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A B S T R A C T   

Aerosol pollution is an acute environmental issue in developing countries. Asia has been experiencing rapid 
changes in anthropogenic aerosols during the past two decades due to fast growth in population and economy. It 
is still an open question how aerosol loadings, represented by aerosol optical depth (AOD), have evolved in this 
century, particularly during the past decade when China and India implemented a clean air act aiming to 
improve air quality. Based on Terra aerosol retrievals and aerosol reanalysis, a change point of AOD trend is 
detected at 2010 in East China versus a persistent increasing AOD trend in the Indian subcontinent with no 
detectable change point from 2000 to 2019. In East China, positive AOD trend (+0.11 ± 0.022 decade− 1) is 
confirmed from 2000 to 2010 (hereinafter the former period) yet negative trend (− 0.26 ± 0.027 decade− 1) is 
identified from 2011 to 2019 (hereinafter the later period). In the Indian subcontinent, persistent positive trend 
(+0.04 ± 0.001) is detected from 2000 to 2019 (hereinafter the whole period). All of these trends are attributed 
mainly to changes in sulfate aerosols. Further analysis of the aerosol pollution extreme events (APEE; defined as 
daily AOD over the long-term local 90th AOD percentile) manifest a positive trend (+0.16 ± 0.029 decade− 1) of 
the APEEs' magnitude in East China during the former period yet a negative trend (− 0.11 ± 0.020 decade− 1) 
during the latter period; the Indian subcontinent demonstrates a positive trend (+0.02 ± 0.004 decade− 1) during 
the whole period due to increasing sulfate aerosols. The APEEs have become more frequent (+3.5 ± 0.53 day 
month− 1 decade− 1) in East China during the former period yet less frequent (− 3.6 ± 0.39 day month− 1 deca
de− 1) during the latter period; in the Indian subcontinent, more frequent APEEs (+1.1 ± 0.25 day month− 1 

decade− 1) have been detected during the whole period. Consistent with the AOD trends, clear-sky radiation in 
East China shows a negative trend at the surface (− 3.2 ± 0.67 W m− 2 decade− 1), a positive trend in the at
mosphere (+1.4 ± 0.68 decade− 1), and a negative trend at the top of the atmosphere (− 1.8 ± 0.43 decade− 1) 
during the former period, respectively; opposite trends with much larger magnitude are seen during the latter 
period. In the Indian subcontinent, the clear-sky radiation trends during the whole period are − 1.4 ± 0.38, +1.7 
± 0.31, and + 0.5 ± 0.16 W m− 2 decade− 1 at the surface, in the atmosphere, and at the top of the atmosphere, 
respectively. Comparison of radiation trends at clear-sky and all-sky conditions suggests that absorbing aerosols 
dominate the radiation budget in the atmosphere and the aerosol reanalysis of the Modern-Era Retrospective 
Analysis for Research ans Applications version 2 (MERRA-2) might overestimate the radiation response to clouds. 
This study provides an up-to-date analysis of the long-term trends in aerosols and their extreme events and 
radiation in two of the world's heavily polluted regions and the results have important implications for assess
ment of the environmental and climatic impacts of the ongoing clean air acts in Asia.  
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1. Introduction 

Atmospheric aerosols are tiny liquid, solid, or mixed-phase particles 
suspended in air with diameters ranging from several nanometres to 
about hundred micrometres. High aerosol concentrations could cause 
severe environmental issues and disasters, which could further result in 
severe health problems, such as reproductive effects and respiratory 
problems (Burnett et al., 2018; Landrigan et al., 2018; Balakrishnan 
et al., 2019; Goldman and Dominici, 2019). Moreover, atmospheric 
aerosols can modulate Earth's climate system by 1) directly interacting 
with solar radiation and to a lesser extent with terrestrial radiation 
through absorption and scattering (Jin et al., 2016a; Satheesh and 
Krishnamoorthy, 2005; Yang et al., 2018a; Zhao et al., 2020), and 2) 
interacting with clouds by serving as cloud condensation nuclei and ice 
nuclei on which cloud droplets and ice crystals form (Fan et al., 2016; 
Qiu et al., 2017; Li et al., 2018; Zhao et al., 2018). They can be directly 
emitted from natural or anthropogenic sources (i.e., primary aerosols) or 
converted from gases (i.e., secondary aerosols). Due to natural vari
ability of climate system and changing environmental policies across the 
globe, atmospheric aerosols demonstrate a large spatial heterogeneity 
and temporal variation (Che et al., 2019; Wei et al., 2019), particularly 
in Asia because of rapid development of industrialization and urbani
zation during the past several decades (e.g., An et al., 2019). Therefore, 
monitoring long-term changes of aerosol abundances has important 
implications for evaluating the effectiveness of environmental policies 
and their associated climatic impacts. 

However, there are few long-term (e.g., decades) observations of 
aerosol properties at global scale. The AErosol RObotic NETwork 
(AERONET), which is a quasi-global (ground-based) network of sun 
photometers measuring atmospheric aerosol properties (Holben et al., 
1998), has been providing long-term aerosol observations with high 
accuracy and thus been widely used as ground truth to evaluate un
certainties of other aerosol observations, such as satellite retrievals (Liu 
and Mishchenko, 2008; Mishchenko et al., 2009; Mishchenko et al., 
2010; Yang et al., 2019; Yang et al., 2020). However, AERONET datasets 
lack observations over oceans and suffer great spatial heterogeneity over 
land. Most of AERONET sites locate in or near urban areas in developed 
countries (e.g., the United States and Europe) while very few sites are 
deployed in regions with frequent and intense natural aerosol pollution 
events (Martins et al., 2019; Pokharel et al., 2019), such as Africa, the 
Arabian Peninsula, Central Asia, West China, Russia, and Australia. 
More importantly, during the 27 years (1993–2019) of observation 
timespan, there are fewer than 50 AERONET sites that have a data 
coverage longer than 15 years (Ningombam et al., 2019). Therefore, 
although AERONET have been providing valuable and unique obser
vations of aerosol properties during the past three decades or so, it is not 
suitable for study of long-term changes of aerosol pollutants at global 
scale. 

Satellite remote sensing is the only available method to retrieve long- 
term aerosol properties over the globe except high latitude (i.e., > ~80◦) 
regions due to high reflectance of snow/ice surface and large solar 
zenith angle (Kokhanovsky and Leeuw, 2009). Satellite remote sensing 
of atmospheric aerosols can go back to 1970s, since when a number of 
satellite platforms and sensors have been developed and their products 
have been widely used in atmospheric and environmental communities 
(Hsu et al., 1999; Sayer et al., 2012; Hsu et al., 2017; Wang et al., 2018; 
Peng et al., 2020). Among the numerous satellites, Terra is the one that 
has been in orbit for more than 20 years and thus is selected to study the 
decadal trends of atmospheric aerosols. Launched in December 1999, 
the National Aeronautics and Space Administration (NASA) Terra sat
ellite carries two sensors that have provided global and daily measure
ments of aerosols for long-term monitoring of environmental and 
climate changes. Owning to unique design, such as multiangle or mul
tispectral, the Moderate Resolution Imaging Spectroradiometer 
(MODIS) and the Multiangle Imaging Spectroradiometer (MISR) have 
been providing high-quality AOD data starting from February 24, 2000 

to present (Sayer et al., 2019; Garay et al., 2020). A number of important 
findings in environmental and climate sciences could not be achieved 
without long-term Terra-MODIS and MISR AOD (jointly referred to 
Terra AOD hereafter). Terra AOD have been widely used to estimate the 
particulate matter with a mass median aerodynamic dimeter of <2.5 μm 
(PM2.5) on global scale (van Donkelaar et al., 2006; van Donkelaar et al., 
2010), which have significantly advanced the studies of relationship 
between long-term exposure to air pollution and mortality (Di et al., 
2016; van Donkelaar et al., 2016; Di et al., 2017). Moreover, using Terra 
AOD, interactions among environmental policies, aerosol abundances, 
and climate systems have been intensely studied. Statistically significant 
positive correlations, for instance, were found between Terra AOD over 
the Middle East and the Indian summer monsoon precipitation during 
the past two decades or so (Jin et al., 2014; Vinoj et al., 2014), which 
have stimulated a large number of studies aiming to reveal the physical 
mechanisms behind the observed correlations (Jin et al., 2015; Solmon 
et al., 2015; Jin et al., 2016b; Jin et al., 2021; Sharma and Miller, 2017; 
Kumar and Arora, 2018). Another important application of Terra AOD is 
detection and attribution of long-term trends of AOD in regions across 
the globe, such as at global scale (de Meij et al., 2012; Hsu et al., 2012; 
Mehta et al., 2016; Che et al., 2019; Wei et al., 2019; Yu et al., 2020), 
global oceanic regions (Zhang and Reid, 2010), the Middle East 
(Klingmüller et al., 2016; Pu and Ginoux, 2016; Jin et al., 2018), India 
(Kaskaoutis et al., 2011; Ramachandran et al., 2012; Jethva et al., 2018; 
Jin and Wang, 2018; Prijith et al., 2018), United States (Yang et al., 
2018b; Jin et al., 2020; Jin and Pryor, 2020), and global megacities 
(Alpert, 2012; Shen and Zhao, 2020). Overall, aerosol data from Terra 
mission have made tremendous contribution to scientific communities 
of environment and climate during the past two decades. 

However, because Terra AOD are not retrieved over cloudy or ice/ 
snow or sun glint regions (Hsu et al., 2013; Garay et al., 2020), most of 
the abovementioned studies used monthly AOD data to get a larger 
spatial coverage than using daily data. Such drawback of Terra AOD 
introduces time representation errors (Wang and Zhao, 2017) and also 
preclude studies of aerosol pollution extreme event (APEE; defined as 
daily AOD above the local 90th percentile), which usually have a life
time ranging from hours to days and thus requires AOD data of high 
temporal frequency (e.g., daily). The APEEs have great adverse health 
effects and are difficult to predict due to their sudden burst and thus 
could cause staggering economic loss (Jaramillo and Muller, 2016) and 
millions of premature mortalities (Lelieveld et al., 2015; Burnett et al., 
2018; Lelieveld et al., 2019; Liu et al., 2019), but they are under- 
examined in terms of spatial patterns and long-term trends because of 
a lack of aerosol observations with high temporal frequency. 

