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A B S T R A C T   

Precipitation deficit and more extreme drought and precipitation events are expected to increase in the Medi
terranean region due to global warming. A great part of this region is covered by olive orchards, representing 
97.5% of the world’s olive agricultural area. Thus, the adaptation of olive cultivation demands climate-smart 
management, such as the optimization of water use efficiency, since evapotranspiration is one of the most 
important components of the water balance. The novelty of this work is the combination of the remote sensing 
data fusion and the Two Source Energy Balance (TSEB) model (through Sentinel-2 and Sentinel-3 imagery) to 
estimate the actual daily evapotranspiration (ETd), at high spatial (20 m) and temporal (daily) resolution, in an 
olive orchard under two management regimes: herbaceous free (HF) and herbaceous-cover (HC); along a three 
years period, based on the hypothesis that TSEB is still able to track and estimate the evapotranspiration over 
more complex canopies. The study was carried out from 2016 to 2019 in an olive orchard in the South of Spain, 
where the flux estimates were validated and assessed by in situ eddy covariance (EC) measurements. The results 
show better agreement in HC for net radiation (Rn) and the soil heat flux (G), but similar for both surfaces 
regarding the sensible (H) and latent (λE) heat fluxes, as well as ETd. On both surfaces greater differences ob
tained at higher H, and the magnitude of overestimation of λE and ETd were influenced by the EC energy 
imbalance. By contrast, G was overestimated with HC probably influenced by herbs, and equally underestimated 
for HF surfaces. The obtained results are in agreement with similar studies in tree crop orchards, and show the 
consistency of the used methodology and its usefulness for some farming activities, even on the more hetero
geneous surface.   

1. Introduction 

In recent years, there has been an increase in impacts on the Earth 
ecosystems caused by weather and climate events amplified by climate 
change. These events produce displacement, migrations and important 
consequences on human health, socio-economic development, and food 
security (Kappelle et al., 2020; UNESCO and UN-Water, 2020). With the 
policy of net zero CO2 emissions expected for 2055 and reducing the net 
non-CO2 radiative forcing after 2030, global warming will probably 
(with a high degree of confidence) increase the global temperature 

between 1.5 ºC (best-case scenario with a faster reduction of CO2 
emissions) to 2.0 ºC (no reduction of net non-CO2 radiative forcing) in 
upcoming decades (2030-2052) and last for centuries or millennia 
(Masson-Delmotte et al., 2018). Consequently, water availability will 
become more unreliable. Due to more extreme precipitation and 
drought events, precipitation deficits are likely in the Mediterranean 
region (Lionello and Scarascia, 2018; UNDRR, 2019; UNESCO and 
UN-Water, 2020). Presently, agriculture represents around 70% of 
global freshwater use (Shukla et al., 2019). Therefore, water resources 
and productivity maximization can play a very important part in 
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mitigating the effects of climate change. Sustainable management, 
including the maintenance of spontaneous herbaceous cover, can pre
serve land productivity and prevent and reduce its degradation. More
over, it can reduce greenhouse gas emissions and help to sequester 
carbon in biomass and soils (Shukla et al., 2019; UNDRR, 2019; 
UNESCO and UN-Water, 2020). 

One of the most important crops in the Mediterranean basin with 
relevant socio-economic benefits and ecological consequences are olive 
trees. The Mediterranean accounts for 97.5% (10.5 Mha) of the world’s 
olive cultivation area (http://www.fao.org/faostat/en/#data/QC, 
accessed 14 May 2021). It occupies 2.7 Mha in Spain, of which more 
than 1.6 Mha are in Andalusia (MAPA, 2019). In this context, olive 
cultivation demands climate-smart management to facilitate crop 
adaptation to future climate scenarios and predictable development. 
Thus, management optimization and more efficient water use in relation 
to productivity is an especially important issue. Therefore, a better 
quantification of the components of the water balance in olive trees is 
essential. Evapotranspiration (ET) is one of the most important com
ponents of the water balance in which relevant decreases are expected in 
the Iberian Peninsula as consequence of climate change (García-Valde
casas Ojeda et al., 2020). Therefore, to improve the water use efficiency 
of agricultural systems there is a need to provide timely estimates of 
grove-scale ET and water use. 

The latent heat flux (λE) or ET represents a latent energy transferred 
to the lower atmosphere later released in the form of clouds and pre
cipitation. Different models have been developed during recent decades 
to estimate it (Courault et al., 2005; Kalma et al., 2008; Overgaard et al., 

2006). Most of these models are based on the surface energy balance and 
mainly supported by the thermal infrared (TIR) data through remote 
sensing. Therefore, ET can be calculated from the λE as a residual from 
the energy balance, using estimations of net radiation (Rn), sensible heat 
flux (H) and soil heat flux (G), assuming that heat accumulated in the 
canopy, energy for photosynthesis, and advection are negligible (λE = Rn 
– H – G). These models are based on the vertical transport of mass and 
heat exchange rate between the land surface and the atmosphere. These 
exchanges are regulated by land surface and vegetation properties, and 
driven by the local meteorology. Among them, one-source and 
two-source models have been developed. One-source models consider 
the surface as the single layer in heat and momentum exchange with the 
atmosphere without differentiating between radiative and turbulent 
exchange processes for the soil evaporation and vegetation components. 
Alternatively, two-source models consider a soil/substrate layer and a 
vegetation canopy layer interacting with the atmosphere. 

Flux partitioning between layers (soil and canopy) can be especially 
complex when they exhibit a high degree of heterogeneity or strongly 
clumped canopies, such as in semiarid environments or widely spaced 
row crops, where both soil and vegetations layers will attain signifi
cantly different temperatures. Thus, two-source models such as Shut
tleworth and Wallace (1985) have been developed with the aim of 
overcoming the limitations of one-source models which do not account 
for unique differences in exchange processes between soil/substrate and 
plant canopy. Similarly, Norman et al. (1995) and Kustas and Norman 
(2000) presented a Two-Source Energy Balance model (TSEB) that 
combines remote sensing and meteorological data for estimating 

Fig. 1. Location and description of study area. Cartographic sources: Base cartography of the CNIG (National Spanish Centre for Geographical Information) BCN500; 
Orthoimage of the PNOA (National Plan of Aerial Orthophotography), study site at 0.5 m of spatial resolution of maximum timeliness, acquired from CNIG; Province 
of Jaén, Sentinel-2 (https://sentinel.esa.int/web/sentinel/sentinel-data-access, accessed 14 May 2021). 
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soil/substrate and plant canopy. It is based on directional (i.e., view 
geometry) radiometric surface temperature and partitions energy fluxes 
into soil (evaporation) and vegetation (transpiration). As opposed to 
one-source models, TSEB physically relates the radiometric temperature 
(Trad), acquired with thermal infrared sensors, with the aerodynamic 
temperature required to accurately derive H, without the need for 
including any empirically related excess resistance formulation used in 
one-source models (Kustas et al., 2016). However, one of the challenges 
in application of TSEB is that canopy structure and the separation of 
total Leaf Area Index (LAI) between its green and senescent components 
can significantly influence output and difficult to determine from 
routine earth observations (Guzinski et al., 2013). However, it has 
proven to be a robust and versatile model, providing similar or better 
results than one-source models (e.g., Guzinski et al. 2020). 

