the previous iterates. Furthermore, we limit the
maximumamount of computed iterations to 30. In theERT
problem (6), this iteration limit seems to be plenty to reach
a sufficient convergence. The theoretical convergence of
this algorithm is shown in Jauhiainen et al. (2020).
The reason for applying the RIPGNmethod to optimiza-

tion in this paper is that it was shown to be very effec-
tive both in 3D and planar 2D ERT (Jauhiainen et al.,
2020).Wenote, however, that standardGauss–Newton and
Newton methods based on smoothing the minimum and
maximum constraints and the TV functional (González
et al., 2017; Hallaji et al., 2014) could be utilized as well.
All the code used in the study was written in Julia (1.3.1).
Computations were done on AMD Ryzen 9 3950X CPU
with 64 GB of RAM (DDR4, 3800 MHz, CL15). Parts of the
RIPGN algorithm utilize CUDA code. CUDA code was run
on Nvidia RTX 2080 Ti GPU.

3.3 Results and discussion

3.3.1 Case 1: Crack detection in pipeline

The results of Case 1 are illustrated in Figure 3. The top row
shows the (true) simulated conductivity, and the recon-
structed conductivity is depicted in the bottom row. Each
column corresponds to a different cracking stage. Each
reconstruction took 5 to 11 min to compute. These com-
putation times, obviously, depend on the chosen compu-
tational approach and available computational resources.
While our focus is not on optimization of the compu-
tational efficiency, we note that in previous applications
of ERT, the computation times have been reduced by 2–
3 orders of magnitude, by specifically developed model
reduction techniques in the image reconstruction (Lippo-
nen et al., 2013).
In the first stage (Figure 3, column 1), a crack forms at

themiddle section of the pipe segment. The reconstruction
captures the shape of this crack quite accurately and only
a small artifact is visible near the crack. The conductivity
value at the crack is 10−4 S, which equals to 𝜎min.
In the second stage (Figure 3, column 2), two new cracks

appear in the pipe segment, on the side opposite to the
crack in stage 1. The reconstruction shows these cracks
clearly: The locations and lengths of the cracks are some-
what correct. The orientation of the upper crack is slightly
biased, but this bias is insignificant from a practical point
of view.
In the third stage (Figure 3, column 3), the first crack

(stage 1) is lengthened upward and further extended to two
branches, forming a “Y”-shaped crack. The reconstructed

surface conductivity traces the “Y” shape of the crack well.
The junction of the branches is slightly dislocated, but the
size of the crack is again well recovered. In the final stage
(Figure 3, column 4), the two small cracks of stage 2 are
interconnected, forming a single crack extending from top
to the midsection of the pipe segment. Again, the crack is
well tracked by the ERT reconstruction, yet a couple of very
small defects appear next to it. Note that the cracks in the
reconstructed conductivity are thicker than the simulated
ones since the inversion mesh is sparser.
In every stage of cracking, the reconstructions are accu-

rate enough for most practical purposes. Deficiencies that
are present in the reconstruction are very similar to what
is observed in planar sensing skin reconstructions (Hallaji
et al., 2014; Jauhiainen et al., 2020; Seppänen et al., 2017).
Based on this test case, the nonplanarity does not cause
any extra deficiencies into the ERT-based surface sensing
of cracks.

3.3.2 Case 2: Crack detection in pressure
vessel

Figure 4 shows the simulated and reconstructed conduc-
tivity in each cracking stage in Case 2 where the geometry
corresponds to a part of a pressure vessel. Each reconstruc-
tion took 15 to 30 min to compute. This increase in compu-
tational time is expected, since the inversion mesh of the
pressure vessel hasmore nodes and elements than the pipe
segment mesh.
In the first stage (Figure 4, column 1), a very small crack

appears at the joint where the diagonal extension connects
onto the chamber. In the second stage (Figure 4, column
2), two new cracks form on the side opposite to the crack
in stage 1; one of them forms at the joint of the vertical
extension and another one forms at the joint of the hor-
izontal extension. In the third stage (Figure 4, column 3),
these two cracks are interconnected, forming a single crack
that extends from the horizontal extension to the verti-
cal extension. In the final stage (Figure 4, column 4), the
crack formed at the first stage lengthens and splits into two
branches forming a “Y”-shaped crack.
The reconstructions in Case 2 trace the evolution of the

crack pattern well. In all stages of cracking, the reconstruc-
tion quality is similar to that in Case 1, although a few
more deficiencies are present. This small reduction in qual-
ity compared to Case 1 is, however, expected. The surface
area of the pressure vessel is 13 times larger than the sur-
face area of the pipe segment in Case 1 and the geometry
is far more complex. Overall, the results of Case 2 further
confirm the feasibility of the nonplanar 2D ERT to crack
detection applications.
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3.3.3 Case 3: Imaging of diffusive
phenomena on surface

Figure 5 shows the true conductivity and the
reconstruction on each stage in Case 3. In this case,
each reconstruction took from 13 to 28 min to compute,
which is significantly slower than in Case 1. This is
because the smoothness prior has a dense matrix 𝑅Γ,
instead of the (very sparse) gradient matrix of 𝑇𝑉. This
increases the iteration time in the PDPS algorithm that is
used by RIPGN.
In the first stage (Figure 5, column 1), a spatially smooth

region of low conductivity appears at the middle section
of the pipe segment. In the subsequent stages (Figure 5,
columns 2–4), the surface area of this region increases and
the value within the region decreases further. Each recon-
struction reflects the corresponding stage clearly and the
deficiencies in these reconstructions are apparent only at
the last two stages. These deficiencies, however, look sim-
ilar to what is observed in 3D and planar 2D ERT studies
(Lipponen et al., 2013), and seem to be related to the type of
regularization that is used. The simulation clearly demon-
strates that ERT imaging of diffusive phenomena is achiev-
able also in nonplanar geometry.

4 EXPERIMENTAL STUDY

4.1 Experimental setup and image
reconstruction

For the experimental validation of the nonplanar sensing
skin, we used a setup where the outer surface of a hol-
low plastic cube was covered with conductive paint. We
refer to the experimental test case as Case 4. The paint
was a 1:10 mixture of graphite powder (manufactured by
Cretacolor, www.cretacolor.com) and black coating paint
(RUBBERcomp, manufactured by Maston, www.maston.
fi). Side length of the cube was 0.200 m and bottom of the
cube was open (last column in Figure 2). In total, the sens-
ing skin had 32 square-shaped inner electrodes (side length
0.012m). Eight of these electrodeswere bent along the edge
of the cube so that they were attached on two faces of the
cube. The vertical sides had three of these bent electrodes
while the top side had four. This particular electrode con-
figuration was chosen in order to utilize all 32 channels of
the measurement device.
Here, it is important to note that although the cube-

shaped object used in the experiment consists of planar
faces, the imaged surface contains also the edges and cor-
ners of the cube. In that sense, part of the sensing skin is,
in fact, highly nonplanar.

We measured the reference data in the initial stage in
which the sensing skin was intact. Subsequently, we sim-
ulated the cracking of the underlying structure by cutting
the surface of the paint layer with a knife. We generated
four different stages of cracking and carried out the ERT
measurements corresponding to each of these stages. The
same approach to “physically simulating” different stages
of cracking has been used previously in cases on planar
geometries, for example, in Hallaji et al. (2014) and Seppä-
nen et al. (2017). Based on these studies, the quality of ERT
reconstructions is similar between cases where a sensing
skin is damaged with knife and where real crack patterns
of the same complexity are monitored on the surface of,
for example, a concrete beam—this, of course, is the case
only when the cracks are large enough to rupture the sens-
ing skin.
Asmentioned in Section 2.1, 32 electrodes amount to 991

currentmeasurements.Wemeasured the datawith anERT
device manufactured by Rocsole Ltd. (www.rocsole.com).
This ERT device samples the currents with 1 MHz fre-
quency, and computes the current amplitudes from the
samples using discrete Fourier transform. The device out-
puts the amplitudes for the excitation potentials and for the
measured electric currents. The device selects the ampli-
tude for the excitation potentials automatically. Further-
more, we used the 39 kHz excitation frequency, and to
reduce the measurement noise, the current amplitudes
that we used in the reconstructions were 1-min time aver-
ages.However, the shortest theoreticalmeasurement inter-
val with this excitation frequency is around 40 ms.
Similarly to Cases 1 and 2, we use TV regularization

for the crack reconstructions (see Section 3.2). Further-
more, the parameters are the same in the numerical cases.
Figure 2c shows the FE mesh used in the inversion. This
mesh has 12,278 nodes and 23,965 elements. Note that at
every stage, the conductivity of the whole sensing skin,
meaning all five sides, is reconstructed, since the mathe-
maticalmodel does not in anyway distinguish between the
sides of the cube; even themeasurementsmade on the side
that is never damaged contribute to the reconstruction.