Data assimilation is a powerful and objective technique which 
combines observational data (e.g., satellite) and the underlying 
dynamical principles governing the climate system (i.e., model output) 
to determine an optimal possible state of the climate system (e.g., Lahoz 
and Schneider, 2014). One of the advantages of this methodology is 
filling in the spatiotemporal gaps in observations. Therefore, it is widely 
applied in the investigations of the climate system, including aerosols (e. 
g., Tang et al., 2017; Pathak et al., 2019). Modern-Era Retrospective 
Analysis for Research and Applications version 2 (MERRA-2) is a rean
alysis produced by the Goddard Earth Observation System (GEOS- 
5.12.4) atmospheric model and the Gridpoint Statistical Interpolation 
analysis for data assimilation (Rienecker et al., 2011; Gelaro et al., 
2017). It is the first long-term (1980–present) global reanalysis which 
assimilates multiple satellite observations of aerosols, including MISR, 
MODIS aboard both Terra and Aqua, the Advance Very High Resolution 
Radiometer (AVHRR) as well as AERONET station observations (Ran
dles et al., 2016; Randles et al., 2017). The hourly output of aerosol 
properties from MERRA-2 overcomes one of the drawbacks of satellite 
data (i.e., missing values) and thus provides the first opportunity to 
study the long-term trends of APEEs at global scale. 

East China and the Indian subcontinent have been suffering the 
acutest air pollution problem during the past two decades. Together 
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accounting for about 40% of the global population and having the rapid 
economic growth (Fig. 1), those two regions emit millions of tons of air 
pollutants every year, which makes them two of the world's most 
polluted places (Lelieveld et al., 2015; Burnett et al., 2018; Weagle et al., 
2018). To reduce the health impact of air pollutants, both countries have 
introduced measures to limit air pollution emissions from automotive 
emissions, coal heating, polluting industries, and construction sector 
during the past decade (Sundaray and Bhardwaj, 2019; Zhang et al., 
2019b). These measurements have been shown to make a great effect in 
mitigating the air pollution in China (Li et al., 2019; Zhai et al., 2019; 
Zhang et al., 2019b; Fan et al., 2020), but it is still an open question how 
the air pollution in India has been evolved during the past two decades 
(Pant et al., 2018; Samset et al., 2019). More importantly, previous 
studies have focused on the temporal changes of the mean status of the 
air pollution, but few studies, to our knowledge, have addressed the 
long-term changes of the air pollution peaks, or the APEEs, which have 
great adverse impact on human health and traffic safety. 

In this study, using Terra MISR and MODIS aerosol retrievals and the 
MERRA-2 reanalysis, we first detected a change point of AOD trends at 
the year of 2010 in East China but no change point in the Indian sub
continent. Then we estimated and compared the long-term trends in 
AOD in East China during two periods: March 2000–February 2011 
(2000− 2010) and March 2011–February 2020 (2011–2019) (hereafter, 
the former and later periods) and in the Indian subcontinent during the 
period of March 2000–February 2020 (2000–2019) (hereafter, the 
whole period). Such comparisons can help us better understand 1) how 
much the air quality has been improved since China released its Air 
Pollution Action Plan in 2013 and the Three-year Action Plan for Win
ning the Blue Sky War in 2018; and 2) what experience countries in the 
Indian subcontinent can learn from China to significantly improve their 
air quality. Second, we for the first time defined the APEE using daily 
MERRA-2 data and quantified the trends in the terms of magnitude and 
frequency of APEEs in these two regions. Last, employing the Clouds and 
the Earth's Radiant Energy System (CERES) data, we addressed the 
response of the shortwave radiation to the AOD trends at the top of the 
atmosphere, in the atmosphere, and at the surface in these two regions. 

2. Datasets 

2.1. Terra mission 

NASA's Earth Science Division, supported by Congress, is a Presi
dential Initiative with dedication to a better understanding of the inte
grated Earth system and natural and human-induced long-term changes 
on the global environment. As the centrepiece of the Earth Science Di
vision, the Earth Observation System (EOS) is a series of polar-orbiting 
satellites for global observations of land surface, atmosphere, oceans, 
biosphere, and cryosphere. Terra is the “flagship” satellite of the Earth 
Observing System. It was launched on December 18, 1999 and started 
collecting data on February 24, 2000. It is operating in a polar sun- 
synchronous orbit at 705 km above the Earth's surface and circle the 
Earth by 16 times every day, so at any given latitude it flies directly 
overhead at the same time each day. It crosses the equator on descending 
passes (i.e., north to south) at 10:30 a.m. local time when the global land 
is generally covered by less clouds than in the afternoon hours during a 
day (Gristey et al., 2018). There are five instruments aboard Terra, three 
of which are used in this study—MODIS, MISR, and CERES (Table 1). 

2.1.1. Terra-MODIS 
The MODIS instrument onboard the Terra satellite observes the Earth 

system in 36 spectral bands and provides a nearly global coverage within 
1–2 days owing to its wide swath of 2330 km (King et al., 1999). The 
aerosol properties, such as AOD, are retrieved from three algorithms: 
dark target (DT) over vegetated lands (NDVI ≥0.1), DT over waters, and 
deep-blue (DB) over bright lands (e.g., desert) (Kaufman et al., 1997; 
Hsu et al., 2004; Remer et al., 2005; Hsu et al., 2006; Levy et al., 2007). 
The above algorithms have been continuously improved to retrieve 
higher quality aerosol products. In MODIS collection 6.1, the DT land 
algorithm is updated to reduce the biases in urban areas based on a 
surface reflectance model (Gupta et al., 2016), and the DB land algo
rithm is updated to produce a dynamic surface reflectance dataset 
depending on the normalized difference vegetation index (NDVI) and a 
pre-calculated surface reflectance database. More importantly, the DB 
retrievals expand its spatial coverage from arid and semi-arid regions to 
the entire land areas (Hsu et al., 2013). To increase the data spatial 
coverage, a “merged” monthly dataset of AOD at 550 nm of collection 
6.1 combined DT and DB retrievals is employed herein (Levy et al., 
2013; Sayer et al., 2014). Over land, where NDVI ≤0.2 in a given month, 

Fig. 1. The spatial patterns of (a) population density (×103 persons km− 2) and (b) aerosol optical depth. The population data are for the year of 2000 and the aerosol 
data are from MISR level 3 dataset from 2000 to 2019. East China and the Indian subcontinent are outlined for further analyses. Grey colors in panel (b) represent 
missing values. 
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the DB AOD is aggregated to get the “merged” AOD, and where NDVI 
≥0.3, the DT AOD is used. For intermediate NDVI, the AOD with higher 
quality flag is used; in the case of the same quality flag, the mean is used. 
The monthly data in collection 6.1 have a spatial resolution of 1◦ × 1◦

and cover a period from March 2000 to February 2020 for MODIS-Terra. 

2.1.2. Terra-MISR 
The MISR instrument onboard the Terra satellite observes the Earth 

with nine cameras oriented along the satellite track with five view an
gles relative to the Earth's (Diner et al., 1998). The nine cameras observe 
the Earth at 4 spectral bands. Using the multi-angle and multi-spectrum 
in the MISR instrument, various aerosol properties can be retrieved in 
high accuracy. Over land, a dense dark vegetation (DDV) algorithm and 
the spatial contrasts are used to retrieve the aerosol properties (Mar
tonchik et al., 2009). The DDV algorithm assumes the surface reflectance 
at each wavelength for those vegetation areas identified by large NDVI 
values (King et al., 1992) and empirical orthogonal functions con
structed from the radiances at the individual pixels in a satellite image 
are used to describe surface constrast of the observed radiance (Mar
tonchik, 1997). Over dark water, a forward radiative transfer model is 
used to retrieve aerosol properties with an assumption of water bodies to 
be a blackbody at the red and near-infrared wavelengths (Kalashnikova 
et al., 2013; Wei et al., 2019). Because of the narrower swath of 380 km 
than MODIS (i.e., 2330 km), the MISR covers the global in a longer 
period of ~9 days than MODIS (i.e., 1–2 days). Therefore, MISR level 3 
monthly aerosol products are usually used to study the long-term vari
ations in AOD because the daily aerosol products have missing values 
over about 90% of global areas (e.g., Jin et al., 2018). In this study, the 
newly released MISR monthly AOD with retrieval algorithm version 23 
and data format version 15 (F15_0032) are used. A number of updates 
have been implemented in the new dataset, such as mitigating the ex
istence of a gap in AOD between 0.0 and 0.02 and reducing the stray 
light effects induced by internal reflections among MISR cameras. The 
monthly data have a spatial resolution of 0.5◦ × 0.5◦ and cover a period 
from March 2000 to February 2020. Note that the previous version 
(F08_0031) of MISR retrievals reports AOD at 555 nm, while the new 
version (F15_0032) reports AOD at 550 nm, which facilitates direct 
comparison of MISR AOD with other AOD data, such as MODIS and 
MERRA-2. A detailed introduction to the latest MISR dataset can be 
found in Garay et al. (2020). 

The foregoing factors that contribute to the differences between 
Terra-MODIS and Terra-MISR AOD products are summarized as follows: 
sampling differences that are determined by orbital coverage (i.e., 
sensor swath width), retrieval algorithm differences, different strategies 
for spatial aggregation and temporal averaging from swath products (e. 
g., daily level 2) to gridded global products (e.g., monthly level 3) (Levy 
et al., 2015). All these factors could cause differences in the AOD trends 
estimated using the two AOD datasets. Note that the orbital drift in the 
first two years of Terra mission should not affect our trend estimation 

because no drift was detected in Terra MODIS and MISR AOD in the first 
two years (Zhang and Reid, 2010; Sayer et al., 2019; Garay et al., 2020). 

