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a b s t r a c t 

Background and Objectives: Craniometric landmarks are essential in many biomedical applications, such as 

morphometric analysis or forensic identification. The process of locating landmarks is usually a manual 

and slow task, highly influenced by fatigue, skills and the experience of the practitioner. Localization 

errors are propagated and magnified in subsequent steps, which can result in incorrect measurements or 

assumptions. Thereby, standardization, reliability and reproducibility lay the foundations for the necessary 

accuracy in subsequent measurements or anatomical analysis. In this paper, we present an automatic 

method to annotate 3D surface skull models taking into account anatomical and geometrical features. 

Methods: The proposed method follows a hybrid structure where a deformable template is used to ini- 

tialize the landmark positions. Then, a refinement stage is applied using prior anatomical knowledge to 

ensure a correct placement. Our proposal is validated over thirty 3D skull scans of male Caucasians, ac- 

quired by hand-held surface scanning, and a set of 58 craniometric landmarks. A statistical analysis was 

carried out to analyze the inter- and intra-observer variability of manual annotations and the automatic 

results, along with a visual assessment of the final results. 

Results: Inter-observer errors show significant differences, which are reflected in the expert consensus 

used as reference. The average localization error was 2 . 19 ± 1 . 5 mm when comparing the automatic land- 

marks to the reference location. The subsequent visual analysis confirmed the reliability of the refinement 

method for most landmarks. 

Conclusions: Repeated manual annotations show a high variability depending on both skills and expertise 

of the observer, and landmarks’ location and characteristics. In contrast, the automatic method provides 

an accurate, robust and reproducible alternative to the tedious and error-prone task of manual landmark- 

ing. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Studies involving any form of craniofacial analysis require the 

ocation of anatomical structures, usually relying on landmarks, or 

eference points, defined over bone (craniometric) or soft-tissue 

capulometric) structures. Landmark-based analysis is an integral 

art of several tasks in medicine, dentistry, and forensic anthropol- 
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gy, such as craniofacial surgical planning [1] , orthodontics [2,3] , 

orphometrics [4] , or human identification [5] , among others. 

Not all anatomical landmarks are equally identifiable. According 

o Bookstein [6] , landmarks can be classified in three types or cat- 

gories. Type I landmarks are located at the intersection of sutures 

r tissues. Landmarks defined at points of maximum curvature or 

ocal geometric information belong to Type II. Meanwhile, Type III 

efers to extremal landmarks, defined in terms of the location of 

ther landmarks or the orientation of the object. Generally, Type I 

andmarks are considered to be anatomically homologous and eas- 

ly identifiable with precision. 
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Fig. 1. Illustration of the missing dentition or fragmentation state of some models 

in the dataset. 

Fig. 2. Visualization of the landmark distribution across the whole skull anatomy. 
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The task of manual landmark localization is considered error- 

rone and time consuming, while it demands a high level of ex- 

ertise. Reliability and reproducibility studies found that: i) a lo- 

alization error is inherent to the task [7,8] , ii) the magnitude of 

he error depends on the landmark category [9,10] (type I, II, or 

II), and iii) the use of different imaging systems (2D, 3D) or anno- 

ation software can introduce bias in the process [11–15] . 

To address the subjectivity of manual landmark annotation, nu- 

erous approaches have been proposed in the literature, aiming at 

utomatizing the procedure. These techniques benefit from digiti- 

ation advances in the field, such as the increasing availability of 

igital collections of 3D data for archival purposes [16] , or the use 

f advanced imaging techniques to acquire high-resolution digital 

odels of facial morphology and skeletal bone [17,18] . Automatic 

ethods can be classified into three large groups: knowledge- 

ased, template-based, and learning-based [19] . 

Knowledge-based approaches rely on geometric or anatomical 

haracteristics retrieved using computer vision tools: image seg- 

entation, feature extraction, edge and contour detection, among 

thers [20–22] . Their performance is highly influenced by the qual- 

ty of the images or the complexity of the 3D models. Template- 

ased models have been employed to address such limitations. 

he use of templates or statistical shape models [23] has been 

idely considered to compare anatomical features, such as analyze 

he dimorphism of different individuals [24] , reconstruct skeletal 

one [25] , or evaluate facial growth [26] . Commonly, a represen- 

ative 2D image or 3D model is used as reference (template), and 

atched with the corresponding anatomical structure (target) or 

eformed to fit its shape [27–31] . Main drawbacks of template- 

ased approaches are the complexity of the procedure and the ne- 

essity of parameter tuning to avoid inaccuracies when fitting the 

odel. 

In the last few years, learning-based methods have gained pop- 

larity due to recent advances in machine learning, neural net- 

orks and deep learning in particular. While approaches specifi- 

ally oriented to 2D craniometric landmark localization obtained 

ccurate results [32] , their 3D counterparts encountered more dif- 

culties due to the higher complexity of dealing with 3D imag- 

ng data [33] . Learning-based approaches require a great amount 

f training data to properly generalize and obtain competitive re- 

ults [34,35] . Such requirement entails considerable disadvantages 

iven the absence of large and public databases to train the mod- 

ls, and considering that the manual annotation process is time- 

onsuming and unreliable. 

