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• Background Laser scanning technology has opened new horizons for the research of forest dynamics, because 
it provides a largely automated and non-destructive method to rapidly capture the structure of individual trees and 
entire forest stands at multiple spatial scales. The structural data themselves or in combination with additional 
remotely sensed data also provide information on the local physiological state of structures within trees. The cap-
acity of new methods is facilitated by the ongoing development of automated processing tools that are designed to 
capture information from the point cloud data provided by the remote measurements.
• Scope Terrestrial laser scanning (TLS), performed from the ground or from unmanned aerial vehicles, in par-
ticular, has potential to become a unifying measurement standard for forest research questions, because the equip-
ment is flexible to use in the field and has the capacity to capture branch-level structural information at the forestplot 
or even forest scale. This issue of Annals of Botany includes selected papers that exemplify the current and poten-
tial uses of TLS, such as for examination of crown interactions between trees, growth dynamics of mixed stands, 
non-destructive characterization of urban trees, and enhancement of ecological and evolutionary models. The papers 
also present current challenges in the applicability of TLS methods and report recent developments in methods 
facilitating the use of TLS data for research purposes, including automatic processing chains and quantifying branch 
and above-ground biomass. In this article, we provide an overview of the current and anticipated future capacity of 
TLS and related methods in solving questions that utilize measurements and models of forests.
• Conclusions Due to its measurement speed, TLS provides a method to effortlessly capture large amounts of 
detailed structural forest information, and consequent proxy data for tree and forest processes, at a far wider spa-
tial scale than is feasible with manual measurements. Issues with measurement precision and occlusion of laser 
beams before they reach their target structures continue to reduce the accuracy of TLS data, but the limitations 
are counterweighted by the measurement speed that enables large sample sizes. The currently high time-cost of 
analysing TLS data, in turn, is likely to decrease through progress in automated processing methods. The de-
velopments point towards TLS becoming a new and widely accessible standard tool in forest measurement and 
modelling.

Key words: Forest mensuration, terrestrial laser scanning, data processing, comprehensive tree reconstruction, 
quantitative structure modelling, forest process research.

INTRODUCTION

Forests have been measured with various types of instruments 
for centuries. Historically the main motivation has been the es-
timation of yield in upcoming harvests. With time, the meas-
urement instruments and motivations have evolved. Forest 
mensuration is no longer just about maximizing profits, but 
also about detecting and maintaining the well-being of the 
forest – and by proxy the well-being of nature and the planet 
(McDowell et al., 2020).

In retrospect, it is easy to pinpoint the massive leaps that 
forest mensuration has taken in the recent decades. Diameter 
at breast height (DBH), stem girth, tree height, crown height 
and spread form the standard set of measurements that have 
been collected from a single tree with basic instruments for 
a long time. In addition, an expert can determine the tree 

species and health status by visual inspection, together with 
rough stem position within the forest plot. Collecting this set 
of about ten parameters takes ideally from 5 to 20 min per tree. 
Collecting information regarding the branching structure of an 
individual tree in a non-destructive manner has also been pos-
sible but would take weeks even with a digitizer and a caliper 
(Sinoquet et al., 1997). Full structural branch-level scanning 
of a 1-ha forest plot, in turn, has been estimated to roughly 
take a team of three people between 3 and 8 d using a single 
scanner (Wilkes et al., 2017). Thus, it is safe to say that ap-
plying terrestrial laser scanning (TLS) to forests was certainly 
a game changer. The surface of a tree can be sampled over a 
million times within minutes to capture its full 3D structure 
(Liang et al., 2016), even at sub-centimetre-level spatial reso-
lution (Campos et al., 2020). Furthermore, the scans contain 
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information about the forest bed and surrounding trees and the 
understorey as well (Calders et al., 2020).

Another leap has happened more slowly, in small incre-
ments in the field of data processing, enabling a high level of 
automation for TLS point cloud computations. One technique 
or approach that has gained considerable popularity and seen 
development in the last decade is quantitative structure mod-
elling (QSM), which was first introduced by Raumonen et al. 
(2013) to describe the result of a tree structure reconstruction 
procedure from TLS data. Similar algorithms have since been 
published (Hackenberg et al., 2015; Du et al., 2019; Fan et al., 
2020). What they have in common and what sets them apart 
from previous approaches is the comprehensive nature of the 
resulting models. Rather than measuring a specific tree prop-
erty, the aim is to produce a complete model of the tree surface, 
volume and the topological branching structure, which in turn 
can be used to derive a vast quantity of physiological proxies 
and geometric properties.

