
CONTAINERS IN SOFTWARE DEVELOPMENT:

A SYSTEMATIC MAPPING STUDY

Mikael Koskinen1[0000-0003-2880-2809], Tommi Mikkonen2[0000-0002-8540-9918] and Pekka Abra-

hamsson1 [0000-0002-4360-2226]
1 Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland

2 Department of Computer Science, University of Helsinki, Helsinki, Finland
mikael.koskinen@student.jyu.fi, pekka.abrahamsson@jyu.fi,

tommi.mikkonen@helsinki.fi

Abstract. Over the past decade, continuous software development has become

a common place in the field of software engineering. Containers like Docker are

a lightweight solution that developers can use to deploy and manage applica-

tions. Containers are used to build both component-based architectures and mi-

croservice architectures. Still, practitioners often view containers only as way to

lower resource requirements compared to virtual machines. In this paper, we

conducted a systematic mapping study to find information on what is known of

how containers are used in software development. 56 primary studies were se-

lected into this paper and they were categorized and mapped to identify the gaps

in the current research. Based on the results containers are most often discussed

in the context of cloud computing, performance and DevOps. We find that what

is currently missing is more deeply focused research.

Keywords: Containers, Software Engineering, Systematic Mapping Studies

1 Introduction

Over the past decade, continuous software development has become a common place

in the field of software engineering. New toolchains have emerged to manage the

complexity in continuous deployment activity. Containers are a lightweight solution

that developers can use to deploy and manage applications [1]. Containers are often

seen as a more light-weight alternative to Virtual Machines (VMs) [2]. Virtual Ma-

chines include the operating system where containers don’t, allowing the containers to

provide system resource usage advantages when compared against VMs [3].

The usefulness of containers is not limited to them being a more lightweight ver-

sion of Virtual Machines. One interesting feature of the containers is that they provide

portability [1] and thus modularity, making them suitable for working as software

components [4] or as autonomous microservices [5]. When software systems grow,

they encounter three problems:

1. Maintaining the software becomes harder

2. Adding new features to the system slows down

3. The resource requirements for the software grow

mailto:mikael.koskinen@student.jyu.fi

2

One option to address these problems is to make systems modular [6]. In modular

systems software is split into smaller modules and the full software systems are built

by combining different modules [7]. Component-based software architecture and

microservice architecture allow developers to build more modular software [7, 8]. In

component-based architecture systems are created by connecting different software

components [9]. Components are required when the system is compiled, and they are

loaded when the system starts. Because of this, component-based systems don’t help

with the growing resource requirements, but it makes maintaining the software easier.

Similar to components, microservices are autonomous services that together fulfill

a business requirement [5]. Also, like component-based architecture, each micro-

service is required for the system to be fully functional. Since containers are not com-

piled as part of the software system, they could be used as way to build plug-in based

architecture where containers-based plugins could provide new functionality into

existing software and they could be added and removed runtime [10-12]. Based on

our observation, containers are used to build both component-based architectures and

microservice architectures [1, 5]. Still, containers are often viewed as way to lower

resource requirements compared to Virtual Machines [3].

As using containers in software development is a new research area, the need for a

systematic mapping study is crucial in order to summarize the progress so far and

identify the gaps and requirements for future studies. In this paper we present a sys-

tematic mapping study of how containers are used in software development. In this

research, we conducted a systematic mapping study to find information for the key

question: What is currently known of how containers are used in software devel-

opment. This paper is the first part of a larger study. The aim of this study is to learn

if containers are used mainly as a lightweight replacement for the virtual machines or

if their portability and low resource usage is used to build container-based software

components. Next parts of this study will include a multi-vocal study [13] and a case-

study [14].

The rest of this paper is structured as follows. Section 2 introduces the research

methodology. Section 3 presents our key results. Section 4 provides discussion based

on the results. Section 5 presents threats to validity of this research. Section 6 draws

conclusions.

2 Research Methodology

Systematic Mapping Study (SMS) [15] is used in this paper to identify the gaps in the

literature and identify where new or better primary studies are needed for using con-

tainers. This paper follows systematic mapping guidelines provided by [15-18].

The process of systematic mapping study can be split into multiple phases:

1. Defining the research questions

2. Conducting search

3. Study selection (Screening the papers)

4. Defining the classification scheme

5. Data extraction

3

6. Systematic mapping of the data using the classification scheme

The following figure 1 illustrates the process of this systematic mapping study:

Fig. 1. Systematic Mapping Study Process

The following sections are used to describe SMS from this study’s perspective.