In the last decade, there has been an increase in studies using these 
remote sensing approaches to estimate ET in different biomes (García 
et al., 2013; Pakparvar et al., 2014), agro-ecological zones (Carpintero 
et al., 2020; Jaafar and Ahmad, 2020; Nyolei et al., 2019; Pasqualotto 
et al., 2019), crops (Bisquert et al., 2016; French et al., 2020; Gavilán 
et al., 2019; Le Page et al., 2014; Mokhtari et al., 2019), and more 
specifically on olive orchards (Cammalleri et al., 2010; Cammalleri 
et al., 2013; Fuentes-Peñailillo et al., 2018; Hoedjes et al., 2008; Oli
vera-Guerra et al., 2017; Ortega-Farías et al., 2016; Paço et al., 2014; 
Pôças et al., 2014). However, there is still a lack of operational TIR 
sensors on satellite platforms with both adequate temporal (i.e., daily) 
and spatial (i.e., < 100 m) resolutions. For that reason, there have been 
proposed thermal sharpening and flux disaggregation techniques (Chen 
et al., 2014; Gao et al., 2012; Norman et al., 2003; Zhan et al., 2013), 
which combine different imagery sources and generate acceptably use
ful information at the field and orchard -scale. One recent and relevant 
improvement is the data fusion of optical Sentinel-2 (S2) and thermal 
Sentinel-3 (S3) imagery (Bellvert et al., 2020; Guzinski et al., 2020; 
Guzinski and Nieto, 2019) which allows the estimation of ET at both 
high spatial and temporal resolutions. 

Although TSEB accounts for a single vegetated layer, this study is 
based on the hypothesis that TSEB, in particular the Guzinski et al. 
(2020) Sentinel-based ET, is still able to track and estimate ET over more 
complex canopies such as orchards with herbaceous cover. Previous 
application of TSEB with an interrow cover crop in vineyards was shown 
to provide reliable results (Knipper et al., 2020). This study aims to (1) 
model evapotranspiration through satellite remote sensing data on an 
olive orchard under two management regimes: maintenance of herba
ceous cover and herbaceous suppression (bare soil); (2) to validate 
model output using ground-based measurements and assess the reli
ability of the methodology in these types of canopies; and (3) assess the 
effect of the herbaceous-cover on olive grove ET. For this purpose, we 
have applied the method proposed by Guzinski et al. (2020) for three 
hydrological years, from October 2016 to September 2019 in an olive 
orchard under the two types of understories. 

2. Materials and methods 

2.1. Study area 

The study area is surrounded by great extensions of olive groves. It is 
located at the Southern Iberian Peninsula in the province of Jaén in 
Andalusia, Spain (Fig. 1), at 370 m elevation above sea level. The area 
has a Mediterranean climate. From 2000 to 2020 the near meteorolog
ical station of Andalusian Agroclimatic Information Network in Úbeda, 
sited at 37.9427º N, 3.3002º W and 343 m elevation above sea level, 
registered daily mean values of temperature 16.1 ºC, relative humidity 
61.9%, solar radiation 17.8 MJ/m2d, wind speed 0.7 m/s (predomi
nantly coming from between north-east and south-east at night and from 
south-west during daytime); an annual accumulated average precipita
tion of 470.6 mm (33%, 36%, 26% and 5% fallen during autumn, winter, 
spring and summer, respectively); and an annual accumulated average 

reference evapotranspiration of 1199.1 mm. 
The site consists of an irrigated olive grove (Olea europaea L.) divided 

into two flat plots (36.5 ha and 21.17 ha) over a clay loam texture soil 
(clay 44%, silt 32% and sand 24%) with a content of organic matter of 
2.9% in the first 5 cm depth and 2.4% from 5 to 15 cm. One of the plots 
has a spontaneous herbaceous cover (HC) and the other is herbaceous- 
free (HF, treated with herbicide). The olive trees (around 80 years 
old) are distributed in a plantation frame of 12×12 m, and their crown 
height is 4 m approximately. Trees are drip irrigated at a rate of 32 l/h 
for 5-8 hours at night 3 times a week from March to October. 

2.2. Ground-based data and validation 

The two plots have one Eddy Covariance (EC) (Dabberdt et al., 1993) 
tower each, 9 m tall and separated by 466 m. Each tower supports a 
three-axis sonic anemometer (CSAT-3, Campbell Scientific, Logan, UT, 
USA) and an enclosed path infrared gas analyser (IRGA, Li-Cor 7200; 
Lincoln, NE, USA), together with complementary sensors to measure Rn 
and G, among other variables (Chamizo et al., 2017). EC data (wind 
speed components, temperature and water vapour density measured at 
10 Hz) were processed using the software EddyPro 6.2.1 (LI-COR Inc, 
Lincoln, Nebraska, USA) to obtain half hourly fluxes of λE and H. Double 
coordinate rotations, time-lag compensation, and spectral corrections 
for high frequency range according to Moncrieff et al. (2004) were 
applied. Data at 10 Hz were subjected to statistical tests to detect and 
eliminate peaks, dropouts and incoherent or low variance values with 
respect to instrument resolution (Vickers and Mahrt, 1997). The upwind 
footprint that contributes to the measured exchanges was calculated 
based on the anemometer height, atmospheric stability, and surface 
roughness (Kljun et al., 2004). Tests of stationarity and turbulence 
development were applied to H and λE following Mauder et al. (2013), 
providing the flag “0” for high-quality fluxes (differences < 30% for both 
tests), “1” for intermediate quality fluxes (differences < 30% for one 
test), and “2” for poor quality fluxes (differences > 30% for both tests). 
Only fluxes with quality 0 and 1 were used for this study. Rn was 
measured by a 4-component radiometer at 5 m height and G by heat 
plates at 0.8 m depth (see Chamizo et al. (2017) for details and instru
mentation). The obtained data were subsequently filtered to eliminate 
those collected when power outages or drops or instrumentation mal
functioning. After filtering, the available data for validation on HF were 
31.9% for H and 18.1% for λE, whereas for Rn and G were 71% and 
87.6%, respectively. For HC, the available data were 31.3% for H, 15.3% 
for λE, 69.4% for Rn and 62.0% for G. 

In order to determine EC daily ET (ETd) data gaps in EC data were 
filled using the marginal distribution sampling technique described by 
Reichstein et al. (2005). From the EC data in the compared days, the 
available λE values on HF were the 39.5% and the filled ones the 60.5%, 
whereas on HC the available ones were the 41.3% and the filled ones the 
58.7%. Later, for each day all λE corresponding to each 30-min period 
were averaged and transformed to mm/day. 

2.3. Sentinel data 

Two types of Sentinel products were used in this study. On one hand, 
S2 Level 1C Top Of Atmosphere (TOA) Multispectral Instrument (MSI) 
reflectances (S2MSI1C) (https://earth.esa.int/web/sentinel/user- 
guides/sentinel-2-msi/product-types/level-1c, accessed 14 May 2021) 
onboard both A and B S2 satellites. The S2MSIL1C product is processed 
and offered by the European Space Agency (ESA) as geometric ortho- 
corrected 100 square km tiles, projected in UTM/WGS84 at 10, 20 or 
60 m of nominal spatial resolution depending on the spectral band. The 
MSI sensor has 13 bands centred from 442.3-443.9 to 2185.7-2202.4 nm 
wavelengths, providing imagery at 5-day revisit frequency, considering 
the constellation of both satellites (A and B) (Drusch et al., 2012; Gatti 
et al., 2018; https://sentinel.esa.int/web/sentinel/user-guides/sentin 
el-2-msi, accessed 14 May 2021). This imagery was used to sharpen 
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thermal data and characterize the vegetation state. On the other hand, 
S3 Level-2 Land Surface Temperature product (SL_2_LST) (https://sen
tinel.esa.int/web/sentinel/user-guides/sentinel-3-slstr/product-ty
pes/level-2-lst, accessed 14 May 2021) is acquired by the Sea and Land 
Surface Temperature Radiometer (SLSTR) sensors onboard S3 A and B 
satellites. Likewise, this product is processed and offered by ESA at 1 km 
nominal spatial resolution. The S3 mission has a revisit frequency lower 
than a day (0.9 at equator and 0.8 at latitude higher than 30º) consid
ering both satellites (A and B) (Donlon et al., 2012; https://sentinel.esa. 
int/web/sentinel/user-guides/sentinel-3-slstr, accessed 14 May 2021). 

