
Listening to Speech in Background N
oise using a Cochlear Im

plant
Gertjan Dingem

anse

Listening to Speech in Background Noise
using a Cochlear Implant

Gertjan Dingemanse





 
 

Listening to Speech 
in Background Noise  

using a Cochlear Implant 
 

 
Gertjan Dingemanse 

 
  



   
   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISBN: 978 94 6423 459 6 
Cover: Erica Dingemanse 
Printing: ProefschriftMaken || www.proefschriftmaken.nl 
 
 
Financial support for the printing of this thesis was kindly provided by: 
Acoustair, Advanced Bionics, Cochlear, EmiD, MED-EL, Oticon Medical. 
 
 
© 2021, J.G. Dingemanse 
All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system or transmitted, in any form of by any means, electronic, mechanical, 
photocopying, recording or otherwise, without prior permission of the author or the 
copyright-owning journals for previous published chapters.  



 
 

Listening to Speech 
in Background Noise  

using a Cochlear Implant 
 

Luisteren naar spraak in achtergrondgeluid 
met behulp van een cochleair implantaat 

 
 
 

Proefschrift 
 
 

ter verkrijging van de graad van doctor aan de 
Erasmus Universiteit Rotterdam 

 op gezag van de rector 
 magnificus 

 
Prof.dr. A.L. Bredenoord 

 
en volgens besluit van het College voor Promoties. 

De openbare verdediging zal plaatsvinden op 
dinsdag 9 november 2021 

om  10:30 uur 
 

door 
 

door Jan Gerard Dingemanse 
geboren te Goes.  



   
   

 
 

Promotiecommissie 
Promotor Prof. dr. R.J. Baatenburg de Jong 

Overige leden Prof. dr. J.G.G. Borst  
Prof. dr. D. Başkent 
Prof. dr. A. van Wieringen 

Copromotor Dr. ir. A. Goedegebure 

  



 
 

Table of contents 
 
Chapter 1 General introduction 7 

Chapter 2 Application of noise reduction algorithm ClearVoice in cochlear 
implant processing: Effects on noise tolerance and speech 
intelligibility in noise in relation to spectral resolution 

35 

Chapter 3 Optimizing the effect of noise reduction algorithm ClearVoice in 
cochlear implant users by increasing the maximum comfort levels 

61 

Chapter 4 Effects of a transient noise reduction algorithm on speech 
intelligibility in noise, noise tolerance and perceived annoyance in 
cochlear implant users 

75 

Chapter 5 Listening effort in cochlear implant users: The effect of speech 
intelligibility, noise reduction processing, and working memory 
capacity on the pupil dilation response 

97 

Chapter 6 The important role of contextual information in speech perception 
in cochlear implant users and its consequences in speech tests 

123 

Chapter 7 Efficient adaptive speech reception threshold measurements using 
stochastic approximation algorithms 

151 

Chapter 8 Type of speech material affects acceptable noise level test outcome 181 

Chapter 9 The relation of hearing-specific patient-reported outcome measures 
with speech perception measures and acceptable noise levels in 
cochlear implant users 

211 

Chapter 10 General discussion and conclusion 237 

Chapter 11 Summary / Samenvatting 267 

Appendices Applications of a sentence-in-noise test in CI users 283 

 Acknowledgements / Dankwoord 288 

 PhD portfolio and list of publications  290 

 Curriculum Vitae 294 

 



   
   

 
 

 

 

 

 



  
 

 
 

CHAPTER 1 
General introduction 
 



Chapter 1    
 

8 

Cochlear implants (CI) have been used successfully to treat severe-to-profound hearing 
loss in both children and adults. Most post-lingually deafened adult CI users experience 
better auditory functioning with their CI and achieve good performance on speech 
recognition tests (e.g. Gifford et al., 2008; Gaylor et al., 2013). However, despite improve-
ments in hearing and speech understanding, CI stimulation has its limitations and CI users 
are still hearing impaired. Many CI users experience difficulties understanding speech in 
social situations, such as a birthday party, a dinner or a meeting at work, especially when 
background noise is present. But precisely these situations are important for participation 
and social connectedness. In attempts to improve speech understanding or ease of 
listening in difficult listening situations, CI manufacturers offer various speech or sound 
enhancement algorithms. 
In this thesis, the focus is on characterizing the ability of adult CI users to understand 
speech in challenging situations and measuring the effect that signal processing 
algorithms in CI processors may have on this ability. This chapter provides background 
information on hearing loss, the benefits and limitations of a CI, and introduces the 
subject of speech perception in challenging situations in more detail. 

Severe-to-profound hearing loss 
Hearing loss is a relatively common disability, especially in older people. According to 
estimates of the World Health Organization (WHO) 6.1% of the world’s population has a 
disabling hearing loss and approximately one-third of persons over 65 years are affected 
by disabling hearing loss (WHO, 2012). Most of the hearing-impaired people worldwide 
have a moderate hearing loss (41-60 dB) and can be helped by hearing aids. A small part 
(estimated 0.5-1.5%) has severe-to-profound hearing loss (>60 dB) (WHO, 2012). The 
prevalence of severe-to-profound hearing loss is not known accurately, because various 
studies used different definitions and age ranges. A prevalence of 0.7% of the general 
adult population in the UK was reported, based on thresholds >70 dB HL averaged over 
the frequencies 0.5, 1 and 2 kHz (Turton & Smith, 2013). Hannula and colleagues 
estimated that the prevalence is 0.2% for thresholds >70 dB HL averaged across 0.5, 1, 2 
and 4 kHz (Hannula et al., 2010). This estimate was based on 850 patients between 54 and 
66 years of age. 
In severe-to-profound hearing-impaired people most auditory functions are affected by 
the hearing impairment. The dynamic range, i.e. the range between the hearing threshold 
and the loudness discomfort level, is greatly reduced and is typically less than 35 dB 
(Pascoe, 1988). Incoming sounds are filtered into different frequency bands in the ear, but 
in severe-to-profound hearing-impaired people, the filters are broadened (Faulkner et al., 
1990; Rosen et al., 1990; Souza et al., 2018). As a consequence, the frequency selectivity 
of the ear is severely decreased and susceptibility for interfering noises is increased. The 
processing of temporal characteristics of the sound seems to be less affected than 
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frequency selectivity, but is also impaired in some aspects. The temporal processing 
depends on the sensation level, i.e. the difference between the signal level and the 
hearing threshold. This sensation level is in general lower in the severe hearing-impaired, 
leading to reduced temporal resolution (Reed et al., 2009). Due to the the small dynamic 
range, the poor frequency selectivity, and the reduced temporal processing abilities the 
peripheral auditory system provides the brain by too little bottom-up information to 
enable adequate speech recognition. This results in poor speech perception, despite the 
use of hearing aids. 
The limited speech perception greatly affect the functioning and well-being of persons 
with severe-to-profound hearing loss. For example, they cannot participate in a group 
conversation, often it is not possible to answer a phone call, and even the communication 
with a single person in a quiet room is a challenge. Persons with severe-to-profound 
hearing loss suffer more from a lack of energy, have more negative emotions and more 
often experience social isolation than normal-hearing (NH) people (Knutson & Lansing, 
1990; Ringdahl & Grimby, 2000). Furthermore they have greater levels of anxiety and 
depression than in the general population (Carlsson et al., 2015; Kim et al., 2017). For this 
group of bilateral severe to profound hearing-impaired adults, having post-lingual onset of 
the hearing loss, cochlear implantation has become a standard treatment. 

Cochlear implants 
A cochlear implant is a surgically implanted device that bypasses the damaged peripheral 
auditory system and provides direct electrical stimulation to the auditory nerve in the 
inner ear. It consists of an external part (the sound processor) and an internal part (the 
implant) that is surgically implanted. Both parts work together to transfer the incoming 
sound into electrical signals that are delivered into the cochlea. 
The sound processor includes microphones to pick up sounds. The sound is processed, 
filtered into different frequency bands, and transferred to a coded electrical signal. The 
processor is connected to a transmitter that sends power and the coded signal across the 
skin to the internal device by radio frequency transmission. The transmitter also includes a 
magnet to hold the transmitter at the place of the implant package just under the skin. 
The implant package contains all of the electronic circuits that regulate the flow of 
electrical pulses into the ear, based on the coded signal that comes from the sound 
processor. An electrode array with a number of electrodes is placed into the cochlea and 
is connected to the implant package. The auditory nerve fibers are stimulated by electrical 
pulses from the electrodes. The more apical electrodes deliver the coded sounds coming 
from the frequency bands with the highest frequencies and the more basal electrodes 
deliver the low-frequency information. The CI recipient perceives a sound, but it sounds 
different from the sounds that are received from a normal-hearing ear. Therefore, it takes 
time to learn to recognize the meaning of the sounds. More schematically, the process of 
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hearing with a CI consists of three parts: (1) the processing of the sound and its 
transformation to the electrical domain, (2) the electrode to neuron interface and (3) the 
processing of the signal by the brain. 
The first part of the signal path of a CI system, the sound processing and transformation, 
aims to process the sound in such a way that the most important elements of the sound 
are delivered to the electrical stimulation part. After converting the acoustical signal from 
the microphone into a digital signal it is preprocessed and filtered into separate frequency 
bands. The pre-processing can be done both before the band filters (e.g. change of 
microphone directivity or input sensitivity) and after this filters (e.g. noise reduction 
algorithms). The temporal envelope amplitude of the signals in each frequency band is 
extracted. Next, the level in each frequency band is mapped to the electrical output range 
(Vaerenberg et al., 2014). The stimulation levels thus obtained per frequency band are 
offered via the CI electrode array, using so-called stimulation strategies. One class of 
strategies is based on delivery of all stimulation levels on each electrode contact, using 
continuous interleaved sampling (Wilson et al., 1993). Another class of strategies uses 
spectral peak picking, also called the ‘n-out-of-m’ approach (Vandali et al., 2000; Skinner 
et al., 2002). From a total of n channels, m frequency channels are chosen, having the 
largest energy levels. Although implementation of the sound processing and 
transformation is different between CI brands, all implementations result in delivery of the 
most important characteristics of the incoming sound into the electrical domain. 
 
The second part of the CI pathway is the electrode to neuron interface, which is the most 
fundamental part that determines how much of the audio signal characteristics can be 
transferred from the auditory nerve to the brain. Current CIs have multiple channels and 
electrodes, but nevertheless their interfaces with neurons differ from normal-hearing in 
several aspects. First, the electrode arrays are not designed to reach the most apical 
regions of the cochlea that correspond to the low frequencies. This results in spectral 
mismatch between the input at the electrode locations inside the cochlea and the 
characteristic frequencies of the spiral ganglion neurons at these locations. This mismatch 
can be reduced by the use of longer arrays or inserting electrodes deeper into the cochlea. 
But this approach has its own drawback, as it increases the risk on trauma into the 
cochlear structures (Boyd, 2011; Wanna et al., 2014). 
Second, although the electrode array has a number of electrodes (at most 22) it cannot 
reach the spectral resolution of a normal-hearing ear. More-over, there is spread of 
excitation, leading to overlap in the groups of nerve fibers that are stimulated by adjacent 
electrodes. As a result, the effective number of independent channels is only 4 in CI 
listeners with low levels of speech recognition and up to 7 or 8 in CI listeners with the 
highest performance level (Friesen et al., 2001; Shannon et al., 2011). 
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Third, the distance of the electrodes to the modiolus (a conical shaped central axis in the 
cochlea) may have an effect on the performance with CI. A shorter distance results in 
higher speech recognition scores and better pitch discrimination (Ramos Macias et al., 
2017; Berg et al., 2019). The distance is dependent on individual cochlear anatomy and 
electrode array type (Risi, 2018). 
Fourth, the degree of nerve survival may be of influence on the CI outcome, at least in 
post-lingually deafened adults. Preservation of spiral ganglion cells is negatively correlated 
with the duration of the hearing loss (Nadol & Eddington, 2006). In other words: the 
longer the duration of the hearing loss, the less spiral ganglion cells are preserved on 
average. The loss of spiral ganglion cells is often extensive, up to 90%, especially in the 
basal turn of the cochlea (Shepherd & Hardie, 2001). But variability is large and is 
dependent on etiology and age. Some studies reported a significant correlation between 
speech perception scores and the degree of survival of spiral ganglion cells, with better 
speech performance for a higher survival rate (Fayad & Linthicum, 2006; Kamakura & 
Nadol, 2016). 
Fifth, the temporal processing in a CI deviates from that of NH listeners. Typically, a CI 
extracts the temporal envelope from the acoustic signals and the temporal fine structure 
of the signal is lost. Therefore, temporal modulation processing is important. The 
sensitivity to temporal modulations is level dependent i.e. it improves if the stimulus level 
increases (Chatterjee & Yu, 2010). The temporal modulation detection is variable across 
the stimulation site (Garadat et al., 2012) and among CI users (Won et al., 2011). Won and 
colleagues have also shown that the detection of temporal modulation in CI users is 
slightly less than the detection in NH listeners for low modulation frequencies (<10Hz). 
Another measure of temporal acuity in CI recipients is the gap detection threshold. CI 
users may have near-normal gap detection thresholds, but this acuity is also variable 
across stimulation sites and across subjects (Garadat & Pfingst, 2011). The variability in 
these measures may serve as an indicator of the functional health of the local population 
of neurons (Chatterjee & Yu, 2010). 
Sixth, the dynamic range in the electrical domain is much less than in normal hearing in 
post-lingually deafened adults. Due to a high degree of neural synchrony and steep rate-
intensity functions present in electrical hearing the dynamic range in CI users is limited to 
6-30 dB with only about 20 discernible steps (Zeng, 2004). 
In summary, the bottom-up information from a cochlear implant to the brain by the nerve 
is limited, especially in the frequency domain and to a lesser extent in the temporal 
domain. Nevertheless, it offers sufficient temporal and spectral information for improved 
hearing and speech recognition. 
 
The third part of hearing with a CI is the processing of the bottom-up information from the 
auditory nerve by the brain. Several parts of the brain are involved: the auditory 
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brainstem, the midbrain and the cortex. In severe-to-profound hearing-impaired adults 
these parts could also be affected by the hearing loss. The auditory brainstem and 
midbrain cells exhibit minimal neuronal death following deafferentation (Teoh et al., 
2004), but a reduction in synaptic density is often seen (Shepherd & Hardie, 2001). This 
may result in increased levels of neural adaptation affecting perception of temporally 
complex acoustic signals such as speech. In addition it may cause differential timing delays 
leading to reduced temporal processing (Redd et al., 2000). Brain activity in CI users can be 
compared to that of NH controls using positron emission tomography (PET) scanning. 
According to Limb and colleagues, this comparison with PET scanning showed that “CI 
users have increased utilization of already present auditory networks (i.e., greater 
intensity of activation is seen in brain areas traditionally employed for auditory 
processing) and CI users demonstrate plastic reorganization of normally occurring 
networks, including recruitment of brain areas not traditionally utilized for auditory 
processing” (Limb & Roy, 2014). For example, CI users exhibit a greater extent of 
activation in the temporal cortices, supplemental motor areas, and prefrontal cortices 
(Naito et al., 2000; Limb et al., 2010). Such findings may be indicative of greater cognitive 
burden required to process auditory information in CI users. This is discussed later on in 
this introduction. 

Sound processing in cochlear implants 
As CI stimulation has its limitations as explained above, CI manufacturers have introduced 
several signal processing algorithms with the aim to enhance the signal, and in the end 
better speech recognition and listening comfort. In situations with background sounds it is 
difficult for CI users to distinguish relevant signals, like the voice of someone talking, from 
disturbing sounds, for example car noise or restaurant noise. Therefore, several noise 
reduction options are available in current CI processors. Use of a directional microphone is 
a well-known option in the hearing aid industry. In general, a directional microphone is 
designed to pick up sounds coming from the front better than sounds coming from 
behind. There are also versions that can adaptively change the direction of the directivity 
pattern of the microphone. Directional microphones work best in conditions where 
speech and noise come from different directions in low-reverberant surroundings (e.g. 
Spriet et al., 2007; Chung et al., 2012; Hersbach et al., 2012; Hersbach et al., 2013). 
In addition, single-microphone noise reduction algorithms (NRA) are implemented to 
improve the overall signal-to-noise ratio (SNR) by suppressing frequency channels that 
lack information useful for understanding speech. In current CI processors NRAs are 
mainly based on a variant of spectral subtraction (Advanced Bionics, 2012; Mauger et al., 
2012). In this method, the noise suppression is based on an instant comparison of the 
current signal level in a channel with an estimation of the background noise level over a 
longer time window by means of signal minimum tracking with optimal smoothing 
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(Martin, 2001; Cohen, 2003). If this instantaneous signal-to-noise ratio is low, the 
algorithm assumes that the channel contains mainly noise and lowers the gain of that 
channel. Several studies reported that single-microphone NRAs has been able to improve 
speech-in-nose perception in CI recipients (Yang & Fu, 2005; Buechner et al., 2010; 
Dawson et al., 2011; Mauger et al., 2012; Koch et al., 2014), although improvements are 
modest to small. The largest improvements were found for steady-state speech-weighted 
noise. Other researchers found no effect of single-microphone NRAs in their experiments 
or only in a specific condition (Hu et al., 2007; Chung et al., 2012; Kam et al., 2012; Holden 
et al., 2013a). Given these mixed results, it is necessary to test clinical available NRAs at 
speech-to-noise ratio’s that occur in daily practice, to learn if clinically available NRAs can 
contribute to better speech perception. Besides the effect of the NRA on speech 
intelligibility in noise, also improvements in noise tolerance and listening effort are 
possible as was shown in hearing-impaired listeners. These findings are discussed in one of 
the next paragraphs. 
Currently it is not clear how noise reduction algorithms in CIs improve speech-in-noise 
scores and why there are differences in NRA-effect between individuals. The NRA may 
improve temporal envelope contrast (Hu et al., 2007) or the improvement may originate 
from the fact that the bandwidth of the frequency channels in CI processing is narrower 
than the effective bandwidth of the CI stimulation (Chung et al., 2006). If one of the 
frequency channels is noise dominated and attenuated but the neighboring band is not, 
then the effective signal-to-noise ratio in the broader frequency band of CI stimulation is 
improved when both processing channels fall into the same stimulation band. 
Another type of single-microphone noise reduction is transient noise reduction (TNR), 
because transient sounds may be disturbing, i.e. brief sounds with a high sound level, like 
hammer blows, clanking glasses, door slams and so on. The algorithm detects transients 
by comparing a fast-following envelope and a slow following envelope of the broadband 
incoming signal. If a transient is detected, the level is lowered for a short time. Dyballa and 
coworkers investigated the effect of a TNR on speech intelligibility in quiet and in two 
types of transient noise in CI users (Dyballa et al., 2015). They reported that speech 
perception in quiet was not affected by the TNR and that the speech reception threshold 
in noise was significantly improved by 0.4 dB for dishes noise and 1.7 dB for hammering 
noise. However, Keidser and colleagues reported that a TNR had no significant effect on 
speech recognition in background noise in hearing aid users (Keidser et al., 2007). More 
research is needed to investigate the effect of TNR on speech intelligibility and listening 
comfort. 

Auditory functioning with a cochlear implant  
Although there are limitations in the electrode to neuron interface and the auditory 
pathway in post-lingually deafened CI recipients, many of them achieve better auditory 
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functioning with their CI than with their hearing aid before implantation. In a systematic 
review and meta-analysis, Gaylor and colleagues showed that substantial evidence exists 
that a CI improves auditory functioning and quality of life (QoL) in most CI recipients 
(Gaylor et al., 2013). These improvements were examined by the use of health-related 
QoL questionnaires or patient-reported outcome measures (PROMs) in many studies 
(Gaylor et al., 2013; McRackan et al., 2018a; McRackan et al., 2018b). Using such 
questionnaires, it was shown that a CI improves several aspects beyond speech 
recognition, like social interaction (e.g. Klop et al., 2008) or emotional well-being 
(Vermeire et al., 2005; Park et al., 2011). However, speech understanding in noise remains 
difficult for most of the CI recipients. This is evident from research with questionnaires. 
For example, Mertens and colleagues reported a relatively low score on the Speech scale 
of the Speech, Spatial, and Qualities questionnaire for unilateral CI users (Mertens et al., 
2013), The questions on the Speech scale mainly asked about speech recognition among 
other sounds or in group conversations. For the unilateral CI users from the same study, 
the scores on the Spatial scale were also considerably smaller compared to normal-
hearing older adults. Furthermore, a difference in perceived quality was apparent. 
Moreover, the ability to perceive music with sufficient quality remains limited for most 
cochlear implant users (Limb & Roy, 2014). 

