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Highlights 25 

• We integrate visibility data and GEOS-Chem simulations to estimate PM2.5 26 

concentrations in 2014 over North China. 27 

• Visibility converted PM2.5 are spatiotemporally consistent with PM2.5 28 

measurements. 29 

• Our method provides a novel, plausible way to retrieve long-term variation of 30 

PM2.5. 31 

 32 
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Abstract 46 

Despite much effort made in studying human health associated with fine particulate 47 

matter (PM2.5), our knowledge about PM2.5 and human health from a long-term 48 

perspective is still limited by inadequately long data. Here, we presented a novel 49 

method to retrieve surface PM2.5 mass concentrations using surface visibility 50 

measurements and GEOS-Chem model simulations. First, we used visibility 51 

measurements and the ratio of PM2.5 and aerosol extinction coefficient (AEC) in 52 

GEOS-Chem to calculate visibility-inferred PM2.5 at individual stations (SC-PM2.5). 53 

Then we merged SC-PM2.5 with the spatial pattern of GEOS-Chem modeled PM2.5 to 54 

obtain a gridded PM2.5 dataset (GC-PM2.5). We validated the GC-PM2.5 data over the 55 

North China Plain on a 0.3125° longitude x 0.25° latitude grid in January, April, July 56 

and October 2014, using ground-based PM2.5 measurements. The spatial patterns of 57 

temporally averaged PM2.5 mass concentrations are consistent between GC-PM2.5 and 58 

measured data with a correlation coefficient of 0.79 and a linear regression slope of 59 

0.80. The spatial average GC-PM2.5 data reproduce the day-to-day variation of observed 60 

PM2.5 concentrations with a correlation coefficient of 0.96 and a slope of 1.0. The 61 

mean bias is less than 12 µg/m3 (< 14%). Future research will validate the proposed 62 

method using multi-year data, for purpose of studying long-term PM2.5 variations and 63 

their health impacts since 1980. 64 

 65 

Keywords: Visibility; Chemical Transport Model (CTM); PM2.5; Spatial pattern; Time 66 

series; North China Plain (NCP). 67 

 68 

1. Introduction 69 

Particulate matter with diameter less than 2.5 µm (PM2.5) affects the climate, 70 

visibility and human health (Lelieveld et al., 2015; Allen et al., 2014; Wang et al., 2015). 71 
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According to a Global Burden of Disease study (Lim et al., 2012), global PM2.5 72 

pollution accounted for 3.1 million deaths in 2010, predominantly in China and India. 73 

A recent study revealed that transboundary PM2.5 pollution associated with 74 

international trade and atmospheric transport together caused 0.76 million premature 75 

deaths worldwide in 2007 (Zhang et al., 2017). Studies on fine particle matter health 76 

impacts and climate influences require historical PM2.5 data. Therefore, to fully assess 77 

the health impacts of PM2.5, it is crucial to get access to long-term PM2.5 data across 78 

multiple decades. However, to our knowledge, long-term PM2.5 data are lacking 79 

especially in developing countries. 80 

Surface PM2.5 mass concentrations in China are measured typically by either 81 

Tapered Element Oscillating Microbalances (TEOM) or BETA-ray instruments. In 82 

China, continuous PM2.5 measurements are sparse before 2013. The Chinese official air 83 

quality monitoring network measures PM2.5 and other pollutants since 2013, mostly in 84 

the urban areas. These data form the basis for many recent studies on the spatial and 85 

temporal characteristics of urban air pollution and their causes over China (Liu et al., 86 

2018; Wang et al., 2014; Ge et al., 2018). However, these measurement data cannot be 87 

used to analyze long-term trends and variability of PM2.5 and resulting health effects. 88 

Therefore, alternative approaches to retrieving surface PM2.5 concentrations were 89 

developed in the past decades. 90 

Aerosol Optical Depth (AOD) data based on modern satellite remote sensing have 91 

been used widely to retrieve surface PM2.5 concentrations due to their good spatial 92 

coverage. AOD data are available from multiple satellite instruments, such as the 93 

Moderate Resolution Imaging Spectroradiometer (MODIS, since 2000), the Multiangle 94 

Imaging SpectroRadiometer (MISR, since 2000), and the Sea-viewing Wide 95 

Field-of-view Sensor (SeaWiFS, since 1998) (Liu et al., 2017). These AOD data have 96 

been combined with chemical transport model simulations or statistical approaches to 97 

derive surface PM2.5 (Boys et al., 2014; Geng et al., 2015; van Donkelaar et al., 2010; 98 
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van Donkelaar et al., 2015). 99 

van Donkelaar et al. (2010) estimated the global distribution of PM2.5 using 100 

satellite MODIS and MISR AOD products and GEOS-Chem simulations from 2001 to 101 

2006. Their estimated PM2.5 values show good agreement with observed PM2.5 over 102 

North America. Using the same method and MODIS, MISR and SeaWiFS AOD data, 103 

Boys et al. (2014) produced a 15-year time series (1998-2012) of surface PM2.5 104 

concentrations worldwide, which agreed well with the situ measurements in Eastern 105 

U.S. van Donkelaar et al. (2015) used the Geographically Weighted Regression (GWR) 106 

statistical model to improve the PM2.5 inference from AOD and GEOS-Chem 107 

simulations. Their analysis showed that local variability in surface elevation and urban 108 

emissions are important sources of uncertainty in retrieving PM2.5 concentrations. 109 

Using satellite AOD data and high-resolution GEOS-Chem simulations, Geng et al. 110 

(2015) estimated surface PM2.5 concentrations over China during 2006-2012, after 111 

using CALIOP aerosol vertical profile data to correct for model biases. They found 112 

very good spatial agreement between satellite-derived and measured PM2.5 113 

concentrations. 114 

However, there are a number of limitations embedded in such satellite-based 115 

PM2.5 inference approaches. Model simulations are subject to errors in the model 116 

representations of atmospheric processes, especially the vertical mixing and transport 117 

that directly affect the simulated aerosol vertical profiles (Lin and McElroy, 2010; Liu 118 

et al., 2018). Satellite-based AOD datasets are subject to a large number of missing 119 

values due to screening for cloudy and strongly surface reflecting scenes. The AOD 120 

datasets may have a low sampling bias, because high aerosol scenes may be mis-treated 121 

as cloudy ones and screened out (Lin and Li, 2016). In addition, there are no reliable 122 

satellite AOD data over land before 1998. 123 

Satellite AOD data can also be combined with statistical models or machine 124 

learning approaches to infer surface PM2.5 concentrations. Taking meteorology and 125 
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land use information into model, Ma et al. (2014) estimated surface PM2.5 126 

concentrations using AOD from MODIS and MISR as a primary predictor. Zheng et al. 127 

(2016) constructed linear mixed-effects models to convert MODIS AOD data and 128 

other predictors to ground-level PM2.5 concentrations over three major industrialized 129 

regions in China. They corrected the predicted PM2.5 concentrations by observed 130 

PM2.5. Li et al. (2017) applied a Geo-Intelligent Deep Learning approach to estimate 131 