2.1 Definition of research questions

First task was the definition of research question (RQ). The research questions are

listed in Table 1.

Table 1. Research questions

RQ number Question Motivation

RQ 1 How Containers are used in

Software Development?

The question allows us to

get the what is known of

how containers are used in

software development. What

technologies are used and

what software development

problems are containers

used to tackle.

RQ 1.1 Are containers used to mod-

ularize software system,

either through component-

based architecture or

through microservices archi-

tecture?

Based on our observation,

containers could be used to

architecture software sys-

tems. Still, the practitioners

mostly seem to discuss

containers as a technology

for handling software’s

infrastructure.

RQ 1.2 Are containers used to pro-

vide plugin-support for

software systems?

Based on our observation,

containers could be used to

extend existing plugin-

architecture based software

systems.

2.2 Conduct Search

After defining the research questions relevant search terms and data sources were

defined.

4

Search terms. Without correct search terms correct literature and research cannot be

found. Table 2 lists the search terms used in this study. The following steps were used

to create the search terms, as defined in [19]:

─ Derive major terms from the questions by identifying the population, intervention

and outcome.

─ Identify alternative spellings and synonyms for major terms.

─ Check the keywords in any relevant papers we already have.

─ Use the Boolean OR to incorporate alternative spellings and synonyms.

─ Use the Boolean AND to link the major terms from population, intervention, and

outcome.

Table 2. Search terms

“container” OR “containers” OR “docker” OR “Kubernetes”

AND

“software engineering” OR “software design”

Data sources and search criteria. For this research only formal data sources were

considered. These included papers and journals from the four digital libraries: IEE-

EXplorer, ScienceDirect, SpringerLink and ACM Digital Library. The reason for

selecting these sources is that they are important sources of computer science related

research. Search terms were matched against title, keywords and abstract.

The search was performed between 22th of May and 5th of June in 2019. In total

3504 results were found. Results were exported into bibtex-format and loaded into

reference manager.

Table 3. Results before study selection process

Library Results
IEEEXplorer 120

ScienceDirect 1095

SpringerLink 889

ACM Digital Library 1400

Study Selection. After finding the initial results, the next phase of the SMS was study

selection. The main goal of the study selection is to find select relevant studies that

properly address the research questions. As displayed in Table 4, in this study 5 inclu-

sion criteria and 7 exclusion criteria were used.

Table 4. Study selection criteria

Inclusion criteria Exclusion criteria

• Studies that are presented as full paper.

• Studies that focus on using modern con-

tainers in software development.

• Studies that are duplicate

• Studies that are presented as short paper.

• Studies that do not provide abstract

5

• Studies that compare containers and

virtualization.

• Studies that are related to Docker.

• Studies that are related to Kubernetes

• Studies that are not peer-reviewed

• Studies that are not written in English

• Studies that are not related to the soft-

ware engineering.

• Studies that are not related to modern

Docker-style containers. For example, ar-

ticles related to Java containers or Inver-

sion of Control Containers.

Of the 3504 results, 60 were removed as duplicates. Two-step selection process

was used to filter out the irrelevant studies for this paper. First of each study the title

was reviewed using inclusion and exclusion criteria. Each excluded study was marked

as such. After this step, 3308 studies were filtered out and the second step was applied

to the remaining 136 studies. In this step of each study abstract was skimmed through.

In this second step, 80 studies were excluded.

In total, 56 studies [20-75] were selected as the primary studies of this paper.

Classification schema. The selected primary studies and the research questions were

used to create the classification scheme for this study. Based on a qualitative assess-

ment, research classification approach from [76] was used to classify the papers. The

classifications are listed in more detail in table 5.

Table 5. Research type facet adapted from [76]

Research type Description

Evaluation research Type of paper which investigates a

problem in practice.

Solution proposal A paper which presents a solution for a

problem. Benefits of the solution are

described.

Validation research Paper which investigates the properties

of a solution that has not yet been im-

plemented.

Experience report Paper based on work done in practice.

Describes what and how something has

been done personally by the author.

Opinion Paper based on the opinion of the au-

thor. Opinion articles do not rely on

research methodology.

