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Abstract

The Jacobi polynomials P̂
α,βð Þ
n xð Þ conform the canonical family of hypergeometric

orthogonal polynomials (HOPs) with the two-parameter weight function

1�xð Þα 1þxð Þβ ,α,β > �1, on the interval �1,þ1½ �. The spreading of its associated

probability density (i.e., the Rakhmanov density) over the support interval has

been quantified, beyond the dispersion measures (moments around the origin,

variance), by the algebraic Lq-norms (Shannon and Rényi entropies) and the mono-

tonic complexity-like measures of Cramér–Rao, Fisher–Shannon, and LMC (L�opez-

Ruiz, Mancini, and Calbet) types. These quantities, however, have been often

determined in an analytically highbrow, non-handy way; specially when the degree or

the parameters α,βð Þ are large. In this work, we determine in a simple, compact form

the leading term of the entropic and complexity-like properties of the Jacobi polyno-

mials in the two extreme situations: (n!∞; fixed α,β) and (α!∞; fixed n,β). These

two asymptotics are relevant per se and because they control the physical entropy

and complexity measures of the high energy (Rydberg) and high dimensional

(pseudoclassical) states of many exactly, conditional exactly, and quasi-exactly solv-

able quantum- mechanical potentials which model numerous atomic and molecular

systems.

1 | INTRODUCTION

The formalization of the intuitive notion of simplicity/complexity of probability distributions is a formidable task, not yet well established

in spite of a huge number of efforts in many scientific and technological areas from quantum chemistry [1–4] and quantum technologies

[5–9] to applied mathematics and approximation theory [10–13]. To a large extent, this is because of the great diversity of configurational

shapes from perfect order to maximal randomness (or perfect disorder) which have the bi- and multi-parametric probability distributions

associated to the quantum one- and many-body systems and the special functions of applied mathematics and mathematical physics [14].
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This enormous amount of geometrical forms cannot be captured by a single quantity, but it requires a number of measures of intrinsic and

extrinsic characters. The latter ones refer to algorithmic and computational complexities [15, 16] which are closely related to the time

required for a computer to solve a given problem, so that they depend on the chosen computer. The former ones refer to statistical mea-

sures of complexity, extracted from the density functional theory of electronic systems [17], which quantify the degree of structure or

pattern of one- and many-electron systems in terms of the single electron density. The main quantities of this type are the Cramér–Rao

[2, 10], Fisher–Shannon [18–20], and LMC (L�opezruiz, Mancini and Calbet) [21, 22] complexities and modifications of them [23–33]. Here

we will use the basic density-dependent complexity measures (Cramér–Rao, Fisher–Shannon and LMC) recently introduced in electronic

structure (see, e.g., References [29, 34–36] and the reviews [37, 38]), which are of intrinsic character in the sense that they do not depend

on the context but on the probability density of the system under consideration. These quantities are given by the product of two spread-

ing measures of dispersion (variance) and entropic (Fisher information, Shannon entropy, Rényi entropy) types, so that each measures two

configurational shapes of the system in a simultaneous manner.

The hypergeometric polynomials, pn xð Þf g, orthogonal with respect to the weight function h xð Þ on the support interval Λ, are known to often

control the quantum-mechanical wavefunctions of the bound states in numerous quantum systems [14, 39–43]. The Hermite, Laguerre and

Jacobi polynomials are the three canonical families of real HOPs [44–47]. Recently the entropy- and complexity-like properties of these polyno-

mials, which determine their spreading on the support interval, have begun to be investigated by means of the entropy- and complexity-like mea-

sures [11, 48, 49] of the associated Rakhmanov density ρn xð Þ¼ p2n xð Þh xð Þ. This normalized-to-unity probability density function governs the

(n!þ∞)-asymptotics of the ratio of two polynomials with consecutive orders [50], and characterizes the Born's probability density of the bound

stationary states of a great deal of quantum-mechanical potentials which model numerous atomic and molecular systems [12, 14, 41, 51–53]. The

numerical evaluation of the integral functionals corresponding to the dispersion, entropic and complexity measures of the HOPs by means of the

standard quadratures is not convenient, because the highly oscillatory nature of the integrand renders Gaussian quadrature ineffective as the

number of quadrature points grows linearly with n and the evaluation of high-degree polynomials are subject to round-off errors. Indeed, since all

the zeros of pn belong to the interval of orthogonality, the increasing number of integrable singularities spoil any attempt to achieve reasonable

accuracy even for rather small n [54, 55].

