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Highlights

We integrate visibility data and GEOS-Chem simoladi to estimate PH4

concentrations in 2014 over North China.

Visibility converted PMs are spatiotemporally consistent with P

measurements.

Our method provides a novel, plausible way to eg#ilong-term variation of

PM 5.
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Abstract

Despite much effort made in studying human heafoeaiated with fine particulate
matter (PMys), our knowledge about PM and human health from a long-term
perspective is still limited by inadequately longtal Here, we presented a novel
method to retrieve surface BM mass concentrations using surface visibility
measurements and GEOS-Chem model simulations., Rivet usé visibility
measurements and the ratio of PMand aerosol extinction coefficient (AEC) in
GEOS-Chem to calculate visibility-inferred Bdat individual stations (SC-PM).
Then we merged SC-PM with the spatial pattern of GEOS-Chem modeled; Pid
obtain a gridded Plkdatase{GC-PM,s). We validated the GC-P) data over the
North China Plain on a 0.3125° longitude x 0.2%tdde grid in January, April, July
and October 2014, using ground-based,PMeasurements. The spatial patterns of
temporally averaged PMmass concentrations are consistent between Gé&sRNI
measured data with a correlation coefficient oB0and a linear regression slope of
0.80. The spatial average GC-pPiatareproduce the day-to-day variation of observed
PM, s concentrations with a correlation coefficient 0®® and a slope of 1.0. The
mean bias is less than 12 pg/fw 14%). Future research will validate the progbse
method using multi-year data, for purpose of stngyong-term PMsvariationsand

their health impacts since 1980.

Keywords: Visibility; Chemical Transport Model (CTIMPM, 5, Spatial pattern; Time
series; North China Plain (NCP).

1. Introduction

Particulate matter with diameter less than 20 (PM,s) affects the climate,

visibility and human health (Lelieveld et al., 2Q0Pden et al., 2014; Wang et al., 2015).
3
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According to a Global Burden of Disease study (Letnal., 2012), global Ppk
pollution accounted for 3.1 million deaths in 20fpedominantly in China and India.
A recent study revealed that transboundary ;PMollution associated with
international trade and atmospheric transport twgyetaused 0.76 million premature
deaths worldwide in 2007 (Zhang et al., 2017). lewiebn fine particle matter health
impacts and climate influences require historiddl, B data. Therefore, to fully assess
the health impacts of P}, it is crucial to get access to long-term RMlata across
multiple decades. However, to our knowledge, lamgat PMys data are lacking

especially in developing countries.

Surface PMs mass concentrations in China are measured typiball either
Tapered Element Oscillating Microbalances (TEOM)B&TA-ray instruments. In
China, continuous Ppk measurements are sparse before 2013. The Chiffiess air
guality monitoring network measures PMand other pollutants since 2013, mostly in
the urban areas. These data form the basis for meaayt studies on the spatial and
temporal characteristics of urban air pollution #imeir causes over China (Liu et al.,
2018; Wang et al., 2014; Ge et al., 2018). Howeaweise measurement data cannot be
used to analyze long-term trends and variability?bh s and resulting health effects.
Therefore, alternative approaches to retrievingaser PM s concentrations were

developed in the past decades.

Aerosol Optical Depth (AOD) data based on modetall#a remote sensing have
been used widely to retrieve surface 2ZMoncentrations due to their good spatial
coverage. AOD data are available from multiple Issgeinstruments, such as the
Moderate Resolution Imaging Spectroradiometer (M&[BInce 2000), the Multiangle
Imaging SpectroRadiometer (MISR, since 2000), ahd Sea-viewing Wide
Field-of-view Sensor (SeaWiFS, since 1998) (Lialet2017). These AOD data have
been combined with chemical transport model sinmnator statistical approaches to

derive surface Pl (Boys et al., 2014; Geng et al., 2015; van Dorded al., 2010;
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van Donkelaar et al., 2015).

van Donkelaar et al. (2010) estimated the globatridution of PM s using
satellite MODIS and MISR AOD products and GEOS-Clsamulations from 2001 to
2006. Their estimated PM values show good agreement with observed £dver
North America. Using the same method and MODIS, R&hd SeaWiFS AOD data,
Boys et al. (2014) produced a 15-year time seri®@9&-2012) of surface PM
concentrations worldwide, which agreed well witle #itu measurements in Eastern
U.S. van Donkelaar et al. (2015) used the GeogcapihiWeighted Regression (GWR)
statistical model to improve the BM inference from AOD and GEOS-Chem
simulations. Their analysis showed that local \liliy in surface elevation and urban
emissions are important sources of uncertaintyetniaving PM s concentrations.
Using satellite AOD data and high-resolution GEO®®@ simulations, Geng et al.
(2015) estimated surface BMconcentrations over China during 2006-2012, after
using CALIOP aerosol vertical profile data to catréor model biases. They found
very good spatial agreement between satellite-ddrivand measured RM

concentrations.