Speech tests for use with CI recipients 
Beside the patient-reported outcome measures it is also desirable to have a more 
objective measure of a CI users’ ability to recognize speech in background sounds (so-
called noise) to identify the potential problems experienced in daily life. For this aim, it is 
important to measure this ability at ecologically valid levels and signal-to-noise ratios 
(SNR). That means that levels and SNRs used in a speech test must be representative of 
situations in the daily lives of the CI recipients. Several studies provided sound levels and 
SNRs found in the acoustic environments of hearing-impaired persons. Pearsons and 
colleagues recorded levels of speech and noise. In homes, schools, and department stores 
the speech level was varying in the range of 60-70 dB(A) and the corresponding noise 
levels varied from 45 to 60 dB(A) (Pearsons et al., 1977). Wagener and colleagues also 
recorded sound levels in different situations and reported similar levels and variations 
(Wagener et al., 2008). Smeds and colleagues reported on daily-life SNRs, that were 
estimated using real-life recordings in realistic sound scenarios (Smeds et al., 2015). Most 
estimated SNRs were within the range of 0-15dB and the median SNR was slightly less 
than 5 dB. The SNRs decreased with increasing noise level. For important noises like 
kitchen noise, car noise, and babble noise the median estimated SNRs were in the range of 
4.6 to 7.4 dB. It is clear from these studies that levels, spectra and fluctuations of speech 
and noise vary over a wide range. 
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Another important factor for the ecological validity of a test is the speech material used. In 
the past, many speech tests have been developed in many languages based on phoneme, 
syllable or word recognition, since these are the building blocks of speech. Word 
recognition scores for mono-syllabic word lists in quiet are the standard of speech 
audiometry for decades. (Hahlbrock, 1953; Peterson & Lehiste, 1962; Tillman & Carhart, 
1966). These word lists have small inter list variance, moderate test-retest variance 
(Thornton & Raffin, 1978) and sufficient efficiency. However, use of monosyllabic words is 
not ecologically valid and also has other limitations. For example, it may not be 
appropriate to use these words for evaluating the effectiveness of signal processing that 
acts relatively slowly, such as automatic gain control (Boyle et al., 2013). Similarly, the 
sensitivity to effects of noise reduction algorithms may not be sufficient. More ecologically 
valid test materials have now been developed, for example the Arizona Biomedical 
Institute (AzBio) sentences (Spahr et al., 2012) or PRESTO (Perceptually Robust English 
Sentence Test Open-set) (Gilbert et al., 2013). 
In addition to the ecological validity of speech tests, these tests must be sensitive to 
differences between CI users and within CI-users (to compare different conditions). The 
Minimum Speech Test Battery (MSTB) for adult CI users (Luxford, 2001; MSTB,2011) 
recommends assessment of performance with both Consonant-Nucleus-Consonant (CNC) 
words and sentence materials, to increase the probability that a patient’s performance 
will be within the range of at least one test, not confounded by either ceiling or floor 
effects. The sentence material that is recommended in the MSTB document is the AzBio 
sentence test (Spahr et al., 2012), because this test contains relatively difficult, less 
predictable sentences, spoken by different talkers in a casual style. Only 0.7% of the CI 
users reached the maximum score, so there is no ceiling effect (Gifford et al., 2008). 
In the Netherlands, phoneme scores on Dutch CVC word lists for speech audiometry of the 
Dutch Society of Audiology (Bosman & Smoorenburg, 1995) are used to measure speech 
perception in CI users in quiet and noise. For the best performers, a ceiling effect may 
occur in the quiet conditon. In that case, the CVC words are presented in steady-state 
speech spectrum noise with a speech-to-noise ratio of 0 or +5 dB (Snel-Bongers et al., 
2018; Huinck et al., 2019). 
Several Dutch speech tests with better ecological validity are available: the Plomp 
sentences (Plomp & Mimpen, 1979) and the VU sentences (Versfeld et al., 2000), both 
designed for a speech in noise test with small inter sentence list variance. The VU 
sentences are taken from newspapers, have variation in sentence structure and topics and 
are spoken with a normal speaking style and rate and have therefore a relatively good 
ecological validity. However, these sentence materials were not routinely used in testing 
CI patients. Van Wieringen and Wouters stated that the intelligibility of the VU sentences 
is very difficult for CI recipients. This may be caused by the conversational speaking rate or 
other suprasegmental aspects (van Wieringen & Wouters, 2008). They developed the LIST 
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sentence test with sentences spoken at a relatively low speaking rate of 2.5 
syllables/second and with a clear pronunciation, to make the test better suitable for CI 
recipients. Because of this low rate and clear pronunciation, the ecological validity of the 
LIST is reduced. Furthermore, for listeners in the Netherlands the Flemish pronunciation is 
striking, making this test less ecologically valid for listeners in the Netherlands. Theelen-
van den Hoek et al. (2014) showed that speech in noise recognition can also be tested in 
CI users with a matrix test. This test makes use of meaningful, but semantically 
unpredictable sentences built out of words taken from a matrix of words and that fit in a 
fixed grammatical structure. This test is not widely used clinically, and also has the 
drawback of insufficient ecological validity. 
The noise in the Dutch sentence tests is a steady-state speech spectrum noise. This is not 
an ecologically valid noise, because noise in daily situations is usually not steady and does 
not have the same spectrum as speech. Despite this observation, steady-state speech 
spectrum noise is used in tests to warrant a good test-retest accuracy, as this accuracy is 
highest if the noise has the same spectrum as the speech and does not fluctuate too 
much. Moreover, the use of fluctuating noise is less important in CI users, as CI users 
cannot take as much advantage of spectral gaps in a masker a normal-hearing listeners 
(Oxenham & Kreft, 2014). 
The sentence tests are generally performed using an adaptive procedure that varies the 
signal-to-noise ratio (SNR) based on previous responses of the listener. The test outcome 
is the Speech Reception Threshold in noise (SRTn), defined by the SNR that yields an 
average response of 50% correctly recognized sentences over a number of trials (Plomp & 
Mimpen, 1979). The SNR and the percent correct score are related by a psychometric 
curve, which is often referred to as the intelligibility function. For a (very) negative SNR, 
the speech is completely masked by the noise. If the SNR gets higher, it becomes possible 
to partially recognize the speech. For high SNR the speech spectrum is completely above 
the noise spectrum and there is no masking anymore. The slope of this intelligibility curve 
is steepest around the 50% correct score in normal hearing (NH) listeners. The adaptive 
procedure keeps the trials in this steep part of the curve and avoids floor- and ceiling 
effects. This test is useful for mildly-to-moderately hearing-impaired persons, but is not 
suitable for many CI patients, because it is difficult for CI patients to reproduce sentences 
100% correctly, even in quiet, let alone in noise (van Wieringen & Wouters, 2008). 
Several researchers have attempted to modify the simple up-down procedure for use in CI 
recipients, because of their reduced speech intelligibility. One modification is to allow one 
or more errors in repeating a sentence (Chan et al., 2008) or allowing a maximum error of 
20, 40, or 60% (Wong & Keung, 2013). Wong and Keun showed that adaptive procedures 
based on these criteria could be used in a greater percentage of CI users. Another 
modification is to score the correctly repeated sentence elements (often words, so called 
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‘word scoring’) (Brand & Kollmeier, 2002; Terband & Drullman, 2008). This type of scoring 
can still be used, if sentence scoring is not feasible. 
In summary, with the currently available speech tests ecological validity is only partially 
achieved, because good test properties are also important, like small test-retest variance 
and bias, small inter sentence list variance and efficiency. Dutch sentence tests with 
reasonable ecological validity exist and adaptations of adaptive procedures for CI listeners 
are described in the literature, but in the Netherlands, no test based on this material and 
adapted procedures is used clinically. 

The role of linguistic and cognitive processes 
As already mentioned, speech perception is often a difficult task for CI users, because the 
limitations in the electrode neuron interface and the auditory pathway result in highly 
degraded acoustic–phonological “bottom-up” representations of speech. Therefore, CI 
users are expected to rely more often on centrally located top-down processing than 
normal-hearing persons. In top-down processing the long-term language knowledge of the 
listener plays a role, for example lexical knowledge, semantical knowledge, and 
grammatical knowledge. Based on this knowledge, top-down predictions are formed and 
used to recognize the degraded speech (e.g. Luce & Pisoni, 1998). Several models of this 
top-down bottom-up interaction have been developed (see for an overview Wingfield, 
2016). In these models a fast pathway exists with a fast and implicit decoding of the 
phonological representations integrated with other multimodal information. In this fast 
pathway the phonological representation matches a corresponding representation in 
long-term memory, thereby ensuring understanding. This fast match usually occurs if the 
bottom-up speech signal is undistorted and the hearing function is normal. However, if 
the phonological representation of the incoming signal is distorted or incomplete, due to 
noise or an impaired hearing function, a mismatch may occur and speech understanding 
becomes dependent on top-down processing by neurocognitive functions (Rönnberg et 
al., 2013). Particularly, working memory supports the listener in making better use of 
linguistic knowledge, as working memory’s function is temporarily storing and processing 
information, making it possible to manipulate that information. 
Many studies investigated the relationship between working memory capacity and 
speech-in-noise perception in normal-hearing and hearing-impaired adult listeners, which 
findings are summarized by several reviews (Akeroyd, 2008; Besser et al., 2013; Dryden et 
al., 2017). Akeroyd and colleagues reported that most of the significant associations were 
seen in studies using sentences (opposed to single words) and modulated noise. One of 
the conclusions of Besser and colleagues was that “for hearing-impaired individuals, a 
higher working memory capacity appears to provide for better abilities to perform well in 
various listening situations”. Dryden and colleagues reviewed studies assessing the 
association between cognitive performance and speech-in-noise perception in unaided 
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listeners with normal hearing to moderate hearing loss. They found a general correlation 
of around 0.3 between cognitive performance and speech-in-noise perception. They 
showed that working memory, episodic memory (that only holds a speech trace in mind, 
without processing), inhibitory control, and processing speed are significant factors in 
speech-in-noise perception. 
The evidence on the relation between cognitive performance and speech perception is 
mainly based om studies in normal-hearing and mild-to-moderate hearing impaired 
listeners. For CI users evidence is scarce (Heydebrand et al., 2007; Holden et al., 2013b; 
Tao et al., 2014). We hypothesize that the relationship between working memory capacity 
and speech-in-noise perception may be even stronger in CI users, because of the highly 
degraded acoustic–phonological “bottom-up” speech representation and the strong 
dependence on top-down processing. However, the studies of Heyebrand et al. and 
Holden et al. reported a weak association and the study of Tao and colleagues was likely 
confounded by the audibility of the stimuli in the working memory task and their group 
consisted of teenagers (Tao et al., 2014). 
The association between cognitive measures and speech-in-noise top-down processing 
may be mediated by signal processing options in hearing devices. Ng and colleagues 
examined the effects of working memory capacity, noise and a noise reduction algorithm 
on speech recognition and recall (Ng et al., 2013; Ng et al., 2015). They found an 
improvement of word recall due to the application of the noise reduction algorithm in 
listeners with a larger working memory capacity, compared to listeners with a smaller 
working memory. However, there are also some studies that did not find a significant 
association between working memory capacity and NRA (Desjardins & Doherty, 2014; 
Arehart et al., 2015). For CI users, it is not studied yet, whether application of a noise 
reduction algorithm interacts with working memory capacity or not. 

Listening effort 
In clinical practice, many hearing-impaired persons complain that understanding speech in 
background noise is a hard job, that requires listening effort. In the literature, there is 
much debate about the concept of listening effort: how it is defined, which aspects are 
involved and how it is measured (McGarrigle et al., 2014; Pichora-Fuller et al., 2016; 
Strauss & Francis, 2017). As a result of a consensus workshop, Pichora-Fuller and 
colleagues (2016) describe in their ‘Framework for understanding effortful listening’ 
(FUEL) how input-related demands, motivation, and cognitive capacity interact in 
understanding the speech message. They defined effort as “the deliberate allocation of 
mental resources to overcome obstacles in goal pursuit when carrying out a task, with 
listening effort applying more specifically when tasks involve listening”. The framework 
describes how the combined effect of demand and motivation results in listening effort. 
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The highest effort is made if a listening task is demanding and the listener is highly 
motivated to try to understand the speech. 
In the literature both behavioral and physiological measures were introduced for 
measuring listening effort. Probably the most used physiological measure is the pupil 
response. Kahneman already used the pupil diameter as an index of cognitive processing 
load (Kahneman, 1973). Nowadays, there is considerable evidence showing that the pupil 
response to a task is sensitive to momentary, task-evoked mental effort (Kramer et al., 
2013). Zekveld and colleagues showed that the pupil response is sensitive to the percent 
correct speech intelligibility in noise (Zekveld et al., 2010). A behavioral measure of 
cognitive processing load can be obtained using a so-called dual-task procedure. This 
procedure requires an individual to perform two tasks simultaneously. It is assumed that 
both tasks compete for the same information processing resources in the brain. In studies 
that investigate the cognitive load during speech perception, one of the tasks is a speech 
recognition task. Some studies have investigated listening effort in CI users, using a dual-
task paradigm (Hughes & Galvin, 2013; Pals et al., 2013). It has been found that CI users 
have a lower secondary-task performance than normal-hearing listeners if tested at the 
same SNR. CI users require a much higher SNR to achieve a dual-task performance that is 
comparable to normal-hearing listeners (Hughes & Galvin, 2013). The listening effort was 
found to be higher for lower spectral resolution in normal-hearing listeners that listened 
to CI simulations (Pals et al., 2013). Insight into listening effort in CI users is currently 
limited and comparisons between CI users and hearing-impaired persons are lacking. 
It has been shown in normal-hearing listeners that a noise reduction algorithm can 
improve performance on a dual task, even when no improvement in speech intelligibility is 
seen (Sarampalis et al., 2009). This may indicate that fewer cognitive sources are needed 
for speech understanding when a noise reduction algorithm is used. Whether such an 
algorithm causes a reduction of listening effort in CI users is currently unknown. 

Acceptable noise level test 
In addition to the measurement of speech recognition in noise, a subjective judgement of 
challenging speech-in-noise situations may have added value, because other aspects like 
listening comfort and noise tolerance may be taken into account. The Acceptable Noise 
Level (ANL) test (Nabelek et al., 1991) is a good example of such a subjective judgment. 
This test measures a listener’s willingness to listen to speech in the presence of 
background noise. The resulting ANL score is the minimum SNR a listener tolerates during 
listening to speech in noise. Low ANL values indicate a high tolerance of background noise, 
whereas high values indicate a low tolerance. The ANL is not related to speech 
intelligibility in noise measures, and the difference between unaided and aided ANL is very 
small (Nabelek et al., 2004; Nabelek et al., 2006). Two studies measured ANLs in CI 
recipients and reported that their ANL values were not significantly different from ANL 
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values of normal-hearing listeners. Furthermore, ANL was not correlated with a speech 
intelligibility in noise task (Plyler et al., 2008; Donaldson et al., 2009). 
The effect of single-microphone noise reduction algorithms on ANL in hearing aids users 
has been evaluated in a few studies (Mueller et al., 2006; Peeters et al., 2009; Pisa et al., 
2010). Mueller et al. showed a mean improvement of 4.2 dB for the ANL, Peeters et al. 
observed a mean improvement of 3.3 dB and Pisa and colleagues reported a mean 
improvement of 1.2 dB. These studies used steady-state speech spectrum noise. Holden et 
al. (2013) administered the ANL test to CI users with a noise reduction algorithm on and 
off. They used running speech in a 12-talker babble. They did not find significant group 
differences between the conditions. 
As explained in the previous paragraph, listening to speech in noise, may result in 
cognitive load and may be related to working memory capacity. In the ANL test, the task is 
to follow the story, while the acceptable noise level is set. This task may also be related to 
working memory capacity. Brännström and colleagues reported that ANL is associated 
with working memory capacity (Brännström et al., 2012). Normal-hearing subjects with 
high working memory capacity tend to accept higher background noise levels when 
listening to speech, while subjects with low working memory capacity require lower 
background noise levels when listening to speech. 

Research questions and outline of this thesis 

Research problem and questions 
As described in the Introduction, CI users reported that speech recognition in background 
noise is difficult. Bottom-up auditory input is limited in CI users, top-down linguistic and 
cognitive processes are involved in speech recognition and listening in background noise is 
effortful. Furthermore, a subject’s willingness to listen to speech in noise seem to be a 
variable that measures other aspects of speech-in-noise perception than speech 
recognition. Although the relevance of these variables is shown for hearing impaired 
persons in general, relatively little research is published that focused on these variables in 
adult CI listeners. For a proper evaluation of adult CI rehabilitation it is desirable to have 
better insight into the relative contribution of bottom-up information and the top-down 
lexical and cognitive processes to the ability of speech-in-noise perception, and to learn 
more on listening effort and noise tolerance in CI users. 
Besides the theoretical relevance of research on speech perception in noise in CI users, 
there is also a practical relevance. Clinical CI specialists often meet CI patients who are 
dissatisfied with their limited speech understanding in background noise. For the clinician 
it would be helpful if a speech-in-noise measure can be performed that helps to interpret 
the experienced problems of CI users. Furthermore, it is important for a clinical specialist 
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to have the possibility to measure the effect of changes in CI fitting or changes due to 
application of a signal processing option on speech recognition in noise. 
Given this background, this thesis aimed to answer four interrelated research questions: 
1. How to characterize CI users' ability to listen to speech in challenging auditory 

situations in terms of speech recognition in noise, noise tolerance and listening 
effort? 

2. What is the effect of single-microphone noise reduction algorithms on this speech-in-
noise perception? 

3. What is the role of bottom-up auditory input and top-down processing capacity in 
speech-in-noise perception? 

4. How can existing Dutch sentence materials be used to measure speech perception in 
noise in CI users? 

The investigations in this thesis were limited to unilateral implanted, post-lingually 
deafened adult CI users and their functioning with a CI processor. 
The performance of CI users on the three main variables speech recognition in noise, noise 
tolerance, and listening effort, may be influenced by application of signal processing 
options. Although several options for improving speech in noise perception are available 
in current CI processors, it was decided to investigate only the effects of clinically available 
single-microphone noise reduction algorithms (NRAs). Dual-microphone noise reduction 
processing was not included, because its effect is more predictable than the effect of 
single-microphone NRAs, as this processing mainly results in a shift of the signal-to-noise 
ratio of the input signal of the CI processor. Effects of a contralateral hearing aid or 
remote microphones were also beyond the scope of this thesis. 
We hypothesize that single-microphone NRAs improve the scores on the three main 
outcome measures, because these algorithms may increase the amount of bottom-up 
information. However, the effect may depend on the signal-to-noise ratio and the 
effective bandwidth of the CI stimulation, resulting in an interaction between bottom-up 
information and the NRA. The effect of an NRA may also be dependent on  available top-
down processing capacity, but the direction of the effect, if any, is not clear. For transient 
noises, the influence of transients on speech perception is unknown and the effect of an 
NRA for transients may have no effect on speech perception or a small effect (Dyballa et 
al., 2015). 
Regarding the role of bottom-up auditory input, it is hypothesized that speech recognition 
in a given noise increases monotonously with increasing bottom-up input. A larger top-
down processing capacity may be related to better speech perception of sentences in 
noise (Akeroyd, 2008; Dryden et al., 2017) and better noise tolerance (cf. Brännström et 
al., 2012). Top-down processing capacity can also affect listening effort, but results of 
pupillometry studies reporting on this relationship are inconclusive (Zekveld et al., 2018).  
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The variables mentioned in the research questions, have been operationalized by 
choosing and developing tests with which the variables can be measured. For speech-in-
noise recognition, it was decided to measure it with the VU sentence material throughout 
the studies of this thesis, since the VU sentences have a reasonable ecological validity. It 
was expected that a sentence-based test is suitable to incorporate influences of linguistic 
and cognitive top-down processing, as in daily listening situations. Furthermore, the 
sentences have a length of approximately two seconds, which is long enough to be 
sensitive to the effects of signal processing in the CI processor, having relatively slow 
adaptation times. To make the test better suited for CI users, the method of word scoring 
was selected. In case the test was used to adaptively find the speech reception threshold 
in noise, the level of the noise used in a trial was determined recursively, depending on 
proportion correctly recognized words of the previous sentence. An adaptive procedure 
suitable to use with word scoring was initially determined using simulations and a pilot 
test. In chapter 7 of this thesis this adaptive method is described more thoroughly. 
To measure the noise tolerance during listening to speech in noise, the Acceptable Noise 
Level (ANL) test was included. This is a subjective measure of noise tolerance and it may 
have a better sensitivity to effects of single-microphone noise reduction processing than 
speech-in-noise tests (Mueller et al., 2006; Peeters et al., 2009). As far as was known, no 
ANL test was available in the Netherlands. Therefore, this test was developed, using the 
same speech material as used in the speech-in-noise test (the VU sentence material). 
Listening effort was measured with pupillometry during the speech intelligibility in noise 
test. 
Measurement methods of the bottom-up information and the top-down processing varied 
across the different studies in this thesis and are described in the relevant chapters. 

Outline of this thesis 
Chapter 2 describes a study measuring recognition of speech in noise at different noise 
levels and noise tolerance to characterize the speech-in-noise perception, and to examine 
the effect of an NRA. In addition, this study evaluates whether there is a significant 
relationship between spectral resolution as a measure of bottom-up information and 
speech recognition scores or noise tolerance. Furthermore, this study examines the 
hypothesis that CI recipients with more limited bottom-up information as reflected by a 
low spectral resolution may benefit more from NRAs than CI users with a higher spectral 
resolution, as proposed by Chung et al. (2006). 
Chapter 3 is an extension of the study of chapter 2 and focuses on the effect of the NRA 
when the level of electrical stimulation is increased along with the activation of the NRA to 
enhance the effect of the NRA. 
Chapter 4 focuses on the question whether transient noises are disturbing for speech 
recognition in noise and acceptable noise levels. That is an important question, because 
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up to one-third of the disturbing sounds is a transient sound (Hernandez et al., 2006). It 
also studies the validity and efficacy of a transient noise reduction algorithm (TNRA) and 
the interaction of the TNRA with the NRA for continuous noise. 
Chapter 5 describes the use of pupillometry to measure listening effort in CI users while 
listening to speech in background noise of various levels. Listening effort is measured in 
conditions with a single-microphone NRA on and off to investigate whether the NRA 
affects listening effort. IN addition, this chapter examines whether working memory 
capacity is associated with speech recognition measures, noise tolerance, the pupil 
response measures, and the effect of the NRA on listening effort. 
Chapter 6 examines the role of top-down processing in speech recognition, using a model 
for context effects in speech recognition, developed by Bronkhorst and colleagues 
(Bronkhorst et al., 1993) and fitted to data from a group of 50 CI users. This chapter 
studies whether CI recipients make more use of contextual information in recognizing CNC 
words and sentences than NH listeners. By connecting the context model for CNC words 
and the model for sentences, the relative contribution of bottom-up information and top-
down processing to speech understanding becomes clear. In addition, this study uses a 
reading span test as a measure of working memory capacity and evaluates the association 
of the working memory capacity and speech scores. Finally, this study examines whether 
the speech-in-noise recognition test, based on the percentage correctly recognized words 
from sentences, is more sensitive to changes in the bottom-up sensory information than 
the clinical used consonant-vowel-consonant test. 
Chapter 7 addresses research question 4 by examining whether sentence-in-noise tests 
that use adaptive procedures to assess the speech reception threshold in noise (SRTn) in 
CI users, can be optimized using stochastic approximation (SA) methods and word scoring. 
Based on the model for context effects in speech recognition from chapter 6, a simulation 
model has been developed and validated. Chapter 7 describes Monte Carlo simulations of 
adaptive speech tests, with scoring of words from sentences in noise for both CI users and 
normal hearing (NH) listeners. The study proposes optimization of four different SA 
algorithms for use in both groups. These algorithms were compared to clinical adaptive 
procedures using sentence scoring. Furthermore, it investigates the test-retest variability 
as a function of the maximum word score in quiet, and the initial SNR at the start of the 
test. 
The study in Chapter 8 is also linked to research question 4 and focuses on a comparison 
of different speech materials used as stimuli in the Acceptable Noise Level test. The 
connected sentences used in this thesis, are compared to conversational speech and a 
meaningless speech-like signal used in hearing aid testing. More specifically, the research 
question is whether meaningless or incoherent speech materials, which are often used in 
the clinical setting, yield differential ANL test outcomes than most ecologically valid 
conversational materials. In addition, the study investigates whether the finding that the 
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ANL is associated with working-memory can be replicated (Brännström et al., 2012) and if 
this association is stronger for conversational speech. The study on the ANL material 
effects is designed as a precursor to a clinical study with CI users. Therefore, a sample of 
normal-hearing participants with an age range representative for hearing aid and adult CI 
users is tested. Moreover, the data of the NH listeners can serve as a norm for the ANL 
scores of the CI listeners. 
Chapter 9 examines the relationship between a hearing-specific Patient-Reported 
Outcome Measure (PROM) with speech perception and noise tolerance measurements. 
This study aims to demonstrated the extent to which the outcome measures used in this 
thesis correspond to the subjective experience of CI users. Furthermore this chapter 
studies the relationship between noise tolerance and the speech reception threshold in 
noise and the relationship of the speech reception threshold in noise and the speech 
recognition score in quiet. 