PM2.5 over China, and they showed that in 2015 over 80% of Chinese lived in areas 132 

with annual mean PM2.5 concentrations above the WHO IT-1 standard levels (35 133 

µg/m3). Nonetheless, these statistical or machine learning approaches may have 134 

difficulties in establishing/explaining the causality between PM2.5 and predictors, 135 

which poses the question of how the established relationships can be extrapolated to 136 

other times and/or regions. The coefficient of determination (R2) of such methods 137 

declines substantially from 0.41-0.98 when the training dataset is used to 0.31-0.55 138 

when the predictive dataset is used (Wei et al., 2019). In addition, satellite AOD data 139 

have their own limitations, as mentioned above. 140 

Visibility measurements available for multiple decades from ground 141 

meteorological stations have also been used, together with statistical models, for PM2.5 142 

inference. Visibility represents horizontal light extinction, which is highly related with 143 

the amount of PM2.5, its chemical compositions, size distributions, optical properties, 144 

and hygroscopicity (Charlson, 1969; Sinclair et al., 1974; Song et al., 2003). Visibility 145 

and PM2.5 concentrations are negatively correlated with a power law relationship (Zhao 146 

et al., 2011; Zhang et al., 2019). Based on visibility data from 674 meteorological 147 

monitoring sites and a statistical model, Liu et al. (2017) inferred the long-term 148 

(1957-1964 and 1973-2014) changes of PM2.5 pollution in China. They found PM2.5 149 

concentrations reached 60-80 µg/m3 over the northern part of the North China Plain 150 

during the 1950s-1960s, increasing to levels generally higher than 90 µg/m3 since then. 151 

Shen et al. (2016) retrieved historical (1979-2003) PM2.5 mass concentrations in Xi’an 152 

using visibility measurements and an exponential regression model, and they found 153 
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decreasing trends by -4.6 µg/m3/year and -12.1 µg/m3/year during 1979-1996 and 154 

2007-2011, respectively, in contrast to a growth during 1997-2007 by 8.8 µg/m3/year. 155 

However, statistical models are subject to abovementioned limitations. 156 

This study presents a new method to retrieve surface PM2.5 mass concentrations 157 

using GEOS-Chem simulations and surface visibility measurements. The method is 158 

inspired by our present study (Lin and Li, 2016; Lin et al., 2014) that used GEOS-Chem 159 

and visibility data to infer AOD over East China, which showed high consistency with 160 

AErosol RObotic NETwork (AERONET) and MODIS AOD data in terms of a low bias 161 

and high temporal and spatial correlations. Here we proposed a similar method to 162 

retrieve PM2.5 concentrations over the NCP in January, April, July and October 2014 163 

(i.e., covering four seasons). In particular, we used GEOS-Chem to help convert 164 

visiblity to PM2.5 concentration at each site and then to a gridded space, in order to 165 

facilitate further applications such as health impact analysis. We further validated the 166 

retrieved PM2.5 data against ground PM2.5 measurements. 167 

2. Data and Methods  168 

2.1 Surface PM2.5 mass concentration measurements 169 

Hourly surface PM2.5 concentration measurements were obtained from the China 170 

National Environmental Monitoring Centre (CNEMC). The filled circles in Figure 1 171 

show the 396 observation sites over the NCP used here. The sites are concentrated in 172 

urban areas and lack coverage in rural and remote areas. Thus the observed data may 173 

not fully represent the regional air quality.  174 

At these 396 sites, PM2.5 concentrations are measured by either TEOM or 175 

Beta-attenuation instruments. Quality control is done through a fully automatic outlier 176 

detection method for four types of outliers: temporal and spatial inconsistency, low 177 

variance, periodic calibration exceptions, and PM10 concentrations being lower than 178 

PM2.5 concentrations (Wu et al., 2018). Additionally, we required that there are at least 179 
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20 hourly data for each day, 20 days per month, 2 months in January, April, July and 180 

October 2014. We chose the four months to represent individual seasons, instead of 181 

choosing all months, to reduce the computational costs of respective GEOS-Chem 182 

simulations. When comparing with PM2.5 measurements, we excluded data at times 183 

when either visibility-converted PM2.5 or measured PM2.5 data were missing. 184 

2.2 Visibility and other meteorological data 185 

Visibility, temperature, wind speed and Relative Humidity (RH) measurements at 186 

610 sites in January, April, July and October 2014 were obtained from Chinese 187 

Meteorological Administration (CMA). The gray crosses in Figure 1 show the 188 

meteorological sites.  189 

For our study period, visibility is measured automatically by Forward Scattering 190 

Visibility Meter (FSVM) which has a scattering angle of 30°–50°. The instrument 191 

ignores the absorption of light by the atmosphere, thus the derived scatter coefficient is 192 

scaled up by an embedded algorithm to account for absorption and better represent the 193 

total extinction coefficient before the value is converted to visibility (Tan et al., 2010). 194 

Chinese meteorological stations mostly use the HY-V35 automatic visibility 195 

instrument manufactured by Huayun Shengda Company, with core components of the 196 

instrument purchased from Vaisala, Finland. HY-V35 passed the assessment of 197 

various indicators of CMA on May 2011. The instrument measures forward scattering 198 

in the angle of 45°. In the instrument manual, it points out that K = 3.0 in the 199 

Koschmeider equation that connects light extinction and visibility.  200 

This automatic measurement is different from the manual measurement before 201 

2013, i.e., by human eyes. Manual observations tend to give larger visibility values than 202 

automatic measurements, whereas their linear trends are highly consistent (Fan et al., 203 

2017; Liu et al., 2017). Therefore, precaution should be taken when combining manual 204 

and automatic visibility measurements for long-term PM2.5 studies, which is the focus 205 

of our future studies. For example, according to the Koschmeider equation, AEC=K/V, 206 
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K=-lnε, and ε denotes visual contrast. According to the regulations of the International 207 

Meteorological Organization, ε=0.05 (K=3.0) for instrument measurement. When 208 

manual measurements of visibility are used for historical analyses in future research, 209 

we will change the value of K to 3.9 (Lin et al., 2104; Lin and Li, 2016). In addition, 210 

we will consider discontinuity issues about long-term visibility data such as site 211 

movement and reporting standard. Observations taken at night and under heavy 212 

cloudy conditions can also be uncertain. Therefore, a careful filtering and quality 213 

control process will be performed before these data are used to study long-term trend. 214 

Nevertheless, this study only focuses on the automatic visibility measurements. 215 

The visibility observations are hourly data beginning at 00:00 UTC (08:00 Beijing 216 

Standard Time). Quality control for visibility data is shown in Sect. 2.4. Other 217 

meteorological data are also available hourly. Note that compared to satellite AOD data, 218 

visibility data provide a much longer time series of information for PM2.5 inference 219 

since the 1950s to help evaluate the long-term changes in PM2.5 and related health 220 

impacts. Compared to PM2.5 measurement sites, meteorological stations are spatially 221 

more homogeneous and are available at urban, rural and remote areas, providing better 222 

spatial representativeness. 223 

2.3 GEOS-Chem model 224 

We used the nested GEOS-Chem model for China (version 11-01, 225 

http://wiki.seas.harvard.edu/geos-chem/index.php/Main_Page) to simulate the ratio 226 

between surface PM2.5 concentration and Aerosol Extinction Coefficient (AEC) for 227 

converting the visibility-derived near-surface AEC to PM2.5. Driven by the GEOS-FP 228 

assimilation meteorology from the Goddard Earth Observing System (GEOS) of the 229 

