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Abstract

Gait data are typically collected in multivariate form, so some multivariate analysis is often used to under-

stand interrelationships between observed data. Principal Component Analysis (PCA), a data reduction

technique for correlated multivariate data, has been widely applied by gait analysts to investigate patterns

of association in gait waveform data (e.g., interrelationships between joint angle waveforms from different

subjects and/or joints). Despite its widespread use in gait analysis, PCA is for two-mode data, whereas gait

data are often collected in higher-mode form. In this paper, we present the benefits of analyzing gait data via

Parallel Factor Analysis (Parafac), which is a component analysis model designed for three- or higher-mode

data. Using three-mode joint angle waveform data (subjects × time × joints), we demonstrate Parafac’s

ability to (a) determine interpretable components revealing the primary interrelationships between lower-

limb joints in healthy gait and (b) identify interpretable components revealing the fundamental differences

between normal and perturbed subjects’ gait patterns across multiple joints. Our results offer evidence of

the complex interconnections that exist between lower-limb joints and limb segments in both normal and ab-

normal gaits, confirming the need for the simultaneous analysis of multi-joint gait waveform data (especially

when studying perturbed gait patterns).
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Chapter 1

Introduction

1 Gait data are almost always collected in multivariate form, so some multivariate analysis is often employed

to quantify and understand patterns of association between observed variables. Principal Component Anal-

ysis (PCA; Hotelling, 1933; Pearson, 1901) is a multivariate technique that linearly transforms a set of

correlated variables into a new set of orthogonal variables known as principal components (PCs), permitting

dimensionality reduction and potentially improved interpretation of data. PCA was first applied to gait

data by Shiavi and Griffin (1981) to examine muscle activation patterns in healthy gait and has since been

applied to accomplish several objectives in gait analysis.

One typical application of PCA to gait data is to examine interrelationships between joints, muscles,

and/or body segments in healthy gait (e.g., MacLellan & McFadyen, 2010; Palta, 1985; Sadeghi et al., 1997;

Wootten et al., 1990). In these applications, PCA is often applied to gait waveform data in one of two man-

ners: (a) conduct one PCA for each subject using a joints/muscles/segments × time matrix (e.g., Bennett

et al., 2010; Herr & Popovic, 2008; Mah et al., 1994; Raptopoulos et al., 2006); or (b) conduct one PCA for

each joint/muscle/segment using a subjects × time matrix (e.g., Ivanenko et al., 2004; Laassel et al., 1992;

Loslever et al., 1994; Sadeghi et al., 2001). In addition, some researchers (Troje, 2002) have used a two-stage

PCA approach to model both within- and between-subject gait pattern variation. In all cases, the PCs from

the separate analyses are examined to study mechanisms underlying healthy gait.

Another typical application of PCA in gait analysis is to investigate and summarize group differences in

gait waveform data (e.g., Deluzio et al., 1997; Muniz & Nadal, 2009; Reid et al., 2010; Yamamoto et al.,

1983). In these applications, one PCA is often conducted for each joint/muscle/segment using a subjects ×

time matrix, where the subjects mode is a collection of subjects from different groups (e.g., Astephen et al.,

2008; Chester & Wrigley, 2008; Cochran et al., 1984; Donoghue et al., 2008; Lamoth et al., 2006; Lauer et

al., 2005; Lee et al., 2009; McKean et al., 2007). The PCs from these separate analyses are then examined

1This paper is currently in press at Human Movement Science (doi:10.1016/j.humov.2011.06.011).
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to understand gait patterns of different subject groups, and PC scores (see Section 2.1.1) are often used to

quantify between-group differences.

Despite its widespread use in gait analysis, PCA is for the analysis of two-mode data (e.g., subjects ×

time), whereas gait data are typically collected in three- or higher-mode form (e.g., subjects × time × joints).

Therefore, gait analysts applying PCA often (a) perform several different PCAs (as previously described) or

(b) reorganize three-mode data into some two-mode form to apply one PCA (e.g., Hubley-Kozey et al., 2008;

Sadeghi, 2003; Shemmell et al., 2007). The first approach produces many solutions that are relevant only to

particular joints/muscles/segments (or subjects), lacking a solution that describes the data as a whole. The

second approach yields a solution that only reveals a part of the data structure, lacking a full description of

the data variation in all modes.

To overcome these limitations of PCA for gait analysis, Davis et al. (2002, 2003a,b, 2004) used Tucker’s

(1966) three-mode factor analysis model (known as the Tucker3 model) to analyze variation in three-mode

gait data. Davis and colleagues applied the Tucker3 model to gait data of the form body pose × time ×

effort/style, and showed that it is possible to recognize different gait efforts (e.g., carrying a light vs. heavy

load) and styles (e.g., male vs. female) via the effort/style weights obtained from the model. Davis et al.’s

Tucker3 approach for analyzing gait waveforms offers an improvement over traditional two-mode PCA ap-

proaches, given that this Tucker3 method directly models the three-mode variation of the data. However, like

the two-mode PCA model, the Tucker3 model suffers from rotational indeterminacy (Kiers, 1998; Tucker,

1966), and, even after an optimal rotation, Tucker3 solutions can be difficult to interpret due to the model’s

complex structure (see Harshman & Lundy, 1984a, for a discussion).

In this paper, we present an alternative approach, Parallel Factor Analysis (Parafac; Harshman, 1970),

to the visualization and interpretation of gait waveform data. Parafac is a multimode extension of PCA

that is designed for the analysis of three- or higher-mode data. We illustrate how Parafac can be used

to analyze three-mode gait data (subjects × time × joints) via one parsimonious model. This approach

makes it possible to (a) uniquely identify components describing individual and/or group differences in

motion patterns, (b) determine the time points when the components are influential (including the directions

of their effects), and (c) examine symmetry and interrelationships between joints along each component.