4.2 Results and discussion of the
experimental study

The top row inFigure 6 shows a photo of the sensing skin at
each stage and the two bottom rows show the correspond-
ing reconstructions (Case 4) from two different viewing
angles. We highlight the crack made at each stage and the
cracksmade at the previous stages are darkened; the cracks
are very thin (less than 1 mm in thickness) and would
otherwise be indistinguishable from the background. Each
reconstruction took 8 to 13 min to compute.

https://www.cretacolor.com
https://www.maston.fi
https://www.maston.fi
https://www.rocsole.com


1498 JAUHIAINEN et al.

F IGURE 6 Case 4: Photographs of the sensing skin applied on the cubic object in the experimental study (top row) and the respective
ERT reconstructions (middle and bottom rows). The photos and reconstructions correspond to four stages of cracking; in the photographs, the
cracks at each stage are highlighted and the cracks of the previous stages are darkened. Note that the reconstruction images on the second
row also show the side of the cube that has no cracks (View 3). The white circle marks the same corner of the cube in the photographs and in
the reconstructions

In the first stage (Figure 6, column 1), we created a diag-
onal crack on one of the vertical sides of the cube. Recon-
struction shows this crack accurately, although a small gap
is visible in the reconstruction; the actual crack is fully
connected. In the second stage (Figure 6, column 2), we
extended the first crack so that it reaches the top side of
the cube. The reconstruction shows the location and size
of this crack quite accurately, although the curved exten-
sion of the crack is wider than the initial crack at stage 1.
In the third stage (Figure 6, column 3), we created a

new crack on the adjacent side of the cube while keeping
the cracks created at stages 1 and 2 intact. This new crack
is clearly visible in the reconstruction. In the final stage
(Figure 6, column 4), we extended the crack made on the
third stage so that it reaches through the top side to the
adjacent side. This extended crack is correctly located by
ERT, although the reconstruction shows a blocky area in
the corner of the cube. This reconstruction artifact is an
expected one, since the electrodes are quite far from the

cube corners, and therefore the ERT measurements are
less sensitive to conductivity variations in these areas. Note
also that the cracks in the reconstructed conductivities are
thicker than the actual cracks made on the physical sens-
ing skin. This is, again, partly caused by the sparsity of
the finite element (FE) mesh, and partly a result of limited
sensitivity of ERT to thickness of the cracks (Hallaji et al.,
2014).
Similarly to the simulation studies, the reconstructed

conductivities show the crack patterns relatively well. The
overall reconstruction quality is, however, slightlyworse in
this case. Thismay be due to themodeling errors caused by
the inhomogeneity of the paint layer (Smyl et al., 2018) or
by the inaccuracy of the electrode locations in the model
(Kolehmainen et al., 1997). Furthermore, the detection of
the thicknesses of the cracks can possibly be improved
upon by modifying the electrode arrangement, although
the achieved precision is already sufficient for most practi-
cal applications.
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5 CONCLUSIONS

One goal of the SHM research is to develop cost-effective
sensor technologies. ERT-based sensing skins have been
proposed as cost-effective distributed surface sensing sys-
tems for SHM. In the previous studies, the sensing skin
sensors have been planar. One of the limitations of the
sensing skin technique is that it only provides information
on the phenomena on the surface of the structure. Second,
although the temporal resolution of ERT is usually excel-
lent, its spatial resolution is rather limited. Furthermore, in
the previous studies, the sensing skins have been restricted
to planar geometries only.
In this paper, we formulated the computational model

for ERT in the case of nonplanar surface sensing. We gave
a brief outline of the numerical scheme to reconstruct the
nonplanar surface conductivity of the sensing skin. In this
scheme, we modeled the relationship between the mea-
sured electric currents and the known electric potentials
on a surface of an arbitrary object in 3D, and we used this
model to formulate aminimization problem that yields the
conductivity as the solution. Furthermore, we studied the
feasibility of the scheme with three sets of numerical sim-
ulations and one set of experimental data.
In the synthetic cases, we acquired highly accurate

reconstructions, and we observed only minor artifacts in
the reconstructed conductivity. These artifacts were simi-
lar to what has been observed in previous planar sensing
skins studies. With the measurement data, the reconstruc-
tion quality was slightly worse than in synthetic cases but
sufficient for most practical applications. Furthermore, we
noted that the reconstructions from themeasurement data
could be improved, for example, by using a more sophisti-
cated model for inhomogeneous background conductivity
or by using a different electrode arrangement.
Overall, the reformulation of ERT imaging problem by

using a nonplanar surface model proved to be viable; we
did not observe any loss of reconstruction quality that
could be related to nonplanarity of the sensing skins. We
conclude that with the proposed approach, ERT-based
sensing skin is viable in monitoring complicated nonpla-
nar surfaces. Furthermore, although our examples were
relatively small sized, since ERT is a fully scalable system,
in the future, nonplanar sensing skins should allow mon-
itoring of complex industrial structures such as those in
aerospace, civil, and mechanical engineering.
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APPENDIX: IMPLEMENTATION DETAILS
Similarly to Euclidean spaces (Voss, 2020), we derive a FE
approximation for (1). Although (1) looks identical to the
Euclidean counterpart, the definitions of the operators in
(1) aremore involved, containing calculations based on the
Riemannian metric 𝑔.
The FE approximation relies on theweak formulation of

(1). The well-posedness of this weak formulation has been
previously shown for (𝑢𝑝,𝑈𝑝) (i.e., the potential measure-
ment setup) (Somersalo et al., 1992) in Euclidean spaces,
however for (𝑢𝑝, 𝐼𝑝) (i.e., the current measurement setup),
no previous work exists; we will show the well-posedness
of the weak formulation for (𝑢𝑝, 𝐼𝑝) in the manifold set-
ting, which also extends to the Euclidean setting.
Initially, we take 𝑔 as an arbitrary metric on 𝑀. How-

ever, to see how to compute the FE approximation through
integration inℝ2, we need to fix 𝑔. In this case, to properly
account for the shape of 𝑀 in ℝ3, we take 𝑔 as the met-
ric induced on 𝑀 by the natural metric on ℝ3 (Lee, 2003,
2018). Namely, for tangents 𝑤1,𝑤2 on the tangent plane
𝑇𝑥𝑀 at a point 𝑥 (illustrated in Figure A1), it is defined
by 𝑔(𝑤1, 𝑤2) ∶= 𝑔(𝑑𝜙(𝑤1), 𝑑𝜙(𝑤2)), where 𝜙 ∶ 𝑀 → ℝ3 is
the inclusion map 𝜙(𝑥) ∶= 𝑥 and 𝑔 = (𝑑𝑥1)2 + (𝑑𝑥2)2 +

(𝑑𝑥3)2 is the Euclidean metric in ℝ3.
The solutions (𝑢𝑝, 𝐼𝑝) of (1) comprise a twice continu-

ously differentiable function 𝑢𝑝 ∈ 𝐶2 ∶= 𝐶2(𝑀) and a vec-
tor 𝐼𝑝 ∈ ℝ𝐿 with components 𝐼𝑝