Figure 1 summarizes the typical workflow of TLS measure-
ments combined with QSM reconstruction, which starts from 
the scanning of a forest plot and pass through the identification 
of tree-level point clouds, and construction of individual trees, 
to the derivation of structural attributes for individual trees (see 
also fig. 6 by O’Sullivan et al., 2021 in this issue). In essence, 
multiple scanning positions are used to create point clouds that 
sample the surfaces of all objects in the study area. This mas-
sive point cloud then has to be segmented into individual trees 
before QSM reconstruction can happen. The resulting compre-
hensive structure models can be used to derive numerous struc-
tural attributes for the trees as individuals, but also for the study 
area as a whole.

Predicting the future of the TLS research field is hard but 
perhaps not impossible, given recent trends. The combin-
ation of high-detail laser scanning and comprehensive tree 
reconstruction has obvious benefits compared to manual 
measurements in terms of measurement speed and struc-
tural detail of the collected data. The characteristics of the 
measuring instruments might change as mobile (MLS) and 
unmanned, airborne laser scanning (UAV-LS) technologies 
are explored (Beland et  al., 2019), but what seems certain 
is that going back from TLS to manual measurements alone 

would not make any sense when considering tree structure. 
Openly available stand structure scanned by TLS may well 
become a similar but far more informative standard of forest 
characterization as are the conventional reports of manually 
measured tree density, height and stem diameter. The benefit 
for both forest inventories and forest research is that there 
will no longer be a limited set of individual measurements 
of individual sample trees, but rather a comprehensive 3D 
model – or a time series of 3D models – storing the develop-
ment of all trees within an entire forest stand and providing 
data to access countless tree and stand properties applicable 
to many research questions (Campos et al., 2020).

Here, we will briefly review and discuss recent develop-
ments that point towards laser scanning, and the combination 
of TLS and QSM in particular, becoming a new versatile 
standard in measuring and modelling multiple features of forest 
ecosystems. First, we will give a brief overlook of the poten-
tial benefits of laser scanning and QSM in the fields of forest 
mensuration and research of forest structural and functional 
processes. We then give a brief summary of how the growth 
in spatial measurements has driven the increase in the pos-
sible detail of tree models and allowed forest reconstruction. 
Predictions regarding the future standard of forest monitoring 
are thenpresented. Optical sensing technologies and forest re-
construction approaches have certain limitations and some 
challenges still need to be addressed before comprehensive re-
construction can become a standard, and these are discussed. 
The role of data analytics in solving some of these challenges is 
then discussed, followed by conclusions.

Other articles in this issue elucidate multiple sides of cur-
rent progress in the use and development of TLS and related 
methods for 3D forest dynamics. They cover TLS sampling 
strategies (Boucher et  al., 2021), automatic tree segmenta-
tion from MLS data (Bienert et al., 2021), branch (Hu et al., 
2021) and above-ground (Demol et  al., 2021; Kükenbrink 
et  al., 2021) biomass estimation, TLS data processing 
(Martin-Ducup et  al., 2021), effects of species mixing on 
stand productivity (Pretzsch and Schütze, 2021), tree crown 
interactions (van der Zee et  al., 2021), and using TLS for 
developing models to investigate ecological and evolutionary 
processes (O’Sullivan et al., 2021).
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Fig. 1. The process of deriving structural tree attributes from a forest plot using terrestrial laser scanning (TLS). Individual scans are co-registered to create a 
single forest-plot-level point cloud, which is in turn partitioned through tree extraction. The resulting tree-level point clouds are reconstructed as quantitative struc-
ture models (QSMs) and can be used to compute countless structural attributes, such as diameters, branching topology and angles, or partial and total volumes.
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POTENTIAL BENEFITS OF LASER SCANNING IN 
FOREST PROCESS RESEARCH

Alternative laser scanning technologies enable character-
ization of the 3D details of forest structure at multiple scales 
(Beland et al., 2019). Airborne laser scanning (ALS) from air-
craft quickly collects an estimate of the structure and amount of 
forest vegetation at the scale of thousands of square kilometres 
(Wulder et al., 2012), and can be complemented by a smaller, 
forest-plot-level scale with TLS that has the capacity to capture 
branch-level details of forest structure also under the canopy 
surface (Calders et al., 2020). The use of UAV-LS provides an 
additional intermediate scale (Brede et al., 2019). In cities and 
within urban forests, laser scanning provides a convenient tool 
for measuring tree attributes with less demand for destructive 
harvesting (Kükenbrink et al., 2021).