2.4. Ancillary data 

Ancillary data required for running in TSEB with Sentinel data in
cludes topography, land cover/land use and meteorology. Firstly, a 
Digital Elevation Model (DEM) obtained from the Shuttle Radar 
Topography Mission (http://srtm.csi.cgiar.org/srtmdata/, accessed 14 
May 2021) at 30 m of spatial resolution was used. Secondly, air tem
perature at 2 m height (TA) is resampled and extrapolated at 100 m 
above the DEM surface by a standard lapse rate of 6.5 K/km (Guzinski 
et al., 2020), dew point temperature at 2 m height, wind speed at 10 m 
height, incoming surface radiation, atmospheric pressure and Total 
Columnar Water Vapour content (TCWV), all them obtained from the 
ERA5 Reanalysis dataset (https://confluence.ecmwf.int/display/CKB/ 
ERA5%3A±data±documentation, accessed 14 May 2021) produced by 
the European Centre for Medium-range Weather Forecast 
(https://www.ecmwf.int/en/forecasts, accessed 14 May 2021); and 
Aerosol Optical Depth (AOD) obtained from the Copernicus Atmosphere 
Monitoring Service (Morcrette et al., 2009; https://atmosphere.coper
nicus.eu/, accessed 14 May 2021) were considered as meteorological 
forcing data. Crop characteristics were assigned based on the land cover, 
whose map (SIGPAC) was obtained from the Andalusian Geographical 
Information System of Agricultural Smallholdings (https://www.junta
deandalucia.es/organismos/agriculturaganaderiapescaydesarrollosos 
tenible/areas/politica-agrar
ia-comun/paginas/sigpac-descarga-informacion-geografica-shape
s-provincias.html, accessed 14 May 2021). Surface structural 
characteristics in TSEB were parameterised into a Look-up table 
(Table 1). We used this Look-Up Table to model more accurately the 
different fraction of covered surface by the canopy (fC) on HC depending 
on dates of processing throughout the year, from fC = 0.4 when herba
ceous crop cover presence is residual to fC = 0.9 when this cover is at 
maximum vigour. 

2.5. Modelling processes 

In order to model the energy balance components, the Two-Source 
Energy Balance model is run with the Priestley-Taylor approximation 
for the initial canopy transpiration assuming an unstressed canopy 
(TSEB-PT) (Kustas and Norman, 1999; Norman et al., 1995). The model 
provides estimates of the surface energy balance components of the soil 

and vegetation at 20 m of spatial resolution and daily temporal resolu
tion, depending on S2 and S3 images availability and cloud-free 
conditions. 

First, the algorithm (Fig. 2) obtains high-resolution surface temper
ature images by the thermal image sharpening method (Gao et al., 2012; 
Guzinski and Nieto, 2019), which source code is available through 
GitHub (https://github.com/radosuav/pyDMS, accessed 14 May 2021). 
It takes advantage of the statistical relationships between optical and 
thermal datasets by combining each S3 scene with an S2 scene no more 
than four days apart. The S2MSI1C images are converted to bottom of 
the atmosphere (BOA) atmospherically corrected reflectances using the 
Sen2Cor (v2.5.5 for this study; https://step.esa. 
int/main/third-party-plugins-2/sen2cor/, accessed 14 May 2021) at
mospheric correction processor (Louis et al., 2016). Afterwards, surface 
elevation, and solar incidence angle at the tilted surface, derived from 
the DEM at 30 m together with the S2 optical data at 20 m are resampled 
at the 1 km spatial resolution of the S3 SLSTR sensor to be used as 
predictors in a set of decision trees, in which the surface Trad is consid
ered the dependent variable. For model training, only 80% most 

Table 1 
Look-up table used by the model to extract the structural parameters of vege
tation according to type of cover. Code is the code for land cover type; 
Description is the nominal for land cover type; HC max is the maximum canopy 
height (m, considered constant of 4 for olive orchards); fC is the fraction of 
covered surface by the green canopy and represent the clustering level of the 
canopy (fC = 1 for a homogeneous canopy); WC is a factor shape of tree’s crown 
based on width / height ratio; Leaf width (m) is the typical size of the leaf; XLAD is 
the Campbell (1990) angular distribution function coefficient of the leaves 
(XLAD = 1 for a spherical distribution, XLAD < 1 for erectophilic foliage).  

Code Description HC max fC WC Leaf width XLAD 

HF Herbaceous-free 4 0.3 0.5 0.02 1 
HC Herbaceous-cover 4 0.4/0.9 0.5 0.02 1  

Fig. 2. Process Flow. DEM: Digital Elevation Model; P. TCWV: Pressure of Total 
Column Water Vapour; AOD: Aerosol Optical Depth; Land Cover Map (LUT): 
Look Up Table of Crop Characteristics; LAI: Leaf Area Index; fg: Green vege
tation fraction, able to transpire; Albedo as leaf bi-hemispherical reflectance 
and transmittance for visible and near infrared; Rn,C & Rn,S: Canopy & Soil Net 
Radiation fractions; HC & HS: Canopy & Soil Sensible Heat fractions; λEC & λES: 
Canopy & Soil Latent Heat fractions; G: Soil Heat Flux. 
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homogeneous pixels at the 1 km scale are automatically selected as 
training samples. For each S2-S3 image pair, both local (using a moving 
window of 30 by 30 1 km pixels) and global (using the whole S2-S3 
image extent) models are trained and subsequently combined into a 
regression model between Trad and the predictors by weighting the local 
and global models based on the error predictions at coarse resolution 
(see Gao et al. (2012) and Guzinski et al. (2020) for further details of the 
Data Mining Sharpener). The trained model is then applied to the entire 
S2 scene at the original resolution of 20 m, producing a thermal 
sharpened image at this scale. Lastly, to guarantee the conservation of 
energy between the sharpened and original thermal images, a final 
correction is done by comparing the long-wave blackbody emission 
between the sharpened Trad, aggregated at 1 km, and the original Trad at 
1 km. Thus, any residual bias is removed by recalculating the 
bias-corrected Trad by adding an offset to all high-resolution sharpened 
pixels within each low-resolution pixel. 