Taking into account the existing limitations of current methods 

n the literature, the aim of this study is to introduce a novel ap-

roach to automatically annotate craniometric landmarks. Our pro- 

osal has been designed for applications where skeletal bone may 

ot be well preserved or present fractures. Therefore, the main 

ontribution of this paper is a hybrid (template- and knowledge- 

ased) method to locate landmarks in 3D surface models of skulls. 

uch design was considered to maximize the accuracy of locating 

natomical structures and to expedite the annotation procedure in 

rder to assist the practitioner. 

. Materials and methods 

The dataset used in this study consists of 3D models of twenty 

ale adult skulls of Caucasian ancestry. It was collected at the 

niversity of Vilnius (Lithuania), by using a hand-held surface 

canner, Go!SCAN 20 TM . The scanned human remains (skulls and 

andibles) belong to the executed leaders of the January Uprising 

f 1863–1864, that were uncovered at the Upper Castle of Vilnius 

n 2017 [36] . Ten of these skulls are in good conditions, while the 

est present problems such as incomplete denture, fragmented re- 

ions due to physical trauma, or scanning errors (low visual resolu- 
2 
ion, missing occluded areas), as shown in Fig. 1 . The dataset was 

omplemented with an additional set of ten modern skulls from 

ale Caucasian adults dating back three decades. The correspond- 

ng 3D surface models were acquired in similar conditions at the 

niversity of Granada (Spain) and were considered to provide an 

verview of the performance of our proposal in different situations. 

A set of 38 standardized craniometric landmarks (18 unilat- 

ral and 20 bilateral, 58 in total) were annotated across the whole 

kull [37,38] , as described in Table 1 and shown in Fig. 2 . The list

ncompasses a subset of type I, II, and III landmarks [6] , commonly 

sed in anatomical studies. This landmark set was manually an- 

otated by a group of three forensic anthropologists with differ- 

nt training and levels of expertise. Participants were instructed 

o space annotations in time during one month to avoid bias, and 

nly to locate those landmarks they could precisely place. Reported 

imes for annotating a single skull were variable, within thirty 

inutes. Additionally, an intra-observer study on the dispersion of 

he manual landmarks was considered over a subset of the dataset. 

n this latter study, all the observers carried out three rounds of 

nnotations in total, over five of the thirty skulls, one month after 

he initial analysis. Results of the intra-observer analysis are shown 

s supplementary material. 

For each skull and landmark, we calculated the averaged loca- 

ion marked by the expert, which is meant to represent the con- 

ensus location of different observations. For clarity, we called this 

he experts average localizations (EAL). Often, this reference co- 

rdinates are used as ground-truth data to assess the results ob- 

ained by some landmarking method, or to either train or test a 

achine learning approach. However, one can identify two impor- 

ant drawbacks to this approach. First, when the task at hand is 

ery subjective and the data is provided by a small number of 

bservers, there is no guarantee that the EAL actually represent 

he best locations. Second, our objective is not to reproduce how 

rained professionals locate landmarks, but rather to locate land- 
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Table 1 

Craniofacial landmark definition according to Caple and Stephan [37] . Frontomalare anterior follows the definition provided by Howells [38] . Last columns indicate the 

category of the landmark according to Bookstein [6] , and the refinement technique applied. No refinement is applied to those marked with ‘-’. 

Landmark Definition T R 

1/2 Alare al Most lateral point on the nasal aperture in a transverse plane determined by 

instrument 

III c 

3/4 Asterion ast Point located on the intersection of the parietal, temporal, and occipital bones I - 

5/6 Auriculare au On the zygomatic root, vertically above the center of the external auditory meatus II l 

7 Basion ba Median plane at the anterior extent of the foramen magnum. It can be the most 

posterior aspect or the most inferior median point on the foramen magnum’s 

anterior rim 

II l s 

8 Bregma b Located where the sagittal and coronal sutures meet I r 

9/10 Coronale co Most lateral point on the coronal suture III - 

11/12 Dacryon d Point on the medial border of the orbit where the lacrimomaxillary suture meets 

the frontal bone 

I - 

13/14 Ectoconchion ec Lateral point on the orbit at a line that bisects the orbit transversely II - 

15/16 Ectomolare ecm Most lateral point on the lateral surface of the alveolar crest, along the second 

molar on the maxilla 

III c 

17/18 Frontomalare anterior fma Most anterior projecting point on the frontomalare suture III - 

19/20 Frontomalare orbitale fmo Point located on the orbital rim marked by the zygomaticofrontal suture II - 

21/22 Frontomalare 

temporale 

fmt Most lateral part of the zygomaticofrontal suture III - 

23/24 Frontotemporale ft Most anterior and medial point of the inferior temporal line, on the zygomatic 

process of the frontal bone 

II - 

25 Glabella g Most projecting anterior median point on lower edge of the frontal bone, on the 

brow ridge, between the superciliary arches and above the nasal root 

II l s 

26 Gnathion gn median point halfway between pogonion and menton III i 

27/28 Gonion go Point on the rounded margin of the angle of the mandible, bisecting two lines one 

following vertical margin of ramus and one following horizontal margin of corpus of 

mandible 

II l 

29 Incision inc Point at the occlusal surface where the upper central incisors meet II l s 

30 Infradentale id Median point at the superior tip of the septum between the mandibular central 

incisors 

II l s 

31 Inion i Median point between the apices of the superior nuchal lines at the base of the 

external occipital protuberance 

II l s 

32 Lamda l Point at which the two legs of the lamboid suture and sagital suture meet I r 

33/34 Mastoidale ms Most posterior point of the mastoid notch II l 

35/36 Maxillofrontale mf Located at the intersection of the anterior lacrimal crest with the frontomaxillary 

