
https://helda.helsinki.fi

Isomorphic Internet of Things Architectures With Web Technologies

Mikkonen, Tommi

2021-07

Mikkonen , T , Pautasso , C & Taivalsaari , A 2021 , ' Isomorphic Internet of Things

Architectures With Web Technologies ' , Computer : a publication of the IEEE Computer

Society , vol. 54 , no. 7 , pp. 69-78 . https://doi.org/10.1109/MC.2021.3074258

http://hdl.handle.net/10138/336610

https://doi.org/10.1109/MC.2021.3074258

unspecified

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Isomorphic IoT Architectures
with Web Technologies

Tommi Mikkonen1, Cesare Pautasso2, Antero Taivalsaari3
1University of Helsinki, Helsinki, Finland
tommi.mikkonen@helsinki.fi
2USI, Lugano, Switzerland
cesare.pautasso@usi.ch
3Nokia Bell Labs & Tampere University, Tampere, Finland
antero.taivalsaari@nokia-bell-labs.com & antero.taivalsaari@tuni.fi

Abstract
A typical Internet of Things (IoT) system consists
of a large number of different subsystems and
devices, including sensors and actuators, gate-
ways that connect them to the Internet, cloud ser-
vices, end-user applications and analytics. Today,
these subsystems are typically implemented with
a broad variety of programming technologies and
tools, making it difficult to migrate functionality
from one subsystem to another. In this paper,
we predict the rise of isomorphic IoT system
architectures in which all the subsystems will be
developed with a consistent set of technologies,
thus allowing different parts of the system to run
the same code.
Keywords: Isomorphic Software, Software Ar-
chitecture, Internet of Things, IoT, Software
Deployment, Deployment in the Large, Pro-
grammable World

Introduction
Recent years have witnessed an avalanche of dig-
italization technologies. Processing capabilities
have grown dramatically, cloud computing has
become commodity, data science has blossomed
due to increasing amounts of data, and Artificial
Intelligence and Machine Learning (AI/ML) have
emerged as everyday technologies even in devices
with limited capabilities such as mobile phones.
These changes are leading us to a Programmable

Cloud

Edge
Gateway

Mobile
Device

IoT
Device

- sensors
- actuators

sensor & 
actuation

data

aggregated
sensor & 

actuation
data

app data &
event push

notifications

- Web applications
- Mobile apps

- device management and control
- data acquisition and storage
- device actuation support
- data analytics
- domain-specific functionality

Figure 1. Typical IoT System End-to-End Architec-
ture.

World [17] where everyday things around us will
become connected and programmable.

A hallmark of the trend towards the Pro-
grammable World is Internet of Things (IoT) de-
velopment. A typical IoT architecture comprises a
number of components, including (i) sensors and
actuators that are at the edge of the network; (ii)
gateways that connect them to the Internet; (iii)
cloud services that offer access to large amounts
of storage; (iv) end-user applications that enable
access to data, sensors, and actuators; and (v)
scalable analytics facilities that are connected to
the cloud [14]. Typical IoT system end-to-end
architecture is illustrated in Fig. 1. Today, a wide

IEEE Computer (manuscript) Published by the IEEE Computer Society © 202x IEEE 1



variety of implementation technologies are used
for developing different parts of the end-to-end
IoT system (see Fig. 2). This results in diverging
development and deployment practices as well as
higher integration costs.

In this paper, we argue that a unifying soft-
ware layer is needed to manage the complexity
of IoT development and to liberate the develop-
ers from highly fragmented IoT architectures of
today. The work presented in this paper is a con-
tinuation of a series of vision papers that describe
liquid, multi-device software architectures [15]
and the Programmable World concept [13]. In
the present paper, we push the envelope towards
isomorphic IoT systems, following the same line
of thought and motivation.

