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ABSTRACT
Recently, several works have studied the problem of view selection

in graph databases. However, existing methods cannot fully exploit

the graph properties of views, e.g., supergraph views and common

subgraph views, which leads to a low view utility and duplicate

view content. To address the problem, we propose an extended

graph view that persists all the edge-induced subgraphs to answer

the subgraph and supergraph queries simultaneously. Furthermore,

we present the graph gene algorithm (GGA), which relies on a set

of view transformations to reduce the view space and optimize

the view benefit. Extensive experiments on real-life and synthetic

datasets demonstrated GGA outperformed other selection methods

in both effectiveness and efficiency.

CCS CONCEPTS
• Information systems → Database views;
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1 INTRODUCTION
View selection is a well-studied topic in relational [1, 4, 12, 25], XML

[13, 19, 22], and semantic databases [3, 10]. Various methods are

proposed to select thematerialized views for different target queries,

e.g., SQL and XQuery. However, they are not suitable for graph view

selection because they do not consider the structural properties

of graph queries, e.g., subgraph patterns. Kaskade [7] is a view

selection method that inputs the view templates and then generates

views as Cypher queries. It modeled the view selection problem as

an 0-1 Knapsack problem, and used a branch-and-bound solver to

select the graph views. However, there are two major limitations

to existing methods.

The first limitation is that existing methods only select views

with the subgraph patterns to answer the queries while they do

not consider using a view with a supergraph pattern to answer the

contained queries. This leads to a low utility of the materialized

views. To address this limitation, we propose an extended graph
view, which is created via an edge-induced method, being capable

of answering the subgraph and supergraph queries simultaneously.

We also proposed a filtering-and-verification framework to check

the query containment by views.

The second limitation is that existing methods cannot effectively

explore the possible candidate view combinations to reduce the

view space and improve the view benefit. Such a view setV could

be reused to answer other contained queries, thereby saving the

view space. However, generating an optimal view set V ′ for a
query workload 𝑄 is challenging due to the exponential search

space. In addition, exploring the graph properties among views,

e.g., finding the maximum common subgraphs to generate a smaller

view set, entails an NP-hard problem of subgraph isomorphism [15].

Tomitigate this problem, we propose a graph gene algorithm (GGA),

which relies on a three-phase framework that explores graph view

transformations to reduce the view space and optimize the benefit.

To summarise, we made the following contributions:

(1) We proposed an extended graph view, which is created by an

edge-induced method that translates a graph query to a query

pattern and persists all its edge-induced subgraphs to answer

both subgraph and supergraph queries.

(2) We proposed a filtering-and-verification framework that en-

ables the verification of the query containment by views.

(3) We proposed a view selection algorithm, GGA, to select the

views into the memory under a space budget, which explores

various options of graph view transformations to find an opti-

mal view set.

(4) We conducted extensive experiments on diverse query work-

loads and datasets. The results showed that GGA outperformed

other selection methods in both effectiveness and efficiency.

2 PRELIMINARIES
This section presents the definitions of terminologies and the view

selection problem. Particularly, Section 2.1 defines the property

graph, pattern query, edge-induced subgraph, and extended graph

view; Section 2.2 defines the view selection problem.

2.1 Graph, Queries and Views
Labeled property graph. A labeled property graph is a multi-

relational, attributed, digraph 𝐺 = (𝑉𝐺 , 𝐸𝐺 , 𝐿, 𝑃), where (1) 𝑉𝐺 is

a set of vertices; (2) 𝐸𝐺 ⊆ 𝑉𝐺 × 𝑉𝐺 , in which (𝑣, 𝑣 ′) denotes an
edge from vertex 𝑣 to 𝑣 ′; (3) L is a label function such that for each

vertex 𝑣 ∈ 𝑉𝐺 (resp. edge 𝑒 ∈ 𝐸𝐺 ), L(𝑣) (resp. L(𝑒)) is a label from
an alphabet Σ; (4) P is a function such that for each node 𝑣 ∈ 𝑉𝐺
(resp. edge 𝑒 ∈ 𝐸𝐺 ), P(𝑣) (resp. P(𝑒)) is a set of key/value pairs called
properties of a node or an edge.