suture 

I - 

37 Menton me Most inferior median point of the mental symphysis III l s 

38/39 Mid-supraorbital mso Point on the anterior aspect of the superior orbital rim, at the line that vertically 

bisects the orbit 

II c 

40 Nasion n Located as the intersection of the naso-frontal sutures in the median plane I l s 

41 Ophistion o Median point on the anterior side of the foramen magnum’s posterior rim II l s 

42 Opisthocranion op Most posterior median point of the occipital bone, instrumentally determined as the 

greatest chord length from glabella 

III i 

43/44 Orbitale or Most inferior point on the inferior orbital rim. Usually falls along the lateral half of 

the orbital margin 

II c 

45 Pogonion pg Most anterior median point on the mental eminence of the mandible III l s 

46/47 Porion po Most superior point on the upper margin of the external auditory meatus II - 

48 Prosthion pr Median point between the central incisors on the anterior margin of the maxillary 

alveolar rim 

II l s 

49 Rhinion rhi Most rostral (end) point on the internasal suture I l 

50 Subspinale ss Deepest point seen in the profile view below the anterior nasal spine (point A) II l 

51 Supramentale sm Deepest median point in the groove superior to the mental eminence (point B) II l s 

52 Vertex v Most superior point of the skull with respect to the mid sagittal plane III l s 

53/54 Zygion zy Most lateral point on the zygomatic arch III l 

55/56 Zygomaxillare zm Most prominent point located at around the lower end of the zygomaxillary suture III - 

57/58 Zygoorbitale zo Point of intersection between zygomaxillary suture and orbit border II l 
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3

I

arks according to their definition. Such definitions often imply 

alculations or the evaluation of geometric properties, such as be- 

ng the median point between two other landmarks, or the most 

ater point in an area. It is not hard to imagine that an automatic 

ethod could locate a median point with higher precision than a 

roup of observers. However, if we were to evaluate the algorithm 

nly by comparing its output against the EAL, there would be no 

ay for the algorithm to actually outperform the human observers. 

To address these issues, we performed a subsequent validation 

tudy where human observers were asked to evaluate both EAL 

nd the automatic localizations in terms of compliance with the 

andmarks definition. Three observers participated in a blind ex- 

eriment to ascertain the most precisely located landmarks over 

he same five skulls considered in the intra-observer study. Two 
3  

3 
f the three observers were not involved in the previous annota- 

ion procedure. During the validation, the practitioners performed 

 visual assessment of both localizations using the open-source 

oftware Meshlab (meshlab.net). No reference was provided on 

hich coordinate belongs to the expert consensus or the automatic 

ethod. 

. Technical procedure 

.1. Manual annotation 

Manual landmarks were recorded using the software Skeleton- 

D 

TM (skeleton-id.com), which allows practitioners to visualize the 

D models and locate points guided by a toolset (see Fig. 3 ) de-
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Fig. 3. Anatomical planes available in Skeleton-ID to assist with the landmark annotation process. 
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igned to improve the precision of the procedure (as recommended 

y MEPROCS [39] ). The online service includes tools to: 

• Set the 3D model in the Frankfort Horizontal plane [40] , fol- 

lowing the convention of 1884 to orient objects in anatomical 

standard position. 
• View the cranial norms in 4 simultaneous windows, three of 

them displayed according to the Frankfort Horizontal plane, 

easing the location and refinement of craniometric points. 
• Crosshair and traverse auxiliary 3D lines to increase the preci- 

sion of locating craniometric points related to other points or 

anatomical structures. This tool allows the user to interact with 

two views at the same time, unequivocally locating the most 

anterior or posterior point in a region within the surface of the 

3D model. 

.2. Automatic landmark initialization 

The Meshmonk registration framework 1 [41] is used to auto- 

atically provide an initial set of landmarks for a target skull. The 

rocedure follows a template-based strategy where a reference 3D 

esh is aligned and elastically deformed to generate a homolo- 

ous model of the target mesh (non-rigid registration). A homol- 

gous surface establishes a correspondence between the vertices 

f the template and the target surface. Thus, landmarks placed on 

he template can be located on the same vertex point of the ho- 

ologous model and then projected (mapped) onto the anatomi- 

ally equivalent point of the target surface. As the vertex index of 

he template landmark is known, the corresponding 3D coordinate 

fter the elastic deformation will also be known. Then, the new lo- 

ation in the 3D space for each landmark is directly mapped onto 

he nearest vertex of the target surface. Fig. 4 summarizes this au- 

omatic annotation procedure, where the first step involves build- 

ng an annotated template model as part of the design of the pro- 

osed method. The template generation is a semi-automatic step 

equired only once before the proposed method can be applied au- 

omatically. 
1 Open-source implementation available at: https://github.com/TheWebMonks/ 

eshmonk 

p

m

o

r

4 
The reference template is created following an iterative proce- 

ure, as described in [42] . Here, ten of the target skulls in bet- 

er conditions were used to avoid bias due to missing surface 

nformation. Initially, all the mesh surfaces are realigned into a 

ommon coordinate system using generalized Procrustes analysis 

GPA), along with the manual annotations. A random skull model 

rom the database can be used to provide a reference framework 

or building an annotated template with a fixed number of ver- 

ices and faces ( Fig. 4 .a). This model was manually edited to repair

urface errors and decimated to a final number of 154,328 vertices 

sing Meshlab. For each mesh in the subset, the initial template 

s deformed into a corresponding homologous surface. Then, these 

odels are averaged into a new template mesh, which is used for 

he next iteration. The process is repeated three times until con- 

ergence, which results in a smoothed 3D skull with no individ- 

alizing characteristics. Template landmarks are initialized as the 

verage of the aligned EAL coordinates, located onto the template 

esh vertices. 