Data extraction. After using the primary studies and the research questions to create

the classification schema, relevant data was extracted from the studies based on the

classification schema. Title, author (first), year of publication, keywords, abstract and

research type were extracted from each paper.

6

3 Results

In this section the results are presented found in this mapping study are presented. Of

the initial amount of 3504 papers, 56 were selected as the primary papers for this

study.

Fig. 2. Articles by year

Papers were mapped into the classification schema presented earlier in this study.

The results presented in Figure 3 of this mapping indicate that solution proposal is the

most common paper when containers are discussed.

Fig. 3. Paper research types

Experience reports and evaluation research complete the top 3 of research types.

Also, few validation research and opinion papers were found. Next, results are vali-

dated against the research questions.

7

3.1 RQ 1 How are Containers used in Software Development?

First research question was set to assess how containers are used in software devel-

opment. The initial opinion of this study was that containers are often used as a light-

weight alternative to virtual machines.

Keywords were extracted from each article’s title and abstract. These keywords

were then grouped together into different categories which were identified by general-

izing the keywords. Table 6 presents the list of generalized categories. Each study

belongs to one or more categories.

Table 6. Categories

Focus Keywords

Software Components Modules, Packages, Artifacts, Bundle,

Component

Cloud Computing Cloud, PaaS, SaaS, Cloud Infrastruc-

ture, Cloud environment, Cloud plat-

forms

DevOps DevOps, CI, CD

Performance Scalability, I/O, CPU, Scaling, Replica-

tion, resources, GPU, Resource conten-

tion, performance

Security Security, Password, Secure

Microservices Microservice-architecture, Micro-

services, Micro-service

Legacy Software Modernization, Legacy

Orchestration Orchestration, Docker Swarm, Kuber-

netes

Testing Testing, Benchmark, Software Quality

IoT IoT, Internet of Things

Plugin Plugins, Addon, Extensions

Virtualization Virtualization, Virtual Machine, VM

Based on the results, containers are most often discussed in relation to cloud com-

puting, performance and devops (Figure 4). More than 50% of the papers discussed

containers in context of cloud computing. Performance related aspects and devops

discussed in 45% of the papers. Most of the papers do not focus on a single category.

Instead, only 13 papers belong to a single category as shown in Table 7.

Table 7. Number of categories and number of papers

of categories # of papers
2 14

3 14

1 13

4 8

6 4

5 3

8

Fig. 4. Articles by categories

If we look at specific technologies (Figure 5) and companies discussed in the pa-

pers, we can see that Docker dominates the field. More than 57% of articles mention

Docker in their abstract or in their title.

Fig. 5. Articles by Container Technology or Organization

3.2 RQ 1.1 Are containers used to modularize software system, either

through component-based architecture or through microservices

architecture?

The motivation of the first sub research question was to find out if containers are dis-

cussed in relation of software architecture. 16 of the 56 papers discuss containers

from software component’s point of view. Also, microservices are discussed in 15

papers (Figure 4). This clearly indicates that containers used to modularize software

9

system, either through component-based architecture or through microservices archi-

tecture.

3.3 RQ 1.2 Are containers used to provide plugin-support for

software systems?

The motivation of the second sub research question was based on our observation that

containers could be used to extend existing plugin-architecture based software sys-

tems. Even though 20% of the articles mentioned software components, we didn’t

find any indications that containers are used to create plugin-based software architec-

ture.

4 Discussion

The implications of this systematic mapping study are described in the following sub

sections.

4.1 Research in using containers in software development

Results indicate that the number of container related articles is growing (Figure 2).

70% of the studies have been released between 2017 and 2019. There are multiple

indicators that research on using containers in software development is a new research

area:

1. First primary study found for this research is from 2010.

2. Number of research papers is rapidly growing.

3. Current research often covers multiple software development categories instead of

focusing into a single category.

4. Research papers often start by describing what software containers are. This is an

indication that the technology is seen as new by researchers and an introduction to

the technology is required.

5. Most of the research focuses on a single container technology, Docker.

In summary it can be said that containers are a new research area. The amount of

research has been growing steadily and there’s no indication that in 2019 research

related to containers is going to slow down.

10

Fig. 6. Trends of using containers in software development

4.2 More focused research

Only 13 of the selected 56 primary studies focus their research on one category. 52%

of the primary studies are related to three or more categories. It’s clear that there is

room for more focused research. Many of the categories are large topics and instead

of research covering multiple large categories, research could focus on a single cate-

gory like container security, container performance and using containers for devops.