2.1.3. Terra-CERES 
The CERES instruments aboard Terra are used to measure the Earth's 

radiation energy budget and cloud properties in 12 longwave and 15 
shortwave spectral bands. The radiation fluxes at the Earth's surface and 
at the top of atmosphere (TOA) are assessed using delta-two stream 
radiation transfer model (Fu and Liou, 1993) under cloudy-sky (with 
clouds and aerosols) and clear-sky (without clouds and aerosol). The 
CERES could provide 3-h synoptic, daily, monthly, and yearly products 
with horizontal resolution of 140 km × 140 km (Wielicki et al., 1996). 
The TOA radiation fluxes are retrieved through combined with the 
production from the Tropical Rainfall Measuring Mission (TRMM; 
November 1997 onwards), Terra (March 2000 onwards), Aqua (July 
2002 onwards), Suomi National Polar-orbiting Partnership (S-NPP; 
January 2012 onwards), and Joint Polar Satellite System (JPSS). The 
AOD products from MODIS on Terra and Aqua, and the cloud properties 
from MODIS on Terra and Aqua and the Visible Infrared Imaging 
Radiometer Suite (VIIRS) on S-NPP are used (Hsu et al., 2004, 2006; 
Minnis et al., 2008; Remer et al., 2008; Levy et al., 2013). Moreover, the 
atmosphere constituents and aerosol properties are from the Model for 
Atmospheric Transport and Chemistry (MATCH). The meteorological 
data, including precipitable water, skin temperature, and surface wind 
speed are from the GEOS-5.4.1 data assimilation system product (Remer 
et al., 2008). In this study, the monthly radiation fluxes productions 
during March 2000 to February 2020 are used, which are derived from 
Level 4 EBAF Ed2.6r products (https://ceres.larc.nasa.gov/order_data. 
php) with a spatial resolution of 1◦ × 1◦ (Loeb et al., 2018). Here, we 
have considered radiation fluxes at the surface, in the atmosphere 
(computed as a residual term), and at the TOA. 

2.2. MERRA-2 

MERRA-2 is the NASA's latest atmospheric reanalysis (Gelaro et al., 
2017). It is produced by the Goddard Earth Observing System (GEOS- 
5.12.4) atmospheric data assimilation system. The system is composed 
of the GEOS atmospheric model (Molod et al., 2015) and the Gridpoint 
Statistical Interpolation (GSI) analysis scheme (Kleist et al., 2009). The 
GEOS-5 model simulates the atmospheric forecast with an approximate 
horizontal resolution of 0.5◦ latitude × 0.625◦ longitude using a cubed- 
sphere horizontal discretization. Following the success of the earlier 
MERRA analysis, the MERRA-2 analysis incorporates more new obser
vation sources in the system and reduces spurious jumps and trends due 
to the changes in the meteorological observing system (McCarty et al., 
2016; Gelaro et al., 2017). One of the most important updates in 
MERRA-2 is the assimilation of long-term aerosol observations from 
multiple satellite remote sensors (Randles et al., 2017). The assimilated 
aerosol observations include 

Table 1 
Summary of datasets analyzed in this study. AOD is retrieved at 550 nm in all datasets in this study.  

Dataset Version Variable Period Resolution Download Link 

Temporal Spatial 
(lon. ×
lat.) 

MISR V32 AOD 2000.03–2020.02 Monthly 1/2◦ × 1/ 
2◦

https://l0dup05.larc.nasa.gov/opendap/misrl2l3/MISR/MIL3MAEN.004/ 

MODIS 
(MOD08_M3) 

V61 AOD 2000.03–2020.02 Monthly 1◦ × 1◦ https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MOD08_M3 

MERRA-2 V2 AOD 2000.03–2020.02 Monthly and 
daily 

5/8◦ × 1/ 
2◦

https://goldsmr5.gesdisc.eosdis.nasa.gov/opendap/MERRA-2 

CERES 
(EBAF) 

Ed4.1 Radiation 2000.03–2020.02 Monthly 1◦ × 1◦ https://ceres.larc.nasa.gov/order_data.php 

SEDAC v1.01 Population 2000 Annual 1/8◦ × 1/ 
8◦

https://sedac.ciesin.columbia.edu/data/set/popdynamics-1-8th-pop-base-year- 
projection-ssp-2000-2100-rev01/data-download  
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▪ The neural net retrieval (NNR) AOD from AVHRR (1979–2002, 
ocean-only) retrieved from the recalibrated AVHRR pathfinder 
atmosphere-extended radiances against MODIS (Heidinger 
et al., 2002; Heidinger et al., 2014);  

▪ The NNR AOD from MODIS aboard Terra (2000–present) and 
Aqua (2002–present) derived from collection 5 MODIS radi
ances (Remer et al., 2005; Levy et al., 2007);  

▪ MISR official AOD of version 22 (2000–2014) only over bright 
surfaces (albedo >0.15) (Kahn et al., 2005), which stops on 
June 30, 2014.  

▪ The cloud-screened level 2.0 AERONET AOD, which stops on 
October 29, 2014 (Holben et al., 1998; Smirnov et al., 2000). 

The use of NNR AOD from AVHRR and MODIS instead of their 
official AOD data in the assimilation system is to correct the biases in 
AOD data (Randles et al., 2016; Randles et al., 2017). To the best of our 
knowledge, MERRA-2 is the first multidecadal reanalysis, in which both 
aerosol and meteorological observation were assimilated, and aerosol- 
radiation interaction is represented by the Goddard Chemistry, Aero
sol, Radiation, and Transport model (GOCART) (Gelaro et al., 2017). 
GOCART model simulates five aerosol species, including mineral dust, 
sulfate, black carbon (BC), organic carbon (OC), and sea-salt. Both sul
fate and carbonaceous aerosol emissions is primary from biomass 
burning, fossil fuel combustion, and biofuel consumption (Randles et al., 
2016). The dust and sea-salt emissions are driven based on wind speed 
following Marticorena and Bergametti (1995) and Gong (2003), 
respectively. Moreover, the secondary chemical oxidation of sulfur di
oxide (SO2) and volcanic SO2 emissions are also included (Randles et al., 
2017). Comparison of MERRA-2 AOD with AERONET observations 
during 1993–2016 demonstrated a good spatial agreement across the 
globe with a spatial correlation of 0.85 and root-mean-square error of 
0.12 (Che et al., 2019). It is pertinent to note that only total AOD in 
MERRA-2 is constrained by assimilating satellite retrievals and the AODs 
of various aerosol species are determined by the model emission in
ventories and meteorology. 

Here, we use both daily (averaged for 24 h a day) and monthly AOD 
at 550 nm in MERRA-2 for total aerosols and aerosol species to analyse 
the long-term trends for both climatological and APEE AOD. In order to 
match the satellite observation, the study period is March 2000 to 
February 2020. 

2.3. Population density 

The Global One-Eighth Degree Population Base Year and Projection 
Grids Based on the Shared Socioeconomic Pathways, Revision 01, 
dataset is used to demonstrate the spatial patterns of population density 
in East China and the Indian subcontinent (Jones and O'Neill, 2016). The 
data for the base year 2000 are used here to demonstrate the spatially 
close association between population and AOD in these two regions. 

3. Methodology 

3.1. Definition of APEE 

The extreme event in climate science is usually defined as a time 
period (e.g., hours to years) when a meteorological condition is over or 
below some threshold values. Two widely used definitions can be 
distinguished based on whether the threshold is defined as a fixed value 
across the entire domain of interest (e.g., Roxy et al., 2017) or it is 
defined for each grid cell and thus varies across the domain (e.g., Jin and 
Pryor, 2020). The thresholds in both definitions are determined as a 
specific percentile of the meteorological variable along the time 
dimension during a climatological period, such as 30 years. The first 
definition is usually employed for simplicity when the meteorological 
condition in question shows a relatively uniform spatial pattern, while 
otherwise the second definition is used. In this study, given the large 

spatial variation of AOD in the study domain (Fig. 1), the second defi
nition is employed. An APEE is defined as a day when the daily AOD is 
above the 90th percentile AOD for a grid cell and month, i.e., AOD ≥ P90, 

AOD(m, i, j), where P90, AOD(m, i, j) is the 90th percentile of AOD at grid 
cell (i, j) in a specific month (m). In other words, P90, AOD(m, i, j) is 
calculated using daily AOD only in that month from March 2000 to 
February 2020, so there are 12 AOD thresholds for each grid cell, cor
responding to 12 months. The purpose of defining P90, AOD for each 
month is to avoid misclassification of days in months of peak AOD as 
APEEs due to strong seasonal variations of AOD in the study domain 
(Fig. 1). Here, MERRA-2 daily AOD is used to select APEEs and then the 
monthly APEE AOD is calculated as the mean AOD from those days 
when AOD meets the APEE criteria (i.e., above the 90th percentile AOD) 
for each grid cell and month (Fig. S1). The monthly AOD that is averaged 
over all days versus APEEs alone in a month are marked as monthly all- 
day vs. monthly APEE AOD, respectively. The monthly APEE AOD shows 
large seasonal and temporal variations: relatively large values (~1) are 
found from January to April in East China, during summer monsoon 
season in the western Indian subcontinent due to strong dust emissions 
and during post-monsoon season in the northern Indian subcontinent 
due to anthropogenic emissions. 

3.2. Trend estimation and statistical testing 

The temporal trend is estimated using the linear least-squares 
regression method (Zwiers and Von Storch, 1995), which is a tradi
tional method and has been widely used to estimate linear trends. The p 
values of the least-squares regression coefficients are evaluated using the 
two-tailed Student's t-test. Trends are computed at the annual timescales 
where the mean of monthly mean values are used. Therefore, the sample 
size is the number of years used in a trend estimation. Our analysis 
shows that the annual time serieses of AOD are not significantly auto
correlated at the 90% dofidence level. Therefore, the impact of auto
correlation on the trend estimation is neglected. Moreover, using the 
Kolmogorov–Smirnov test, we show that the residual errors of annual 
AOD from the fitted regression lines at all grid points in East China and 
Indian subcontinent are normally distributed during the two periods (i. 
e., 2000–2010 and 2011–2019), irrespective of AOD datasets (Fig. S1). 
Based on the above analyses, the assumptions about the linear least- 
squares regression method are reliable and thus can be safely applied 
in trend estimation. 