Using experimental data with and without a simulated injury, we demonstrate Parafac’s ability to describe

meaningful variation within normal gait, as well as Parafac’s power to identify differences between normal
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and perturbed gait patterns. Our analyses reveal the dynamic interconnections that exist between lower-limb

joints and segments in both healthy and perturbed gaits, confirming the need for the simultaneous analysis

of multi-joint gait waveform data.
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Chapter 2

Methods

2.1 Component Models

2.1.1 Principal Component Analysis

A data matrix X ≡ {xij}I×J (e.g., I subjects × J time points) can be approximated by PCA as

X = AB′ +E, (2.1)

where A ≡ {air}I×R contains mutually orthogonal columns with successively maximum sums-of-squares,

and B ≡ {bjr}J×R is columnwise orthonormal. Columns of A and B (sometimes called PC scores and

loadings, respectively) indicate the relative weights of the rows and columns of X for the corresponding R

PCs (where R ≤ min(I, J)), and E ≡ {eij}I×J is the information in X that cannot be explained by the R

PCs. If columns of X are mean-centered,1 then I−1A′A becomes a diagonal matrix with entries being the R

largest eigenvalues (in descending order) of the covariance matrix of X (≡ I−1X′X), and columns of B are

the corresponding eigenvectors. Thus, the PCA representation AB′ gives the least-squares (i.e., minimizes

∑
i

∑
j e

2
ij ) R-dimensional approximation of X (Hotelling, 1933; Pearson, 1901). The PCA model can be

alternatively written for an arbitrary entry xij as

xij =

R∑

r=1

airbjr + eij , (2.2)

where air and bjr indicate weights of the r-th PC for subject i and time point j, respectively, and eij denotes

the entry’s unexplained information.

1The bilinear form of the PCA model requires ratio scale data, so tradition (from the social sciences) dictates that variables
are mean-centered before conducting PCA. However, gait data are typically ratio scale by nature, so it is not necessary to
mean-center such data before applying PCA (or Parafac). In fact, mean-centering data that are already ratio scale may alter
the data’s bi-/trilinear structure, making the data no longer appropriate for the PCA/Parafac model. Thus, in this paper, we
apply Parafac to un-centered gait data. See Harshman and Lundy (1984b) and Smilde et al. (2004) for a thorough discussion
of how different forms of pre-processing (such as centering) influence PCA and Parafac solutions.
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It is well-known that, without the conditions of orthogonality and variance maximization, the PCA model

is not unique given that A and B can be rotated by any nonsingular orthogonal matrix T without loss in

fit (i.e., X − E = AB′ = ATT′B′ = ÃB̃′), which is referred to as the model’s rotational indeterminacy.

This means that, given an R-dimensional PCA solution, there are infinite different orientations of the R

dimensions that equally account for the data, and many of these orientations will likely lead to substantively

different interpretations. Consequently, some gait analysts (e.g., Davis & Vaughan, 1993; Mandeville et al.,

2009; Merkle et al., 1998; Sadeghi et al., 2000) have applied Kaiser’s (1958) varimax rotation for a simpler

interpretation.

2.1.2 Parallel Factor Analysis

The Parafac model can be considered a straightforward extension of the PCA model in Equation (2.1).

Suppose we have a three-mode data array X ≡ {xijk}I×J×K (e.g., the I×J matrix X measured for K joints

in the body). Parafac approximates such data array as

Xk = ACkB
′ +Ek for k = 1, . . . ,K, (2.3)

where Xk ≡ {xij(k)}I×J indicates the k-th frontal slice of X, Ck is a diagonal matrix containing the k-th row

of C ≡ {ckr}K×R (the weights of the R components for the K joints), and Ek ≡ {eij(k)}I×J is information in

Xk that cannot be explained by the R components. Like Equation (2.2), the Parafac model can be written

for an arbitrary entry xijk as

xijk =
R∑

r=1

airbjrckr + eijk, (2.4)

where air , bjr, and ckr indicate weights of the r-th component for subject i, time point j, and joint k,

respectively, and eijk denotes the entry’s unexplained information. Connections between PCA and Parafac

can be further visualized via tensor product notation: PCA approximates X as a sum of R rank-1 second-

order tensors (i.e., outer-products), and Parafac approximates X as a sum of R rank-1 third-order tensors

(Fig. 2.1). See Kiers (2000) and Kolda and Bader (2009) for other notational conventions for Parafac.

Although Parafac is a straightforward extension of PCA, the multilinear structure of the Parafac model

(e.g., the trilinear structure in Equations (2.3) and (2.4)) postulates stronger conditions of the data, which

result in important theoretical and practical differences between Parafac and PCA. For example, given the

I × J ×K data array X described above, one possibility to explaining the data’s three-mode variation via
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a) PCA: X =
∑

R

r=1
ar ◦ br + E

X =

a1

b1

+ . . . +

aR

bR

+ E

b) Parafac: X =
∑

R

r=1
ar ◦ br ◦ cr + E

X =

a1

b1

c1

+ . . . +

aR

bR

cR

+ E

◦ ◦

◦ ◦

Figure 2.1: The PCA (a) and Parafac (b) models using tensor product notation. The vectors ar , br, and cr
denote the r-th columns (r = 1, . . . , R) of the weight matrices A, B, and C, respectively, and the symbol ◦
denotes the tensor product of the vectors.

the two-mode PCA model is to fit K different PCA models (one PCA model for each joint’s I × J matrix).2

This approach produces K different sets of PCA weights (Ak, Bk for k = 1, . . . ,K), and there is no clear

method for comparing these weight matrices across the K different joints. Also, as discussed in Section 2.1.1,

each of these K sets of PCA weights suffers from rotational indeterminacy, and (aside from trial-and-error)

there is no way to determine which orientation(s) will lead to the most substantively meaningful solutions.

In contrast, the trilinear structure of the three-mode Parafac model assumes that the K different joints

share the same subjects and time weights (A and B, respectively), which are weighted by each joint’s di-

agonal weight matrix (Ck for k = 1, . . . ,K) to give the least-squares approximation of each joint’s data

matrix (Xk for k = 1, . . . ,K). This idea of trilinear variation originates from Cattell’s (1944) principle of

parallel proportional profiles, which was an attempt to resolve the rotational indeterminacy problem inherent

in two-mode component/factor analysis models. Cattell’s principle states that “real” components should

have an invariant pattern/structure across different conditions and should vary proportionally depending

on the relative importance of each component in explaining the data variation in each condition. Cat-

2We assume that matricizing the three-mode array (e.g., into an IK×J matrix) obscures the three-mode variation underlying
the data, so we do not discuss this possibility.
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tell then suggested that conditions with salient differences should be selected so that the true component

pattern/structure could be identified and the proportional variation of the components could be studied.