The entropic and complexity-like measures of the three canonical families of the HOPs have been analytically calculated in terms of the

degree and the parameters which characterize their weight function. The resulting analytical expressions for the Cramér–Rao complexity of

Hermite and Laguerre polynomials are simple and compact [11], but for the rest of complexity measures of HOPs this is not at all true because

the involved entropic components have a somewhat highbrow, non-handy form, being mostly useful in an algorithmic sense only (see the review

Dehesa et al. [48]). This is especially true for the Fisher–Shannon and LMC complexities of HOPs. However, recently, the Fisher–Shannon and

LMC measures of the Hermite Hn xð Þ, Laguerre L αð Þ
n xð Þ and Gegenbauer polynomials C αð Þ

n xð Þ have been determined [49] when n!∞ and when

α!∞, obtaining simple and transparent expressions.

The goal of the present work is the analytical evaluation of the Cramér–Rao, Fisher–Shannon and LMC complexities of the whole family of

Jacobi polynomials P̂
α,βð Þ
n xð Þ, with α,β > �1, in the extreme situations (n!∞; fixed α,β) and (α!∞; fixed n,β). These polynomials [14, 46, 56–59]

are known to be orthonormal with respect to the weight function hα,β xð Þ¼ 1�xð Þα 1þxð Þβ as

ðþ1

�1
P̂

α,βð Þ
n xð ÞP̂ α,βð Þ

m xð Þhα,β xð Þdx¼ δmn: ð1Þ

Then, the associated Rakhmanov probability density ρn xð Þ is given by

ρn xð Þ¼ P̂
α,βð Þ
n xð Þ

h i2
hα,β xð Þ: ð2Þ

Moreover we will denote the orthogonal Jacobi polynomials P α,βð Þ
n xð Þ¼ P̂

α,βð Þ
n xð Þ κnð Þ1=2, with the normalization constant given (see, e.g., Olver

et al. [46]) by

κn ¼
ðþ1

�1
P α,βð Þ
n xð Þ

��� ���2hα,β xð Þdx¼ 2αþβþ1Γ αþnþ1ð ÞΓ βþnþ1ð Þ
n! αþβþ2nþ1ð ÞΓ αþβþnþ1ð Þ : ð3Þ

The special case α¼ β¼ λ� 1
2 corresponds to the ultraspherical or Gegenbauer polynomials C λð Þ

n xð Þ,λ> � 1
2 , with slightly different normalization,

and the case α¼ β¼0 corresponds to the Legendre polynomials (see, e.g., Olver et al. [46]).

The structure of this paper is as follows. In Sections 2–4 we obtain the asymptotic behavior for the Cramér–Rao, Fisher–Shannon and LMC

complexities of the Jacobi polynomials P α,βð Þ
n xð Þ when (n!∞; fixedα,β) and when (α!∞; fixedn,β) in a simple, compact and transparent form,

respectively. Then, some concluding remarks and a few open related issues are pointed out.
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2 | CRAM�ER–RAO COMPLEXITY OF JACOBI POLYNOMIALS

The Cramér–Rao complexity of the Jacobi polynomials is given by the corresponding quantity of its associated Rakhmanov density (2), which

quantifies the combined balance of the pointwise probability concentration over its support interval jointly with the spreading of the probability

around the centroid. It is defined [2, 10, 60] by

CCR P̂
α,βð Þ
n

h i
¼ F P̂

α,βð Þ
n

h i
�V P̂

α,βð Þ
n

h i
, ð4Þ

where F P̂
α,βð Þ
n

h i
and V P̂

α,βð Þ
n

h i
are the Fisher information [61, 62] and the variance of the Rakhmanov density (2), which are defined as

F P̂
α,βð Þ
n

h i
¼
ðþ1

�1

ρ0n xð Þ� �2
ρn xð Þ dx, and V P̂

α,βð Þ
n

h i
¼ x2
� �� xh i2,

respectively, with the expectation value xk
� �¼ Ð þ1

�1x
kρn xð Þdx for k¼1,2. In this section we give the explicit expressions of these three spreading

quantities and we find in a simple compact form the values of the Cramér–Rao complexity of the Jacobi polynomials in the two following

asymptotical regimes: (n!∞; fixed α,β) and (α!∞; fixed n,β).

The particularly elegant algebraic properties of the Jacobi polynomials (see, e.g., References [14, 46, 59]) have allowed to encounter the fol-

lowing expression

F P̂
α,βð Þ
n

h i
¼

2n nþ1ð Þ 2nþ1ð Þ, α,β¼0,

2nþβþ1
4

n2

βþ1
þnþ 4nþ1ð Þ nþβþ1ð Þþ nþ1ð Þ2

β�1

" #
, α¼0,β >1,

2nþαþβþ1
4 nþαþβ�1ð Þ n nþαþβ�1ð Þ nþα

βþ1
þ2þ nþβ

αþ1

� �	
þ nþ1ð Þ nþαþβð Þ nþα

β�1
þ2þ nþβ

α�1

� �

, α,β >1,

8>>>>>>>>>>><>>>>>>>>>>>:
ð5Þ

(and ∞ otherwise) for the Fisher information [63, 64], and

V P̂
α,βð Þ
n

h i
¼ 4 nþ1ð Þ nþαþ1ð Þ nþβþ1ð Þ nþαþβþ1ð Þ

2nþαþβþ1ð Þ 2nþαþβþ2ð Þ2 2nþαþβþ3ð Þ
þ 4n nþαð Þ nþβð Þ nþαþβð Þ

2nþαþβ�1ð Þ 2nþαþβð Þ2 2nþαþβþ1ð Þ
,

ð6Þ

for the variance [10] of Jacobi polynomials. Then, from Equations (4)–(6) one has [11] the following values for the Cramér–Rao complexity of the