To avoid overstatement and overintepretation of multiple simulta
neous hypothesis testing results (e.g., statistical testing of trends in a 
number of geographical grid points) (Livezey and Chen, 1983), a 
method to control the fasle discovery rate (FDR) is applied to p values 
(Wilks, 2016). The method operates on the sorted p values in an 
increasing order, p(1) ≤ p(1) ≤ … ≤ p(N), from N local hypothesis tests and 
finds a threshold for the p values. The local null hyposthesis that the 
local trends are zero are rejected if their p values are smaller than or 
eaqual to the threshold level pFDR*, which is calculated using Eq. (1): 

p*
FDR = max

i=1,…,N

[

p(i) : p(i) ≤

(
i
N

)

αFDR

]

(1)  

where αFDR is the chosen control level for the FDR and i is the rank. Note 
that there are various methods that can be used to determine pFDR* 
(Simes, 1986; Benjamini and Hochberg, 1995; Wilks, 2006); the selec
tion of Eq. (1) is to achieve a reasonable sensitivity of the procedure for 
detecting false null hypotheses. For instance, a too strict pFDR* would 
result in missed rejections of false null hypotheses while a too loose 
pFDR* would result in false rejections of true null hypotheses. Based on 
the conclusion that “for grid points exhibiting moderate to strong spatial 
correlation, approximately correct global test levels can be produced using the 
FDR procedure by chossing αFDR = 2αglobal” (Wilks, 2016), here αFDR is set 
to 0.1 (i.e., αglobal = 0.05) so that the statistical significance of the global 
hypothesis tests is at 95% confidence level. 
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Since the least-squares regression method is sensitive to data out
liers, two additional methods—the Theil-Sen trend estimation with the 
Mann-Kendall test and bootstrapping—are also employed to evaluate 
the robustness of the regression method. The Theil–Sen estimator re
ports the median of the slopes of all lines, each of which connects two 
points (Fernandes and Leblanc, 2005). The Theil–Sen trend significance 
is tested using the Mann-Kendall test, which is non-parametric or dis
tribution free test (Mann, 1945; Kendall, 1955). The Mann-Kendall trend 
test can be used for as few as four samples. However, the probability of 
missing a true trend increases as the number of samples decreases; the 
recommended minimum number of samples is at least 8 to 10. Because 
the software we used (i.e., NCL—NCAR Command Language) to perform 
the Mann-Kendall test requires at least 10 values, the Mann-Kendall test 
is not applied to the latter period (2011–2019). Bootstrapping resamples 
the data with replacement to estimate the probability distribution 
function of trends and then calculate the p value as a two-tailed prob
ability of finding a trend equal to zero. Here, datasets are resampled by 
10,000 times for area-averaged time series and 1000 times for time se
ries at each grid cell to reduce computing time. Our results show that the 
trends and the associated statisical significance estimated by FDR using 
p values calculated by the three methods are generally consistent in 
terms of both spatial patterns and magnitudes (shown in Section 4.2). 
Therefore, only trends estimated by the linear least-squares regresion 
method are shown in this paper. 

3.3. Piecewise trend detection 

A piecewise regression method is used to determine if there is a 
change of trend in a time series. First, a differential evolution method is 
used to search for a piecewise linear regression model in the global 
domain (e.g., through the entire time series) that minimize the sum of 
residual errors from the fitted piecewise regression model (Storn and 
Price, 1997). Here, a piecewise regression model with two segments is 
proposed, corresponding to AOD time series before and after the control 
measurements of air quality. Second, determine if each segment of the 
piecewise regression model has statistically different trends. If so, we 
conclude that a change of trend is detected and the point that links the 
two segments is the breakpoint. 

4. Results 

4.1. Spatial and seasonal characteristics of AOD 

East China and the Indian subcontinent are characterized by high 
AOD with strong seasonality. Fig. 2 illustrates the spatial distribution of 
climatology AOD in four seasons from the retrievals of MISR and MODIS 
onboard Terra and the MERRA-2 reanalysis for the period of 2000 to 
2019. All of the three datasets show consistent spatial patterns of AOD in 
East Asia and the Indian subcontinent. However, MODIS shows higher 
(+29%) climatological AOD values at annual timescale than MERRA-2 
yet MISR demonstrates lower AOD values (− 36%) than MERRA-2 over 
East China and Indian subcontinent with the largest AOD differences in 

Fig. 2. Climatology (2000–2019) of seasonal aerosol optical depth in East China (EC) and the Indian subcontinent (IS). Data are from MISR and MODIS onboard 
Terra satellite and the MERRA2 reanalysis. The numbers in each panel represent the area-averaged aerosol optical depth and its spatial standard deviation. 
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the major anthropogenic polluted regions (i.e., Northern India and 
Eastern China). Overall, MODIS AOD is closer to MERRA-2 than MISR, 
particularly in regions of high AOD values, which could be partially 
attributed to much larger (~5 times) spatial coverage of MODIS AOD 
than MISR AOD (i.e., a swath width of 2330 km versus 380 km), 
meaning that MERRA-2 assimilates much more AOD data from MODIS 
than from MISR. Note that in the light of a fairly small absolute amount 
of assimilated AOD data due to the single overpass per sensor per day for 
locations in low and mid latitudes, it is also possible that the underlying 
GEOS model fields are more similar to MODIS in some areas. In general, 
the seasonal variabilities of AOD from the three datasets are similar in 
both regions with a peak value in summer (JJA, defined as June–July- 
August), followed by spring (MAM, defined as March–April-May). In 
JJA, the largest AOD occurs over the North China Plain and Sichuan 
Basin that is attributed to the anthropogenic pollutants emissions from 
local sources (Guo et al., 2011; Pozzer et al., 2015; Wei et al., 2019; 
Zhang et al., 2019a; Zhao et al., 2019) as well as in the Indo-Gangetic 
Plain that are attributed to both local anthropogenic emissions and 
remote natural dust aerosol emissions from the Thar Desert in Northwest 
India (Jin et al., 2014; Jin et al., 2015). The spatial averaged summer
time AOD from MODIS is about 0.53 (0.35 from MISR; 0.43 from 
MERRA-2) in East Asia and 0.58 (0.43 from MISR; 0.40 from MERRA-2) 
in the Indian subcontinent. In MAM, the regions with larger AOD in East 
Asia extend to Southeast China with a spatial average of 0.56 from 
MODIS (0.38 from MISR; 0.53 from MERRA-2), and larger AOD occurs 
over the Indian subcontinent due to the anthropogenic pollutions with 
the spatial average of 0.41 from MODIS (0.37 from MISR; 0.39 from 
MERRA-2). In autumn (SON, defined as September–October-November) 
and winter (DJF, defined as December–January-February), the values of 

AOD are similar over the research domain with the spatial average of 
0.36–0.42 from MODIS (0.24–0.29 from MISR; 0.31–0.41 from MERRA- 
2). Overall, the three datasets provide consistent AOD climatology in 
terms of both spatial distributions and seasonal variabilities. 

The MERRA-2 data further provide aerosol species AOD for sulfate, 
OC, BC, dust, and sea-salt, which can help understand the relative 
contributions of each aerosol species to total AOD. Fig. 3a–f shows the 
spatial distributions of annual climatological AOD from individual 
aerosol species. Apparently, sulfate aerosols dominate the total AOD 
over East China and North and East India with a spatial averaged value 
of 0.29 and 0.13, respectively. The high dust AOD (about 0.12) mainly 
occurred over the Thar desert in the northwest the Indian subcontinent. 
Contributions from other aerosol species are very small. Overall, there 
are significant aerosol pollution in East Asia and the Indian subcontinent 
with the spatial averaged values of 0.44 and 0.35, respectively. In order 
to better understand the contribution of aerosol species to total AOD, the 
annual and seasonal AOD fractions of each aerosol species are shown in 
Fig. 3g–h. In East China, sulfate contributes about 65% to annual total 
AOD, followed by OC (15%) and dust (11%). In the Indian subcontinent, 
sulfate contributes about 38% to the annual total AOD, followed by dust 
(34%) due to the stronger dust emission over the Thar desert and organic 
carbon. Sea-salt accounts for a larger fraction (~13%) than black and 
organic carbons in summer in the Indian subcontinent, which is due to 
the strong southwest summer monsoon circulation that can generate 
high emissions of sea-salt aerosols and further transport them from the 
Arabian Sea northeastward to the Indian subcontinent (Jin et al., 2014). 
In East China, the largest contribution of aerosol specie is sulfate with a 
peak value of 72% in JJA and SON, and the second is OC with a peak of 
21% in MAM. Differently, in the Indian subcontinent, dust has the 

Fig. 3. Climatology (2000–2019) of aerosol optical depth (AOD) for each aerosol species. (a)–(f): Spatial patterns of AOD for five aerosol species and total aerosols at 
annual timescale. (g)–(h): Area-averaged fractions of five aerosol species in East China (EC) and the Indian subcontinent (IS) at annual and seasonal timescales. Data 
are from the MERRA2 reanalysis. The numbers in panels (a)–(f) represent the area-averaged AOD and its spatial standard deviation and the numbers in panels (g)–(h) 
are fractions of AOD for each aerosol species. 
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largest contribution in MAM (46%) and JJA (43%), while sulfate has the 
largest contribution in SON (47%) and DJF (48%). It is worth noting that 
the seasonal variabilities in aerosol species AOD are larger in the Indian 
subcontinent than in East China, due to strong dust emissions caused by 
the Indian summer monsoon. 