References 
Advanced Bionics. (2012). ClearVoice. Technical Facts.  

Akeroyd, M. A. (2008). Are individual differences in speech reception related to individual 
differences in cognitive ability? A survey of twenty experimental studies with normal and 
hearing-impaired adults. Int J Audiol, 47 Suppl 2, S53-71. 
https://doi.org/10.1080/14992020802301142  

Arehart, K., Souza, P., Kates, J., Lunner, T., & Pedersen, M. S. (2015). Relationship among signal 
fidelity, hearing loss, and working memory for digital noise suppression. Ear Hear, 36(5), 505-
516. https://doi.org/10.1097/AUD.0000000000000173  

Berg, K. A., Noble, J. H., Dawant, B. M., Dwyer, R. T., Labadie, R. F., & Gifford, R. H. (2019). Speech 
recognition as a function of the number of channels in perimodiolar electrode recipients. J 
Acoust Soc Am, 145(3), 1556. https://doi.org/10.1121/1.5092350  

Besser, J., Koelewijn, T., Zekveld, A. A., Kramer, S. E., & Festen, J. M. (2013). How linguistic closure 
and verbal working memory relate to speech recognition in noise—a review. Trends in 
amplification, 17(2), 75-93. https://doi.org/10.1177/1084713813495459  

Bosman, A. J., & Smoorenburg, G. F. (1995). Intelligibility of Dutch CVC syllables and sentences for 
listeners with normal hearing and with three types of hearing impairment. Audiology, 34(5), 260-
284. https://doi.org/10.3109/00206099509071918  

Boyd, P. J. (2011). Potential benefits from deeply inserted cochlear implant electrodes. Ear Hear, 
32(4), 411-427. https://doi.org/10.1097/AUD.0b013e3182064bda  

Boyle, P. J., Nunn, T. B., O'Connor, A. F., & Moore, B. C. J. (2013). STARR: A Speech Test for 
Evaluation of the Effectiveness of Auditory Prostheses Under Realistic Conditions. Ear & Hearing 
March/April, 34(2), 203-212. https://doi.org/10.1097/AUD.0b013e31826a8e82  

Brand, T., & Kollmeier, B. (2002). Efficient adaptive procedures for threshold and concurrent slope 
estimates for psychophysics and speech intelligibility tests. J Acoust Soc Am, 111(6), 2801-2810. 
https://doi.org/10.1121/1.1479152  



 General introduction 

25 

Brännström, K. J., Zunic, E., Borovac, A., & Ibertsson, T. (2012). Acceptance of Background Noise, 
Working Memory Capacity, and Auditory Evoked Potentials in Subjects with Normal Hearing. 
Journal of the American Academy of Audiology, 23(7), 542-552. 
https://doi.org/10.3766/jaaa.23.7.6  

Bronkhorst, A. W., Bosman, A. J., & Smoorenburg, G. F. (1993). A model for context effects in speech 
recognition. The Journal of the Acoustical Society of America, 93(1), 499-509. 
https://doi.org/10.1121/1.406844  

Buechner, A., Brendel, M., Saalfeld, H., Litvak, L., Frohne-Buechner, C., & Lenarz, T. (2010). Results of 
a pilot study with a signal enhancement algorithm for HiRes 120 cochlear implant users. Otol 
Neurotol, 31(9), 1386-1390. https://doi.org/10.1097/MAO.0b013e3181f1cdc6  

Carlsson, P. I., Hjaldahl, J., Magnuson, A., Ternevall, E., Eden, M., Skagerstrand, A., & Jonsson, R. 
(2015). Severe to profound hearing impairment: quality of life, psychosocial consequences and 
audiological rehabilitation. Disabil Rehabil, 37(20), 1849-1856. 
https://doi.org/10.3109/09638288.2014.982833  

Chan, J. C., Freed, D. J., Vermiglio, A. J., & Soli, S. D. (2008). Evaluation of binaural functions in 
bilateral cochlear implant users. Int J Audiol, 47(6), 296-310. 
https://doi.org/10.1080/14992020802075407  

Chatterjee, M., & Yu, J. (2010). A relation between electrode discrimination and amplitude 
modulation detection by cochlear implant listeners. J Acoust Soc Am, 127(1), 415-426. 
https://doi.org/10.1121/1.3257591  

Chung, K., Nelson, L., & Teske, M. (2012). Noise reduction technologies implemented in head-worn 
preprocessors for improving cochlear implant performance in reverberant noise fields. Hear Res, 
291(1-2), 41-51. https://doi.org/10.1016/j.heares.2012.06.003  

Chung, K., Zeng, F. G., & Acker, K. N. (2006). Effects of directional microphone and adaptive 
multichannel noise reduction algorithm on cochlear implant performance. J Acoust Soc Am, 
120(4), 2216-2227. https://doi.org/10.1121/1.2258500  

Cohen, I. (2003). Noise spectrum estimation in adverse environments: Improved minima controlled 
recursive averaging. IEEE Transactions on speech and audio processing, 11(5), 466-475. 
https://doi.org/10.1109/TSA.2003.811544  

Dawson, P. W., Mauger, S. J., & Hersbach, A. A. (2011). Clinical evaluation of signal-to-noise ratio-
based noise reduction in Nucleus(R) cochlear implant recipients. Ear Hear, 32(3), 382-390. 
https://doi.org/10.1097/AUD.0b013e318201c200  

Desjardins, J. L., & Doherty, K. A. (2014). The effect of hearing aid noise reduction on listening effort 
in hearing-impaired adults. Ear Hear, 35(6), 600-610. 
https://doi.org/10.1097/AUD.0000000000000028  

Donaldson, G. S., Chisolm, T. H., Blasco, G. P., Shinnick, L. J., Ketter, K. J., & Krause, J. C. (2009). BKB-
SIN and ANL predict perceived communication ability in cochlear implant users. Ear Hear, 30(4), 
401-410. https://doi.org/10.1097/AUD.0b013e3181a16379  

Dryden, A., Allen, H. A., Henshaw, H., & Heinrich, A. (2017). The Association Between Cognitive 
Performance and Speech-in-Noise Perception for Adult Listeners: A Systematic Literature Review 
and Meta-Analysis. Trends Hear, 21. https://doi.org/10.1177/2331216517744675  



Chapter 1   

26 

Dyballa, K. H., Hehrmann, P., Hamacher, V., Nogueira, W., Lenarz, T., & Buechner, A. (2015). 
Evaluation of a transient noise reduction algorithm in cochlear implant users. Audiology 
Research, 5(2). https://doi.org/10.4081/audiores.2015.116  

Faulkner, A., Rosen, S., & Moore, B. C. (1990). Residual frequency selectivity in the profoundly 
hearing-impaired listener. British Journal of Audiology, 24(6), 381-392. 
https://doi.org/10.3109/03005369009076579  

Fayad, J. N., & Linthicum, F. H., Jr. (2006). Multichannel cochlear implants: relation of histopathology 
to performance. Laryngoscope, 116(8), 1310-1320. 
https://doi.org/10.1097/01.mlg.0000227176.09500.28  

Friesen, L. M., Shannon, R. V., Baskent, D., & Wang, X. (2001). Speech recognition in noise as a 
function of the number of spectral channels: comparison of acoustic hearing and cochlear 
implants. J Acoust Soc Am, 110(2), 1150-1163. https://doi.org/10.1121/1.1381538  

Garadat, S. N., & Pfingst, B. E. (2011). Relationship between gap detection thresholds and loudness 
in cochlear-implant users. Hear Res, 275(1-2), 130-138. 
https://doi.org/10.1016/j.heares.2010.12.011  

Garadat, S. N., Zwolan, T. A., & Pfingst, B. E. (2012). Across-site patterns of modulation detection: 
Relation to speech recognition. The Journal of the Acoustical Society of America, 131(5), 4030-
4041. https://doi.org/10.1121/1.3701879  

Gaylor, J. M., Raman, G., Chung, M., Lee, J., Rao, M., Lau, J., & Poe, D. S. (2013). Cochlear 
implantation in adults: a systematic review and meta-analysis. JAMA Otolaryngol Head Neck 
Surg, 139(3), 265-272. https://doi.org/10.1001/jamaoto.2013.1744  

Gifford, R. H., Shallop, J. K., & Peterson, A. M. (2008). Speech recognition materials and ceiling 
effects: Considerations for cochlear implant programs. Audiology and Neuro-Otology, 13(3), 193-
205. https://doi.org/10.1159/000113510  

Gilbert, J. L., Tamati, T. N., & Pisoni, D. B. (2013). Development, reliability, and validity of PRESTO: a 
new high-variability sentence recognition test. J Am Acad Audiol, 24(1), 26-36. 
https://doi.org/10.3766/jaaa.24.1.4  

Hahlbrock, K. H. (1953). Über Sprachaudiometrie und neue Wörterteste. Archiv für Ohren-, Nasen-
und Kehlkopfheilkunde, 162(5), 394-431. https://doi.org/10.1007/BF02105664  

Hannula, S., Maki-Torkko, E., Majamaa, K., & Sorri, M. (2010). Hearing in a 54- to 66-year-old 
population in northern Finland. Int J Audiol, 49(12), 920-927. 
https://doi.org/10.3109/14992027.2010.510146  

Hernandez, A., Chalupper, J., & Powers, T. (2006). An assessment of everyday noises and their 
annoyance. Hearing Review, 13(7), 16.  

Hersbach, A. A., Arora, K., Mauger, S. J., & Dawson, P. W. (2012). Combining directional microphone 
and single-channel noise reduction algorithms: a clinical evaluation in difficult listening 
conditions with cochlear implant users. Ear Hear, 33(4), e13-23. 
https://doi.org/10.1097/AUD.0b013e31824b9e21  

Hersbach, A. A., Grayden, D. B., Fallon, J. B., & McDermott, H. J. (2013). A beamformer post-filter for 
cochlear implant noise reduction. J Acoust Soc Am, 133(4), 2412-2420. 
https://doi.org/10.1121/1.4794391  



 General introduction 

27 

Heydebrand, G., Hale, S., Potts, L., Gotter, B., & Skinner, M. (2007). Cognitive predictors of 
improvements in adults' spoken word recognition six months after cochlear implant activation. 
Audiol Neurootol, 12(4), 254-264. https://doi.org/10.1159/000101473  

Holden, L. K., Brenner, C., Reeder, R. M., & Firszt, J. B. (2013a). Postlingual adult performance in 
noise with HiRes 120 and ClearVoice Low, Medium, and High. Cochlear implants international, 
14(5), 276-286. https://doi.org/10.1179/1754762813Y.0000000034  

Holden, L. K., Finley, C. C., Firszt, J. B., Holden, T. A., Brenner, C., Potts, L. G., Gotter, B. D., 
Vanderhoof, S. S., Mispagel, K., Heydebrand, G., & Skinner, M. W. (2013b). Factors affecting 
open-set word recognition in adults with cochlear implants. Ear Hear, 34(3), 342-360. 
https://doi.org/10.1097/AUD.0b013e3182741aa7  

Hu, Y., Loizou, P. C., Li, N., & Kasturi, K. (2007). Use of a sigmoidal-shaped function for noise 
attenuation in cochlear implants. J Acoust Soc Am, 122(4), EL128-134. 
https://doi.org/10.1121/1.2772401  

Hughes, K. C., & Galvin, K. L. (2013). Measuring listening effort expended by adolescents and young 
adults with unilateral or bilateral cochlear implants or normal hearing. Cochlear Implants Int, 
14(3), 121-129. https://doi.org/10.1179/1754762812Y.0000000009  

Huinck, W. J., Mylanus, E. A. M., & Snik, A. F. M. (2019). Expanding unilateral cochlear implantation 
criteria for adults with bilateral acquired severe sensorineural hearing loss. Eur Arch 
Otorhinolaryngol, 276(5), 1313-1320. https://doi.org/10.1007/s00405-019-05358-z  

Kahneman, D. (1973). Attention and effort (Vol. 1063). Prentice-Hall.  

Kam, A. C., Ng, I. H., Cheng, M. M., Wong, T. K., & Tong, M. C. (2012). Evaluation of the ClearVoice 
Strategy in Adults Using HiResolution Fidelity 120 Sound Processing. Clin Exp Otorhinolaryngol, 5 
Suppl 1, S89-92. https://doi.org/10.3342/ceo.2012.5.S1.S89  

Kamakura, T., & Nadol, J. B., Jr. (2016). Correlation between word recognition score and 
intracochlear new bone and fibrous tissue after cochlear implantation in the human. Hear Res, 
339, 132-141. https://doi.org/10.1016/j.heares.2016.06.015  

Keidser, G., O'Brien, A., Latzel, M., & Convery, E. (2007). Evaluation of a noise‐reduction algorithm 
that targets non‐speech transient sounds. The Hearing Journal, 60(2), 29-32. 
https://doi.org/10.1097/01.HJ.0000285643.45157.35  

Kim, S. Y., Kim, H. J., Park, E. K., Joe, J., Sim, S., & Choi, H. G. (2017). Severe hearing impairment and 
risk of depression: A national cohort study. PLoS One, 12(6), e0179973. 
https://doi.org/10.1371/journal.pone.0179973  

Klop, W. M., Boermans, P. P., Ferrier, M. B., van den Hout, W. B., Stiggelbout, A. M., & Frijns, J. H. 
(2008). Clinical relevance of quality of life outcome in cochlear implantation in postlingually 
deafened adults. Otol Neurotol, 29(5), 615-621. 
https://doi.org/10.1097/MAO.0b013e318172cfac  

Knutson, J. F., & Lansing, C. R. (1990). The relationship between communication problems and 
psychological difficulties in persons with profound acquired hearing loss. Journal of Speech and 
Hearing Disorders, 55(4), 656-664. https://doi.org/10.1044/jshd.5504.656  

Koch, D. B., Quick, A., Osberger, M. J., Saoji, A., & Litvak, L. (2014). Enhanced hearing in noise for 
cochlear implant recipients: clinical trial results for a commercially available speech-
enhancement strategy. Otol Neurotol, 35(5), 803-809. 
https://doi.org/10.1097/MAO.0000000000000301  



Chapter 1   

28 

Kramer, S. E., Lorens, A., Coninx, F., Zekveld, A. A., Piotrowska, A., & Skarzynski, H. (2013). Processing 
load during listening: The influence of task characteristics on the pupil response. Language and 
Cognitive Processes, 28(4), 426-442. https://doi.org/10.1080/01690965.2011.642267  

Limb, C. J., Molloy, A. T., Jiradejvong, P., & Braun, A. R. (2010). Auditory cortical activity during 
cochlear implant-mediated perception of spoken language, melody, and rhythm. J Assoc Res 
Otolaryngol, 11(1), 133-143. https://doi.org/10.1007/s10162-009-0184-9  

Limb, C. J., & Roy, A. T. (2014). Technological, biological, and acoustical constraints to music 
perception in cochlear implant users. Hear Res, 308, 13-26. 
https://doi.org/10.1016/j.heares.2013.04.009  

Luce, P. A., & Pisoni, D. B. (1998). Recognizing spoken words: the neighborhood activation model. 
Ear Hear, 19(1), 1-36. https://doi.org/10.1097/00003446-199802000-00001  

Luxford, W. M., Ad Hoc Subcommittee of the Committee on Hearing and Equilibrium of the 
American Academy of Otolaryngology-Head and Neck Surgery (2001). Minimum speech test 
battery for postlingually deafened adult cochlear implant patients. Otolaryngol Head Neck Surg, 
124(2), 125-126. https://doi.org/10.1067/mhn.2001.113035  

Martin, R. (2001). Noise power spectral density estimation based on optimal smoothing and 
minimum statistics. IEEE Transactions on speech and audio processing, 9(5), 504-512. 
https://doi.org/10.1109/89.928915  

Mauger, S. J., Arora, K., & Dawson, P. W. (2012). Cochlear implant optimized noise reduction. J 
Neural Eng, 9(6), 065007. https://doi.org/10.1088/1741-2560/9/6/065007  

McGarrigle, R., Munro, K. J., Dawes, P., Stewart, A. J., Moore, D. R., Barry, J. G., & Amitay, S. (2014). 
Listening effort and fatigue: what exactly are we measuring? A British Society of Audiology 
Cognition in Hearing Special Interest Group 'white paper'. Int J Audiol, 53(7), 433-440. 
https://doi.org/10.3109/14992027.2014.890296  

McRackan, T. R., Bauschard, M., Hatch, J. L., Franko-Tobin, E., Droghini, H. R., Nguyen, S. A., & 
Dubno, J. R. (2018a). Meta-analysis of quality-of-life improvement after cochlear implantation 
and associations with speech recognition abilities. Laryngoscope, 128(4), 982-990. 
https://doi.org/10.1002/lary.26738  

McRackan, T. R., Bauschard, M., Hatch, J. L., Franko-Tobin, E., Droghini, H. R., Velozo, C. A., Nguyen, 
S. A., & Dubno, J. R. (2018b). Meta-analysis of Cochlear Implantation Outcomes Evaluated With 
General Health-related Patient-reported Outcome Measures. Otol Neurotol, 39(1), 29-36. 
https://doi.org/10.1097/MAO.0000000000001620  

Mertens, G., Punte, A. K., & Van de Heyning, P. (2013). Self-assessment of hearing disabilities in 
cochlear implant users using the SSQ and the reduced SSQ5 version. Otol Neurotol, 34(9), 1622-
1629. https://doi.org/10.1097/MAO.0b013e31829ce980  

MSTB. (2011). New Minimum Speech Test Battery (MSTB) For Adult Cochlear Implant Users. 
Retrieved 20-03-2018 from  

Mueller, H. G., Weber, J., & Hornsby, B. W. (2006). The effects of digital noise reduction on the 
acceptance of background noise. Trends Amplif, 10(2), 83-93. 
https://doi.org/10.1177/1084713806289553  

Nabelek, A. K., Freyaldenhoven, M. C., Tampas, J. W., Burchfield, S. B., & Muenchen, R. A. (2006). 
Acceptable noise level as a predictor of hearing aid use. J Am Acad Audiol, 17(9), 626-639. 
https://doi.org/10.3766/jaaa.17.9.2  



 General introduction 

29 

Nabelek, A. K., Tampas, J. W., & Burchfield, S. B. (2004). Comparison of speech perception in 
background noise with acceptance of background noise in aided and unaided conditions. J 
Speech Lang Hear Res, 47(5), 1001-1011. https://doi.org/10.1044/1092-4388(2004/074)  

Nabelek, A. K., Tucker, F. M., & Letowski, T. R. (1991). Toleration of background noises: relationship 
with patterns of hearing aid use by elderly persons. J Speech Hear Res, 34(3), 679-685. 
https://doi.org/10.1044/jshr.3403.679  

Nadol, J. B., & Eddington, D. K. (2006). Histopathology of the inner ear relevant to cochlear 
implantation. Adv Otorhinolaryngol, 64, 31-49. https://doi.org/10.1159/000094643  

Naito, Y., Tateya, I., Fujiki, N., Hirano, S., Ishizu, K., Nagahama, Y., Fukuyama, H., & Kojima, H. (2000). 
Increased cortical activation during hearing of speech in cochlear implant users. Hear Res, 143(1-
2), 139-146. https://doi.org/10.1016/s0378-5955(00)00035-6  

Ng, E. H., Rudner, M., Lunner, T., Pedersen, M. S., & Rönnberg, J. (2013). Effects of noise and 
working memory capacity on memory processing of speech for hearing-aid users. Int J Audiol, 
52(7), 433-441. https://doi.org/10.3109/14992027.2013.776181  

Ng, E. H., Rudner, M., Lunner, T., & Rönnberg, J. (2015). Noise reduction improves memory for target 
language speech in competing native but not foreign language speech. Ear Hear, 36(1), 82-91. 
https://doi.org/10.1097/AUD.0000000000000080  

Oxenham, A. J., & Kreft, H. A. (2014). Speech perception in tones and noise via cochlear implants 
reveals influence of spectral resolution on temporal processing. Trends Hear, 18. 
https://doi.org/10.1177/2331216514553783  

Pals, C., Sarampalis, A., & Baskent, D. (2013). Listening effort with cochlear implant simulations. J 
Speech Lang Hear Res, 56(4), 1075-1084. https://doi.org/10.1044/1092-4388(2012/12-0074)  

Park, E., Shipp, D. B., Chen, J. M., Nedzelski, J. M., & Lin, V. Y. (2011). Postlingually deaf adults of all 
ages derive equal benefits from unilateral multichannel cochlear implant. J Am Acad Audiol, 
22(10), 637-643. https://doi.org/10.3766/jaaa.22.10.2  

Pascoe, D. P. (1988). Clinical measurements of the auditory dynamic range and their relation to 
formulas for hearing aid gain. Hearing aid fitting: Theoretical and practical views, 129-152.  

Pearsons, K. S., Bennett, R. L., & Fidell, S. (1977). Speech levels in various noise environments (Rep. 
No. EPA 600/1-77-025). Washington DC. Environmental Protection Agency. 