Secondly, the SEN-ET model implementation (Guzinski and Nieto, 
2019) obtains all meteorological data at regional scale. Then, instanta
neous clear-sky solar irradiance (SIi) is calculated according to Perez 
et al. (2002) using AOD, TCWV and the solar zenith angle (SZA) at 
satellite overpass. Leaf area index (LAI), fraction of absorbed photo
synthetically active radiation (fAPAR), canopy chlorophyll content 
(CCC) and canopy water content (CWC) (herb layer included) are ob
tained through the biophysical processor of S2 toolbox of SNAP software 
(v7.0.4 for this study; http://step.esa.int/main/toolboxes/snap/, 
accessed 14 May 2021) (Weiss and Baret, 2016). Leaf bi-hemispherical 
reflectance and transmittance for visible and near infrared are 

estimated from leaf chlorophyll concentration (Cab = CCC / LAI) and 
equivalent water thickness (Cw = CWC / LAI) respectively, based on 
regression curves calibrated using simulations of Prospect-D model 
(Féret et al., 2017). The estimated leaf spectra together with S2 LAI and 
tabulated values of soil spectra, and leaf angle distribution (XLAD) from 
Table 1 are used to estimate net short wave radiation for soil and canopy 
layers according to the Campbell and Norman (1998) radiation transfer 
model and described in more detail in Parry et al. (2019). 

The green vegetation fraction able to transpire (fg) is calculated ac
cording to Fisher et al. (2008) as 

fg =
fAPAR
fIPAR

(1)  

where the fraction of intercepted photosynthetically active radiation 
(fIPAR) is estimated following Eq. 2 

fIPAR = 1 − exp
(

− 0.5
LAI

cos(SZA)

)

(2) 

Afterward, the TSEB-PT model (Norman et al., 1995) is applied using 
the sharpened thermal data at 20 m, and meteorological, biophysical, 
land cover and crop structural variables for each image as main inputs. 
The TSEB-PT model version used in this study is available in source code 
at the GitHub repository (https://github.com/hectornieto/pyTSEB, 
accessed 14 May 2021). TSEB-PT focuses on the estimation of instan
taneous Rn, H, and G and, partitioning the surface energy fluxes and Trad 
between soil and vegetation sources, calculates instantaneous λE as the 
residual of the surface energy balance (λE = Rn – H – G). Therefore, 

Fig. 3. Output of model for 2016-10-11 and example of validation vs. the EC data collected at the S3 overpass time. Modelled pixel values averaged for ETd (a); pixel 
values used and weight-averaged according to the EC footprint calculated (see section 2.2) and footprint model described in Schmid (2002) (b); pixel value used to 
validate Rn and G (c). 
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Rn,C ≈ HC + λEC (3)  

Rn,S ≈ HS + λES + G (4)  

T4
rad(θ) = fC(θ)T4

C + [1 − fC(θ)]T4
S (5)  

where T is temperature, θ is the view zenith angle, f is the fraction of 
vegetation observed by the sensor (function of θ, LAI, and XLAD) and 
suffixes S and C correspond to soil and canopy, respectively. HS and HC 
are calculated from the gradients between the aerodynamic temperature 
(T0) and TS and TC, respectively. On the other hand, G is estimated ac
cording to Choudhury et al. (1987) as 35% of net soil radiation (Rn,S) 
(Norman et al., 1995). 

As Trad is obtained from a single observation angle, in order to 
partition fluxes, an initial estimation is required to determine TS and TC. 
For this, a first estimate of the canopy transpiration (λEC, latent heat flux 
corresponding to the canopy) is given as 

λEC = αPT fg
Δ

Δ + γ
Rn,C (6)  

where aPT ~ 1.26 is the Priestley-Taylor coefficient, Δ is the slope of 
saturation vapour pressure curve at TA and γ is the psychrometric con
stant. Thus, TS and TC are estimated in an iterative process in which it is 
assumed that only the photosynthetic active part of the canopy, 
expressed as fg, transpires at a potential rate based on Priestley and 
Taylor (1972). Once this initial estimate of canopy transpiration is 
computed, TS and TC are estimated by inverting Eq. 3 and Eq. 5 and an 
initial estimate of λES is derived by inverting Eq. 4. If the computed λES <

0, which is non-physical solution for daytime convective conditions, it 
suggests the canopy is not transpiring at the potential rate, hence there is 
a sequential step-wise reduction of aPT, reducing λEC, until realistic 
daytime fluxes for both λES and λEC are computed, i.e. higher or equal to 
0. Daily evapotranspiration (ETd) is extrapolated according to Cam
malleri et al. (2014) as a function of the ratio between TSEB estimated 
instantaneous λEi and the instantaneous solar irradiance SIi 

ETd = SId
λEi

SIi
(7)  

where SId is daily solar irradiance. ETd is transformed to mmd− 1 

Fig. 4. Scatter-plots of the EC energy balance closure (net radiation minus soil heat flux (Rn – G) vs. sensible heat and latent heat fluxes (H + λE)) for full study period 
on herbaceous-free (a) and herbaceous-cover (b), and for the days compared with the model on herbaceous-free (c) and herbaceous-cover (d). n (sample size), SD 

(standard deviation), EBC (EC Energy Balance Closure) =
∑(

H+λE)
∑(

Rn − G)
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Fig. 5. Scatter-plots of the estimated values (TSEB-PT Model) vs. ground-based ones by eddy covariance (EC) measurements for the energy balance components on 
herbaceous-free (a) and herbaceous-cover (b), actual daily evapotranspiration on herbaceous-free (c) and herbaceous-cover (d) canopies, and the estimated values 
(TSEB-PT Model) with energy balance closure (EBC, by calculating λE as remainder of the energy balance) vs. ground-based ones by EC measurements for the energy 
balance components on herbaceous-free (e) and herbaceous-cover (f). 
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following Eq. 8, 

ETd =
λE
ρwλ

103 24 3600 (8)  

where ρw (kg⋅m− 3) is the density of air-free water at a pressure of 
101.325 kPa, λ (J⋅kg− 1) is the latent heat of vaporization, λE is in W⋅m− 2 

and the conversion factors 103, 24 and 3600 are in mm⋅m− 1, h⋅d− 1 and 
s⋅h− 1, respectively. 

The modelled results (predicted) were compared to the ground-based 
measurements (observed), for the three year study. The Pearson corre
lation coefficient (r) and the residuals’ standard deviation (SD) statistics 
were used as an indicator of scatter, whereas the Mean Absolute Dif
ference (MAD) and Root Mean Square Difference (RMSD) (Chai and 
Draxler, 2014) were used to measure the differences between predicted 
and observed values; to quantify the model under- and over-estimations 
between predicted and observed values the mean Bias was computed, 
defined as the average of differences (predicted – observed). 

3. Results 

In total 771 S3 images were processed. After removing two outliers 
due to ground-based instrumentation errors, the total number of cloud- 
free images (i.e. days) with available ground-based measured flux data 
were 96 for HF (with 29, 6, 24, 37 during autumn, winter, spring and 
summer, respectively) and 69 for HC (with 24, 5, 19 and 21 for 
respective seasons). 

Considering the plots’ characteristics and homogeneity we assumed 
that the flow conditions are generally uniform for each plot. The criteria 
used for validation is illustrated in Fig. 3 for the October 11th 2016 
scene. The output of the model for the selected pixels are compared with 
the ground-based obtained measurements. Thus, the modelled value for 

ETd validation was obtained by averaging all the ETd pixel values for 
each surface (panel "a"). The modelled pixel values selected for H and λE 
fluxes validation were the pixel where the peak of maximum influence of 
EC footprint is located at the satellite overpass time (dark blue dot on 
panel "b", example for the HF surface) which was weight averaged (50%) 
together with the adjacent pixels (50% remainder), following the foot
print model described in Schmid (2002). The modelled pixel value 
selected for validate Rn and G was the fuchsia pixel (panel "c", example 
for the HF surface) which run into the pixels of both EC towers where the 
sensors for measuring these variables are installed. 

