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ABSTRACT
Ultrasound is employed in, e.g., non-destructive testing and environmental sensing. Unfortunately, conventional single-element ultra-
sound probes have a limited acoustic aperture. To overcome this limitation, we employ a modern method to increase the field-of-
view of a commercial transducer and to test the approach by localizing a target. In practice, we merge the transducer with a chaotic
cavity to increase the effective aperture of the transducer. In conventional pulse-echo ultrasound signal analysis, location estimation
is based on determining the time-of-flight with known propagation speed in the medium. In the present case, the dispersing field
induces complexity to this inverse problem, also in 2D. To tackle this issue, we use a convolutional neural network-based machine
learning approach to study the feasibility of employing one single chaotic cavity transducer to localize an object in 2D. We show
that we indeed can localize an inclusion inside a water-filled cylinder. The localization accuracy is one diameter of the inclusion. The
area that we can infer increases by 49% in comparison to using the same transducer without applying the proposed chaotic cavity
method.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0068803

I. INTRODUCTION

Conventional ultrasound probes, used in many applications,
such as in non-destructive testing (NDT) and environment sens-
ing applications, have a limited acoustic aperture. With traditional
ultrasound probes, one needs to scan across the area of interest
or to use a phased array to obtain a wide field-of-view (FOV).
Localizing targets inside a volume is important in modern appli-
cations such as self-driving vehicles1 and other location aware
systems.2

In NDT, it is preferable to use less complex systems. The
available computational power allows translating complexity from
hardware to software. Methods to decrease the complexity of
the ultrasound phased array hardware exist.3–5 These methods
include time-reversal6 (TR) and compressive sensing7 (CS). The first

approach combines acoustic TR and a transducer or a small array of
piezoceramics with a chaotic cavity (CC).3,4,8–12 This combination
can focus ultrasound into a small area/volume in 2D and 3D.3,10

A CC can be a block of material with a specific geometric shape
(e.g., chaotic billiard) or a structure with complex internal structure
(resembling a metamaterial), which ensures ray-chaotic dynamics.
This kind of dynamic behavior mixes propagation ray angles, which
ensures unique reverberations inside the CC. Sending a pressure
wave through a CC results in dissimilarities in the signals even with
small changes in initial conditions. In this paper, the fixed orienta-
tion and static positioning of the CC and transducer combination
leaves only one possible cause for the changes in the signals aris-
ing from the pressure wave propagation in the media. This cause
is, e.g., reflection from an object. The downside of this approach
is that reverberating media induce complexity into the ultrasound
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FIG. 1. Frames from the FEM simulations show the pressure wave transmitted through the CC, after which it probes almost the entire water-filled container (not containing
an inclusion) and eventually reflects back from the opposite wall back toward the CC. (a) A three-cycle Gaussian-windowed pressure wave was created on the surface of
the CC wall, mimicking the one used in the measurements. (b) The wavefront of the pressure wave propagates through the CC and container wall and to the water domain,
simultaneously expanding to cover nearly the entire area of the container. (c) If an inclusion is placed in the cylinder, the wavefront reflects back from it toward the CC, and
eventually, a signal is captured from the same location as the pressure wave was generated.

signals, which affects signal analysis and makes signal interpretation
by conventional means harder.

The Sinai billiard is a type of chaotic billiard, in which a circle
is removed from the center of a square. This kind of reverberating
cavity reduces the number of driven antennas in an ultra-wideband
(UWB) imaging system with microwaves.13 In our current study,
we explored, using finite element method (FEM) simulations and
experiments, whether a section of this kind of CC coupled to a
transducer is a feasible sensor for obstacle detection in the acoustic
domain. We simulated a pressure wave propagation in two sensing
configurations (SC I and II), and the geometric details are shown
in Figs. 3(a) and 3(b). In SC I, a pressure wave is sent through an
acrylic block of the shape of a quarter Sinai billiard, from which
the wave leaks into a water-filled cylinder. A few frames captured
at different times from the simulations are displayed in Fig. 1. They
show the dispersing property of this CC with the applied initial
conditions. A three-cycle Gaussian enveloped pressure wave is emit-
ted from the wall of the CC (facing the convex surface of the CC),
and the propagating wave hits the dispersing surface and creates
a wide range of propagating ray angles (creating reverberations in
the CC). The beam exiting the CC into the water-filled cylinder is
widened and spans almost the entire area of the cylinder. In the
simulation, an inclusion was placed inside the water-filled container
(see Fig. 1), and by carrying out a pulse-echo measurement, the
echoes propagating back to the transmitting location were quali-
tatively analyzed. This confirmed that the echo from the inclusion
propagates back to the transmitting location (the pressure wave
transmitted propagates through the CC, leaks into the water con-
tainer, reflects back from the inclusion, and propagates back to
the transmitter location via a reflection from the convex surface of
the CC).