4.3 Potential research avenues

As seen in Figure 4, cloud computing, devops and performance related discussion are

most common in current container research. There are multiple gaps or less-

researched categories which provide potential research avenues:

• Container security

• Legacy applications and containers

• Container-based plugin technologies

Solution proposals, experience reports and evaluation research are currently the

most popular research types. Together they make 88% of the primary studies selected

for this research. This may indicate that containers are currently used to solve existing

problems related to software development. The lack of validation research supports

this as validation research could be used to test new ideas.

Figure 5 shows that Docker is the dominant technology used in research. Even

though there are studies like [74] which compare Docker to other container technolo-

gies, there’s room for more research. Best practices-based papers are helpful for the

11

industry: they help those organization who are already using containers and those who

are just starting to use them. Only [35] provides best practices of using containers.

5 Threats to validity

In this section the threats of validity of this research are discussed. Also selected miti-

gation strategies are discussed. Three potential threats of validity were identified:

Search. This study is based on the search results provided by research databases and

their search engines. Because of this, the results are subject to the limitations of the

search engines. We mitigated this by using four different research databases.

The keywords selected for this study are subject to search term bias. Two different

container related technologies were named in the search terms and this may have

affected search results, causing these two technologies to be more prevalent in the

search results. Search term bias was mitigated by including generic search terms.

Identification of the primary studies. The selected inclusion and exclusion criteria

listed in Table 4 may have affected the identification of the primary studies. For ex-

ample, only papers written in English were selected. Also, not all the studies related to

containers in software development are available from the used research databases.

Risk of excluding primary studies was mitigated by using multiple research databases.

Data extraction. Categories in chapter 7 were selected by the researcher after key-

words were extracted. Researcher acknowledges that if there are errors in keyword

extraction, this may invalidate the categorization of the keywords. To mitigate the

keyword extraction and categorization, keywords were extracted multiple times and

the selected categories were identified only after keyword extraction.

6 Conclusion

This paper is a part of larger study. The aim of the study is to learn if containers are

used mainly as a lightweight replacement for the virtual machines or if their portabil-

ity and low resource usage is used to build container-based software components. In

this paper a systematic mapping was performed to examine what is known of how

containers are used in software development. The next part of this research is a multi-

vocal study. The research will conclude with a case study.

Four research databases were used to locate 3504 papers of which 56 were selected

as the primary studies. The results indicate that cloud computing, devops and perfor-

mance are the driving forces of container related discussion. Of the 56 primary studies

52% discussed cloud computing, 48% performance and 45% devops. Docker is cur-

rently the leading technology in container-based software development. 57% of the

papers mentioned Docker in their title or in their abstract. Other container related

technologies were mentioned at most in 7% of the papers.

12

As an answer to RQ 1.1, 55% of the primary studies mentioned software compo-

nents or microservices. This clearly indicates that containers are used to modularize

software system, either through component-based architecture or through micro-

services architecture. As the examination of RQ 1.2 indicated, no papers discussing

the usage of containers for plugin-based architectures were found.

The findings of this paper indicate that using containers in software development is

a new research area. Most of the studies don’t focus on a single software development

category. Instead, they often present introduction on what containers are, clearly indi-

cating that software containers are seen as a new technology. Also, best practices-

based research is not yet widely available.

References

1. Paraiso F, Challita S, Al-Dhuraibi Y et al (Jun 2016) Model-Driven Management of Dock-

er Containers. In: Anonymous IEEE, p 718-725.

2. Dua R, Raja AR, Kakadia D (2014) Virtualization vs Containerization to Support PaaS. In:

Anonymous IEEE Computer Society, Washington, DC, USA, p 610–614.

3. Hoenisch P, Weber I, Schulte S et al (2015) Four-fold auto-scaling on a contemporary de-

ployment platform using docker containers.

4. Kung-Kiu Lau, Zheng Wang (2007) Software Component Models. TSE 33(10):709-724.

doi:10.1109/TSE.2007.70726.

5. Jaramillo D, Nguyen DV, Smart R (Mar 2016) Leveraging microservices architecture by

using Docker technology. In: Anonymous IEEE, p 1-5.

6. Woodfield SN, Dunsmore HE, Shen VY (1981) The Effect of Modularization and Com-

ments on Program Comprehension. In: Anonymous IEEE Press, Piscataway, NJ, USA, p

215–223.