𝑘
, 𝑘 = 1,… , 𝐿. We denote

(𝑢𝑝, 𝐼𝑝) ∈ 𝐶2 ∶= 𝐶2(𝑀) ⊕ ℝ𝐿. We will show that the FE
approximation of (1), however, satisfies the weak formula-
tion,

𝐵((𝑢𝑝, 𝐼𝑝), (𝑣, 𝑉)) = 𝐿((𝑣, 𝑉)), ∀(𝑣, 𝑉) ∈ 𝐻 (A1)

https://doi.org/10.1111/mice.12689
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where 𝐵 is bilinear and 𝐿 is linear. The space

𝐻 ∶= 𝐻1(𝑀) ⊕ ℝ𝐿

where 𝐻1(𝑀) is a Hilbert space of (once) weakly differen-
tiable functions. We define it as the completion of 𝐶∞(𝑀)

with respect to the norm ‖ ⋅ ‖𝐻1(𝑀) (Hebey, 2000, Chap-
ter 10). It corresponds to the common space 𝐻1(Ω) also
used with planar CEM (Somersalo et al., 1992). The nat-
ural norm for this space is (Hebey, 1996, 2000; Somersalo
et al., 1992)

‖(𝑣, 𝑉)‖2𝐻 = ‖𝑣‖2
𝐻1(𝑀)

+ ‖𝑉‖2
ℝ𝐿 (A2)

where the inner products inducing the individual norms
are

⟨𝑢, 𝑣⟩𝐻1(𝑀) = ∫
𝑀

𝑢𝑣𝑑𝑆 + ∫
𝑀

⟨∇𝑢,∇𝑣⟩𝑔𝑑𝑆
and

⟨𝑈,𝑉⟩ℝ𝐿 =

𝐿∑
𝑘=1

𝑈𝑘𝑉𝑘

In the following lemmas, we assume that themodel (1) has
at least two electrodes, that is, 𝐿 ≥ 2.

Lemma A1. Suppose that 𝜁𝑘 > 0 is constant on 𝜕𝑀𝑒𝑘 ∀𝑘,
the part of 𝜕𝑀 corresponding to electrode 𝑘. Then the PDE (1)
admits a weak formulation (A1), where the bilinear opera-
tor 𝐵 ∶ 𝐻 × 𝐻 → ℝ and the linear operator 𝐿 ∶ 𝐻 → ℝ are
given by

𝐵((𝑢𝑝, 𝐼𝑝), (𝑣, 𝑉)) = ∫
𝑀

𝜎⟨∇𝑣,∇𝑢𝑝⟩𝑔𝑑𝑆 +

𝐿∑
𝑘

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑢𝑝𝑣𝑑𝑆

F IGURE A1 Manifold𝑀 is described locally on 𝑇 by
diffeomorphism 𝐹𝑞 . At point 𝑥, the tangents 𝜕1 and 𝜕2 set the basis
for the tangent plane 𝑇𝑥𝑀

−

𝐿∑
𝑘

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑢𝑝𝑉𝑘𝑑𝑆 +

𝐿∑
𝑘

𝐼
𝑝

𝑘
𝑉𝑘 (A3)

and

𝐿(𝑣, 𝑉) =

𝐿∑
𝑘

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑈𝑘(𝑣 − 𝑉𝑘)𝑑𝑆

Proof. Suppose that (𝑢𝑝, 𝐼𝑝) solves (1). We need to show
that it solves (A1). So let (𝑣, 𝑉) ∈ 𝐻 be arbitrary. We define
𝑋 ∶= 𝜎∇𝑢𝑝. Applying ∫

𝑀
⋅𝑣𝑑𝑆 to (1a) we get

−∫
𝑀

𝑣∇ ⋅ (𝜎∇𝑢𝑝)𝑑𝑆 = −∫
𝑀

𝑣∇ ⋅ 𝑋𝑑𝑆 = 0 (A4)

where 𝑑𝑆 is the Riemannian volume corresponding to the
metric 𝑔 on 𝑀. Denoting by 𝑑𝑆 the Riemannian volume
on 𝜕𝑀, using the product rule, the divergence theorem on
Riemannianmanifolds (Wang, 2012, AppendixA), and (1b)
to replace 𝜎⟨∇𝑢𝑝, 𝑛̂⟩𝑔, we obtain
0 = ∫

𝑀

𝑣∇ ⋅ 𝑋𝑑𝑆 = ∫
𝑀

⟨∇𝑣,𝑋⟩𝑔𝑑𝑆 − ∫
𝜕𝑀

𝑣⟨𝑋, 𝑛̂⟩𝑔 𝑑𝑆
= ∫

𝑀

⟨∇𝑣, 𝜎∇𝑢𝑝⟩𝑔𝑑𝑆 − ∫
𝜕𝑀

𝑣⟨𝜎∇𝑢𝑝, 𝑛̂⟩𝑔 𝑑𝑆
= ∫

𝑀

𝜎⟨∇𝑣,∇𝑢𝑝⟩𝑔𝑑𝑆 −

𝐿∑
𝑘

∫
𝜕𝑀𝑒𝑘

𝑣𝜎⟨∇𝑢𝑝, 𝑛̂⟩𝑔 𝑑𝑆
= ∫

𝑀

𝜎⟨∇𝑣,∇𝑢𝑝⟩𝑔𝑑𝑆 −

𝐿∑
𝑘

∫
𝜕𝑀𝑒𝑘

𝑣(𝑈
𝑝

𝑘
− 𝑢𝑝)∕𝜁𝑘 𝑑𝑆

(A5)
Equations (1b) and (1c) both hold for each 𝑘 = 1,… , 𝐿 and
define the vectors 𝑈𝑝, 𝐼𝑝 ∈ ℝ𝐿. By multiplying each com-
ponent 𝑈𝑝

𝑘
of 𝑈𝑝 by 𝑉𝑘∕𝜁𝑘, where 𝑉𝑘 is a component of

a test vector 𝑉 ∈ ℝ𝐿, integrating over 𝜕𝑀𝑒𝑘 , and summing
over 𝑘 = 1,… , 𝐿, we get

𝐿∑
𝑘

∫
𝜕𝑀𝑒𝑘

𝑢𝑝(𝑥)𝑉𝑘∕𝜁𝑘𝑉̃ + ∫
𝜕𝑀𝑒𝑘

𝜎⟨∇𝑢𝑝(𝑥), 𝑛̂⟩𝑔𝑉𝑘𝑉̃ (A6)

−∫
𝜕𝑀𝑒𝑘

𝑈
𝑝

𝑘
𝑉𝑘∕𝜁𝑘𝑑𝑆 = 0

Since 𝑉𝑘 is constant on 𝜕𝑀𝑒𝑘 , ∫𝜕𝑀𝑒𝑘

𝜎⟨∇𝑢𝑝(𝑥), 𝑛̂⟩𝑔𝑉𝑘𝑑𝑆 =

∫
𝜕𝑀𝑒𝑘

𝜎⟨∇𝑢𝑝(𝑥), 𝑛̂⟩𝑔𝑑𝑆𝑉𝑘 = −𝐼
𝑝

𝑘
𝑉𝑘. Subtracting (A6) from

(A5) and plugging in 𝐼
𝑝

𝑘
gives

0 − 0 = ∫
𝑀

𝜎⟨∇𝑣,∇𝑢𝑝⟩𝑔𝑑𝑆 −

𝐿∑
𝑘

∫
𝜕𝑀𝑒𝑘

𝑣(𝑈
𝑝

𝑘
− 𝑢𝑝)∕𝜁𝑘 𝑑𝑆
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−

(
𝐿∑
𝑘

∫
𝜕𝑀𝑒𝑘

𝑢𝑝(𝑥)𝑉𝑘∕𝜁𝑘 − 𝑈
𝑝

𝑘
𝑉𝑘∕𝜁𝑘𝑑𝑆 − 𝐼

𝑝

𝑘
𝑉𝑘

)