The chaotic billiard both at transmission and at reception
makes conventional modeling of the reflecting waves impossible.
Instead, we are interested in flexible data-driven models, in partic-
ular deep neural networks, trained on acoustic measurements for
the specific task of localizing the inclusion. By directly learning to

perform the task of interest, instead of learning to model the com-
plete ultrasonic field, we can bypass the need for direct modeling
of the chaotic element and hence reduce much of the amount of
training data required.

Deep learning methods are good at learning internal structures
from high dimensionality data and have therefore led to improve-
ments in, e.g., speech recognition and image processing.14 Espe-
cially, convolutional neural networks (CNNs) have been successfully
applied to data with temporal or spatial structure, such as images,15

audio,16 and wireless signals.17 CNNs extract progressively higher-
level features from the raw measurement signal with convolutional
filters and subsequent nonlinear activations, and they are trained in
an end-to-end manner based on training measurements with known
ground truths. These CNNs are common in image processing where
spatial (2D or 3D) convolutions are used but are equally appropriate
for temporal measurement signals represented by real vectors when
1D convolutions are employed.18

Here, in an NDT manner, we localize an internal structure from
the outside of an enclosed container by means of a CC transducer.
This study researches the ability of the CC to extend the FOV of a
commercial probe and uses a CNN-based machine learning algo-
rithm for localization. We built an experimental setup based on
the proposed method and carried out measurements for training
the CNN and for evaluating the localization. We conducted FEM
simulations to validate the feasibility of the proposed method.

II. MATERIALS AND METHODS
A. Measurements

The experimental setup contains an acrylic CC glued with
epoxy (Bison® Epoxy 5 Minutes Blister, 6305448) to the outer wall
of an acrylic, cylindrical container (inner diameter Ø = 290 mm, a
wall thickness of 5 mm, and a height of 298 mm). The gluing of the
CC to the acrylic container was carried out carefully to assure verti-
cal alignment and to avoid air bubbles between the structures. The
bottom of the CC was 154 mm above the container floor. An acrylic

AIP Advances 11, 115104 (2021); doi: 10.1063/5.0068803 11, 115104-2

© Author(s) 2021

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

pipe (outer diameter Ø = 25 mm and a wall thickness of 2 mm)
was used to simulate an internal structure. The setup is displayed in
Fig. 2.

The cylinder was filled with tap water, and the measure-
ments were conducted at room temperature (T = 21 ○C). Broadband
ultrasonic pulses were generated with a pulser (Olympus 5058PR)
and a commercial flat focused transducer (Karl Deutsch S24 HB
0.3–1.3 MHz). The mean frequency of the excitation signal was fmean
= 800 kHz (a bandwidth of 400 kHz). The echoes were recorded
with the same transducer using an integral pre-amplifier (40 dB)
of the pulser and a Picoscope 3403D as an oscilloscope. The signal
transmission was triggered by a microcontroller (Arduino® Uno).
The motorized arm moving the inclusion (acrylic pipe) was built
based on OpenBuilds® ACRO system 55 with an additional cus-
tom frame to put the XY-stage at a suitable height above the con-
tainer. The motorized arm was controlled via serial communication,
and the measurement was automated together with signal acquisi-
tion in MATLAB® (R2018a). The precision of the motorized arm
was 0.3 mm.19 To find the center point of the acrylic container,
two points at the inner circumference of the container were deter-
mined in the translation stage coordinates (with 0.5 mm precision),
and by calculating the intersection point of the two circles (with
the same radius as the container), the center of the container was
determined. The uncertainty of positioning of the motorized arm
was 1 mm.