However, there are a number of limitations embedileduch satellite-based
PM, s inference approaches. Model simulations are stulige@rrors in the model
representations of atmospheric processes, espettiallvertical mixing and transport
that directly affect the simulated aerosol vertigadfiles (Lin and McElroy, 2010; Liu
et al., 2018). Satellite-based AOD datasets argesuto a large number of missing
values due to screening for cloudy and stronglyaser reflecting scenes. The AOD
datasets may have a low sampling bias, becausebigksol scenes may be mis-treated
as cloudy ones and screened out (Lin and Li, 20h6&ddition, there are no reliable

satellite AOD data over land before 1998.

Satellite AOD data can also be combined with dfatis models or machine

learning approaches to infer surface ZMoncentrations. Taking meteorology and
5
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land use information into model, Ma et al. (2014tireated surface PM
concentrations using AOD from MODIS and MISR asimpry predictor. Zheng et al.
(2016) constructed linear mixed-effects models aovert MODIS AOD data and
other predictors to ground-level BNMconcentrations over three major industrialized
regions in China. They corrected the predicted, PMoncentrations by observed
PM,s. Li et al. (2017) applied a Geo-Intelligent Deepakning approach to estimate
PM, s over China, and they showed that in 2015 over 8%hinese lived in areas
with annual mean Pp4 concentrations above the WHO IT-1 standard ley@t
ng/nt). Nonetheless, these statistical or machine |egrripproaches may have
difficulties in establishing/explaining the causalbetween PMs and predictors,
which poses the question of how the establishettioelships can be extrapolated to
other times and/or regions. The coefficient of dwateation (R) of such methods
declines substantially from 0.41-0.98 when thentrey dataset is used to 0.31-0.55
when the predictive dataset is used (Wei et all920n addition, satellite AOD data

have their own limitations, as mentioned above.

Visibility measurements available for multiple ddea from ground
meteorological stations have also been used, tegeitith statistical models, for PM
inference. Visibility represents horizontal lightti@ction, which is highly related with
the amount of PMs, its chemical compositions, size distributionsticgd properties,
and hygroscopicity (Charlson, 1969; Sinclair et H.74; Song et al., 2003). Visibility
and PM s concentrations are negatively correlated with\agydaw relationship (Zhao
et al., 2011; Zhang et al., 2019). Based on vigybdata from 674 meteorological
monitoring sites and a statistical model, Liu et @017) inferred the long-term
(1957-1964 and 1973-2014) changes of,RMdollution in China. They found P
concentrations reached 60-86/m® over the northern part of the North China Plain
during the 1950s-1960s, increasing to levels gdigerigher than 9ug/m® since then.
Shen et al. (2016) retrieved historical (1979-20@B) s mass concentrations in Xi'an

using visibility measurements and an exponentigiagsion model, and they found
6
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decreasing trends by -469/m’/year and -12.Jg/m’lyear during 1979-1996 and
2007-2011, respectively, in contrast to a growthirdp1997-2007 by 8.8g/m’/year.

However, statistical models are subject to aboveimeed limitations.

This study presents a new method to retrieve seirffdd s mass concentrations
using GEOS-Chem simulations and surface visibilitgasurements. The method is
inspired by our present study (Lin and Li, 2016 et al., 2014) that used GEOS-Chem
and visibility data to infer AOD over East Chinahiash showed high consistency with
AErosol RObotic NETwork (AERONET) and MODIS AOD dah terms of a low bias
and high temporal and spatial correlations. Herepwmposed a similar method to
retrieve PM s concentrations over the NCP in January, Aprily &rd October 2014
(i.e., covering four seasons). In particular, wedu$GEOS-Chem to help convert
visiblity to PM, 5 concentration at each site and then to a gridgedes in order to
facilitate further applications such as health iotpanalysis. We further validated the

retrieved PM 5 data against ground R measurements.
2. Dataand Methods
2.1 Surface PM , 5 mass concentration measurements

Hourly surface PMs concentration measurements were obtained frorGtiea
National Environmental Monitoring Centre (CNEMChd filled circles in Figure 1
show the 396 observation sites over the NCP usesl e sites are concentrated in
urban areas and lack coverage in rural and remmetesaThus the observed data may

not fully represent the regional air quality.

At these 396 sites, PM concentrations are measured by either TEOM or
Beta-attenuation instruments. Quality control iselthrough a fully automatic outlier
detection method for four types of outliers: tengdand spatial inconsistency, low
variance, periodic calibration exceptions, and;Pbbncentrations being lower than

PM, s concentrations (Wu et al., 2018). Additionally, vegjuired that there are at least
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20 hourly data for each day, 20 days per monthpf@ths in January, April, July and
October 2014. We chose the four months to reprasditidual seasons, instead of
choosing all months, to reduce the computationatscof respective GEOS-Chem
simulations. When comparing with BMmeasurements, we excluded data at times

when either visibility-converted PM or measured P4 data were missing.
2.2 Visibility and other meteorological data

Visibility, temperature, wind speed and Relativentidity (RH) measurements at
610 sites in January, April, July and October 2@iere obtained from Chinese
Meteorological Administration (CMA). The gray cressin Figure 1 show the

meteorological sites.