On Isomorphic Software
Isomorphic means ”with the same shape”. The
word isomorphism is derived from the Ancient
Greek: ισoζ , or isos = ”equal”, and µo%φη, or
morphe = ”form” or ”shape”. Isomorphism is a
popular, well-established concept in mathematics.
However, in the context of software development
the concept has emerged relatively recently. For
instance, in the context of web applications, iso-
morphism refers to the ability to run the same
code both on the backend (cloud) and in the
frontend (web browser). More broadly, isomor-
phic software architectures feature software com-
ponents that do not have to be modified (”change
their shape”) when running across the different
hardware or software components of the system;
some examples of isomorphism in the context of
software systems are listed in Table 1.

In principle, writing software for isomorphic
architectures is fundamentally simpler, since the
same code can run everywhere. Because the
underlying technologies are handled uniformly,
developers do not have to master various different
development technologies, and thus complexity is
tamed considerably.

Several different levels of isomorphism can be
identified. At the first level, isomorphism refers
to the consistent use of the same development
technologies across the different computational
elements in the entire system. In contrast with
such static, development-level isomorphism, in
dynamic isomorphism a common runtime engine
or virtualization solution is used, so that the same

Technology Description of Isomorphic Features
Java (1995) The ”write once, run everywhere” slogan

popularized by the Java platform [1] cap-
tures the essence of static isomorphism in
software. In Java, the concept meant that
it is possible to run the same software
on different computer architectures and
operating systems using a virtual machine.

Squeak
Smalltalk
(1996)

Virtual machines for the Squeak Smalltalk
system are available for many operating
systems and hardware platforms, making it
possible to run bit-identical images across
all [4].

Unity (2005) Unity 3D development platform was born
within the gaming domain, but it has re-
cently branched out to cinematics, auto-
motive and architecture domains. Appli-
cations written for Unity can run across
25 different platforms, including gaming
consoles, but also mobile devices, virtual
reality headsets and smart TVs.

Lively Kernel
(2007)

The Lively Kernel is a web framework,
where applications are composed with
JavaScript, and the code can be run on
either in the client or on the server side
[5].

Isomorphic
web apps
(2013)

The term ’isomorphic web app’ was intro-
duced in the context of web applications
in mid-2010s, referring to the ability to
allocate a part of a web application func-
tionality either on the server or on the
client [12]. While the term was new, the
same idea has been used in the context
of the Web previously, e.g., in the Lively
Kernel mentioned above.

Universal
Windows
Platform
(2015)

Within the Microsoft ecosystem, this plat-
form enables developers to write and
run the same software on computers and
tablets running Windows 10, Xbox One
gaming machines and HoloLens devices.

Liquid web
apps (2015)

Liquid web applications [11] allow mi-
gration of their user interface components
on the fly, allowing the users to flexibly
use applications on different devices and
screens. The main focus in this work is on
user experience: how to seamlessly move,
clone and adapt user interface components
and entire user experiences from one de-
vice to another.

Table 1. Examples of Isomorphic Software.

code can run in different computational elements
without recompilation. In an even more advanced
system, dynamic migration of code from one
computational element to another is enabled.

In case of IoT applications, the same (i.e.,
isomorphic) software can ideally be deployed
throughout the end-to-end system to run on edge
devices, gateways, mobile clients and cloud ser-
vices. However, as we are going to discuss, cur-
rent IoT systems are a far cry from this ambition.
Today, IoT application developers must be aware
about the deployment context for their code,
and they must be familiar with many different

2 IEEE Computer (manuscript)



Cloud

Edge
Gateway

Mobile
Device

Hardware
Component

Virtualization Programming
Language

VM
Container

JavaScript
Python

...

Swift
Kotlin

IoT
Device

C
C++

None

OS

Zephyr OS
FreeRTOS

QNX
VxWorks

Android
iOS

Linux

Linux
Android

VM
Container

JavaScript
Java

...

App
Sandbox

Figure 2. Illustrated Example of Current Platform
Diversity in the Context of IoT Systems.

programming languages and virtual runtime envi-
ronments and communication protocols (Fig. 2).
This platform diversity can make it impossible,
for example, to redeploy components from the
edge to the cloud without a complete rewrite.