In both cases, regardless of the CC being applied or not, the
same randomly generated (within the limits of a square that fits
inside the container) location pattern of the inclusion inside the
cylinder was used. From the pulse-echo signals, the feature of a sig-
nal that corresponds to the first arriving echo from the inclusion was
identified. In the latter case, the transducer was attached to the con-
tainer wall at the same height as the CC, but on the opposing side of
the CC, the location pattern (of the acrylic pipe) was rotated around
X, Y with respect to the transmit position, although the location
pattern was the same in the translation stage coordinates. In total,
200 signals were captured at each of the 150 locations of the acrylic

pipe inside the cylinder. The area of detection plots was produced in
both cases, where the envelope of the signals [log 10(envelope)2] was
integrated over chosen time windows and normalized. As a result,
the integrational value is proportional to the energy reflected back
from the inclusion.

B. Finite element method
FEM simulations were used to display the acoustic wavefront

propagation in and out of a water-filled container with and with-
out the CC transducer. The simulations were performed using
COMSOL Multiphysics®.20 COMSOL’s Pressure Acoustics and
Solid Mechanics modules were used.

The general shape of the simulation geometry is displayed in
Fig. 3(a), where the configuration for the chaotic cavity attached
to the water-filled cylinder without any inclusion is presented. The
inclusion was considered in a set of simulations by removing a cir-
cular region from the water domain and setting the boundary condi-
tion of these regions to be sonically hard boundaries. In addition, a
set of simulations with no CC was run. In these simulations, the CC
was substituted by an acrylic block with identical dimensions used in
the CC block, although without the CC element (shape of a quarter
Sinai billiard), as shown in Fig. 3(b).

The simulations were carried out in 2D to approximate the
measured system. In the 2D approximation, the wave propagation
differs due to the lack of geometric attenuation compared to the
experimental measurements. This was most prominent in the case
of the chaotic cavity where a part of the wave front was reflecting
inside the CC for a much longer time than was expected. To reduce
the coda generated by these reflections, parts of the cavity edges
were modeled as low-reflecting boundaries [marked with blue lines
in Fig. 3(a)]. The transducer was modeled as a boundary displace-
ment in the simulation where a Gaussian modulated sine wave with
fc = 700 kHz central frequency [Fig. 3(a)] was used because the most
prominent peak in the frequency of the experimental signal was close
to 700 kHz rather than being close to the central frequency (800 kHz)
of the transducer.

FIG. 2. (a) Setup with a robotic arm
to translate the plastic pipe inside the
cylinder. (b) CC glued with epoxy to the
outer wall of the cylinder. (c) Transducer
attachment to the CC.
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FIG. 3. (a) Simulation geometry with the chaotic cavity (SC I). Inset shows the transmitted signal used in the simulations. The signal is a 700 kHz sine wave modulated by
a Gaussian. (b) Acrylic block with identical dimensions to the CC but without the CC element (SC II). The red boundary is set as a boundary displacement to model the
transducer. Blue boundaries are set as low-reflecting boundaries. The material of the gray area is acrylic while the blue inside the cylinder is water.

The mesh size in the simulations was calculated from a max-
imum resolved frequency, which was set to fmax = 1.5 fc. The mesh
size in the geometry was set to dx = c/(5 fmax) while using a
quadratic Lagrangian discretization for the mesh. The solver was
chosen to be generalized alpha in order to set a fixed time step-
ping scheme. The time step was set to dt = 0.1dx/c.21 The material
parameters used in the simulations were obtained from COMSOL’s
material library for water, c = 1481 m/s and ρ = 998 kg/m3. For
acrylic, Poisson’s ratio was set to 0.37,22 while the density was mea-
sured from the volume and mass of a well-defined acrylic piece,
ρ = 1010 kg/m3. Young’s modulus, E = 4.1 GPa, was calculated from
the speed of sound, density, and Poisson’s ratio. The longitudinal
speed of sound, c = 2680 m/s, was determined from a pulse-echo
measurement of the acrylic piece.

C. Supervised machine learning
1. Convolutional neural network

Our CNN-based machine learning algorithm locates the inclu-
sion based on the captured ultrasound signals. The CNN consists of
two 1D convolution layers with max pooling as well as one fully con-
nected layer followed by a dropout and an output layer, as shown in
Fig. 4. After each layer, we have an activation function that performs
a nonlinear transformation of the outputs, and before each layer,
we use batch normalization. The loss function to be minimized is
the mean squared error between the predicted location and the true
location.