Peeters, H., Kuk, F., Lau, C. C., & Keenan, D. (2009). Subjective and objective evaluation of noise 
management algorithms. J Am Acad Audiol, 20(2), 89-98. https://doi.org/10.3766/jaaa.20.2.2  

Peterson, G. E., & Lehiste, I. (1962). Revised CNC lists for auditory tests. Journal of Speech and 
Hearing Disorders, 27(1), 62-70. https://doi.org/10.1044/jshd.2701.62  

Pichora-Fuller, M. K., Kramer, S. E., Eckert, M. A., Edwards, B., Hornsby, B. W., Humes, L. E., Lemke, 
U., Lunner, T., Matthen, M., Mackersie, C. L., Naylor, G., Phillips, N. A., Richter, M., Rudner, M., 
Sommers, M. S., Tremblay, K. L., & Wingfield, A. (2016). Hearing Impairment and Cognitive 
Energy: The Framework for Understanding Effortful Listening (FUEL). Ear Hear, 37 Suppl 1, 5S-
27S. https://doi.org/10.1097/AUD.0000000000000312  

Pisa, J., Burk, M., & Galster, E. (2010). Evidence-based design of a noise-management algorithm. The 
Hearing Journal, 63(4), 42-44. https://doi.org/10.1097/01.HJ.0000370859.58483.67  



Chapter 1   

30 

Plomp, R., & Mimpen, A. M. (1979). Improving the reliability of testing the speech reception 
threshold for sentences. International journal of audiology, 18(1), 43-52. 
https://doi.org/10.3109/00206097909072618  

Plyler, P. N., Bahng, J., & von Hapsburg, D. (2008). The acceptance of background noise in adult 
cochlear implant users. J Speech Lang Hear Res, 51(2), 502-515. https://doi.org/10.1044/1092-
4388(2008/036)  

Ramos Macias, A., Perez Zaballos, M. T., Ramos de Miguel, A., & Cervera Paz, J. (2017). Importance 
of Perimodiolar Electrode Position for Psychoacoustic Discrimination in Cochlear Implantation. 
Otol Neurotol, 38(10), e429-e437. https://doi.org/10.1097/MAO.0000000000001594  

Redd, E. E., Pongstaporn, T., & Ryugo, D. K. (2000). The effects of congenital deafness on auditory 
nerve synapses and globular bushy cells in cats. Hear Res, 147(1-2), 160-174. 
https://doi.org/10.1016/s0378-5955(00)00129-5  

Reed, C. M., Braida, L. D., & Zurek, P. M. (2009). Review article: review of the literature on temporal 
resolution in listeners with cochlear hearing impairment: a critical assessment of the role of 
suprathreshold deficits. Trends Amplif, 13(1), 4-43. https://doi.org/10.1177/1084713808325412  

Ringdahl, A., & Grimby, A. (2000). Severe-profound hearing impairment and health-related quality of 
life among post-lingual deafened Swedish adults. Scand Audiol, 29(4), 266-275. 
https://doi.org/10.1080/010503900750022907  

Risi, F. (2018). Considerations and Rationale for Cochlear Implant Electrode Design - Past, Present 
and Future. J Int Adv Otol, 14(3), 382-391. https://doi.org/10.5152/iao.2018.6372  

Rönnberg, J., Lunner, T., Zekveld, A., Sorqvist, P., Danielsson, H., Lyxell, B., Dahlstrom, O., Signoret, 
C., Stenfelt, S., Pichora-Fuller, M. K., & Rudner, M. (2013). The Ease of Language Understanding 
(ELU) model: theoretical, empirical, and clinical advances. Front Syst Neurosci, 7, 31. 
https://doi.org/10.3389/fnsys.2013.00031  

Rosen, S., Faulkner, A., & Smith, D. (1990). The psychoacoustics of profound hearing impairment. 
Acta Otolaryngologica, 469, 16-22. https://doi.org/10.1080/00016489.1990.12088404  

Sarampalis, A., Kalluri, S., Edwards, B., & Hafter, E. (2009). Objective measures of listening effort: 
effects of background noise and noise reduction. J Speech Lang Hear Res, 52(5), 1230-1240. 
https://doi.org/10.1044/1092-4388(2009/08-0111)  

Shannon, R. V., Cruz, R. J., & Galvin, J. J., 3rd. (2011). Effect of stimulation rate on cochlear implant 
users' phoneme, word and sentence recognition in quiet and in noise. Audiol Neurootol, 16(2), 
113-123. https://doi.org/10.1159/000315115  

Shepherd, R. K., & Hardie, N. A. (2001). Deafness-induced changes in the auditory pathway: 
implications for cochlear implants. Audiol Neurootol, 6(6), 305-318. 
https://doi.org/10.1159/000046843  

Skinner, M. W., Arndt, P. L., & Staller, S. J. (2002). Nucleus 24 advanced encoder conversion study: 
performance versus preference. Ear Hear, 23(1 Suppl), 2S-17S. 
https://doi.org/10.1097/00003446-200202001-00002  

Smeds, K., Wolters, F., & Rung, M. (2015). Estimation of Signal-to-Noise Ratios in Realistic Sound 
Scenarios. J Am Acad Audiol, 26(2), 183-196. https://doi.org/10.3766/jaaa.26.2.7  



 General introduction 

31 

Snel-Bongers, J., Netten, A. P., Boermans, P. B. M., Rotteveel, L. J. C., Briaire, J. J., & Frijns, J. H. M. 
(2018). Evidence-Based Inclusion Criteria for Cochlear Implantation in Patients With Postlingual 
Deafness. Ear Hear, 39(5), 1008-1014. https://doi.org/10.1097/AUD.0000000000000568  

Souza, P., Hoover, E., Blackburn, M., & Gallun, F. (2018). The Characteristics of Adults with Severe 
Hearing Loss. J Am Acad Audiol, 29(8), 764-779. https://doi.org/10.3766/jaaa.17050  

Spahr, A. J., Dorman, M. F., Litvak, L. M., Van Wie, S., Gifford, R. H., Loizou, P. C., Loiselle, L. M., 
Oakes, T., & Cook, S. (2012). Development and validation of the AzBio sentence lists. Ear Hear, 
33(1), 112-117. https://doi.org/10.1097/AUD.0b013e31822c2549  

Spriet, A., Van Deun, L., Eftaxiadis, K., Laneau, J., Moonen, M., van Dijk, B., Van Wieringen, A., & 
Wouters, J. (2007). Speech understanding in background noise with the two-microphone 
adaptive beamformer BEAM™ in the Nucleus Freedom™ cochlear implant system. Ear and 
hearing, 28(1), 62-72. https://doi.org/10.1097/01.aud.0000252470.54246.54  

Strauss, D. J., & Francis, A. L. (2017). Toward a taxonomic model of attention in effortful listening. 
Cogn Affect Behav Neurosci, 17(4), 809-825. https://doi.org/10.3758/s13415-017-0513-0  

Tao, D., Deng, R., Jiang, Y., Galvin, J. J., 3rd, Fu, Q. J., & Chen, B. (2014). Contribution of auditory 
working memory to speech understanding in mandarin-speaking cochlear implant users. PloS 
one, 9(6), e99096. https://doi.org/10.1371/journal.pone.0099096  

Teoh, S. W., Pisoni, D. B., & Miyamoto, R. T. (2004). Cochlear implantation in adults with prelingual 
deafness. Part II. Underlying constraints that affect audiological outcomes. Laryngoscope, 
114(10), 1714-1719. https://doi.org/10.1097/00005537-200410000-00007  

Terband, H., & Drullman, R. (2008). Study of an automated procedure for a Dutch sentence test for 
the measurement of the speech reception threshold in noise. J Acoust Soc Am, 124(5), 3225-
3234. https://doi.org/10.1121/1.2990706  

Thornton, A. R., & Raffin, M. J. (1978). Speech-discrimination scores modeled as a binomial variable. 
J Speech Hear Res, 21(3), 507-518. https://doi.org/10.1044/jshr.2103.507  

Tillman, T. W., & Carhart, R. (1966). An expanded test for speech discrimination utilizing CNC 
monosyllabic words: Northwestern University Auditory Test No. 6. Northwestern Univ Evanston 
Il Auditory Research Lab. https://doi.org/10.21236/ad0639638 

Turton, L., & Smith, P. (2013). Prevalence & characteristics of severe and profound hearing loss in 
adults in a UK National Health Service clinic. Int J Audiol, 52(2), 92-97. 
https://doi.org/10.3109/14992027.2012.735376  

Vaerenberg, B., Govaerts, P. J., Stainsby, T., Nopp, P., Gault, A., & Gnansia, D. (2014). A uniform 
graphical representation of intensity coding in current-generation cochlear implant systems. Ear 
Hear, 35(5), 533-543. https://doi.org/10.1097/AUD.0000000000000039  

van Wieringen, A., & Wouters, J. (2008). LIST and LINT: sentences and numbers for quantifying 
speech understanding in severely impaired listeners for Flanders and the Netherlands. Int J 
Audiol, 47(6), 348-355. https://doi.org/10.1080/14992020801895144  

Vandali, A. E., Whitford, L. A., Plant, K. L., & Clark, G. M. (2000). Speech perception as a function of 
electrical stimulation rate: using the Nucleus 24 cochlear implant system. Ear and hearing, 21(6), 
608-624. https://doi.org/10.1097/00003446-200012000-00008  



Chapter 1   

32 

Vermeire, K., Brokx, J. P., Wuyts, F. L., Cochet, E., Hofkens, A., & Van de Heyning, P. H. (2005). 
Quality-of-life benefit from cochlear implantation in the elderly. Otol Neurotol, 26(2), 188-195. 
https://doi.org/10.1097/00129492-200503000-00010  

Versfeld, N. J., Daalder, L., Festen, J. M., & Houtgast, T. (2000). Method for the selection of sentence 
materials for efficient measurement of the speech reception threshold. J Acoust Soc Am, 107(3), 
1671-1684. https://doi.org/10.1121/1.428451  

Wagener, K. C., Hansen, M., & Ludvigsen, C. (2008). Recording and classification of the acoustic 
environment of hearing aid users. J Am Acad Audiol, 19(4), 348-370. 
https://doi.org/10.3766/jaaa.19.4.7  

Wanna, G. B., Noble, J. H., Carlson, M. L., Gifford, R. H., Dietrich, M. S., Haynes, D. S., Dawant, B. M., 
& Labadie, R. F. (2014). Impact of electrode design and surgical approach on scalar location and 
cochlear implant outcomes. Laryngoscope, 124 Suppl 6, S1-7. 
https://doi.org/10.1002/lary.24728  

WHO. (2012). WHO global estimates on prevalence of hearing loss. World Health Organisation. 
Retrieved 4 sept 2019 from https://www.who.int/pbd/deafness/WHO_GE_HL.pdf 

Wilson, B. S., Finley, C. C., Lawson, D. T., Wolford, R. D., & Zerbi, M. (1993). Design and evaluation of 
a continuous interleaved sampling (CIS) processing strategy for multichannel cochlear implants. J 
Rehabil Res Dev, 30(1), 110-116.  

Wingfield, A. (2016). Evolution of Models of Working Memory and Cognitive Resources. Ear Hear, 37 
Suppl 1, 35S-43S. https://doi.org/10.1097/AUD.0000000000000310  

Won, J. H., Drennan, W. R., Nie, K., Jameyson, E. M., & Rubinstein, J. T. (2011). Acoustic temporal 
modulation detection and speech perception in cochlear implant listeners. J Acoust Soc Am, 
130(1), 376-388. https://doi.org/10.1121/1.3592521  

Wong, L. L. N., & Keung, S. K. H. (2013). Adaptation of Scoring Methods for Testing Cochlear Implant 
Users Using the Cantonese Hearing In Noise Test (CHINT). Ear & Hearing, 34(5), 630-636. 
https://doi.org/10.1097/AUD.0b013e31828e0fbb  

Yang, L. P., & Fu, Q. J. (2005). Spectral subtraction-based speech enhancement for cochlear implant 
patients in background noise. J Acoust Soc Am, 117(3 Pt 1), 1001-1004. 
https://doi.org/10.1121/1.1852873  

Zekveld, A. A., Koelewijn, T., & Kramer, S. E. (2018). The Pupil Dilation Response to Auditory Stimuli: 
Current State of Knowledge. Trends in hearing, 22. https://doi.org/10.1177/2331216518777174  

Zekveld, A. A., Kramer, S. E., & Festen, J. M. (2010). Pupil response as an indication of effortful 
listening: the influence of sentence intelligibility. Ear Hear, 31(4), 480-490. 
https://doi.org/10.1097/AUD.0b013e3181d4f251  

Zeng, F. G. (2004). Trends in cochlear implants. Trends Amplif, 8(1), 1-34. 
https://doi.org/10.1177/108471380400800102  

 
  



 General introduction 

33 

 

 



 

 

 

  



 

 

CHAPTER 2 
Application of noise reduction algorithm 
ClearVoice in cochlear implant processing: 
Effects on noise tolerance and speech 
intelligibility in noise in relation to spectral 
resolution 
Gertjan Dingemanse 
André Goedegebure 
 
Ear and Hearing, 2015, 36: 357–367 
 
 

  



Chapter 2   
 

36 

Abstract 
Objectives: Noise reduction algorithms have recently been introduced in the design of in 
clinically available cochlear implants. This study was intended (1) to evaluate the effect of 
noise reduction algorithm ‘ClearVoice’ on noise tolerance and on speech intelligibility in 
noisy conditions at different speech-in-noise ratios in Cochlear Implant users; (2) to test 
the hypothesis that CI recipients with low spectral resolution might benefit more from 
noise reduction algorithms than CI users with high spectral resolution. 
Methods: A double-blind crossover design was used to measure the effect of the noise 
reduction algorithm ClearVoice on noise tolerance with the Acceptable Noise Level (ANL) 
test and on speech in noise for three performance levels: Speech Reception 
Thresholds(SRT) at 50%, 70% and at a speech-noise-ratio of SRT50%+11dB. Furthermore, 
speech intelligibility in quiet was measured. The effective spectral resolution was 
measured with a spectral-ripple discrimination test. Twenty users of the Advanced Bionics 
Harmony processor with HiRes120-processing participated in this study. 
Results: The noise reduction algorithm led to a significant improvement – a decrease of 
3.6dB – in the ANL test, but had no significant effect on any of the three speech-in-noise 
performance levels. The improvement in ANL was not significantly correlated with any of 
the speech-in-noise measures, nor with the speech-in-noise ratio in the ANL test. 
However, higher maximum speech intelligibility in quiet conditions correlated significantly 
with higher noise tolerance. Spectral-ripple discrimination thresholds were not 
significantly correlated with the effect of noise reduction on ANL or on speech 
intelligibility in noise nor with the speech-in-noise ratios. The spectral-ripple 
discrimination thresholds did correlate significantly with maximum speech intelligibility in 
quiet, but not with speech reception thresholds in noise. 
Conclusions: The noise reduction algorithm ClearVoice improves noise tolerance. 
However, this study shows no change in speech intelligibility in noise due to the algorithm. 
The improvement in noise tolerance is not significantly related to spectral-ripple 
discrimination thresholds, speech intelligibility measures or signal-to-noise ratio. Our 
hypothesis that CI recipients with low spectral resolution have a greater benefit from 
noise reduction than CI users with high spectral resolution does not hold for noise 
tolerance, nor for speech intelligibility in noise. 
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Introduction 
With current cochlear implants (CIs), recipients can understand speech substantially well 
in quiet, but when there is background noise this remains difficult. It is well-known that 
this difficulty is a major complaint of most hearing impaired people. For this reason much 
of the current hearing device research aims to develop technologies that improve speech 
intelligibility in noise or at least provide more listening comfort. Among these technologies 
are noise reduction algorithms. These algorithms are based either on input from a single 
microphone input or from two or more microphones. Single microphone algorithms 
perform best in situations with stationary noise, whereas multi-microphone algorithms 
work best in conditions where speech and noise come from different directions in low-
reverberant surroundings (e.g. Spriet et al., 2007; Chung et al., 2012; Hersbach et al., 
2012; Kokkinakis et al., 2012). The application of noise reduction algorithms in 
commercially available CIs is only a recent development. ClearVoice, a proprietary noise 
reduction algorithm developed by Advanced Bionics (Valencia, CA, USA), was one of the 
first single-microphone algorithms applied in CIs. According to Evidence Based Medicine 
principles, when using noise reduction algorithms in CI sound processing it is important to 
gather evidence on the effects of these algorithms on listening comfort and speech 
intelligibility in background noise. Moreover it is desirable to know the relevant individual 
factors that contribute to the efficacy of noise reduction algorithms. 
 
ClearVoice tries to distinguish speech and noise on the basis of different temporal and 
spectral characteristics. Like many single-microphone algorithms ClearVoice consists of 
three elements: (1) an estimation of the noise in each frequency channel; (2) an 
estimation of the instantaneous signal-to-noise ratio (SNR), based on the noise-estimate; 
and (3) a gain calculation for the attenuation of spectral channels with low signal-to-noise 
ratio. ClearVoice estimates the background noise level with a minimum tracking method in 
a time window of 1.3s for each channel, compares the actual overall level within a channel 
with the estimated noise level and attenuates the channel if its actual level is close to 
what was estimated. ClearVoice has three options for the amount of attenuation in a 
channel: Low(up to -6dB attenuation), Medium(up to -12dB), and High(up to -18dB). The 
attenuation is applied directly to the electric outputs. This avoids limitations in the 
reconstruction of an acoustic waveform and it is computationally efficient (Buechner et 
al., 2010; Advanced Bionics, 2012b). 
 
For CI recipients, several studies reported that single-microphone noise reduction 
techniques improve speech intelligibility in background noise with limited temporal 
fluctuations (Hochberg et al., 1992; Toledo et al., 2003; Yang & Fu, 2005; Kasturi & Loizou, 
2007; Buechner et al., 2010; Dawson et al., 2011; Mauger et al., 2012). The reported 
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improvements are modest to small. Others found no effect in any of their experiments, or 
only in some specific conditions (Hu et al., 2007; Chung et al., 2012; Kam et al., 2012; 
Holden et al., 2013). For the noise reduction algorithm ClearVoice, mixed results were 
reported. Buechner et al. (2010) found a significant mean improvement of 20 percentage 
points for intelligibility in noise with ClearVoice Medium and 24 percentage points with 
ClearVoice High. He tested intelligibility at individually set speech-to-noise ratios (within 
the 0 to 6 dB range) in a sentence test with the level of stationary speech-shaped noise set 
at 55 dB. Kam et al. (2012) found a small, just significant improvement of 5.5 percentage 
points for the ClearVoice Medium setting and no significant effect for the ClearVoice High 
setting in a Cantonese Hearing in Noise Test at individually set speech-to-noise ratios 
(ranging from 1 to 14.5 dB) with a stationary speech-shaped noise level of 70 dB. 
Advanced Bionics investigated the benefits of ClearVoice in a multi-center study 
(Advanced Bionics, 2012a). After a two-week period ClearVoice Medium and ClearVoice 
High were evaluated with a sentence-in-noise test at individually set speech-to-noise 
ratios. The speech level was set at 60 dB(SPL) and the SNRs were in the range of 2 to 10 dB 
(reported in Holden et al., 2013). Mean percent correct scores improved significantly – by 
8.7 and 10.6 percentage points, respectively – with ClearVoice Medium and ClearVoice 
High for sentences in stationary speech-shaped noise. 
Holden et al. (2013) evaluated the effect of ClearVoice on speech recognition in multiple 
noise conditions, including restaurant noise (R-SPACETM), stationary speech-shaped noise, 
four- and eight-talker babble. Group mean scores with ClearVoice Medium or ClearVoice 
High were not significantly different from the control condition, except for ClearVoice High 
in R-SPACE noise. For this condition a 2.5 dB improvement of Speech Reception Threshold 
(SRT) was reported. In the sentence test with stationary speech-spectrum noise, the 
speech was presented at 50 dB(SPL) and at SNRs in the range of 2 to 8 dB. The effect of 
ClearVoice in pediatric users was investigated by Noël-Petroff et al. (2013) and Schramm 
et al. (2011). Noël-Petroff et al.(2013) reported better speech intelligibility in continuous 
speech shaped noise on a sentence-in-noise test for ClearVoice High after a one month 
period of ClearVoice usage. In a test immediately after activation of ClearVoice, no 
significant effect was seen. Schramm et al. reported a group mean improvement of 19.5 
percentage points for ClearVoice. In both studies, for most children the T- and M-levels 
were raised according to feedback from the child so as to maintain the most comfortable 
level. Order and learning effects were unable to be ruled out in either study.  
In summary, in the majority of the ClearVoice studies a significant effect of ClearVoice on 
speech intelligibility in noise was found. Most studies reported individual outcomes and 
showed large variation between subjects. Furthermore, the studies differed in a number 
of aspects which makes their results difficult to compare. These differences included 
sound level, speech and noise material, study design aspects like power analysis, blinding 
and test order, allowance of changes in volume settings and changes in M or T-levels. In 
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this study we wanted to test ClearVoice in a well-designed experiment, with the main 
focus being on the effect of ClearVoice on noise tolerance. Furthermore, we wanted to 
search for an explanation for the large differences between subjects in the effect of 
ClearVoice. 
 
It is not clear yet why noise reduction algorithms in CIs improve speech-in-noise scores 
and why there are large differences between individuals. Hu et al. (2007) believed that 
much of the success of the noise reduction algorithm in CI processing can be attributed to 
the improved temporal envelope contrast. Chung et al. (2006) hypothesized that for CI 
users the improvement comes from the fact that the bandwidth of the frequency channels 
in CI processing is narrower than the effective bandwidth of the CI stimulation. If one of 
the frequency channels is noise dominated and attenuated but the neighboring band is 
not, then the effective signal-to-noise ratio in the broader frequency band of CI 
stimulation is improved when both processing channels fall into the same stimulation 
band. Based on the explanation of Chung and colleagues, we hypothesized that CI 
recipients with low spectral resolution might have more benefit from noise reduction than 
CI users with high spectral resolution. This hypothesis could explain of the large inter-
subject variability in the effect of noise reduction algorithms. To test this hypothesis we 
decided to use a spectral-ripple discrimination test as a measure of spectral resolution. 
The spectral-ripple discrimination test evaluates the ability of a listener to discriminate 
between standard and inverted rippled spectra, and the outcome measure is the 
minimum ripple spacing discerned by listeners. In the recent literature, there has been a 
debate about unwanted cues like local loudness cues, spectral boundary cues and spectral 
centroid cues that CI recipients might use in a spectral-ripple discrimination test 
(Azadpour & McKay, 2012; Jones et al., 2013). Several studies confirmed that the spectral-
ripple measurement is related to spectral resolution when using current clinical CIs 
(Anderson et al., 2011; Won et al., 2011; Jones et al., 2013). The minimum discerned 
spectral-ripple spacing correlates with vowel and consonant recognition in quiet (Henry & 
Turner, 2003; Henry et al., 2005) and with word recognition in quiet and in noise (Won et 
al., 2007). In contrast, Anderson et.al. (2011) found no correlation between spectral-ripple 
discrimination thresholds and speech reception thresholds for words in sentences or for 
vowel recognition in noise. In the quiet condition they found that words in sentences and 
spectral-ripple discrimination thresholds were significantly correlated. 
 
Besides speech enhancement in noise, another important effect of noise reduction 
algorithms is that they improve aspects of listening comfort, such as noise tolerance and 
ease of listening (Ricketts & Hornsby, 2005; Bentler et al., 2008; Zakis et al., 2009; Luts et 
al., 2010). Ricketts & Hornsby (2005) and Luts et al. (2010) used paired comparisons and 
found a preference for noise reduction over the unprocessed condition for most noise 
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reduction algorithms among both impaired and normal hearing listeners. Bentler et al. 
(2008) documented significantly better ease of listening ratings among hearing impaired 
listeners for conditions with noise reduction. Luts et al. (2010) reported a reduction of 
perceived listening effort at 0 dB SNR for noise reduction in comparison with a control 
condition.  
For CI users the effects of noise reduction algorithms on noise tolerance and listening 
effort are not well documented. Only sound quality preferences (Chung et al., 2006; 
Chung et al., 2012) or preferences for noise reduction in daily life were reported. The 
percentage of participants that reported a preference for a ClearVoice program was 53% 
in the Buechner et al. (2010) study and 66% in the Kam et al. (2012) study. Furthermore, 
Buechner et al. collected subjective ratings of the programs in every day listening 
situations with the Abbreviated Profile of Hearing Aid Benefit (APHAB) and found no 
significant difference in scores between programs with ClearVoice on and those in which it 
was off. 
 