Once the generation stage is completed, the system is ready to 

utomatically transfer landmarks into any target skull by apply- 

ng the template mapping procedure ( Fig. 4 .b). The computational 

ime required by the initialization step is variable, as it depends 

n the resolution of the 3D meshes (number of vertices), and the 

eformable registration iterations. For the 3D models considered in 

his work and 200 iterations as recommended in [41] , the process- 

ng time ranges between three and ten minutes per skull model. 

.3. Anatomical refinement 

After the initialization, a refinement stage is applied. Our pro- 

osal incorporates the anatomical information from the landmark 

tandard definitions into a knowledge-based refinement procedure. 

he procedure is then guided by a series of geometric cues to im- 

rove the precision of the automatic landmarks placement within 

 small region of interest. The radius of this regions has been em- 

irically determined as the Euclidean distance error between the 

apped landmarks and the EAL as follows. For the three iterations 

f the template generation procedure ( Fig. 4 .a), the resulting er- 

ors of the mapped landmarks were logged before computing the 
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Fig. 4. Workflow of the automatic landmark initialization using the Meshmonk framework. (a) Template generation by averaging 3D models and landmark coordinates. (b) 

Template mapping and landmark transfer to a target model. 

Fig. 5. Illustration of the neighborhood areas (in red) where the refinement tech- 

nique is applied. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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veraged template. Then, for each landmark, the radius was set ac- 

ording to the 75th percentile of the logged error distribution ac- 

ording to the ten considered skulls. Fig. 5 depicts (red) the radius 

f the search areas around each landmark. 

In particular, we have developed a set of custom-designed 

euristics or refinement approaches on how to displace the ini- 

ial landmark coordinates (see Fig. 6 ). Our approach is versatile, as 

ultiple heuristics can be combined depending on the landmark 

efinition. The refinement approaches considered in our proposal 

re: 

• Symmetry (s) . Landmarks defined along the median or mid- 

sagittal plane, which vertically divides the skull in two sections, 
5 
are displaced onto the closest mesh vertex that fits the sym- 

metric plane of the skull ( Fig. 6 a). Following the approach de- 

scribed in [43] , the reflectional symmetry of a skull model is 

automatically extracted. Then, the contour points of the inter- 

section between the skull model and the symmetry plane are 

used to refine the location of the landmarks. 
• Contour information (c) . A set of 2D projections of different ar- 

eas of the 3D skull model are extracted in order to find points 

along the contour of the orbital and nasal cavities. Contour 

points provide auxiliary information such as vertical and hori- 

zontal bisections to support the refinement ( Fig. 6 b). Initialized 

landmarks provide sufficient information to define a 3D bound- 

ing box around the areas of interest from which a section of 

the mesh is extracted. A perspective camera model, positioned 

at the minimum distance that encompasses the mesh section 

in the scene and oriented towards the center of the bounding 

box, is used to simulate the 2D projection. 
• Local curvature (l) . Within a reduced neighborhood area around 

a candidate landmark, the 3D mesh is locally explored accord- 

ing its geometric information. Knowledge of the mesh orien- 

tation and the 3D vertex coordinates allow us to search for 

extremal points inside a neighborhood according the coordi- 

nate planes. A subset of geometric heuristics is thus defined 

to extract the most superior/inferior, anterior/posterior , or lateral 

left/right neighbor vertex in the surface of the mesh to refine 

the landmark placement ( Fig. 6 c). 
• Ridges (r) . Cranial sutures provide a clear reference on where to 

locate anatomical landmarks. However, suture detection is not 

a trivial task, as it depends on the quality of the 3D model. As- 

suming the lack of high-resolution models and texture, we re- 

strict its application to two landmarks placed in the most visi- 

ble sutures: bregma and lamda. A 2D projection of the skull is 
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Fig. 6. Visualization of the different approaches for landmark refinement: (a) mid-plane detection; (b) contour and bisect lines detection; (c) local curvature analysis to 

displace vertex (left), and zygion L (right); (d) Ridge detection to locate lamda; (e) Automatic measurement of greatest chord length to displace opisthocranion. 
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Table 2 

Summary of the mean (μ) , standard deviation (σ ) , and median (M) 

Euclidean distance (mm ) with respect to the EAL. Results are orga- 

nized by landmark type and method. 