The CNN performance depends on multiple hyperparameters
that determine the convolutional filter sizes and strides, the nonlin-
ear activation functions, and the dropout parameter. To determine
these values that define the network architecture, we used hyperas23

with the Tree of Parzen Estimator (TPE) algorithm and keras24 to
find the architecture that achieves the lowest error, separately for the
two sensing configurations. To determine a single network struc-
ture, we used 110 randomly selected locations for training and 40
for evaluating, running the hyperparameter optimization for 100

different networks, each trained for 10 epochs. For both cases, sig-
nals obtained with and without the CC, we chose the network with
the best performance (achieves the lowest error) on the test set. The
experimented hyperparameter values and the chosen structures are

FIG. 4. Structure of convolutional neural network.
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TABLE I. List of experimented hyperparameter values and chosen structures for the CNN.

Chaotic cavity Without chaotic cavity Allowed values for hyperparameter optimization

1D convolution

Filters 24 24
Kernel size 1000 600 300, 400, 600, 1000
Strides 20 20 1, 3, 5, 20, 50, 60
Activation tanh tanh tanh, softmax

Max pooling

Pooling size 50 200 10, 25, 50, 200, 300
Strides 30 30 1, 3, 5, 10, 30, 50, 60

1D convolution

Filters 24 24
Kernel size 70 70 5, 10, 20, 30, 50, 70
Strides 1 3 1, 2, 3, 5
Activation Softmax Softmax tanh, softmax

Max pooling

Pooling size 1 2 1, 2
Strides 2 1 1, 2

Dense layer units 128 128
Dropout 0.252 0.098
Activation relu relu relu, tanh

presented in Table I. Note that many different networks performed
on a similar level.

After choosing the network structure, we used a cross-
validation procedure to evaluate the localization accuracy. We par-
titioned the 110 data locations that were used as a training set for
hyperparameter selection into subsets containing 10 locations each.
One subset was kept as evaluation data, while other 10 subsets and
the previously used test set of 40 points were used to train the CNN.
We repeated this 11 times, using each subset as evaluation data
exactly once, and ran the algorithm for 50 training epochs. Impor-
tantly, the locations used as the test set for hyperparameter optimiza-
tion were not used as evaluation data for the final model to avoid
re-using the same locations as test instances.

One signal in our dataset is an average of 60 measured signals
(out of 200) so that we have 141 slightly different signals for each
target location. For each signal, and from each point, we deduct
the average value of 100 neighboring points (moving average). We
use zero padding for the convolutional layers. Training was car-
ried out using the Adam optimizer25 with a batch size of 100, and
implementations were performed using Tensorflow.26

2. Gaussian process
The above-mentioned process provides an estimate of the local-

ization accuracy for each of the 110 training locations. To obtain
estimates for the localization accuracy for the whole area of inter-
est, we fitted a Gaussian Process (GP) regressor27 to visualize the
distances between the true location and the predicted location with

the trained CNN. GPs are one way of modeling spatial phenomena
and providing a way to consider the uncertainty of the predictions.
A Gaussian process f ∼ GP(m(x), k(x, x′)) is specified by a mean
function m(x) and a symmetric positive-definite kernel function
k(x, x′). The kernel function defines the prior covariance between
any two function values. With a GP, one can estimate the uncer-
tainty of the predictions of the CNN model outside the measured
locations as well based on the assumption that the localization accu-
racy varies smoothly. Likewise, the operation was also carried out
to produce Fig. 7, where the integral of the signal’s envelope within
the described time window at each location of the inclusion was the
input. We fitted the GP using GPy,28 with a zero mean function and
a squared exponential kernel, also known as a radial basis function
kernel,

k(x, x′) = σ2 exp(−
∥x − x′∥2

2l2 ). (1)

Here, σ and l are the variance and lengthscale of the kernel, respec-
tively, and we learn these to maximize the marginal likelihood of the
data using the L-BFGS-B optimizer in GPy.