Expanding upon this idea, Harshman (1970) formalized Cattell’s principle into a functional three-mode

component analysis model, accordingly named Parallel Factor Analysis (Parafac; see Equation (2.3)).

The most important consequence of Parafac’s multilinear structure is that the Parafac model is unique

(up to rescaling/counter-scaling and reordering of components), which is referred to as the model’s intrinsic

axis property (Harshman & Lundy, 1984a). For the three-mode Parafac model, this uniqueness property

can be understood through Cattell’s principle of parallel proportional profiles. The trilinear structure of

the three-mode Parafac model requires that (a) the subjects (A) and time (B) weights remain invariant

across the K joints and (b) the importance of components varies proportionally across the K joints via mul-

tiplication by each joint’s diagonal weight matrix (Ck for k = 1, . . . ,K). Thus, in the three-mode Parafac

model, the pattern/structure of the A and B weights represents the unique orientation common to the K

joints, such that the C weights enter the model multiplicatively to produce the least-squares approximation

of X. See Harshman (1970, 1972) for the uniqueness proof specific to the Parafac model, and see Harshman

and Lundy (1996) for a generalized uniqueness proof for a family of models that includes Parafac. Finally,

Kruskal (1977) offers a sufficient condition for uniqueness of the three-mode Parafac model, which is typically

met by most data arrays that are not unusually small (e.g., larger than 2× 2× 2).

In practice, Parafac’s intrinsic axis property implies that, given an R-dimensional Parafac solution, there

is only one orientation (i.e., rotation) of the R dimensions that best accounts for the data. Thus, unlike

PCA and Tucker3 solutions, the interpretation of a Parafac solution does not depend on the post-hoc user-

specified rotation of the components. Also, because of Parafac’s intrinsic axis property, Parafac components

are not required to be orthogonal to one another. However, constraining one or more of the Parafac weight

matrices to be columnwise orthogonal (orthogonality constraint) produces an orthogonal solution where the

variance-accounted-for (VAF) by each component is not shared with any other component. In some cases,

such constraints can be useful for obtaining more interpretable solutions and/or for preventing degenerate

solutions. See Harshman and Lundy (1984a,b) for a detailed overview of both theoretical and practical

aspects of the Parafac model.
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2.1.3 Fitting the PCA and Parafac Models

Just as the PCA solution is sought to provide the least-squares R-dimensional approximation of X (i.e.,

the solution minimizing
∑

i

∑
j e

2
ij from Equation (2.2)), the Parafac solution is sought to provide the

least-squares R-dimensional approximation of X (i.e., the solution minimizing
∑

i

∑
j

∑
k e

2
ijk from Equa-

tion (2.4)). The least-squares PCA solution is easily obtainable by the singular value decomposition, which

is available in many computational environments (e.g., MATLAB or R). However, unlike PCA, there is no

closed-form solution to the Parafac decomposition. Instead, the minimization is typically achieved via the

alternating least-squares (ALS) algorithm (Wold, 1966), which uses ordinary least-squares regression to esti-

mate each mode’s weight matrix while holding the other modes’ weight matrices constant (with the process

iterating until the relative change in the model’s fit is less than some predetermined tolerance).

The ALS Parafac algorithm for a three-mode array is given in Appendix A. This algorithm is known

to converge and is known to be accurate under various simulated conditions. However, the algorithm’s

convergence can be slow for difficult problems (e.g., problems with dominant noise variance, systematic

interfering variance, etc.), so the algorithm is set to stop if convergence has not been met after a sufficiently

large number of iterations (e.g., 5000 iterations). To improve efficiency, various numerical techniques have

been tested, such as ridge regression (Rayens & Mitchell, 1997), line search (Bro, 1998; Tomasi, 2006; Rajih

et al., 2008), and gradient-based methods (Franc, 1992; Paatero, 1999; Tomasi, 2006). Although performance

of an algorithm depends on the data and the fit model, the ALS algorithm in Appendix A seems to provide

the most accurate Parafac solution at the cost of slow convergence (see Faber et al., 2003; Tomasi & Bro,

2006). Andersson and Bro (2000) provide an excellent open-source MATLAB toolbox with techniques for

fitting various multimode component models, including the ALS algorithm for fitting the Parafac model.

2.2 Data

To demonstrate the utility of Parafac for the analysis of gait data, we utilized kinematic data from Shorter

et al. (2008). Ten healthy male subjects (21±2 yrs) walked on a treadmill under two conditions: (a) normal,

non-braced (NB) walking; and (b) knee-braced (KB) walking such that right knee motion was restricted to

full extension by a brace. The KB condition was designed to simulate the reduced flexion that would result

from a perturbation such as a right knee sprain. By applying Parafac to these data, we hoped to reveal the

complex interrelationships that exist between lower-limb joints during normal gait, and also understand how

the reduced flexion caused by the right knee bracing altered these interrelationships. See Shorter et al. for
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details of the experimental setup and data collection procedure.

Joint flexion/extension angles were anatomically defined according to the triaxial system discussed in

Chao (1980), such that positive angles represented flexion (hip and knee) or dorsiflexion (ankle) and negative

angles represented extension (hip and knee) or plantar flexion (ankle; see Fig. 2.2). Bilateral hip, knee, and

ankle flexion/extension angle waveforms were calculated from the motion-capture data using the approach

θ1: Torso Angle

θ2: Thigh Angle

θ3: Calf Angle

θ4: Foot Angle

Knee Angle = θ2 − θ3

Hip Angle = θ2 − θ1

Ankle Angle = θ4 − θ3 − 90◦

(+) for flexion
(−) for extension

(+) for flexion
(−) for extension

(+) for dorsiflexion
(−) for plantar flexion

Figure 2.2: Anatomical segment and joint angle definitions. The angles are defined such that a positive joint
angle represents flexion (hip and knee) or dorsiflexion (ankle) and a negative joint angle represents extension
(hip and knee) or plantar flexion (ankle).
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in Vaughan et al. (1999). Ten consecutive gait cycles (GCs) per condition were used per subject. Before

applying Parafac, data were (a) segmented into GCs from heel strike to heel strike separately for each limb,