= ∫
𝑀

𝜎⟨∇𝑣,∇𝑢𝑝⟩𝑔𝑑𝑆
+

𝐿∑
𝑘

(
∫
𝜕𝑀𝑒𝑘

𝑢𝑝(𝑣 − 𝑉𝑘)∕𝜁
𝑘 + 𝑈𝑘(𝑉𝑘 − 𝑣)∕𝜁𝑘𝑑𝑆 + 𝐼

𝑝

𝑘
𝑉𝑘

)

Finally, since we assume 𝜁𝑘 is constant, by subtracting∑𝐿

𝑘
∫
𝜕𝑀𝑒𝑘

𝑈𝑘(𝑉𝑘 − 𝑣)∕𝜁𝑘𝑑𝑆 we get (A1). □

The next lemma shows that the weak formulation (A1)
is well-posed, meaning that the solution (𝑢𝑝, 𝐼𝑝) exists and
is unique, and 𝐵 is continuous, leading eventually to the
invertibility of the linear system of the FE approximation.
For the simplicity, we assume that the boundary 𝜕𝑀 of𝑀
is 𝐶∞. However, the arguments that we use in the follow-
ing proofs should extend to domains with boundaries of
lesser smoothness.
Now, if we were solving for (𝑢𝑝,𝑈𝑝) instead of (𝑢𝑝, 𝐼𝑝),

we could follow the treatment in Somersalo et al. (1992)
by replacing relevant theorems on Sobolev spaces by
their (compact Riemannian) manifold counterparts. How-
ever, no well-posedness proof for the weak formulation of
(𝑢𝑝, 𝐼𝑝) exists. To prove the well-posedness for (𝑢𝑝, 𝐼𝑝), we
show that the conditions of the Banach–Nesča–Babuška
theorem (BNB) hold for 𝐵 and that 𝐵 is continuous. The
Euclidean case will follow as long as the domain for 𝑢𝑝(𝑥)
is bounded.

Lemma A2. Suppose that 0 < 𝜎𝑚 ≤ 𝜎(𝑥) ≤ 𝜎𝑀 < ∞ is
integrable on compact connected Riemannian manifold
(𝑀, 𝑔)andwith a𝐶∞ boundary 𝜕𝑀. Then (A1) is well-posed.

Proof. For the proof, to avoid confusion between variables
and not carry the index 𝑝, we write (𝑤,𝑊) in place of
(𝑢𝑝, 𝐼𝑝). According to BNB (Hesthaven et al., 2016, The-
orem A.4) (see also Saito, 2017, Theorem 1), since 𝐻 is a
reflexive Banach space (Hebey &Robert, 2008, Proposition
2.1)—note that𝐻 also a Hilbert space (Hebey, 2000, Propo-
sition 2.1)—there exists a unique solution (𝑤,𝑊) ∈ 𝐻 to
the problem (A1) if

sup
(𝑣,𝑉)∈𝐻

𝐵((𝑤,𝑊), (𝑣, 𝑉))‖(𝑣, 𝑉)‖𝐻 ≥ 𝛽‖(𝑤,𝑊)‖𝐻 for some 𝛽 > 0

(A7a)

(∀(𝑤,𝑊) ∈ 𝐻, 𝐵((𝑤,𝑊), (𝑣, 𝑉)) = 0) ⇒ ((𝑣, 𝑉) = 0)

(A7b)

First, however, similarly to Somersalo et al. (1992), we will
show that

‖(𝑣, 𝑉)‖2∗ ∶= ∫
𝑀

⟨∇𝑣,∇𝑣⟩𝑔𝑑𝑆 + ‖𝑣‖2
𝜕𝑀𝑒

+ ‖𝑉‖2
ℝ𝐿

where ‖𝑣‖2
𝜕𝑀𝑒

∶=
∑𝐿

𝑘
∫
𝜕𝑀𝑒𝑘

𝑣2𝑑𝑉̃, is a norm equivalent to
(A2), that is, there exists constants 𝜆, Λ > 0 such that

Λ‖(𝑣, 𝑉)‖∗ ≥ ‖(𝑣, 𝑉)‖𝐻 ≥ 𝜆‖(𝑣, 𝑉)‖∗ ∀(𝑣, 𝑉) ∈ 𝐻

(A8)
To see that the first inequality of (A8) holds, by the

continuous embedding 𝐻1∕2(𝜕𝑀) ⊂ 𝐿2(𝜕𝑀) (Taylor, 2011,
Definition 1.4, Chapter 4) for some 𝐶1, 𝐶2 > 0,

‖𝑣‖2
𝜕𝑀𝑒

≤ ‖𝑣‖2
𝐿2(𝜕𝑀)

≤ 𝐶1‖𝑣‖2𝐻1∕2(𝜕𝑀)
≤ 𝐶2‖𝑣‖2𝐻1(𝑀)

Since ⟨∇𝑣,∇𝑣⟩𝑔 ≥ 0, we thus obtain for some Λ > 0 that‖(𝑣, 𝑉)‖2∗ ≤ Λ2(‖𝑣‖2
𝐻1(𝑀)

+ ‖𝑉‖2
ℝ𝐿) = Λ2‖𝑣‖2𝐻 .

To verify the second inequality of (A8), assume
that the claim is not true. Then we can take a
sequence {(𝑣𝑛, 𝑉𝑛)}∞

𝑛=1
∈ 𝐻, so that ‖(𝑣𝑛, 𝑉𝑛)‖𝐻 = 1

and ‖(𝑣𝑛, 𝑉𝑛)‖∗ < 1∕𝑛. Now, according to the compact
embedding theorem on Sobolev spaces on manifolds
(Taylor, 2011, Proposition 4.4, Chapter 4), 𝑣𝑛 contains a
converging subsequence 𝑣𝑛𝑖 → 𝑣 ∈ 𝐿2(𝑀), 𝑛𝑖 > 𝑛𝑖−1, and
𝑣 ∈ 𝐿2(𝑀). Since 1

𝑛𝑖
> ‖(𝑣𝑛𝑖 , 𝑉𝑛𝑖 )‖∗, we have that

1

𝑛2
𝑖

> ∫
𝑀

⟨∇𝑣𝑛𝑖 , ∇𝑣𝑛𝑖 ⟩𝑔𝑑𝑆, 1

𝑛𝑖
> ‖𝑣𝑛𝑖‖𝜕𝑀𝑒

, and 1

𝑛𝑖
> ‖𝑉𝑛𝑖‖ℝ𝐿

(A9)
The first inequality implies that 𝑣𝑛𝑖 forms a converging

sequence in 𝐻1(𝑀), which satisfies ∫
𝑀
⟨∇𝑣𝑛𝑖 , ∇𝑣𝑛𝑖 ⟩𝑔𝑑𝑆 →

0. Applying Poincaré (Hebey, 2000, Theorem 2.10) and
Hölder inequalities (follows directly fromYoung’s inequal-
ity) shows for constants 𝑐1 ∈ ℝ and 𝑐2 > 0 that

‖𝑣𝑛𝑖 − 𝑐1‖2𝐿1(𝑀)
≤ 𝑐2‖∇𝑣𝑛𝑖‖2𝐿1(𝑀)

≤ 𝑐2‖∇𝑣𝑛𝑖‖2𝐿2(𝑀)
‖1‖2

𝐿2(𝑀)

and since ‖∇𝑣𝑛𝑖‖2
𝐿2(𝑀)

‖1‖2
𝐿2(𝑀)