III. RESULTS
Three examples of measured pulse-echo signals (averaged over

200 signals from each location) obtained through the CC with dif-
ferent locations of the inclusion are plotted in Fig. 5 (left). They
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FIG. 5. Envelope of pulse-echo sig-
nal obtained through the chaotic cav-
ity (left) for three different positions of
the inclusion shows distinguishable fea-
tures between the different positions.
The figure (right) shows measured sig-
nals at similar locations without the CC
and displays the most prominent echo
peak when the inclusion is at the center.
No detectable features are present when
the inclusion is off the acoustic axis of the
transducer. Differences in echo ampli-
tudes are seen in the secondary wall
reflection (waves propagated two times
forth and back through the container) if
the inclusion is located on the acoustic
axis of the CC transducer or the normal
transducer.

display the ultrasonic signal, which differs as a function of the loca-
tion of the internal structure. Since the ultrasound beam diverges
when it exits the CC, the location information from the inclu-
sion is no more valid when obtained by the conventional time-of-
flight analysis. At the beginning (100 < t < 200 μs), complex echoes
from the chaotic cavity-container wall–water interfaces arrive, com-
prising several reverberations inside the CC. Then, in the time
range 200 < t < 450 μs, detectable echoes from the inclusion may
arrive. An echo of the reflection from the opposite wall (oppo-
site to the CC) arrives at 450 < t < 550 μs, featuring a relatively

high amplitude. Secondary reflections from the inclusion are visi-
ble at 550 < t < 850 μs, and secondary reflections from the opposite
wall are seen at the end of the signal (850 < t < 950 μs). For com-
parison, an identical transducer, without the CC, was placed on the
container wall opposite to the CC, and an identical set of measure-
ment signals were obtained [see Fig. 5 (right)]. It showed a high
amplitude echo from the inclusion, when it was placed in front of the
beam as expected (position 93). No interpretable echoes are noticed
when the inclusion is moved away from the acoustic axis (positions 5
and 44).

FIG. 6. Envelope of signals received from 150 locations of the inclusion inside the water container. Signals were obtained with the pulse-echo method through the CC.
Echoes from the inclusion are emphasized by ellipses that guide the eye. The signals in this figure are sorted in such a way that the distance r (see the top right corner)
between the location of the inclusion and the CC (middle) decreases both in the left side (signals top to center) and right side (signals center to bottom).
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A. Experiments
To compare an area of detection, with and without the CC,

ultrasound signals were acquired at the generated location pattern
of the inclusion. An envelope of the signals with the CC is plot-
ted in a waterfall plot in Fig. 6. These signals are sorted for the
left (−x-axis) and right (+x-axis) half of the container, and accord-
ing to the increased distance r depicted in the inset of the figure.
The time window (150 < t < 460 μs) corresponds to the time range
when the first scattered echo from the inclusion arrives back to the
transducer. The envelope of the averaged signal [log10(envelope)2]
was first integrated across the corresponding time window and then
min–max normalized. The integration result is proportional to the
energy of the echo captured with the pulse-echo method. Then, an
interpolated surface was fitted to these integral values at the locations
with the GP method as prescribed in the section titled “Materials and
methods.” The result is shown in Fig. 7(a), which depicts a higher
signal (red area) in front of the CC than the signals obtained closer
to the edges of measured area (blue). For comparison, the same pro-
cess was conducted without the CC [see Fig. 7(b)]. In that case, the
transducer was attached to the outer container wall. A time window
(70 < t < 380 μs) of identical length to the latter one was chosen,
except that it lacks a time delay needed for sound to propagate
through the CC. This demonstrates the narrow beam produced by
the transducer, which is expected for the straight beam probe.

B. Supervised machine learning
The CNN localization accuracy was analyzed using a cross-

validation procedure. The location estimates of the model are shown

FIG. 8. Each blue line corresponds to a validation test of the CNN with a test signal
(141 test signals per location of the inclusion). The blue lines point toward the CNN
location estimate at three example locations of the inclusion (marked with a circle
and center point). The bottom location agrees closely with the ground truth. The
top right location indicates the difficulty of our trained CNN to predict the location
for areas where low SNR signals are obtained [see Fig. 7(a)].