Manual Initialization Refinement 

Type μ (σ ) M μ (σ ) M μ (σ ) M 

I 1.5 (1.9) 0.8 3.1 (3.5) 2.0 3.1 (3.5) 2.0 

II 1.5 (1.4) 1.1 1.8 (1.7) 1.3 1.7 (1.5) 1.3 

III 2.0 (2.3) 1.2 2.7 (3.5) 1.6 2.2 (1.9) 1.6 

Total 1.7 (1.3) 1.3 2.4 (1.7) 2.0 2.2 (1.5) 1.8 

4

t

c

s

r

t

2 Open-source implementation available at: https://github.com/aecins/symseg 
3 Open-source graphics library available at https://threejs.org/ 
extracted by positioning a virtual camera oriented towards the 

initialized landmark, which provides an overview of the skull 

surface around the region of interest. Then, the 2D projection 

is analyzed to find salient features corresponding to the cra- 

nium sutures by using the ridge detection filter implemented 

in OpenCV [44] . With this approach, the edges of the cranial 

sutures are easily detected as individual feature points on the 

image. A line corresponding to each visible suture is fitted on 

the detected points using the least squares method to pro- 

vide reference of the suture trajectories. Finally, the intersection 

point between the trajectories of cranial sutures is estimated 

( Fig. 6 d). The application of this heuristic is conditioned to the 

visibility of cranial sutures. 
• Instrumental (i) . For those landmarks whose definition is in- 

strumentally related to others (i.e., median point between two 

landmarks), we defined a specific rule. The geometric calcula- 

tion is performed once the related landmarks are refined to en- 

sure a correct placement ( Fig. 6 e). Then the average point in the

euclidean space between landmarks is computed and displaced 

onto the closest vertex of the target mesh. 

The proposed heuristics share a common procedure whenever 

he mesh surface is analyzed to search for the closest vertex of a 

D coordinate or an extremal point within a neighborhood ( local 

urvature ). In the first place, the mesh vertices are indexed inside 

 binary search tree, known as K-D Tree [45] . Then, the search for

he refined point within the region of interest (radius distance) is 

arried out by looking at the neighborhood of vertices around each 

apped landmark. This method is called k-nearest neighbors algo- 

ithm (k-NN). Vertex indexation allows for a rapid access to the 

esh geometry, resulting in a refinement step where the multiple 

euristics detailed above are processed in less than 20 seconds. 

.4. Summary of the pipeline 

In order to provide an overview for the application of our hy- 

rid proposal, we detail here the steps followed to automatize the 

ask of landmark annotation, along the implementation details of 

he different modules involved. 
6 
• Template mapping: The fist step involves the elastic deformation 

of the annotated template and the landmark mapping from the 

deformed template to the target model. The Meshmonk regis- 

tration framework is used for this purpose [41] . 
• Symmetry detection: In parallel, the symmetric plane of the tar- 

get skull is obtained using the method 

2 proposed in [43] . 
• Contour and ridge detection: Once the landmarks are initialized 

onto the target mesh, their coordinate information is used to 

obtain 2D projections of the areas of interest in order to extract 

the relevant features used by the proposed heuristics. The com- 

puter graphics libraries Three.js 3 and Opencv [44] were used 

for this purpose. 
• Anatomical refinement: The adhoc heuristics gather all the pre- 

vious information and refine the location of the initialized land- 

marks using the K-D Tree implementation of Three.js for a fast 

neighborhood search. 

. Results 

The resulting landmark coordinates from manual observations, 

he template fitting method, and our refinement proposal were 

ompared in terms of the Euclidean distance error. The compari- 

on was made considering the EAL of the manual observations as 

eference locations. Table 2 summarizes the total error between 

he manual observations, the template-based approach only, and 
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Table 3 

Mean error (μ) and standard deviation (σ ) in mm reported for the pro- 

posed automatic landmarks after refinement. The percentage rate of land- 

marks below a 2 mm, 3 mm, and 4 mm threshold is also shown ( % ). 