→ 0, 𝑣𝑛𝑖 converges to
the constant 𝑐1 in 𝐿1(𝑀). Further, since 𝑣𝑛𝑖 → 𝑣 ∈

𝐿2(𝑀), using Hölder’s inequality again shows that ‖𝑣𝑛𝑖 −
𝑣‖𝐿1(𝑀) ≤ ‖𝑣𝑛𝑖 − 𝑣‖𝐿2(𝑀)‖1‖𝐿2(𝑀) → 0, meaning that 𝑣𝑛𝑖
also converges to the same 𝑣 in 𝐿1(𝑀), confirming that
indeed 𝑣 = 𝑐1, that is, 𝑣 is constant almost everywhere.
Now, since 𝑣 is a.e. constant and 𝑣|𝜕𝑀 ∈ 𝐿2(𝜕𝑀), the sec-
ond inequality in (A9) implies that 𝑣𝑛𝑖 → 0, that is, 𝑐1 = 0.
The final inequality in (A9) implies that 𝑉𝑛𝑖 → 0, that is,
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𝑉 = 0. Since 𝑣𝑛𝑖 → 0 and𝑉𝑛𝑖 → 0, ‖(𝑣𝑛𝑖 , 𝑉𝑛𝑖 )‖𝐻 → 0, con-
tradicting ‖(𝑣𝑛𝑖 , 𝑉𝑛𝑖 )‖𝐻 = 1.
To see that (A7a) holds, start by denoting 𝑠𝑘 =∫

𝜕𝑀𝑒𝑘

1𝑑𝑆, 𝑎 ∶= max{𝜁−1
1
, 𝜁−1

2
, … , 𝑠2

1
𝜁−1
1
, 𝑠2

2
𝜁−1
2
, … }, and

𝑐 ∶= 𝑎min{1∕𝑎, 𝜎𝑚, 𝜁
−1
1
, 𝜁−1

2
, … }. If (𝑤,𝑊) = (0, 0), then

(A7a) clearly holds. If (𝑤,𝑊) ≠ (0, 0), then pick a func-
tion (𝑣, 𝑉̂) ∈ 𝐻 that satisfies 𝑣 = 2𝑎𝑤 and 𝑉̂𝑘 = 𝑊𝑘 +
1

𝜁𝑘
∫
𝜕𝑀𝑒𝑘

𝑤𝑑𝑉̃.
Plugging (𝑣, 𝑉̃) into (A1) and simplifying gives

𝐵((𝑤,𝑊), (𝑣, 𝑉̂)) = 2𝑎 ∫
𝑀

𝜎⟨∇𝑤,∇𝑤⟩𝑔𝑑𝑆
+

𝐿∑
𝑘

2𝑎

𝜁𝑘 ∫
𝜕𝑀𝑒𝑘

𝑤2𝑑𝑆 −

𝐿∑
𝑘

(
1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑤𝑑𝑆

)2

+

𝐿∑
𝑘

𝑊2
𝑘

≥ 2𝑎 ∫
𝑀

𝜎⟨∇𝑤,∇𝑤⟩𝑔𝑑𝑆 +

𝐿∑
𝑘

2𝑎

𝜁𝑘 ∫
𝜕𝑀𝑒𝑘

𝑤2𝑑𝑆

−

𝐿∑
𝑘

𝑎

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑤2𝑑𝑆 +

𝐿∑
𝑘

𝑊2
𝑘

≥ 𝑐

(
∫
𝑀

⟨∇𝑤,∇𝑤⟩𝑔𝑑𝑆 +

𝐿∑
𝑘

∫
𝜕𝑀𝑒𝑘

𝑤2𝑑𝑆 +

𝐿∑
𝑘

𝑊2
𝑘

)
= 𝑐‖(𝑤,𝑊)‖2∗

Denoting 𝑏 ∶= 2max{1, 2𝑎2, |𝑒1|2𝜁−21 , |𝑒2|2𝜁−22 , … },

‖(𝑣, 𝑉̂)‖2∗ ≤ 4𝑎2(∫
𝑀

⟨∇𝑤,∇𝑤⟩𝑔𝑑𝑆 + ‖𝑤‖2
𝜕𝑀𝑒

)

+
∑
𝑘

2(𝑊2
𝑘
+ (

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑣𝑑𝑥)2)

≤ 4𝑎2(∫
𝑀

⟨∇𝑤,∇𝑤⟩𝑔𝑑𝑆 + ‖𝑤‖2
𝜕𝑀𝑒

)

+
∑
𝑘

(2𝑊2
𝑘
+

2𝑠2
𝑘

𝜁2
𝑘
∫
𝜕𝑀𝑒𝑘

𝑣2𝑑𝑥)

≤ 2𝑏(∫
𝑀

⟨∇𝑤,∇𝑤⟩𝑔𝑑𝑆 + ‖𝑤‖2
𝜕𝑀𝑒

+𝑊2
ℝ𝐿)

= 2𝑏‖(𝑤,𝑊)‖2∗
Combining the above shows that

sup
(𝑣,𝑉)∈𝐻

𝐵((𝑤,𝑊),(𝑣,𝑉))‖(𝑣,𝑉)‖𝐻 ≥ 𝑐‖(𝑤,𝑊)‖2∗
Λ‖(𝑣,𝑉̂)‖∗ ≥ 𝑐‖(𝑤,𝑊)‖2∗

Λ
√
2𝑏‖(𝑤,𝑊)‖∗ ≥ 𝑐‖(𝑤,𝑊)‖𝐻√

2𝑏Λ2

To see that (A7b) holds, assume the contrary, that is,
there exists a (𝑣, 𝑉) ≠ 0 so that 𝐵((𝑤,𝑊), (𝑣, 𝑉)) = 0

holds for all (𝑤,𝑊). If 𝑉 = 0 choose (𝑤,𝑊) = (𝑣, 0). If

𝑉 ≠ 0 choose (𝑤,𝑊) = (0, 𝑉). Both scenarios show that
𝐵((𝑤,𝑊), (𝑣, 𝑉)) ≠ 0 with the chosen (𝑤,𝑊), that is, that
𝐵((𝑤,𝑊), (𝑣, 𝑉)) = 0 does not hold for all (𝑤,𝑊), which is
a contradiction, meaning that the condition must hold.
Finally, to see that 𝐵 is continuous, that is,

𝐵((𝑤,𝑊), (𝑣, 𝑉)) ≤ ‖(𝑤,𝑊)‖𝐻‖(𝑣, 𝑉)‖𝐻 for some
 > 0, observe that

−

𝐿∑
𝑘

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑤𝑉𝑘𝑑𝑆 ≤
𝐿∑
𝑘

||| 1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑤𝑉𝑘𝑑𝑆
|||

≤ 𝑎‖𝑤‖𝜕𝑀𝑒
‖𝑉‖ℝ𝐿 ≤ 𝑎‖(𝑤,𝑊)‖∗‖(𝑣, 𝑉)‖∗

Denoting 𝑐 ∶= max{1, 𝜎𝑀, 𝜁−1
1
, 𝜁−1

2
, … }, clearly,

𝐵((𝑤,𝑊), (𝑣, 𝑉)) ≤ 𝑐‖(𝑤,𝑊)‖∗‖(𝑣, 𝑉)‖∗
−

𝐿∑
𝑘

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑤𝑉𝑘𝑑𝑆 ≤ (𝑐 + 𝑎)‖(𝑤,𝑊)‖∗‖(𝑣, 𝑉)‖∗
≤ (𝑐 + 𝑎)𝜆−2‖(𝑤,𝑊)‖𝐻‖(𝑣, 𝑉)‖𝐻

This finishes the proof. □

For the next lemma, we will replace 𝑢𝑝 and 𝐼
𝑝

𝑘
by their

FE approximations 𝑢𝑝 =
∑𝑁

𝑗
𝑢
𝑝

𝑗
𝑣𝑗 and 𝐼𝑝 =

∑𝐿−1

𝑗=1
(𝐼𝑗𝑛𝑗),

where we allow 𝑣𝑗 to be an arbitrary FE basis function. For
𝐼𝑝 ∈ ℝ𝐿, we fix basis vectors 𝑛𝑗 ∈ ℝ𝐿 so that we can uti-
lize Kirchhoff’s law to eliminate one of the components:
we choose vectors 𝑛𝑗 ∈ ℝ𝐿 such that the components of 𝑛𝑗
are (𝑛𝑗)1 = 1, (𝑛𝑗)𝑗+1 = −1, and otherwise (𝑛𝑗)𝑘 = 0. This
fixes the value of the 𝐼𝑝

1
so that 𝐼𝑝

1
= −

∑𝐿

𝑖=2
𝐼
𝑝

𝑖
. Indeed, due

to the Kirchhoff’s law, we only have 𝐿 − 1 unknown cur-
rents. Note also that 𝑛𝑗 no longer appears in the lemma,
since the value is easy to determine.