To evaluate the increase of noise tolerance due to noise reduction algorithms, the 
Acceptable Noise Level (ANL) test is often used. In 1991, Nabelek and colleagues 
developed this procedure for the determination of acceptable noise levels while listening 
to speech (Nabelek et al., 1991). The ANL procedure quantifies a listener’s willingness to 
listen to speech in the presence of background noise. To obtain an ANL measurement, a 
recorded story of running speech is adjusted to the listener’s most comfortable listening 
level (MCL). Next, background noise is added and adjusted to a level (called background 
noise level or BNL) that the listener is willing to ‘put up with’ while listening to and 
following the words of the story. The ANL is calculated by subtracting the BNL from the 
MCL and is the lowest SNR that a listener is willing to accept. Low ANL values indicate a 
high tolerance of background noise, whereas high values indicate a low tolerance. ANL is 
not related to a speech intelligibility in noise task, and the difference between unaided 
and aided ANL is very small (Nabelek et al., 2004; Nabelek et al., 2006). The effect of noise 
reduction algorithms on ANL in hearing aids users has been evaluated in a few studies 
(Mueller et al., 2006; Peeters et al., 2009; Pisa et al., 2010). Mueller et al. showed a mean 
improvement of 4.2 dB for the ANL, Peeters et al. observed a mean improvement of 3.3 
dB and Pisa and colleagues reported a mean improvement of 1.2 dB. These studies used 
steady-state speech spectrum noise. Holden et al. (2013) administered the ANL test to CI 
users with ClearVoice off, ClearVoice Medium and ClearVoice High. They used running 
speech in a 12-talker babble. They did not find significant group differences between the 
conditions. 
 
The main research question of this study was: what is the effect of the clinically available 
single microphone noise reduction algorithm ClearVoice on noise tolerance and on speech 
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intelligibility in noise among cochlear implant users? The noise tolerance was measured 
with an ANL test and speech reception thresholds were adaptively estimated at percent 
correct levels of 50% and 70%, called SRT50% and SRT70%. Furthermore a speech 
intelligibility level (percent correct) was measured at an SNR of 11 dB above the SRT50%. 
We also included a measurement of speech intelligibility in quiet. We added a 
questionnaire about perceived problems in daily life communication for correlation with 
the ANL and speech-in-noise scores. 
The secondary question was whether the inter-subject variability in the effect of the noise 
reduction algorithm on ANL and speech recognition in noise might be related to the 
spectral resolution of the CI stimulation as measured with a spectral-ripple discrimination 
test. 

Materials and methods 

Study design 
The noise reduction algorithm (NRA) that was investigated in this study is ClearVoice. It is 
a proprietary single-microphone noise reduction algorithm developed by Advanced 
Bionics LLC (Valencia, CA, USA), which works together with their HiRes Fidelity 120 
technology. The details of the algorithm are described in the introduction. In this study we 
used the Medium setting of ClearVoice. All participants were tested with the same new 
Harmony processor and a new T-mic (Advanced Bionics, Valencia, CA, USA). For several 
reasons no adjustments of M and T-levels or volume settings were made during testing. 
First, from a scientific point of view, we preferred to test the effect of the noise reduction 
algorithm alone, instead of the combined effect of the noise reduction algorithm and level 
adjustments. Second, in practice many CI users do not switch their program or change 
their volume setting depending on the noise situation or even when they change from 
noisy to quiet surroundings. Therefore, we felt that a standard increase in M-level was not 
appropriate. 
The effect of noise reduction on Acceptable Noise Level (ANL), Speech Reception 
Thresholds(SRT) and percent correct(Pc) words was investigated in a cross-over design. 
Because this type of design has a risk of introducing order effects, like a learning effect or 
a fatigue effect, we included an evaluation of order effects in the statistical analyses of the 
results.  
The different tests were allocated into two separate test sessions. The second session was 
two to seven days after the first. The first session consisted of three blocks. In the first 
block we measured the SRT for 50% correct in order to make the participants familiar with 
the task and to obtain a first estimation of a participants SRT50%, which we called 
SRT50%learn. Secondly, we measured the maximum percent correct score at an signal-to-
noise ratio of 40 dB. In the second and third blocks the effect of the NRA was tested in 
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three speech-in-noise conditions, including SRTs at target scores of 50% and 70% and 
percent correct scores at a fixed speech-in-noise ratio of SRT50%learn+11dB. Within a 
block, the three conditions were tested in a randomly interleaved order. At the end of the 
second block, we again measured the maximum percent correct score at a signal-to-noise 
ratio of 40dB. 
All participants used a CI with three user programs. We asked each participant which of 
the programs he or she used most often in every-day life situations. The settings of this 
program were placed into each of the three programs with ClearVoice off (condition NRA-
off). Then a clinician other than the test examiner switched ClearVoice on (condition NRA-
on) in either program 2 or program 3 for comparison between NRA-off and NRA-on. The 
clinician did this in a quasi-random order, so that in the end ten participants had the noise 
reduction on in program 2 and ten in program 3. During the experiment, the participants 
used program 1 in test block 1 (NRA-off), program 2 in test block 2 and program 3 in test 
block 3. This procedure was intended to create a double blind situation. ‘Blinding’ of 
participants means that they were not informed about the noise reduction setting. 
However, we were unable to rule out that the attenuation of the noise by the NRA may 
have been audible. To minimize this potential influence, interleaved testing of different 
SNR conditions was applied, to make the detection of the noise reduction condition more 
difficult.  
The second test session consisted of the Acceptable Noise Level (ANL) test and a Spectral 
Ripple (SR) test. The details of the tests are described below. First, a practice condition of 
the ANL test was done with CI program 1, followed by two practice runs of the SR test. 
Then the ANL test was performed with CI program 2 and CI program 3 for comparison 
between NRA-off and NRA-on conditons. After the ANL test and a pause, three runs of the 
SR test were performed with CI program 1. 

Participants 
Twenty users of an Advanced Bionics cochlear implant system (HiRes 90K implant and 
Harmony processor) participated in this study. The ages of the participants ranged from 37 
to 85 years, with a mean of 65 years. All participants had used 16 active electrodes and 
HiRes120 sound processing for at least one year. All participants are unilateral CI users 
with a group mean of 4.2 (std 2.0) years of CI use. All but two used the noise reduction 
algorithm ClearVoice in their daily program. The input dynamic range setting was between 
55 and 65 dB (2x 55 dB;15x 60 dB; 3x 65dB). Some participants wear a hearing aid in the 
non-implanted ear, but they did not wear it during the tests. All participants were Dutch 
native speakers who reported normal reading ability. For inclusion in this study, a 
phoneme score of at least 80% on clinically used Dutch consonant-vowel-consonant word 
lists was required. Participants were required to sign a written informed consent form 
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before participating in the study. Approval of the Erasmus Medical Center Ethics 
Committee was obtained. 

Equipment 
The test was set up in a sound-treated room in the department of ENT/Audiology of the 
Erasmus Medical Center. Test participants sat 1 meter in front of a loudspeaker that was 
connected to a Madsen OB822 audiometer, a Behringer UCA202 soundcard and a 
Macbook pro (type A1278) notebook. Data interpretation and analysis was done with 
Matlab (v7.11.0) and SPSS (v20). 

Acceptable noise level test 
The ANL is the difference between the most comfortable level (MCL) for running speech 
and a background noise level (BNL). The Acceptable Noise Level was tested with the same 
speech and noise material as the speech intelligibility in noise test. The sentences were 
connected with intervals of 500ms of silence between them and played as running speech. 
The listeners were given written instructions, which were Dutch translations of the 
instructions in Nabelek et al. (2006), and MCL and BNL were obtained according to 
previous ANL research (e.g. Nabelek et al. 2004).  
In a practice condition MCL and BNL were determined twice. In the test conditions, the 
MCL and BNL procedures were repeated 3 times and the mean values were used for 
calculation of the ANL and for data analysis. 

Speech-in-noise test 
Speech Reception was measured with Dutch female-spoken, unrelated sentences of 5-9 
words (with a median length of 6 words) in steady-state speech spectrum noise (Versfeld 
et al., 2000). For each condition two lists of 13 sentences were used. The presentation 
level of the sentences was fixed at 70 dB(SPL). The noise started 3 seconds before the 
speech and ended 0.5 seconds after the speech. Participants were asked to repeat as 
many words of the sentence they understood, after a brief tone that was given 3 seconds 
after the end of each sentence. A percentage of correct words per sentence list was 
calculated. Speech perception in noise was measured at three SNRs and three different 
performance levels. The SRT for 50%(SRT50) and 70% (SRT70) were measured with an 
adaptive procedure. Additionally, the percentage correct was measured at a fixed signal-
to-noise ratio of SRT50%learn+11 dB. The adaptive procedure we used was a stochastic 
approximation method with step size 4 ∙ (Pc(n-1) – target_Pc) (Robbins & Monro, 1951), 
with Pc(n-1) being the percent correct score of the previous trial. The SRT was defined as 
the average SNR over the last 23 presentation levels. (the 27th level was calculated from 
the response on the 26th sentence). It was proven that the average of trials in a stochastic 
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approximation staircase with constant step size converges to the target (Kushner & Yin, 
2003). 
The maximum percentage correct was measured at an SNR of 40 dB. This is equivalent to 
the measurement of percentage correct in quiet, but it has the advantage that it is a 
distinct point on the psychometrical curve, instead of being the asymptotic value. 

Spectral ripple test 
For the Spectral Ripple Test noise stimuli were generated which had logarithmically 
spaced spectral ripples using the following equation:  

𝑋𝑋(𝑓𝑓) =  10
𝐷𝐷
2 sin{2𝜋𝜋∙𝑙𝑙𝑙𝑙𝑔𝑔2(𝑓𝑓/𝐿𝐿)∙𝑓𝑓𝑓𝑓+𝜃𝜃0}/20  

where X(f) is the amplitude of a bin with center frequency f Hz, D is the spectral 
modulation depth or peak-to-valley ratio (in dB), L is the low cutoff frequency of the noise 
pass band, fs is the spectral modulation frequency in ripples/octave, and ϴ0 is the starting 
phase of the spectral modulation (Litvak et al., 2007; Anderson et al., 2011). Second, the 
magnitudes of the frequency components were shaped according to the long-term 
average speech spectrum of the sentences used in the speech-in-noise test. The low cutoff 
frequency L was 100Hz and the high cutoff frequency was 8,000 Hz. The spectral 
modulation depth D was 30 dB except for the edges of the spectral ripple, where cosine-
shaped ramps with a length of 1/3 octave were applied in order to prevent for unwanted 
cues at the frequency boundaries. Stimuli were generated in the frequency domain 
assuming a sampling rate of 44,100 Hz and a signal duration of 500 milliseconds. The 
starting phases of the individual frequency components were randomized for each 
stimulus and trial to avoid fine structure pitch cues that might have been perceptible to 
listeners. The starting phase of the spectral modulation ϴ0 was selected at random, with a 
uniform distribution (0 to 2π rad) for each trial. This randomization was intended to limit 
the ability of listeners to rely exclusively on a certain frequency channel to perform 
spectral-ripple discrimination at a certain ripple density. For inversely rippled noise the 
starting phase for the spectral modulation was ϴ0 + π. After taking an inverse Fourier 
transform, 100ms cosine-shaped onset and offset ramps were applied. The sentences 
were filtered to a 100 – 8,000 Hz pass band, and after the filtering, the long-term RMS 
value of the amplitude was obtained. The spectral ripple stimuli were given the same RMS 
value and played with the same calibration and signal path as the speech at 70 dB(SPL). To 
reduce cues related to loudness, the noise level was roved across intervals within each 
trial by -3 dB or +3 dB. The design of the spectral-ripple stimuli prevents the detection of 
spectral boundary cues, loudness cues or spectral centroid cues and is in accordance with 
the stimuli of Won et al. (2011) and Jones et.al. (2013). They validated that the spectral-
ripple test with these stimuli is related to spectral resolution when used with the 
Advanced Bionics HiRes90K implant. 
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Spectral modulation thresholds were determined using a cued adaptive three interval, 
two-alternative forced-choice (3I-2AFC) procedure. The inter stimulus interval was 500 ms. 
The inverted ripple was randomly presented in one of the intervals. The subject was asked 
to choose the interval that sounded different. A one-up, three-down stepping rule was 
used with an increasing and decreasing factor of 1.41. With this stepping rule the masked 
threshold at 79.4% correct discrimination was estimated. Each test run started at a ripple 
rate of 0.25 ripples per octave. The run was terminated after ten reversals and the 
geometric mean ripple rate at the last six reversal points was used to determine the 
threshold for ripple discrimination. Two practice runs and three test runs were performed. 
The mean spectral ripple threshold was calculated as the geometric mean ripple rate of 
the three test runs. 

APHAB questionnaire 
All participants were asked to complete the Abbreviated Profile of Hearing Aid Benefit 
(APHAB), a 24-item questionnaire to assess the participants’ experience with CI use in 
everyday communication situations (Cox & Alexander, 1995). The APHAB has a Global 
score of all questions and four subscales: ease of communication (EC), speech recognition 
in reverberation (RV) and in background noise (BN), and aversiveness of sound (AV).  
Participants answered for each of the 24 items how often a statement was true in daily 
communication by making a choice between the options always (approximately 99% of 
the time), generally (75%), half of the time (50%), occasionally (25%), or never (1%). 

Results 

Acceptable noise level 
The group mean value of the most comfortable level (MCL) was 61.1 dB (SD 5.6) for the 
NRA-on and 61.2 dB (SD 5.6) for the NRA-off condition. The difference between the NRA-
on and NRA-off condition was not significant (difference=0.09, p=0.7), indicating that the 
noise reduction algorithm had no effect on perceived loudness for speech signals. 
Figure 2.1 shows the group mean ANL values for both conditions. A normality check 
revealed that the ANL data could be regarded as having a normal distribution. With NRA-
on participants accepted more noise than in de NRA-off condition. A paired t-test showed 
that the ANL value for the NRA-on condition was significantly lowered by 3.6 dB (p < 
0.001). 
We determined whether an order effect was present. An ANOVA with a between-subjects 
factor order and a within-subject factor NRA showed neither a significant effect of the 
order factor (F[1,17]=1.2, MSE=52.0, p =0.30), nor an effect of the NRA × order interaction 
(F[1,17]=1.9, MSE=13.6, p < 0. 19). 
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Figure 2.1. Mean Acceptable Noise Level (ANL) values for the noise reduction algorithm (NRA) 
conditions NRA-off and NRA-on. Error bars represent 95% confidence intervals. 
 
Figure 2.2 shows the individual ANL values for the NRA-off and NRA-on conditions and the 
calculated speech intelligibility at the mean ANL value, this being the mean of the NRA-off 
and NRA-on conditions. This word score was calculated from individual logistic functions 
fitted to the speech intelligibility data. All participants had word scores above 50% at their 
ANLmean value, except participant 3. This participant apparently used a different 
criterion, namely how much noise he was willing to accept, without listening to the 
speech. Therefore, we decided to exclude the ANL data of participant 3. The ANL 
difference of participant 2 deviated by 2.9 SD from the mean ANL difference. If we exclude 
participant 2, the mean ANL difference due to the NRA is 4.2dB. 
We questioned whether the amount of ANL improvement due to noise reduction might be 
related to the signal-to-noise ratio in the test. However, correlation analyses showed no 
significant relationship between the ANL difference (ANLdiff) and the mean ANL value 
(ANLmean) for the NRA-on and NRA-off conditions. (Spearman rho = -0.03, p > 0.75). 
Also, the correlation coefficients between the ANL measures (ANLdiff, ANLmean, MCL) 
and speech intelligibility in noise measures were calculated. Results of the calculation did 
not show significant correlations except for the correlation between ANLmean and the 
rationalized arcsine units (rau) scores for percent correct words at a SNR of 40dB 
(Spearman rho = and -0.52, p < 0.02). Lower rau word scores in (nearly) quiet situations 
were associated with higher ANLmean values. 

Speech intelligibility in noise 
A normality check of the SRT data for 50% and 70% correct revealed normally distributed 
data, except for SRT70% in the NRA-off condition. This was due to an outlier for 
participant 13. His SRT70% value deviated more than 3SDs from the mean SRT70% value. 
We excluded participant 13 for the SRT70% NRA-off condition. For participant 20 the 
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Figure 2.2. Upper panel: individual Acceptable Noise Level (ANL) values for the noise reduction 
algorithm (NRA) conditions NRA-off and NRA-on. Lower panel: Calculated intelligibility level that 
participants used in the ANL test (see text for details of calculation).  
 
SRT70% value could not obtained with the adaptive test. The target of 70% was too close 
to his maximum percent word score (73%). The percent correct data were transformed to 
rationalized arcsine units (rau) (Studebaker, 1985). Figure 2.3 shows the mean values and 
95% confidence intervals for the different speech-in-noise conditions for both the NRA-on 
and NRA-off conditions. No systematic difference between the NRA-on and NRA-off data 
points was observed. For the three conditions we measured with NRA-off and NRA-on, we 
performed a repeated measures ANOVA with within-subjects factor NRA and between-
subjects factor order.  
The second factor was added to investigate if learning or fatigue effects had influenced 
the measurements. No significant effect on the NRA factor was observed in any of the 
conditions. [SRT50%: (F[1,18]=1.4, MSE=1.2, p=0.26); SRT70%: (F[1,16]=2.2, MSE=3.3, 
p=0.16); Rau@SRT50%p11dB: (F[1,18]=0.55, MSE=0.001, p=0.48)]. Also the Order factor 
was not significant for any condition [SRT50%: F[1,18]=1.6, MSE=41.2, p=0.22; SRT70%: 
(F[1,16]=2.2, MSE=40.2, p=0.16); Rau @SRT50%p11dB: (F[1,18]=1.2, MSE=0.006, p=0.30)].  
The curves in Figure 2.3 show the average psychometric curves that relate word scores 
with SNR. We fitted a logistic function to the individual psychometric curves and 
calculated the mean slope. The mean of the slope around the 50% level is 6.4%/dB with a 
standard deviation of 2.1%/dB. The mean of the maximum percent correct scores at a SNR 
of 40dB was 94.3%. 
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Figure 2.3. Mean results of speech intelligibility in noise tests measured for noise reduction 
algorithm (NRA) conditions NRA-off (circles) and NRA-on (triangles) with 95% confidence intervals. 
The points for 50% and 70% correct were measured with an adaptive procedure that estimated the 
speech-noise-ratio (SNR). The other points were measured at an individualized fixed SNR. The 
percent correct scores were converted to rau scores. The right axis shows the corresponding word 
scores on a percent correct scale. 
 
Figure 2.4 shows individual data points for SRT50% for NRA-off and NRA-on in the upper 
axis. The range of SRT50% is approximately from 0 to 15 dB, but the majority of SRT50% 
scores was between 1 and 5 dB. SRTs with and without NR were highly correlated for the 
whole SNR range. Furthermore, Figure 2.4 shows individual percent correct scores at a 
SNR of 40dB. Comparison of both panels in Figure 2.4 demonstrates that participants who 
had higher SNR50% tended to have a lower word score at an SNR of 40dB. The Pearson 
correlation coefficient for SNR50% and rau-converted word scores is 0.69, p < 0.001. 

Spectral ripple thresholds 
A secondary purpose of this study was to test the hypothesis that an improvement in ANL 
scores or speech intelligibility scores due to noise reduction is related to spectral-ripple 
thresholds. Figure 2.5 shows the mean of the log2 transformed values of the spectral-
ripple thresholds for each participant in the left panel. The thresholds were log2 
transformed to make them normally distributed. For participant 5 we had only one 
spectral-ripple threshold due to time restrictions. We therefore decided to exclude this 
participant from the spectra-ripple dataset. The spectral-ripple thresholds varied  
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Figure 2.4. Upper panel: individual speech reception thresholds for the performance level of 50% 
correct word score for noise reduction algorithm (NRA) conditions NRA-off and NRA-on. Lower 
panel: individual maximum word scores at a speech-noise-ratio (SNR) of 40dB. 
 
substantially between participants, which allowed us to investigate the relation between 
the spectral-ripple thresholds and performance. The mean spectral-ripple threshold was 
1.8 ripples/octave. 
We analyzed the hypothesized relation between the spectral-ripple thresholds and the 
effect of noise reduction on ANL and speech intelligibility. No significant correlation was 
found between the ANL benefit and the spectral-ripple thresholds. Although we did not 
find a significant mean improvement of speech intelligibility due to noise reduction, we 
calculated the correlation between spectral-ripple thresholds and the difference of the 
NRA-on and NRA-off speech measures. The correlation was insignificant in all three speech 
performance levels. 
Because we expected a relation between spectral resolution and general performance, we 
correlated the spectral-ripple thresholds with the different speech-in-noise outcome 
measures and with MCLmean and ANLmean. Only a nearly significant correlation was 
found between the spectral-ripple thresholds and the rau scores for percent correct words 
at an SNR of 40 dB (Spearman r = 0.43, p < 0.07). Better spectral resolution was related to 
higher percentages of correct scores at an SNR of 40 dB. The relationship appeared to be 
nonlinear. We applied a model of the form: 
 Pc = 1 – a/SR 
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Figure 2.5. Left panel: mean of the log2 transformed values of the spectral-ripple thresholds in 
ascending order. Error bars give 95% confidence intervals. Right panel: relation between word 
scores at a speech-noise-ratio (SNR) of 40dB and the spectral-ripple thresholds. 
 
This simple model converges to 100% correct for high SR scores and to 0% correct for very 
low SR scores. The result of the fit is a value of 0.7. This model accounts for 50% of the 
variance in the data (R2 = 0.5, F[18]=7710, MSE=0.0027, p < 3.73e-25) and confirmed the 
expected relation between spectral resolution and general performance. 
Between the spectral-ripple discrimination threshold and SRT50% a trend was seen in 
which better spectral-ripple thresholds were associated with better speech-in-noise 
thresholds, but the correlation was not significant (Pearson r = -0.30, p=0.21). No 
significant correlation was found between spectral-ripple thresholds and ANLmean. 