Landmark μ (σ ) < 2mm < 3mm < 4mm 

al L 1.4 (0.8) 83 93 100 

al R 1.6 (1.0) 80 90 97 

ast L 6.4 (4.9) 11 25 43 

ast R 5.7 (6.2) 11 21 43 

au L 1.4 (0.7) 83 97 100 

au R 1.4 (1.1) 80 90 97 

ba 1.4 (0.7) 82 96 100 

b 5.0 (3.4) 17 40 50 

co L 3.8 (2.8) 20 60 77 

co R 3.7 (2.4) 23 50 67 

d L 2.2 (1.2) 60 73 90 

d R 1.7 (1.0) 70 87 97 

ec L 1.3 (0.7) 73 97 100 

ec R 1.5 (1.2) 67 97 97 

ecm L 3.4 (2.5) 44 59 63 

ecm R 2.5 (2.4) 56 70 81 

fma L 1.3 (1.0) 70 93 100 

fma R 1.3 (1.0) 83 87 100 

fmo L 1.5 (0.9) 67 93 100 

fmo R 1.3 (0.9) 80 97 100 

fmt L 1.8 (0.9) 70 87 100 

fmt R 1.4 (0.9) 80 93 100 

ft L 1.9 (1.2) 63 83 93 

ft R 2.2 (1.2) 47 83 90 

g 1.4 (0.7) 87 97 100 

gn 1.2 (0.6) 90 100 100 

go L 2.1 (1.2) 50 77 93 

go R 2.5 (1.0) 30 53 97 

inc 1.3 (1.4) 86 95 95 

id 1.5 (1.8) 86 86 93 

i 5.1 (3.8) 14 45 52 

l 4.9 (3.3) 21 32 46 

ms L 1.1 (0.7) 80 100 100 

ms R 1.2 (0.6) 87 100 100 

mf L 1.6 (0.7) 72 93 100 

mf R 1.7 (0.9) 67 90 100 

me 1.1 (0.6) 87 100 100 

mso L 2.1 (1.3) 53 80 93 

mso R 1.4 (0.8) 70 97 100 

n 1.2 (0.8) 90 97 100 

o 1.4 (0.9) 76 97 100 

op 4.0 (2.7) 23 43 60 

or L 1.9 (1.1) 53 90 97 

or R 2.3 (1.3) 53 77 87 

pg 1.3 (0.8) 73 100 100 

po L 1.6 (1.0) 73 93 97 

po R 2.0 (1.1) 47 87 97 

pr 1.9 (2.3) 78 85 85 

rhi 1.5 (0.9) 71 93 100 

ss 1.0 (0.6) 90 100 100 

sm 2.1 (1.4) 60 77 93 

v 3.5 (2.2) 27 47 70 

zy L 2.4 (1.6) 48 72 83 

zy R 2.4 (1.4) 43 73 87 

zm L 2.2 (1.3) 53 80 87 

zm R 2.7 (2.8) 57 63 87 

zo L 1.8 (1.3) 61 82 96 

zo R 2.3 (1.5) 59 72 83 

o
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Table 4 

Summary of the three pairwise Dunn tests performed. Manual annotations by the 

observers are noted as A, B, and C. Auto corresponds to the proposed refinement 

approach. 

By Method Z p By Type Z p 

A - B -4,67 < 10 −6 Manual I - II -4,79 < 10 −6 

A - C -6,19 < 10 −9 I - III -8,64 < 10 −17 

B - C -1,42 0,01 II - III -5,56 < 10 −8 

A - Auto -15,16 < 10 −45 Auto I - II 3,07 < 0 , 05 

B - Auto -10,80 < 10 −26 I - III -3,20 < 0 , 05 

C - Auto -9,59 < 10 −21 II - III -8,15 < 10 −15 
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ur proposed approach (that combines the refinement with the 

emplate-based initialization). A detailed comparison of the results 

or the proposed refinement method is shown in Table 3 . Fig. 7 

hows the localization error between manual observations, the au- 

omatic landmark initialization, and the refined landmarks. Addi- 

ionally, Table S4 of the supplementary material includes a com- 

arative study on the suitability of the template generation pro- 

edure (see Fig. 4 .a) when the method is applied to anatomically 

ifferent populations. The study analyzes differences in the results 

etween two skull samples dated more than one century apart. 
7 
n summary, the analysis showed no substantial differences that 

ould be attributed to bias in the template landmarks. 

.1. Statistical analysis 

To analyze the performance of the proposed automatic method 

nd the influence of the landmark category in the localization er- 

or, we performed a series of pairwise comparisons using the non- 

arametric Dunn’s test [46] . The aim was to test the null hypoth- 

sis stating there is no difference between the compared groups 

or a considered level of significance α = 0 . 05 . The results of the

tatistical tests are summarized in Table 4 . All statistics and analy- 

is conducted in this work were performed in R, version 3.6.3 for 

inux [47] . 

In particular, we performed three different comparisons: i) by 

ethod ; studying the differences between the three manual obser- 

ations and the automatic annotation, ii) by type - manual ; ana- 

yzing the influence of the landmark category on the manual ob- 

ervations, and iii) by type - auto ; comparing this influence on the 

utomatic landmarks. The first analysis ( by method ) was considered 

o provide insight into the subjectivity of the manual annotations 

nd the suitability of EAL as a measure of reference. The results of 

he statistical tests showed significant differences that can be at- 

ributed to both the method considered (manual observations vs. 

utomatic) and the category of the landmarks. Nevertheless, differ- 

nces are larger for the automatic method and Type III landmarks. 

.2. Validation analysis 

The validation assessment was performed over the 36 land- 

arks where the refinement heuristics were applied (see Table 1 ). 

o verify the suitability of the resulting landmarks, three foren- 

ic experts quantified the number of cases where either the ex- 

ert consensus or the refined coordinates were properly located 

ccording the anatomical landmark definitions. They also quanti- 

ed the number of cases where the automatic location was con- 

idered equal or better than the reference location. In addition, a 

inomial test was performed for each landmark considering the 

ollowing null hypothesis: ‘There are no differences in quality be- 

ween the location of the expert consensus (EAL) and the automatic 

andmark’ . 

Table 5 summarizes the results of the validation study. The per- 

entage of cases where the automatic refinement method achieved 

imilar or better results than the expert consensus is 82%. The sta- 

istical tests strongly support the findings of the validation study. 

esults showed significant differences for 16 landmarks where the 

ccuracy of the automatic method is remarkable. 

. Discussion 

The motivation behind using a database of 3D scanned mod- 

ls is to portray a straightforward view of the applicability of our 

roposal to actual forensic identification scenarios. High-resolution 

edical images are not always available in many situations where 
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andmark analysis is required, and data can be either incomplete 

i.e., fragmented skulls, partial denture, or missing landmarks) or 

nprocessed (3D models may present noise or holes in the mesh 

tructure). During the initialization stage, the template-based de- 

ormation is able to provide a good fitting of the homologous mod- 

ls to the target skull models, regardless of its conditions. Thus, 

his stage allows for a method robust to fragmentation, holes in 

he 3D model or missing structures. We expect the use case of 

ow quality or fragmented models to introduce additional sources 

f uncertainty in the procedure, especially during the homologous 

odel fitting. However, the proposed method could be applied 

o different biomedical applications involving landmark annotation 

n 3D meshes. The only requirement would be using a 3D tem- 

late adapted from a similar image modality, i.e., 3D models re- 

onstructed from computed tomography (CT) data. 