Estimation of forest resources from an economic perspective 
is one motivation for employing scanning technology (Wulder 
et  al., 2012), but nowadays an increasing number of studies 
are developing the methods of scanning tree and forest struc-
ture as an aid to investigate the processes of forest dynamics 
and ecosystem function (Orwig et  al., 2018; Beland et  al., 
2019). The structural data themselves or in combination with 
additional remotely sensed data collected at the time of scan-
ning can be used to provide information on, for example, tree 
health (Chi et al., 2020), drought stress (Jacobs et al., 2021), 
diseases (Husin et  al., 2020) and leaf water content (Junttila 
et al., 2018; Elsherif et al., 2019). Combining multiple types 
of measurements with structural data provides capacity to en-
hance the models and to analyse forest ecosystem function at 
far wider scales and with better spatial precision than is feasible 
with labour-intensive manual measurements (D’Urban Jackson 
et al., 2020).

The 3D structure of a forest itself serves as a proxy for many 
variables and processes, because it consists of features such 
as plant species composition and distribution, spatial arrange-
ment of plant structures, and the shape of the terrain. For ex-
ample, the species diversity and structural diversity of forest 
vegetation has obvious links with processes maintaining the 
biodiversity of other organisms as they predict the availability 
of food and microclimatic conditions suitable for different or-
ganisms (O’Sullivan et al., 2021). Sample studies have linked 
forest structure with diverse features such as carbon fluxes and 
storage (Hardiman et al., 2013), spatial patterns of nutrient cyc-
ling (de Godoy Fernandes et al., 2021), variation of photosyn-
thetically active radiation (Ma et al., 2021), forest productivity 
(Pretzsch and Schütze, 2021), composition of bird communities 
(Hollie et al., 2020), foraging paths of mammals (Moorcroft, 
2012), rainfall interception (Yu et al., 2020), risks of fire and 
wind (Gopalakrishnan et al., 2020; Gale et al., 2021), canopy 
interactions (van der Zee et  al., 2021), and insect abundance 
(Knuff et al., 2020).

Importantly, laser scanning and associated measurements 
serve to refine the estimates of parameters and processes in 
models of 3D forest dynamics that are increasingly being de-
veloped for creating scenarios of long-term forest development 
under changing environmental conditions and forest disturb-
ances (Huber et al., 2020; Ruiz-Benito et al., 2020). Potential 
benefits of employing the spatial details of stand structure have 
been demonstrated, for instance, in models of carbon and water 

fluxes (Thomas et al., 2008; Simioni et al., 2016), species dy-
namics (Mertes et  al., 2020; Petter et  al., 2021), growth and 
yield modelling (Tompalski et al., 2018; Pretzsch and Schütze, 
2021), and landscape-scale stand dynamics (Seidl et al., 2012).

Besides other benefits, the use of laser scanning technology 
has potential to advance the repeatability of experiments 
and control the influence of subjective decisions during data 
collection and processing. For example, it costs much less 
to re-sample a forest area with a new point cloud through a 
scanner than it would to send an expedition of field workers to 
manually measure crown details of large trees within a stand. 
Provision of open access point cloud data can enable other re-
searchers to check the steps of data processing, whihc are still 
dependent on subjective decisions (Martin-Ducup et al., 2021). 
Moreover, capabilities for collecting more accurate time series 
are also improving (Srinivasan et al., 2014), because scanning 
of structural and spectral data diminishes the need for destruc-
tive sampling that simultaneously alters the system status.

EVOLUTION OF TREE MODELS

One way to fully appreciate the magnitude of the change that 
laser scanning represents in the measurement of forests is to 
understand how measurement-based modelling of tree struc-
ture has evolved over time (Liang et al., 2016). In the era of 
manual measurements, combining a DBH measurement with 
an estimate of tree height, one could approximate a tree as a 
single cylinder. To consider stem tapering, consecutive diam-
eter measurements were needed along the stem. To minimize 
the measurements required, allometric models were devel-
oped to estimate stem taper based on DBH and tree height 
measurements.

Stem models are relatively easy to produce even by simple 
manual measurements, and a tapering stem model might be suf-
ficient for basic yield estimation, but they provide only limited 
information on the current condition and growth processes of 
trees within a stand. More detailed measurements of canopy 
and branch structure have shown that tree species-dependent 
phenotypic changes associated with crown morphology and 
branch plasticity can be central in the development of a stand 
(Kunz et al., 2019; Hildebrand et al., 2021), and probably con-
tribute to the variation of growth responses in different species 
mixtures (Pretzsch and Schütze, 2021).