Graph pattern query. A graph pattern query is a digraph 𝑄𝐺 =

(𝑉𝑝 , 𝐸𝑝 , 𝐿, 𝑓 ) over a labeled property graph 𝐺 , where (1) 𝑉𝑝 is a set

of query nodes and 𝐸𝑝 is a set of query edges, respectively; (3) L is

a label function such that for each vertex 𝑣 ∈ 𝑉𝑝 (resp. edge 𝑒 ∈ 𝐸𝑝 ),



L(𝑣) (resp. L(𝑒)) is a label from an alphabet Σ; (4) f is a function such

that for each vertex 𝑣 ∈ 𝑉𝑝 (resp. edge 𝑒 ∈ 𝐸𝑝 ), f(𝑣) (resp. f(𝑒)) is a
Boolean predicate.

Edge-induced subgraph. An edge-induced subgraph is a graph

𝑆 = (𝑉𝑆 , 𝐸𝑆 , 𝐿, 𝑃) that contains a subset 𝐸𝑆 of the edges of a graph

𝐺 together with any vertices 𝑉𝑆 that are their endpoints.

Extended graph view. An extended graph view is a view 𝑉 =

(𝑉𝑃 ,𝑉𝐺 ), where (1) 𝑉𝑃 is a view pattern which is a graph pattern

query 𝑄𝐺 with a traversal order of the edges; (2) 𝑉𝐺 is the view

content that includes all the edge-induced subgraphs 𝑆 in the tra-

versal order of 𝑉𝑃 . Please refer to the extended version [26] of the

paper for more details.

2.2 View Selection Problem
Definition 2.1. (Benefit of a view): Given a query workload 𝑄 ,

the benefit b of a view V is the total cost savings by processing the

queries using the view V compared to using the graph 𝐺 :

𝑏 (𝑉 ,𝑄) =
∑
𝑞∈𝑄
(𝑤𝑖 × (𝑐𝑜𝑠𝑡 (𝑞 |𝐺) − 𝑐𝑜𝑠𝑡 (𝑞 |𝑉 ))) (1)

where𝑤𝑖 is the weight or frequency of query 𝑞𝑖 in Q; cost(𝑞 |𝐺) and
cost(𝑞 |𝑉 ), denote the cost of query evaluation over the graph𝐺 and

view 𝑉 , respectively. The cost(𝑞 |𝐺) is calculated depending on the

underlying store, e.g., graph store or relational store.

Given a query workload𝑄 and a space budget 𝑆 , we aim to select

an optimal view set V to materialize within the budget 𝑆 . Thus,

the view selection problem can be modeled as a Knapsack problem

of maximizing the view benefit under the space budget.

Definition 2.2. (View selection problem): Given a workload𝑄

and a space budget 𝑆 , the objective is to select a set of views V𝑠
derived from a candidate view set V that fully covers the query

results of𝑄 , for maximizing the total benefit of 𝑏 (V𝑠 , 𝑄), under the
constraint that the total space occupied byV𝑠 is no greater than 𝑆 .

The view selection problem is NP-hard [5] for a static single-

view case in which V𝑠 is a subset of V , and each view 𝑉 ∈ V𝑠
is independent so that each query 𝑞 ∈ 𝑄 is answered by a single

view 𝑉 ∈ V𝑠 . For such a case, there is a straightforward reduction

from the Knapsack problem: find a set of k items with the space

occupancy 𝑠1, . . . , 𝑠𝑘 and the benefits 𝑏1, . . . , 𝑏𝑘 so as to maximize

the sum of the benefits of the selected items that satisfy the space

budget 𝑆 . Moreover, there could be the dynamic cases in which

the views in V𝑠 can be changed, e.g., by merging, breaking, and

removing views. The problem in such cases becomes harder since

the space of the candidate view set is extremely huge and it is un-

feasible to explore all possible combinations. In addition, for the

dynamic case, views are not independent as a query can be an-

swered by multiple views, resulting in a more complicated problem

than the static case using the single-view evaluation. In this work,

we propose a graph gene algorithm to address the view selection

problem in the dynamic multi-view setting.

3 VIEW CONSTRUCTION AND EVALUATION
In this section, we introduce how to construct the candidate view

patterns and how to create the view content, as well as how to

evaluate the view benefit.