While isomorphic architectures will make it
easier, faster and potentially cheaper to develop
IoT applications and systems, we predict that they
will also enable new kinds of dynamic appli-
cations which take advantage of the possibility
to dynamically redeploy and migrate application
components from the edge to the cloud (and vice
versa).

Challenges in IoT Development –
Diversity of Programming Models
Today, the vast majority of software developers
have been trained to do either mobile develop-
ment or web development [18]. Many of these
developers tend to assume that their skills would
be directly applicable to IoT development. How-
ever, IoT systems have many characteristics that
do not apply to mobile or web applications. IoT
developers must consider several factors that are
unfamiliar to most application developers. Such
factors include

(i) multidevice programming,
(ii) heterogeneity and diversity of devices,

(iii) intermittent, potentially unreliable connec-
tivity,

(iv) the distributed, always-on and nature of the
overall system, and

(v) the general need to write software in a

highly fault-tolerant and defensive manner.

Moreover, a typical IoT application is continu-
ous and reactive. On the basis of observed sensor
readings, computations get triggered (and retrig-
gered) and eventually result in various actionable
events. The systems are essentially asynchronous,
parallel, and distributed. These qualities alone
make IoT applications very different from tradi-
tional PC, mobile or web applications, in which
software is typically written for a single client that
may communicate with a single backend server.

In general, IoT devices are bringing back the
need for embedded software development skills
and education. Software development for IoT
devices is very similar to ”classic” embedded
systems development, as they both require small-
memory and energy-aware software development
skills. This is a relevant note especially from
an education viewpoint, since in the past 10-15
years a lot of universities – at least in North-
ern Europe – have scaled back their courses on
embedded systems and control theory, focusing
on presumably more modern and desirable areas
such as Web and mobile software development
instead. Recent Developer Economics survey re-
ports strongly confirm the focus on higher-level
programming skills [18].

While IoT device development is bringing
back the need for embedded software, in the
other end of the spectrum of IoT end-to-end
systems, cloud development relies heavily on
multiple layers of virtualization. In a mod-
ern microservice-based software architecture, the
built-in assumption is that all the microservices
must be turned into Docker containers. Further-
more, those Docker containers are then assumed
to be run in a Kubernetes cluster. This has to
be done in spite of the fact that the underlying
components are commonly written in Python or
JavaScript/Node.js (thus requiring a virtual ma-
chine language runtime), and they typically run
in a virtual machine rented from third-party cloud
service providers such as Amazon or Microsoft.

Dockerization and the use of Kubernetes ef-
fectively means that modern software systems
commonly use a minimum of four virtualization
layers even for the simplest of cloud components.
The additional virtualization layers often offer
little additional value, add overhead to the devel-

month 202x 3



opment process, slow down application execution,
and make debugging of the system more difficult.
Nevertheless, the use of virtualized software en-
vironments is rapidly spreading also to IoT edge
systems, including gateway development.

Virtualization layers add complexity to just
about every step of the development process.
Dealing with this complexity necessitates a lot
of boilerplate software that presumably helps,
but often distracts the developers from focusing
on the essentials of the applications. Despite
extensive use of virtualization, IoT systems still
suffer from a rigid and fragmented architecture
in which tasks cannot be reallocated easily from
one computational element to another.

Industrial Example
Let us present a brief industrial IoT system ex-
ample to illustrate the current diversity. In this
system, a company has developed an industrial
measurement and tracking solution that consists
of a large number of devices that have been
custom-built for different measurement and track-
ing tasks. Examples include devices for tracking
air quality (temperature, humidity, air pressure
and indoor air pollution), tracking movement
(based on both inertial measurement units and
indoor localization technologies), as well as de-
vices for measuring ambient noise and luminosity
(including infrared light level). Devices are con-
nected to the network either via short-area radio
solution such as Wi-Fi or low-power wide-area
network (LPWAN) solution such as Narrowband-
IoT (NB-IoT) or LTE-M. Data uploading and
actuation is performed using the MQTT protocol
(https://mqtt.org/).