For our study period, visibility is measured autticedly by Forward Scattering
Visibility Meter (FSVM) which has a scattering aagbf 30°-50°. The instrument
ignores the absorption of light by the atmosphimes the derived scatter coefficient is
scaled up by an embedded algorithm to accountideor@tion and better represent the
total extinction coefficient before the value iswerted to visibility (Tan et al., 2010).
Chinese meteorological stations mostly use the RB%-Vautomatic visibility
instrument manufactured by Huayun Shengda Compeétty,core components of the
instrument purchased from Vaisala, Finland. HY-V@&ssed the assessment of
various indicators of CMA on May 2011. The instrurnmeasures forward scattering
in the angle of 45°. In the instrument manual, dings out that K = 3.0 in the

Koschmeider equation that connects light extinctiod visibility.

This automatic measurement is different from thenmah measurement before
2013, i.e., by human eyes. Manual observationsttegive larger visibility values than
automatic measurements, whereas their linear traredlighly consistent (Fan et al.,
2017; Liu et al., 2017). Therefore, precaution $tidne taken when combining manual
and automatic visibility measurements for long-tétivi, s studies, which is the focus

of our future studies. For example, according toKleschmeider equation, AEC=K/V,
8
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K=-Ing, ande denotes visual contrast. According to the regoitegtiof the International
Meteorological Organizations=0.05 (K=3.0) for instrument measurement. When
manual measurements of visibility are used fordnisal analyses in future research,
we will change the value of K to 3.9 (Lin et al1,02; Lin and Li, 2016). In addition,
we will consider discontinuity issues about longztevisibility data such as site
movement and reporting standard. Observations takenight and under heavy
cloudy conditions can also be uncertain. Therefareareful filtering and quality
control process will be performed before these dataused to study long-term trend.

Nevertheless, this study only focuses on the auiomibility measurements.

The visibility observations are hourly data begignhat 00:00 UTC (08:00 Beijing
Standard Time). Quality control for visibility daia shown in Sect. 2.4. Other
meteorological data are also available hourly. Nloét compared to satellite AOD data,
visibility data provide a much longer time seridsrdormation for PM s inference
since the 1950s to help evaluate the long-term gdgmmn PMs and related health
impacts. Compared to P/ measurement sites, meteorological stations argabpa
more homogeneous and are available at urban,andatemote areas, providing better

spatial representativeness.
2.3 GEOS-Chem moded

We used the nested GEOS-Chem model for China @rersil1-01,
http://wiki.seas.harvard.edu/geos-chem/index.phpiMage) to simulate the ratio
between surface PM concentration and Aerosol Extinction CoefficieAEC) for
converting the visibility-derived near-surface AECPM, s. Driven by the GEOS-FP
assimilation meteorology from the Goddard Earth édiag System (GEOS) of the
NASA Global Modeling and Assimilation Office, thested model has a horizontal
resolution of 0.3125° longitude x 0.25° latitudelw47 vertical layers, and the lowest
10 layers are of ~ 130 m thickness each. The labenandary conditions of nested

model are taken every 3 hours from a global GEO8&rCsimulation at 2.5°
9
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longitude x 2° latitude. Spin-up time for nestedd®aloand global model are 15 days
and one month, respectively. The scheme of plapdiaundary layer employs a
non-local scheme implemented by Lin and McElroy1(20 Model convection is

simulated with the relaxed Arakawa—Schubert schi@rmenecker et al., 2008).

Both the global and nested GEOS-Chem models are with the
NOx-Ox-hydrocarbon-aerosol-bromine tropospheric nuisey mechanism with
online aerosols. Aerosols simulated include secgnd@organic aerosols (SIOA,
including sulfate, nitrate and ammonium), seconaaganic aerosols (SOA), primary
organic aerosols (POA), black carbon (BC), dust asda salt. The
ammonium-sulfate-nitrate-water system is calculatday ISORROPIA I
thermodynamic equilibrium model (Fountoukis and &ker2007), with updates on
heterogeneous sulfate and nitrate processes (&taalg 2015). Natural dust particles
are emitted with the DEAD scheme (Fairlie et aD1@ Zhang et al., 2013). The
calculation of SOA species are parameterized by &y& Seinfeld (2010). The
parameterization of sea salt is from Jaegle ef28l11). Uptake of the hydroperoxyl
radical on aerosols and representation of anthmmogaromatics follow Lin et al.

(2012) and Ni et al. (2018).