(b) linearly length normalized to 101 time points representing 0–100% GC (see Helwig et al., 2011), and

(c) averaged over the ten GC replications within each subject-condition combination to determine each

subject’s typical behavior in each condition (Fig. 2.3).
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Figure 2.3: Average (with standard deviation bars) hip, knee, and ankle angle waveforms in the non-braced
(blue solid lines) and knee-braced (red dashed lines) conditions. Averages (and standard deviations) are
over 100 gait cycles (10 replications from 10 subjects). In each subplot, the gait cycle is divided into
biomechanically-relevant subphases that are labeled in subplots (e) and (f): initial contact and loading
response (IL), mid-stance (MT), terminal stance (TT), pre-swing (PW), initial swing (IW), mid-swing (MW),
and terminal swing (TW).
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2.3 Parallel Factor Analysis of Joint Angle Data

To assess interrelationships between joints in healthy gait, NB data were collected to form a 10 × 101 × 6

array of joint angle waveforms where Mode A represented the 10 subjects, Mode B represented the 101 time

points, and Mode C represented the 6 joints (left and right hip, knee, and ankle). Parafac was then used to

decompose this array into weight matrices of subjects (A), time (B), and joints (C) to better understand

joint angle patterns in healthy gait. Also, to assess differences in joint angle patterns between the NB and

KB conditions, data were collected to form a 20 × 101 × 6 array of joint angle waveforms where Mode A

contained a collection of the 10 NB and 10 KB subjects, and Modes B and C were the same as before.

Parafac was then used to decompose this array into weight matrices of subjects (A), time (B), and joints

(C) to identify components that accounted for group (NB vs. KB) differences.

Like in PCA, in Parafac the number of components to extract is user-provided, so different numbers

of components were tried to determine the optimal and most interpretable solution. Unlike PCA, the

Parafac solution must be iteratively estimated, typically by the ALS algorithm (see Section 2.1.3). ALS

Parafac solutions only guarantee local optimality, so we used 100 randomly initialized starts to determine

the best solution. Also, an orthogonality constraint was imposed on C to prevent degenerate solutions. The

orthogonality constraint was implemented by replacing Step 3 of the ALS algorithm in Appendix A with

3. C = Z(Z′Z)−1/2 where Z = Xc(B⊙A)

(Harshman & Lundy, 1994). We chose to appy the constraint on C (instead of A or B) to ensure that

each component provided non-redundant information concerning interrelationships between the joints, while

allowing the components to be linearly related with respect to the subjects and time points.
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Chapter 3

Results

3.1 Parafac Results for Non-Braced Data

The Parafac results for the NB data produced an interpretable three-component solution with a VAF of

98% (i.e., (s− s1)/s = .98 at convergence of the ALS algorithm, where s = trace(XaX
′

a) is the total sum-of-

squares of the data, and Xa and s1 are defined in Appendix A). To facilitate interpretation of the resulting

weight matrices, the Parafac solution was scaled such that the subjects (Mode A) weights absorbed the scale

of the data and the time (Mode B) weights absorbed the sign of the data (see Appendix B for details).

We chose to absorb the data’s scale into the subjects weights to facilitate the discrimination of locomotive

patterns via the subjects weights (as discussed in Section 4.3). We absorbed the sign of the data into the

time weights because the time weights have a meaningful bipolar interpretation (i.e., positive=flexion and

negative=extension). For the remainder of the manuscript, the double-dot notation used in Appendix B will

be dropped, and the scaled Parafac solution Ä, B̈, C̈ will simply be referred to using the notation A, B, C.

After scaling, the resulting Parafac solution was interpreted in the following manner. The A weights

illustrated inter-individual variation along each component, as well as the relative importance of each com-

ponent; however, for the NB data, the A weights were not informative for interpreting the obtained Parafac

components (Fig. 3.1). In contrast, the B and C weights were useful for characterizing and understand-

ing the components. The B weights provided the pattern of each component’s angular waveform over the

course of the GC (Fig. 3.2), while the C weights indicated which components best accounted for each joint’s

behavior (Table 3.1). The first component (53% VAF) weighted highly for the hips and knees (Table 3.1,

Comp1) and resembled the pattern of a typical thigh angle waveform (Fig. 3.2a). The second component

(31% VAF) was characterized by large weights for the ankles and knees (Table 3.1, Comp2) and resembled

the pattern of an inverted calf angle waveform (Fig. 3.2b). Lastly, the third component (14% VAF) produced

moderate-to-large weights for all three joints (Table 3.1, Comp3) and resembled the pattern of a typical foot

angle waveform (Fig. 3.2c).

12



275 350 425 500
240

280

320

360

Component 1  (53% VAF)

C
o

m
p

o
n

e
n

t 
2

  
(3

1
%

 V
A

F
)

a)  Component 1 vs. Component 2

275 350 425 500
120

160

200

240

Component 1  (53% VAF)

C
o

m
p

o
n

e
n

t 
3

  
(1

4
%

 V
A

F
)

b)  Component 1 vs. Component 3

Figure 3.1: Subjects (A) weights from the Parafac fitting of the non-braced data. These weights illustrate
inter-individual variation along each of the three components. Larger absolute values indicate that a com-
ponent is more influential for explaining a given subject’s behavior. Also, these weights carry the scale of
the data, such that the sum (over subjects) of the squared values indicates the relative influence of each
component.

Table 3.1: Joints (C) weights from the Parafac fitting of the non-braced data. The rows give the weights of
the left and right (L, R) hip, knee, and ankle (H, K, A) on the first, second, and third components (Comp1,
Comp2, Comp3). Larger absolute values indicate that a component is more influential for explaining a given
joint’s behavior.