Canopy and branches

Using basic canopy height and width estimates, canopy 
volume can be estimated, for example as a circular cylinder, cone 
or an ellipsoid. This level-of-detail geometric model is still used 
for many applications, and it can be augmented by introducing 
a heterogeneous density to simulate light penetration within the 
canopy (Seidl et al., 2012). In reality, the branches are sparse 
inside any simple geometric canopy volume, leaving most of 
the volume unoccupied. Furthermore, canopy models based on 
geometric shapes do not account for individual branches and 
varying branch size. In more detailed models, a set of cylinders 
or other basic meshes inside the canopy volume have been ap-
plied to simulate individual branches (Kennedy, 2010). Ideally, 
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however, one would want the generated branching structure to 
match reality, but it is extremely labour-intensive to manually 
collect the required measurements regarding size, position, 
orientation and topological relationships of individual branches 
(Sinoquet et al., 1997).

TLS or UAV-LS point cloud data can be used to derive 
canopy size and density estimates, but have also enabled com-
prehensive structure reconstruction – given high-resolution, 
non-occluded data – where the geometry of individual branches 
and the topological branching structure are estimated and stored 
in a detailed model. Stem and branches can be presented as 
continuous, parametrized surfaces (Yan et al., 2009) or as sets 
of geometric primitives (Åkerblom et al., 2015). These models 
do not consider fine structure, such as bark texture, and in par-
ticular geometric primitives cannot be used to capture details 
such as bulges or crevices. However, comprehensive fine struc-
ture reconstruction is beyond the capabilities of any technology 
at the moment – especially for standing trees.

Foliage

Individual broadleaves or needles form the foliage cover 
of a tree. In a healthy tree, most branches contain foliage and 
trees can have hundreds of thousands of broadleaves or mil-
lions of needleleaves, thus making measuring leaf cover param-
eters extremely challenging (Wu et  al., 2020). The notion is 
complicated further when considering the dynamic nature of 
the geometry of a broadleaf that is increasing in size during a 
growth season. Over shorter time frames, wind, rain and even 
cloudiness can affect the leaf geometry during a day, depending 
on the time of the day, or even within seconds (Vogel, 2009). 
An ideal leaf cover model would contain the position, orien-
tation, shape and size of each individual leaf as a function of 
time, together with information regarding where leaves con-
nect to the woody structure. It is safe to say that we are still 
far from having a reconstructive, measurement-based approach 
that would produce such a comprehensive model.

TLS has provided a new way to estimate leaf parameter dis-
tributions. The technology has been used to estimate proper-
ties, such as density (Grau et  al., 2017), orientation (Zheng 
and Moskal, 2012) and leaf size (Hétroy-Wheeler et al., 2016). 
Given estimates of the leaf parameter distributions, they can 
be converted to individual leaves with a fixed geometry by 
sampling. An algorithm and an open-source implementation 
for this purpose – together with intersecting geometry pre-
vention – were presented by Åkerblom et al. (2018). If QSM 
from TLS data and leaf parameter distribution estimation and 
leaf cover generation could be combined so that only a single 
leaf-on point cloud were required, one could essentially recon-
struct a complete snapshot of all the above-ground parts of a 
tree. Currently, this is not possible as leaves occlude the woody 
parts, preventing accurate woody structure reconstruction (see 
‘Occlusion’ below).

STANDARD FOR THE FUTURE?

With all the benefits, such as increased capture speed and 
measurement resolution together with the ability to reconstruct 

comprehensive models, it is very likely that in particulare the 
combination of TLS (including UAV-LS and MLS) and QSM 
will become a widely adopted new standard in forest measuring 
and modelling, because it allows measurements at the resolution 
of centimetres at the reasonably wide hectare scale (Beland 
et al., 2019). Certainly, there is no going back to digitizers due 
to their slow collection time, and as other structural properties 
of trees can be estimated accurately from point cloud data or 
QSM, performing other manual measurements of structure one 
tree at a time also seems unlikely. There are downsides to op-
tical approaches, but even with them TLS seems more efficient 
than any current alternative due to the amount of data captured 
in a short time.

Automation and real-time processing

However, one current bottleneck in the use of TLS is the 
technically demanding and time-consuming process of recon-
structing QSMs and other meaningful structural information 
from the captured point clouds. At present, there are numerous 
published approaches to reconstructing QSMs – TreeQSM 
(Raumonen et al., 2013), SimpleTree (Hackenberg et al., 2015) 
and AdTree (Du et  al., 2019) to name a few – and probably 
more on the way. All the listed methods only operate with a 
tree-level point cloud. These solutions differ with regard to 
algorithm level, input parameters, documentation level, de-
pendencies and the platform they run on. In particular, the dif-
ferences in the input parameters can make it hard for a novice 
user to select a method and utilize it properly.