NASA Global Modeling and Assimilation Office, the nested model has a horizontal 230 

resolution of 0.3125° longitude x 0.25° latitude with 47 vertical layers, and the lowest 231 

10 layers are of ~ 130 m thickness each. The lateral boundary conditions of nested 232 

model are taken every 3 hours from a global GEOS-Chem simulation at 2.5° 233 
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longitude x 2° latitude. Spin-up time for nested model and global model are 15 days 234 

and one month, respectively. The scheme of planetary boundary layer employs a 235 

non-local scheme implemented by Lin and McElroy (2010). Model convection is 236 

simulated with the relaxed Arakawa–Schubert scheme (Rienecker et al., 2008). 237 

Both the global and nested GEOS-Chem models are run with the 238 

NOx-Ox-hydrocarbon-aerosol-bromine tropospheric chemistry mechanism with 239 

online aerosols. Aerosols simulated include secondary inorganic aerosols (SIOA, 240 

including sulfate, nitrate and ammonium), secondary organic aerosols (SOA), primary 241 

organic aerosols (POA), black carbon (BC), dust and sea salt. The 242 

ammonium-sulfate-nitrate-water system is calculated by ISORROPIA II 243 

thermodynamic equilibrium model (Fountoukis and Nenes 2007), with updates on 244 

heterogeneous sulfate and nitrate processes (Zhang et al., 2015). Natural dust particles 245 

are emitted with the DEAD scheme (Fairlie et al., 2010; Zhang et al., 2013). The 246 

calculation of SOA species are parameterized by Pye and Seinfeld (2010). The 247 

parameterization of sea salt is from Jaegle et al. (2011). Uptake of the hydroperoxyl 248 

radical on aerosols and representation of anthropogenic aromatics follow Lin et al. 249 

(2012) and Ni et al. (2018). 250 

Monthly gridded anthropogenic emissions in China are taken from the 251 

Multi-resolution Emission Inventory for China (MEIC, www.meicmodel.org; Geng et 252 

al., 2017) for 2014 for nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide 253 

(SO2), BC and POA. Following Zhang et al. (2015), emissions of anthropogenic fine 254 

dust are also included, by taking primary PM2.5 emissions from MEIC. For 255 

non-methane volatile organic compounds (NMVOC) emissions, the spatial pattern, 256 

seasonal pattern and ratios of individual compounds to the total NMVOC are fixed, 257 

with the total amount of NMVOC scaled to each specific study year according to the 258 

national total amount of NMVOC in MEIC in 2014. Biomass burning emissions are 259 

taken from the monthly GFED4 datasets (Giglio et al., 2013). Biogenic emissions of 260 
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NMVOC follow MEGANv2.1 (Guenther et al., 2012). Soil emissions of NOx employ 261 

the parameterization from Hudman et al. (2012). 262 

Future research aiming to combine model simulations with visibility data for 263 

historical PM2.5 studies could use the MERRA2 assimilated meteorological data 264 

available since 1980 and the monthly emission data from the Community Emissions 265 

Data System available since 1750. A historical analysis, however, is out of the scope 266 

of this study. 267 

2.4 Retrieval method 268 

As shown in Figure 2, our retrieval method contains multiple steps. First, we 269 

conducted quality control for visibility data, following previous studies (Husar et al., 270 

2000; Lin et al., 2014; Li et al., 2016). Fine particle matter and relative humidity is the 271 

two main factors affecting visibility. Observational results (Chen et al., 2012) show 272 

that when RH < 90%, low visibility is largely influenced by aerosol volume 273 

concentration; while for RH > 90%, indicative of the formation of fogs and 274 

precipitation, the increase of RH is dominantly responsible for the decrease of visibility. 275 

Therefore, to reduce the effect of non-aerosol factors on visibility, we excluded 276 

visibility records when RH exceeded 90%. This choice is consistent with previous 277 

studies (Craig and Faulkenberry, 1979; Zhao et al., 2011). We further excluded data that 278 

may be affected by blown snow from the ground, i.e., when air temperature is below 279 

-29 °C and wind speed above 16 km/h. If the maximum value of visibility data at a site 280 

in the clean area (median visibility > 11 km) within a month is smaller than 12 km, all 281 

data at that site in that month were excluded; this situation indicates erroneous data 282 

record. To remove potentially erroneous data spikes, if the daily mean visibility on a 283 

day is lower than one third of the value both on the day before and on the day after, data 284 

on that day were excluded (Husar et al., 2000). 285 

Second, we converted the quality controlled visibility data to hourly near-surface 286 

AEC. According to the Koschmieder Equation, near-surface AEC at 550 nm is 287 
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inversely proportional to visibility if the effect of air molecules is neglected: AEC = 288 

K/V. This formula is often used for the conversion between visibility and aerosol 289 

extinction coefficient (Husar et al., 2000; Lin et al., 2014; Xu et al., 2005). Here V 290 

represents the observed visibility, and K=-lnε is the Koschmieder constant. For FSVM, 291 

the contrast threshold ε is chosen as 5%, with K equal to 3.0 (Li and Sun, 2009; Zeng 292 

and Wang, 1999). In order to reduce the optical influence of air molecules and correct 293 

for other potential errors at clean (high visibility) situations, we used a modified 294 

formula to relate visibility and AEC: AEC = K/V-K/V0, where V0 = 70 km (Lin et al., 295 

2014). 296 

Third, we adopted the hourly ratio of PM2.5 to AEC simulated by GEOS-Chem to 297 

scale the visibility converted AEC to obtain the visibility-inferred PM2.5 concentrations 298 

at individual sites (hereafter referred to as Station Concerted-PM2.5):  299 

2.5 model
2.5

model

( )
( )SC

PM
PM AEC

AEC
= ´  300 

For a particular site, the modeled ratio of PM2.5 to AEC was taken as the value 301 

interpolated from nearby model grid cells through bilinear interpolation, with the time 302 

of model results matching that of the hourly visibility data. At each model grid cell, the 303 

model PM2.5 concentration was summed over the concentrations of fine dust (DST1 + 304 

0.38 x DST2 in the model), fine sea salt particles (SALA in the model), BC, POA 305 

(assumed to be 1.8 times the mass of primary organic carbon), and SIOA. The model 306 

AEC was calculated based on the optical effects of these PM2.5 components and 307 

additional coarse mode dusts (DST3 and DST4) and coarse sea salt particles (SALC), 308 

with their hygroscopicity accounted for (Lin et al., 2016) using the observed RH at 309 

respective meteorological station. Inclusion of coarse particles in calculating model 310 

AEC ensures the consistency with visibility-inferred AEC that is affected by both fine 311 

and coarse particles. Considering that the measured PM2.5 and visibility data are 312 

near-surface, we choose the values of model PM2.5 and AEC in the bottom model layer 313 
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(i.e., from the ground to approximately 130 m). Then, we obtained a Station-Converted 314 

hourly PM2.5 dataset in January, April, July and October 2014 over the NCP. The daily 315 

mean PM2.5 data were averaged from the hourly data. 316 

Fourth, we converted the station-specific daily mean PM2.5 data to gridded data at 317 

a horizontal resolution of 0.3125° longitude x 0.25° latitude, according to the resolution 318 

of GEOS-Chem. The resulting dataset is referred to as Grid-Converted PM2.5. There are 319 

two purposes for this station-to-grid conversion. The station-based data lack continuous 320 

spatial coverage needed for health impacts studies. Also, the station-based visibility 321 

measurements are subject to instrument errors and representation errors, i.e., the 322 

measured values may be affected by local pollution sources and other factors and thus 323 

not fully representative of the actual pollution level in the surrounding area. In fact, 324 

visibility data may contain certain “noise” spatially, as shown in Lin et al. (2014) and in 325 