Joint Comp1 Comp2 Comp3
LH 0.60 −0.20 0.32
RH 0.60 −0.19 0.32
LK 0.35 0.48 −0.39
RK 0.37 0.47 −0.37
LA −0.09 0.50 0.52
RA −0.12 0.48 0.48
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Figure 3.2: Time (B) weights from the Parafac fitting of the non-braced data. These weights illustrate the
pattern of each component’s angular waveform over the course of the gait cycle. Larger absolute values
indicate that a component is more influential for explaining variation at a particular time point. For our
purposes, a time point with a weight greater than 0.1 in absolute value was (somewhat arbitrarily) considered
influential relative to the other time points. See Fig. 2.3 for definitions of the gait cycle subphases labeled
in subplot (c).
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3.2 Parafac Results for Non-Braced and Knee-Braced Data

The Parafac results for the combined NB and KB data produced an interpretable four-component solution

with a VAF of 97%. Like in the previous analysis, the Parafac solution was scaled such that the subjects

weights absorbed the data’s scale and the time weights absorbed the data’s sign. In this analysis, the

A (Fig. 3.3; Table 3.2), B (Fig. 3.4), and C (Table 3.3) weights were used to understand the extracted

components and to assess individual and group (NB vs. KB) differences along each component.
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Figure 3.3: Subjects (A) weights from the Parafac fitting of the non-braced (NB) and knee-braced (KB)
data. These weights illustrate inter-individual and between-group (NB vs. KB) variation along each of the
four components. Larger absolute values indicate that a component is more influential for explaining a
given subject’s (or group’s) behavior. Also, these weights carry the scale of the data, such that the sum
(over subjects) of the squared values indicates the relative influence of each component. Note that complete
separation between the NB and KB data is achieved along the first and fourth components.

Table 3.2: Means (and standard deviations) of the subjects (A) weights from the Parafac fitting of the
non-braced (NB) and knee-braced (KB) data.

Group Comp1 Comp2 Comp3 Comp4
NB 414.12 (38.90) 233.30 (31.64) 221.03 (23.14) −12.82 (12.23)
KB 270.18 (39.45) 240.94 (42.18) 192.41 (28.72) 138.31 (12.68)
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Figure 3.4: Time (B) weights from the Parafac fitting of the non-braced and knee-braced data. See Fig. 3.2
for a description of how these weights are interpreted, and see Fig. 2.3 for definitions of the gait cycle
subphases labeled in subplots (c) and (d).

Table 3.3: Joints (C) weights from the Parafac fitting of the non-braced and knee-braced data. The rows
give the weights of the left and right (L, R) hip, knee, and ankle (H, K, A) on the first, second, third, and
fourth components (Comp1, Comp2, Comp3, Comp4). Larger absolute values indicate that a component is
more influential for explaining a given joint’s behavior.

Joint Comp1 Comp2 Comp3 Comp4
LH 0.05 0.73 −0.18 −0.14
RH 0.13 0.59 −0.28 0.17
LK 0.64 0.04 0.33 −0.65
RK 0.59 0.04 0.35 0.68
LA −0.33 0.25 0.59 0.18
RA −0.32 0.23 0.56 −0.19
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The first component (51% VAF) was characterized by large weights for the NB subjects (Fig. 3.3a;

Table 3.2, Comp1) and knees (Table 3.3, Comp1) and resembled the pattern of a typical knee angle waveform

(Fig. 3.4a). In contrast, the second component (24% VAF) weighted highly for the hips (Table 3.3, Comp2)

and resembled the pattern of a typical hip angle waveform (Fig. 3.4b) but did not differentiate between

the subject groups (Fig. 3.3a; Table 3.2, Comp2). The third component (18% VAF), which produced

moderate-to-large weights for the ankles and knees (Table 3.3, Comp3) and resembled the pattern of a

slightly abnormal inverted calf angle waveform (Fig. 3.4c), tended to weight more highly for the NB subjects

(Fig. 3.3b; Table 3.2, Comp3). Finally, the fourth component (4% VAF) weighted highly for the KB subjects

(Fig. 3.3b; Table 3.2, Comp4) and the knees in opposite directions (Table 3.3, Comp4), characterizing the

differing effects of the right knee bracing on the knee angle waveforms (Fig. 3.4d).
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Chapter 4

Discussion

4.1 Components in Non-Braced Walking

Almost all (about 98%) of the variation in the NB hip, knee, and ankle angle waveforms was explained by

three Parafac components that seemed to represent the angular behaviors of the thigh, calf, and foot, respec-

tively. To assess these interpretations, we attempted to reconstruct typical knee and ankle angle waveforms

via linear combinations of the columns of B (Fig. 3.2). By definition, a knee angle waveform was formed by

subtracting a calf angle waveform from a thigh angle waveform, and an ankle angle waveform was formed

by subtracting a calf angle waveform (and a constant) from a foot angle waveform (see Fig. 2.2). There-

fore, if the first and second Parafac components represented a thigh angle waveform and an inverted calf

angle waveform (as hypothesized), then the addition of the first and second columns of B should produce a

waveform resembling the shape of a typical knee angle waveform. Likewise, if the second and third Parafac

components represented an inverted calf angle waveform and a foot angle waveform (as hypothesized), then

the addition of the second and third columns of B should produce a waveform resembling the shape of a

typical ankle angle waveform. The reconstructed waveforms formed via linear combinations of the columns

of B closely resembled the shape patterns of the average NB waveforms (Fig. 4.1), supporting our interpre-

tations of the components. Thus, during normal walking, variation in the system of lower-limb joint angle

waveforms could be attributed to variation in (a) the thigh angular pattern (about 53% VAF), (b) the calf

angular pattern (about 31% VAF), and (c) the foot angular pattern (about 14% VAF).

After identifying the components, the B (Fig. 3.2) and C (Table 3.1) weights were further examined

to assess interrelationships between lower-limb joints and segments in normal gait. The first component

(thigh) mainly explained the similar flexion patterns of the hip and knee from initial swing to terminal

swing,1 indicated by large B weights at 67–95% GC (Fig. 3.2a) and large positive C weights for the hips and

knees (Table 3.1, Comp1). Likewise, the second component (calf) mostly described similar flexion patterns

1See Fig. 2.3 for definitions of the biomechanical subphases of the GC that are discussed here.