Jacobi polynomials

CCR P̂
α,βð Þ
n

h i
¼

2n nþ1ð Þ nþ1ð Þ2
2nþ3

þ n2

2n�1

" #
, α¼ β¼0,

nþ1ð Þ2 nþβþ1ð Þ2
2nþβþ2ð Þ2 2nþβþ3ð Þ

þ n2 nþβð Þ2
2nþβ�1ð Þ 2nþβð Þ2

" #

� n2

βþ1
þnþ 4nþ1ð Þ nþβþ1ð Þþ nþ1ð Þ2

β�1

" #
, α¼0,β >1,

nþ1ð Þ nþαþ1ð Þ nþβþ1ð Þ nþαþβþ1ð Þ
2nþαþβþ2ð Þ2 2nþαþβþ3ð Þ

þ n nþαð Þ nþβð Þ nþαþβð Þ
2nþαþβ�1ð Þ 2nþαþβð Þ2

" #

� 1
nþαþβ�1

n nþαþβ�1ð Þ nþα

βþ1
þ2þ nþβ

αþ1

� �	
þ nþ1ð Þ nþαþβð Þ nþα

β�1
þ2þ nþβ

α�1

� �

, α>1,β >1,

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

From this expression we easily obtain the high-degree asymptotics (n!∞; fixed α,β)
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CCR P̂
α,βð Þ
n

h i
¼

2n3þO n2
� �

, α¼ β¼0,

1
2

2þ β

β2�1

� �
n3þO n2

� �
, α¼0,β > 1,

1
2

α

α2�1
þ β

β2�1

� �
n3þO n2

� �
, α>1,β >1,

8>>>>>>>><>>>>>>>>:
ð7Þ

and the high-parameter asymptotics (α!∞; fixed n,β)

CCR P̂
α,βð Þ
n

h i
¼ 1þβþ2nβð Þ 1þβþ2n 1þnþβð Þð Þ

β2�1
, β > 1, α!∞, ð8Þ

for the Cramér–Rao complexity of the Jacobi polynomials. Summarizing, we first observe that in the limit n!∞ the Cramér–Rao

complexity of the Jacobi polynomials follow a qualitative n 3-law, similarly to the corresponding quantity of Laguerre polynomials

[11], despite the fact that the respective weight functions are different. This is because the two factors (variance and Fisher in-

formation) of the Cramér–Rao complexity of Laguerre polynomials have a linear (Fisher information) and quadratic (variance) depen-

dence on n, while for the Jacobi polynomials the Fisher information has a cubic dependence on the degree and the variance is

constant. Moreover, in the limit (α!∞; fixed n,β) the Cramér–Rao complexity of Laguerre and Jacobi polynomials has also a

mutual similar behavior, having a constant leading term that depends on n,β for the Jacobi polynomials and n for the Laguerre polyno-

mials. In this limit the Fisher information and variance have a direct and inverse quadratic dependence on α for the Jacobi polyno-

mials, while for the Laguerre polynomials the Fisher information and the variance have an inverse and direct linear dependence on α,

respectively.

3 | FISHER–SHANNON COMPLEXITY OF JACOBI POLYNOMIALS

This statistical quantity is given by the Fisher–Shannon complexity of the Rakhmanov density (2) of the Jacobi polynomials, which is defined

[19, 20] as

CFS P̂
α,βð Þ
n

h i
¼ F P̂

α,βð Þ
n

h i
� 1
2πe

e2S P̂
α,βð Þ
n

� �
¼ 1
2πe

F P̂
α,βð Þ
n

h i
� LS P̂

α,βð Þ
n

h i
 �2
, ð9Þ

where the symbols F P̂
α,βð Þ
n

h i
and LS pn½ � ¼ eS pn½ � denote the Fisher information and the Shannon entropic power or Shannon spreading length of the

polynomial P̂
α,βð Þ
n xð Þ, respectively. Note that CFS P̂

α,βð Þ
n

h i
measures the gradient content of the Rakhmanov probability density ρn xð Þ associated to

the polynomial P̂
α,βð Þ
n xð Þ and its total extent along the support interval �1,þ1½ � simultaneously.