Sect. 3.3.  326 

We tested 8 candidate methods for this station-to-grid conversion, and finally 327 

selected a method, Case 7, that has the best performance; see below for evaluation 328 

statistics and Sect. 3.2 for the selection process. All cases but Case 2 and Case 3 329 

involved matching a grid cell center to surrounding visibility stations within a certain 330 

radius. We tested radii of 0.1°, 0.2°, 0.3°, 0.4°, 0.5°, 0.6°, 0.7°, 0.8°, 0.9°, 1.0°, 1.5° 331 

and 2°. The larger the radius is, the higher extent the Station-Converted PM2.5 data are 332 

spatially smoothed. 333 
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In these eight candidate methods to convert station-specific to gridded PM2.5 335 

data,  ,
F
d ic

 denotes the finally obtained daily mean PM2.5 concentration on day d at 336 

grid cell i. The superscript F denotes final, M denotes model, SC denotes Station 337 

Converted, and Cres denotes Cressman interpolation. The subscript r denotes distance, 338 

d denotes day, m denotes month, i denotes grid cell i, and i’ denotes the grid cell in 339 

which the visibility measurement station is located. The function “mean” denotes the 340 

average over all grid cells, and “median” denotes the median value among the 341 

selected grid cells. 342 

Of these 8 methods, Cases 1-3 utilized the Station-Converted PM2.5 data alone 343 

without further using GEOS-Chem simulations. Case 1 assigned to a grid cell the 344 

median value from stations within a certain radius of the grid cell center. Cases 2 and 3 345 

used the Cressman and the Inverse Distance Weight (IDW) interpolation methods, 346 

respectively. 347 

Cases 4-8 used the spatial variability simulated by GEOS-Chem to facilitate the 348 

station-to-grid conversion. As shown in Sect. 3.1, the GEOS-Chem simulated spatial 349 
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distribution of PM2.5 outperforms the distribution of visibility-converted station-based 350 

data. In Case 4, for a given grid cell “i” on each day, we found all stations within a 351 

certain radius of the grid cell center, calculated the ratios of Station-Converted PM2.5 to 352 

Modeled PM2.5 (at the grid cells in which these visibility stations are located), and 353 

then used the median value of these ratios to scale the Modeled PM2.5 at grid cell “i”. 354 

Case 5, aiming to eliminate the noise in the day-to-day variability, was similar to Case 4 355 

except that the ratios were based on monthly (rather than daily) mean PM2.5 data. Here, 356 

to reduce the monthly average calculation errors caused by missing values, we chose 357 

the median value of all stations within a certain radius of the grid cell center to match 358 

the model PM2.5, and then used data on the days when Station-Converted PM2.5 and 359 

model PM2.5 are both available. Case 6 was similar to Case 5, except that the scaling 360 

was based on the (spatial) median of Station-Converted PM2.5 data. 361 

Cases 7 and Case 8 were designed based on the fact that Modeled PM2.5 data were 362 

spatially consistent with PM2.5 measurements and had a lower mean bias (see Sect. 3.1). 363 

The two cases used the spatial pattern (shape) of model PM2.5 data to facilitate the 364 

station-to-grid conversion. For Case 7, we first calculated the monthly Modeled PM2.5 365 

at each grid cell normalized to its spatial average, calculated the respective value for 366 

Station-Converted PM2.5., and then derived their ratio. The calculation of monthly 367 

mean values and the sampling of available grid cells were the same as in Case 5. We 368 

then used this ratio to scale the result derived from Case 1 to finally obtain the gridded 369 

and spatial shape-adjusted daily PM2.5 data. Case 8 was similar to Case 7, except that 370 

Station-Converted PM2.5 data are replaced by Cressman-interpolated gridded data from 371 

Case 2. 372 

Evaluation of the 8 station-to-grid conversion methods was based on how each 373 

method led to high spatial and temporal (i.e., day-to-day across the four months) 374 

consistencies with the actual PM2.5 measurements. A few indicators were used to 375 

evaluate the consistency, including bias, correlation coefficient, slope of a linear 376 
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regression, root mean square error (RMSE). We applied the Reduced Major Axis 377 

(RMA) regression, which is more appropriate than the Ordinary Least Square 378 

regression when independent variable x contains errors, to estimate the slope and 379 

intercept. 380 

3. Spatio-temporal variability of Measured, Modeled, Station-Converted and 381 

Grid-Converted PM2.5 382 

3.1 Comparison of Station-Converted, Modeled and Measured PM2.5 383 

Figure 3 compares the spatial distributions of (a) observed, (b) Station-Converted, 384 

(c) Station-Converted and sampled based on available observations, (d) modeled and 385 

(e) Grid-Converted PM2.5 concentrations over the NCP averaged over January, April, 386 

July and October 2014. From the observed data (Fig. 3a), which represent urban air 387 

quality, high PM2.5 pollution occur over southern Hebei. The highest PM2.5 388 

concentrations reach 170.4 µg/m3, due to the combined effects of large emissions, 389 

efficient secondary formation and unfavorable conditions for pollution outflow. PM2.5 390 

concentrations are lower over the northern parts of Hebei and Shanxi, Shandong 391 

Peninsula and Inner Mongolia, due to lower emissions and favorable topographical and 392 

meteorological conditions for pollution removal/transport (Zheng et al., 2018; Zhang et 393 

al., 2018). The domain average PM2.5 concentration is 83.8 µg/m3. 394 

Figure 3b shows the Station-Converted PM2.5 data, which are more much 395 

regionally representative than the PM2.5 observations (Fig. 3a) and still capture the 396 

observed spatial pattern (from urban sites). Since the Station-Converted PM2.5 data are 397 

not spatially collocated with PM2.5 observations, we choose the median value of the 398 

converted PM2.5 data from all stations within a 0.2° radius of each PM2.5 observation 399 

station (Fig. 3c). Such re-sampled data reveal several locations where 400 

Station-Converted PM2.5 overestimate the observed values significantly. Averaged over 401 

the NCP, the Station-Converted concentration is 109.8 µg/m3, with an overestimate by 402 

26.0 µg/m3. The scatter plots in Fig. 4 also show significant positive biases of 403 
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Station-Converted PM2.5 data, especially when the pollutant concentrations are high. 404 

GEOS-Chem captures the observed spatial distribution of PM2.5 concentrations 405 

averaged over the four months in 2014 (Fig. 3d). As for model and Grid-Converted 406 

PM2.5, we match the observation by choosing the grid cell in which the observation 407 

station is located. In particular, Figure 4a shows that when sampled coincidently with 408 

the observations, the modeled PM2.5 results have a small positive bias (by 2.5 µg/m3). 409 