Lemma A3. Replace𝐻 by a finite dimensional subspace

𝐻𝑁 = span{(𝑣1, 0), … , (𝑣𝑁, 0), (0, 𝑛1), … , (0, 𝑛𝐿−1)}

Then (A1) admits the presentation 𝐷𝜃 = 𝑈̄, where 𝐷 ∈

ℝ(𝑁+𝐿−1)×(𝑁+𝐿−1) with

𝐷 =

[
𝐷1 0

𝐷2 𝐷3,

]
(𝐷3)𝑖,𝑗 =

{
2, 𝑖 = 𝑗

1, otherwise

(𝐷2)𝑖,𝑗 =
1

𝜁𝑖+1 ∫𝜕𝑀𝑒𝑖+1

𝑣𝑗𝑑𝑆 −
1

𝜁1 ∫𝜕𝑀𝑒1

𝑣𝑗𝑑𝑆

(𝐷1)𝑖,𝑗 = ∫
𝑀

𝜎⟨∇𝑣𝑖, ∇𝑣𝑗⟩𝑔𝑑𝑆 +

𝐿∑
𝑘

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑣𝑗𝑣𝑖𝑑𝑆
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and 𝑈̄ ∈ ℝ𝑁+𝐿−1

(𝑈̄)𝑖 =

⎧⎪⎨⎪⎩
∑𝐿

𝑘

𝑈𝑘

𝜁𝑘
∫
𝜕𝑀𝑒𝑘

𝑣𝑖𝑑𝑆, 𝑖 ≤ 𝑁

𝑈𝑖+1

𝜁𝑖+1
∫
𝜕𝑀𝑒𝑖+1

1𝑑𝑆 −
𝑈1

𝜁1
∫
𝜕𝑀𝑒1

1𝑑𝑆, otherwise

The vector 𝜃 = (𝑢̄𝑝, 𝐼𝑝), where (𝑢̄𝑝)𝑖 = 𝑢
𝑝

𝑖
, (𝐼𝑝)𝑖 = 𝐼

𝑝

𝑖
con-

tains the coefficients of the FE approximations for 𝑢𝑝 and
𝐼
𝑝

𝑘
. Furthermore, the problem is well-posed, Galerkin orthog-

onality holds and for the exact solution (𝑢̂𝑝, 𝐼𝑝) and some
constant  > 0 we have

‖(𝑢̂𝑝 − 𝑢𝑝, 𝐼𝑝 − 𝐼𝑝)‖𝐻 ≤  inf
(𝑣,𝑉)∈𝐻𝑁

‖(𝑢̂𝑝 − 𝑣, 𝐼𝑝 − 𝑉𝑝)‖𝐻
(A10)

Proof. Since 𝐵 is continuous and since BNB holds for 𝐵,
by applying the Cea’s lemma (Monk, 2003, Lemma 2.37),
we see that the problem is well-posed also in 𝐻𝑁 and the
Galerkin orthogonality and (A10) hold for the solution
(𝑢𝑝, 𝐼𝑝).
Plugging in the expression for 𝑢𝑝 and 𝐼𝑝 into (A3) gives

𝑁 equations corresponding to each (𝑣, 𝑉) = (𝑣𝑖, 0):

∫
𝑀

𝜎⟨∇𝑣𝑖, ∇ 𝑁∑
𝑗

𝑢
𝑝

𝑗
𝑣𝑗⟩𝑔𝑑𝑆 +

𝐿∑
𝑘

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑁∑
𝑗

𝑢
𝑝

𝑗
𝑣𝑗𝑣𝑖𝑑𝑆

=

𝑁∑
𝑗

𝑢
𝑝

𝑗

(
∫
𝑀

𝜎⟨∇𝑣𝑖, ∇𝑣𝑗⟩𝑔𝑑𝑆 +

𝐿∑
𝑘

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑣𝑗𝑣𝑖𝑑𝑆

)

=

𝐿∑
𝑘

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑈𝑘𝑣𝑖𝑑𝑆

which can be written with the matrix𝐷1 and vectors 𝑢̄ and
(𝑈̄1)𝑖 =

∑𝐿

𝑘

𝑈𝑘

𝜁𝑘
∫
𝜕𝑀𝑒𝑘

𝑣𝑖𝑑𝑆 as 𝐷1𝑢̄ = 𝑈̄1. Further, (𝑣, 𝑉) =
(0, 𝑛𝑖) gives additional 𝐿 − 1 equations:

−

𝐿∑
𝑘

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑁∑
𝑗

𝑢
𝑝

𝑗
𝑣𝑗𝑛𝑖𝑑𝑆 +

𝐿∑
𝑘

𝐼
𝑝

𝑘
𝑉𝑘

= −

𝐿∑
𝑘

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑁∑
𝑗

𝑢
𝑝

𝑗
𝑣𝑗𝑛𝑖𝑑𝑆 +

𝐿∑
𝑘

(

𝐿−1∑
𝑗

𝐼𝑗𝑛𝑗)𝑘(𝑛𝑖)𝑘

=

𝑁∑
𝑗

(
𝑢
𝑝
𝑗

𝜁𝑖+1 ∫𝜕𝑀𝑒𝑖+1

𝑣𝑗𝑑𝑆 −
𝑢
𝑝
𝑗

𝜁1 ∫
𝜕𝑀𝑒1

𝑣𝑗𝑑𝑆

)

+

𝐿−1∑
𝑗

𝐼𝑗

𝐿∑
𝑘

(𝑛𝑗)𝑘(𝑛𝑖)𝑘 = −

𝐿∑
𝑘

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑈𝑘(𝑛𝑖)𝑘𝑑𝑆

which can be expressed with 𝐷2, 𝐷2, 𝑢̄, 𝑈̄1, 𝐼, and
(𝑈̄2)𝑖 = −

∑𝐿

𝑘

1

𝜁𝑘
∫
𝜕𝑀𝑒𝑘

𝑈𝑘(𝑛𝑖)𝑘𝑑𝑆 =
𝑈𝑖+1

𝜁𝑖+1
∫
𝜕𝑀𝑒𝑖+1

1𝑑𝑆 −

𝑈1

𝜁1
∫
𝜕𝑀𝑒1

1𝑑𝑆 as 𝐷2𝑢̄ = 𝑈̄1 and 𝐷3𝐼 = 𝑈̄2. Finally, by
combining the results we have[

𝐷1 0

𝐷2 𝐷3

] [
𝑢̄

𝐼

]
=

[
𝑈̄1

𝑈̄2

]
This finishes the proof. □

A.1 Computing the FE approximation
In Lemma A3, we derived the matrix presentation of the
FE approximation. This matrix form, however, is abstract
in the sense that the integrals are still presented in𝑀 and
𝜕𝑀.
To proceed further, we consider specific maps to the

manifold 𝑀. We define the elementary triangle by 𝑇 ∶=

{𝑦 ∈ ℝ2 | 𝑦1, 𝑦2 ≥ 0, 𝑦1 + 𝑦2 ≤ 1} and denote the bound-
ary segments of this triangle by 𝜕1𝑇 ∶= {𝑦 ∈ 𝑇 | 𝑦2 =
0}, 𝜕2𝑇 ∶= {𝑦 ∈ 𝑇 | 𝑦1 = 0}, and 𝜕3𝑇 ∶= {𝑦 ∈ 𝑇 | 𝑦1 = 𝑦2}.
Further, we assume that there exists a triangulation of𝑀,
meaning that:

∙ There are domains 𝐸𝑞 (in practice “geodesic triangles,”
compare Figure 1), such that𝑀 = 𝐸1 ∪ 𝐸1 … ∪ 𝐸𝐾 .