Monthly gridded anthropogenic emissions in China daken from the

Multi-resolution Emission Inventory for China (MEI@ww.meicmodel.org; Geng et

al., 2017) for 2014 for nitrogen oxides (NOx), aanlbmonoxide (CO), sulfur dioxide
(SGy), BC and POA. Following Zhang et al. (2015), emaiss of anthropogenic fine
dust are also included, by taking primary PMemissions from MEIC. For
non-methane volatile organic compounds (NMVOC) siniss, the spatial pattern,
seasonal pattern and ratios of individual compoundbe total NMVOC are fixed,
with the total amount of NMVOC scaled to each spestudy year according to the
national total amount of NMVOC in MEIC in 2014. Biass burning emissions are

taken from the monthly GFED4 datasets (Giglio et2013). Biogenic emissions of

10



261
262

263
264
265
266
267

268

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

286
287

NMVOC follow MEGANvV2.1 (Guenther et al., 2012). $emissions of NOx employ

the parameterization from Hudman et al. (2012).

Future research aiming to combine model simulatwith visibility data for
historical PM s studies could use the MERRA2 assimilated meteorcdébgdata
available since 1980 and the monthly emission @tata the Community Emissions
Data System available since 1750. A historical ysi18] however, is out of the scope

of this study.
2.4 Retrieval method

As shown in Figure 2, our retrieval method contaimgltiple steps. First, we
conducted quality control for visibility data, folving previous studies (Husar et al.,
2000; Lin et al., 2014; Li et al., 2016). Fine pade matter and relative humidity is the
two main factors affecting visibility. Observatidrrasults (Chen et al., 2012) show
that when RH < 90%, low visibility is largely infimced by aerosol volume
concentration; while for RH > 90%, indicative ofethformation of fogs and
precipitation, the increase of RH is dominantlypassible for the decrease of visibility.
Therefore, to reduce the effect of non-aerosolofacton visibility, we excluded
visibility records when RH exceeded 90%. This chois consistent with previous
studies (Craig and Faulkenberry, 1979; Zhao e@ll). We further excluded data that
may be affected by blown snow from the ground, iden air temperature is below
-29 °C and wind speed above 16 km/h. If the maximmaltue of visibility data at a site
in the clean area (median visibility > 11 km) wittd month is smaller than 12 km, all
data at that site in that month were excluded; sftisation indicates erroneous data
record. To remove potentially erroneous data spikehe daily mean visibility on a
day is lower than one third of the value both andhy before and on the day after, data

on that day were excluded (Husar et al., 2000).

Second, we converted the quality controlled vigipidlata to hourly near-surface

AEC. According to the Koschmieder Equation, neafesie AEC at 550 nm is
11
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inversely proportional to visibility if the effedf air molecules is neglected: AEC =
K/V. This formula is often used for the conversibatween visibility and aerosol
extinction coefficient (Husar et al., 2000; Linadt, 2014; Xu et al., 2005). Here V
represents the observed visibility, and Ks4imthe Koschmieder constant. For FSVM,
the contrast thresholdis chosen as 5%, with K equal to 3.0 (Li and Q1049; Zeng
and Wang, 1999). In order to reduce the opticadligrfce of air molecules and correct
for other potential errors at clean (high visilyiitsituations, we used a modified
formula to relate visibility and AEC: AEC = K/V-K/ where \§ = 70 km (Lin et al.,
2014).

Third, we adopted the hourly ratio of B¥to AEC simulated by GEOS-Chem to
scale the visibility converted AEC to obtain theibility-inferred PM s concentrations

at individual sites (hereafter referred to as Sta€oncerted-Phk):

(PM,5)

PM,)q = AEC’ tocel
( 2.5) sC AEC

model
For a particular site, the modeled ratio of RJ#b AEC was taken as the value
interpolated from nearby model grid cells througimbar interpolation, with the time
of model results matching that of the hourly vikipidata. At each model grid cell, the
model PM s concentration was summed over the concentratibfiseodust (DST1 +
0.38 x DST2 in the model), fine sea salt partidi84LA in the model), BC, POA
(assumed to be 1.8 times the mass of primary crgaarbon), and SIOA. The model
AEC was calculated based on the optical effectshefe PMs components and
additional coarse mode dusts (DST3 and DST4) aatsecsea salt particles (SALC),
with their hygroscopicity accounted for (Lin et,&016) using the observed RH at
respective meteorological station. Inclusion ofrseaparticles in calculating model
AEC ensures the consistency with visibility-infetr&EC that is affected by both fine
and coarse particles. Considering that the measBMgs and visibility data are

near-surface, we choose the values of model #vid AEC in the bottom model layer
12
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(i.e., from the ground to approximately 130 m). ih&e obtained a Station-Converted
hourly PM, s dataset in January, April, July and October 20dgr the NCP. The daily

mean PM s data were averaged from the hourly data.