The model has a high spatial correlation coefficient (0.73) with the observed data, much 410 

higher than the correlation coefficient for the Station-Converted data (0.49) (Fig. 4b). 411 

The modeled data also have significantly lower RMSE than the Station-Converted data 412 

(Fig. 4a and 4b). These results suggest that the model better captures the spatial 413 

distribution of PM2.5 observations than the visibility-based data do. 414 

Figure 5 further evaluates the day-to-day variations of modeled and 415 

Station-Converted PM2.5 concentrations against the observations in the four months. 416 

Modeled and Station-Converted data were sampled based on the observations; and 417 

results were averaged over the NCP on each day. Although both the modeled and 418 

Station-Converted PM2.5 can capture the day-to-day variation of the observed data, the 419 

capability of Station-Converted data is better, especially with a higher correlation 420 

coefficient (0.96 versus 0.84). However, the modeled data is better than the 421 

Station-Converted ones in terms of mean bias and RMSE. Note that because of the 422 

difference in data averaging, the values for bias here are slightly different from those 423 

in the discussion of spatial distribution. 424 

3.2 Evaluation of Grid-Converted PM2.5 data derived from 8 candidate 425 

station-to-grid mapping methods 426 

This section evaluates the Grid-Converted PM2.5 data derived from 8 candidate 427 

station-to-grid mapping approaches presented in Sect. 2.4. Such mapping is based on 428 

the preference for health impact studies to having high spatial coverage and, for a few 429 

mapping approaches, an attempt to take advantage of the GEOS-Chem model 430 
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capability in capturing the spatial pattern of PM2.5 observations. As mentioned in Sect. 431 

2.4, the evaluation focuses on whether the Grid-Converted data can capture both the 432 

spatial and temporal (day-to-day) variations of observed PM2.5.  433 

Figure 6 shows the evaluation statistics for each case, as a function of the distance 434 

(radius) from the visibility station to the grid cell center. As the mapping radius 435 

increases, the spatial feature of Grid-Converted PM2.5 is further smoothed and the 436 

spatial details are further lost. For temporal (day-to-day) correlation evaluation (Fig. 437 

6b), data on each day are averaged over all PM2.5 measurement sites. In general, 438 

results for temporal correlation do not show a strong dependence on the mapping 439 

radius, mainly because PM2.5 data are spatially averaged. For all cases and radii, the 440 

temporal correlation coefficients exceed 0.8, reflecting that the Station-Converted 441 

PM2.5 data have a good performance in terms of temporal variation. However, Cases 2，442 

3, 7 and 8 still outperform the other cases (R > 0.9 for all radii). Evaluation on 443 

temporal bias gives a similar result to the evaluation on spatial bias (see below) and is 444 

thus not shown. 445 

For evaluation of spatial bias and correlation (Fig. 6a, and c), data at each PM2.5 446 

measurement site were averaged over the four months. The biases of Cases 1, 4 and 5 447 

are very sensitive to the mapping radius, and the lowest biases are obtained for a 448 

radius of 0.5°–0.6°. These three cases also result in relatively low spatial correlation 449 

coefficients (< 0.6). Cases 1 and 5 have similar results. Case 2 (with Cressman 450 

interpolation) leads to a relative high bias, except when the mapping radius exceeds 451 

0.7°. Case 3 is derived from the IDW method, and thus its evaluation results do not 452 

vary with the mapping radius. Case 3 has a relatively low spatial correlation (R = 0.60) 453 

and a high bias (13.6 µg/m3). Case 6 leads to the smallest mean bias, and its respective 454 

correlation coefficient is among the highest and does not change significantly with 455 

radius. Case 7 has the second highest spatial correlation coefficient (after Case 8) and 456 

a relatively small bias (within 10 µg/m3 when radius is greater than 0.2°). This low 457 
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bias suggests that using GEOS-Chem simulation results to adjust the spatial 458 

distribution of visibility inferred PM2.5 helps to reduce the bias, a desirable outcome. 459 

Case 8 leads to the highest correlation coefficient, but it also has the greatest bias (> 30 460 

µg/m3 for all mapping radius). 461 

Figure 6d further shows the RMA regression slope for the spatial variability of 462 

temporally averaged Grid-Converted PM2.5 data. The slope of Case 8 is the highest 463 

and has small dependence on radius (i.e., between 1.35 and 1.40). The slopes of Case 464 

1, 4 and 5 decline significantly with the increasing radius. Although Case 6 has the 465 

smallest mean bias and a high correlation coefficient, the regression slope of Case 6 is 466 

relatively low (< 0.75) for all radii. The slope of Case 7 declines slightly with the 467 

increasing radius, and it remains between 0.85 and 1.05 for all radii. 468 

Overall, Case 7 with a mapping radius of 0.3° has the most desired performance 469 

in both the temporal and the spatial domains. In particular, it has a relatively small mean 470 

bias (7.9 µg/m3, or 9.4%), high correlation coefficients (0.80 spatially and 0.96 471 

temporally) and better slope (1.0 spatially). A radius of 0.3° also helps preserve the 472 

high-resolution spatial information embedded in the visibility data and GEOS-Chem 473 

simulations. In the next section, we analyze the gridded results from this method in 474 

detail. 475 

3.3 Spatio-temporal distribution of Grid-Converted PM2.5 based on the 476 

selected station-to-grid conversion method (Case 7) 477 

Figure 3e shows the gridded distribution of PM2.5 concentrations averaged over 478 

the four months in 2014 based on Case 7 with a mapping radius of 0.3°. The spatial 479 

distribution is consistent with the observed one, such as the highest PM2.5 480 

concentrations over southern Hebei and the lowest over the northern regions. The 481 

gridded dataset corrects the underestimate in the model results and reduces the 482 

excessively high values in the Station-Converted data.  483 
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The scatter plots in Figure 4c further evaluate the spatial distribution of 484 

Grid-Converted (Case 7) data against PM2.5 observations. Gridded data were sampled 485 

from the grid cells covering the PM2.5 measurement stations and on days with available 486 

PM2.5 measurements. The correlation coefficient (R = 0.80) with the observed PM2.5 487 

are higher than model simulations (R = 0.73) and Station-Converted PM2.5 (R = 0.49) 488 

alone. The mean bias (7.9 µg/m3, or 9.4%), the RMA regression slope (1.0), and the 489 

small RMSE (17.6 µg/m3) are also desirable, compared to the values for GEOS-Chem 490 

simulations (2.5 µg/m3, 0.80, and 18.6 µg/m3, respectively) and Station-Converted 491 

data (25.7 µg/m3, 1.8, and 51.1 µg/m3, respectively).  492 

Figure 5c shows the day-to-day variations of observed and Grid-Converted PM2.5 493 

concentrations (Case 7) in each month. For each day, data were selected from stations 494 

with available observations and converted values, and were further averaged over the 495 

NCP. Figure 5c shows that Grid-Converted PM2.5 data have a small bias of 9.4 µg/m3
 496 

(or 11.4%); note that this value is slight different from the spatial bias (7.9 µg/m3, or 497 

9.4%) because of the difference between temporal and spatial sampling. The temporal 498 

variation of Grid-Converted PM2.5 over the four months is consistent with the observed 499 

variation (R = 0.96, linear regression slope = 1.0), better than that of GEOS-Chem (R 500 