The explicit expression of the Fisher–Shannon complexity of the Jacobi polynomials for generic values n,α,βð Þ is unknown up until now. This

is so because, although the Fisher information has been given by Equation (5), the Shannon entropy is not known in spite of many efforts. How-

ever, there are two extreme situations in which the value of this quantity can be analytically evaluated; namely, when (α!∞; fixedn,β) and when

TABLE 1 First order asymptotics for the Shannon spreading length LS and the Fisher–Shannon complexity CFS measures of the orthonormal
Jacobi polynomials bP α,βð Þ

n xð Þ, when n!∞ and α!∞

Measure of bP α,βð Þ
n xð Þ n!∞ α!∞

LS
bP α,βð Þ
n

	 
 π
e

1
α

CFS bP α,βð Þ
n

	 

2π
e3

n3 α,β¼0

π

4e3
4þ 1

β�1
þ 1
βþ1

� �
n3 α¼0,β >1

π αþβð Þ αβ�1ð Þ
2e3 α2�1ð Þ β2�1

� �n3 α,β >1

∞ otherwise

1þβþ2nβð Þ
8πe β2�1ð Þ
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(n!∞; fixedα,β). The goal of this section is to obtain these two parameter and degree asymptotics in a compact way for the Shannon spreading

length, and then for the Fisher–Shannon complexity (Equation 9) of the orthonormal Jacobi polynomials P̂
α,βð Þ
n xð Þ. The main results are briefly sum-

marized in Table 1.

First, we realize that the Shannon-like integral functional of the orthonormal Jacobi polynomials P̂
α,βð Þ
n xð Þ is given by

S P̂
α,βð Þ
n

h i
¼�

ðþ1

�1
P̂

α,βð Þ
n xð Þ

h i2
hα,β xð Þlog P̂

α,βð Þ
n xð Þ

h i2
hα,β xð Þ

� �
dx¼ E P̂

α,βð Þ
n

h i
þ I P̂

α,βð Þ
n

h i
, ð10Þ

with the functional [65].

I P̂
α,βð Þ
n

h i
¼�

ðþ1

�1
P̂

α,βð Þ
n xð Þ

h i2
hα,β xð Þloghα,β xð Þ

¼ αþβð Þ 1
2nþαþβþ1

þ2ψ 2nþαþβþ1ð Þ�ψ nþαþβþ1ð Þ� log 2ð Þ
� �

� αψ nþαþ1ð Þþβψ nþβþ1ð Þð Þ

ð11Þ

and the Shannon entropy E P̂
α,βð Þ
n

h i
, which is defined by

E P̂
α,βð Þ
n

h i
¼�

ðþ1

�1
P̂

α,βð Þ
n xð Þ

h i2
hα,β xð Þlog P̂

α,βð Þ
n xð Þ

h i2
dx: ð12Þ

The analytical determination of this entropic measure is a formidable task. Indeed, it has been calculated for integer values of the polynomial

parameters in a somewhat highbrow manner only. However, we find below that they can be expressed in a simple and compact way for the two

extreme situations mentioned above.

3.1 | Asymptotics n!∞

The Shannon entropy of the Jacobi polynomials has been shown to have the following degree asymptotics

E P̂
α,βð Þ
n


 �
¼ log πð Þ�1� αþβð Þlog 2ð ÞþO n�1

� �
, n!∞ ð13Þ

for fixed α,βð Þ [66, 67]. Moreover, from Equation (11) and the known asymptotical behavior [46] of the involved gamma Γ xð Þ and digamma ψ xð Þ
functions, we find that for fixed α,βð Þ the integral functional I P̂

α,βð Þ
n

h i
fulfills the asymptotics

I P̂
α,βð Þ
n

h i
¼ αþβð Þlog 2ð ÞþO n�1

� �
, n!∞ ð14Þ

Therefore, from Equations (10), (13), and (14) we find that the asymptotics for the Shannon-like functional of the Jacobi polynomials is

S P̂
α,βð Þ
n

h i
¼ log πð Þ�1þO n�1

� �
, n!∞ ð15Þ

so that the Shannon spreading length of the Jacobi polynomials has the behavior

LS P̂
α,βð Þ
n

h i
� π

e
, n!∞ ð16Þ

On the other hand, from expression (5) we can obtain the following (n!∞; fixedα,β) asymptotics for the Fisher information of the Jacobi

polynomials:

SOBRINO AND S.-DEHESA 5 of 12



F P̂
α,βð Þ
n

h i
¼

4n3þO n2
� �

, α,β¼0,

1
2

4þ 1
β�1

þ 1
βþ1

� �
n3þO n2

� �
, α¼0,β >1,

αþβð Þ αβ�1ð Þ
α2�1ð Þ β2�1

� �n3þO n2
� �

, α,β >1,

∞, otherwise:

8>>>>>>>><>>>>>>>>:
ð17Þ

Finally, taking into account (9), (16), and (17), we have that the Fisher–Shannon complexity of the Jacobi polynomials has the following

asymptotics (n!∞; fixedα,β) behavior

CFS P̂
α,βð Þ
n

h i
¼

2π
e3

n3þO n2
� �

, α,β¼0,

π

4e3
4þ 1

β�1
þ 1
βþ1

� �
n3þO n2

� �
, α¼0,β >1,

π αþβð Þ αβ�1ð Þ
2e3 α2�1ð Þ β2�1

� �n3þO n2
� �

, α,β >1,

∞, otherwise:

8>>>>>>>>><>>>>>>>>>:
ð18Þ

which extends and includes the corresponding asymptotical quantity recently obtained for the subfamily of Gegen-

bauer polynomials [48] to the whole Jacobi family of orthogonal polynomials. Moreover, we observe that in the limit n!∞ the

Fisher–Shannon complexity of the Jacobi polynomials behaves qualitatively similar to the corresponding quantity of Laguerre polynomials [49], fol-

lowing a n 3-law, despite the fact that the weight functions are very different in each case; this is because for the Laguerre polynomials both the

Fisher information and the Shannon spreading length have a linear dependence on n, while for the Jacobi polynomials the Fisher information

has a cubic dependence on the degree and the Shannon spreading length is constant.

Interestingly, for the quantum systems with a solvable quantum-mechanical potential with bound-states wavefunctions controlled by Jacobi

polynomials (e.g., some supersymmetric quantum systems) (see, e.g., References [12, 40–42]), the Fisher–Shannon measure (18) allows one to find

the quantum-classical limit of the physical Fisher–Shannon complexity; they correspond to the high-energy or Rydberg states since for such a limit

n!∞, the wavelengths of particles are small in comparison with the characteristic dimensions of the system and the wavefunctions of the quasi-

classical state.

3.2 | Asymptotics α!∞

Now we determine the Fisher–Shannon complexity CFS P̂
α,βð Þ
n

h i
, given by Equation (9), in the limit α!∞ with fixed degree n,β. We start by

evaluating the Shannon entropy (12) of the orthogonal Jacobi polynomials in this limit by means of the relation

E P α,βð Þ
n

h i
¼2

d
dp

N p P α,βð Þ
n

h ih i
p¼2

, ð19Þ

where the symbol N p denotes the norm of the orthogonal Jacobi polynomials defined as

N p P α,βð Þ
n

h i
¼
ð1
�1

1�xð Þα 1þxð Þβ P α,βð Þ
n xð Þ

��� ���pdx: ð20Þ

This quantity can be analytically estimated for α!∞ by taking into account the known relation [46]

lim
α!∞

P α,βð Þ
n xð Þ

P α,βð Þ
n 1ð Þ¼

1þx
2

� �n

, with P α,βð Þ
n 1ð Þ¼Γ αþnþ1ð Þ

n!Γ αþ1ð Þ : ð21Þ

Then, from Equations (20) and (21) we have the asymptotics
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N p P α,βð Þ
n

h i
�P α,βð Þ

n 1ð Þ2�np 2F1 1,�α,2þnpþβ;�1ð Þ
1þnpþβ

þ 2F1 1,�np�β,2þα;�1ð Þ
1þα

� �
¼P α,βð Þ

n 1ð Þ2�np 1þnpþβð Þ�1 1þαð Þ�1�
1þαð Þ2F1 1ð ,�α,2þnpþβ;�1Þþ 1þnpþβð Þ2F1 1,�np�β,2þα;�1Þð Þ,� ð22Þ

where 2F1 a,b,c;xð Þ denotes the Gaussian hypergeometric function [46]. Then, taking into account the known relation between the hyper-

geometric functions

1�að Þ2F1 1,a,2�b, �1ð Þþ 1�bð Þ2F1 1,b,2�a, �1ð Þ¼21�a�bΓ 2�að ÞΓ 2�bð Þ
Γ 2�a�bð Þ , ð23Þ

with the parameters a¼�α and b¼�np�β, the asymptotical behavior (22) simplifies as

N p P α,βð Þ
n

h i
�Γ αþnþ1ð Þ

n!
Γ 1þnpþβð Þ

Γ 2þαþnpþβð Þ2
1þαþβ: ð24Þ

Thus, according to Equations (19) and (24), one has that the Shannon entropy of the orthogonal Jacobi polynomials P α,βð Þ
n xð Þ in the current

limit is given as

E P α,βð Þ
n

h i
�22þαþβ Γ 1þnþαð ÞΓ 1þ2nþβð Þ

Γ nð ÞΓ 2þ2nþαþβð Þ ψ 1þ2nþβð Þ�ψ 2þ2nþαþβð Þð Þ

¼22þαþβα�n�β�1 Γ 1þ2nþβð Þ
Γ nð Þ ψ 1þ2nþβð Þ� log αð Þð ÞþO α�2

� �� �
, α!∞,

so that we can express the Shannon entropy of the orthonormal Jacobi polynomials as

E P̂
α,βð Þ
n

h i
¼ 1
κPn

E P α,βð Þ
n

h i
þ log κnð Þ¼2α�n nΓ 1þ2nþβð Þ

Γ 1þnþβð Þ ψ 1þ2nþβð Þ� log αð Þð ÞþO α�2
� �� �

þ 1þαþβð Þlog 2ð Þþ log
Γ 1þnþβð Þ

n!