In Fig. 4 the EC Energy Balance Closure (EBC) for the study area is 
shown. The EBC is 0.07 higher on HC than on HF for all the EC available 
measures throughout study period (panels “a” and “b”). Apart from, 
taking into account only the EC measurements compared with the model 
(panels “c” and “d”), EBC is 0.01 lower on the HC than on HF. However, 
for this specific reduced samples, while the slope on HC is similar to all 
the study period, on HF the slope and R2 values are lower. Moreover, 
with respect to the available energy (Rn – G) the EC shows a mean un
derestimation fraction of the energy fluxes (H + λE) of 0.25 and 0.18 on 
HF and HC respectively for all study period, and 0.20 and 0.21 respec
tively for only the modelled compared data. 

Scatter-plots of predicted vs. observed data are shown in Fig. 5, and 
the validation metrics are shown in Table 2. 

The model yields better agreement and greater correlations with the 
HC site. Nevertheless, the scatter for H and ETd is very similar over both 
plots, whereas for λE there is greater scatter with HC compared to HF (SD 
difference of 15 W/m2). In addition, the discrepancies are observed for 
both olive orchards at larger H values. 

The model overestimates λE and ETd on both types of surfaces, 
showing higher mean biases on HF than on HC (differences of 14 W/m2 

for λE and 0.19 mm for ETd). Results with EBC (applied to the ground- 
based data by calculating λE as a remainder of the energy balance) 

Table 2 
Sample size (n), standard deviation (SD), mean bias (Bias), mean absolute difference (MAD), root mean square difference (RMSD) and Pearson correlation coefficient 
(r) between modelled values and EC measurements for net radiation (Rn), soil heat flux (G), sensible heat (H), latent heat (λE), latent heat with energy balance closure 
(λE (EBC)) and actual daily evapotranspiration (ETd).   

Herbaceous-free Plot Herbaceous-cover Plot 

Variable n SD (W/m2) Bias (W/m2) MAD (W/m2) RMSD (W/m2) r n SD (W/m2) Bias (W/m2) MAD (W/m2) RMSD (W/m2) r 

Rn 

96 

62 -12 44 63 0.78 

69 

48 -5 38 48 0.91 
G 48 -22 42 53 0.38 25 22 27 33 0.60 
H 58 -3 47 57 0.47 63 -13 44 64 0.66 
λE 50 78 83 93 0.36 65 64 76 91 0.38 
λE (EBC) 92 9 75 92 0.04 64 -17 49 66 0.54  

SD (mm) Bias (mm) MAD (mm) RMSD (mm)  SD (mm) Bias (mm) MAD (mm) RMSD (mm)  

ETd 0.66 0.42 0.64 0.78 0.48 0.69 0.23 0.58 0.72 0.53  

Fig. 6. Time series of daily evapotranspiration for herbaceous-free plot (a) and on herbaceous-cover plot (b). Shadow areas in light blue represent EC (in situ) 
measurements with uncorrected energy balance and dotted lines in dark blue represent the modelled values. 
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show better agreement overall. λE is neither significantly overestimated 
nor underestimated (although the difference of mean bias between or
chards is 12 W/m2 higher, the mean biases for both orchards are 
significantly lower). In contrast, Rn and H tends to be underestimated for 
both orchards (7 W/m2 higher mean bias difference on HF for Rn and 10 
W/m2 higher on HC for H) but does not show important biases for Rn on 
HC and for H on HF. Instead, G is overestimated on HC and equally 
underestimated on HF, with a mean bias difference of 44 W/m2 between 
both plots. 

The values of MAD and RMSD between orchards are very similar for 
H (differences of 3 and 7 W/m2, respectively), λE (7 and 2 W/m2) and 
ETd (0.06 mm for both metrics), while for Rn and G they are lower on HC 
than on HF (respective differences of 6 and 15 W/m2 for Rn and 15 and 
20 W/m2 for G). 

The Pearson correlation yielded higher values for ETd than for λE, 
and very similar between both surfaces for these variables (differences of 
0.05 and 0.02, respectively). It is higher for Rn and meaningfully higher 
for G and H on HC than on HF (differences of 0.13, 0.22 and 0.19, 
respectively). 

Time series of ETd for predicted and observed data on both orchards 
are shown in Fig. 6. Overall, both orchards show similar tendencies 
throughout the study period between them when compared against the 
measured values. Also, the magnitudes of ETd are generally similar be
tween orchards for both modelled values and EC in situ measurements, 
although a higher ETd is observed for HC especially in spring periods, 
when the orchards are irrigated in the greatest productivity times (panel 
“b”). This is clearly seen in EC in situ measurements (shadow areas in 
light blue) whereas in the modelled values (dotted lines in dark blue), 
these differences are generally smaller. 

4. Discussion 

To our knowledge, this is the first study to assess, over three hy
drological years (2016-2019) on herbaceous-cover and herbaceous-free 
surfaces in an irrigated olive orchard crop, the methodology proposed by 
Guzinski & Nieto (2019) to estimate actual evapotranspiration at high 
spatial and temporal resolutions by the TSEB model using Sentinel-2 and 
Sentinel-3 imagery. Guzinski and Nieto (2019) ran the TSEB model in 
barley fields and plantation conifer by few specific images from MODIS 
at 1 km spatial resolution for the LST, and from Landsat 5TM, 7ETM+

and 8OLI at 30 m for the VIS, NIR and resampled for TIR. Similarly, 
other studies have employed this methodology over other different 
surfaces and climate conditions. Thus, Bellvert et al. (2020) compared 
the TSEB with a water consumption crop model and stem water poten
tial estimates for the growing season of 2018 in a vineyard. They did not 
have available EC data and worked with Sentinel imagery and airborne 
imagery at 0.25-m spatial resolution. Moreover, Guzinski et al. (2020) 
compared the TSEB, METRIC and ESVEP models using the Sentinel 
imagery (in which the combined S2-S3 scenes could reach 10 days) vs. 
EC measurements on eleven different canopies for 2017, amongst which 
a rain fed olive grove with 5-10% canopy cover was included. Other 
studies have also applied similar methods in olive orchard crops using 
few concrete images obtained by distinct remote sensing platforms and 
instruments. Table 3 summarises the mentioned studies together with 
the present one, showing the models, validation techniques and sites, as 
well as some characteristics of those sites, remote sensing platforms and 
sensors used together with some obtained results. Overall, the differ
ences found in the present study are in agreement with those reported in 
previous studies. 

The differences in Rn between orchards (HC and HF) and the better 
agreement showed for HC, could be explained by the differences be
tween model footprint (20×20 m, with a homogeneous signal assumed) 
and in situ upwelling radiometer footprint sizes (< 20 m), as well as the 
different viewing angles between each radiometer (on HC and HF) and 
the satellite sensors. This, together with the fact that HC presents a 
higher fC and more heterogeneity than on HF due to the additional herbs 

layer (not taken into account by the TSEB model), the specific orchards 
structure and geometry (with the natural growing and distribution of the 
herbaceous layer over the surface and throughout the study period), 
imply different perspectives and observed fractions of soil, herb, and 
trees by each radiometer on HC and HF, adding distinct uncertainties to 
the model agreements on each plot. Moreover, some Rn values in HF 
were corrected due to a small inclination of the 4-component radiom
eter, for which the incident radiation in HC vs. HF of short wave and 
long wave was used as reference. 