To improve the user experience and approachability of QSM 
reconstruction to users from all fields, a black-box solution, 
which performs automated tree extraction from forest-plot-level 
point clouds in a standardized manner, would clearly be ideal, 
as manual extraction can still be extremely time consuming. 
For example, Martin-Ducup et al. (2021) report different steps 
of reconstruction as taking close to 2 months for a 1-ha tropical 
forest plot. However, it seems that one-step solutions are not 
far in the future as semi-automated approaches are already pro-
viding meaningful results (Martin-Ducup et al., 2021). When 
one-step solutions become operational, they will enable a move 
towards automatic, comprehensive, massive-scale forest recon-
struction, as already outlined using another optical measure-
ment technology (Fujimoto et al., 2019).

When a fully automatic solution is available, it can be aug-
mented further with tools such as species and tree health detec-
tion. The former has already been shown to be possible with 
machine learning, given suitable training data (Åkerblom et al., 
2017; Terryn et al., 2020), and the prerequisites for the latter 
have also been demonstrated (Husin et al., 2020; Jacobs et al., 
2021). In theory, the end-user could input point cloud data and 
be presented with a report containing stem counts per species, 
together with an estimate of possible damage or threats for that 
forest plot. Ideally, even management suggestions could be 
computed based on the reconstructed models and simulations.

In practice, for forest-related research, the standardization 
of reconstruction can mean the separation and independence 
of structural measurements with respect the research questions 
(Fig. 2). Regardless of the focus and aim of the study, structural 
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measurements in the form of QSMs, reconstructed from some 
terrestrial data source, could be provided as open data in a 
standard format, which the users can use to extract the desired 
measures depending on the research question. This means that 
due to the comprehensive nature of QSMs, the structural meas-
urement component will remain exactly the same and require 
the same effort regardless of whether the subject of the study is, 
for example, DBH alone or full canopy structure. Furthermore, 
collections of QSMs can be automatically processed to derive 
further information such as tree species and health informa-
tion, to detect structural changes (see ‘From static to dynamic’ 
below) and to analyse shadowing and tree competition with 
neighbouring QSMs.

Complementary measurements pertaining to the research 
questions, such as soil or bark samples, are still collected in the 
same way and combined with the structural measurements for 
data analysis and hypothesis testing, using for instance markers 
discernible in TLS data or high-precision GPS to determine 
their positional information. Should iteration be required, the 
research questions can be modified or additional measurements 
carried out, while relying on the same standard structure meas-
urements. With open QSM data storing and sharing, it is also 
possible to conduct studies without the need to perform scan-
ning and reconstruction, but rather use the standard format data 
from others. Over time and given the current research trends, 
the library of reconstructed QSMs would have potential to ex-
pand rapidly, enabling many types of high-detail simulations 
of forest dynamics (Calders et  al., 2018; Liu et  al., 2019; 
O’Sullivan et al., 2021).

Scanning to reconstruct

It should be remembered that QSM reconstruction can only 
be as good as the input point cloud data. Thus, when collecting 
TLS measurements, the upcoming data processing should be 
considered in planning and in situ (Boucher et al., 2021). The 
data requirements are vastly different when TLS is utilized for 

stem counting, DBH or gap fraction estimation, compared with 
input data for comprehensive stand reconstruction (Beland 
et  al., 2019). Scanning practices should be developed espe-
cially for QSM reconstruction, and scanner operators should 
always be aware of what the collected data will be used for. 
Minimum requirements of resolution could be defined for 
standard format data.

With increasing data processing capabilities, it will soon be-
come possible to analyse point cloud data in the field while 
collecting. By identifying individual trees and analysing local 
coverage and occlusion within their canopies from completed 
scans, it will be possible to determine where the scanner 
should be moved next. This type of a concept has already been 
studied by Li et al. (2020) through simulations. Available com-
puting power is already sufficient with modern laptops, so it 
is only a matter of implementing a combination of automatic 
co-registration and occlusion analysis. Real-time processing 
would also mean that redundant data could be detected and pre-
vented or removed while measuring (Boucher et al., 2021).