Fourth, we converted the station-specific daily mBak s data to gridded data at
a horizontal resolution of 0.3125° longitude x O.R8itude, according to the resolution
of GEOS-Chem. The resulting dataset is referrediGrid-Converted Pp4. There are
two purposes for this station-to-grid conversione Btation-based data lack continuous
spatial coverage needed for health impacts studiss, the station-based visibility
measurements are subject to instrument errors epcegentation errors, i.e., the
measured values may be affected by local pollidmrces and other factors and thus
not fully representative of the actual pollutiowdein the surrounding area. In fact,
visibility data may contain certain “noise” spalyabs shown in Lin et al. (2014) and in

Sect. 3.3.

We tested 8 candidate methods for this statiordtb-gpnversion, and finally
selected a method, Case 7, that has the best iparioe; see below for evaluation
statistics and Sect. 3.2 for the selection procAfiscases but Case 2 and Case 3
involved matching a grid cell center to surrounduigbility stations within a certain
radius. We tested radii of 0.1°, 0.2°, 0.3°, 0@%°, 0.6°, 0.7°, 0.8°, 0.9°, 1.0°, 1.5°
and 2°. The larger the radius is, the higher extemtStation-Converted PMdata are

spatially smoothed.

13
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Caselc;, =median ¢ )

Casex;, =c;'®
CaseX, =8 €' ki
i= -1

SC
Case4c;, =median % ey,

d,i

median(c;);)

Casek;, = W ey
CM’-
Case6e), =———median ¢;
d,i rrmlan(céﬁ) cd,l )
c™ / mean(c". .
CaseTcy, =—¢ ( rg[':')[rnedian (el
"¢, /mean(c,;) ’
c™ / mean(c.
Casearf, = T2 )
" Cn/mean(c)

In these eight candidate methods to convert staatific to gridded Pl

F
Cy , . . .
data, %' denotes the finally obtained daily mean R\oncentration on day d at

grid cell i. The superscript F denotes final, M d&s model, SC denotes Station
Converted, and Cres denotes Cressman interpoldti@subscript r denotes distance,
d denotes day, m denotes month, i denotes grid,cafid i’ denotes the grid cell in
which the visibility measurement station is locatéde function “mean” denotes the
average over all grid cells, and “median” denotee median value among the

selected grid cells.

Of these 8 methods, Cases 1-3 utilized the St&liomverted PMs data alone
without further using GEOS-Chem simulations. Casasgigned to a grid cell the
median value from stations within a certain raditithe grid cell center. Cases 2 and 3
used the Cressman and the Inverse Distance Wdigh¥)(interpolation methods,

respectively.

Cases 4-8 used the spatial variability simulatedGBOS-Chem to facilitate the

station-to-grid conversion. As shown in Sect. 3h, GEOS-Chem simulated spatial
14
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distribution of PM 5 outperforms the distribution of visibility-conved station-based
data. In Case 4, for a given grid cell “i” on eatdy, we found all stations within a
certain radius of the grid cell center, calculatesiratios of Station-Converted Byto
Modeled PM (at the grid cells in which these visibility stats are located), and
then used the median value of these ratios to sical®odeled PMs at grid cell “i”.
Case 5aiming to eliminate the noise in the day-to-dayafaitity, was similar to Case 4
except that the ratios were based on monthly (rdtfa@ daily) mean Pl data. Here,
to reduce the monthly average calculation errotsed by missing values, we chose
the median value of all stations within a certadius of the grid cell center to match
the model PMs, and then used data on the days when Station-@eavEM s and
model PM s are both available. Case 6 was similar to Casx&ept that the scaling

was based on the (spatial) median of Station-Coedd?M s data.

Cases 7 and Case 8 were designed based on thiegfiaktodeled PMls data were
spatially consistent with Pp4 measurements and had a lower mean bias (se€3gct.
The two cases used the spatial pattern (shape)odeihiPM s data to facilitate the
station-to-grid conversion. For Case 7, we firdtalated the monthly Modeled Pl
at each grid cell normalized to its spatial averagéculated the respective value for
Station-Converted Pp4., and then derived their ratio. The calculationnodnthly
mean values and the sampling of available gricsag#ire the same as in Case 5. We
then used this ratio to scale the result derivethfCase 1 to finally obtain the gridded
and spatial shape-adjusted daily PjMata. Case 8 was similar to Case 7, except that
Station-Converted Ppsdata are replaced by Cressman-interpolated griddedfrom

Case 2.

Evaluation of the 8 station-to-grid conversion noeth was based on how each
method led to high spatial and temporal (i.e., ttagay across the four months)
consistencies with the actual PMmeasurements. A few indicators were used to

evaluate the consistency, including bias, cormtatcoefficient, slope of a linear
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regression, root mean square error (RMSE). We egpihe Reduced Major Axis
(RMA) regression, which is more appropriate thae tOrdinary Least Square
regression when independent variable x containgrgrto estimate the slope and

intercept.