= 0.84, slope = 0.70) and Station-Converted (R = 0.96, slope = 1.3) PM2.5. The 501 

Grid-Converted PM2.5 data also capture the observed PM2.5 peaks, which represent the 502 

pollution episodes, as well as the low values on clean days. They reproduce the 503 

seasonal variation of observed PM2.5 mass concentrations, i.e., a higher mean value 504 

and day-to-day variability in winter and lower values in summer. The Grid-Converted 505 

PM2.5 correct the temporally consistent overestimate in the Station-Converted PM2.5 506 

data and the wintertime underestimate and summertime overestimate in GEOS-Chem 507 

simulations. 508 

4. Conclusions 509 

This study offers a novel, plausible method to infer surface PM2.5 mass 510 
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concentrations on a 0.3125° longitude x 0.25° latitude grid, by combining the spatially 511 

dense high-frequency surface visibility measurements and GEOS-Chem simulations. 512 

Applying the method to the NCP in January, April, July and October 2014 shows good 513 

performance of the inferred data with respect to the official PM2.5 measurements.  514 

Specifically, after the visibility data are converted to PM2.5 concentrations at each 515 

station and then each grid cell (based on Case 7 with a mapping radius of 0.3°), the 516 

derived gridded PM2.5 data are both spatially and temporally consistent with the PM2.5 517 

measurements. The spatial and temporal mean biases are both within 10 µg/m3. The 518 

temporal (day-to-day) correlation coefficient reaches 0.96 with a linear regression 519 

slope of 1.0. The spatial correlation coefficient reaches 0.80 with a regression slope of 520 

1.0. The lower spatial correlation than the temporal correlation reflects that visibility 521 

data are spatially noisier (Lin and Li, 2016). Grid-Converted PM2.5 improves upon 522 

GEOS-Chem simulations by correcting its wintertime underestimate and summertime 523 

overestimate. The temporal correlation coefficient, temporal regression slope, spatial 524 

correlation coefficient and spatial regression slope of converted PM2.5 data are better 525 

than GEOS-Chem simulation results (0.84, 0.70, 0.73 and 0.80, respectively).  526 

Future research will apply the inference method to all months in multiple years in 527 

the NCP to further test the robustness of the conversion method proposed here, with 528 

the goal of finally applying the method for a reliable retrieval of multi-decadal PM2.5 529 

variability embedded in the visibility data.  530 

Acknowledgments 531 

This work was supported by the National Natural Science Foundation of China 532 

[grant numbers 41831175, 41775115, 41425019, and 41721004]. We acknowledge 533 

China Meteorology Administration (CMA) and China National Environmental 534 

Monitoring Centre (CNEMC) for visibility and PM2.5 data, respectively. 535 



 

22 

 

References 536 

Allen, R.J., Norris, J.R., Kovilakam, M., 2014. Influence of anthropogenic aerosols 537 

and the Pacific Decadal Oscillation on tropical belt width. Nat. Geosci. 7, 270–274. 538 

Boys, B.L., Martin, R.V., van Donkelaar, A., MacDonell, R.J., Hsu, N.C., Cooper, 539 

M.J., Yantosca, R.M., Lu, Z., Streets, D.G., Zhang, Q., Wang, S.W., 2014. 540 

Fifteen-year global time series of satellite-derived fine particulate matter. Environ Sci 541 

Technol. 48, 11109-11118. 542 

Charlson, R.J., 1969. Visibility Related to Aerosol Mass Concentration - A Review. 543 

Environment Science & Technology 3, 913-918. 544 

Chen, J., Zhao, C., Ma, N., Liu, P., Gobel, T., Hallbauer, E., Deng, Z., Ran, L., Xu, W., 545 

Liang, Z., 2012. A parameterization of low visibilities for hazy days in the North 546 

China Plain. Atmospheric Chemistry and Physics 12, 4935-4950. 547 

Chen, Y.-z., Zhao, D., Chai, F.-h., Liang, G.-x., Xue, Z.-g., Wang, B.-b., Liang, Y.-j., 548 

Chen, Y., Zhang, M., 2010. Correlation between the atmospheric visibility and aerosol 549 

fine particle concentrations in Guangzhou and Beijing. China Environmental Science 550 

30, 967-971. 551 

Craig, C.D., Faulkenberry, G.D., 1979. Application of ridit analysis to detect trends in 552 

visibility. Atmospheric Environment 13, 1617-1622. 553 

Fairlie, T.D., D.J. Jacob, J.E. Dibb, B. Alexander, M.A. Avery, A. van Donkelaar, and 554 

L. Zhang, 2010. Impact of mineral dust on nitrate, sulfate, and ozone in transpacific 555 

Asian pollution plumes. Atmos. Chem. Phys. 10, 3999-4012. 556 

Fan, G., Ren, L., Mao, Y., 2017. Reconstruction of haze day database based on the 557 

comparison between manual and automatic observations. China Environmental 558 

Science 37, 1254-1261. 559 

Fountoukis, C., Nenes, A., 2007. ISORROPIA II: a computationally efficient 560 



 

23 

 

thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42−–NO3−–cl−–561 

H2O aerosols. Atmos. Chem. Phys. 7, 4639–4659. 562 

Ge, B., Wang, Z., Lin, W., Xu, X., Li, J., Ji, D., Ma, Z., 2018. Air pollution over the 563 

North China Plain and its implication of regional transport: A new sight from the 564 

observed evidences. Environ Pollut. 234, 29-38. 565 

Geng, G., Zhang, Q., Martin, R.V., van Donkelaar, A., Huo, H., Che, H., Lin, J., He, 566 

K., 2015. Estimating long-term PM2.5 concentrations in China using satellite-based 567 

aerosol optical depth and a chemical transport model. Remote Sensing of 568 

Environment. 166, 262-270. 569 

Geng, G., Zhang, Q., Martin, R. V., Lin, J.-T., Huo, H., Zheng, B., Wang, S., and He, 570 

K., 2017. Impact of spatial proxies on the representation of bottom-up emission 571 

inventories: A satellite-based analysis. Atmospheric Chemistry and Physics. 17, 572 

4131-4145. 573 

Giglio, L., J. T. Randerson, and G. R. van der Werf, 2013. Analysis of daily, monthly, 574 

and annual burned area using the fourth-generation global fire emissions database 575 

(GFED4)", J. Geophys. Res, Biogeosciences. 118, Issue 1, 317-328. 576 

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. 577 

K., and Wang, X., 2012. The Model of Emissions of Gases and Aerosols from Nature 578 

version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic 579 

emissions. Geosci. Model Dev. 5, 1471-1492. 580 

Hudman, R.C., N.E. Moore, R.V. Martin, A.R. Russell, A.K. Mebust, L.C. Valin, and 581 

R.C. Cohen, 2012. A mechanistic model of global soil nitric oxide emissions: 582 

implementation and space based-constraints. Atm. Chem. Phys. 12, 7779-7795. 583 

Husar, R.B., Husar, J.D., Martin, L., 2000. Distribution of continental surface aerosol 584 

extinction based on visual range data. Atmospheric Environment. 34, 5067-5078. 585 



 

24 

 