In this case study system, sampling rates and
data upload rates are relatively moderate. On av-
erage, data uploading is performed only every few
minutes. This simplifies the implementation of
the cloud backend quite considerably, since there
is no requirement for continuous data streaming
or extremely low latencies. Fig. 3 provides an
overview of our case study system.

The measurement devices are built on top of
available off-the-shelf hardware. For Wi-Fi based
devices, popular ESP32 (https://www.espressif.
com/en/products/socs/esp32) platform was used.
For NB-IoT/LTE-M based devices, Nordic Semi-
conductor’s nRF91 (https://www.nordicsemi.com/

Products/Low-power-cellular-IoT/nRF9160) was
chosen. The development language for both of
these device platforms is C, but APIs, libraries
and tools vary considerably since a different real-
time operating system (RTOS) is used in each
device platform.

Since data uploading is performed over Wi-
Fi or cellular, this use case does not require any
custom-built gateway devices running dedicated
protocol translation stacks. However, for device
configuration purposes, an Android mobile app –
written in Java utilizing the Android libraries –
was developed as well.

A lot of focus in the development effort was
placed on developing the cloud backend. The
logical components of the backend are depicted in
Fig. 3. The majority of backend components were
implemented using open source components. For
security perimeter/reverse proxy implementation,
NGINX (https://nginx.org/) was chosen. For data
acquisition (collection of sensing data from de-
vices), both Apache Kafka (https://kafka.apache.
org/) and RabbitMQ (https://www.rabbitmq.com/)
are used. For logging and system monitoring,
Grafana (https://grafana.com/), Graphite (https://
graphiteapp.org/) and Icinga (https://www.icinga.
com/) were picked. Data analytics capabilities
were originally implemented using Apache Storm
(http://storm.apache.org/), but these capabilities
were later replaced with Apache Spark (https:
//spark.apache.org/). Domain-specific microser-
vices were all implemented in Node.js.

The entire backend is Dockerized; for in-
stance, each of the microservices runs in its own
Docker container. Ansible (https://www.ansible.
com/) and OpenStack (https://www.openstack.
org/) were utilized in the original deployment, but
Later on the entire system was migrated to run in
a Kubernetes cluster (https://kubernetes.io/).

In addition to the devices and the cloud back-
end, some additional web and mobile applications
were developed for data visualization purposes
as well as for system administration and moni-
toring. In web application development, an ear-
lier version of Angular.js (https://angularjs.org/)
was used, whereas mobile apps were written in
Java/Android Studio.

As can be determined from the discussion
above, the development of the entire end-to-end
system required a very broad palette of technolo-

4 IEEE Computer (manuscript)

https://mqtt.org/
https://www.espressif.com/en/products/socs/esp32
https://www.espressif.com/en/products/socs/esp32
https://www.nordicsemi.com/Products/Low-power-cellular-IoT/nRF9160
https://www.nordicsemi.com/Products/Low-power-cellular-IoT/nRF9160
https://nginx.org/
https://kafka.apache.org/
https://kafka.apache.org/
https://www.rabbitmq.com/
https://grafana.com/
https://graphiteapp.org/
https://graphiteapp.org/
https://www.icinga.com/
https://www.icinga.com/
http://storm.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://www.ansible.com/
https://www.ansible.com/
https://www.openstack.org/
https://www.openstack.org/
https://kubernetes.io/
https://angularjs.org/


Device
Management

Identity and Access
Management

Domain-Specific
Microservices

Data
Acquisition

Deployment and
Runtime 
Support

Logging and 
Monitoring 

Support

Analytics
Support

Data
Storage

Data
Access and

Notifications

Administrative
Monitoring Tools

Web and Mobile
Apps

Device
Configuration
Tools

Figure 3. Overview of Our Case Study System, Including Its Key Subsystems and Related Applications.

gies ranging from embedded, mobile and web
application technologies to a spectrum of pop-
ular cloud backend implementation components.
Given the breadth of the technologies, it would be
almost impossible for an individual developer or a
small startup company to master all the necessary
technologies to develop the entire system. Fur-
thermore, because of the selected technologies,
each of the components is rather tightly coupled
with a specific computational element in the end-
to-end system.