18



0 20 40 60 80 100
0

20

40

60

80
A

n
g

le
 (

D
e

g
re

e
s
)

Time (% Gait Cycle)

a)  Reconstructed Knee Angle

 

 

Avg. NB Knee Angle

Components 1 + 2

0 20 40 60 80 100
−20

0

20

40

Time (% Gait Cycle)

b)  Reconstructed Ankle Angle

 

 

Avg. NB Ankle Angle

Components 2 + 3

Figure 4.1: Average knee (a) and ankle (b) angles in the non-braced (NB) condition and reconstructed angles
formed via linear combinations of the columns of B from the Parafac fitting of the NB data. Averages are
over 200 gait cycles (10 replications from 2 legs of 10 subjects). Reconstructed knee (component 1 +
component 2) and ankle (component 2 + component 3) angles have been scaled to have a sum-of-squares
equivalent to that of the corresponding average angle (to facilitate comparison of the shape patterns).

of the knee and ankle from pre- to mid-swing, indicated by large B weights at 53–89% GC (Fig. 3.2b) and

large positive C weights for the knees and ankles (Table 3.1, Comp2). Finally, the third component (foot)

primarily distinguished differences between the flexion of the knee and the plantar flexion of the ankle during

initial swing and mid-swing, indicated by large B weights at 62–85% GC (Fig. 3.2c) and the sign difference

of the C weights between the knees and ankles (Table 3.1, Comp3).

The C weights (Table 3.1) were also used to examine symmetry between the left and right limbs in

healthy gait. All joints displayed relatively symmetric behavior, indicated by the similar Mode C weighting

patterns between corresponding left and right limb joints. The hips exhibited the most symmetry (i.e., most

similar C weights), whereas the ankles were the least symmetrical. Also, the knees and ankles displayed a

similar pattern of asymmetry: right limb joints weighted more highly on the first component (thigh), whereas

left limb joints weighted more highly on the second (calf) and third (foot) components. This pattern could

possibly provide an example of the interrelationships between local asymmetries that exist in normal gait to

produce globally symmetric behavior in the lower-limbs (see Sadeghi, 2003).

It is worth noting that the Parafac fitting of the NB joint angle data was able to determine the source

components (i.e., the thigh, calf, and foot angle waveforms) that defined subjects’ hip, knee, and ankle angle

waveforms during normal walking. The thigh component (53% VAF) was the most influential of the three

source components, which was expected because the thigh angle waveform composed the definitions of the

hip and knee angle waveforms (the two joint angle waveforms with the largest variances; see Figs. 2.2 & 2.3).

Likewise, it was expected that the calf component (31% VAF) would be the second most influential source
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component, given that the (inverted) calf angle waveform composed the definitions of the knee and ankle

angle waveforms (see Fig. 2.2). Finally, the foot component (14% VAF) was the least influential of the three

source components, given that the foot angle waveform composed only the definition of the ankle angle

waveform (see Fig. 2.2). However, it is interesting that, although the foot angle waveform was not directly

involved in the definitions of the hip or knee angle waveforms, the foot angular pattern was still rather useful

for reconstructing the waveforms of the hips and knees (indicated by the moderate sized weights for the hips

and knees in Table 3.1, Comp3). This offered evidence of the complex interrelationships that exist between

lower-limb joints and segments during healthy gait, which confirmed the need for the simultaneous analysis

of multi-joint gait waveform data.

In summary, Parafac made it possible to separately examine (in a single solution) the variation in the joint

angle waveforms over the subjects, the time points, and the joints. This ability to decompose the variation

simultaneously in all three modes made it possible to directly study individual differences (using the A

weights) concerning interrelationships between lower-limb joints (using the C weights) throughout all time

points of the GC (using the B weights). By simultaneously analyzing angular data from all six lower-limb

joints, Parafac was able to reveal various interconnections between seemingly unconnected joints and limb

segments (e.g., between the hip and foot). Thus, as demonstrated, the comprehensive results provided by

Parafac were quite useful for understanding the dynamic interrelationships characterizing lower-limb angular

patterns during healthy gait.

4.2 Components in Non-Braced and Knee-Braced Walking

When analyzing the combined NB and KB hip, knee, and ankle angle waveforms, most (about 97%) of the

variation was explained by four Parafac components that were useful for characterizing and understanding

differences between the NB and KB data. The behavior of the NB subjects was mostly described by the

first three components (indicated by the fact that the NB subjects had relatively small weights on the fourth

component; see Fig. 3.3b); however, unlike the previous analysis that included only the NB data, the first

three components in this combined analysis seemed to represent the angular behaviors of (a) the knee (about

51% VAF), (b) the hip (about 24% VAF), and (c) the calf (about 18% VAF). Also unlike the previous anal-

ysis, a fourth component was required to account for the specific effects of the bracing (about 4% VAF).

The A (Fig. 3.3; Table 3.2), B (Fig. 3.4), and C (Table 3.3) weights were used to summarize and under-
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stand differences between the NB and KB data. The first component (knee) mainly distinguished differences

between knee flexion patterns of the NB and KB data from initial swing to terminal swing, indicated by

large A weights for the NB group (Fig. 3.3a; Table 3.2, Comp1), large B weights at 63–91% GC (Fig. 3.4a),

and large C weights for the knees (Table 3.3, Comp1). In contrast, the second component (hip) mostly

explained the similar hip flexion patterns in the NB and KB data from initial contact to mid-stance and

from mid-swing to terminal swing, indicated by the similar A weights for the NB and KB groups (Fig. 3.3a;

Table 3.2, Comp2), large B weights at 0–19% and 76–100% GC (Fig. 3.4b), and large C weights for the

hips (Table 3.3, Comp2). The third component (calf) primarily highlighted differences between the NB and

KB knee and ankle flexion patterns from mid-stance to mid-swing, indicated by large A weights for the

NB group (Fig. 3.3b; Table 3.2, Comp3), large B weights at 41–87% GC (Fig. 3.4c), and moderate-to-large

C weights for the knees and ankles (Table 3.3, Comp3). Finally, the fourth component (bracing effect)

mainly accounted for the reduced flexion of the right (but not left) knee in the KB data throughout swing,

indicated by large A weights for the KB group (Fig. 3.3b; Table 3.2, Comp4), large B weights at 67–91%

GC (Fig. 3.4d), and the sign difference of the C weights between the left and right knees (Table 3.3, Comp4).

The C weights (Table 3.3) were also used to examine patterns of asymmetry generated by the knee brac-

ing. Increased asymmetry (compared to the previous analysis) was evident throughout all four components,

but we focused on the fourth component (Table 3.3, Comp4) because it represented the specific bracing

effects. The largest amount of asymmetry existed at the knees (as expected), whereas the hips exhibited the

most symmetrical behavior. Also, all three joints displayed a similar pattern of asymmetry: right limb joints

weighted more highly and in opposite directions than corresponding left limb joints. This pattern indicated

that the right knee bracing had a main (limiting) effect on the right limb’s behavior and a compensating

effect on the behavior of the left limb.