� �
� 1þβð Þlog αð Þ:

ð25Þ

Moreover, from Equation (11), we have the following asymptotics for the auxiliary functional I P α,βð Þ
n

h i
I P̂

α,βð Þ
n

h i
¼�αlog 2ð Þþ1þ2nþβ�βlog 2ð Þþβlog αð Þ�βψ 1þnþβð ÞþO α�1

� �
, α!∞: ð26Þ

A similar result follows for β!∞ by exchanging α$ β. Then, according to Equations (10) and (25), and (26), we find the following asymptotics

for the Shannon-like integral functional of the Jacobi polynomials

S P̂
α,βð Þ
n

h i
��log αð ÞþO 1ð Þ, α!∞, ð27Þ

so that the Shannon entropy power or spreading length of Jacobi polynomials behaves as

LS P̂
α,βð Þ
n

h i
�1
α
, α!∞: ð28Þ

On the other hand, the asymptotics (α!∞, fixed n,β) for the Fisher information (5) of the Jacobi polynomials F[P̂
α,βð Þ
n ] turns out to be

F P̂
α,βð Þ
n

h i
¼ 1þβþ2nβð Þ

4 β2�1
� � α2þO αð Þ, α!∞: ð29Þ
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Finally, the substitution of the last two quantities into Equation (9) gives rise to the following (α!∞, fixed n,β)-asymptotics for the Fisher–

Shannon complexity of the orthonormal Jacobi polynomials:

CFS P̂
α,βð Þ
n

h i
� 1þβþ2nβð Þ

8πe β2�1
� � þO α�1

� �
, α!∞: ð30Þ

The corresponding result for the polynomials with (α!∞;β!∞; fixedn) remains to be found; we have not been able to find it because the

involved asymptotical behavior of the second-order entropic moment W2 P̂
α,βð Þ
n

h i
is a non-trivial task.

Finally, for multidimensional quantum systems with stationary states controlled by Jacobi polynomials (e.g., some supersymmetric quantum

systems) (see, e.g., References [12, 40–42]), the Fisher–Shannon measure (30) and its asymptotical extension for (α!∞;β!∞; fixedn) allow us

to find the pseudo-classical limit of the physical Fisher–Shannon complexity; they correspond to the high-dimensional or pseudoclassical states.

The latter is because the wavefunctions of such extreme states involve polynomials orthogonal with respect to a Jacobi weight function where

both parameters α and β are directly proportional to the system's dimensionality.

4 | LMC COMPLEXITY OF JACOBI POLYNOMIALS

In this section we investigate the LMC complexity of the orthonormal Jacobi polynomials P̂
α,βð Þ
n xð Þ, which is defined as

CLMC P̂
α,βð Þ
n

h i
¼W2 P̂

α,βð Þ
n

h i
�LS P̂

α,βð Þ
n

h i
, ð31Þ

where the second-order entropic moment W2 P̂
α,βð Þ
n

h i
, which measures the disequilibrium or deviation from uniformity, is given by

W2 P̂
α,βð Þ
n

h i
¼
ðþ1

�1
P̂

α,βð Þ
n xð Þ

h i2
hα,β xð Þ

� �2

dx¼
ðþ1

�1
1�xð Þ2α 1þxð Þ2β P̂

α,βð Þ
n xð Þ

h i4
dx: ð32Þ

This statistical complexity quantifies the combined balance of the disequilibrium and the total extent of the polynomials along its

weight function. The explicit expression of this measure in terms of the degree n and the parameters α,βð Þ has not yet been determined in a

handy way, because neither W2 P̂
α,βð Þ
n

h i
nor the spreading length LS P̂

α,βð Þ
n

h i
are analytically known. In this section we obtain simple and compact

analytical expressions for CLMC P̂
α,βð Þ
n

h i
in the two extreme situations, (n!∞; fixedα,β) and (α!∞; fixedn,β). They are briefly summarized in

Table 2.