Additional Catalysts for Change
Intelligence in the Edge. In ”classic” IoT systems
such as our case study system above, the majority
of computation and analytics are performed in
the cloud in a centralized fashion. However, in
recent years there has been a noticeable trend
in IoT system development to move intelligence
closer to the edge. Historically, the computing
capacity, memory and storage of edge devices
were limited. Due to increasing computational
capabilities of edge devices and requirements for
lower latencies, though, intelligence in a modern

end-to-end computing system is gradually mov-
ing towards the edge, first to gateways and then
to devices. This includes both generic software
functions, and – more importantly – time critical
AI/ML features for processing data available in
the edge with minimal latency. The requirement
to run advanced AI/ML and analytics algorithms
in the edge increases the demand for consistent
programming technologies across the end-to-end
system.

Increasingly dynamic nature of IoT Systems.
In IoT systems that consist of a massive num-
ber of devices overall, device topologies can be
expected to be highly dynamic and ephemeral.
This dynamism calls for technologies that can
cope with dynamically changing “swarms” of
devices and their dynamically evolving responsi-
bilities. The increasingly dynamic nature is not
only related to software features, but also to
AI/ML capabilities where reinforcement learning
can introduce unexpected situations – something
that worked yesterday might not work today,
and vice versa. Furthermore, since such features
are wrapped in software components, it is often

month 202x 5



expected that they can be relocated to the best-
suited context for execution.

To simplify development, deployment and
long-term use, we expect that future IoT systems
will need to support very flexible allocation of
responsibilities, so that the roles of devices can
evolve over time. This calls for a platform in
which different computational entities can run the
same code.

Predicting the Rise of Isomorphic IoT
Systems
With the ever-increasing complexity, dynamism
and sheer amount of software, we are at a dan-
gerous trajectory at the moment. Rigid system
architectures, broad spectrum of technologies,
abundant use of cargo-cult reuse (picking certain
implementation technologies and methods simply
because others have done so), inconsiderate use of
virtualization, and highly virtualized deployment
and package management approaches are leading
us to IoT systems that become increasingly diffi-
cult to manage. It is time for a change.

Going forward, we need technologies that
liberate us from rigid task allocation and support
the use of consistent implementation technolo-
gies. Dynamic component deployment should be
supported, but in a fashion that emerges from
application needs – especially in relation to per-
formance and reliability – and not due to con-
straints imposed by dominant development plat-
forms and tools. Moreover, various features (es-
pecially AI/ML capabilities) may require flexible
migration of code and models from the cloud
to the edge (and vice versa), depending on data
availability and required response times.

Our prediction is that these demands will
eventually lead us to isomorphic IoT system
architectures, in the spirit of isomorphic web
applications [12]. By isomorphic web applica-
tions, it is commonly referred to the ability
to use the same development technologies and
code between the frontend and backend. Just
as what we are currently witnessing in the IoT
area, isomorphic Web applications emerged from
an initially fragmented technological landscape
in which the development technologies for the
web browser and the web server were entirely
different. Many web developers will surely still
remember the era when backend functionality

Cloud

Edge
Gateway

Mobile
Device

IoT
Device

Cloud

Edge
Gateway

Mobile
Device

IoT
Device

Isomorphic
IoT

Application

Figure 4. Classic vs Isomorphic IoT Architecture.

was written in PHP or Perl, resulting in a deep
divide between programming languages used on
the client and on the server side. Once the use of
JavaScript spread to the backend [16], it became
gradually possible to run the same code on both
sides, as long as code would rely on compatible
library dependencies and comply with different
sandboxing restrictions.