From static to dynamic

The section ‘Evolution of tree models’ detailed how increas-
ingly accurate reconstructions of tree geometry and topology 
have become readily available. However, tree structure without 
a larger context is quite limited. How that structure came to 
be, what is the current status of the tree and how the tree will 
evolve with time are all questions that cannot be answered ac-
curately based on a single structural snapshot of an individual 
tree. Therefore, to create context, the next logical step is to re-
construct several of these snapshots over a longer period of time 
and combine them with concurrent structural snapshots of the 
entire stand surrounding the tree, in order to detect dynamic and 
interactive changes in the development of the whole tree com-
munity (Campos et al., 2020; Yrttimaa et al., 2020a).

All the technology is already available as it is the same as for 
static structure. Advances are only required regarding the sampling 

STANDARD STRUCTURE MEASUREMENTS
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QSM

Automated processes

Data
analysis

Outcomes

Species recognition
Change detection
Health report
Neighbour trees
Uncertainty analysis

Correlation
Causality

Complementary
measurements

Forest research
questions
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Fig. 2. Sketch of a new standard for forest research planning and execution as a flowchart. The standardized structure measurements (grey background) remain 
constant regardless of the original or revised research questions. The comprehensive structure models and properties derived from them through the automated 
processes can be exactly the same for multiple different types of studies. The structure data can be combined with optional complementary measurements to per-

form correlation or causality analysis between any of the measured or derived attributes or, for example, a theoretical model.
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procedures and the consequent data processing side for identifying 
the topologically and geometrically matching parts of two recon-
structed structure models (Guan et  al., 2020). The analysis for 
detecting changes in branch radii, lengths and angles should then 
be trivial. In fact, the concept of QSM change detection has al-
ready been tested (Kaasalainen et al., 2014).

On the user experience side, growth and decay detection 
could be included in the proposed one-step software solu-
tion. A  collection of previously reconstructed QSMs could 
be given as an optional input, and any newly reconstructed 
model could be automatically matched to the existing set, 
based on location or geometric properties, and change detec-
tion would be then carried out. The user would receive the 
new QSM of each tree and a report on how the structure has 
evolved since the last reconstruction. It should be noted that 
the scanning conditions (see ‘Scanning conditions’ below) of 
the repeated scans should be as similar as possible, or other-
wise their difference would have to be accounted for while 
detecting changes.

The move from studying static tree structures into structural 
dynamics would enable numerous correlation and causality 
studies. For example, given measurements of climate or soil 
conditions at multiple times, and corresponding tree reconstruc-
tions, the connection between the change in those measurement 
values and the changes in tree structure could easily be studied. 
Similarly, the effects of various forest management strategies 
would be accurately quantifiable (Camarretta et al., 2020).

REMAINING CHALLENGES AND LIMITATIONS

Occlusion

Occlusion is a fundamental limitation of any optical sensing 
technology. Objects and surfaces can only be detected if they 
are seen. On the other hand, forests and trees are full of occlu-
sion: trees occlude one another, branches occlude one another 
and foliage occludes everything. Stem and branch occlusion 
can be lessened by adding scanning positions with different an-
gles around the tree – or possibly with different heights (Abegg 
et  al., 2017). Depending on the forest plot stem density and 
other conditions, adding scan positions that decrease occlusion 
effects may be possible (Yrttimaa et al., 2020b; Boucher et al, 
2021). Furthermore, even with sparse stem densities, it can be 
difficult to determine in situ where to perform the additional 
scan to minimize self-occlusion within the tree canopy.

Foliage occlusion is much more difficult to account for. 
With non-evergreen trees, scans can sometimes be performed 
in the leaf-off season, eliminating foliage occlusion. For other 
scenarios, data analysis might offer solutions (Hyyppä et al., 
2020), as will be discussed in the sections below.

Scanning conditions

Laser scanning is not well suited to measure moving tar-
gets. Thus, scanning of trees in windy conditions is not advised 
(Vaaja et al., 2016), as branch movement introduces uncertainty 
in the resulting point cloud. The same applies for rain and fog 
(Filgueira et al., 2017). For smaller studies it might be possible 

to wait for suitable weather conditions, but for larger inven-
tories it is not an option. The limitation is fundamental to any 
laser scanning technology and thus improvements can only be 
made on the data analysis side.

Jackson et al. (2019) showed that reconstructed QSMs can 
be used to study tree movement and structure deformations 
under wind flow. Starting with windy-condition point cloud 
data and a crude reconstruction, it would be possible to simu-
late the movement of the tree under the recorded wind con-
ditions. An uncertainty value could then be determined for 
individual range measurements, and uncertain points would be 
ignored or corrected, providing an improved dataset for final 
QSM reconstruction.