Jaegle, L., Quinn, P. K., Bates, T. S., Alexander, B., and Lin, J.-T., 2011. Global 586 

distribution of sea salt aerosols: new constraints from in situ and remote sensing 587 

observations. Atmos. Chem. Phys. 11, 3137-3157. 588 

Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D., Pozzer, A., 2015. The contribution 589 

of outdoor air pollution sources to premature mortality on a global scale. Nature. 525, 590 

367–371. 591 

Li Hao, Sun, X., 2009. Theoretical analysis on measurement error of forward 592 

scattering visibility meter. Infrared and Laser Engineering. 38, 1094-1098. 593 

Li, J., C.Li, C. Zhao, T.Su, 2016. Changes in surface aerosol extinction trends over 594 

China during 1980-2013 inferred from quality-controlled visibility data. Geophysical 595 

Research Letters. 43, 8713-8719. 596 

Li, T., Shen, H., Yuan, Q., Zhang, X., Zhang, L., 2017. Estimating groundlevel PM2.5 597 

by fusing satellite and station observations: A geo-intelligent deep learning approach. 598 

Geophysical Research Letters. 44, 11985-11993. 599 

Liao, H., Henze, D.K., Seinfeld, J.H., Wu, S., Mickley, L.J., 2007. Biogenic 600 

secondary organic aerosol over the United States: comparison of climatological 601 

simulations with observations. J. Geophys. Res. Atmos. 112, D06201. 602 

Lim, S.S., Vos, T., Flaxman, A.D., 2012. A comparative risk assessment of burden of 603 

disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 604 

1990-2010: a systematic analysis for the global burden of disease study 2010. Lancet, 605 

381, 1276-1276. 606 

Lin, J.-T., Liu, Z., Zhang, Q., Liu, H., Mao, J., and Zhuang, G., 2012. Modeling 607 

uncertainties for tropospheric nitrogen dioxide columns affecting satellite-based 608 

inverse modeling of nitrogen oxides emissions. Atmospheric Chemistry and Physics. 609 

12, 12255-12275.  610 



 

25 

 

Lin, J., McElroy, M.B., 2010. Impacts of boundary layer mixing on pollutant vertical 611 

profiles in the lower troposphere: Implications to satellite remote sensing. 612 

Atmospheric Environment. 44, 1726-1739. 613 

Lin, J.-T., McElroy, M. B., and Boersma, K. F., 2010. Constraint of anthropogenic 614 

NOx emissions in China from different sectors: a new methodology using multiple 615 

satellite retrievals. Atmos. Chem. Phys. 10, 63–78. 616 

Lin, J., Li, J., 2016. Spatio-temporal variability of aerosols over East China inferred 617 

by merged visibility-GEOS-Chem aerosol optical depth. Atmospheric Environment. 618 

132, 111-122. 619 

Lin, J., Tong, D., Davis, S., Ni, R., Tan, X., Pan, D., Zhao, H., Lu, Z., Streets, D., 620 

Feng, T., Zhang, Q., Yan, Y., Hu, Y., Li, J., Liu, Z., Jiang, X., Geng, G., He, K., Huang, 621 

Y., Guan, D., 2016. Global climate forcing of aerosols embodied in international trade. 622 

Nature Geoscience. 9, 790-794. 623 

Lin, J., van Donkelaar, A., Xin, J., Che, H., Wang, Y., 2014. Clear-sky aerosol optical 624 

depth over East China estimated from visibility measurements and chemical transport 625 

modeling. Atmos Environ. 95, 258–267. 626 

Liu, M., Bi, J., Ma, Z., 2017. Visibility-Based PM2.5 Concentrations in China: 627 

1957-1964 and 1973-2014. Environ Sci Technol. 51(22), 13161-13169. 628 

Liu, M., Lin, J., Wang, Y., Sun, Y., Zheng, B., Shao, J., Chen, L., Zheng, Y., Chen, J., 629 

Fu, T.-M., Yan, Y., Zhang, Q., and Wu, Z, 2018. Spatiotemporal variability of 630 

NO2 and PM2.5 over Eastern China: observational and model analyses with a novel 631 

statistical method. Atmos. Chem. Phys. 18, 12933-12952. 632 

Liu, N., Ma, Y., Wang, Y., Liu, X., 2010. Mass Concentration Variation of 633 

Atmospheric Particles and Relationship with Visibility in Dandong. Research of 634 

Environmental Sciences 23, 642-646. 635 



 

26 

 

Liu, X., Liu, H., Hong, Z., Qin, Y., 2017. Comparative Analysis of Visibility Data 636 

between Automatic and Manual Observation. Journal of Guizhou Meteorology 41(6), 637 

72-75. 638 

Ma, Z., Hu, X., Huang, L., Bi, J., Liu, Y., 2014. Estimating ground-level PM2.5 in China 639 

using satellite remote sensing. Environmental Science & Technology. 48, 7436-7444. 640 

Ni, R.-J., Lin, J.-T., Yan, Y.-Y., and Lin, W., 2018. Foreign and domestic contributions 641 

to springtime ozone over China. Atmospheric Chemistry and Physics. 18, 642 

11447-11469. 643 

Pye, H.O.T., Seinfeld, J.H., 2010. A global perspective on aerosol from low-volatility 644 

organic compounds. Atmospheric Chemistry and Physics. 10, 4377-4401. 645 

Rienecker, M.M., Suarez, M.J., Todling, R., Bacmeister, J., Takacs, L., Liu, H.-C., Gu, 646 

W.,Sienkiewicz, M., Koster, R.D., Gelaro, R., Stajner, I., Nielsen, E., 2008. The 647 

GEOS-5 Data Assimilation Systeme Documentation of Versions 5.0.1, 9.1.0, and 648 

5.2.0. NASA. 649 

Shen, Z.X., Cao, J.J., Zhang, L.M., Zhang, Q., Huang, R.J., Liu, S.X., Zhao, Z.Z., Zhu, 650 

C.S., Lei, Y.L., Xu, H.M., Zheng, C.L., 2016. Retrieving historical ambient PM2.5 651 

concentrations using existing visibility measurements in Xi'an, Northwest China. 652 

Atmospheric Environment. 126, 15-20. 653 

Sinclair, D., Countess, R.J., Hoopes, G.S., 1974. Effect of relative humidity on the 654 

size of atmospheric aerosol particles. Atmospheric Environment (1967) 8, 1111-1117. 655 

Song, Y., Tang, X., Fang, C., Zhang, Y., Hu, M., Zeng, L., Li, C., Michael, B., 2003. 656 

Relationship between the visibility degradation and particle pollution in Beijing. Acta 657 

Scientiae Circumstantiae. 23, 468-471. 658 

Sun, X., Wang, X., Li, H., Zhang,W., Yan, W., 2009. Atmospheric detection [M]. 659 

China Meteorological Press, 62. 660 



 

27 

 

Tan, H., Chen, H., Wu, D., Deng, X., Deng, T., Li, F., Zhao, X., Bi, X., 2010. The 661 

performance evaluation and data correction of the forward scattering visibility sensor. 662 

Journal of tropical meteorology 26(6), 687-693. 663 

van Donkelaar, A., Martin, R.V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., 664 

Villeneuve, P.J., 2010. Global estimates of ambient fine particulate matter 665 

concentrations from satellite-based aerosol optical depth: development and application. 666 