In an isomorphic IoT system, devices, gate-
ways and cloud backend features and frontend
applications will be written using the same tech-
nologies, and will ideally be able to run the same
software components, allowing flexible migration
of code between components in the overall sys-
tem. Instead of having to learn many incompatible
software development platforms, in an isomorphic
architecture one base technology will suffice and
will be able to cover all aspects of end-to-end
development; the same tools can then be used to
compose the software across all the computing
units (Fig. 4).

The two key technical elements that are
needed for implementing such systems are (i)
uniform API for accessing features of different
subsystems, and (ii) a common runtime that is fast
but small enough for embedded devices yet pow-
erful enough to implement lightweight containers
in order to deploy applications everywhere. In
addition, an orchestrator function (such as those
described in [7], [8]) is needed that will guide
the deployment and potential migration of the
different subsystems.

More broadly, the ”holy grail” in the IoT
area would be a common Programmable World
API that would cover device discovery, data ac-
quisition, data access, device actuation, device
management, code updates, debugging, and other

6 IEEE Computer (manuscript)



relevant topics in a universal fashion – thus work-
ing universally across devices from different do-
mains, manufacturers, and the necessary security
mechanisms. While it is debatable whether there
will ever be a single API to cover IoT devices
from entirely different domains, it is safe to bet
that in five to ten years IoT devices and their
APIs will have converged significantly. It is also
very likely that the necessary infrastructure will
grow around the already existing IP networking
and Web infrastructure.

Isomorphic IoT with Web Technologies
In seeking for concrete technology candidates for
implementing isomorphism, we have turned to
Web standards, since they have played a uni-
fying role in many other contexts. For uniform
APIs in the isomorphic IoT system context, the
most prominent candidate today is the Web of
Things (WoT), a set of standards for solving
the interoperability issues of different Internet of
Things (IoT) platforms and application domains
[20]. In essence, WoT makes each ’thing’ part
of the Web by giving it a URI that can be used
for communicating with it. The communication
with each thing is supported with a common data
model and a uniform API that is recognized by
every thing.

For the isomorphic IoT runtime, the
Web provides two prominent options: (1)
JavaScript/ECMAScript [3] and (2) WebAssembly
[19]. The former is the de facto language for
web applications both for the web browser and
the cloud backend (Node.js); it is currently
the most viable option for implementing static
isomorphism, i.e., to allow the use of the same
programming language throughout the end-to-end
system. The latter is a binary instruction format
to be executed on a stack-based virtual machine
that can leverage contemporary hardware [2],
[6]; we see WebAssembly as the best option
for providing support for dynamic isomorphism,
i.e., the ability to use of common runtime that is
powerful but small enough to fit also in low-end
IoT devices (Fig. 5). Note that these options
are not mutually exclusive, i.e., it would be
possible to implement an architecture in which
WebAssembly is used as the unifying runtime but
in which JavaScript is used as the programming
language throughout the end-to-end system.

Runtime

Figure 5. Using Web Technologies to Implement
Static and Dynamic Isomorphism – Potential Options.
Notice that the options are not mutually exclusive.

Both options have their pros and cons in
the context of isomorphic IoT applications.
JavaScript offers massive library support (over
a million NPM modules), large number of de-
velopers familiar with the language, and high-
performance virtual machines. However, for iso-
morphic applications, the dynamic nature of
JavaScript may require additional support for
packaging the applications into containers. In
contrast, WebAssembly programs are organized
into modules, which are the unit of deployment,
loading and compilation; thus they seem like nat-
ural candidates for building lightweight contain-
ers [9]. WebAssembly programs can be written
in a variety of programming languages and then
compiled to WebAssembly for execution. How-

month 202x 7



ever, the technology is still relatively immature
outside the realm of web browsers. Both tech-
nologies can be used to realize a model in which
new applications are initialized in the locations
where they are needed, as well as realizing the
vision of migratory, liquid applications [15].

Ultimately, the definition of a common, iso-
morphic IoT platform is about standardization.
While researchers can make relevant contribu-
tions and proposals, this area requires collabora-
tion from major industry players to get together
and agree on common principles and practices.
Alternatively – or in addition – de facto standards
will surely be established by those companies
who manage to create highly successful busi-
nesses around their IoT solutions.