7. Card DN, Page GT, McGarry FE (1985) Criteria for Software Modularization. In: Anony-

mous IEEE Computer Society Press, Los Alamitos, CA, USA, p 372–377.

8. Völter M PluggableComponent – A Pattern for Interactive System Configuration.

9. Crnkovic (2003) Component-based software engineering ? new challenges in software de-

velopment.

10. Birsan D (2005) On Plug-ins and Extensible Architectures. Queue 3(2):40–46.

doi:10.1145/1053331.1053345.

11. Mayer J, Melzer I, Schweiggert F (2003) Lightweight Plug-In-Based Application Devel-

opment.

12. Marquardt K (1999) Patterns for Plug-Ins. EuroPLoP.

13. Garousi V, Felderer M, Mäntylä MV (2019) Guidelines for including grey literature and

conducting multivocal literature reviews in software engineering. Information and Soft-

ware Technology 106:101-121. doi:10.1016/j.infsof.2018.09.006.

14. Eisenhardt K (1989) Building Theory From Case Study Research. The Academy of Man-

agement Review 14:532-550. doi:10.2307/258557.

15. Petersen K, Feldt R, Mujtaba S et al (2008) Systematic Mapping Studies in Software En-

gineering. In: Anonymous BCS Learning & Development Ltd., Swindon, UK, p 68–77.

16. A. Kitchenham B (2007) Kitchenham, B.: Guidelines for performing Systematic Literature

Reviews in software engineering. EBSE Technical Report EBSE-2007-01.

17. Kitchenham B, Charters S (2009) Systematic reviews.

https://www.york.ac.uk/crd/guidance/.

https://www.york.ac.uk/crd/guidance/

13

18. Kitchenham B, Brereton P (2013) Using Mapping Studies in Software Engineering. Infor-

mation and Software Technology 55(12):2049-2075. doi:10.1016/j.infsof.2013.07.010.

19. Kitchenham BA, Mendes E, Travassos GH (2007) Cross versus Within-Company Cost Es-

timation Studies: A Systematic Review. TSE 33(5):316-329. doi:10.1109/TSE.2007.1001.

20. Stillwell M, Coutinho JGF (2015) A DevOps approach to integration of software compo-

nents in an EU research project. In: Anonymous Proceedings of the 1st International

Workshop on Quality-Aware DevOps ACM, New York, NY, USA, p 1-6.

21. Tuo F, Bai Y, Long S et al (2018) A New Model of Docker-based E-learning in Hadoop.

In: Anonymous Proceedings of the 2018 International Conference on Distance Education

and Learning - ICDEL '18 ACM Press, New York, New York, USA, p 22-31.

22. Kozhirbayev Z, Sinnott RO (2017) A performance comparison of container-based technol-

ogies for the Cloud. Future Generation Comput Syst 68:175-182.

doi:10.1016/j.future.2016.08.025.

23. Telschig K, Schonberger A, Knapp A (2018) A Real-Time Container Architecture for De-

pendable Distributed Embedded Applications. In: Anonymous 2018 IEEE 14th Interna-

tional Conference on Automation Science and Engineering (CASE), aug, vol 2018-Augus.

IEEE, p 1367-1374.

24. Syed MH, Fernandez EB (2018) A reference architecture for the container ecosystem. In:

Anonymous Proceedings of the 13th International Conference on Availability, Reliability

and Security ACM, New York, NY, USA, p 1-6.

25. Rahman M, Chen Z, Gao J (2015) A service framework for parallel test execution on a de-

veloper's local development workstation. In: Anonymous Proceedings - 9th IEEE Interna-

tional Symposium on Service-Oriented System Engineering, IEEE SOSE 2015, vol 30., p

153-160.

26. Kratzke N (2018) About the complexity to transfer cloud applications at runtime and how

container platforms can contribute?. In: Ferguson D, Mu{ ~{n}}oz, V{ '{i}}ctor M{

'{e}}ndez, Cardoso J et al (eds) Communications in Computer and Information Science,

vol 864. Springer International Publishing, Cham, p 19-45.

27. Song M, Zhang C, Haihong E (2018) An Auto Scaling System for API Gateway Based on

Kubernetes. In: Anonymous 2018 IEEE 9th International Conference on Software Engi-

neering and Service Science (ICSESS), p 109-112.