4.2. AOD trend 

Significant trends in AOD are detected in East China and the Indian 
subcontinent during the past two decades (2000–2019, as shown in 
Fig. 4). MISR and MODIS exhibit consistent negative-positive northeast- 
southwest differences in AOD trends in the study domain with large 
magnitude negative trends in East China while large magnitude positive 
trends in India subcontinent. AOD trends in India subcontinent 
demonstrate a relatively more homogeneous spatial pattern than those 
in East China, with the latter showing a maximum magnitude negative 

trend (− 0.30 decade− 1) in the Sichuan Basin. These spatial features of 
AOD trends in East China and the Indian subcontinent show little sea
sonal variation, except that no statistically significant trend is observed 
in summertime in the Indian subcontinent, which could be attributed to 
the increasing trend in the Indian summer monsoon rainfall since 2002 
(Jin and Wang, 2017). Generally, the AOD trends derived from MODIS 
are greater than those from MISR, partially due to their different sam
pling size (i.e., sensor swath width). However, non-significant AOD 
trends are detected in East China in the MERRA-2 data, albeit trends are 
consistent in the Indian subcontinent among the three datasets. To 
examine the potential impact of the variations of large-scale sea surface 
temperature of the Pacific Ocean on the AOD trends, correlation analysis 
was performed between Nino 3.4 index and the area-averaged AOD over 
Eastern China and the Indian subcontinent at annual timescale during 
2000–2019. Results showed that no statistically significant correlation 
was detected at the 90% confidence level over the two regions in the 

Fig. 4. Annual and seasonal trends in total aerosol optical depth (decade− 1) during 2000–2019. The trends are estimated using MERRA-2 data and the least-square 
regression method. Green dots represent grids with p values small enough to satisfy the FDR criterion αFDR = 0.10 [Eq. (1)] so that the statistical significance of the 
global/field test is at 95% confidence level. The numbers in each panel represent the trends of area-averaged AOD and the corresponding standard deviation. 
Statistically significant trends at the 90% confident level of aera-average field are marked with a star. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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three AOD datasets. 
The area-averaged AOD manifests distinctive decadal variations of 

AOD over East China and the Indian subcontinent, as shown in Fig. 5. In 
East China, AOD from MISR, MODIS and MERRA-2 has increased during 
2000–2010 but decreased during 2011–2019; such changes in AOD 
trends from increasing to decreasing appear in all seasons. However, in 
the Indian subcontinent, the total AOD shows increasing trends from 
2000 to 2019 with the fastest increasing trends in SON and DJF. 

To address and compare the AOD interdecadal variability in these 
two regions, trends are further estimated in East China during the former 
(2000–2010) and latter (2011–2019) periods, and in the Indian sub
continent during the whole period (2000–2019). The breakpoint of 2010 
is determined using the piecewise trend detection method introduced in 
Section 3.3. When applying this method in the area-averaged seasonal 
AOD time series over East China (Fig. 5), we find different breakpoints. 
For example, the breakpoints from MERRA-2 are 2010.4, 2011.7, 
2007.0, and 2012.5 in the order of spring, summer, fall, and winter. We 
average the seasonal breakpoints across MERRA-2, MODIS, and MISR 
datasets and get a single breakpoint of 2010. Therefore, the breakpoint 
at 2010 for the AOD trend estimation is used for East China (2000–2010 
and 2011–2019). From now on, we will focus on only the annual time 
series, because no consistant breakpoint is detected across seasons. In 
the Indian subcontinent, the AOD time serieses generally demonstrate 
persistent increasing trend during the entire period and thus no change 
point is detected, so our analysis in this region is performed for the entire 
period. 

Fig. 6 illustrates the spatial distribution of AOD trends in East China 
during the two periods, using the MODIS retrievals and MERRA-2 
reanalysis. The trends are estimated using linear regression method 
based on monthly datasets. Also, the grids with significant trends at the 
95% confidence level are marked by green dots. Consistent positive AOD 
trends are estimated with area-averaged values of +0.11 (MODIS) and 
+ 0.18 decade− 1 (MERRA-2) in East China. However, during the latter 
period, the AOD trends in East China turn to negative values ranging 
from − 0.26 (MODIS) to − 0.15 decade− 1 (MERRA-2). During the whole 
period, AOD trends in the Indian subcontinent are estimated with pos
itive area-averaged values of +0.06 (MODIS) and + 0.04 decade− 1 

(MERRA-2) (Fig. 5). Also, trends estimated using MISR AOD (Fig. S3) 
have generally consistent patterns with MODIS and MERRA-2 datasets 
but with smaller magnitudes and fewer grid points that pass the signif
icant test, which can be partially attributed to smaller AOD magnitudes 
(Fig. 2) and lower sampling frequency of MISR than MODIS, respec
tively. Spatial aggregation and temporal averaging of daily AOD can 
help reduce the AOD uncertainties related to background noise and 
retrieval algorithms (Levy et al., 2015). Since MODIS AOD have larger 
spatial coverage than MISR and thus smaller uncertainties, it is 
reasonable to detect more statistically significant AOD trends from 
MODIS than from MISR. Overall, MODIS and MERRA-2 manifest rela
tively consistent AOD trends in terms of both spatial and temporal 
scales. Therefore, MERRA-2 can be employed to perform further ana
lyses with reasonable fidelity. 

To test the robustness of the trends estimated using the linear least- 

Fig. 5. Time series of aerosol optical depth (AOD) at annual and seasonal timescales for 2000–2019 in East China and the Indian subcontinent. Data are from MODIS 
and MISR retrievals and the MERRA2 reanalysis. The vertical shading highlights the starting time point of the reversal of the AOD trend in East China. 
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squares regression method in Fig. 6, the other two methods (i.e., the 
Theil-Sen and bootstrapping) are also applied and the trends are shown 
in Fig. S4 and S5. Generally, the trends and significance levels estimated 
by the three methods are consistent in terms of spatial patterns and 
magnitude. 

To attribute the trends in total AOD, AOD trends for individual 
aerosol species are estimated using the MERRA-2 reanalysis, as shown in 
Fig. 7 for trends in area-averaged AOD and in Fig.S6 for spatial patterns. 
In Fig. 7, only statistically significant trends are shown. In East China, 
the AOD trends during both periods are dominated by the sulfate 
aerosols, followed by organic carbon aerosols. It is the same with the 
Indian subcontinent (Fig. S6). Note that the dominant contribution of 
sulfate aerosols to the total AOD trends are consistent with the Chinese 
Air Pollution Action Plan released in 2013, which focused on the 
reduction of sulfate aerosols. 

4.3. Trend in the APEEs 

4.3.1. Trend in magnitude and frequency of the APEEs 
The APEEs (defined as days with AOD over the local 90th percentile) 

also show significant trends in terms of their magnitude and frequency. 
Fig. 8(a) illustrates the spatial distribution of the trends in the magni
tude of the APEEs at annual timescale based on the MERRA-2 reanalysis. 
At annual timescale in East China, APEE AOD demonstrates positive 
trends during the former period with a spatially homogeneous pattern, 
while the trends are mainly negative during the latter period with strong 
spatial heterogeneity: large magnitude negative trends in Northeast 
China and weak trends in other regions. In the Indian subcontinent, 
slight positive trends are detected except negative trends in a limited 
area of northwestern India during the whole period. Generally, the APEE 
AOD trends have similar spatial distribution to that of all-day AOD 

trends, but manifest larger magnitude. In East China, the trends in APEE 
AOD can reach ±0.60 decade− 1 versus ±0.30 decade− 1 for all-day AOD. 
This difference is attributable to the AOD absolute range: the APEE AOD 
is always much larger than the all-day AOD. 

Fig. 8(b) shows the spatial pattern of the trends in the frequency of 
the APEEs (i.e., fraction of days with AOD larger than the local 90th 
percentile in a month) at annual timescale. In East China, more frequent 
APPEs present in the former period yet less frequent APEEs in the latter 
period. Relatively larger magnitude frequency trends occur over the 
southeast China with trends of +6 day month− 1 decade− 1 during the 
former period and − 8 day month− 1 decade− 1 during the latter period. 
The area-averaged APPEs frequent are +3.47 day month− 1 decade− 1 

and  –3.58 day month− 1 decade− 1 during the two periods. In the Indian 
subcontinent, positive trends in the APEE frequency are +1.13 day 
month− 1 decade− 1 during the whole period, which are mainly present in 
South and East India with a magnitude about +3 day month− 1 decade− 1. 

Fig. 6. Spatial patterns of annual and seasonal trends (decade− 1) in aerosol 
optical depth during the two periods of 2000–2010 and 2011–2019 in East 
China. Data are from MODIS onboard Terra and the MERRA2 reanalysis. Green 
dots represent grids with p values small enough to satisfy the FDR criterion 
αFDR = 0.10. The numbers in each panel represent the trends of area-averaged 
AOD and the corresponding standard deviation. Statistically significant trends 
at the 90% confident level of aera-average field are marked with a star. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 7. Annual trends (decade− 1) of area-averaged aerosol optical depth (AOD) 
for total aerosol and aerosol species in East China during two periods of 
2000–2010 and 2011–2019 and in the Indian subcontinent during the period of 
2000–2019. For aerosol species AOD, only statistically significant trends are 
shown here. 
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4.3.2. Trend in APEEs magnitude for aerosol species 
To quantify the relative contribution of each aerosol species to the 

trends in the magnitude of the APEEs, we further calculate AOD trends 
for sulfate, OC, BC, dust and sea-salt during the APEEs using the MERRA- 
2 reanalysis, as shown in Fig. 9. In East China, sulfate aerosols demon
strate the largest magnitude of an increasing trend (+0.20 decade− 1) 
during the APEEs in the former period, followed by a decreasing trend of 
dust (− 0.03 decade− 1). However, during the latter period, aerosol spe
cies demonstrate non-significant trends over most areas in East China. In 
the Indian subcontinent, sulfate aerosols show the strongest increasing 
trend (+0.05 decade− 1), followed by a decreasing trend of dust (− 0.03 
decade− 1) and an increasing trend of OC (+0.02 decade− 1) during the 
whole period. Large sulfate AOD trends are mainly attributed to the 
increasing of anthropogenic emission from the rapid development of 
industrialization and urbanization (e.g., An et al., 2019). The negative 
trends of dust AOD in the Indian subcontinent is attributed largely to the 
revival of the Indian summer monsoon and the consequent greening of 
the Thar Desert from 2002 to 2016 (Jin and Wang, 2017, 2018). For sea 
salt, the negative trends in the Indian subcontinent can be also caused by 
the enhanced monsoonal precipitation. 