The differences obtained for G compared to previous studies in 
Table 3 could be due to, on one hand, the constant fraction of Rn,S we 
used to estimate G when the conditions affecting the relationship of this 
components probably were changing throughout the lengthy study 
period (Colaizzi et al., 2016b, 2016a; Norman et al., 1995; Santanello 
and Friedl, 2003). On the other hand, the used value for this purpose 
(0.35) might not be quite suitable for the study site, since this fraction 
might depend on the type of soil, latitude, and meteorological conditions 
(Choudhury et al., 1987). Consequently, this likely partially increased 
differences in the λE estimation. Additionally, the clear tendency to 
overestimate modelled G on HC reveals the model limitation on surfaces 
with additional layers (soil, herb, and trees canopy). This could be due to 
that part of Rn absorbed by the herbs understory before reaching the soil 
(Moderow et al., 2009) is not considered by a two-source model. As 
consequence, it could have resulted in a lower estimation of λE and, 
therefore, in a lower ETd estimated on HC. Despite this, the results at the 
site were consistent with previous studies (Table 3). The smaller range 
and lowest differences obtained for G on HC in respect to HF might be 
due to the better adjusted parameterisation of fC throughout the pro
cessed period, whereas on HF this parameter stayed constant. However, 
some herbs could have grown between herbicide treatments, suggesting 
that a more precise fC parameterisation (adapted to the actual conditions 
at each moment) could partially compensate this model limitation and 
enhance its estimations. In contrast, the trend to underestimate G on HF 
supports the mentioned argument, where the use of a constant fraction 
of Rn,S to calculate this component could not be quite suitable depending 
on the case. 

It might be due to that EC errors in H increase with the magnitude of 
H, or it might suggest a decrease in the methodology’s accuracy at 
higher values of H. In this last case, because H is directly related to LST 
and its estimation depending on TA and wind speed (Norman et al., 
1995), two possible reasons could have influenced this difference and 
the better agreement obtained by Hoedjes et al. (2008) for this 
component: (1) the use of higher spatial resolution for TIR range (i.e. 
without applying any sharpening process) as well as (2) local meteoro
logical forcing. On one hand, the used methodology is firstly based in a 
sharpening process of Trad from 1 km to 20 m spatial resolution that, 
through statistical relationships between TIR and VIS/NIR datasets, es
timates the LST at 20 m. Guzinski et al. (2020) discussed that H is the 
energy balance component most prone to error in that process, and in 
this sense, Bellvert et al. (2020) reported a tendency to underestimate 
the LST in extreme dry conditions probably caused by the fact that at 1 
km scale is not possible to reflect all dynamic range of surface temper
atures occurring at field scale. As shown in Fig. 7, although the sharp
ened LST showed a good agreement and explained correctly the 
temporal trends, there is a tendency to overestimate the LST which in
creases when its values increase. This could be due to the previously 
mentioned surface characteristics and the differences in the footprints of 
the model and the in situ radiometers, as well as the soil and type of 
canopy observed fractions by each one. This would imply a more ho
mogeneous sharpened LST at 20 m model footprint (more balanced 
fractions of soil, herb, and trees), and in situ lower LST (calculated from 
the radiometers measures according to Burchard-Levine et al., 2020) 
where the radiometer footprint could have observed a higher canopy 
fraction (lower LST) than the satellite sensor at model spatial resolution. 
On the other hand, the coarse spatial resolution of non-local meteoro
logical data used for this study (ECMWF ERA5 reanalysis data set), 
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might also add uncertainty with respect to local meteorological data 
(Guzinski et al., 2020). In this sense, the ERA5 reanalysis used data 
versus in situ measurements are shown in Fig.s 8, 9 and 10. Wind speed 
shows a high variation and worse fit when compared with shortwave 
irradiance and TA. Shortwave irradiance shows an overestimation for 
both orchards with an averaged SD between them of 57 W/m2. TA shows 
a low variation and the best fit with a SD around 1.3 ºC (~ 48% lower 
than LST). 

Evident reasons for the overestimates of λE and ETd are the previ
ously mentioned ones, which provide uncertainties in the estimated 
energy balance components, since λE is obtained as residual term. An 

additional possible reason for the observed overestimations in λE and as 
consequence in ETd could be the limitations of the EC measurements 
used to validate the fluxes. The imbalanced energy components by the 
EC technique (Fig. 4) is a well-known issue in the scientific community 
(e.g. Foken et al., 2011) that might contribute to such overestimation. 
Thus, the EC underestimations of H and λE might partially explain the 
lower correlations and higher differences versus studies which used 
different validation methods. 

Results with EBC show better agreement overall compared to the 
results without EBC. However, the higher uncertainties obtained by the 
model on HF versus HC for Rn (probably influenced by the Rn correction 

Table 3 
Comparative summary of studies. Sample size (n), mean bias (Bias, W/m2), mean absolute difference (MAD, W/m2), root mean square difference (RMSD, W/m2) and 
Pearson correlation coefficient (r, dimensionless) between modelled and observed (VS.) values for net radiation (Rn), soil heat flux (G), sensible heat (H), latent heat 
flux (λE), and actual daily evapotranspiration (ETd, mm). TSEB (Two Source Energy Balance), PT (Priestly-Taylor), DMS (Data Mining Sharpening), SW (Shuttleworth- 
Walace), SSEBop (Operational Simplified Surface Energy Balance), DLST (Disaggregated Land Surface Temperature), RSEB (Remote Sensing Energy Balance), METRIC 
(Mapping Evapotranspiration at high Resolution with Internalised Calibration), FAO-56 (standardised crop evapotranspiration (Allen et al. (1998)), KC (tabled basal 
crop coefficients), PM (Penman-Monteith), app. (approach), AE (Available Energy), EF (Evaporative Fraction), S2 (Sentinel-2), S3 (Sentinel-3), VIS (Visible range), NIR 
(Near Infrared range), TIR (Thermal Infrared range), LST (Land Surface Temperature), NDVI (Normalized Difference Vegetation Index), EC (Eddy Covariance), ECMWF 
(European Centre for Medium-Range Weather Forecasts), 2T (directly differentiated soil and canopy temperatures at high spatial resolution), Meteo-Data (Meteo
rological Data), SAS (Small Aperture Scintillometer). *To be able to directly compare the results with Pôças (2014) we have calculated the Bias, MADs and RMSDs for 
this study from their published data. 