28. Cito J, Schermann G, Wittern JE et al (2017) An Empirical Analysis of the Docker Con-

tainer Ecosystem on GitHub. In: Anonymous IEEE International Working Conference on

Mining Software Repositories IEEE Press, Piscataway, NJ, USA, p 323-333.

29. Zhang Y, Yin G, Wang T et al (2018) An Insight Into the Impact of Dockerfile Evolution-

ary Trajectories on Quality and Latency. In: Anonymous 2018 IEEE 42nd Annual Com-

puter Software and Applications Conference (COMPSAC), jul, vol 1. IEEE, p 138-143.

30. Naughton T, Sorrillo L, Simpson A et al (2018) Balancing performance and portability

with containers in HPC: An OpenSHMEM example. In: Gorentla Venkata Manjunath,

Imam N, Pophale S (eds) Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 10679 LNCS.

Springer International Publishing, Cham, p 130-142.

31. Naik N (2016) Building a virtual system of systems using docker swarm in multiple

clouds. In: Anonymous ISSE 2016 - 2016 International Symposium on Systems Engineer-

ing - Proceedings Papers, p 1-3.

32. Shah J, Dubaria D (2019) Building Modern Clouds: Using Docker, Kubernetes \& Google

Cloud Platform. In: Anonymous 2019 IEEE 9th Annual Computing and Communication

Workshop and Conference (CCWC), jan IEEE, p 184.

14

33. Klinaku F, Frank M, Becker S (2018) CAUS: An Elasticity Controller for a Containerized

Microservice. In: Anonymous Companion of the 2018 ACM/SPEC International Confer-

ence on Performance Engineering ACM, New York, NY, USA, p 93-98.

34. Kehrer S, Riebandt F, Blochinger W (2019) Container-based Module Isolation for Cloud

Services. In: Anonymous 2019 IEEE International Conference on Service-Oriented Sys-

tem Engineering (SOSE), p 177-186.

35. Berger C, Nguyen B, Benderius O (2017) Containerized development and microservices

for self-driving vehicles: Experiences \& best practices. In: Anonymous Proceedings -

2017 IEEE International Conference on Software Architecture Workshops, ICSAW 2017:

Side Track Proceedings, p 7-12.

36. Sharma P, Chaufournier L, Shenoy P et al (2016) Containers and Virtual Machines at

Scale: A Comparative Study. In: Anonymous Proceedings of the 17th International Mid-

dleware Conference ACM, New York, NY, USA, p 1:13.

37. R 'ev 'esz, 'Ad 'am, Pataki N (2019) Continuous A/B Testing in Containers. In: Anony-

mous Proceedings of the 2019 2nd International Conference on Geoinformatics and Data

Analysis - ICGDA 2019 ACM, New York, NY, USA, p 11-14.

38. Barna C, Khazaei H, Fokaefs M et al (2017) Delivering Elastic Containerized Cloud Ap-

plications to Enable DevOps. In: Anonymous Proceedings of the 12th International Sym-

posium on Software Engineering for Adaptive and Self-Managing Systems IEEE Press,

Piscataway, NJ, USA, p 65-75.

39. Bahadori K, Vardanega T (2019) Devops meets dynamic orchestration. In: Bruel J, Mazza-

ra M, Meyer B (eds) Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 11350 LNCS.

Springer International Publishing, Cham, p 142-154.

40. Dhakate S, Godbole A (2015) Distributed cloud monitoring using Docker as next genera-

tion container virtualization technology. In: Anonymous 2015 Annual IEEE India Confer-

ence (INDICON), p 1-5.

41. Naik N (2017) Docker container-based big data processing system in multiple clouds for

everyone. In: Anonymous 2017 IEEE International Symposium on Systems Engineering,

ISSE 2017 - Proceedings, p 1-7.

42. Martin A, Raponi S, Combe T et al (2018) Docker ecosystem – Vulnerability Analysis.

Comput Commun 122:30-43. doi:10.1016/j.comcom.2018.03.011.

43. Nardelli M, Hochreiner C, Schulte S (2017) Elastic Provisioning of Virtual Machines for

Container Deployment. In: Anonymous Proceedings of the 8th ACM/SPEC on Interna-

tional Conference on Performance Engineering Companion ACM, New York, NY, USA, p

5-10.