4.3.3. Trends in area-averaged AOD during the APEEs 
The trends in area-averaged magnitude and frequency of the APEEs 

over East China and the Indian subcontinent are shown Fig. 10. The 
decomposed AOD trends across aerosol species are also analyzed. During 
the former period in East China, the APEE AOD has increased with an 
annual rate of +0.16 decade− 1; such increases are attributable to sulfate 
aerosols. During the latter period, the APEE AOD reversed to negative 
trends in East China due to decrease in sulfate aerosols, with a 
decreasing trend of − 0.12 decade− 1. In the Indian subcontinent, the 
APEE AOD has increased during the whole period, which are mainly 

caused by sulfate, organic carbon, and dust aerosols. Note that the area- 
averaged trend of sulfate is positive value of 0.036 decade− 1 and the 
trend of dust is negative value of − 0.024 decade− 1. 

For the frequency of the APEEs in East China, it shows positive trends 
during the former period with a value of about +3.5 day month− 1 

decade− 1 yet negative trends during the latter period with a value of 
− 3.8 day month− 1 decade− 1. In the Indian subcontinent, the frequency 
shows positive trends during the former period with a value of +1.1 day 
month− 1 decade− 1. Generally, East China has experienced more rapid 
changes in the magnitude and frequency of the APEEs than the Indian 
subcontinent and these changes are dominated by sulfate aerosols in 
both regions, but the Indian subcontinent are more susceptible to dust 
aerosols than East China. 

4.4. Radiation response to AOD trends 

Aerosols can modify the atmospheric heating profile through 
absorbing and scattering solar radiation, so the changes of AOD could 
inevitably lead to changes of radiative fluxes. To demonstrate the radi
ation response to the AOD trends, the trends of shortwave radiation at 
the surface, in the atmosphere, and at the top of the atmosphere (TOA) 
are estimated during the former period and the latter period by using 
CERES and MERRA-2 datasets (Fig. 11 and S7). Comparing to CERES, 
MERRA-2 can generally well capture the trends of radiation under clear 
sky condition but exhibit significant discrepancies under all-sky condi
tions, which is mainly attributed to clouds. 

At the surface in East China, annual shortwave radiation shows 
negative trends during the former period with the area-averaged trends 
of − 3.2 (CERES) and − 4.9 W m− 2 decade− 1 (MERRA-2) yet positive 
trends during the latter period with trends of +7.1 (CERES) and + 5.1 W 
m− 2 decade− 1 (MERRA-2). In the Indian subcontinent, annual 

Fig. 8. (a) Annual trends in aerosol optical depth (decade− 1) and (b) the frequency (i.e., day number) of the air pollution extreme events (APEEs) for the periods of 
2000–2010 (left) and 2011–2019 (middle) in East China and for the period of 2000–2019 (right). Data are from the MERRA2 reanalysis. Green dots represent grids 
with p values small enough to satisfy the FDR criterion αFDR = 0.10. The numbers in each panel represent the trends of area-averaged APEE AOD and the corre
sponding standard deviation. Statistically significant trends at the 90% confident level of aera-average field are marked with a star. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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shortwave radiation also demonstrates negative values during the whole 
period with area-averaged trends of − 1.4 (CERES) and − 2.0 W m− 2 

decade− 1 (MERRA-2). 
In the atmosphere in East China, shortwave radiation demonstrates 

positive trends with an area-averaged value of +1.4 W m− 2 decade− 1 

(CERES) and +1.1 W m− 2 decade− 1 (MERRA-2) during the former 
period; however, during the latter period, the trends become negative 
with values of − 4.3 (CERES) and − 1.6 W m− 2 decade− 1 (MERRA-2). In 
the Indian subcontinent, positive trends are observed during the whole 
period with the area-averaged trends of +1.7 (CERES) and +1.2 

Fig. 9. Annual trends in aerosol optical depth during the aerosol pollution extreme events (APEEs) for sulfate, organic carbon (OC), black carbon (BC), dust and sea- 
salt during 2000–2010 (left) and 2011–2019 (middle) in East China and during 2000–2019 (right) in the Indian subcontinent. The trends are estimated using the 
MERRA-2 data and the least-square regression method. Green dots represent grids with p values small enough to satisfy the FDR criterion αFDR = 0.10. The numbers 
in each panel represent the trends of area-averaged APEE AOD and the corresponding standard deviation. Statistically significant trends at the 90% confident level of 
aera-average field are marked with a star. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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(MERRA-2) W m− 2 decade− 1. 
At TOA in East China, annual shortwave radiation shows significant 

negative trends with area-averaged values of − 1.8 (CERES) and − 4.0 W 
m− 2 decade− 1 (MERRA-2) during the former period, which is consistent 
with the increases in scattering sulfate aerosol (Fig. 5); however during 
the latter period, the trends change into positive values of +2.8 (CERES) 
and + 3.3 W m− 2 decade− 1 (MERRA-2). In the Indian subcontinent, a 
positive trend of +0.5 W m− 2 decade− 1 are estimated in CERES versus a 
negative trend of − 0.8 W m− 2 decade− 1 in MERRA-2. 

Radiation trends at clear-sky conditions reflect only the aero
sol–radiation interaction, while the trends at all-sky conditions (Fig. 12) 
are results of both aerosol–radiation and aerosol–cloud interactions and 
thus can provide a complete picture of the aerosol–climate interaction. 

The radiation trends at clear-sky and all-sky conditions are generally 
similar in CERES in MERRA-2, while important discrepancies are 
noticeable in some areas due to clouds. For CERES, statistically signifi
cant positive trends are detected in the atmosphere over the North China 
Plain during the first period, which can be attributed to clouds—the 
increasing low clouds (Fig. 13) can reflect more solar radiation to the 
aerosol layer above low clouds while the decreasing high clouds can 
increase the solar radiation that reach the aerosol layer below high 
clouds, both of which can strengthen the aerosol's warming effect in the 
atmosphere. No statistically significant trend from CERES is observed at 
the surface or the top of the atmosphere over the two regions, suggesting 
that clouds dominate the variations of radiation over these two regions. 
However, the area-averaged radiation from CERES over East China at 
the surface demonstrates a significant trend of − 4.8 W m− 2 decade− 1, 
which is due to the reduced uncertainty of AOD when it is spatially 
averaged. For MERRA-2, negative radiation trends are detected during 
the latter period at the surface and TOA over some areas in the southern 
part of East China, which is attributed to increasing clouds (Fig. 13). 
Moreover, much stronger negative radiation trends are shown over the 
western and southern Indian subcontinent, which is consistent with the 
increasing clouds over these regions. 

5. Conclusions and discussion 

This study examined and compared the long-term trends of AOD, the 
magnitude and frequency of the APEEs (i.e., daily AOD over the local 
90th percentile) from 2000 to 2019 in East China and the Indian sub
continent using multiple satellite retrievals and MERRA-2 aerosol 
reanalysis. The AOD products from MERRA-2 are evaluated using the 
satellite retrievals from MODIS and MISR. Generally, MODIS shows a 
higher AOD than MISR and MERRA-2 over the major desert regions and 
their downwind regions as well as anthropogenic polluted regions. 
Relatively, MERRA-2 AOD are more consistent with MISR than with 
MODIS retrievals. Also, the AOD from the three datasets show similar 
seasonal variabilities over Asia with peak values in summer and spring 
over the major study domain. Specifically, high AOD appears in East 
China and North India in summer. Regarding aerosol species, sulfate 
AOD dominates over East China and North India with a peak value of 0.6 
and 0.4, respectively, followed by high organic and black carbon. 

MISR and MODIS exhibit consistent negative-positive northeast- 
southwest difference in AOD trends from 2000 to 2019, with large 
magnitude negative trends in East China while large magnitude positive 
trends in the India subcontinent. Further analysis of the area-averaged 
AOD timeseries demonstrates distinctive features in the interdecadal 
variations of AOD over East China and the Indian subcontinent. AOD in 
East China shows an increasing trend (+0.11 decade− 1) during 
2000–2010 yet a decreasing trend (− 0.26 decade− 1) during 2011–2019, 
forming a reverse V-shape. The decreasing trend can be largely attrib
uted to a more stringent regulations on air pollutant emissions—the 
Action Plan for the Prevention and Control of Air Pollution—that was 
issued by the Chinese government in September 2013. On the other 
hand, AOD in the India subcontinent shows an increasing trend (+0.04 
decade− 1) over the entire period (2000–2019). This result is different 
from a previous study, in which an increase in AOD across India from 
2010 to 2018 was addressed (Samset et al., 2019). Note that no statis
tical test was performed on such an increase in AOD (Samset et al., 
2019). This difference implies that estimation of long-term changes in 
AOD without any statistical test might be biased and thus should be re- 
evaluated. Our result also suggests that the current environmental pol
icies in the India subcontinent are not sufficient enough to reverse the 
increasing aerosol pollution trend. 

The magnitude and frequency of the APEE also show significant 
trends. For the magnitude, a positive trends (+0.16 decade− 1) in the 
APEE AOD is detected from 2000 to 2010 in East China; in contrast, a 
negative trend (− 0.11 decade− 1) is observed from 2011 to 2019. In the 
Indian subcontinent, weak positive trends (+0.02 decade− 1) are seen 

Fig. 10. Annual trends of area-averaged aerosol optical depth (AOD; units: 
decade− 1) for total aerosols (a), day numbers (day month− 1 decade− 1) (b), and 
aerosol species (c), during the air pollution extreme events (APEEs) in East 
China for the two periods of 2000–2010 and 2011–2019, and in the Indian 
suncontinent for the period of 2000–2019. For AOD trends of aerosol species, 
only statistically significant trends at 95% confidence level are shown. 
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Fig. 11. Spatial patterns of trends in annual clear-sky shortwave radiation (W m− 2 decade− 1) at the top of the atmosphere (TOA), in the atmosphere (ATM), and at 
the surface (SFC) during periods of 2000–2010 and 2011–2019 in East China and during the period of 2000–2019 in the Indian subcontinent. Data are from CERES 
and the MERRA-2 reanalysis. Green dots represent grids with p values small enough to satisfy the FDR criterion αFDR = 0.10. The numbers in each panel represent the 
trends of area-averaged radiation and the corresponding standard deviation. Statistically significant trends at the 90% confident level of aera-average field are 
marked with a star. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. The same as Fig. 11, but under all-sky condition.  
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from 2000 to 2019. For the frequency, more APEEs occurred in East 
China (+3.47 day month− 1 decade− 1) from 2000 to 2010, while less 
APEEs days occurred (− 3.58 day month− 1 decade− 1) from 2011 to 
2019. In the Indian subcontinent, the trend in the APEE frequency is 
+1.13 day month− 1 decade− 1 during the whole period. The trends in the 
magnitude and frequency of the APEEs show consistent spatial patterns 
to but greater magnitudes than the trends in the all-day AOD in East 
China, indicating that the APEEs make a substantial contribution to the 
all-day AOD trends. 