Finally, while predicting the rise of isomor-
phic software, it is important to note that not all
software needs to be isomorphic. For instance,
low-cost IoT devices such as ambient temperature
or air quality sensors are often implemented with
”bare metal” solutions without including any kind
of an operating system in the device. Although
hardware capabilities are increasing very rapidly
(just 15 years ago, who would have thought mi-
crocontrollers to be based on 32-bit architectures
or have megabytes of storage memory?), we do
not foresee such devices including support for
containers or advanced virtualization capabilities
in the next several years. In the same vein,
visualization UIs or cloud components that have
been developed for monitoring the overall system
state usually do not need to be transferable to
run in the edge devices. Even though advances in
hardware development will probably eventually
enable the use of virtualization literally in all
types of devices, ultimately these choices will still
have to be based on rationally justified use cases
rather than blindly trying to make code executable
everywhere.

Conclusions
According to a popular saying – often attributed
to Alan Kay – in software systems development
”simple things should be simple, and complex
things should be possible”. Unfortunately, in
modern software development simplicity seems
to be a lost virtue [10]. Instead, modern software
systems are characterized by plentiful use of vir-
tualization, abundant use of third-party software

components from unknown sources, and a cornu-
copia of overlapping implementation technologies
for different parts of the end-to-end system.

When targeting IoT systems, there is cur-
rently very little coherence in the development or
deployment practices at the level of end-to-end
systems. Furthermore, deployment in the large
introduces new challenges, especially when one
should routinely manage up to millions of devices
in a consistent fashion. At the moment, we are
still far away from Wasik’s prediction, ”In the
programmable world, all our objects will act as
one” [17]. We really should not continue pro-
gramming, installing, and maintaining large-scale
IoT systems with the medley of technologies that
are in use today.

Our prediction is that IoT development needs
isomorphic software architectures, in which sub-
systems and computational entities can be pro-
grammed with a consistent set of technologies,
allowing applications and their components to
be statically or dynamically allocated, orches-
trated and migrated to different entities flexibly.
Although fully isomorphic IoT systems are still
some years away, their arrival may ultimately
dilute or even dissolve the boundaries between
the cloud and its edge, allowing computations
to be transferred dynamically and performed in
those elements that provide the optimal tradeoff
between performance, storage, network speed,
latency and energy-efficiency.

As most prominent candidates for realizing
isomorphism in the context of IoT, we foresee
Web of Things for APIs, and JavaScript or Web-
Assembly for composing flexibly deployable and
transferrable application logic.

REFERENCES
1. Ken Arnold and James Gosling. The Java Programming

Language. 2005.

2. David Bryant. WebAssembly Outside the Browser: A

New Foundation for Pervasive Computing. In Keynote

at ICWE’20, June 9-12, 2020, Helsinki, Finland, 2020.

3. ECMA International. Standard ECMA-

262: ECMAScript 2020 Language Speci-

fication. June 2020. https://www.ecma-

international.org/publications/standards/Ecma-262.htm

(visited March 5, 2021).

4. Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace,

and Alan Kay. Back to the Future: the Story of Squeak,

8 IEEE Computer (manuscript)



a Practical Smalltalk Written in Itself. In Proceedings of

the 12th ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications,

pages 318–326, 1997.

5. Daniel Ingalls, Tim Felgentreff, Robert Hirschfeld,

Robert Krahn, Jens Lincke, Marko Röder, Antero Taival-

saari, and Tommi Mikkonen. A World of Active Objects

for Work and Play: the First Ten Years of Lively. In

Proceedings of the 2016 ACM International Symposium

on New Ideas, New Paradigms, and Reflections on

Programming and Software, pages 238–249, 2016.

6. Martin Jacobsson and Jonas Willén. Virtual Machine

Execution for Wearables Based on WebAssembly. In

EAI International Conference on Body Area Networks,

pages 381–389. Springer, 2018.