3.1 Edge-Induced View Construction
3.1.1 View pattern construction. Given a candidate query set𝑄 , we

translate the queries to a pattern query set, then leverage an edge-

induced method to construct a candidate view for each pattern

query. Particularly, for a pattern query 𝑄𝐺 ∈ 𝑄 , we parse it to

Gremlin traversals and derive the traversal patterns 𝐸𝑝 ; we then

add each query edge 𝑒 ∈ 𝐸𝑝 with the predicates to its view pattern

𝑉𝑃 (𝑄𝐺 ) in succession. Since the query node 𝑣 and edge 𝑒 are labeled
with a given alias, the procedure will also map the alias label to the

label 𝐿(𝑣) and 𝐿(𝑒) in the schema graph.

3.1.2 View content construction. To construct the view content

𝑉𝐺 (𝑄𝐺 ), we create an edge-induced graph by the following steps:

(i) we traverse each edge 𝑒 ∈ 𝐸𝑝 in the traversal order as the view

pattern 𝑉𝑃 (𝑄𝐺 )’s. (ii) for each visited query edge 𝑒 , we add all the

matched results of edges 𝐸 (𝑒) in the property graph 𝐺 with their

endpoints 𝑉 (𝑒) to the view content 𝑉𝐺 (𝑄𝐺 ). (iii) the procedure

terminates when all the patterns have been visited. To the end, the

selected graph views are materialized in the format of GraphML

[24], which is an XML-based representation of a graph.

3.2 A Filtering-and-Verification Framework
The filtering-and-verification framework consists of two stages. The

first stage will check if a pattern query 𝑄𝐺 is contained by a view

pattern𝑉𝑃 (𝑄 ′𝐺 ). Otherwise, the query will not be evaluated on view
𝑉 . The second stage will further verify if the view content 𝑉𝐺 (𝑄𝐺 )
contains all the matched results of the given query. Intuitively,

the first stage checks the containment between a query pattern

and a view pattern, and the second stage verifies the containment

between query results and the view content.

3.2.1 The filtering stage. In this stage, we check if a pattern query

𝑄𝐺 is a subgraph pattern of a view pattern𝑉𝑃 (𝑄 ′𝐺 ). It is known that
finding all the subgraph isomorphism mappings is NP-hard [15],

but there exist several practical algorithms to decide the answers

in polynomial time. In this work, we employ the VF2 algorithm [6]

to the pattern containment between two graph patterns.

3.2.2 The verification stage. This stage verifies if a query 𝑄𝐺 can

be answered by the view content𝑉𝐺 (𝑄 ′𝐺 ). It checks if the following
conditions hold: (i) there exists a mapping𝑀 from each edge pattern

𝑒 ∈ 𝐸𝑝 to the edge pattern 𝑒 ′ ∈ 𝐸 ′𝑝 . (ii) for the edge 𝑒 ′ ∈ 𝐸 ′𝑝 that has

no mapping from 𝑒 ∈ 𝐸𝑝 , if the vertex 𝑣 ′𝑒 ∈ 𝑒 ′ has the mapping from

𝑣𝑒 ∈ 𝑒 , the node 𝑣 ′𝑒 = 𝑀 (𝑣) must have occurred in prefix traversal

patterns of 𝐸 ′𝑝 .

3.2.3 The evaluation of view benefit. Once the framework has veri-

fied the containment of a pattern query 𝑄𝐺 and a view 𝑉 , G-View

then evaluates the benefit 𝑏 (𝑄𝐺 ,𝑉 ). In our implementation, we use

the PROFILE feature [24] of Gremlin to obtain the cost of query

evaluation. Specifically, the PROFILE step returns various metrics

about the given Gremlin queries including the result size, count of

traversals, and total execution time in each pipeline. We perform

the PROFILE step over the view V and over the 𝐺 , respectively.

Then we take the total execution time as the cost and compute the

benefit according to Equation 1.
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4 GRAPH GENE ALGORITHM
In this section, we propose the graph gene algorithm (GGA) for

view selection. Specifically, Section 4.1 introduces the view trans-

formations. Section 4.2 presents the GGA algorithm.

4.1 View Transformations
The GGA algorithm is inspired by the gene algorithm (GA) [2],

it encodes the view patterns as graph genes and solves the view

selection problem as a state search process. By merging, breaking,

and removing views from the initial state, we obtain another state

from view setV ′ with a new benefit 𝑏 (V ′). Particularly, GGA has

three atomic behaviors for view pattern transformations, namely,

FISSION, FUSION, and REMOVE. In the following, we introduce

the view transformations in detail.