44. Fokaefs M, Barna C, Veleda R et al (2016) Enabling Devops for Containerized Data-

intensive Applications: An Exploratory Study. In: Anonymous Proceedings of the 26th

Annual International Conference on Computer Science and Software Engineering IBM

Corp, Riverton, NJ, USA, p 138-148.

45. Santos EA, McLean C, Solinas C et al (2018) How does docker affect energy consump-

tion? Evaluating workloads in and out of Docker containers. J Syst Software 146:14-25.

doi:10.1016/j.jss.2018.07.077.

46. Zhu H, Bayley I (2018) If Docker is the Answer, What is the Question?. In: Anonymous

2018 IEEE Symposium on Service-Oriented System Engineering (SOSE), mar IEEE, p

152-163.

47. Casalicchio E, Perciballi V (2017) Measuring Docker Performance: What a Mess!!!. In:

Anonymous Proceedings of the 8th ACM/SPEC on International Conference on Perfor-

mance Engineering Companion ACM, New York, NY, USA, p 11-16.

15

48. Guo D, Wang W, Zeng G et al (2016) Microservices architecture based cloudware de-

ployment platform for service computing. In: Anonymous Proceedings - 2016 IEEE Sym-

posium on Service-Oriented System Engineering, SOSE 2016, p 358-364.

49. Shadija D, Rezai M, Hill R (2017) Microservices: Granularity vs. Performance. In: Anon-

ymous Companion Proceedings of the10th International Conference on Utility and Cloud

Computing ACM, New York, NY, USA, p 215-220.

50. Naik N (2016) Migrating from Virtualization to Dockerization in the Cloud: Simulation

and Evaluation of Distributed Systems. In: Anonymous Proceedings - 2016 IEEE 10th In-

ternational Symposium on the Maintenance and Evolution of Service-Oriented and Cloud-

Based Environments, MESOCA 2016, p 1-8.

51. Balalaie A, Heydarnoori A, Jamshidi P (2016) Migrating to Cloud-Native Architectures

Using Microservices: An Experience Report. In: Celesti A, Leitner P (eds) Advances in

Service-Oriented and Cloud Computing Springer International Publishing, Cham, p 201-

215.

52. Xu T, Marinov D (2018) Mining Container Image Repositories for Software Configuration

and Beyond. In: Anonymous Proceedings of the 40th International Conference on Soft-

ware Engineering: New Ideas and Emerging Results ACM, New York, NY, USA, p 49-52.

53. Ferrer AJ, P 'erez, David Garc 'ia, Gonz 'alez, Rom 'an Sosa (2016) Multi-cloud Platform-

as-a-service Model, Functionalities and Approaches. Procedia Computer Science 97:63-72.

doi:10.1016/j.procs.2016.08.281.

54. Zhang Y, Vasilescu B, Wang H et al (2018) One size does not fit all: an empirical study of

containerized continuous deployment workflows. In: Anonymous Proceedings of the 2018

26th ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering ACM, New York, NY, USA, p 295-306.

55. Yarygina T, Bagge AH (2018) Overcoming Security Challenges in Microservice Architec-

tures. In: Anonymous 2018 IEEE Symposium on Service-Oriented System Engineering

(SOSE), mar IEEE, p 11-20.

56. Lv K, Zhao Z, Rao R et al (2016) PCCTE: A portable component conformance test envi-

ronment based on container cloud for avionics software development. In: Anonymous

2016 International Conference on Progress in Informatics and Computing (PIC), p 664-

668.

57. Wang B, Song Y, Cui X et al (2017) Performance comparison between hypervisor- and

container-based virtualizations for cloud users. In: Anonymous 2017 4th International

Conference on Systems and Informatics (ICSAI), nov IEEE, p 684-689.

58. Heinrich R, van Hoorn A', Knoche H et al (2017) Performance Engineering for Micro-

services: Research Challenges and Directions. In: Anonymous Proceedings of the 8th

ACM/SPEC on International Conference on Performance Engineering Companion ACM,

New York, NY, USA, p 223-226.

59. Jindal A, Podolskiy V, Gerndt M (2019) Performance Modeling for Cloud Microservice

Applications. In: Anonymous Proceedings of the 2019 ACM/SPEC International Confer-

ence on Performance Engineering ACM, New York, NY, USA, p 25-32.