APHAB 
Table 2.1 shows the mean APHAB scores and the Pearson correlation coefficients 
examining the relationships between APHAB scales, speech intelligibility in noise (SRT50%) 
and ANLmean scores. Higher scores reflect a greater frequency of perceived problems in 
everyday life situations. 
CI users perceived most frequent communication problems in reverberant environments 
and in situations with background noise. The correlation analysis showed that higher 
speech-in-noise thresholds (SRT50%) and higher ANL values were significantly related to a 
higher score on the background noise scale. Furthermore, lower SRT50% values were 
significantly associated with greater ease of communication. Higher ANL values correlated 
significantly with more perceived problems in reverberant environments. The percent 
correct score at SNR 40dB is not related to any APHAB scale. 
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Table 2.1. Mean scores (with standard deviations) on the Abbreviated Profile of Hearing Aid Benefit 
(APHAB) that report the percentage of problems on subscales Ease of Communication (EC), 
Background Noise (BN), Reverberation (RV), Aversiveness (AV) and the Global scale (GB). Also 
Pearson correlation coefficients examining the relationships between APHAB scales, speech 
intelligibility in noise (SRT50%) and mean Acceptable Noise Levels (ANLmean). Rhos with a * are 
significant on the 0.05 level. 
 APHAB  SRT50%  ANLmean  
scale mean SD rho p rho p 
EC 25.0 15.6 0.48 0.04* 0.31 0.21 
BN 51.7 21.2 0.47 0.05* 0.46 0.05* 

RV 60.8 20.3 0.43 0.07 0.51 0.03* 

AV 31.6 21.1 0.40 0.10 0.36 0.14 
GB 45.8 17.5 0.46 0.03* 0.47 0.05* 

Discussion 

Effect of NRA on ANL 
This study has shown that the clinically available single-microphone noise reduction 
algorithm (NRA) ClearVoice leads to a significantly higher acceptance of background noise 
among cochlear implant (CI) users. The observed 3.6 dB improvement in Acceptable Noise 
Level (ANL) due to the NRA was comparable with improvements found in studies of noise 
reduction effects in hearing aid users (Mueller et al. 2006; Peeters et al. 2009; Pisa et al. 
2010). However, in contrast with the ANL results of this study, Holden et al. (2013) did not 
observe significant group mean differences in ANL due to ClearVoice in CI users. We 
suggest that this difference could be explained by the use of different noise types. Holden 
et al. used a 12-talker babble noise whereas we used a steady-state speech-spectrum 
noise. A babble noise contains some modulations, and this may have decreased the effect 
of the NRA in Holden’s study. The NRA attenuates the speech and noise only if noise is 
detected. This is confirmed by the finding that the mean of the most comfortable level 
(MCL) did not change for the NRA-off versus the NRA-on conditions.  
Remarkably, the effect of the NRA on ANL is not significantly related to the ANL signal-to-
noise ratio. It is possible that listeners use other criteria than the overall signal-to-noise 
ratio, which is directly related to speech intelligibility, making the relationship between 
the signal-to-noise ratio and ANL benefit less clear. For example, the loudness of the noise 
in gaps between words and between sentences could serve as a criterion. For these gaps 
the momentary signal-to-noise ratio is low and is independent of the overall signal-to-
noise ratio. The attenuation in the gaps is therefore independent of the overall signal-to-
noise ratio as well. 
At this point, we wonder what criteria a listener uses in determining his or her ANL. It is 
clear from our study that speech intelligibility is not the primary criterion, because ANL 
scores improved due to noise reduction, but speech intelligibility at similar SNR levels did 



Chapter 2   
 

52 

not. Previous studies indicated that ANL scores are not related to the speech reception 
threshold in noise (SRT50%) (Nabelek et al., 2004; Mueller et al., 2006; Plyler et al., 2008; 
Peeters et al., 2009). In most of these studies the speech material of the ANL differed from 
the speech material of the speech in noise test. We used the same speech files and noise 
files but still did not find a significant correlation between ANL and speech intelligibility. 
Nevertheless, although speech intelligibility is not the primary criterion, our data suggests 
that it also played a role. We were able to calculate the word score at the ANL signal-to-
noise ratio from the results of the speech-in-noise test for each participant. Results (Fig. 2) 
showed that the vast majority of word scores at the ANL SNR were above 50%, although 
participants used different intelligibility criteria in the BNL measurement. The instruction 
given to the participants with regard to establishing BNL was: “select the level of the 
background noise that you would be willing to accept or ‘put-up-with’ without becoming 
tense and tired while following the story”. Perhaps participants differ in the weight they 
give to the phrase “while following the story”. Furthermore, the listeners’ perception of 
their own ability to follow the speech could lead to over- or underestimations of the true 
intelligibility percentage (Saunders & Cienkowski, 2002). We hypothesize that participants 
made ANL judgments based on the loudness of the noise in the gaps between words and 
sentences, as argued in the previous paragraph, in combination with the less important 
intelligibility criterion that provides a ceiling effect for ANL values as Mueller et al. have 
suggested (Mueller et al., 2006). They argued that the listener might shift from a criterion 
based on loudness of the noise in the gaps to a speech intelligibility criterion if the 
background noise is raised to such a level that speech perception is degraded. 

Effect of NRA on speech intelligibility in noise 
Although previous studies have found improvements in speech intelligibility in steady-
state speech-spectrum noise (Buechner et al., 2010; Advanced Bionics, 2012a; Kam et al., 
2012), our study could not demonstrate a significant benefit. This is in accordance with 
the findings of Holden et al. (2013) for steady-state noise. Several factors might have 
contributed to the differences in findings of the ClearVoice studies mentioned. First, all 
studies used a small number of participants, which increased changes of unrepresentative 
samples and of the occurrence of false positive and false negative results. This study had 
the statistical power to detect a difference in speech intelligibility measures between NRA-
on and NRA-off conditions of 0.65 dB for the SRT50% measure and 1.3 dB for the SRT70% 
measure. Given a mean slope of 6.4%/dB at 50% intelligibility, a difference in word score 
of ≥ 4.2% could be detected. This study thus had the statistical power to detect a clinically 
significant difference in SRT measures. Second, we considered the signal-to-noise ratio. All 
studies used SNRs in the range of 0 to 10 dB and we used SNRs of 0 to 5 dB for the 
majority of participants. So it is not likely that the SNR would have been a reason for the 
different findings between the studies. Third, different speech and noise levels were 
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reported. Buechner and colleagues used a noise level of 55 dB, whereas Holden et al. 
reported a speech level of 50 dB(SPL) for the condition with speech-shaped noise. Kam 
and co-workers used 70 dB(SPL) noise level and our study used a 70 dB(SPL) speech level. 
Results for soft speech of 50-60 dB(SPL) depend on the Input Dynamic Range (IDR) setting. 
An IDR of 60 dB or more is required for maximum speech intelligibility in quiet conditions 
for these soft speech levels (Spahr et al., 2007). Holden and colleagues reported IDR 
settings of 60 dB or more for all but one of the participants. In a roving level speech-in-
noise test, Haumann et al. (2010), did not find any difference in SRT for Advanced Bionics 
Harmony CI if they added a 50 dB level into their test. So it is not likely that level is a 
reason for the different findings between studies, either, provided the IDR of 60 dB. 
Fourth, the studies that reported volume adjustments or T- and M-level changes in the 
majority of participants, reported the best improvements due to ClearVoice (Buechner et 
al., 2010; Schramm et al., 2011; Noël-Petroff et al., 2013). These adjustments increase the 
level of the signal and alter the slope of the input-output mapping function of the cochlear 
implant. We do not expect that these changes alone have any effect on the SRT, provided 
that the IDR setting is large enough. (c.f. Spahr et al., 2007; Haumann et al., 2010). A 
combined effect from an NRA and an increase in volume or M-levels is more likely. An NRA 
attenuates the noisy parts of the signals but leaves out the speech-dominated peaks of 
the signals. An increase of the volume or M-level means an increase in the slope of the 
input-output mapping function, which gives a further enhancement of the higher level 
speech-dominated peaks. Further research is needed to investigate this possible 
interaction between the effect of an NRA and an increase in M-levels. 
A possible explanation for the lack of benefit in speech intelligibility measures in our study 
is that the noise reduction algorithm may have introduced distortions of the speech signal 
in the SNR range used. The steady state speech spectrum noise was presented 3 seconds 
before the start of a sentence. This enabled the NRA to make an optimal estimate of the 
noise spectrum. But the instantaneous SNR may have been under- or overestimated, 
which may have resulted in the application of a wrong gain. That would then have caused 
non-relevant stochastic fluctuations in the signal envelope, which can be detrimental to 
speech perception (Dubbelboer & Houtgast, 2007; Kim & Loizou, 2011; Loizou & Kim, 
2011). Qazi et al. (2013) reported that clear, low-frequency modulations in time and 
frequency seem to be the most important factor for preserving speech intelligibility. As 
long as the presentation of speech maxima remains ideal, CI subjects can tolerate very 
high levels of distortions in the speech segments. Based on this observation, we suggest 
that ClearVoice may give distortions in the low frequency modulations. A higher threshold 
for the gain function could perhaps improve the low frequency modulations. This is in line 
with Mauger et al. (2012), who demonstrated that a positive gain function threshold 
provides more noise reduction and gives the best improvement of speech understanding 
in noise for CI subjects. 
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Effect of NRA in relation to spectral-ripple thresholds 
A second purpose of the study was to test the hypothesis that the effect of a single 
microphone noise reduction algorithm correlates to the spectral resolution of the CI 
stimulation. We did not find a correlation between spectral-ripple discrimination 
thresholds and the benefit of the NRA for the acceptable noise level. We argued earlier 
that ANL values are not primarily based on intelligibility, but more likely on the noise in 
gaps between words and sentences. It is not likely that a better spectral resolution leads 
to a different loudness perception of the noise in the gaps. This could explain the absence 
of a relationship between ANL benefit due to the NRA and spectral-ripple discrimination 
thresholds. We did not find a significant correlation between spectral-ripple thresholds 
and the difference between the speech measures for the NRA-on and NRA-off conditions. 
So, for speech measures our hypothesis was not confirmed.  
Next, we looked at the relationship between spectral-ripple discrimination thresholds and 
speech-in-noise measures. We did not find a significant correlation between the speech 
reception threshold SRT50% and the spectral-ripple discrimination threshold, although a 
trend was seen that better spectral-ripple thresholds are associated with better speech 
reception thresholds. Our results are in accordance with the results reported by Anderson 
et.al. (2011), but are in contrast with the results of Won et al.(2007) who reported a 
correlation between spectral-ripple scores and word recognition in noise. A possible 
explanation for this discrepancy is that Won et al. used individual words in noise, while 
Anderson et al. and our study used word scoring for a sentence in noise test. Due to the 
use of contextual information, the intelligibility of words in sentences is influenced more 
by linguistic and cognitive factors then by the understanding of individual words. It can be 
assumed that these factors added more variance to the data than the differences in 
spectral resolution did. 
For the quiet condition (scores at SNR 40 dB) we found that words in sentences and 
spectral-ripple discrimination thresholds were significantly correlated. This is in agreement 
with the studies of Anderson and co-workers (2011) and Won and colleagues (2007). 

NRA and self-perceived communication problems 
An important question is whether the outcome measures of ANL and speech intelligibility 
in noise can be extrapolated to communication problems in daily life as measured with the 
APHAB questionnaire. Results indicated that CI users with lower ANL values and/or better 
speech intelligibility in noise reported significantly fewer problems in daily life on the 
APHAB overall scale and several sub scales. This confirms that the outcome measures we 
have chosen were related to everyday life communication and therefore justify the use of 
the ANL and speech reception threshold in evaluating a noise reduction algorithm. The 
fact that correlations were only modest shows that also other factors have an effect on 
daily communication. It is likely that CI users use non-auditory information, for example 
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visual cues obtained from lip-reading. The APHAB scores showed that the number of 
perceived problems was greatest for the RV scale and fewest for the EC scale. This is 
consistent with previously reported APHAB scores of CI users (Plyler et al., 2008; 
Donaldson et al., 2009). In agreement with Donaldson et al., our results showed a 
significant correlation between ANL values and APHAB scores, although our correlations 
coefficients were somewhat lower. The AV scale of the APHAB was not significant in 
relation to ANL values. This is not surprising, because the questions of this scale concerned 
loud, non-speech sounds, instead of noise during speech perception. We fitted a linear 
equation to the data of SRT50% and the APHAB Global score. The slope indicates that an 
improvement of one dB in the SNR gives an improvement of 2.5% in APHAP Global score. 
A fit of ANL data with the APHAB Global score indicates that one dB of ANL improvement 
gives an APHAB improvement of 1.7%. The mean improvement of 3.6 dB for ANL due to 
the NRA means a 6.1% reduction in reported problems with the APHAB questionnaire, 
which is a modest but relevant reduction in perceived communication problems.  

General discussion and conclusions 
We conclude that the noise reduction algorithm ClearVoice improves listening comfort for 
CI users in the sense that they can tolerate a higher noise level when listening to speech in 
background noise. The results of the APHAP questionnaire suggest that the improved 
noise tolerance leads to fewer complaints in everyday listening situations. The 
improvement of listening comfort in steady-state noise due to a single microphone noise 
reduction algorithm for CI users is in accordance with findings for noise reduction 
algorithms in hearing aids. 
Speech intelligibility in noise remained unchanged by the noise reduction algorithm in this 
study. This study at least supports the idea that in clinical CI applications noise reduction 
algorithms contribute more to the improvement of listening comfort than to the 
improvement of speech understanding in noise. 
Our hypothesis that CI recipients with lower spectral resolution might have more benefit 
from noise reduction than CI users with higher spectral resolution holds neither for noise 
tolerance nor for speech intelligibility in noise. The improvement of noise tolerance is not 
related to spectral-ripple discrimination thresholds, speech intelligibility measures or 
signal-to-noise ratio in this study. Furthermore, spectral-ripple discrimination thresholds 
are not related to the effect of ClearVoice on speech intelligibility in noise, nor to the 
speech intelligibility in noise ratios. Maybe, other non-auditory factors like linguistic and 
cognitive factors, add more variance to the speech understanding in noise and noise 
tolerance than spectral resolution does. This is a topic for further research. 
 



Chapter 2   
 

56 

References 
Advanced Bionics. (2012a). ClearVoice. Clinical Results.  

Advanced Bionics. (2012b). ClearVoice. Technical Facts.  

Anderson, E. S., Nelson, D. A., Kreft, H., Nelson, P. B., & Oxenham, A. J. (2011). Comparing spatial 
tuning curves, spectral ripple resolution, and speech perception in cochlear implant users. J 
Acoust Soc Am, 130(1), 364-375. https://doi.org/10.1121/1.3589255  

Azadpour, M., & McKay, C. M. (2012). A psychophysical method for measuring spatial resolution in 
cochlear implants. J Assoc Res Otolaryngol, 13(1), 145-157. https://doi.org/10.1007/s10162-011-
0294-z  

Bentler, R., Wu, Y. H., Kettel, J., & Hurtig, R. (2008). Digital noise reduction: outcomes from 
laboratory and field studies. Int J Audiol, 47(8), 447-460. 
https://doi.org/10.1080/14992020802033091  

Buechner, A., Brendel, M., Saalfeld, H., Litvak, L., Frohne-Buechner, C., & Lenarz, T. (2010). Results of 
a pilot study with a signal enhancement algorithm for HiRes 120 cochlear implant users. Otol 
Neurotol, 31(9), 1386-1390. https://doi.org/10.1097/MAO.0b013e3181f1cdc6  

Chung, K., Nelson, L., & Teske, M. (2012). Noise reduction technologies implemented in head-worn 
preprocessors for improving cochlear implant performance in reverberant noise fields. Hear Res, 
291(1-2), 41-51. https://doi.org/10.1016/j.heares.2012.06.003  

Chung, K., Zeng, F. G., & Acker, K. N. (2006). Effects of directional microphone and adaptive 
multichannel noise reduction algorithm on cochlear implant performance. J Acoust Soc Am, 
120(4), 2216-2227. https://doi.org/10.1121/1.2258500  

Cox, R. M., & Alexander, G. C. (1995). The abbreviated profile of hearing aid benefit. Ear Hear, 16(2), 
176-186. https://doi.org/10.1097/00003446-199504000-00005  

Dawson, P. W., Mauger, S. J., & Hersbach, A. A. (2011). Clinical evaluation of signal-to-noise ratio-
based noise reduction in Nucleus(R) cochlear implant recipients. Ear Hear, 32(3), 382-390. 
https://doi.org/10.1097/AUD.0b013e318201c200  

Donaldson, G. S., Chisolm, T. H., Blasco, G. P., Shinnick, L. J., Ketter, K. J., & Krause, J. C. (2009). BKB-
SIN and ANL predict perceived communication ability in cochlear implant users. Ear Hear, 30(4), 
401-410. https://doi.org/10.1097/AUD.0b013e3181a16379  

Dubbelboer, F., & Houtgast, T. (2007). A detailed study on the effects of noise on speech 
intelligibility. The Journal of the Acoustical Society of America, 122, 2865. 
https://doi.org/10.1121/1.2783131  

Haumann, S., Lenarz, T., & Buechner, A. (2010). Speech perception with cochlear implants as 
measured using a roving-level adaptive test method. ORL, 72(6), 312-318. 
https://doi.org/10.1159/000318872  

Henry, B. A., & Turner, C. W. (2003). The resolution of complex spectral patterns by cochlear implant 
and normal-hearing listeners. J Acoust Soc Am, 113(5), 2861-2873. 
https://doi.org/10.1121/1.1561900  

Henry, B. A., Turner, C. W., & Behrens, A. (2005). Spectral peak resolution and speech recognition in 
quiet: normal hearing, hearing impaired, and cochlear implant listeners. J Acoust Soc Am, 118(2), 
1111-1121. https://doi.org/10.1121/1.1944567  



 ClearVoice, noise tolerance, and speech perception in noise 

 

57 

Hersbach, A. A., Arora, K., Mauger, S. J., & Dawson, P. W. (2012). Combining directional microphone 
and single-channel noise reduction algorithms: a clinical evaluation in difficult listening 
conditions with cochlear implant users. Ear Hear, 33(4), e13-23. 
https://doi.org/10.1097/AUD.0b013e31824b9e21  

Hochberg, I., Boothroyd, A., Weiss, M., & Hellman, S. (1992). Effects of noise and noise suppression 
on speech perception by cochlear implant users. Ear and hearing, 13(4), 263-271. 
https://doi.org/10.1097/00003446-199208000-00008  

Holden, L. K., Brenner, C., Reeder, R. M., & Firszt, J. B. (2013). Postlingual adult performance in noise 
with HiRes 120 and ClearVoice Low, Medium, and High. Cochlear implants international, 14(5), 
276-286. https://doi.org/10.1179/1754762813Y.0000000034  

Hu, Y., Loizou, P. C., Li, N., & Kasturi, K. (2007). Use of a sigmoidal-shaped function for noise 
attenuation in cochlear implants. J Acoust Soc Am, 122(4), EL128-134. 
https://doi.org/10.1121/1.2772401  

Jones, G. L., Won, J. H., Drennan, W. R., & Rubinstein, J. T. (2013). Relationship between channel 
interaction and spectral-ripple discrimination in cochlear implant users. J Acoust Soc Am, 133(1), 
425-433. https://doi.org/10.1121/1.4768881  

Kam, A. C., Ng, I. H., Cheng, M. M., Wong, T. K., & Tong, M. C. (2012). Evaluation of the ClearVoice 
Strategy in Adults Using HiResolution Fidelity 120 Sound Processing. Clin Exp Otorhinolaryngol, 5 
Suppl 1, S89-92. https://doi.org/10.3342/ceo.2012.5.S1.S89  

Kasturi, K., & Loizou, P. C. (2007). Use of S-shaped input-output functions for noise suppression in 
cochlear implants. Ear Hear, 28(3), 402-411. https://doi.org/10.1097/AUD.0b013e31804793c4  

Kim, G., & Loizou, P. C. (2011). Gain-induced speech distortions and the absence of intelligibility 
benefit with existing noise-reduction algorithms. J Acoust Soc Am, 130(3), 1581-1596. 
https://doi.org/10.1121/1.3619790  

Kokkinakis, K., Azimi, B., Hu, Y., & Friedland, D. R. (2012). Single and multiple microphone noise 
reduction strategies in cochlear implants. Trends Amplif, 16(2), 102-116. 
https://doi.org/10.1177/1084713812456906  

Kushner, H. J., & Yin, G. (2003). Stochastic approximation and recursive algorithms and applications. 
Springer.  

Litvak, L. M., Spahr, A. J., Saoji, A. A., & Fridman, G. Y. (2007). Relationship between perception of 
spectral ripple and speech recognition in cochlear implant and vocoder listeners. J Acoust Soc 
Am, 122(2), 982-991. https://doi.org/10.1121/1.2749413  

Loizou, P. C., & Kim, G. (2011). Reasons why current speech-enhancement algorithms do not 
improve speech intelligibility and suggested solutions. IEEE Trans Audio Speech Lang Processing, 
19(1), 47-56. https://doi.org/10.1109/TASL.2010.2045180  

Luts, H., Eneman, K., Wouters, J., Schulte, M., Vormann, M., Buechler, M., Dillier, N., Houben, R., 
Dreschler, W. A., Froehlich, M., Puder, H., Grimm, G., Hohmann, V., Leijon, A., Lombard, A., 
Mauler, D., & Spriet, A. (2010). Multicenter evaluation of signal enhancement algorithms for 
hearing aids. J Acoust Soc Am, 127(3), 1491-1505. https://doi.org/10.1121/1.3299168  

Mauger, S. J., Dawson, P. W., & Hersbach, A. A. (2012). Perceptually optimized gain function for 
cochlear implant signal-to-noise ratio based noise reduction. J Acoust Soc Am, 131(1), 327-336. 
https://doi.org/10.1121/1.3665990  



Chapter 2   
 

58 

Mueller, H. G., Weber, J., & Hornsby, B. W. (2006). The effects of digital noise reduction on the 
acceptance of background noise. Trends Amplif, 10(2), 83-93. 
https://doi.org/10.1177/1084713806289553  

Nabelek, A. K., Freyaldenhoven, M. C., Tampas, J. W., Burchfield, S. B., & Muenchen, R. A. (2006). 
Acceptable noise level as a predictor of hearing aid use. J Am Acad Audiol, 17(9), 626-639. 
https://doi.org/10.3766/jaaa.17.9.2  

Nabelek, A. K., Tampas, J. W., & Burchfield, S. B. (2004). Comparison of speech perception in 
background noise with acceptance of background noise in aided and unaided conditions. J 
Speech Lang Hear Res, 47(5), 1001-1011. https://doi.org/10.1044/1092-4388(2004/074)  

Nabelek, A. K., Tucker, F. M., & Letowski, T. R. (1991). Toleration of background noises: relationship 
with patterns of hearing aid use by elderly persons. J Speech Hear Res, 34(3), 679-685. 
https://doi.org/10.1044/jshr.3403.679  

Noël-Petroff, N., Mathias, N., Ulmann, C., & Van Den Abbeele, T. (2013). Pediatric evaluation of the 
ClearVoice™ speech enhancement algorithm in everyday life. Audiology Research, 3(1), e9. 
https://doi.org/10.4081/audiores.2013.e9  

Peeters, H., Kuk, F., Lau, C. C., & Keenan, D. (2009). Subjective and objective evaluation of noise 
management algorithms. J Am Acad Audiol, 20(2), 89-98. https://doi.org/10.3766/jaaa.20.2.2  

Pisa, J., Burk, M., & Galster, E. (2010). Evidence-based design of a noise-management algorithm. The 
Hearing Journal, 63(4), 42-44. https://doi.org/10.1097/01.HJ.0000370859.58483.67  

Plyler, P. N., Bahng, J., & von Hapsburg, D. (2008). The acceptance of background noise in adult 
cochlear implant users. J Speech Lang Hear Res, 51(2), 502-515. https://doi.org/10.1044/1092-
4388(2008/036)  

Qazi, O. U., van Dijk, B., Moonen, M., & Wouters, J. (2013). Understanding the effect of noise on 
electrical stimulation sequences in cochlear implants and its impact on speech intelligibility. 
Hear Res, 299, 79-87. https://doi.org/10.1016/j.heares.2013.01.018  

Ricketts, T. A., & Hornsby, B. W. (2005). Sound quality measures for speech in noise through a 
commercial hearing aid implementing digital noise reduction. J Am Acad Audiol, 16(5), 270-277. 
http://www.ncbi.nlm.nih.gov/pubmed/16119254  

Robbins, H., & Monro, S. (1951). A Stochastic Approximation Method. The Annals of Mathematical 
Statistics, 22(3), 400-407. https://doi.org/10.1214/aoms/1177729586  

Saunders, G. H., & Cienkowski, K. M. (2002). A test to measure subjective and objective speech 
intelligibility. Journal of the American Academy of Audiology, 13(1), 38-49.  