Various aerosol species also demonstrate significant APEE AOD 
trends. In East China, the positive trends in the APEE AOD from 2000 to 
2010 are mainly attributed to sulfate aerosols with an area-averaged 
value of +0.20 decade− 1, while the negative trends for the period of 
2011–2019 are attributed to both sulfate and organic aerosols. In the 
India subcontinent, the positive trends in APEE AOD during the entire 
period are mainly caused by the sulfate aerosols with a value of +0.05 
decade− 1, followed by the dust (− 0.03 decade− 1) and OC (+0.02 
decade− 1). 

Associated with AOD trends, clear-sky radiation from CERES and 
MERRA-2 shows significant trends over the study domain. In East China, 
clear-sky shortwave radiation shows negative trends (− 3.2 W m− 2 

decade− 1) at the surface yet positive trends (+1.4 W m− 2 decade− 1) in 
the atmosphere from 2000 to 2010; these trends reversed during the 
period of 2011–2019. In the India subcontinent, clear-sky shortwave 
radiation shows negative trends (− 1.4 W m− 2 decade− 1) at the surface 

from 2000 to 2019. On the other hand, all-sky radiation exhibits 
consistent trends to clear-sky radiation in the atmosphere but large 
discrepancies at the surface and TOA in both CERES and MERRA-2, 
suggesting that absorbing aerosols dominate the radiation budget in 
the atmosphere over East China and the Indian subcontinent. Moreover, 
the discrepancies of radiation trends between clear-sky and all-sky 
conditions are larger in MERRA-2 than in CERES even though the 
former demonstrates much weaker trends in clouds, implying that 
MERRA-2 might overestimate the radiation responses to clouds. 

It is noteworthy that there are some caveats in this study. First, the 
MERRA-2 reanalysis makes it possible, for the first time, to unveil the 
spatiotemporal features of the air pollution extreme event at the global 
scale, but it does not simulate nitrate and ammonium aerosols due to 
high computational cost for associated gas-phase chemistry and aerosol 
thermodynamics (Liu et al., 2012). Nitrate and ammonium aerosols 
have been shown to contribute an annual average of 15% to total AOD in 
East Asia (Park et al., 2014) and play an important role in ice cloud 
formation and aerosol indirect radiative effect during Asian monsoons 
(Höpfner et al., 2019). Moreover, the emissions of these two aerosols 
and their ratios to total aerosols have demonstrated generally increasing 
trends during the past two or so decades in Asia due to increasing 
agricultural activities and rapid decrease in sulfate aerosols (Zhao et al., 
2017). Therefore, although a lack of these two aerosol species in the 
MERRA-2 reanalysis does not influence the trend estimation of total 
AOD since satellite-retrieved AOD are assimilated, it could result in 

Fig. 13. Spatial patterns of trends in annual cloud cover (% decade− 1) for total, high, middle, and low clouds during periods of 2000–2010 and 2011–2019 in East 
China and during the period of 2000–2019 in the Indian subcontinent. Data are from CERES and the MERRA-2 reanalysis. Green dots represent grids with p values 
small enough to satisfy the FDR criterion αFDR = 0.10. The numbers in each panel represent the trends of area-averaged cloud covers and the corresponding standard 
deviation. Statistically significant trends at the 90% confident level of aera-average field are marked with a star. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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overestimation of AOD trends of other anthropogenic aerosol species (e. 
g., sulfate or black carbon) as well as radiation trends. Second, although 
we focused on the period from 2000 to 2019 when Terra satellite has 
continuous observations, the estimation of long-term trends in AOD 
using the MERRA-2 reanalysis could be biased by changes in the 
observing system (McCarty et al., 2016; Randles et al., 2017) and 
discontinuous MISR and AERONET AOD data assimilated in the rean
alysis (see Section 2.3). To what extent the changes in the assimilation 
sources of AOD affect the accuracy of AOD trend is still an open ques
tion. Third, the AOD trend estimation could be biased by the long-term 
drift of Terra-MODIS deepblue AOD, which is restricted to 0.005 ±
0.002 (trend and one standard deviation) per decade (Sayer et al., 
2019). However, the AOD trends discussed here ranges from 0.06 to 0.4 
per decade, so such a small AOD drift should not be a serious issue in this 
study but could play a role in AOD trend estimation in regions with more 
gradual changes in aerosol concentrations than in East China and the 
Indian subcontinent. Last, it should be pointed out that although this 
paper is focused on trends that are statistically significant (i.e., trends 
large with low uncertainties), their counterparts—insignificant trends (i. 
e., trends small with low uncertainties or trends large with high 
uncertainties)—also have important implications, in particular from the 
perspective of policy makers. The first means that any trend is likely 
small so we don't need to worry about it while the second means that we 
don't know whether the trend is large or small because its uncertianty is 
high, so we need to improve the monitoring techniques and/or prepare 
to deal with a potential large trend. The distinction between these two 
types of insignificant trends are out the scope of this paper. 

In summary, our results show that the air quality has been improving 
in East China during the past decade but not in the Indian subcontinent. 
To combat with the severe air pollution issues, the Indian government 
has initialized a National Clean Air Program in January 2019 (Sundaray 
and Bhardwaj, 2019), with an aim to significantly reduce particle 
pollutant concentrations by 20–30% by 2024 and even more in a long- 
term plan in 20–25 years. Therefore, it is important to use new satel
lite platforms after Terra mission that will end around 2026 to contin
uously monitor the aerosol pollution in the Indian subcontinent and 
other regions in Asia and address the associated economic and climatic 
impacts. Unfortunately, we will face a gap because there is no planned 
U.S. satellite platform that has an equator crossing time of 10:30 a.m. 
local time. However, there are some potential satellite candidates that 
could be used to extend the Terra's mission in regard to aerosol obser
vations. For example, the Suomi National Polar-orbiting Partnership (S- 
NPP) satellite and the NASA-NOAA Joint Polar Satellite System (JPSS) 
with equator crossing time of 1:30 p.m. local time have been planned to 
last through 2031 (Hsu et al., 2019). The Visible Infrared Imaging 
Radiometer Suite (VIIRS) onboard these satellites have very similar 
spectral bands to and higher spatial resolution than Terra-MODIS. 
Moreover, the MODIS aerosol retrieval algorithms have been already 
applied in VIIRS and demonstrated a good consistency (Hsu et al., 2019). 
All of these similarities make VIIRS a good if not a perfect successor of 
Terra-MODIS given another fact that the morning–afternoon offset 
(~0.01) between Terra-MODIS and Aqua-MODIS AOD is attributed to 
sensor calibration or retrieval artefact instead of a temporal component 
of the aerosol system (Remer et al., 2020) and could be removed in the 
future (Levy et al., 2013). Besides polar-orbiting satellites, the fusion of 
multiple geostationary satellites from different space agencies could 
provide another opportunity to extend Terra's record of global aerosol 
observations but with hourly resolution (Xie et al., 2020). With an 
increasing number of satellites in orbits, it is of substantial importance to 
develop a consistent aerosol retrieval algorithm and apply it to various 
sensors with similar configuration so that a long-term and consistent 
dataset of aerosols will be available to the climate and environmental 
communities in the future. 
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Zheng, Y., Zhao, H., Zhang, X., 2019. Large contribution of meteorological factors to 
inter-decadal changes in regional aerosol optical depth. Atmos. Chem. Phys. 19, 
10497–10523. 

de Meij, A., Pozzer, A., Lelieveld, J., 2012. Trend analysis in aerosol optical depths and 
pollutant emission estimates between 2000 and 2009. Atmos. Environ. 51, 75–85. 

Di, Q., Kloog, I., Koutrakis, P., Lyapustin, A., Wang, Y.J., Schwartz, J., 2016. Assessing 
PM2.5 exposures with high spatiotemporal resolution across the continental United 
States. Environ. Sci. Technol. 50, 4712–4721. 

Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., Dominici, F., 
Schwartz, J.D., 2017. Air pollution and mortality in the Medicare population. 
N. Engl. J. Med. 376, 2513–2522. 

Diner, D.J., Beckert, J.C., Reilly, T.H., Bruegge, C.J., Conel, J.E., Kahn, R.A., 
Martonchik, J.V., Ackerman, T.P., Davies, R., Gerstl, S.A.W., Gordon, H.R., Muller, J. 
P., Myneni, R.B., Sellers, P.J., Pinty, B., Verstraete, M.M., 1998. Multi-angle imaging 
SpectroRadiometer (MISR) - instrument description and experiment overview. IEEE 
Trans. Geosci. Remote Sens. 36, 1072–1087. 

Z. Hu et al.                                                                                                                                                                                                                                       

https://doi.org/10.1016/j.rse.2021.112541
https://doi.org/10.1016/j.rse.2021.112541
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0005
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0005
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0010
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0010
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0010
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0010
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0015
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0015
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0015
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0015
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0015
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0015
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0015
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0015
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0015
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0015
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0015
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0015
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0015
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0015
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0015
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0020
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0020
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0020
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0025
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0025
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0025
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0025
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0025
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0025
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0025
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0025
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0025
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0025
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0025
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0030
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0030
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0030
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0030
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0035
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0035
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0040
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0040
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0040
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0045
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0045
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0045
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0050
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0050
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0050
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0050
http://refhub.elsevier.com/S0034-4257(21)00261-3/rf0050


Remote Sensing of Environment 263 (2021) 112541

17

Fan, J.W., Wang, Y., Rosenfeld, D., Liu, X.H., 2016. Review of aerosol-cloud interactions: 
mechanisms, significance, and challenges. J. Atmos. Sci. 73, 4221–4252. 