Environ Health Perspect. 118, 847-855. 667 

van Donkelaar, A., Martin, R.V., Spurr, R.J., Burnett, R.T., 2015. High-Resolution 668 

Satellite-Derived PM2.5 from Optimal Estimation and Geographically Weighted 669 

Regression over North America. Environ Sci Technol. 49, 10482-10491. 670 

Wang, J., Liu, X., 2006. The discussion on relationship between visibility and mass 671 

concentration of PM2.5 in Beijing. Acta Meteorol. Sin. (China) 64, 221-228. 672 

Wang, Y.H., Liu, Z.R., Zhang, J.K., Hu, B., Ji, D.S., Yu, Y.C., Wang, Y.S., 2015. 673 

Aerosol physicochemical properties and implications for visibility during an intense 674 

haze episode during winter in Beijing. Atmospheric Chemistry and Physics. 15, 675 

3205-3215. 676 

Wang, Y.H., Hu, B., Ji, D. S., Liu, Z. R., Tang, G. Q., Xin, J. Y., Zhang, H. X., Song, T., 677 

Wang, L. L., Gao, W. K., Wang, X. K., and Wang, Y. S., 2014. Ozone weekend effects 678 

in the Beijing–Tianjin–Hebei metropolitan area, China. Atmos. Chem. Phys. 679 

14,2419-2429. 680 

Wei, J., Huang, W., Li, Z., Xue, W., Peng, Y., Sun, L., Cribb, M., 2019. Estimating 681 

1-km-resolution PM2.5 concentrations across China using the space-time random 682 

forest approach. Remote Sensing of Environment 231, 111221. 683 

Wu, H., Tang, X., Wang, Z., Wu, L., Lu, M., Wei, L., Zhu, J., 2018. Probabilistic 684 

Automatic Outlier Detection for Surface Air Quality Measurements from the China 685 

National Environmental Monitoring Network. Advances in Atmospheric Sciences. 35, 686 



 

28 

 

1522-1532. 687 

Xu, P., Tan, X., Cai, J., Liu, J., 2005. Study on influence factors of urban aerosol on 688 

visibility & extinction coefficient. Environmental Pollution & Control 27(6), 410-413. 689 

Zeng, S., Wang, G., 1999. Observation and instrument of visibility. Quarterly Journal 690 

of Applied Meteorology 10(2), 6, 207-212. 691 

Zhao, P.S., Zhang, X.L., Xu, X.F., Zhao, X.J., 2011. Long-term visibility trends and 692 

characteristics in the region of Beijing, Tianjin, and Hebei, China. Atmos. Res. 101, 693 

711-718. 694 

Zhang L., Liu, L., Zhao, Y.H., Gong, S.L., Zhang, X.Y., D. K. Henze, S. L. Capps, 695 

Tzung-May Fu, Zhang, Q., Wang, Y.X., 2015. Source attribution of particulate matter 696 

pollution over North China with the adjoint method. Environ Res Lett. 10, 084011.  697 

Zhang, L., J. F. Kok, D. K. Henze, Q. Li, and C. Zhao, 2013. Improving simulations 698 

of fine dust surface concentrations over the western United States by optimizing the 699 

particle size distribution. Geophys. Res. Lett. 40, 3270–3275. 700 

Zhang L., Liu W., Lin J., Hou K., Zhang L., Huang B., Rhine W., Wang J., Wang Y., 701 

Jiao Y., Wang Z., Ni R. Liu M., Wang Y., 2019. Air pollution exposure and neonatal 702 

jaundice. Nature Communications, accepted. 703 

Zhang, Q., Jiang, X., Tong, D., Davis, S.J., Zhao, H., Geng, G., Feng, T., Zheng, B., Lu, 704 

Z., Streets, D.G., Ni, R., Brauer, M., van Donkelaar, A., Martin, R. V, Huo, H., Liu, Z., 705 

Pan, D., Kan, H., Yan, Y., Lin, J., He, K., Guan, D., 2017. Transboundary health 706 

impacts of transported global air pollution and international trade. Nature. 707 

543(7647),705–709. 708 

Zhang, Z., Xu, X., Qiao, L., Gong, D., Kim, S.J., Wang, Y., Mao, R., 2018. Numerical 709 

simulations of the effects of regional topography on haze pollution in Beijing article. 710 

Sci. Rep. 8:5504. 711 



 

29 

 

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, 712 

J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., Zhang, Q., 2018. Trends in China’s 713 

anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. 714 

Chem. Phys. Discuss. 1–27. 715 

Zheng, Y., Zhang, Q., Liu, Y., Geng, G., He, K., 2016. Estimating ground-level PM2.5 716 

concentrations over three megalopolises in China using satellite-derived aerosol 717 

optical depth measurements. Atmospheric Environment. 124, 232-242. 718 



 

Figure 1. Ground PM2.5 observation sites (filled circles) and meteorological stations 

(gray crosses) over the NCP. 

 

 

 

 

 

 

 

 

 

 



Figure 2. A flowchart for retrieval of gridded PM2.5 mass concentration data using 

visibility measurements and GEOS-Chem simulations. Data sources are shown in 

parentheses. 

 

 

 

 

 

 

 

 

 

 

 



  

Figure 3. Spatial distributions of (a) observed (ground PM2.5 observation sites), (b) 

Station-Converted (based on visibility measurement sites), (c) Station-Converted and 

sampled with observation times and locations (ground PM2.5 observation stations), (d) 

modeled (simulated by GEOS-Chem), and (e) Grid-Converted (visibility-converted 

for grid cells under Case 7, with a radius of 0.3°) PM2.5 concentrations averaged over 

January, April, July and October 2014. The black lines show provincial borders. 

 

 

 

 

 

 

 

 

 



Figure 4. Scatter plots of (a) modeled, (b) Station-Converted and (c) Grid-Converted 

(Case 7, with a radius of 0.3°) PM2.5 (y-axis) with respect to PM2.5 observations 

(x-axis). A data point in the figure represents the monthly mean values (red-January, 

yellow-April, purple-July, green-October) at a station. The dotted line depicts the 1:1 

relationship, and the solid line depicts the RMA regression line. Statistical analysis 

results are shown in each panel. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 5. Day-to-day variation of (a) modeled, (b) Station-Converted and (c) 

Grid-Converted (Case 7, with a radius of 0.3°) PM2.5 with respect to PM2.5 

observations in January, April, July and October 2014. For each day, PM2.5 

concentrations are averaged over all stations in the NCP. Statistical analysis results are 

presented in each panel. Modeled, Station-Converted and Grid-Converted data are 

sampled based on the observations. 

 

 

 

 

 

 

 



 

Figure 6. (a) Spatial correlation, (b) temporal correlation, (c) spatial bias (units: µg/m3) 

and (d) linear regression slope (for spatial data) of Grid-Converted PM2.5 

concentrations with respect to PM2.5 measurements in each station-to-grid conversion 

case, as a function of the distance (i.e., radius ranging from 0.1° to 2.0°) from the 

visibility station to the grid cell center. 



Highlights 

• We integrate visibility data and GEOS-Chem simulations to estimate PM2.5 

concentrations in 2014 over North China. 

• Visibility converted PM2.5 are spatiotemporally consistent with PM2.5 

measurements. 

• Our method provides a novel, plausible way to retrieve long-term variation of 

PM2.5. 
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