3. Spatio-temporal variability of Measured, Modeled, Station-Converted and
Grid-Converted PM55

3.1 Comparison of Station-Converted, Modeled and Measured PM 5

Figure 3 compares the spatial distributions ob{@gerved, (b) Station-Converted,
(c) Station-Converted and sampled based on availalb$ervations, (d) modeled and
(e) Grid-Converted Pl concentrations over the NCP averaged over Jandpry,
July and October 2014. From the observed data @ay. which represent urban air
quality, high PM5s pollution occur over southern Hebei. The highedd,P
concentrations reach 170u4/m°, due to the combined effects of large emissions,
efficient secondary formation and unfavorable ctiads for pollution outflow. PMs
concentrations are lower over the northern part$Helbei and Shanxi, Shandong
Peninsula and Inner Mongolia, due to lower emisseamd favorable topographical and
meteorological conditions for pollution removalfisport (Zheng et al., 2018; Zhang et

al., 2018). The domain average Pjtoncentration is 83.ﬁ$g/m3.

Figure 3b shows the Station-Converted Jf2Mlata, which are more much
regionally representative than the Pdbbservations (Fig. 3a) and still capture the
observed spatial pattern (from urban sites). SiheeStation-Converted P\ data are
not spatially collocated with PM observations, we choose the median value of the
converted PMs data from all stations within a 0.2° radius of lediVi, 5 observation
station (Fig. 3c). Such re-sampled data reveal rakvdocations where
Station-Converted Pp4 overestimate the observed values significantlygrAged over
the NCP, the Station-Converted concentration is&ﬂ@/m3, with an overestimate by

26.0 pg/m®. The scatter plots in Fig. 4 also show significpusitive biases of
16



404

405
406
407
408
409
410
411
412
413
414

415
416
417
418
419
420
421
422
423
424

425
426

427
428
429
430

Station-Converted Pp4 data, especially when the pollutant concentratameshigh.

GEOS-Chem captures the observed spatial distribuifoPM, 5 concentrations
averaged over the four months in 2014 (Fig. 3d)fdksmodel and Grid-Converted
PM. s, we match the observation by choosing the gritlinelvhich the observation
station is located. In particular, Figure 4a showat when sampled coincidently with
the observations, the modeled PMesults have a small positive bias (by 2gm®).
The model has a high spatial correlation coeffic{€r 3) with the observed data, much
higher than the correlation coefficient for thet®taConverted data (0.49) (Fig. 4b).
The modeled data also have significantly lower RMi&h the Station-Converted data
(Fig. 4a and 4b). These results suggest that théehlgetter captures the spatial

distribution of PM 5 observations than the visibility-based data do.

Figure 5 further evaluates the day-to-day varigioof modeled and
Station-Converted Ppk concentrations against the observations in the rieonths.
Modeled and Station-Converted data were sampleddbas the observations; and
results were averaged over the NCP on each dayoddh both the modeled and
Station-Converted Pp4 can capture the day-to-day variation of the oledata, the
capability of Station-Converted data is better,eesgly with a higher correlation
coefficient (0.96 versus 0.84). However, the modeltata is better than the
Station-Converted ones in terms of mean bias an&RMote that because of the
difference in data averaging, the values for biax® fare slightly different from those

in the discussion of spatial distribution.

3.2 Evaluation of Grid-Converted PM,s data derived from 8 candidate

station-to-grid mapping methods

This section evaluates the Grid-Converted,BMata derived from 8 candidate
station-to-grid mapping approaches presented it et Such mapping is based on
the preference for health impact studies to hatiigh spatial coverage and, for a few

mapping approaches, an attempt to take advantagtheofGEOS-Chem model
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capability in capturing the spatial pattern of PJMbservations. As mentioned in Sect.
2.4, the evaluation focuses on whether the Gridv€dad data can capture both the

spatial and temporal (day-to-day) variations ofareed PM s.

Figure 6 shows the evaluation statistics for eadecas a function of the distance
(radius) from the visibility station to the grid lceenter. As the mapping radius
increases, the spatial feature of Grid-Converted, £ further smoothed and the
spatial details are further lost. For temporal (tagay) correlation evaluation (Fig.
6b), data on each day are averaged over alj Pileasurement sites. In general,
results for temporal correlation do not show argjraependence on the mapping
radius, mainly because RBMdata are spatially averaged. For all cases and thad
temporal correlation coefficients exceed 0.8, wtitgy that the Station-Converted
PM; s data have a good performance in terms of temparation. However, Cases 2
3, 7 and 8 still outperform the other cases (R & for all radii). Evaluation on
temporal bias gives a similar result to the evatumabn spatial bias (see below) and is

thus not shown.