∙ For each 𝑞 there exists an orientation preserving dif-
feomorphism 𝐹𝑞(𝑇) = 𝐸𝑞 (i.e., 𝐹𝑞 ∶ 𝑇 → 𝐸𝑞 and 𝐹−1

𝑞 ∶

𝐸𝑞 → 𝑇 are differentiable bijections and the Jacobian
determinant of 𝐹𝑞 is positive). Intuitively, this means
that 𝑇 can be morphed smoothly to 𝐸𝑞 and 𝐸𝑞 back to
𝑇 through 𝐹𝑞 and 𝐹−1

𝑞 , so that the right-hand (or left-
hand) rule is preserved.

∙ The subdomains 𝐸𝑞 and 𝐸𝑟 for 𝑞 ≠ 𝑟 may only intersect
at the boundaries.

∙ For each electrode 𝑒𝑘 some collection 𝑘 of 𝑟 and 𝛽

correspond to the boundary segment of 𝑒𝑘, that is,
𝜕𝑀𝑒𝑘 =

⋃
(𝑟,𝛽)∈𝑘

𝐹𝑟(𝜕𝛽𝑇), where (𝑞, 𝛼), (𝑟, 𝛽) ∈ 𝑘,
(𝑞, 𝛼) ≠ (𝑟, 𝛽), the subdomains 𝐹𝑞(𝜕𝛼𝑇) ⊂ 𝜕𝑀

and 𝐹𝑟(𝜕𝛽𝑇) ⊂ 𝜕𝑀 may only intersect at the end
points.

In addition, we need a presentation for the metric 𝑔

on 𝑇. Recall that 𝑔 has the specific form 𝑔(𝑤1, 𝑤2) =

𝑔(𝑑𝜙(𝑤1), 𝑑𝜙(𝑤2)). Clearly, this metric has a matrix pre-
sentation 𝑔 = 𝐽𝑇𝑞 𝐽𝑞 (Rosenberg, 1997, pp. 57−58) on 𝑇,
where 𝐽𝑞 is the Jacobian matrix of 𝐹𝑞. Similarly, if 𝛾𝛼(𝑡)
is a curve that maps [0,1] to one of the boundaries 𝜕𝛼𝑇,
then 𝑔𝜔(𝑤) = 𝑔(𝑑𝛾𝛼(𝑤)) has a presentation 𝑔𝜔 = 𝐽𝑞

𝑇

𝛾𝛼
𝐽𝑞𝛾𝛼

in [0,1], where 𝐽𝑞𝛾𝛼 is the Jacobian of 𝐹𝑞(𝛾𝛼(𝑡)).
Now we derive the exact forms for the integrals of (A3)

in terms of 𝑇 and the interval [0,1]. The next lemma com-
bined with Lemma A3 finally allows us to calculate the
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matrices and vectors of the FE system that determines 𝐼(𝜎)
in (6). The RIPGN algorithm (Jauhiainen et al., 2020) uti-
lizes these vectors and matrices to solve (6).

Lemma A4. Assume that there exists a triangulation {𝐸𝑞}

of𝑀. The integrals in Lemma A3 have the following presen-
tations;

∫
𝑀

𝜎⟨∇𝑣𝑖, ∇𝑣𝑗⟩𝑔𝑑𝑆
=
∑
𝑞

∫
𝑇

𝜎(𝐹𝑞(𝑦))(∇𝑦𝑣𝑖(𝐹𝑞(𝑦)))
𝑇𝑔−1(∇𝑦𝑣𝑗(𝐹𝑞(𝑦)))

√|𝑔|𝑑𝑦
𝐿∑
𝑘

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑣𝑗𝑣𝑖𝑑𝑆

=

𝐿∑
𝑘

∑
(𝑞,𝛼)∈(𝑖,𝑗,𝑘)

𝑈𝑘

𝜁𝑘 ∫
1

0

𝑣𝑗(𝐹𝑞(𝛾𝛼(𝑡)))𝑣𝑖(𝐹𝑞(𝛾𝛼(𝑡)))
√
𝑔𝜔𝑑𝑡

𝑈𝑘

𝜁𝑘 ∫
𝜕𝑀𝑒𝑘

𝑣𝑗𝑑𝑆 =
∑

(𝑞,𝛼)∈(𝑗,𝑘)
𝑈𝑘

𝜁𝑘 ∫
1

0

𝑣𝑗(𝐹𝑞(𝛾𝛼(𝑡)))
√
𝑔𝜔𝑑𝑡

and

𝑈𝑘

𝜁𝑘 ∫
𝜕𝑀𝑒𝑘

1𝑑𝑆 =
∑

(𝑞,𝛼)∈(𝑘)
𝑈𝑘

𝜁𝑘 ∫
1

0

√
𝑔𝜔𝑑𝑡

where 𝑦 ∶= (𝑦1, 𝑦2) ∈ 𝑇, 𝑑𝑦 ∶= 𝑑𝑦1𝑑𝑦2, 𝑔−1 is a matrix
representing the coefficients of 𝑔𝑖𝑗 , ∇𝑦𝑓 is the gradient of 𝑓
with respect to the variable 𝑦 ∈ 𝑇 ⊂ ℝ2, and

(𝑖, 𝑗, 𝑘) ∶= {
(𝑞, 𝛼) | 𝜕𝐹𝑞(𝜕𝛼𝑇) is under an electrode 𝑘,

𝑣𝑖(𝐹𝑞(𝜕𝛼𝑇)) ≠ {0}, and 𝑣𝑗(𝐹𝑞(𝜕𝛼𝑇)) ≠ {0}
}
,

(𝑖, 𝑘) ∶= {
(𝑞, 𝛼) | 𝜕𝐹𝑞(𝜕𝛼𝑇) is under an electrode 𝑘 and

𝑣𝑖(𝐹𝑞(𝜕𝛼𝑇)) ≠ {0}
}
, and

(𝑘) ∶= {
(𝑞, 𝛼) | 𝜕𝐹𝑞(𝜕𝛼𝑇) is under an electrode 𝑘}

Proof. By assumption 𝑇 and 𝜕𝑇 are compact, 𝐹𝑞 are diffeo-
morphic, 𝜕𝑀𝑒𝑘 =

⋃
(𝑟,𝛽)∈𝑘

𝐹𝑟(𝜕𝛽𝑇) and 𝑀 = 𝐸1 ∪ 𝐸1 … ∪

𝐸𝐾 , where 𝑞 ≠ 𝑟 and (𝑞, 𝛼) ≠ (𝑟, 𝛽) only intersect at their
boundaries, the conditions of (Lee, 2003, Proposition 10.21)
are met for𝑀 and for each 𝜕𝑀𝑒𝑘 , and the integrals of (A1)
defined in𝑀 and in 𝜕𝑀𝑒𝑘 can be expressed as sums of Rie-
mannian integrals in ℝ or ℝ2 over the sets 𝑇 and 𝜕𝑇, that

is, for 𝑓 ∶ 𝑀 → ℝ and 𝑓 ∶ 𝜕𝑀𝑒𝑘 → ℝ, that is,

∫
𝑀

𝑓𝑑𝑆 =
∑
𝑞

∫
𝑇

𝐹∗
𝑞(𝑓𝑑𝑆) =

∑
𝑞

∫
𝑇

(𝑓◦𝐹𝑞)
√|𝑔|𝑑𝑦 and

∫
𝜕𝑀𝑒𝑘

𝑓𝑑𝑆 =
∑

(𝑟,𝛽)∈𝑘
∫
𝜕𝛽𝑇

𝐹∗
𝑟 (𝑓𝑑𝑉̃) =

∑
(𝑟,𝛽)∈𝑘

∫
𝜕𝛽𝑇

(𝑓◦𝐹𝑟)
√|𝑔𝜔|𝑑𝑦̃

where 𝑦 ∈ 𝑇 and 𝑦̃ ∈ 𝜕𝛽𝑇 (Lee, 2012, Proposition 11.25,
Proposition 15.31, and p. 402).
Since 𝑔𝑖𝑗 are the indices of the inverse of the matrix

representing 𝑔 (Lee, 2012, p. 342), ∇𝑓 = 𝑔−1∇𝑦𝑓 in 𝑇.
Now

∫
𝑀

𝜎⟨∇𝑣𝑖, ∇𝑣𝑗⟩𝑔𝑑𝑆
=
∑
𝑞

∫
𝑇

𝜎(𝐹𝑞(𝑦))⟨∇𝑣𝑖(𝐹𝑞(𝑦)), ∇𝑣𝑗(𝐹𝑞(𝑦))⟩√|𝑔|𝑑𝑦
=
∑
𝑞

∫
𝑇

𝜎(𝐹𝑞(𝑦))(∇𝑦𝑣𝑖(𝐹𝑞(𝑦)))
𝑇𝑔−1(∇𝑦𝑣𝑗(𝐹𝑞(𝑦)))