Study Model 
Used 

Remote 
Sensing 

VS. Site n Rn G 

Bias MAD RMSD r Bias MAD 

Hoedjes 
(2008) 

Based on 
AE and EF 

Terra/Aster 
(15/30 m VIS/NIR 

90 m TIR) 

EC, Local 
Meteo-Data 

and TIR sensors 

Olive orchard 
(Semi-arid 
Morocco) 

(Flood-Irrigated) 

6 RMSD of AE (Rn – G) = 51 Wm-2 

Cammarelli 
(2010) 

TSEB 
(Goudriaan) 

Airborne 
(0.6 m VIS/NIR 

1.7 m TIR 
aggregated at 12 m) 

EC and Local 
SAS Micro- 
Meteo-Data 

Olive Orchard 
(Sicily) 

(Drip-Irrigated) 

7  23 28   15 

TSEB 
(Massman)    

14 

TSEB 
(Lalic)  

29   15 

Cammarelli 
(2013) 

Modified 
FAO-56 (Kc) 

Airborne 
(0.6 m VIS/NIR 

1.7 m TIR) 

EC, Sap flow 
and Micro- 
Meteo-Data       Modified 

FAO-56 (PM)       
Pôças 
(2014)* 

METRIC Landsat 5/7 
(30 m VIS/NIR 
120/60 m TIR) 

EC, Sap 
Flow and 

Microlysimeters 

Olive orchard 
Super Intensive 
(South Portugal) 
(Drip-Irrigated) 

15       

Paço 
(2014) 

Sap flow and 
Microlysimeters       

Ortega- 
Farías 
(2016) 

RSEB Airborne 
(0.06 m TIR) 

EC Olive orchard 
(Center Chile) 

(Drip-Irrigated) 

10   38    

Olivera- 
Guerra 
(2017) 

SSEBop 
(DLST) 

Landsat 8 
(30 m VIS/NIR/TIR) 
MODIS LST/NDVI 
(1 km / 250 m) 

Meteo-Data Olive orchard 
(Atacama, 

Chile) 

21-25       

SSEBop 
(Landsat 8)       

This 
with 

λE (EBC) 

TSEB-PT 
(DMS) 

S2/S3 
(10/20/60 m 

VIS/NIR 
1 km TIR) 

EC, Meteo-Data 
and ECMWF 

ERA5 
Reanalysis 

Olive orchard 
(Herbaceous-free, 
South-East Spain) 

96 -12 44 63 0.78 -22 42 

Olive orchard 
(Herbaceous-cover, 
South-East Spain) 

69 -5 38 48 0.91 22 27 

Guzinski 
(2020) 

EC and 
ECMWF 
ERA5 

Reanalysis 

All 11 sites ≈482 -14 44 56 0.91 14 44 
Croplands ≈204 -10 32 42 0.95 46 56 

Herbaceous crops ≈65 -36 40 47 0.98 34 55 
Woody crops ≈138 1 29 40 0.95 51 57 

Semi-arid climate ≈383 -11 47 59 0.88 11 44 
Temperate climate ≈99 -23 35 43 0.98 26 43 

Bellvert 
(2020) 

TSEB-PT 
(HR-Airborne) 

Vineyard 
(North-East 

Spain) 

3       

TSEB-2T 
(HR-Airborne)       

Guzinski & Nieto (2019) Landsat 5/7/8 
(30 m VIS/NIR 

120/60/30 m TIR) 
MODIS LST (1 km) 

EC 
Measurms. 

Barley fields 
(Denmark) 

19 -16  29 0.98 -2  

Conifer Plantation 
Forest (Denmark) 

-27  1.00 3   
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realized in some EC data on HF) and G influence in the small (MAD) or 
null (RMSD) differences reduction, and in the decrease of the Pearson 
correlation coefficient in this orchard with respect to the results without 
applying EBC compared to the obtained ones on HC when the EBC is 
applied. 

Additionally, the better results on HC versus HF in the EBC imbal
ance between the compared days with the model on each orchard 
(Fig. 4, panels c and d), might also partially explain the better results 
obtained by the model on HC in each case (with and without EBC), when 
the contrary would be expected. 

Also, the spatial variability in the model estimation of ETd could 

partially explain the differences between observed vs. estimated ETd, 
considering that each modelled ETd value was estimated by averaging all 
the pixels contained in a given image (satellite overpass) for each plot, 
whereas the observed value (used as reference) corresponds to few EC 
footprint pixels at a certain instant throughout the day. 

The observed LST values very close to 0 (Fig. 7) are related to images 
with some sparse clouds over the study area that were not properly 
detected by the Sen2Cor cloud mask and got included in the process and 
analysis. They were wrongly estimated and consequently affected the 
agreements in results. However, as this study aimed to test the opera
tional capabilities of Sentinel imagery to estimate water fluxes in olive 

G H λE ETd 

RMSD r Bias MAD RMSD r Bias MAD RMSD r Bias MAD RMSD r 

RMSD of AE (Rn – G) = 51 Wm-2   27    48         

17   32 40   37 43         

16   25 32   34 40       

17   89 92   96 98                  

≈ 0.53-0.59 ≈ 0.66-0.80               

≈ 0.48 ≈ 0.61             

0.34  0.60                

0.4-0.6    

19    56    50                  

0.41  0.50               

0.27  0.49  

53 0.38 -3 47 57 0.47 9 75 92 0.04 0.42 0.64 0.78 0.48 
33 0.60 -13 44 64 0.66 -17 49 66 0.54 0.23 0.58 0.72 0.53 

54 0.45 -47 65 81 0.67 22 72 89 0.76        

646464 0.25 -57 71 86 0.50 11 67 82 0.75     
0.30 -39 55 71 0.51 -42 78 93 0.66     
0.47 -67 80 94 0.52 36 61 76 0.84     

54 0.40 -51 69 84 0.68 32 71 86 0.76     
55 0.40 -32 53 71 0.64 -19 79 99 0.74                 

0.62                

1.35  
31 0.40 11  60 0.66 -20  58 0.73     
11 0.11 -19  74 0.75 -48  90 0.62      
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orchards, these few outliers were kept in the validation dataset. 

5. Conclusions 

The proposed methodology to estimate ETd can be directly and sys
tematically applied without any calibration process and using only open 

public data and software. It resulted in high spatial resolution distrib
uted ETd estimates which were shown to be consistent with literature 
and acceptable for some farming activities in olive orchards. Further
more, the high number of processed and analysed images, as well as the 
heterogeneity of the surfaces and the period studied, provide consis
tency to the results. These features show that this methodology is robust 

Fig. 7. Land Surface Temperature (LST) (Celsius degrees). In situ measurements vs. used ones by model on herbaceous-free plot (a) and on herbaceous-cover plot (b). 
Time series for full study period and its differences on herbaceous-free plot (c) and on herbaceous-cover plot (d). Shadow areas represents in situ measurements and 
colour dot-lines represents the values used by model. n (sample size), R2 (determination coefficient), r (Pearson correlation coefficient), SD (standard deviation) and 
CV (variation coefficient). 

S.-D. Aguirre-García et al.                                                                                                                                                                                                                    



Agricultural and Forest Meteorology 311 (2021) 108692

13

and useful, until a high-spatial resolution high-revisit time thermal 
mission is launched, for long-term periods according to the Sentinel 
missions, which are expected operatives for the next decades. However, 
due to this systematic application it is possible to find issues in 

environmental and atmospheric conditions (e.g. ice or snow on surface), 
as well as in the quality of images and input data (e.g. cloud shadows or 
cloudy areas not properly detected by the masks) that could limit the 
results. Similarly to other studies, we consider that model accuracy 

Fig. 8. Wind speed (m/s). In situ measurements vs. used ones by model on herbaceous-free plot (a) and on herbaceous-cover plot (b). Time series for full study period 
and its differences on herbaceous-free plot (c) and on herbaceous-cover plot (d). Shadow areas represents in situ measurements and colour dot-lines represents the 
values used by model. n (sample size), R2 (determination coefficient), r (Pearson correlation coefficient), SD (standard deviation) and CV (variation coefficient). 
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Fig. 9. Shortwave irradiance (RS, W/m2). In situ measurements vs. used ones by model on herbaceous-free plot (a) and on herbaceous-cover plot (b). Time series for 
full study period and its differences on herbaceous-free plot (c) and on herbaceous-cover plot (d). Shadow areas represents in situ measurements and colour dot-lines 
represents the values used by model. n (sample size), R2 (determination coefficient), r (Pearson correlation coefficient), SD (standard deviation) and CV (varia
tion coefficient). 
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could improve by using local meteorological data (especially wind speed 
measurements) as well as using a finer and more suitable spatial reso
lution of TIR data according to the surface and crop characteristics to 
enhance the LST and H estimations. A public satellite mission that 
combines high spatial and temporal resolutions in the TIR range would 
be desirable. Likewise, an accurate fC and canopy height parameter
isation adapted to the site and actual conditions at each moment is an 
important factor to obtain better estimations. 