For evaluation of spatial bias and correlation (Fdg, and c), data at each PM
measurement site were averaged over the four mohtiesbiases of Cases 1, 4 and 5
are very sensitive to the mapping radius, and tivee$t biases are obtained for a
radius of 0.5°-0.6°. These three cases also resuttlatively low spatial correlation
coefficients (< 0.6). Cases 1 and 5 have similaults. Case 2 (with Cressman
interpolation) leads to a relative high bias, exogpen the mapping radius exceeds
0.7°. Case 3 is derived from the IDW method, andtits evaluation results do not
vary with the mapping radius. Case 3 has a relgtiogv spatial correlation (R = 0.60)
and a high bias (13,69/m°). Case 6 leads to the smallest mean bias, anesjtective
correlation coefficient is among the highest anésdaot change significantly with
radius. Case 7 has the second highest spatialatorecoefficient (after Case 8) and

a relatively small bias (within 1@g/m® when radius is greater than 0.2°). This low
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458 bias suggests that using GEOS-Chem simulation teedol adjust the spatial
459 distribution of visibility inferred PM5s helps to reduce the bias, a desirable outcome.
460 Case 8 leads to the highest correlation coeffictamt it also has the greatest bias (> 30

461  pg/m® for all mapping radius).

462 Figure 6d further shows the RMA regression slopettie spatial variability of
463 temporally averaged Grid-Converted PMlata. The slope of Case 8 is the highest
464 and has small dependence on radius (i.e., betw&&nahd 1.40). The slopes of Case
465 1, 4 and 5 decline significantly with the incregsiadius. Although Case 6 has the
466 smallest mean bias and a high correlation coefficithe regression slope of Case 6 is
467 relatively low (< 0.75) for all radii. The slope &fase 7 declines slightly with the

468 increasing radius, and it remains between 0.851a0 for all radii.

469 Overall, Case 7 with a mapping radius of 0.3° hasnhost desired performance
470 in both the temporal and the spatial domains. ftiqaar, it has a relatively small mean
471 bias (7.9 pg/m®, or 9.4%), high correlation coefficients (0.80 @iy and 0.96
472 temporally) and better slope (1.0 spatially). Aiuadof 0.3° also helps preserve the
473 high-resolution spatial information embedded in wmbility data and GEOS-Chem
474  simulations. In the next section, we analyze thddgd results from this method in

475 detail.

476 3.3 Spatio-temporal distribution of Grid-Converted PM,s based on the

477 selected station-to-grid conversion method (Case 7)

478 Figure 3e shows the gridded distribution of R\Moncentrations averaged over
479 the four months in 2014 based on Case 7 with a mgp@adius of 0.3°. The spatial
480 distribution is consistent with the observed onegchs as the highest P

481 concentrations over southern Hebei and the lowest the northern regions. The
482 gridded dataset corrects the underestimate in thdemresults and reduces the

483 excessively high values in the Station-Convertdd.da
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The scatter plots in Figure 4c further evaluate #patial distribution of
Grid-Converted (Case 7) data against;RMbservations. Gridded data were sampled
from the grid cells covering the B¥Mmeasurement stations and on days with available
PM., s measurements. The correlation coefficient (R 9D0\8ith the observed PM
are higher than model simulations (R = 0.73) aradi@t-Converted PMs (R = 0.49)
alone. The mean bias (7;@;/m3, or 9.4%), the RMA regression slope (1.0), and the
small RMSE (17.6ig/m°) are also desirable, compared to the values f@&Ehem
simulations (2.5ug/m®, 0.80, and 18.Gg/m’, respectively) and Station-Converted
data (25.7ug/m°, 1.8, and 51.ig/m?, respectively).

Figure 5c¢ shows the day-to-day variations of obesgtrand Grid-Converted P
concentrations (Case 7) in each month. For eachdd¢g were selected from stations
with available observations and converted valued,vaere further averaged over the
NCP. Figure 5c shows that Grid-Converted f2Mata have a small bias of qi4/m®
(or 11.4%):; note that this value is slight differémm the spatial bias (7.©g/m°, or
9.4%) because of the difference between temporhkpatial sampling. The temporal
variation of Grid-Converted P over the four months is consistent with the observ
variation (R = 0.96, linear regression slope =,1b@Xter than that of GEOS-Chem (R
= 0.84, slope = 0.70) and Station-Converted (R 960slope = 1.3) PMs. The
Grid-Converted PMs data also capture the observed,Reaks, which represent the
pollution episodes, as well as the low values aarldays. They reproduce the
seasonal variation of observed Pimass concentrations, i.e., a higher mean value
and day-to-day variability in winter and lower vesuin summer. The Grid-Converted
PM, s correct the temporally consistent overestimatéhen Station-Converted P
data and the wintertime underestimate and summeverestimate in GEOS-Chem

simulations.
4. Conclusions

This study offers a novel, plausible method to ringurface PMs mass
20



511
512
513
514

515
516
517
518
519
520
521
522
523
524
525
526

527
528
529
530

531

532
533
534
535

concentrations on a 0.3125° longitude x 0.25°dd#tgrid, by combining the spatially
dense high-frequency surface visibility measuresiamid GEOS-Chem simulations.
Applying the method to the NCP in January, ApuilyJand October 2014 shows good

performance of the inferred data with respect édfficial PM, s measurements.