Schramm, D., Pickard, E. S., Beauregard, Y., Moran, L., & Whittingham, J. (2011). F034 Evaluation of 
the ClearVoice™ strategy in children using HiResolution Fidelity 120® sound processing. 
International Journal of Pediatric Otorhinolaryngology, 75, 89. https://doi.org/10.1016/S0165-
5876(11)70457-8  

Spahr, A. J., Dorman, M. F., & Loiselle, L. H. (2007). Performance of patients using different cochlear 
implant systems: Effects of input dynamic range. Ear and hearing, 28(2), 260-275. 
https://doi.org/10.1097/AUD.0b013e3180312607  

Spriet, A., Van Deun, L., Eftaxiadis, K., Laneau, J., Moonen, M., van Dijk, B., Van Wieringen, A., & 
Wouters, J. (2007). Speech understanding in background noise with the two-microphone 



 ClearVoice, noise tolerance, and speech perception in noise 

 

59 

adaptive beamformer BEAM™ in the Nucleus Freedom™ cochlear implant system. Ear and 
hearing, 28(1), 62-72. https://doi.org/10.1097/01.aud.0000252470.54246.54  

Studebaker, G. A. (1985). A "rationalized" arcsine transform. J Speech Hear Res, 28(3), 455-462. 
https://doi.org/10.1044/jshr.2803.455  

Toledo, F., Loizou, P., & Lobo, A. (2003). Subspace and envelope subtraction algorithms for noise 
reduction in cochlear implants. Engineering in Medicine and Biology Society, 2003. Proceedings 
of the 25th Annual International Conference of the IEEE, 3, 2002-2005. 
https://doi.org/10.1109/IEMBS.2003.1280126  

Versfeld, N. J., Daalder, L., Festen, J. M., & Houtgast, T. (2000). Method for the selection of sentence 
materials for efficient measurement of the speech reception threshold. J Acoust Soc Am, 107(3), 
1671-1684. https://doi.org/10.1121/1.428451  

Won, J. H., Drennan, W. R., & Rubinstein, J. T. (2007). Spectral-ripple resolution correlates with 
speech reception in noise in cochlear implant users. J Assoc Res Otolaryngol, 8(3), 384-392. 
https://doi.org/10.1007/s10162-007-0085-8  

Won, J. H., Jones, G. L., Drennan, W. R., Jameyson, E. M., & Rubinstein, J. T. (2011). Evidence of 
across-channel processing for spectral-ripple discrimination in cochlear implant listeners. J 
Acoust Soc Am, 130(4), 2088-2097. https://doi.org/10.1121/1.3624820  

Yang, L. P., & Fu, Q. J. (2005). Spectral subtraction-based speech enhancement for cochlear implant 
patients in background noise. J Acoust Soc Am, 117(3 Pt 1), 1001-1004. 
https://doi.org/10.1121/1.1852873  

Zakis, J. A., Hau, J., & Blamey, P. J. (2009). Environmental noise reduction configuration: Effects on 
preferences, satisfaction, and speech understanding. Int J Audiol, 48(12), 853-867. 
https://doi.org/10.3109/14992020903131117  

 

  



 

 

  



 

 

 

CHAPTER 3 
Optimising the effect of noise reduction 
algorithm ClearVoice in cochlear implant users 
by increasing the maximum comfort levels 
Gertjan Dingemanse 
André Goedegebure 
 
International Journal of Audiology, 2018, 57(3), 230-235. 
  



Chapter 3    
 

62 

Abstract 
Objectives: ClearVoice is a single-microphone noise reduction algorithm in Advanced 
Bionics cochlear implant(CI) systems with the aim to improve performance in background 
noise. The present study investigated a hypothesized increased effect of ClearVoice if 
combined with a structural increase of maximum comfort stimulation levels (M-levels) in 
the CI fitting. 
Methods: We tested performance with ClearVoice (Medium) in four conditions, defined 
by combined settings of ClearVoice off/on and with/without 5% increase of M-levels. The 
main outcome measures were the Acceptable Noise Level (ANL) and the speech reception 
threshold in continuous background noise (SRTn). Participants were 16 experienced 
cochlear implant recipients with Advanced Bionics implants and a Naida Q70 processor. 
Results: The ANL significantly improved by using either ClearVoice or an increase of M-
levels. Combining both settings gave the largest improvement in ANL. For the SRTn, we 
found a small, but significant interaction between ClearVoice and an increase of M-levels, 
implying that ClearVoice improved speech understanding slightly, but only if combined 
with a 5% increase of M-levels.  
Conclusions: Optimal profit from ClearVoice is obtained if combined with a structural 5% 
increase of M-levels. 
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Introduction 
Cochlear implants (CIs) are an accepted treatment for severe to profound sensorineural 
hearing loss, with significant improvements in speech perception and quality of life 
(Gaylor et al., 2013). However, understanding speech in background noise is difficult for 
many CI recipients. In an attempt to improve speech perception in noise, some 
contemporary sound processors of CI systems contain a single microphone noise 
reduction algorithm (NRA), among other techniques like directional microphones. Several 
studies reported that single-microphone NRAs has been able to provide significant speech 
perception improvements in CI recipients (Buechner et al., 2010; Dawson et al., 2011; 
Mauger et al., 2012; Koch et al., 2014). The largest improvements were found for steady-
state speech weighted noise. For example Dawson and colleagues reported an 
improvement of nearly 2 dB in signal-to-noise ratio (SNR) for steady-state speech 
weighted noise and around 1 dB for party noise in an adaptive speech test with a target of 
50% correct intelligibility. 
Furthermore, the noise tolerance of CI recipients, as measured with the acceptable noise 
level (ANL) test, may be improved due to single-microphone NRAs (Dingemanse & 
Goedegebure, 2015). The ANL is a subjective measure that quantifies the individual’s 
‘willingness to listen to speech in background noise’ (Nabelek et al., 2006). First, the 
listeners are asked to adjust the loudness level to a level that they perceive as most 
comfortable (Most Comfortable Level (MCL) for listening to running speech. Second, 
listeners seek the maximum level of  
background noise (BNL) that they are willing to put up with while following the running 
speech presented at their individual MCL (cf Nabelek et al., 2006). Subtracting the BNL 
value from the MCL value yields the ANL measure that indicates a listeners’ noise 
tolerance. It has been shown that the ANL measure is sensitive for perceptual effects of 
NRAs (Mueller et al., 2006; Peeters et al., 2009; Pisa et al., 2010). 
In this study we focused on the NRA ClearVoice, a proprietary NRA developed by 
Advanced Bionics (Stäfa, Switzerland), because for this NRA mixed results were reported 
for speech-in-noise understanding. The NRA ClearVoice aims to reduce noise by 
application of short term gain reductions, depending on the instantaneous SNR which is 
obtained by comparing the actual signal level with a long-term estimation of the noise 
level (Advanced Bionics, 2012). Some studies reported a significantly better speech 
understanding in noise with ClearVoice activated (Buechner et al., 2010; Noël-Petroff et 
al., 2013; Koch et al., 2014), but other investigators did not find a significant effect on 
speech understanding in noise, at least in most of the tested conditions (Kam et al., 2012; 
Holden et al., 2013; Dingemanse & Goedegebure, 2015). It is remarkable that the studies 
showing a significant effect of ClearVoice allowed volume control adjustments in the test 
situation, while the studies that did not find a significant effect did not allow volume 
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adjustments or most subjects did not change the volume. Brendel et al. (2012) suggested 
that an increase of volume could enhance the effect of ClearVoice. They investigated the 
effect of ClearVoice in combination with a volume increase of 5% by raising the maximum 
levels (M-levels) that define the amount of electrical stimulation at the most comfortable 
level (MCL). They reported that most participants showed an increase in the percent 
correct score on a sentence-in-noise test with a fixed speech-to-noise ratio (SNR) of 10 dB.  
However, several questions may arise with respect to how an increase in volume setting 
or M-levels may influence speech understanding performance in noise. A first question is 
if an increase in volume may have impact on speech understanding in noise on its own. As 
both the noise and speech level are influenced by a volume change, at first glance no 
substantial differences are expected. However, an increase of volume or equivalently M-
levels leads to an increase of the slope of the input output curve. If the SNR is positive, an 
increase of the slope means that the SNR in the electrical domain becomes more positive, 
making a positive effect on speech intelligibility in noise conceivable. 
A second question is whether a volume increase may cause that stimuli become too loud 
when the NRA is not active. In the fitting process maximum comfort levels and threshold 
levels are usually optimized for situations without background noise. In many daily 
situations the amount and type of background noise is varying over time. It is unlikely that 
CI recipients change the volume setting or the used program in reaction to every change in 
background noise level. Therefore it is important to investigate how an increase of M-level 
changes the most comfortable level (MCL), and the maximum tolerance level to 
background noise. 
The objective of this study was to answer the following questions: 
1. Does the effect of the NRA ClearVoice on noise tolerance and speech-in-noise 

understanding increase if combined with raised maximum comfort levels? 
2. What is the effect of an increase of maximum comfort levels without the NRA 

ClearVoice on MCL, noise tolerance, and speech-in-noise understanding? 

Materials and methods 

Study design and procedures 
This prospective study used a balanced repeated measures design with the factors noise 
reduction algorithm (NRA) and difference in maximum comfort levels (∆M-level). M-level 
is the name for the maximum comfort levels in Advanced Bionics’ software. The M-levels 
are basic fitting parameters used to define the amount of electrical output at the most 
comfortable level. Factor NRA had two conditions, NRA-off and NRA-on. Factor ∆M-level 
had also two conditions, a difference in level of 0% and 5%. A ∆M of 0% means that the 
unchanged M-levels of the daily-used program were used. A ∆M of 5% means an 5% 
increase of the M-levels of the daily-used program. The amount of 5% is chosen based om 
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volume changes reported by Noël-Petroff et al. (2013) and current clinical practice 
(Hehrmann et al., 2012). 
Measurements of the Speech Reception Threshold in noise (SRTn) at 50% performance 
level and noise tolerance as measured with the ANL test were repeated four times within 
participants for the combinations of conditions of factors NRA and ΔM-level. These 
combinations were balanced with a balanced 4x4 Latin Square over participants. As this 
type of design has a risk of introducing order effects, like a learning effect or a fatigue 
effect, we included an evaluation of order effects in the statistical analyses of the results.  
The NRA ClearVoice that was investigated in this study is a proprietary single-microphone 
noise reduction algorithm developed by Advanced Bionics (Stäfa, Switzerland). The NRA 
has the aim to improve overall signal-to-noise ratio (SNR) by suppression of frequency 
channels lacking information useful for understanding speech. The suppression is based 
on an instant comparison of the current signal level in a channel with an estimation of the 
background noise level in the channel over the last 1.6 seconds. In this study we used the 
Medium setting of ClearVoice, giving an instant suppression up to −12 dB (Advanced 
Bionics, 2012). 
The M-levels and T-levels of the daily used program were used as a starting point to create 
four experimental programs, each containing one of the four combinations of NRA and 
∆M-level. An audiologist programmed the CI-processor with these four programs. The 
experimenter and participants were not informed about the settings in each program of 
the CI. The daily used program was created earlier during a regular clinical appointment. In 
a clinical appointment M-levels were set to a most comfortable level for each electrode 
with an ascending loudness judgment procedure. The threshold levels (T-levels) were set 
to the threshold levels for each electrode, using an ascending presentation, followed by a 
standard bracketing procedure. After that, the overall level of the M-level profile was 
adjusted to make live speech sound comfortable and easily understandable. Additional 
fine-tuning of the T- and M-level profiles were sometimes applied based on the feedback 
of the CI user and the professional judgement of the clinical audiologist. In the clinical 
fitting procedure, no increase of M- or T-level was used if ClearVoice was switched on. 
During the test session no volume setting adjustments were allowed. 
All different test conditions were measured in one test session. First, a practice run of the 
SRTn test (as described below) was done to make the participants familiar with the voice 
and the task and to obtain a first estimate of a participants SRTn. Secondly, a practice 
condition of the ANL test was done. Then an SRTn test and an ANL test were performed 
with each of the CI programs in the Latin-square balanced order. The SRTn of the practice 
run was used as starting point for the measurement of the SRTn in the test conditions. 
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Participants 
Sixteen users of an Advanced Bionics cochlear implant (HiRes 90K implant) participated in 
this study. Participants ranged in age from 43 to 85 years (group mean 70 years; SD = 
11.9). All participants used at least 14 active electrodes and HiRes120 sound processing. 
All participants were unilateral CI users with a group mean of 6.1 (SD 2.1) years of CI use 
and at least one year of use. All but one used the noise reduction algorithm ClearVoice in 
their daily program. The input dynamic range setting was 55 or 60 dB (2x 55 dB;14x 60 
dB). Some participants were accustomed to wear a hearing aid in the non-implanted ear, 
but they did not wear it during the tests. All participants were Dutch native speakers. For 
inclusion in this study, a phoneme score of at least 70% on clinically used Dutch 
consonant-vowel-consonant word lists was required. Participants were required to sign a 
written informed consent form before participating in the study. The Erasmus Medical 
Center Ethics Committee approved the study protocol for use with CI recipients. 

Speech-in-noise test 
Speech understanding in noise was measured with Dutch female-spoken, unrelated 
sentences in steady-state speech spectrum noise (Versfeld et al., 2000). The presentation 
level of the sentences was fixed at 70 dB(SPL). This speech level is often reached in noisy 
situations 
(Pearsons et al., 1977). The noise started 3 seconds before the speech and ended 0.5 
seconds after the speech. The noise level was varied following an adaptive procedure to 
estimate the Speech Reception Threshold in noise (SRTn), the signal-to-noise ratio that 
yields 50% of correctly understood words, using 26 sentences (Dingemanse & 
Goedegebure, 2015). The SRTn was defined as the average SNR over the last 23 
presentation levels. (the 27th level was calculated from the response on the 26th 
sentence). 

Acceptable noise level test 
The ANL is the difference between the measured most comfortable level (MCL) for 
running speech and the maximum tolerated background noise level (BNL) while listening 
to speech. The running speech consisted of connected unrelated sentences of the speech-
in-noise lists, with intervals of 500ms of silence between them. The noise was steady-state 
speech spectrum noise. The listeners were given oral and written instructions, which were 
Dutch translations of the instructions in Nabelek et al. (2006). The participants had to find 
their MCL in three steps. First they were asked to turn up the speech level until it was too 
loud, and after that to turn it down until it was too soft. In the final step the participant 
had to select the MCL. The BNL was measured in a similar manner. After listing to a high 
noise level and a low noise level, the participants’ task was to select the maximum BNL 
that he/she was willing to accept while following the speech. For each test condition the 
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MCL and BNL procedures were repeated 3 times and the mean values were used for 
calculation of the ANL. 

Equipment 
All testing was performed in a sound-treated room. Participants sat one meter in front of a 
Westra 251 loudspeaker that was connected to a Madsen OB822 audiometer, a MOTU 
UltraLite mk3 Hybrid soundcard, and a Macbook pro notebook. All participants were 
tested with the same new Naida Q70 processor and a new T-mic (Advanced Bionics, Stäfa, 
Switzerland). 

Sample size and data analysis 
An a priori power analysis in G*Power software (Faul et al., 2009) indicated that a sample 
of 16 people would be needed to detect a clinically significant ANL difference >= 3 dB 
(Olsen & Brännström, 2014) and a clinically significant difference of 10 percentage points 
in the word score on a speech-in-noise test, with 80% power, using a repeated-measures 
model with 4 repeated measures and alpha at .05. The calculation was based on within-
group standard deviations (ANL: SD = 6.6 dB, SRTn: SD = 4.2 dB) and correlations between 
repeated measurements of 0.73 for ANL and 0.9 for SRTn. These numbers were based on 
previous research (Dingemanse & Goedegebure, 2015). 
For research questions 1 and 2, a repeated measures ANOVA was used with the factors 
NRA and M for MCL, ANL and SRTn tests. 

Results 

Acceptable noise levels 
A normality check revealed that the ANL data was normally distributed for each condition. 
Figure 3.1 shows the group mean ANL values for the four conditions, with subsequent 
better noise tolerance (lower ANL values) for M5%, NRA-on and the combination of 
M5% and NRA-on respectively. A repeated measures ANOVA with the factors NRA and 
M showed that both the factors NRA [F(1,15) = 19.1, MSE = 8.7, p = 0.001, η2p = 0.56] and 
M [F(1,15) = 5.2, MSE = 12.0, p = 0.038, η2p = 0.26] had a statistically significant effect on 
the ANL values. The effect of NRA-on was a decrease of 2.1 dB in ANL, the effect of M5% 
a decrease of 0.9 dB and the combined effect a decrease of 5.2 dB, which is 2.2 dB more 
than the summed effect of both factors (3.0 dB). However, the interaction of both factors 
was not statistically significant [F(1,15) = 1.2, MSE = 16.5, p = 0.27, η2p = 0.07], indicating 
that the decrease of ANL for the combined application of NRA and M5% is dominated by 
the summed effect of both factors. The difference between the combined condition (NRA-
on, M5%) and the reference condition (NRA-off, M0%) was post-hoc  
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Figure 3.1. Mean acceptable noise level (ANL) values for the four combinations defined by combined 
settings of noise reduction algorithm (NRA) off/on and with/without additional 5% increase of M-
levels (M). Error bars represent 95% confidence intervals. 
 
tested with a paired t-test, showing that the difference was highly significant and the 
effect size r was large  (t(15) = 5.81, p < 0.0001, r = 0.83). The effect of M5% for NRA-off 
was 0.9 dB and was not significant on a post-hoc paired t-test (t(15) = 0.65, p = 0.53, r = 
0.04). 
A subsequent analysis with an additional between-subject factor ‘test sequence’ did not 
change the significance of the findings and none of the interactions of the factors with test 
sequence reached significance, indicating that the obtained results were not affected by 
order or fatigue effects. 
Participants substantially differed in their noise tolerance. The reference ANL values (from 
condition NRA-off, M 0%) ranged from 3.3 through to 22.7 dB. A significant correlation 
was found between the ANL baseline score and the ANL improvement due to the 
combined application of NRA and M5% (r = 0.7, p < 0.002), indicating that participants 
with high baseline ANL values had the largest improvement of the ANL. 

Most comfortable levels 
Figure 3.2 shows the effect of M5% and NRA on the Most comfortable levels (MCL) that 
we measured as part of the ANL procedure. A 2-factor ANOVA ( NRA, M ) showed that 
the MCL values decreased significantly for the conditions with M5% [F(1,15) = 22.9, MSE 
= 4.7, p < 0.001, η2p = 0.60], with a mean decrease of 2.6 dB. Neither the NRA factor 
[F(1,15) = 1.2, MSE = 7.4, p = 0.29, η2p = 0.075] nor the interaction [F(1,15) = 0.054, MSE = 
10.5, p = 0.82, η2p = 0.004] had statistically significant impact on MCL values. 
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Figure 3.2. Mean most comfortable level (MCL) values for the four combinations defined by 
combined settings of noise reduction algorithm (NRA) off/on and with/without additional 5% 
increase of M-levels (M). Error bars represent 95% confidence intervals. 

Speech-in-noise thresholds 
A normality check revealed that the SRTn data was normally distributed for each 
condition. Figure 3.3 presents the group mean SRTn values for the four conditions, 
showing that the SRTn values were not decreased due to M5% or NRA-on alone, but the 
combination of both factors gave the best SRTn, although the differences between 
conditions were small. A repeated measures ANOVA with the factors NRA and M, 
showed that neither the NRA factor [F(1,15) = 0.23, MSE = 2.6, p = 0.63, η2p = 0.015] nor 
the M factor [F(1,15) = 1.0, MSE = 1.9, p = 0.33, η2p = 0.063] had a statistically significant 
impact on SRTn values, but the interaction of both factors was statistically significant 
[F(1,15) = 0.93, MSE = 1.3, p = 0.01, η2p = 0.35]. The difference between the combined 
condition (NRA-on, M5%) and the reference condition (NRA-off, M0%) was post-hoc 
tested with a paired t-test. No significant difference was found (t(15) = 1.07, p = 0.3, r = 
0.27). 
A subsequent analysis with the additional between-subject factor ‘test sequence’ did not 
change the significance of the findings and none of the interactions of the factors with test 
sequence reached significance, indicating that the obtained results were not affected by 
order or fatigue effects. Participants substantially differed in their SRTn value. The 
reference SRTn values (from condition NRA-off, M 0%) ranged from -0.9 through to 12.7 
dB. The SRTn improvement due to the combined application of NRA and M5% was not 
significantly correlated with the reference SRTn values (r = 0.36, p < 0.17). 
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Figure 3.3. Mean speech reception thresholds in noise (SRTn) values for the four combinations 
defined by combined settings of noise reduction algorithm (NRA) off/on and with/without additional 
5% increase of M-levels (M). Error bars represent 95% confidence intervals. 