FIG. 7. (a) Dispersed beam through the chaotic cavity increases the FOV inside the water container. (b) The FOV of the ultrasound transducer attached straight to the
outside wall of the cylindrical water container. The blue contour line represents 0.4 and the yellow contour line represents 0.7 of the maximum energy reflected back in both
cases. The blue dots represent the 150 locations of the inclusion at the pulse-echo measurements.
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FIG. 9. Mean of the GP estimate as a function of distance between the true location and predicted location (a) with CC and (b) without CC. The black contour line
represents 30 mm distance, and orange contour line, 50 mm. These images show the advantage of using the CC transducer to locate the internal structure with only one
transducer. As the diameter of the inclusion was 25 mm, the black contour lines confine an area where the error in location detection is similar to the diameter of the
inclusion.

(blue lines pointing from the ground truth to the estimated location)
for three example locations that were not used to train the model in
Fig. 8. The localization precision is affected by the location of the
inclusion [see Fig. 7(a)].

We fit a GP regressor29 to visualize the average distance
between true locations and the predicted locations with the trained
CNN. We plotted the mean of the GP fit in both cases with the CC
in Fig. 9(a) and without the CC in Fig. 9(b). These plots demon-
strate an improvement in the target location close to the edges of
the 324 cm2 area (area of a square determined between minimum
and maximum measurement points in x and y directions) when we
used the CC transducer: the area inside the 30 mm contour line
(black) in the plotted area (x ∈ [−100, 80] and y ∈ [−90, 90]) is
49% larger than that with solely the standard transducer (186 vs
125 cm2).

The mean error of the location output was 29 ± 26 mm
when using the CC and 44 ± 35 mm without it. The cross-
validation results are shown in Table II. As a reference, the
true location is measured with 2 mm accuracy, and the inter-
nal structure has a diameter of 25 mm. Consequently, the uncer-
tainty in location estimation is on the order of the size of the
inclusion.

TABLE II. Summary of cross-validation error mean and std of the localization results.

Error mean (mm) Std (mm)

With CC 29 26
Without CC 44 35

IV. DISCUSSION
Compared to employing a standard transducer, by using a CC

transducer, we predicted locations of inclusions accurately on a
larger area (186 vs 125 cm2). The increase in the inferenced area
is mainly due to lateral widening of the ultrasound field. In both
cases, with and without the CC, the machine learning based loca-
tion estimates suffered larger uncertainty at locations further away
from the acoustic axis. This is due to the lower signal amplitude
in these locations (see Fig. 5). We trained and validated the CNN
by averaging 60 signals and ended up having 141 slightly different
training signals at each location of the inclusion (the total num-
ber of raw signals per location was 200). We assume that averaging
each raw signal more and other possible improvements to the SNR
could help the CNN extract higher-level features that would improve
the location information. Getting noiseless data from experiments
is unlikely; thus, we also considered teaching the CNN by signals
obtained with the FEM. This approach was unfortunately infeasi-
ble for a real-life scenario due to an extensive computation time
(one day per signal with the available computation resources). The
possible influence arising from the changing effective area of the
sensor was initially addressed by FEM simulations in the two sens-
ing configurations (SC I and II). The results with the CC showed
agreement in the pulse-echo signals with the three locations of the
inclusion in comparison to the experimentally obtained signals. In
addition, in the simulations with SC II, the signal amplitude from
the inclusion diminished below the detection limit (signal ampli-
tudes from the inclusions aside from the central axis of the generated
beam were roughly −40 dB lower than those in the central loca-
tion). Due to this, we assumed that even without the delay block
(not a CC type), the signals would not be detectable and simplified
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the experimental design by not having a separate acrylic container
nor a delay line without the CC element for SC II (see Sec. II B).
The simulation results also suggest that the increased area of target
localization is not related to the effective area of the transducer. On
the contrary, they indicate that the improved results arise from the
dispersing properties of the proposed CC method as expected [see
Fig. 1(c)].

The current study concerned a simple setup where only one
inclusion is inserted into the sensor’s detection range. The case of
several inclusions is outside the scope of this study. In more realis-
tic scenarios, several reflecting boundaries, e.g., many different size
inclusions, need to be studied. The studied inclusion is larger than
the resolution of the ultrasound pulse (wavelength in water 1480
m/s/700 kHz = 2.1 mm); hence, its size could be decreased and tested
to determine the minimum resolvable features that could be attained
with this type of CC transducer. This information could then be
brought into the CNN’s training to extract size information about
the inclusion. In conjunction with our previous study,18 other kinds
of feature extraction with the CNNs could be plausible, e.g., fouling
detection from the obtained signals.