This study first analyzes the inter- and intra-observer disper- 

ion. Results show that manual localization errors are consistent 

ith studies in the literature (mean 1 . 62 ± 1 . 2 mm) [8,14] . As ex-

ected, each landmark presents a different degree of reliability. Re- 
8 
eated annotations by the same observer can also present a high 

ariability, as shown in Tables S1 to S3 of the supplementary mate- 

ial. Statistical results for the inter-observer dispersion (upper left 

f Table 4 ) also found significant differences. While many elements 

nfluence the dispersion shown between observers, two main fac- 

ors can provide an explanation: i) the difficulty of locating in- 

istinct sutures (i.e., asterion or bregma) due to low image qual- 

ty [48] , and ii) the influence of distinct training or skills, which 

s noticeable for observer C (see Fig. S1 of the supplementary ma- 

erial) [49] . Regarding the influence of the landmark category on 

he localization error, manual observations present significant dif- 

erences among the three types (I, II, or III). This conclusion is also 

onsistent with other studies [50] , and can be extrapolated to the 

utomatic method. 

The template fitting method provides a complete initialization 

f the landmark coordinates. Results show an average error for 

he 58 landmarks of 2 . 25 ± 1 . 6 mm, which is acceptable. However,

his approach is sensitive to the quality of the 3D model and the 

ariability of the manual annotations when building the template. 
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Table 5 

Results for the validation analysis. First two columns show the percent- 

age of cases where the expert consensus (EAL) and the refined land- 

marks (Auto) are properly located ( % ). Third column shows the percent- 

age of cases where the refined landmark is considered to be equivalent 

or better than the expert consensus (Auto ≥ EAL). Last two columns 

show the results of the binomial tests, considering the raw p-value, and 

its adjustment for multiple comparisons. Values in bold are statistically 

significant for a confidence level of 95 % . 

Accuracy Binomial 

Landmark EAL Auto Auto ≥ EAL p adj-p 

al L 87 87 80 0.04 0.4 

al R 87 80 80 0.04 0.4 

au L 100 73 73 0.12 0.9 

au R 87 87 87 0.01 0.1 

ba 93 80 80 0.04 0.4 

b 73 27 13 0.01 0.1 

ec L 93 93 87 0.01 0.1 

ec R 93 93 93 < 10 −04 0.03 

g 93 93 93 < 10 −04 0.03 

gn 93 100 100 < 10 −05 0.002 

go L 47 100 100 < 10 −05 0.002 

go R 73 100 93 < 10 −04 0.03 

inc 100 42 33 0.39 1.0 

id 100 100 93 < 10 −04 0.03 

i 67 67 67 0.30 1.0 

l 73 33 33 0.30 1.0 

ms L 87 100 100 < 10 −05 0.002 

ms R 87 100 100 < 10 −05 0.002 

me 93 100 93 < 10 −04 0.03 

mso L 100 87 87 0.01 0.1 

mso R 93 100 93 < 10 −04 0.03 

n 100 100 100 < 10 −05 0.002 

o 87 87 87 0.01 0.1 

op 60 100 93 < 10 −04 0.03 

or L 73 93 87 0.01 0.1 

or R 67 87 87 0.01 0.1 

pg 100 100 93 < 10 −04 0.03 

pr 93 100 93 < 10 −04 0.03 

rhi 92 83 67 0.39 1.0 

ss 100 100 100 < 10 −05 0.002 

sm 80 80 67 0.30 1.0 

v 80 93 93 < 10 −04 0.03 

zy L 93 87 80 0.04 0.4 

zy R 100 67 60 0.61 1.0 

zo L 87 87 80 0.04 0.4 

zo R 67 93 87 0.01 0.1 
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he statistical analysis shown in Table 4 ( by method ) indicates the 

ispersion found in manual observations is transferred to the au- 

omatic method through the expert consensus. In a recent study, 

idel et al. [31] measured the dispersion of using different tem- 

late annotations on 1.64 mm, over 41 craniometric landmarks an- 

otated on 10 skulls. Moreover, vertices among low curvature ar- 

as of the skull template present a higher variability in their lo- 

ation after the deformable registration. This issue mostly affects 

andmarks located in areas from the back of the skull and, espe- 

ially, those placed at the intersection of sutures and bones (i.e., 

sterion, bregma, inion, lamda, or vertex). Landmarks in the dental 

rea also show a slightly higher variability, which can be explained 

y the quality of the 3D mesh or the absence of teeth in some of

he cases. This limitation justifies the application of the refinement 

tage proposed in this work. 

After the refinement step, our proposal achieves an average er- 

or of 2 . 11 ± 1 . 5 mm for the 58 considered landmarks, slightly low-

ring the resulting deviation. On average, 64% of the landmarks 

re identified under a threshold error of 2 mm, 82% under 3 mm, 

nd 89% under 4 mm. While the improvement in terms of error 

agnitude is not significant, the posterior refinement ensures the 

natomical position of the coordinate is correct. Thus, the refine- 

ent is essential to minimize those cases where the initialization 
9 
as displaced the landmark position during the template deforma- 

ion. 