4.1.1 FISSION transformation. This transformation splits a view

pattern to multiple genes. Specifically, we find the articulation

points of a view pattern by using the Tarjan Algorithm [23], then

obtain multiple graph genes by breaking down the view pattern ac-

cording to its articulation points. The articulation points are vertices

whose removal increases the number of connected components

of the graph, and Tarjan Algorithm [23] is a (Depth-First-Search)

DFS-based approach that can run in O(V+E) time to compute the

articulation points in a directed graph. If the articulation point does

not exist, the view pattern becomes the graph gene itself.

4.1.2 FUSION transformation. FUSION is opposite to FISSION,

namely, this transformation merges or joins a view 𝑉𝑖 ∈ V to

another view 𝑉𝑗≠𝑖 ∈ V . Particularly, FUSION has two variants:

(1) Merge a sub-view 𝑉𝑖 ⊂ 𝑉𝑗 : Fusion merges the view 𝑉𝑖 to

𝑉𝑗≠𝑖 ∈ V if 𝑉𝑖 is contained by 𝑉𝑗≠𝑖 . It requires (1) 𝑉𝑖 is a subgraph

of 𝑉𝑗≠𝑖 ; (2) 𝑉𝑖 has a prefix traversal pattern of 𝑉𝑗≠𝑖 ’s.

(2) Merge-join the genes𝑔𝑖 ⊂ 𝑔 𝑗 : Fusionmerges the genes𝑔𝑖 ∈ 𝑉𝑖
if 𝑔 𝑗 ∈ 𝑉𝑗≠𝑖 contains 𝑔𝑖 ; the remaining genes 𝑔𝑘≠𝑖 ∈ 𝑉𝑖 are joined
to 𝑉𝑗≠𝑖 if they are not contained by other views 𝑉𝑘≠𝑖, 𝑗 .

The first case can be decided via the filtering-and-verification

framework, and contained views can be merged directly. For the

second case, the algorithm enumerates all the genes𝑔𝑖 ∈ 𝑉𝑖 over the
view setV to check the containment on other graph genes𝑔 𝑗 ∈ 𝑉𝑗≠𝑖
via the filtering-and-verification framework, then merges them to

the contained genes if any. The remaining genes 𝑔𝑘≠𝑖 ∈ 𝑉𝑖 are

assembled to the view𝑉𝑗≠𝑖 that has contained genes by connecting

the articulation points.

4.1.3 REMOVE transformation. REMOVE eliminates the empty-

gene candidate views after a sequence of view transformations.

Such candidate views can be removed as they have been contained

by other views.

Example 1. Figure 1 illustrates the view transformations. Given a
view pattern 𝑉𝑃 (𝑄𝐺 ) and a view setV = {𝑉1,𝑉2,𝑉3}, GGA applies
a set of transformations on the view patterns. In the FISSION phase,
𝑉𝑃 (𝑄𝐺 ) is broken down to four genes based on the articulation points
{𝐵,𝐶, 𝐸}. Then the genes are merged to the view set in the FUSION
phase. Specifically, genes 1,2,3 are merged to 𝑉1,𝑉2,𝑉3, respectively,
and the remaining gene 4 is joined to𝑉3 on node E. Finally, the𝑉𝑃 (𝑄𝐺 )
is removed from the candidate view set and we have reduced the
common parts of three graph genes of it, i.e., genes 1, 2, and 3.
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Figure 1: An illustration of view transformations.

Algorithm 1: Graph-Gene Algorithm (GGA)

Input: A query workload𝑄 , a candidate view set V , a space budge

𝑆 , fission probability 𝑝𝑓 , fusion probability 𝑝𝑐

Output: A view set V𝑠 .