By definition, the action of CCs depends on the initial condi-
tions, where a small perturbation (e.g., a different placement on the
cylinder wall) may change the characteristics of the CC sensor. In
this study, we reduced this effect by gluing the CC block onto the
surface of the container. This approach prevented us from studying
how the CC works if the attachment of the CC sensor is changed and,
moreover, how such uncertainties affect the performance of the AI.
The ultrasound beam exiting the current CC was axially more sensi-
tive on one side. This feature can be altered by modifying the shape
of the CC and allows us to design asymmetric sensors that are fea-
sible in applications where attention needs to be focused to specific
areas.

Our machine learning model was a relatively shallow CNN
since the more flexible network structures were ruled out by the
small amount of training data, resulting in merely 150 distinct
locations. With a richer training collection, deeper CNNs as well
as recurrent neural networks would be applicable. These could be
developed with a protocol that combines network structure specifi-
cation with automatic hyperparameter optimization for fine-tuning.
Having access to a larger data collection would most likely extend
the area of sufficient localization accuracy further into the peripheral
areas of low signal amplitude, but extremely low signal amplitudes
would still remain challenging.

An important notion for machine learning approaches is the
generalizability of the model. In this work, we carefully evaluated the
accuracy of the localizing performance of the CNN with a dataset
that was left out from the model training, providing a within-data
estimate for the generalization ability. Since the experiment was
conducted on one specific structure (CC attached to a water-filled
cylinder), it provides no information on how the results generalize
to, e.g., different structures or chaotic elements. Questions such as
this can only be addressed with experimental setups that cover mul-
tiple structures. Our expectation is that the proposed model archi-
tecture and training procedure would generalize for new structures
and other minor modifications of the measurement setup with sim-
ilar qualitative performance, but the neural network would need
to be re-trained (including hyperparameter search) for each one
specifically. Training a network to perform localization inside

arbitrary future structures with no re-training is unrealistic, but
solutions that require less data for new structures could be developed
based on transfer learning and domain adaptation.28

The FEM simulations were performed with a geometry iden-
tical to that used in the measurements although limited to 2D. By
simplifying the model to 2D, the computation time is reduced signif-
icantly at the cost of losing wave propagation properties of the actual
3D case, e.g., geometric attenuation. One other difference between
the FEM simulations and the real case is that the inclusion is mod-
eled as a perfect reflector instead of as a water-filled structure (acrylic
pipe) where the ultrasound can propagate through. This transmis-
sion property is realized as a feature in the differences between the
signals obtained with measurement or FEM simulations. In mea-
sured signals, the echos arising from the inclusion (features empha-
sized in Fig. 5) have two high peaks adjacent in time, whereas in the
FEM simulations, only the first peak is observed (as the inclusion was
modeled as a circle with an acoustically hard boundary). Despite that
difference, we observed agreement between the signals obtained with
both measurements and FEM simulations. To the authors’ knowl-
edge, this is the first paper that introduces this kind of CC transducer
coupled with AI-based location detection for potential use in NDT
and environment sensing applications. This method nearly doubles
the FOV of a commercial transducer in the lateral dimension. The
method reduces the number of required probes, thereby reducing
costs and complexity of operation.

V. CONCLUSIONS
First, the concept of applying a CC to a transducer to increase

the FOV of an ultrasound probe was studied in FEM simula-
tions. Based on those findings, we built an experimental setup to
test the CC transducer as an acoustic location detector for, e.g.,
NDT or environment sensing applications. The inverse problem
arising from the dispersing ultrasound field is tackled by train-
ing a CNN-based machine learning algorithm that predicts the
object location. Labeled data for teaching the AI algorithm were
acquired, and the models were trained and evaluated using a cross-
validation setup. The trained CNN showed a precision that was
on the order of the defect’s diameter. The combination of the
CC transducer and machine learning demonstrates a capability
for object localization with a 49% increase in the detection area
inside an enclosed container in comparison to using the transducer
alone.
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