The reliability analysis helps us identify landmarks where the 

utomatic method behaves poorly, such as asterion, inion, or 

amda, with results under 60%. When excluding such landmarks 

rom the analysis (asterion, bregma, and lamda), automatic local- 

zation error for Type I landmarks falls to 1.5 mm, closely related 

o the error shown by manual annotations. In contrast to the pre- 

ision of frontal landmarks, the lack of curvature information from 

reas at the back of the skull impairs the application of an accurate 

efinement strategy. We suggest a manual verification of landmarks 

here convoluted patterns may occur, such as partial sutural fu- 

ion or wormian bones, to ensure its correct placement when im- 

ge quality is low. For those cases in the database where the ridge 

etection could be applied, suture landmarks bregma and lamda 

ere correctly identified with an average error of 2.7 mm. Such re- 

ults suggest we are addressing a worst-case scenario and the use 

f CT data can provide better performance due to higher detail vis- 

bility. 

Localization errors achieved by the refinement method are 

omparable to other methods in the literature, where reported av- 

rage errors are between 1.88 and 2.51 mm [21,29,30] , and me- 

ian errors around 2 mm [28] . While these results are similar to 

ur proposal, it is not possible to directly compare the methods. 

he specific landmark set studied in each proposal is a determi- 

ant factor on the final magnitude of the localization error. 

Our analysis also concurs with findings of Gupta et al. [21] . It 

an be argued that the considered EAL is not a valid evaluation 

ethod. The expert consensus presents high variability for some 

f the most used landmarks, i.e., orbitale, gonion, or vertex, among 

thers. In the absence of a ground-truth or objective reference lo- 

ation, EAL provides a way to numerically compare our proposal 

ith human practitioners. However, a complementary analysis is 

equired, as the consensus location might displace the landmark 

way from its true location according the definition. The visual in- 

pection performed during the validation study supports the pre- 

ious assumption. EAL locations are not completely reliable due to 

he inter-observer variability between annotations. On the other 

and, a visual analysis confirms that most refined landmarks are 

laced in equivalent or more precise anatomical locations. Land- 

arks that are easily located by computer-based methods still 

resent a high amount of error when compared to the EAL. For 

xample, opisthocranion and vertex, which show error distances of 

4 mm, are also considered as highly reliable ( > 90% ) during the 

isual validation performed by experts. 

Once the template has been generated following the step of 

ig. 4 .a, the proposed method provides a complete automation of 

he 3D landmarking process without manual intervention. The an- 

otation time is variable and depends mainly on the template fit- 

ing method, where computation time and registration accuracy 

an be balanced. The automatic method is able to provide results 

as much as 6 times) faster than human observers for every case 

n the dataset considered in this work. This factor alone is of great 

mportance, as our proposal can substantially expedite the comple- 

ion time of tasks requiring landmark annotation, especially when 

ultiple cases or collections of data are involved. 

We identify some limitations in our study. Primarily, the dataset 

onsists only on male skulls. The template suitability analysis 

ound a similar precision when using a template in a population 

ample from a different time period. It indicates the method is, to 

ome extent, robust to changes in the skull anatomy and the pres- 

nce of individualizing features. However, other anatomical differ- 

nces between very distinct populations may impact the perfor- 

ance of our proposal. In future works, we will analyze the influ- 

nce of ancestry, age or sex in the generation of template mod- 

ls. Another limitation is the refinement of sutures. Currently, the 
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uality of the considered 3D models is crucial on the application 

f some refinement techniques. Thus, the coordinates of 11 of the 

8 landmarks are not altered after initialization (noted with ‘-’ in 

able 1 ). As an alternative, texture information can be used to de- 

ect suture intersections when the quality of the 3D model is not 

ufficient. 

. Conclusions 

The aim of this work is to introduce a novel automatic method 

o annotate landmarks on 3D surface models of skulls. Specifi- 

ally, our proposal integrates two different approaches: a method 

ased on a template model combined with the expert knowledge 

xtracted from the standardized definition of craniometric land- 

arks. In addition, we analyze the reliability of a comprehensive 

et of landmarks (58 in total) across the entire anatomy of the 

kull, depending on its location and category. 

Our proposal proved to be an accurate alternative to man- 

al landmark annotation, robust to the deterioration condition of 

kulls. We found a clear advantage in locating Type II and III land- 

arks, located at regions with high curvature and extremal points, 

hich minimizes the dispersion of landmarks where human ex- 

erts tend to err. The results in terms of error against the ex- 

ert consensus make our proposal suitable to be applied in sev- 

ral tasks while allowing a fast, reliable, and repeatable analysis 

f craniometric landmarks. The results of the refinement method 

onfirm the effectiveness of our proposed approach combining a 

achine learning method with adhoc techniques based on expert 

nowledge. 

Moreover, the introduced design can be adapted to the applica- 

ion at hand. Different templates can be used when different im- 

ge modalities (surface models or CT scans) are involved, or fit- 

ed to distinct population samples. New refinement techniques can 

asily be integrated to improve the localization of alternative land- 

arks. In addition, any craniometric landmark could be considered 

s long as any of the policies can be applied for its refinement. 

uch versatility can introduce substantial benefits, for instance, in 

orensic identification applications where landmark analysis heav- 

ly depends on occlusion and visibility of facial features from pho- 

ographs used as comparison. 
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