Shared format

There currently exists no standard format for storing and 
sharing reconstructed tree and stand structures. This short-
coming slows data processing development and sharing of re-
sults. In theory the fix is simple: a standard should be agreed 
upon and published. However, with so many approaches to re-
constructing QSMs, they are not structurally similar. Some con-
tain multiple geometric shapes per branch (Raumonen et  al., 
2013), while others use only a single parametric surface (Yan 
et  al., 2009). Other challenges include the need for conveni-
ence through redundancy and the inclusion of non-structural, 
application-specific information.

In short, any standard should include only the minimum 
amount of structural data. Any redundancy should be elimin-
ated to minimize required storage, as convenience data, such 
as tree-level statistics, can be derived from branch-level data 
when needed. Information regarding the utilized reconstruction 
process and expected model applications should be excluded 
from the structural description, as such information is hard or 
impossible to standardize.

Solving the issue of structural dissimilarities might also be 
possible, as recent approaches seem to model the stem and 
branches as having circular cross-sections. For example, the 
resulting models from Yan et al. (2009) and Du et al. (2019) 
seem different, as the former uses branch-level, parametric sur-
faces and the latter circular cylinders as geometric primitives, 
but the underlying data are still the same. Each branch – and 
stem – is essentially a set of diameter measurements along the 
length of the branch. Thus, rather than storing cylinder or sur-
face parameters, the diameter measurements could be stored in-
stead. The benefit of this is that in this way the data would be 
independent of the methodology it was created with, but both 
types of models could still easily be derived from it. Thus, only 
branch-level topology data would have to be stored.

On the stand level, an additional standard is required for ef-
ficient sharing of collections of QSMs. At a minimum, such a 
container would hold the absolute position of a reference point 
on the forest stand, and the position of all individual trees rela-
tive to that reference point. The container could then be used, 
for example, to find neighbouring trees or to build a virtual rep-
resentation of the entire stand. To minimize redundancy, any 
stand-level attributes, derivable from the tree models, should be 
excluded from the standard.
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Taking data analysis to a new level

Even with all the developments in forest point cloud data pro-
cessing, there remains a lot underutilized potential. Only rough 
estimates have been given to uncertainty pertaining to tree attri-
butes, such as above-ground biomass or DBH, but what causes 
the uncertainty? Additionally, if occlusion cannot be overcome, 
can it at least be quantified? Is simultaneous woody structure 
reconstruction and foliage cover distribution parameter retrieval 
possible – even in theory? These are just some of the questions 
that can be answered by developing new data analysis tools.

Uncertainty

Given a QSM of a tree, there will be many sources of error 
and uncertainty for both the geometry as well as the topology 
(Demol et al., 2021; Martin-Ducup et al., 2021). Starting with 
point cloud data collection, the TLS instrument will have uncer-
tainty related to range and angle measurements, together with 
beam divergence-related uncertainty. After the measurement 
phase, point cloud co-registration has a certain uncertainty, 
which can actually lead to massive errors in reconstructed 
branch volumes. Occlusion is another source of uncertainty. 
Additionally is the uncertainty of the selected reconstruction 
procedure and the chosen model format, and finally the uncer-
tainty of computing a feature from the resulting model.

With detailed error analysis, it will be possible to study, 
separate and quantify the level of error relating to each of the 
phases of tree reconstruction (Demol et  al., 2021; Martin-
Ducup et al., 2021). Extensive simulations and scans in labora-
tory conditions could be used to give theoretical limits for each 
source of uncertainty, independent from one another, forming a 
sort of uncertainty distribution for the error sources. If success-
fully completed, each reconstructed tree model and attributes 
derived from them would have an attached total uncertainty and 
error limits.

Analysing occlusion

By design, laser scanning and tree reconstruction focus on 
parts of the tree that are seen. This idea is fundamental and even 
built-in to the term ‘point cloud’, meaning a collection of dis-
crete and localized laser beam intersections. In a wider context, 
laser scanning produces a set of rays that traverse the volume 
containing a single tree. As a simplification, for each ray at an 
interception point the probability of an existing surface is one 
and before it, the probability is zero. After an interception the 
view is occluded – at least partially – and the probability is be-
tween zero and one. Thus, the set of traversed rays can be con-
verted into a 3D probability distribution for occlusion analysis.