4.1 | Asymptotics n!∞

To determine the (n!∞; fixedα,β)-asymptotics of the LMC complexity CLMC P̂
α,βð Þ
n

h i
we start by calculating the disequilibrium W2 P̂

α,βð Þ
n

h i
in the

limit n!∞ by means of Theorem 3 of Aptekarev et al. [68], obtaining

TABLE 2 First order asymptotics for the disequilibrium W2 and the LMC complexity CLMC measures of the orthonormal Jacobi polynomialsbP α,βð Þ
n xð Þ, when n!∞ and α!∞

Measure of bP α,βð Þ
n xð Þ n!∞ α!∞

W2
bP α,βð Þ
n

	 

2αþβ�23

π2
Γ αð ÞΓ βð Þ
Γ αþβð Þ β >0

log nð Þ β¼0

n�2β �1< β <0

Γ 1þ4nþ2βð Þ
22 1þ2nþβð Þn!2Γ 1þnþβð Þα

CLMC
bP α,βð Þ
n

	 

2αþβ�23

πe
Γ αð ÞΓ βð Þ
Γ αþβð Þ β >0

π

e
log nð Þ β¼0

π

e
n�2β �1< β <0

Γ 1þ4nþ2βð Þ
22 1þ2nþβð Þn!2Γ 1þnþβð Þ
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W2 P̂
α,βð Þ
n

h i
�

2αþβ�23
π2

Γ αð ÞΓ βð Þ
Γ αþβð Þ , β >0,

log nð Þ, β¼0,

n�2β , �1< β < 0,

8>>><>>>: ð33Þ

and then we keep in mind the corresponding asymptotics (16) for the Shannon spreading length LS P̂
α,βð Þ
n

h i
. The substitution of the asymptotical

values of these two entropic quantities into Equation (31) gives rise to the following asymptotical behavior (n!∞) of the LMC complexity of the

orthonormal Jacobi polynomials P̂
α,βð Þ
n xð Þ:

CLMC P̂
α,βð Þ
n

h i
�

2αþβ�23
πe

Γ αð ÞΓ βð Þ
Γ αþβð Þ , β >0,

π

e
log nð Þ, β¼0,

π

e
n�2β , �1< β <0,

8>>>>>><>>>>>>:
ð34Þ

which extends and includes the corresponding asymptotical quantity recently obtained for the subfamily of Gegenbauer polynomials [48] to

the whole Jacobi family of orthogonal polynomials. See also Figure 1, where the LMC complexity CLMC measures of the orthonormal Jacobi poly-

nomials P̂
α,βð Þ
n xð Þ, with α¼ λ�2ð and β¼ λ�2,2,4,8Þ, and the orthonormal Gegenbauer polynomials Ĉ

λð Þ
n xð Þ are compared for various values of λ

and n!∞. Note that both Jacobi and Gegenbauer complexities match when β¼ λ�2 as one would expect, what is a partial checking of our

results. On the other hand, we observe that in the limit n!∞ the LMC complexity of the Jacobi polynomials behaves very different to the

corresponding quantity of Laguerre polynomials [48], as one expects because of their weight functions are so distinct, except in the special case

β¼0. Indeed, for β¼0 there happens the following phenomenon: the disequilibrium has a logarithmic dependence on n while the Shannon

spreading length is constant so that the total balance for the LMC complexity of the Jacobi polynomials obeys the logn-law as also occurs for the

LMC complexity of Laguerre polynomials [48].

Here again, for the quantum systems with a solvable quantum-mechanical potential with bound-states wavefunctions controlled by Jacobi

polynomials (e.g., some supersymmetric quantum systems) (see, e.g., References [12, 40–42]), the LMC measure (18) allows one to find the

quantum-classical limit of the physical LMC complexity; they correspond to the high-energy or Rydberg states.

4.2 | Asymptotics α!∞

Here we determine the LMC complexity CLMC P̂
α,βð Þ
n

h i
, given by Equation (31), in the limit (α!∞; fixedn,β). First we realize that the Shannon

spreading length LS P̂
α,βð Þ
n

h i
, has been already obtained in Equation (28). Then, we calculate the second-order entropic moment W2 P̂

α,βð Þ
n

h i
, given

by Equation (32). We use the limiting relation (21) into (32), obtaining the value

F IGURE 1 Comparison of the LMC complexity CLMC measures of the orthonormal Gegenbauer polynomials bC λð Þ
n xð Þ and the orthonormal

Jacobi polynomials bP α,βð Þ
n xð Þ, with α¼ λ�2ð and β¼ λ�2,2,4,8Þ, for various values of λ and n!∞
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W2 P α,βð Þ
n

h i
�P α,βð Þ

n 1ð Þ42�4nΓ 1þ2αð ÞΓ 1þ4nþ2βð Þ�
1

Γ 1þ2αð Þ2
eF1 1,�2α,2þ4nþ2β,�1ð Þþ 1

Γ 1þ4nþ2βð Þ2
eF1 1,�4n�2β,2þ2α,�1ð Þ

 !