Fan, H., Zhao, C., Yang, Y., 2020. A comprehensive analysis of the spatio-temporal 
variation of urban air pollution in China during 2014–2018. Atmos. Environ. 220. 

Fernandes, R., Leblanc, S.G., 2005. Parametric (modified least squares) and non- 
parametric (Theil-Sen) linear regressions for predicting biophysical parameters in 
the presence of measurement errors. Remote Sens. Environ. 95, 303–316. 

Fu, Q., Liou, K.N., 1993. Parameterization of the radiative properties of cirrus clouds. 
J. Atmos. Sci. 50, 2008–2025. 

Garay, M.J., Witek, M.L., Kahn, R.A., Seidel, F.C., Limbacher, J.A., Bull, M.A., Diner, D. 
J., Hansen, E.G., Kalashnikova, O.V., Lee, H., Nastan, A.M., Yu, Y., 2020. Introducing 
the 4.4km spatial resolution multi-angle imaging SpectroRadiometer (MISR) aerosol 
product. Atmos. Measur. Techn. 13, 593–628. 

Gelaro, R., McCarty, W., Suarez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., 
Darmenov, A., Bosilovich, M.G., Reichle, R., Wargan, K., Coy, L., Cullather, R., 
Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A.M., Gu, W., Kim, G.K., 
Koster, R., Lucchesi, R., Merkova, D., Nielsen, J.E., Partyka, G., Pawson, S., 
Putman, W., Rienecker, M., Schubert, S.D., Sienkiewicz, M., Zhao, B., 2017. The 
modern-era retrospective analysis for research and applications, version 2 (MERRA- 
2). J. Clim. 30, 5419–5454. 

Goldman, G.T., Dominici, F., 2019. Don't abandon evidence and process on air pollution 
policy. Science 363, 1398–1440. 

Gong, S.L., 2003. A parameterization of sea-salt aerosol source function for sub- and 
super-micron particles. Glob. Biogeochem. Cycles 17. 

Gristey, J.J., Chiu, J.C., Gurney, R.J., Morcrette, C.J., Hill, P.G., Russell, J.E., Brindley, H. 
E., 2018. Insights into the diurnal cycle of global earth outgoing radiation using a 
numerical weather prediction model. Atmos. Chem. Phys. 18, 5129–5145. 

Guo, J.-P., Zhang, X.-Y., Wu, Y.-R., Zhaxi, Y., Che, H.-Z., La, B., Wang, W., Li, X.-W., 
2011. Spatio-temporal variation trends of satellite-based aerosol optical depth in 
China during 1980–2008. Atmos. Environ. 45, 6802–6811. 

Gupta, P., Levy, R.C., Mattoo, S., Remer, L.A., Munchak, L.A., 2016. A surface reflectance 
scheme for retrieving aerosol optical depth over urban surfaces in MODIS dark target 
retrieval algorithm. Atmos. Measur. Techn. 9, 3293–3308. 

Heidinger, A.K., Cao, C.Y., Sullivan, J.T., 2002. Using Moderate Resolution Imaging 
Spectrometer (MODIS) to calibrate advanced very high resolution radiometer 
reflectance channels. J. Geophys. Res.-Atmos. 107. 

Heidinger, A.K., Foster, M.J., Walther, A., Zhao, X.P., 2014. The pathfinder atmospheres- 
extended Avhrr climate dataset. Bull. Am. Meteorol. Soc. 95, 909. 

Holben, B.N., Eck, T.F., Slutsker, I., Tanre, D., Buis, J.P., Setzer, A., Vermote, E., 
Reagan, J.A., Kaufman, Y.J., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A., 
1998. AERONET - a federated instrument network and data archive for aerosol 
characterization. Remote Sens. Environ. 66, 1–16. 
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Möhler, O., Molleker, S., Müller, R., Neubert, T., Orphal, J., Preusse, P., Rex, M., 
Saathoff, H., Stroh, F., Weigel, R., Wohltmann, I., 2019. Ammonium nitrate particles 
formed in upper troposphere from ground ammonia sources during Asian monsoons. 
Nat. Geosci. 12, 608–612. 

Hsu, N.C., Herman, J., Torres, O., Holben, B., Tanre, D., Eck, T., Smirnov, A., 
Chatenet, B., Lavenu, F., 1999. Comparisons of the TOMS aerosol index with Sun- 
photometer aerosol optical thickness: results and applications. J. Geophys. Res.- 
Atmos. 104, 6269–6279. 

Hsu, N.C., Tsay, S.C., King, M.D., Herman, J.R., 2004. Aerosol properties over bright- 
reflecting source regions. IEEE Trans. Geosci. Remote Sens. 42, 557–569. 

Hsu, N.C., Tsay, S.C., King, M.D., Herman, J.R., 2006. Deep blue retrievals of Asian 
aerosol properties during ACE-Asia. IEEE Trans. Geosci. Remote Sens. 44, 
3180–3195. 

Hsu, N.C., Gautam, R., Sayer, A.M., Bettenhausen, C., Li, C., Jeong, M.J., Tsay, S.C., 
Holben, B.N., 2012. Global and regional trends of aerosol optical depth over land 
and ocean using SeaWiFS measurements from 1997 to 2010. Atmos. Chem. Phys. 12, 
8037–8053. 

Hsu, N.C., Jeong, M.J., Bettenhausen, C., Sayer, A.M., Hansell, R., Seftor, C.S., Huang, J., 
Tsay, S.C., 2013. Enhanced deep blue aerosol retrieval algorithm: the second 
generation. J. Geophys. Res.-Atmos. 118, 9296–9315. 

Hsu, N., Lee, J., Sayer, A., Carletta, N., Chen, S.H., Tucker, C., Holben, B., Tsay, S.C., 
2017. Retrieving near-global aerosol loading over land and ocean from AVHRR. 
J. Geophys. Res.-Atmos. 122, 9968–9989. 

Hsu, N., Lee, J., Sayer, A., Kim, W., Bettenhausen, C., Tsay, S.C., 2019. VIIRS deep blue 
aerosol products over land: extending the EOS long-term aerosol data records. 
J. Geophys. Res.-Atmos. 124, 4026–4053. 

Jaramillo, P., Muller, N.Z., 2016. Air pollution emissions and damages from energy 
production in the U.S.: 2002–2011. Energy Policy 90, 202–211. 

Jethva, H., Chand, D., Torres, O., Gupta, P., Lyapustin, A., Patadia, F., 2018. Agricultural 
burning and air quality over northern India: a synergistic analysis using NASA’s A- 
train satellite data and ground measurements. Aerosol Air Qual. Res. 18, 1756–1773. 

Jin, Q., Pryor, S.C., 2020. Long-term trends of high aerosol pollution events and their 
climatic impacts in North America using multiple satellite retrievals and modern-era 
retrospective analysis for research and applications version 2. J. Geophys. Res.- 
Atmos. 125. 

Jin, Q., Wang, C., 2017. A revival of Indian summer monsoon rainfall since 2002. Nat. 
Clim. Chang. 7, 587–594. 

Jin, Q., Wang, C., 2018. The greening of northwest Indian subcontinent and reduction of 
dust abundance resulting from Indian summer monsoon revival. Sci. Rep. 8. 

Jin, Q., Wei, J., Yang, Z.-L., 2014. Positive response of Indian summer rainfall to Middle 
East dust. Geophys. Res. Lett. 41, 4068–4074. 

Jin, Q., Wei, J., Yang, Z.-L., Pu, B., Huang, J., 2015. Consistent response of Indian 
summer monsoon to Middle East dust in observations and simulations. Atmos. Chem. 
Phys. 15, 9897–9915. 

Jin, Q., Yang, Z.-L., Wei, J., 2016a. High sensitivity of Indian summer monsoon to Middle 
East dust absorptive properties. Sci. Rep. 6, 30690. 

Jin, Q., Yang, Z.-L., Wei, J., 2016b. Seasonal responses of Indian summer monsoon to 
dust aerosols in the Middle East, India, and China. J. Clim. 29, 632–6349. 

Jin, Qinjian, Wei, Jiangfeng, Lau, William K.M., Pu, Bing, Wang, Chien, 2021. 
Interactions of Asian mineral dust with Indian summer monsoon: Recent advances 
and challenges. Earth-Science Reviews 215, 103562. 

Jin, Q., Wei, J., Pu, B., Yang, Z.L., Parajuli, S.P., 2018. High summertime aerosol loadings 
over the Arabian Sea and their transport pathways. J. Geophys. Res.-Atmos. 123, 
10568–10590. 

Jin, Q., Crippa, P., Pryor, S., 2020. Spatial characteristics and temporal evolution of the 
relationship between PM2. 5 and aerosol optical depth over the eastern USA during 
2003–2017. Atmos. Environ. 117718. 

Jones, B., O’Neill, B.C., 2016. Spatially explicit global population scenarios consistent 
with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11. 

Kahn, R.A., Gaitley, B.J., Martonchik, J.V., Diner, D.J., Crean, K.A., Holben, B., 2005. 
Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth 
validation based on 2 years of coincident Aerosol Robotic Network (AERONET) 
observations. J. Geophys. Res.-Atmos. 110. 

Kalashnikova, O.V., Garay, M.J., Martonchik, J.V., Diner, D.J., 2013. MISR dark water 
aerosol retrievals: operational algorithm sensitivity to particle non-sphericity. 
Atmos. Measur. Techn. 6, 2131–2154. 

Kaskaoutis, D.G., Kharol, S.K., Sinha, P.R., Singh, R.P., Badarinath, K.V.S., Mehdi, W., 
Sharma, M., 2011. Contrasting aerosol trends over South Asia during the last decade 
based on MODIS observations. Atmos. Meas. Tech. Discuss. 5275–5323. 
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