Given that all subjects shared the same estimated B and C weights, Parafac made it possible to quantify

individual and/or group differences in multi-joint gait waveform patterns simply by evaluating subjects’ A

weights. Based on the A weights, it was apparent that NB and KB subjects substantially differed on the first

(knee), third (calf), and fourth (bracing effect) components (see Table 3.2). Joining this information with

that from the B and C weights, it was possible to determine precisely how the NB and KB joint angular

patterns differed. The KB subjects had reduced weights on the first component (see Fig. 3.3a), reflecting

the KB subjects’ reduced knee and ankle flexion (indicated by the C weights; see Table 3.3, Comp1) during

the swing subphases of the GC (indicated by the B weights; see Fig. 3.4a). Likewise, the KB subjects

21



had reduced weights on the third component (see Fig. 3.3b), reflecting the KB subjects’ reduced knee and

ankle flexion (indicated by the C weights; see Table 3.3, Comp3) from the mid-stance subphase of the GC

through mid-swing (indicated by the B weights; see Fig. 3.4c). Lastly, the KB subjects had large weights

on the fourth component (see Fig. 3.3b), reflecting the specific effects of the right knee bracing beyond the

overall reduced flexion patterns described by the first and third components. More specifically, the fourth

component described the differing effects of the bracing on the right limb versus the left limb (indicated

by the C weights; see Table 3.3, Comp4), such that the fourth component acted to further reduce the KB

subjects’ right knee and right ankle flexion, while increasing KB subjects’ left knee and left ankle flexion

to be comparable with those of the NB subjects (indicated by the B weights; see Fig. 3.4d). Thus, taken

together, the first, third, and fourth components suggested that the KB subjects had substantially reduced

right (but not left) knee and ankle flexion, particularly during the swing subphases of the GC.

In summary, the Parafac representation of the combined NB and KB data was able to produce substan-

tively meaningful components that described the primary differences between the two groups’ lower-limb

angular patterns. Parafac made it possible to determine which components best accounted for the group

differences (using the A weights), how these differences manifested themselves throughout the GC (using

the B weights), and the manners in which lower-limb joints interacted to produce these differences (using

the C weights). By simultaneously analyzing angular data from all six lower-limb joints of both the NB

and KB subjects, Parafac revealed that the right knee bracing caused altered flexion/extension patterns

throughout several lower-limb joints and segments. Thus, these results confirm the need for the holistic

analysis of multi-joint gait waveform data when attempting to understand a perturbed gait pattern.

4.3 Parafac as a Clinical Tool

PCA is widely used in clinical settings for diagnosing and evaluating group differences in locomotive pat-

terns. One common clinical use of PCA is the Gillette Gait Index (Schutte et al., 2000), which calculates a

subject’s deviation from normal gait based on the PCs of healthy control subjects. Another common clinical

application involves using analysis of variance models on subjects’ PC scores to determine whether com-

ponents extracted from locomotive waveform data account for significant group differences (e.g., Chester

& Wrigley, 2008; Hubley-Kozey et al., 2008; McKean et al., 2007). In addition, some researchers (e.g.,

Astephen & Deluzio, 2005; Decker et al., 2007; Deluzio & Astephen, 2007; Troje, 2002) have utilized Fisher’s

(1936) discriminant function analysis on subjects’ PC scores to identify hierarchies of components that best
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account for group differences in locomotive waveform data.

Like PCA, Parafac can be used as a basis for a diagnostic or evaluative tool in clinical settings. Suppose

we have three-mode locomotive data (subjects × time × joints) where the first mode is an aggregation

of a sufficiently large number of control subjects and perturbed subjects (e.g., subjects with lower-limb

osteoarthritis). First, the three-mode data can be considered a calibration sample and analyzed by Parafac

to produce a solution (A, B, C) that is representative of the population of interest (e.g., the controls and

the osteoarthritics). Next, a discriminant function analysis of the A weights can be used to determine

the discriminant function that best differentiates the subject groups. Then, for any new subject with data

measured in the same manner as the calibration sample (e.g., 101 time points × 6 joints), new Mode A

weights ã ≡ {ãr}R×1 can be estimated as

ã′ = x̃′Z (Z′Z)
−1

where x̃′ ≡ {x̃11, . . . , x̃J1, x̃12, . . . , x̃J2, . . . , x̃JK}1×JK is a vectorized version of X̃ ≡ {x̃jk}J×K (the J time

points × K joints matrix of the new subject’s data), Z = C⊙B, and B and C are the representative Parafac

weights determined from the calibration sample. Finally, the new subject’s estimated weights ã can be input

into the discriminant function for a statistical classification of the subject into either the control or perturbed

group. Thus, Parafac can reduce a new subject’s data matrix of J time points × K joints to a vector of R

component weights. Also, the error variance that is not explained by the Parafac model is likely irrelevant

to the discrimination of the control subjects versus the perturbed subjects; if this is case, the discriminant

function derived from the Parafac A weights will provide more accurate and reliable classification than one

based on the original data (which is more noisy and error-prone).
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Chapter 5

Conclusions

The ability to meaningfully analyze multivariate locomotive data is a necessary task in gait and motion

analyses. In this study, we demonstrated the power of the Parafac model for analyzing gait data in three-

mode form (subjects × time × joints). The Parafac representation of the NB data was able to (a) extract

the source components (i.e., segment angle waveforms) that determined the system of lower-limb joint angle

waveforms and (b) reveal both hypothesized and unexpected interconnections between lower-limb joints and

segments during normal gait. In addition, the Parafac representation of the combined NB and KB data pro-

duced interpretable components revealing (a) the fundamental differences between the groups’ gait patterns

across multiple joints and (b) the need for the simultaneous analysis of multi-joint gait waveform data when

studying abnormal patterns of locomotion.