1 while !timeout do
2 for 𝑖 ← 1 to V .𝑙𝑒𝑛𝑔𝑡ℎ do
3 if random(0,1) < 𝑝𝑓 then
4 V = V𝑖𝑛𝑑𝑒𝑥≠𝑖 ∪ 𝐹𝐼𝑆𝑆𝐼𝑂𝑁 (V𝑖 ) // Fission

5 if random(0,1) < 𝑝𝑐 then
6 V = 𝐹𝑈𝑆𝐼𝑂𝑁 (V𝑖𝑛𝑑𝑒𝑥≠𝑖 ,V𝑖 ) // Fusion

7 if V𝑖 .𝑔𝑒𝑛𝑒𝑠 = 𝑒𝑚𝑝𝑡𝑦 then
8 V = 𝑅𝐸𝑀𝑂𝑉𝐸 (V,V𝑖 ) // Remove

9 𝐵𝑣 = 𝑆𝑒𝑎𝑟𝑐ℎ𝐴𝑛𝑑𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (V,𝑄) // Evaluation

10 V′ = 𝐷𝑃𝑆 (V, 𝐵𝑣, 𝑆) // View selection

11 if 𝐵′
𝑉

> 𝐵𝑉 then
12 V𝑠 = V′
13 else
14 skip V′
15 return V𝑠

4.2 GGA Algorithm Description
Integrating the methods of view transformations and benefit evalu-

ation, we devise a view selection algorithm, called the GGA (Graph-

Gene Algorithm), which is shown in Algorithm 1. Given a query

workload 𝑄 and a candidate view setV , it returns a view setV𝑠
that is transformed fromV . In addition, two probabilities 𝑝 𝑓 and

𝑝 𝑓 are provided to perform the random FISSION and FUSION trans-

formations, respectively.

When the termination condition, e.g., a timeout threshold or

an iteration number, is not satisfied, GGA repeatedly applies the

FISSION, FUSION and, REMOVE transformations to derive a new

state of the view selection (lines 1-8). To simplify the description,

we assume the selection procedure is conducted by the helper proce-

dure SearchAndEvaluate (line 9), which calls the methods of benefit

evaluation for multiple views [26]. We use the cost optimizer [24]

of Gremlin to evaluate the view benefit and In line 9. The algorithm

calls another helper function DPS to select the views based on the

dynamic programming strategy.

The function of dynamic programming selection (DPS) goes as
follows: (i) initialize a benefit vector 𝐵𝑉 and a size vector 𝑆𝑉 . We

leverage the PROFILE [24] of Gremlin to derive the size vector 𝑆𝑉 ,

one can also plug other size estimators, e.g., [11], to obtain it; (ii) fill
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the DP table by considering two cases for every view: (a) the view

is included in the optimal subset, (b) not included in the optimal set.

Therefore, the maximum value that can be obtained according to

the equation: DP[i][j] = max(𝐵𝑉 [i] + DP[i-1][j-𝑆𝑉 [i]],DP[i-1][j]).

(iii) use a bottom-up approach to obtain the optimal selectionV ′.
Note that the algorithm only jumps to a new state with a higher

benefit. Otherwise, it will skip the current state and continue ap-

plying transformations to the views that are from the previously

obtained state to reach a another state (lines 11-14). When the ter-

mination condition is satisfied, the algorithm returns an optimal

view selection under the space budget.

Definition 4.1. (Transformation Completeness): LetV be a

set of candidate views andV𝑖
be the 𝑖-th state of the candidate view

set.V𝑖
is transformation complete iff there exists a set of sequence

transformation T = {𝜏1, 𝜏2, . . . , 𝜏𝑛} such thatV andV𝑖
cover the

same workload 𝑄 .

Lemma 1. Any state of view sets in GGA algorithm is transforma-
tion complete for a candidate view setV .

Proof 1. (Sketch) The transformation set T= {FISSION, FUSION,
REMOVE} is complete for any candidate view setV . Firstly, FISSION
breaks the initial view set V to a fine-grained view set with graph
genes. Thus, the joined view content of these graph genes can cover
the view content of V . Secondly, FUSION merges the view set V ′
with overlap genes. Hence, the union of view content of the remaining
genes still covers the view content ofV . Finally, the empty-gene views
are eliminated by REMOVE but they can be answered by other views.
Therefore, for any state of view set, the original workload 𝑄 can be
covered by a new view setV . That concludes the proof.

5 EXPERIMENTS
Experimental Setup. All the experiments were conducted on a

machine with a 2-core i5 CPU (2.9 GHz) and 16GB RAM. We imple-

mented all the compared methods in JAVA 1.8. We deployed SQLG

v2.0.2 to stored the raw data. We constructed the views from SQLG

and materialized them to GraphML [24] files.