Given a probability distribution of volume, an upper limit for 
occluded volume can be computed. Furthermore, the estimate 
can be improved by considering what kind of branching architec-
ture and surface geometry is realistic or probable at any given lo-
cation (Lecigne et al., 2021). Example constraints could include 
an upper limit for the branch radius as a function of distance from 
the stem, and the requirement of an occluded path, connecting 
the missed branch to the detected, reconstructed surface.

Inverse approaches

As mentioned in the ‘Foliage’ section above, multiple 
methods have been developed to measure various foliage dis-
tribution parameters with TLS. Such an approach is a called a 
forward approach, as the quantity being studied is measured 
directly. In an inverse approach the measurements are used to 
indirectly infer what type of an unknown object or – in this 
application, a distribution – resulted in those measurements. 
For example, given a known woody surface and TLS measure-
ment setup, it would be possible to generate foliage covers with 
varying distributions and then simulate TLS for those candidate 
leaf covers. The resulting simulated point clouds could then be 
compared to the real point cloud data, allowing the determin-
ation of the real foliage distribution parameters, by selecting the 
optimal candidate by some suitable metric.

In essence, the proposed inverse approach would use ma-
chine learning to determine properties not directly accessible 
from the point cloud data (Xi et al., 2020). Training data could 
be collected through simulations or in controlled stand condi-
tions, and they would contain a mapping between measured 
quantities, such as local point cloud variations and the un-
known, underlying quantities such as leaf size and orientation 
distribution parameters. The accuracy of the methodology can 
be uncreased by introducing a priori information, regarding for 
example expected leaf sizes.

CONCLUSION

In the last decades, the application of laser scanning instruments 
for forest mensuration have grown significantly in popularity, 
enabling numerous new approaches for forest research as de-
scribed here. Even faster – in less than a decade since its intro-
duction – the concept of QSM has morphed from a borderline 
approach into one of the most widely utilized data processing 
methods for point clouds. More broadly, this has represented 
the switch from individual tree structure measurements to com-
prehensive tree reconstruction.

Although TLS- and QSM-based approaches have taken a 
foothold in forest structure and process research, they have not 
yet become the standard. However, their standardization seems 
not to be far into the future as the TLS instruments become 
more common, cheaper and easily portable (Wang et al., 2019). 
Novel approaches and improvements to existing solutions for 
comprehensive tree reconstruction seem to be constant (Bienert 
et al., 2021), and it is only a matter of time when a fully auto-
matic, parameter-free method will be presented, operating 
on forest-plot-level point cloud data. Such a black-box solu-
tion will certainly have its appeal, but it is also important to 
understand the built-in assumptions to fully comprehend the 
behaviour and limitations of any algorithm. A practical way to 
accomplish this would be to start following the development 
of existing methods, giving feedback and bridging the gap be-
tween algorithm developers and forest researchers in the pro-
cess, thus ensuring the suitability and usability of the end result.

Separate from reconstruction development, it is also the per-
fect time to start planning what will happen when comprehen-
sive reconstruction becomes standard. How will research change 
when it can be assumed that detailed QSMs will be available for 
any forest site scannable by TLS, MLS (Bienert et al., 2021) or 
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UAV-LS (Brede et al., 2019) technologies? Will we still use trad-
itional properties, such as DBH, to describe structure, or will they 
be replaced by other quantities that are more representable and 
not just accessible? Tree competition-related canopy properties 
(van der Zee et al., 2021) and tree species (Terryn et al., 2020) 
can already be automatically derived from TLS data or QSMs, 
but what other characteristics can be developed for the point 
cloud data processing chain?

When looking at a QSM of a single tree, it is often easy to see 
that there are errors, especially when there are issues with the input 
TLS data quality. What should be remembered though is that, even 
with those errors QSM reconstruction is probably the most ac-
curate description of the entire structure of that tree. It might not 
be sufficient for every application, but it is certainly more than a 
traditional combination of a DBH value and a possible estimate of 
tree height. Thus, rather than focusing on the current shortcomings 
of TLS-based comprehensive reconstruction, a more productive 
approach would be to try to overcome them. This can mean either 
focusing on improving reconstruction accuracy (Fan et al., 2020), 
or developing complementary techniques utilizing the same input 
data (Hu et al., 2021) or additional field measurements (Yrttimaa 
et  al., 2020b). Any additional structural measurements can in 
theory be used as guiding constraints for the reconstruction. An 
interesting study would be on what type of extra measurements 
would improve reconstruction accuracy the most.

In the end, for a new standard to be created it must be ac-
cepted that new technology is changing forest measurements 
for good. This does not mean that the results will ever be perfect 
– just continuously improving.
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