Moreover, model accuracy in estimating G could be improved by 
parameterising the Rn fraction and taking into account the soil type and 
state, as well as the diurnal variation of G with respect to Rn according to 
site latitude and day of year. 

On the other hand, the limitation of the EC energy flux imbalance 
versus available energy, as a validation method contributed to greater 
disagreement of the model. Even so, the results showed no unreasonable 
differences in comparison with the literature. In this regard, the 
particular features of the EC samples that could be compared in each 
plot had an important influence in the agreement found between them 
and the EC measures. Hence, combining different validation techniques 
and methods in the future might help to better understand the model 
working and improve its accuracy. 

Fig. 10. Air Temperature (TA) (Celsius degrees). In situ measurements vs. used ones by model on herbaceous-free plot (a) and on herbaceous-cover plot (b). Time 
series for full study period and its differences on herbaceous-free plot (c) and on herbaceous-cover plot (d). Shadow areas represents in situ measurements and colour 
dot-lines represents the values used by model. n (sample size), R2 (determination coefficient), r (Pearson correlation coefficient), SD (standard deviation) and CV 
(variation coefficient). 
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Zhai, P., Slade, R., Connors, S., Diemen, R.van, Ferrat, M., Haughey, E., Luz, S., 
Neogi, S., Pathak, M., Petzold, J., Pereira, J.P., Vyas, P., Huntley, E., Kissick, K., M, J. 
M., 2019. Climate Change and Land: an IPCC special report on climate change, 
desertification, land degradation, sustainable land management, food security, and 
greenhouse gas fluxes in terrestrial ecosystems. 

Shuttleworth, W.J., Wallace, J.S., 1985. Evaporation from sparse crops-an energy 
combination theory. Q. J. R. Meteorol. Soc. 111, 839–855. https://doi.org/10.1002/ 
qj.49711146910. 

UNDRR, 2019. Global Assessment Report on Disaster Risk Reduction. Geneva, 
Switzerland.  

UNESCO, UN-Water, 2020. 2020. United Nations World Water Development Report 
2020. Paris. 

Vickers, D., Mahrt, L., 1997. Quality control and flux sampling problems for tower and 
aircraft data. J. Atmos. Ocean. Technol. 14, 512–526. https://doi.org/10.1175/ 
1520-0426(1997)014<0512:QCAFSP>2.0.CO;2. 

Weiss, M., Baret, F., 2016. Sentinel2 ToolBox Level2 Products: LAI, FAPAR, FCOVER 
Version 1.1. 

Zhan, W., Chen, Y., Zhou, J., Wang, J., Liu, W., Voogt, J., Zhu, X., Quan, J., Li, J., 2013. 
Disaggregation of remotely sensed land surface temperature: literature survey, 
taxonomy, issues, and caveats. Remote Sens. Environ. https://doi.org/10.1016/j. 
rse.2012.12.014. 

S.-D. Aguirre-García et al.                                                                                                                                                                                                                    

https://doi.org/10.1023/B:BOUN.0000030653.71031.96
https://doi.org/10.1023/B:BOUN.0000030653.71031.96
https://doi.org/10.1016/j.agwat.2020.106361
https://doi.org/10.1016/j.rse.2016.07.024
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0039
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0039
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0039
https://doi.org/10.1016/S0168-1923(99)00005-2
https://doi.org/10.1016/S0168-1923(99)00005-2
https://doi.org/10.3390/rs61111182
https://doi.org/10.3390/rs61111182
https://doi.org/10.1007/s10113-018-1290-1
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0043
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0043
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0043
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0044
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0044
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0045
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0045
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0045
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0045
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0045
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0045
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0045
https://doi.org/10.1016/j.agrformet.2012.09.006
https://doi.org/10.1016/j.agrformet.2012.09.006
https://doi.org/10.1007/S00704-009-0175-0
https://doi.org/10.1016/j.isprsjprs.2019.06.011
https://doi.org/10.1007/1-4020-2265-4_2
https://doi.org/10.1007/1-4020-2265-4_2
https://doi.org/10.1029/2008JD011235
https://doi.org/10.1029/2002WR001775
https://doi.org/10.1029/2002WR001775
https://doi.org/10.1016/0168-1923(95)02265-Y
https://doi.org/10.1016/0168-1923(95)02265-Y
https://doi.org/10.1016/j.pce.2019.03.009
https://doi.org/10.1016/j.isprsjprs.2017.03.014
https://doi.org/10.1016/j.isprsjprs.2017.03.014
https://doi.org/10.3390/rs8080638
https://doi.org/10.5194/bg-3-229-2006
https://doi.org/10.5194/bg-3-229-2006
https://doi.org/10.1016/j.jhydrol.2014.09.075
https://doi.org/10.1016/j.jhydrol.2014.09.075
https://doi.org/10.2166/hydro.2014.140
https://doi.org/10.2166/hydro.2014.140
https://doi.org/10.1007/s00271-019-00621-x
https://doi.org/10.3390/agronomy9100663
https://doi.org/10.3390/agronomy9100663
https://doi.org/10.1016/S0038-092X(02)00122-6
https://doi.org/10.1016/S0038-092X(02)00122-6
https://doi.org/10.1016/j.biosystemseng.2014.06.019
https://doi.org/10.1175/1520-0493(1972)100&tnqh_x003C;0081:OTAOSH&tnqh_x003E;2.3.CO;2
https://doi.org/10.1175/1520-0493(1972)100&tnqh_x003C;0081:OTAOSH&tnqh_x003E;2.3.CO;2
https://doi.org/10.1111/j.1365-2486.2005.001002.x
https://doi.org/10.1175/1520-0450(2003)042&tnqh_x003C;0851:DCISHF&tnqh_x003E;2.0.CO;2
https://doi.org/10.1175/1520-0450(2003)042&tnqh_x003C;0851:DCISHF&tnqh_x003E;2.0.CO;2
https://doi.org/10.1016/S0168-1923(02)00107-7
https://doi.org/10.1016/S0168-1923(02)00107-7
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0067
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0067
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0067
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0067
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0067
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0067
https://doi.org/10.1002/qj.49711146910
https://doi.org/10.1002/qj.49711146910
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0069
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0069
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0070
http://refhub.elsevier.com/S0168-1923(21)00378-6/sbref0070
https://doi.org/10.1175/1520-0426(1997)014&tnqh_x003C;0512:QCAFSP&tnqh_x003E;2.0.CO;2
https://doi.org/10.1175/1520-0426(1997)014&tnqh_x003C;0512:QCAFSP&tnqh_x003E;2.0.CO;2
https://doi.org/10.1016/j.rse.2012.12.014
https://doi.org/10.1016/j.rse.2012.12.014

	Modelling actual evapotranspiration using a two source energy balance model with Sentinel imagery in herbaceous-free and he ...
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Ground-based data and validation
	2.3 Sentinel data
	2.4 Ancillary data
	2.5 Modelling processes

	3 Results
	4 Discussion
	5 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	References