Datasets and Workloads. We used both synthetic and real-life

data to conduct the experiments. We used a synthetic social net-

work dataset from the LDBC benchmark [8], which includes 11

entities connected by 20 relations. We generated an LDBC graph

with the scale factor SF1, resulting in a graph with roughly 1M ver-

tices and 2M edges. We designed a workload including 12 pattern

queries following [14]. We used two real-life graphs: (a) Amazon

dataset [16], a product co-purchasing network with 542K nodes and

3.3M edges. We designed 12 frequent query patterns following [17],

where each of the view content contains 67K nodes and edges on

average. (b) DBLP-citation network [21], a bibliography that con-

tains the publication information and co-authorship in computer

science. The dataset has 1M nodes and 2M edges. We also identified

12 query patterns similar to the Amazon patterns. Details of the

query patterns can be found at the extended version [26].

Compared SelectionAlgorithms.Wemeasured the performance

of the view selection algorithms in the experiments. Specifically, all

the algorithms modeled the selection problem as a Knapsack prob-

lem and they aimed at selecting the extended graph views under

a space budget for a given workload. We conducted three sets of

experiments to evaluate (1) the effectiveness of the algorithms in

answering the query, reducing the view size, and optimizing the

view benefit; (2) the efficiency of the selection algorithms; and (3)

the convergence of the GGA algorithm. We compared the following

selection algorithms with GGA:

(1) Dynamic Programming Selection (DPS): Our first base-
line method is the selection method based on dynamic program-

ming, which is described as a function in Section 4.2.

(2) Greedy-Based Selection (Greedy): The second algorithm

is a greedy-based algorithm [22]. In particular, this method com-

putes the view benefit in each iteration and remove a view with

the maximum benefit, along with the queries it contained. The

algorithm terminates until all queries are included or the total size

exceeds the size constraint.

(3) Kaskade: The third algorithm is a method used by Kaskade

[7]. We implemented it as follows: (i) we input the view templates

with no containment to simulate its view enumeration; (ii) we enu-

merate the queries and evaluate the benefit of a view that contains

the current query to simulate its single-view rewriting; (iii) we

leverage the PROFILE [24] step to derive the size vector; and finally

(iv) we use a branch-and-bound solver to select the views.

5.1 Effectiveness of Selection Algorithms
We ran four selection algorithms. Namely, DPS, Greedy, Kascade,

and GGA, to evaluate their effectiveness. We tested the algorithms

by varying the space budgets with S/6, S/4, and S/2, where S denotes

the total view size

∑
𝑣 𝑠 (𝑣).

Figure 2 depicts the performance of selection algorithms in op-

timizing the view benefit. Overall, for any workload and space

budget, the GGA algorithm achieved the highest view benefit, thus

can have the largest query processing cost reductions. For the LDBC

dataset with S/2, it improved 36%, 20%, 19% of view benefit over

DPS, Greedy, and Kascade, respectively. For the Amazon dataset

with S/2, it achieved 30%, 20%, 9% of view benefit improvement,

respectively. The view benefit was significantly improved by GGA

algorithm by 70%, 150%, 53% in the DBLP dataset. Kascade had a

higher benefit than DPS and Greedy because (i) it has eliminated the

contained views, thus it selected more useful views than DPS, and

(ii) it used the branch-and-bound strategy to search the solution,

thus can optimize both view benefit and space. Nevertheless, it has

an averagely 27% lower benefit than GGA. This is mainly attrib-

uted to (1) GGA’s fine-grained view transformations that explore

and merge the views with common subgraph parts. (2) its benefit

evaluation strategy that can take multiple view combinations to

optimize the benefit.

Figure 3 illustrates the fraction of queries that can be answered

by the selected views. GGA clearly outperformed others because it

employed supergraph views, merged views, and view combinations,

which result in more contained queries. Particularly, it can fully

cover all the queries when the space budget is increased to S/2. DPS

had the lowest query coverage in the LDBC and Amazon datasets

because it selected the views independently. Greedy had a higher

query coverage than DPS because it removed the contained queries

in each round. However, the query fraction of Greedy was affected

by the low-utility views that have a high benefit and a large size in
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Figure 2: View benefit for the workloads in three datasets based on views selected by three algorithms.
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Figure 3: Fraction of queries for the workloads in three datasets covered by views selected by three algorithms.

the DBLP dataset. Kascade can address this issue with its branch-

and-bound solver, but still, it can not compete with GGA because it

only considers single-view query rewriting.