√|𝑔|𝑑𝑦
since 𝑔 (and 𝑔−1) is symmetric.
Since 𝜕𝑀𝑒𝑘 = ∪𝑟,𝛽𝐹𝑟(𝜕𝛽𝑇) for some 𝑘, and since

𝐹𝑟(𝜕𝛽𝑇)may only intersect at a single point, the boundary
integrals in Lemma A3 can be mapped to the interval [0,1]
by composing the appropriate 𝐹𝑟 with one of the curves,
𝛾1(𝑡) = (𝑡, 0), 𝛾2(𝑡) = (0, 𝑡), or 𝛾3(𝑡) = (𝑡, 1 − 𝑡), depending
on which segments of 𝜕𝛽𝑇 constitute to 𝜕𝑀𝑒𝑘 under 𝐹𝑟. On
these boundaries, wemaywrite 𝑑𝑉̃ =

√|𝑔𝜔|𝑑𝑡. Now, since
the boundary integrals in Lemma A3 comprise only terms
that correspond to an electrode 𝑒𝑘, and since these terms
are zero if either a 𝑣𝑖 or a 𝑣𝑗 in the term is identically zero
on 𝜕𝑀𝑒𝑘 , we are left with  as defined in the statement of
the lemma. As an example

𝐿∑
𝑘

1

𝜁𝑘 ∫𝜕𝑀𝑒𝑘

𝑣𝑗𝑣𝑖𝑑𝑆

=

𝐿∑
𝑘

∑
(𝑞,𝛼)∈𝑘

∫
𝜕𝛼𝑇

𝑈𝑘

𝜁𝑘
𝑣𝑗(𝐹𝑞(𝑦̃))𝑣𝑖(𝐹𝑞(𝑦̃))

√
𝑔𝜔𝑑𝑦̃

=

𝐿∑
𝑘

∑
(𝑞,𝛼)∈𝑘

∫
1

0

𝑈𝑘

𝜁𝑘
𝑣𝑗(𝐹𝑞(𝛾𝛼(𝑡)))𝑣𝑖(𝐹𝑞(𝛾𝛼(𝑡)))

√
𝑔𝜔𝑑𝑡

Now ∫ 1

0

𝑈𝑘

𝜁𝑘
𝑣𝑗(𝐹𝑞(𝛾𝛼(𝑡)))𝑣𝑖(𝐹𝑞(𝛾𝛼(𝑡)))

√
𝑔𝜔𝑑𝑡 = 0 if either

𝑣𝑖(𝐹𝑞(𝛾(𝑡))) ≡ 0 or 𝑣𝑗(𝐹𝑞(𝛾(𝑡))) ≡ 0, meaning that we can
replace (𝑞, 𝛼) ∈ 𝑘 with (𝑞, 𝛼) ∈ (𝑖, 𝑗, 𝑘). □
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ALGORITHM 1 PDPS algorithm with two dual blocks

ALGORITHM 2 RIPGN algorithm for problem (6). For the
first cracking state, 𝜎𝑙 = 𝜎ref

The FE solver used in this work is part of the Julia code
package developed for the nonplanar ERT by the authors
(cf. Section 3.2). We note, however, that various compu-
tationally efficient alternatives for the FEM implementa-
tion exist. For example, in Yu and Adeli (1993) the FEM
for stress analysis was implemented in C++ using object-
oriented programming.

A.2 Inversion algorithm
We now describe the RIPGN algorithm (Jauhiainen et al.,
2020) specialized to our ERT problem (6). Presented
in Algorithm 2, it utilizes the block-adapted PDPS of
Valkonen (2019), presented in Algorithm 1, to solve the lin-
earized inner problems of (6),

argmin
1

2
‖𝐾𝑘

1
𝑥 − 𝑏𝑘‖2 + 𝐹(𝑥) + 𝛿𝑉(𝑥) +

𝛽

2
‖𝑥 − 𝑧𝑘‖2

(A11)

where 𝐾𝑘
1
∶= ∇𝐼(𝑧𝑘)𝑇 , 𝑏𝑘 = 𝐾𝑘

1
𝑧𝑘 − (𝐼(𝑧𝑘) − 𝐼𝑀 + 𝜖),

and 𝑥 ∈ 𝑉 is included in the problem through 𝛿𝑉(𝑥). After
solving (4), the Jacobian of 𝐼, denoted ∇𝐼(𝑧𝑘)𝑇 , can be
computed using the same approach as in planar geome-
try. This approach is described, for example, in Jauhiainen
et al. (2020). Note that some parameters are fixed, since
changing them is not necessary in ERT applications. For
our numerical experiments in Sections 3 and 4, we use
step length parameters 𝑡 = 10−5, 𝛿 = 10−3, and 𝛽 = 10−10;
for further details and justifications of these choices, see
Jauhiainen et al. (2020).
Algorithm 1 is derived from Jauhiainen et al. (2020,

Algorithm 3.1) by expanding the so-called proximal oper-
ators in the latter. Specifically Line 4 is obtained by writ-
ing out 𝑥𝑖+1 ∶= prox𝑡𝐺(𝑥

𝑖 − 𝑡(𝐾𝑇
1
𝑦𝑖
1
+ 𝐾𝑇

2
𝑦𝑖
2
)), for 𝐺(𝑥) =

𝛿𝑉(𝑥) +
𝛽

2
‖𝑥 − 𝑧𝑘‖2, and Line 6 is obtained by writing out

𝑦𝑖+1
1

∶= prox𝑠1𝐹∗
1
(𝑦𝑖

1
+ 𝑠1𝐾1𝑥̄

𝑖+1) for 𝐹1(𝑦) =
1

2
‖𝑦 − 𝑏𝑘‖2.

Here 𝐺∗ and 𝐹∗ denote the convex conjugates of 𝐺 and 𝐹.
Further, Line 8, which corresponds to the TV regulariza-

tion (7), is obtained by writing out 𝑦𝑖+1
2

∶= prox𝑠2𝐹∗
2
(𝑦𝑖

2
+

𝑠2𝐾2𝑥̄
𝑖+1) for 𝐹2(𝑦) = ‖|𝑦|2‖1, where the operator 𝐾2 ∈

ℝ2𝑁𝑒×𝑁𝑛 is the gradient operator. Here 𝑁𝑒 denotes the
number of elements and 𝑁𝑛 denotes the number of nodes
in the FE mesh. Note that 𝐾2𝑥 has two components for
each FE element. The norm | ⋅ |2 is the Euclidean length of
these two components and ‖ ⋅ ‖1 is a sum of these lengths
(i.e., 𝐿1 norm). Finally, Line 10, which corresponds to the
smooth regularization function (8), is obtained by expand-
ing 𝑦𝑖+1

2
∶= prox𝑠2𝐹∗

2
(𝑦𝑖

2
+ 𝑠2𝐾2𝑥̄

𝑖+1) with 𝐹2(𝑦) =
1

2
‖𝑦 −

𝐾2𝜎ref‖2, where 𝐾2 = 𝑅Γ ∈ ℝ𝑁𝑛×𝑁𝑛 .
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