7. Dawid Kurzyniec, Tomasz Wrzosek, Dominik

Drzewiecki, and Vaidy Sunderam. Towards Self-

Organizing Distributed Computing Frameworks:

the H2O Approach. Parallel Processing Letters,

13(02):273–290, 2003.

8. Niko Mäkitalo, Timo Aaltonen, Mikko Raatikainen, Alek-

sandr Ometov, Sergey Andreev, Yevgeni Koucheryavy,

and Tommi Mikkonen. Action-Oriented Programming

Model: Collective Executions and Interactions in the

Fog. Journal of Systems and Software, 157:110391,

2019.

9. Niko Mäkitalo, Tommi Mikkonen, Cesare Pautasso, Vic-

tor Bankowski, Paulius Daubaris, Risto Mikkola, and

Oleg Beletski. WebAssembly Modules as Lightweight

Containers for Liquid IoT Applications. In Proceedings

of International Conference on Web Engineering 2021.

Springer, 2021.

10. Tiziana Margaria and Mike Hinchey. Simplicity in IT: The

Power of Less. Computer, 46(11):23–25, 2013.

11. Tommi Mikkonen, Kari Systä, and Cesare Pautasso.

Towards Liquid Web Applications. In International Con-

ference on Web Engineering, pages 134–143. Springer,

2015.

12. Jason Strimpel and Maxime Najim. Building Isomorphic

JavaScript Apps: From Concept to Implementation to

Real-World Solutions. O’Reilly Media, 2016.

13. Antero Taivalsaari and Tommi Mikkonen. A Roadmap

to the Programmable World: Software Challenges in the

IoT Era. IEEE Software, 34(1):72–80, 2017.

14. Antero Taivalsaari and Tommi Mikkonen. On the De-

velopment of IoT Systems. In 2018 Third Interna-

tional Conference on Fog and Mobile Edge Computing

(FMEC), pages 13–19. IEEE, 2018.

15. Antero Taivalsaari, Tommi Mikkonen, and Kari Systä.

Liquid Software Manifesto: The Era of Multiple Device

Ownership and its Implications for Software Architec-

ture. In 2014 IEEE 38th Annual Computer Software and

Applications Conference, pages 338–343. IEEE, 2014.

16. Stefan Tilkov and Steve Vinoski. Node.js: Using

JavaScript to Build High-Performance Network Pro-

grams. IEEE Internet Comput., 14(6):80–83, 2010.

17. Bill Wasik. In the Programmable World, All Our

Objects Will Act as One. Wired. Available on-

line: http://www.wired. com/2013/05/internet-of-things-

2/ (accessed on Oct. 13, 2020), 2013.

18. Mark Wilcox, Stijn Schuermans, and Christina

Voskoglou. Developer Economics: State of the

Developer Nation. Technical report, VisionMobile Ltd,

2016.

19. World Wide Web Consortium. WebAssembly Core

Specification, 2019. https://webassembly.github.io/

spec/core/ download/WebAssembly.pdf (visited March

5, 2021).

20. World Wide Web Consortium. Web of Things

(WoT) Architecture, 2020. https://www.w3.org/TR/wot-

architecture/Overview.html (visited March 5, 2021).

Author Bios
Tommi Mikkonen is a Professor of Soft-

ware Engineering at the University of Helsinki,
Finland. He received his PhD from Tampere
University of Technology, Finland. His re-
search interests include Web engineering, IoT,
and software architectures. Contact him at
tommi.mikkonen@helsinki.fi

Cesare Pautasso is a Professor at the Soft-
ware Institute at USI, Lugano, Switzerland. He
received his PhD from ETH Zurich, Switzerland.
His research interests include Web engineering,
liquid software architectures, and API analytics.
Contact him at c.pautasso@ieee.org.

Antero Taivalsaari is a Bell Labs fellow at
Nokia Bell Labs. He received his PhD from
University of Jyväskylä, Finland. Contact him at
antero.taivalsaari@nokia-bell-labs.com.

month 202x 9