Figure 4a illustrates the size of candidate views generated by the

selection algorithms. DPS had the largest view size because it had a

candidate view for each query, while Greedy and Kascade had the

same and relatively smaller size because they pruned the contained

views. It is clearly visible that GGA method outperformed others

because of its gene-based view transformation and combination.

Particularly, it reduced the space of the view size by up to 61%, 60%,

58% for LDBC, Amazon, and DBLP, respectively.

5.2 Efficiency of Selection Algorithms
Figure 4b shows the running time of four algorithms in millisec-

onds. In particular, the time consists of the execution time for view

construction, view evaluation, and view selection. The results man-

ifested that GGA outperformed others regarding efficiency. Overall,

it accelerated 36%, 20%, 30% of running time of DPS, Greedy, and

Kascade for the LDBC workloads, respectively. The improvement

was achieved up to 58%, 71%, and 55% for the Amazon workloads,

and 19%, 59% and 16% for the DBLP workloads. Kascade was faster

than DPS because it had a reduced candidate set after the view enu-

meration. Greedy incurred significant overhead because it had to

re-evaluate the view benefit in each round. The primary advantage

of GGA over others is that it has reduced the number and size of

views in the candidate set, thus saved unnecessary computation of

view evaluation. For the view selection phase, GGA was the best

because it had the smallest candidate set to select and generate.

5.3 The Convergence of GGA
In this experiment, we investigated the convergence of GGA.We set

both fission and fusion probabilities to 50% and ran the algorithm

with space budget S/2. The result was shown in Figure 4c, which

confirmed that GGA is effective: the algorithm converges within 10

generations for the workloads in three datasets. Furthermore, the

results indicated that the strategy of state search is effective. When

a state of view selection has a lower benefit than the previous state,

the algorithm can jump to another state with a higher benefit.

6 RELATEDWORK
View selection for relational, XML andRDF data.Materialized

view selection in relational databases has been a well-studied topic

(see [5, 18] for surveys). Particularly, Chaves et al. [4] encoded the

relational views as genes and applied the gene algorithm to the view

selection problem in the setting of distributed databases. Recently,

there emerged work, e.g., [25], that utilized deep reinforcement

learning to guide the view selection. There has been a host of work

on processing XML queries using views [13, 19, 22]. In [22], the au-

thors studied the view selection problem for XPath workloads, they

proposed a greedy-based solution that makes the space/time trade-

off. Katsifodimos et al. [13] studied the view selection for XQuery

workloads. They first developed a greedy-based algorithm for a

Knapsack selection problem, then proposed a heuristic algorithm to

search for an optimal view set based on multi-view rewriting. There

has also been work for RDF view selection [3, 10]. Goasdoué et al.

[10] solved the view selection problem as a search process. They

proposed heuristic strategies to search for a set of reformulated

RDF views to minimize the defined cost model. Unfortunately, none

of these works considered the structural properties of graph queries

in view selection, thus they cannot be applied directly to the graph

view selection problem.

View selection in graph databases. Regarding view selection

in graph databases, Fan et al. [9] studied the minimal and minimum

containment problems but they considered the views were pre-

computed and static, leading to duplicate view content. Kascade [7]

considered the view selection problem as an 0-1 Knapsack problem,
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Figure 4: View size, running time and converge of selection algorithms.

which generated the candidates using constraint-based view enu-

meration, and it used a branch-and-bound solver to select the views.

Our work modeled the selection problem as an 0-1 Knasack problem

as well. While Kascade only supported single-view rewriting, our

GGA algorithm considered the subgraph/supergraph views, view

transformations, and multi-view combinations, yielding a view set

with a smaller view size and a higher view benefit.

7 CONCLUSION
In this work, we proposed an extended graph view, which can answer
both the subgraph and supergraph queries. We devised a filtering-

and-verification framework to check the query containment by

views. We developed a search-based algorithm, GGA, which ex-

plores graph view transformations to reduce the view size and

optimize the overall query performance. The experimental results

manifested that GGA outperformed other selection methods con-

cerning effectiveness and efficiency. In the future, we plan to extend

our techniques to other graph query languages such as Cypher [20].
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