As it is formulated here, Parafac is a descriptive model that explains systematic variation underlying

gait data. Unlike parametric statistical models, a typical application of Parafac lacks information on the

statistical reliability of the model’s parameter estimates (i.e., component weights). However, if the number

of observations (subjects in this case) is sufficiently large, the bootstrap (Efron & Tibshirani, 1993) has been

found useful for obtaining reliability estimates of Parafac component weights (Kiers, 2004). Thus, if data are

available from many subjects, the bootstrap can be used to form confidence intervals around the obtained

Parafac weights in each mode. Indeed, if a sufficient amount of data are available, the bootstrap can be

useful for various uncertainties encountered in applications of Parafac such as the number of components to

extract (Hong et al., 2006; Timmerman & Kiers, 2000) and choosing between alternative models (Kroonen-

berg, 2008).

Parafac offers a novel method for analyzing multivariate gait and motion data. This general approach can

simultaneously analyze locomotive waveform data from different subjects and joints/muscles/segments via

one parsimonious model, which makes it possible to (a) identify uniquely interpretable components revealing

individual and/or group differences in motion patterns, (b) determine the time points during which the com-
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ponents are influential, and (c) investigate interrelationships and symmetry between joints/muscles/segments

along each component. Thus, Parafac solutions provide detailed functional descriptions of locomotive be-

havior that could be useful in clinical applications for diagnosing, evaluating, and treating deviant motion

patterns.
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Appendix A

ALS Parafac Algorithm

The ALS Parafac algorithm extracting R components from the array X ≡ {xijk}I×J×K is given below.

ALS Parafac Algorithm : X ≡ {xijk}I×J×K and R Components

Initialization :

a. Xa = X matricized to an I × JK matrix (where j runs faster than k)

b. Xb = X matricized to a J ×KI matrix (where k runs faster than i)

c. Xc = X matricized to a K × IJ matrix (where i runs faster than j)

d. Set B and C to random J ×R and K ×R matrices (respectively)

e. s0 = trace(XaX
′

a) and t = 10−7 (or some tollerably small number)

Iterative Procedure :

1. A = XaZ(Z
′Z)−1 where Z = C⊙B

2. B = XbZ(Z
′Z)−1 where Z = A⊙C

3. C = XcZ(Z
′Z)−1 where Z = B⊙A

4. s1 = trace(EaE
′

a) where Ea = Xa −A(C⊙B)′

5. If (s0 − s1)/s0 < t, stop the iterative procedure (algorithm converged)

Else set s0 = s1 and go to Step 1

In the above algorithm, the symbol ⊙ denotes the Khatri-Rao product (i.e., columnwise Kronecker product)

of the weight matrices. Like most iterative algorithms, this algorithm only guarantees a locally optimal

solution, due to the solution’s dependence on the initialized B and C matrices. Thus, to increase the chance

of obtaining the globally optimal solution (minimizing
∑

i

∑
j

∑
k e

2
ijk with respect to the entire solution

space), the algorithm should be applied several times with different randomly initialized B and C matrices

each time.
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Appendix B

Scaling the Parafac Solution

Given the Parafac model in Equation (2.3), we can take any R × R nonsingular diagonal matrices Db and

Dc (and their corresponding inverses D−1
b and D−1

c ) and rescale the Parafac weight matrices such as

Xk = ACkB
′ + Ek for k = 1, . . . ,K,

= ÃC̃kB̃
′ +Ek for k = 1, . . . ,K,

where Ã = ADbDc, B̃ = BD−1
b , and C̃k = CkD

−1
c for k = 1, . . . ,K. As can be verified, this rescaling does

not alter the fit of a Parafac solution, which is referred to as the scaling indeterminacy of the Parafac model.

However, using the rescaling described above, all of the weights within a given column of a given weight

matrix are uniformly rescaled, so the relative importance of the levels within any mode will not change

as a result of this rescaling. Thus, Parafac’s scaling indeterminacy only affects the metric of the compo-

nents in each mode, and does influence the substantive meaning of the Parafac results. For these reasons,

Parafac’s scaling indeterminacy can be viewed as a convenience, given that the resulting Parafac weight

matrices can be rescaled depending on the desired interpretation for a particular mode’s weights. Below, we

suggest a scaling procedure tailored for Parafac solutions from gait data of the form subjects × time × joints.

Upon convergence of the ALS algorithm in Appendix A, the Parafac solution A, B, C can first be scaled

by taking

Ḃ = BD−1
b where d

(b)
rr∗ =






√∑J
j=1 b

2
jr if r = r∗

0 if r 6= r∗
for r, r∗ = 1, . . . , R

Ċ = CD−1
c where d

(c)
rr∗ =






√∑K
k=1 c

2
kr if r = r∗

0 if r 6= r∗
for r, r∗ = 1, . . . , R

Ȧ = ADbDc
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to absorb the scale of the data into Ȧ. This creates a Parafac solution Ȧ, Ḃ, Ċ where the sum of the

squared entries in column r of Ȧ is directly proportional to the relative influence of the r-th component (for

r = 1, . . . , R). If the Parafac solution is constrained to be orthogonal, the quantity
∑I

i=1 ȧ
2
ir/s provides the

VAF by the r-th component (for r = 1, . . . , R), where s = trace(XaX
′

a) is the total data sum-of-squares and

Xa was defined in Appendix A.

Next, the Parafac solution Ȧ, Ḃ, Ċ can be further scaled by taking

Ä = ȦDa where d
(a)
rr∗ =





1 if r = r∗ and
∑I

i=1 ȧ
3
ir ≥ 0

−1 if r = r∗ and
∑I

i=1 ȧ
3
ir < 0

0 if r 6= r∗

for r, r∗ = 1, . . . , R

C̈ = ĊDc where d
(c)
rr∗ =






1 if r = r∗ and
∑K

k=1 ċ
3
kr ≥ 0

−1 if r = r∗ and
∑K

k=1 ċ
3
kr < 0

0 if r 6= r∗

for r, r∗ = 1, . . . , R

B̈ = ḂDaDc

to absorb the sign of the data into B̈. This produces a solution where the sums (of the cubes) of the columns

of Ä and C̈ are nonnegative, while the sums (of the cubes) of the columns of B̈ reflect the signs of the

corresponding components. Cubic terms are used in the summation (as oppose to first order terms) so that

a few dominant weights (i.e., those with larger absolute values) contribute more to determining the signs of

the corresponding columns of B̈ than do many other small weights.
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