¼ Γ αþnþ1ð Þ4
n!ð Þ4Γ αþ1ð Þ4

Γ 1þ4nþ2βð ÞΓ 1þ2αð Þ
Γ 2þ2αþ4nþ2βð Þ 21þ2αþ2β

ð35Þ

for the orthogonal Jacobi polynomials. Now, the corresponding asymptotics for the second-order entropic power of the orthonormal Jacobi poly-

nomials is given by

W2 P̂
α,βð Þ
n

h i
¼ 1

κnð Þ2
W2 P α,βð Þ

n

h i
� Γ 1þ4nþ2βð Þ
22 1þ2nþβð Þ n!ð Þ2Γ 1þnþβð Þ

α, α!∞: ð36Þ

Finally, the combination of Equations (31), (28), and (36) lead to the asymptotical behavior

CLMC P̂
α,βð Þ
n

h i
¼ Γ 1þ4nþ2βð Þ
22 1þ2nþβð Þ n!ð Þ2Γ 1þnþβð Þ

, α!∞ ð37Þ

for the LMC complexity of the (orthonormal) Jacobi polynomials with (α!∞; fixedn,β). It remains to find the corresponding result for the polyno-

mials with (α!∞;β!∞; fixedn), which we have not been able to find because the involved asymptotical behavior of the second-order entropic

moment W2 P̂
α,βð Þ
n

h i
is a non-trivial task.

Finally, for multidimensional quantum systems with bound states controlled by Jacobi polynomials (e.g., some supersymmetric quantum sys-

tems) (see, e.g., References [12, 40–42]), the LMC measure (37) and its asymptotical extension when (α!∞;β!∞; fixedn) allow us to find the

pseudo-classical limit of the physical LMC complexity; they correspond to the high-dimensional or pseudoclassical states. This is because the

wavefunctions of such extreme states involve polynomials orthogonal with respect to a Jacobi weight function where both parameters α and β

are directly proportional to the space dimensionality of the system.

5 | CONCLUSIONS AND OPEN PROBLEMS

In this work we have determined the Cramér–Rao, Fisher–Shannon and LMC complexity-like measures of the Jacobi polynomials P̂
α,βð Þ
n xð Þ, with

α,β > �1, in the extreme situations (n!∞; fixed α,β) and (α!∞; fixed n,β). They are given by the leading term of the degree and parameter

asymptotics of the corresponding statistical properties of the associated probability density (Rakhmanov's density), respectively. Each of these

complexity quantifiers capture in a simultaneous way two polynomial's configurational facets of dispersion (variance) and entropic (Fisher, Shan-

non) types. Briefly, in the limit (n!∞; fixed α,β) we have found that both Cramér–Rao and Fisher–Shannon complexities follow a qualitatively

similar n3-law behavior for all β (see Table 1), but the LMC complexity has a different asymptotical n-behavior depending on β (see Table 2). More-

over, in the limit (α!∞; fixed n,β) we have found that the Fisher information and the variance follow a direct and inverse quadratic dependence

on α, respectively, while the second-order entropic moment and the Shannon entropy power follow a direct and inverse linear dependence on α.

The combination of the two dispersion/entropic factors involved for the Cramér–Rao, Fisher–Shannon and LMC complexities lead to a constant

leading term for all the complexity measures. These results can potentially have a strong impact on the calculations of quantum chemical proper-

ties of one- and many-electron systems whose wavefunctions are controlled by Jacobi polynomials; basically, this is because the entropy and

complexity measures quantify the different facets of the internal disorder of the system which are manifest in the great diversity of configura-

tional shapes of the electron probability density. Moreover, the usefulness of these results in quantum chemistry and physics is due to the fact

that for the high energy (Rydberg) and high-dimensional states they can predict without any further calculation the values for the three measures

of complexities of the corresponding systems. This is because such results are expressed directly from first principles; that is to say in terms of the

principal quantum number of the states and the dimensionality of the system.

Finally, a number of open related problems can be highlighted. First, the extension of these results to the varying Jacobi polynomials

[69–71] (i.e., when the parameters depend on the polynomial degree) as well as to the exceptional Jacobi polynomials [42, 72, 73], which

are very useful to standard and supersymmetric quantum mechanics [41]. Second, the determination of the general statistical complexity

measures [74] of Fisher-Rényi [25, 28, 31, 32, 75] and LMC-Rényi [24, 26, 28, 53, 76] types for the standard and varying Jacobi polyno-

mials; this includes the calculation of the Rényi entropy of such polynomials. These open issues are not only interesting per se but also

because of their chemical and physical applications, especially for the extreme quantum states of highly excited Rydberg and high dimen-

sional types of numerous atomic and molecular systems whose bound states are described by wavefunctions controlled by these

polynomials.
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