Specifically, after the visibility data are convexitto PM s concentrations at each
station and then each grid cell (based on CasetlY avimapping radius of 0.3°), the
derived gridded PMs data are both spatially and temporally consistgifit the PM s
measurements. The spatial and temporal mean béasesoth within 1Qug/m®. The
temporal (day-to-day) correlation coefficient reest0.96 with a linear regression
slope of 1.0. The spatial correlation coefficiezaches 0.80 with a regression slope of
1.0. The lower spatial correlation than the tembpooarelation reflects that visibility
data are spatially noisier (Lin and Li, 2016). G@dnverted PMs improves upon
GEOS-Chem simulations by correcting its wintertiomelerestimate and summertime
overestimate. The temporal correlation coeffici¢amporal regression slope, spatial
correlation coefficient and spatial regression slop converted Pl data are better

than GEOS-Chem simulation results (0.84, 0.70, artB80.80, respectively).

Future research will apply the inference methodlitononths in multiple years in
the NCP to further test the robustness of the cmiwe method proposed here, with
the goal of finally applying the method for a réla retrieval of multi-decadal PM

variability embedded in the visibility data.
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Figure 1. Ground PWs observation sites (filled circles) and meteoratagjistations

(gray crosses) over the NCP.



Original visibility data Concentration of particulate matter in GEOS-Chem
(NCP;610stations;hourly ( China; 0.3125° longitude x 0.25° latitude x
data in Jan, Apr, Juland 47layers x hourly in Jan, Apr, Juland Oct in 2014)
Oct in2014)
Quality-controlled
visibility data(V
y datalV) AEC in GEOS-Chem PM, 5 mass
(Using ObservvewdwaHW} concentrationsin
GEOS-Chem
Aerosol extinction
coefficient:
AEC=K/V-K/V,
K=3.0
L Conversion coefficient
j: Ratio= (PM, s /AEC) mose

PM, ; = AEC x Ratio
(NCP;610stations; hourly data
inJan, Apr, Jul and Oct 2014)

Gridded near surface PM, s mass
concentration{NCP; 0.3125% x 0.25%
daily data in Jam, Apr, Jul and Oct in 2014)

Figure 2. A flowchart for retrieval of gridded BMmass concentration data using
visibility measurements and GEOS-Chem simulatiddata sources are shown in

parentheses.
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Figure 3. Spatial distributions of (a) observedo(grd PM s observation sites), (b)
Station-Converted (based on visibility measurens#es), (c) Station-Converted and
sampled with observation times and locations (gdoRN, 5 observation stations), (d)
modeled (simulated by GEOS-Chem), and (e) Grid-€ded (visibility-converted
for grid cells under Case 7, with a radius of 0BR}, s concentrations averaged over

January, April, July and October 2014. The blankdi show provincial borders.
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Figure 4. Scatter plots of (a) modeled, (b) Stattmmverted and (c) Grid-Converted
(Case 7, with a radius of 0.3°) BM(y-axis) with respect to Pp observations

(x-axis). A data point in the figure represents thenthly mean values (red-January,
yellow-April, purple-July, green-October) at a giat The dotted line depicts the 1:1
relationship, and the solid line depicts the RMAression line. Statistical analysis

results are shown in each panel.
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Figure 5. Day-to-day variation of (a) modeled, (Bjation-Converted and (c)
Grid-Converted (Case 7, with a radius of 0.3°) .RMvith respect to Pk
observations in January, April, July and Octoberlf0For each day, PM
concentrations are averaged over all stationsarNiBP. Statistical analysis results are
presented in each panel. Modeled, Station-Convextet Grid-Converted data are

sampled based on the observations.



Spatial correlation coefficient
Temporal correlation coefficient

01 02 03 04 05 06 07 08 08 1.0 15 20

30 2

o)

@ @
g g
8 20 §
5] e
@ g
<

=

==

o

0 —
0.1 02 03 04 05 06 07 08 09 1.0 15 20 01 02 03 04 05 06 07 08 09 10 15 2.0
Radius (°) from the visibility station to the grid cell center Radius (°) from the visibility station to the grid cell center

Figure 6. (a) Spatial correlation, (b) temporalretation, (c) spatial bias (unitgg/nT)

and (d) linear regression slope (for spatial datd) Grid-Converted PMs
concentrations with respect to PMmeasurements in each station-to-grid conversion
case, as a function of the distance (i.e., radinging from 0.1° to 2.0°) from the

visibility station to the grid cell center.



Highlights

We integrate visibility data and GEOS-Chem simulations to estimate PMss

concentrations in 2014 over North China.

Visibility converted PMj,s are spatiotemporaly consistent with PMgs

measurements.

Our method provides a novel, plausible way to retrieve long-term variation of

PM3s.
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