60. Siami Namin Akbar, Sridharan M, Tomar P (2010) Predicting Multi-core Performance: A

Case Study Using Solaris Containers. In: Anonymous Proceedings of the 3rd International

Workshop on Multicore Software Engineering ACM, New York, NY, USA, p 18-25.

61. Hassan F, Rodriguez R, Wang X (2018) RUDSEA: Recommending Updates of Dock-

erfiles via Software Environment Analysis. In: Anonymous Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software Engineering ACM, New

York, NY, USA, p 796-801.

16

62. Gogouvitis SV, Mueller H, Premnadh S et al (2018) Seamless computing in industrial sys-

tems using container orchestration. Future Generation Comput Syst.

doi:10.1016/j.future.2018.07.033.

63. Goldschmidt T, Hauck-Stattelmann S (2016) Software Containers for Industrial Control.

In: Anonymous Proceedings - 42nd Euromicro Conference on Software Engineering and

Advanced Applications, SEAA 2016, p 258-265.

64. Yin K, Chen W, Zhou J et al (2018) STAR: A Specialized Tagging Approach for Docker

Repositories. In: Anonymous 2018 25th Asia-Pacific Software Engineering Conference

(APSEC), dec IEEE, p 426-435.

65. Benni B, Mosser S', Collet P et al (2018) Supporting Micro-services Deployment in a Saf-

er Way: A Static Analysis and Automated Rewriting Approach. In: Anonymous Proceed-

ings of the 33rd Annual ACM Symposium on Applied Computing ACM, New York, NY,

USA, p 1706-1715.

66. Ye F, Jing Z, Huang Q et al (2018) The Research of a Lightweight Distributed Crawling

System. In: Anonymous 2018 IEEE 16th International Conference on Software Engineer-

ing Research, Management and Applications (SERA), jun IEEE, p 200-204.

67. Oh J, Kim S, Kim Y (2018) Toward an Adaptive Fair GPU Sharing Scheme in Container-

Based Clusters. In: Anonymous 2018 IEEE 3rd International Workshops on Foundations

and Applications of Self* Systems (FAS*W), p 79-85.

68. L 'opez, Manuel Ram$ backslash$'$ backslash$irez, Spillner J (2017) Towards Quantifia-

ble Boundaries for Elastic Horizontal Scaling of Microservices. In: Anonymous Compan-

ion Proceedings of the10th International Conference on Utility and Cloud Computing

ACM, New York, NY, USA, p 35-40.

69. Morris D, Voutsinas S, Hambly NC et al (2017) Use of Docker for deployment and testing

of astronomy software. Astronomy and Computing 20:105-119.

doi:10.1016/j.ascom.2017.07.004.

70. Punjabi R, Bajaj R (2016) User stories to user reality: A DevOps approach for the cloud.

In: Anonymous 2016 IEEE International Conference on Recent Trends in Electronics, In-

formation Communication Technology (RTEICT), p 658-662.

71. Senington R, Pataki B, Wang XV (2018) Using docker for factory system software man-

agement: Experience report. Procedia CIRP 72:659-664. doi:10.1016/j.procir.2018.03.173.

72. Knoche H, Eichelberger H (2018) Using the Raspberry Pi and Docker for Replicable Per-

formance Experiments: Experience Paper. In: Anonymous Proceedings of the 2018

ACM/SPEC International Conference on Performance Engineering ACM, New York, NY,

USA, p 305-316.

73. Morabito R (2017) Virtualization on internet of things edge devices with container tech-

nologies: A performance evaluation. IEEE Access 5:8835-8850.

doi:10.1109/ACCESS.2017.2704444.

74. Tesfatsion SK, Klein C, Tordsson J (2018) Virtualization Techniques Compared: Perfor-

mance, Resource, and Power Usage Overheads in Clouds. In: Anonymous Proceedings of

the 2018 ACM/SPEC International Conference on Performance Engineering ACM, New

York, NY, USA, p 145-156.

75. Ueda T, Nakaike T, Ohara M (2016) Workload characterization for microservices. In:

Anonymous 2016 IEEE International Symposium on Workload Characterization (IISWC),

sep IEEE, p 1-10.

76. Wieringa R, Maiden N, Mead N et al (2005) Requirements Engineering Paper Classifica-

tion and Evaluation Criteria: A Proposal and a Discussion. Requir. Eng. 11(1):102?107.

doi:10.1007/s00766-005-0021-6.