Discussion 

Influence of M-level increase on the effect of ClearVoice 
This study has demonstrated that NRA ClearVoice is more effective for noise tolerance and 
speech understanding in noise when combined with a 5% raise of M-levels.  
First, raising the M-levels with 5% resulted in an extra effect of the NRA on noise tolerance 
as measured by the Acceptable noise Level (ANL). The NRA significantly improved noise 
tolerance on its own, in accordance with the findings of our previous study (Dingemanse & 
Goedegebure, 2015). But if combined with an increase of M-levels with 5% the effect is 
even larger. The results showed a 2.2 dB more increase in noise tolerance for the 
combination of the NRA and a 5% raise of M-levels than the sum of the effect of both 
factors apart. Nevertheless, the interaction between the NRA and M-level was not 
statistically significant. This is in contrast with our expectations. Possibly the lack of 
statistical significance is due to a relatively limited test precision in the ANL test (Olsen & 
Brännström, 2014; Koch et al., 2016). 
Secondly, for speech understanding in noise a significant interaction was found between 
the factors NRA and M5%. This indicates that it is valuable to combine the NRA 
ClearVoice with and M-level increase, although the observed effect was small. The 
improvement in SRTn between the combined condition (NRA-on, M5%) and the 
reference condition (NRA-off, M0%) was only 0.5 dB and not statistically significant, most 
probably due to a lack of statistical power for this comparison, that uses only two of the 
four conditions. In the interaction term the data of all the conditions is included, giving 
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more statistical power, than in the case of comparison of two conditions. Given the small 
difference of 0.5 dB the clinical relevance for speech understanding in noise is limited. 
The results indicate that participants perceived an increase in SNR if the NRA was on, 
especially if combined with an increase of M-levels, but this perceived improvement was 
not enough to increase the intelligibility substantially. One explanation is that the listener 
perceived an increase in SNR mainly due to the maximum noise reduction during gaps 
between utterances of the words in a sentence and between sentences, while noise 
reduction is less during words, yielding less benefit regarding actual intelligibility. Another 
possibility is that the perceived SNR-increase was counteracted by a small decreasing 
effect of the NRA on speech intelligibility in noise. The NRA removed sound energy, that 
may have given a small decreasing effect on speech intelligibility in noise, or alternatively, 
the NRA may have introduced some distortion of the speech signal. 
A possible explanation for the combined effect of the NRA and a 5% increase in M-level is 
that raised M-levels lead to a steeper slope of the input-output mapping function, giving a 
further enhancement of the speech-dominated peaks, a restoration of the perceived 
volume and an increase of positive SNRs in the electrical domain. 
The effect of the combined application of ClearVoice and a 5% increase in M-level was 
significantly correlated to ANL baseline scores (from condition NRA-off, M 0%) indicating 
that participants with high baseline ANL values had the largest improvement of the ANL, 
but this was not the case for SRTn baselines. An explanation for this difference is that both 
measures are obtained at different SNR levels. The mean SNR in the ANL-test was around 
11 dB at 61.5 dB(SPL), but the mean SNR in the SRTn test was 5.0 dB at 70 dB(SPL). This 
suggests that the NRA ClearVoice in combination with a 5% M-level increase may be more 
effective at higher SNR-levels or lower speech levels. 

Influence of M-level increase alone 
An increase of M-levels without the NRA ClearVoice significantly lowered the MCL of the 
presented speech, but did not significantly change noise tolerance or speech 
understanding in noise. The structural increase of M-levels had the goal to compensate for 
reduced signal volume due to attenuation caused by the NRA. This holds for situations 
with background noise, but not for quiet situations. Although the difference in MCL was 
only 2,6 dB due to the 5% increase of M-levels, it cannot be ruled out that this difference 
may cause some loudness discomfort for speech or other transient sounds in quiet, 
especially at higher input levels. As a consequence, CI users may choose to use a lower 
volume setting in general, which may diminish the positive effect of the 5% M-level 
increase in noise. A limitation of this study is that subjective rating of loudness was not 
included to answer this question of loudness discomfort.  
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Clinical consequences 
The combined result of speech in noise and ANL suggest that NRA ClearVoice becomes 
more effective by increasing the M-levels. Although it does not result in a clinically 
relevant effect on speech intelligibility it may contribute to a general optimization of the 
effects of ClearVoice for a broad range of CI-users and listening conditions. Therefore, our 
findings suggest to always apply a 5% M-level increase when activating ClearVoice. This 
should be part of the clinical guidelines of Advanced Bionics. If CI users tend to lower the 
volume for conditions without background noise, it might be helpful to provide them with 
a separate program for noisy conditions. It would be even better to include the increase in 
M-levels in a next version of the NRA ClearVoice. In general, our findings demonstrate that 
CI-fitting performed in the clinic may not always provide the optimal results for everyday-
life conditions with background noise. Manufacturers and clinicians should be aware of 
this, and efforts should be made to optimize clinical fitting guidelines when introducing 
new noise reduction algorithms. 

Conclusion 
We conclude that optimal profit from the NRA ClearVoice is obtained if combined with a 
structural 5% increase of M-levels. The increase of M-levels alone gave no significant 
change in noise tolerance or speech understanding in noise. 
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Abstract 
Objectives: To evaluate the validity and efficacy of a transient noise reduction algorithm 
(TNR) in cochlear implant processing and the interaction of TNR with a continuous noise 
reduction algorithm (CNR). 
Methods: We studied the effects of TNR and CNR on the perception of realistic sound 
samples with transients, using subjective ratings of annoyance, a speech-in-noise test and 
a noise tolerance test. Participants were 16 experienced cochlear implant recipients 
wearing an Advanced Bionics Naida Q70 processor. 
Results: CI users rated sounds with transients as moderately annoying. Annoyance was 
slightly, but significantly reduced by TNR. Transients caused a large decrease in speech 
intelligibility in noise and a moderate decrease in noise tolerance, measured on the 
Acceptable Noise Level test. The TNR had no significant effect on noise tolerance or on 
speech intelligibility in noise. The combined application of TNR and CNR did not result in 
interactions. 
Conclusions: The TNR algorithm was effective in reducing annoyance from transient 
sounds, but was not able to prevent a decreasing effect of transients on speech 
understanding in noise and noise tolerance. TNR did not reduce the beneficial effect of 
CNR on speech intelligibility in noise, but no cumulated improvement was found either. 
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Introduction 
The focus of a Cochlear Implant (CI) fitting is usually on achieving good speech 
intelligibility. However, it is also important to consider aspects of listening comfort and 
sound quality, especially in noisy environments (Mertens et al., 2015). In everyday life, 
people experience a variety of sounds that differ in their spectro-temporal characteristics, 
duration or loudness and can be perceived as disturbing, especially when listening to 
speech. Nowadays, directional microphones and single-microphone noise reduction 
algorithms are applied in CI processors to reduce the effect of background noises. The 
single-microphone noise reduction is sometimes named as continuous noise reduction 
(CNR), because it is mainly effective for noises with a continuous temporal behavior. 
Transient sounds, however, will not be affected by CNR.  
Transient sounds are characterized by a very fast onset to the peak in sound pressure level 
(within a few milliseconds), a fast decay and a short duration (from tens of milliseconds up 
to one second). The peak sound pressure level of the transient is well above the average 
sound pressure level. Korhonen et al. (2013) reported sound pressure levels and rise times 
for different recorded transients. The levels varied from 67 dB (A, impulse) for a clicking 
pen up to 102 dB (A, impulse) for stacking two water glasses. Rise times ranged from less 
than 1 ms up to 4 ms.  
It is well known that hearing-aids users frequently perceive transient sounds as disturbing. 
Hernadez and co-workers (2006) reported that about one-third of the annoying 
background noises commonly encountered by new hearing instrument wearers were of a 
transient type. In that study transients were defined as noises with a duration of <1 s. A 
fast onset was not required. The perceived annoyance of these transient noises was 
slightly lower than the annoyance of continuous noises, but still substantial (6.3 on a 0 to 
10 annoyance rating scale). The automatic gain controls (AGC) of hearing aids usually use a 
fast-acting system to cope with transient sounds, but for transients with a very fast onset 
the AGC is often too slow. Hence transient noise reduction (TNR) systems have been 
developed to reduce the disturbing effects of transient sounds in hearing aids. Several 
studies have evaluated the efficacy of a TNR in hearing aid users with various transient 
noises and outcome measures, such as subjective ratings or paired comparisons for 
speech clarity, annoyance, comfort, loudness and speech perception tests (Keidser et al., 
2007; DiGiovanni et al., 2011; Liu et al., 2012; Korhonen et al., 2013). The results of these 
studies suggest that TNRs are most effective for loud transients and are not detrimental 
for speech perception. 
Compared to hearing aids users, the perceived disturbing effects of transient sounds are 
not necessarily the same for CI users, due to the different way of sound processing and 
the use of electric stimulation. However, data on sound annoyance in CI users are scarce 
and we were only aware of a study of Mauger et al. (2012). They described noise 
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annoyance ratings of CI recipients for steady-state noise, 4-talker, and 20-talker noise 
presented together with speech at 65 dB(SPL). The steady-state noise condition was rated 
as highly annoying (75/100 on a numberless scale), but annoyance was substantially 
reduced by their noise reduction algorithm (19/100). The babble noise conditions were 
rated as moderately annoying (54/100 for 4-talker noise and 61/100 for 20-talker noise) 
and the ratings were less influenced by noise reduction (41/100 for 4-talker noise and 
30/100 for 20-talker noise). 
Similar to hearing aids, cochlear implant processors use an AGC to keep the signal within 
the electrical dynamic range of the patient and to prevent discomfort due to sudden loud 
sounds (Vaerenberg et al., 2014). In most CI processors the AGC is a dual time constant 
AGC, with both a fast detector and a slow detector (Moore et al., 1991; Stone et al., 1999; 
Boyle et al., 2009; Khing et al., 2013). Stobich et al. (1999) investigated the effect of an 
intense transient (a ‘chink’ with peak sound pressure level of 100dB) in CI users that used 
a CI processor with a dual time constant AGC. The transient was spliced onto the 
beginning of a sentence presented at 85 dB SPL. He found that the dual time constant 
compression system handled the transient within the speech effectively, making the 
transients less detrimental for speech perception. However, there is room for 
improvement, as the attack time of most fast-acting AGCs is 3-5msec. This is still too slow 
to catch the onset of many transients and the amount of reduction is unlikely to be 
sufficient to prevent discomfort. Therefore a TNR have recently been introduced in 
cochlear implant systems that is capable to reduce transients with onset-to-peak levels 
within 1 ms. Dyballa et al. (2015) investigated the effect of a TNR in CI users on speech 
intelligibility in quiet and in two types of transient noise: repetitive hammer blows and 
dishes (clinking cups and spoons). The noises had a peak level of 90 dB(SPL) and a RMS 
level of approximately 70 dB(SPL). Speech perception in quiet was not affected by the 
algorithm. The speech reception threshold in noise was significantly improved by 0.4 dB 
for the dishes noise and 1.7 dB for the hammering noise. 
 
In everyday situations, transients may be mixed with continuous background noises, for 
example in a kitchen where transients from clinking bowls or plates are concurrent with 
continuous noise from an exhaust hood. In such situations, TNR and CNR may be activated 
simultaneously in a CI processor or hearing aid. It is unknown if a combination of TNR and 
CNR has additional positive or negative effects on sound perception. Transients may cause 
less functioning of a CNR. If a transient sound occurs, the instantaneous SNR estimate of a 
CNR algorithm becomes positive (the signal level is above the estimated noise level that is 
based on a longer time window) and less attenuation is applied by the algorithm. If there 
are many transients the estimated noise level may become inaccurate. A TNR may reduce 
the high peak levels and prevent from less functioning of the CNR, resulting in a positive 
interaction between CNR and TNR in conditions where transients and continuous noises 
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are mixed. Next, a combination of TNR and CNR may reduce the sound annoyance and 
increase the noise tolerance more than each algorithm alone. 
 
As only limited information was available about how transient sounds are perceived by CI-
users and about the potential benefit of TNR, we wanted to investigate the efficacy of TNR 
in CI-users on speech perception, noise tolerance and annoyance. Our tests were 
performed in a group of experienced CI users, using a subset of realistic sound recordings 
with transients that were able to activate the TNR algorithm. Furthermore, we 
investigated the effect of these transients without algorithm to learn more about the need 
for TNR. We wanted to answer the following research questions: 
1. How annoying and how detrimental for speech intelligibility in noise are transients 

that are able to activate a TNR algorithm applied in CI users? 
2. Does the application of TNR in CI users increase the speech intelligibility in noise, the 

noise tolerance, and reduce perceived annoyance for transients in speech and noise? 
3. Does the combined application of TNR and CNR in CI users result in a cumulated 

improvement in speech intelligibility, noise tolerance, and perceived annoyance in 
noisy backgrounds that contain transient sounds? 

Materials and methods 

Participants 
Sixteen CI users were included in the study, as indicated by an a priori power analysis (see 
Data analysis). The sixteen participants ranged in age from 40 to 81 years (group mean 66 
years; SD = 12.0). All participants were unilaterally implanted with an Advanced Bionics 
cochlear implant (HiRes 90K implant). The average duration of implant use was 7.4 (SD 
3.7) years of CI use with a minimum of one year of use. All participants used at least 14 
active electrodes and the HiRes Optima-S sound coding strategy. In the daily used 
programme, all but two used the CNR algorithm ClearVoice and all but three did not use 
the TNR algorithm SoundRelax. The input dynamic range (IDR) setting was between 55 and 
63 dB (13 participants had an IDR of 60 dB). Free field thresholds were better than 40 dB 
HL (average of 500, 1000,2000, 4000Hz) for all participants and for 9 participants better 
than 30 dB HL. Four participants wore a hearing aid in the non-implanted ear, but the 
hearing aid was switched off during the tests. Without hearing aids all participants had 
severe hearing loss of at least 100 dB(HL) pure tone average (PTA), except two who had a 
PTA of 80 and 92 dB(HL). All participants were Dutch native speakers. For inclusion in this 
study, a phoneme score of at least 70% on clinically used Dutch consonant-vowel-
consonant word lists (Bosman & Smoorenburg, 1995) was required. Participants were 
required to sign a written informed consent form before participating in the study. The 
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Erasmus Medical Center Ethics Committee approved the study protocol for use with CI 
recipients. 

Cochlear implant algorithms 
The study used an Advanced Bionics Naida Q70 sound processor, which contains a TNR 
algorithm called SoundRelax and a CNR algorithm called ClearVoice. Both are proprietary 
algorithms of Advanced Bionics (Stäfa, Switzerland). The TNR algorithm detects transients 
by comparing a fast following envelope and a slow following envelope of the broadband 
incoming signal. Firstly, the absolute peak level of the noise transient (fast envelope) has 
to exceed 78dB SPL. Secondly, the transient has to rise rapidly above the slow envelope 
level by at least 20dB, with a level change of at least 20dB/ms. If these criteria are met, 
the level of the transient is attenuated. If the transient level is between 20 and 26dB 
above the slow envelope level, the attenuation is 14dB and if the transient level is greater 
than 26dB above the slow envelope level, the attenuation is 20dB. After activation of the 
TNR algorithm, the amount of level reduction decreases exponentially to zero within 
200ms. The TNR algorithm is designed to have minimal impact on the speech signal, which 
was confirmed by a study of Dyballa and co-workers (Dyballa et al., 2015). The TNR acts 
early in the signal processing path, before the automatic gain control (AGC). The AGC of 
the sound processor has a dual-time-constant compression: a slow-acting compressor 
(attack time 240ms, release time 1500ms) becomes active when the input level exceeds 
the compression threshold of 63 dB SPL and the fast-acting compressor (attack time 3ms, 
release time 80ms) becomes active at a threshold of 71 dB SPL, thus avoiding 
uncomfortable loudness. Both compressors have a compression ratio of 12:1 (Boyle et al., 
2009) and act on the broadband signal. 
CNR algorithm ClearVoice has the aim to improve overall signal-to-noise ratio (SNR) by 
suppression of frequency channels lacking useful information for understanding speech. 
The CNR algorithm is applied behind the AGC and is active in the different frequency 
channels. Within each channel, the algorithm calculates a long-term estimation of the 
noise level using a 1.3s time window and an instantaneous SNR. Depending on the 
difference between the instantaneous SNR and the long-term average SNR, a negative 
gain is applied. In this study we used the Medium setting of ClearVoice, resulting in a 
negative gain down to −12 dB (Buechner et al., 2010; Advanced Bionics, 2012).  

Study design and procedures 
In this prospective efficacy study, a within-subject repeated measures design was used. A 
factorial design was defined with 3 two-level factors: factor TNR (on/off), factor CNR 
(on/off), and factor Transients (stimuli with or without transients). A full 3 factor design 
has 23 = 8 conditions, but it was not needed to test the effect of factor TNR in 
combinations with stimuli without transients as the TNR algorithm will not be activated in 
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these conditions. From the remaining six conditions, four conditions tested the different 
combinations of TNR and CNR for stimuli with transients. These four conditions were 
balanced across participants with a 4x4 Latin Square. The other two conditions tested 
CNR-on and CNR-off for stimuli without transients and TNR off. These two conditions were 
alternated in order across participants. For all six conditions, the ANL and the speech 
intelligibility in noise were measured. After these tests an annoyance rating and a paired-
comparison rating approach was used to measure the effect of TNR and CNR on the 
perceived annoyance of four sounds that contained both continuous noise and transients. 
The fitting parameters of the CI were set according to the programme used in daily life. If 
the CNR was switched on, M-levels were increased by 5% (M-levels are basic fitting 
parameters used to define the amount of electrical output at the most comfortable level). 
The increase of M-levels was done in order to increase the effect of the CNR, according to 
the recommendations of Advanced Bionics and previous research (Brendel et al., 2012; 
Dingemanse & Goedegebure, 2017).  

Stimuli 
To test the effect of TNR, we decided to use non-artificial stimuli with pronounced 
transients. A variety of transient kitchen sounds were recorded near a person’s ear during 
emptying the dishwasher in a typical home kitchen. Transients as clinking bowls, dishes, 
cups, spoons and other similar sounds were recorded with a sample frequency of 44.1kHz 
and a bit depth of 16 bits. Since this was an efficacy study we wanted to ensure that the 
TNR was activated by the transients. An analysis of the fast envelope levels of the speech 
that was used in de speech intelligibility and ANL tests showed that transients should have 
a peak level of at least 22 dB above the Root Mean Square (RMS) level of the speech in 
order to be detected by the TNR algorithm in at least 90% of the cases. The RMS-level of 
speech was 70 dB(SPL), so the peak level of the transients needed to be at least 92 
dB(SPL). Transients that had a lower peak level were amplified to achieve a peak level of at 
least 92 dB(SPL). Transients that sounded unnatural after amplification were excluded. 
Next it was checked for which transients the TNR was really activated, using the transients 
combined with the speech signal of the ANL-test (see below) as input. This was done by 
Advanced Bionics with a software implementation of the algorithm. Eighty-one percent of 
the transients activated the TNR. In other cases most likely the rise time of the transient 
was too slow to reach the criterion of 20dB/ms. Again, these transients were excluded. At 
the end of the procedure, there were 96 unique transients, varying in content, duration, 
level, frequency spectrum, and experienced loudness (see Table 4.1 for details about 
levels).  
Note that the transients were not necessary experienced as loud, because most transients 
had a short duration. The resulting transient sounds were mixed with the speech stimuli 
for use in the speech intelligibility test and the ANL test (see test descriptions for details). 
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For the paired comparisons and annoyance ratings, four stimuli were created that were 
combinations of transients with high peak levels and continuous noise. These stimuli 
differed in transient characteristics and in continuous noise type and were thought to be 
representative for different acoustic situations in daily life. Table 4.1 gives a description of 
the type and acoustic characteristics of the transients and continuous noise. The 
transients and the continuous sounds were mixed to create a stimulus in which the 
transients were at least 22 dB above the continuous noise level in order to be detected by 
the TNR algorithm. Again, transients were selected from recordings without additional 
signal processing, except some minor gain corrections to make sure that transients were 
above the threshold of the TNR activation. The four signals had a duration of 5s and the 
dB(RMS) level was 70 dB(SPL).  

Speech-in-noise test 
Speech intelligibility in noise was measured with Dutch female-spoken, unrelated 
sentences in steady-state speech spectrum noise (Versfeld et al., 2000). The noise started 
three seconds before the speech to activate the CNR and ended 0.5 seconds after the 
speech. For the speech-in-noise conditions with transients a modified version of the 
speech tracks was made by applying four transients to each list item. For each list item the 
four transients were randomly selected from the set of 96 transients (see previous 
paragraph). Two of the four transients were added in the three second interval of noise 
before the start of the sentence, with a randomly chosen delay with the constraint that 
the first transient was within the first half of the interval and the second transient in the 
second half. This was done to include the possibility that the noise estimation of CNR 
ClearVoice was influenced by the transients. The other two transients were added in the 
sentence interval, also with a randomly chosen delay and the constraint that the first 
transient was within the first half of the sentence and the second transient in the second 
half. The peak levels of the transients were at least 22 dB above the RMS-level of the 
speech to make sure that the TNR was activated. The presentation level of the sentences 
was fixed at 70 dB(SPL). This speech level is often reached in noisy situations (Pearsons et 
al., 1977). The Speech Reception Threshold in noise without transients (SRTn) was 
measured twice with an adaptive procedure targeting at 50% of words understood 
correctly, using 26 sentences. The first measurement was a practice run. 
For the six different test conditions in the experiment, the speech and noise had a fixed 
SNR based on the individual SRTn+2dB. The 2 dB was added because a drop in 
intelligibility due to the transients was expected and the test should not be too difficult for 
participants. Furthermore floor and ceiling effects should be prevented for. Participants 
were asked to repeat as many words as they could from the sentence. The percentage of 
correct words per sentence list of 18 sentences were scored. 
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Acceptable noise level test 
The ANL was tested with the same speech and noise material as the speech intelligibility in 
noise test. The sentences were connected with intervals of 500ms of silence between 
them and played as running speech at 70 dB SPL in all ANL measurements. The task was to 
select the maximum background noise level (BNL) that the participant was willing to 
accept while following the speech. The listeners were given oral and written instructions, 
which were Dutch translations of the instructions provided by Nabelek et al. (2006). For 
each ANL measurement the BNL procedure was repeated 3 times and the mean value was 
used to calculate the ANL as the difference of the speech level and the mean BNL. Before 
the measurements, participants were made familiar with the BNL procedure in a practice 
condition. 
For the measurement conditions with transients, the transients were added to the speech 
at a rate of 0.5 Hz. This low rate was chosen to prevent the speech from becoming 
unintelligible most of the time, due to the transients. The peak levels of the transients 
were set at least 22 dB above the RMS-level of the speech, to make sure that the TNR was 
activated. Note that the transient levels were not changed in the BNL procedure, only the 
level of the continuous noise was adjusted, as we wanted to be sure to stay in the active 
range of the TNR. 

Paired comparisons and annoyance rating 
A paired-comparison rating approach was used to measure the effect of TNR and CNR on 
the perceived annoyance of four sounds that contained both continuous noise and 
transients. For each sound, a participant compared three CI programmes with noise 
reduction (TNR only, CNR only, TNR and CNR simultaneously) to a reference condition 
without noise reduction (TNR-off and CNR-off). A two-interval, seven-alternative forced 
choice paradigm was used, with seven possible answers on an ordinal scale, ranging from 
‘A is much less annoying’ to ‘B is much less annoying’. The answers were transformed to 
numbers ranging from -3 through to 3. The seven choice categories and the 
transformation to numbers were in accordance with the Comparison Category Rating 
method described in ITU-T P. 800 Annex E.1 (ITU-T P.800, 1996). The participants could 
listen to both fragments of sound as many times as they want before they completed their 
rating. They were asked to listen to the whole sound and to rate it in the end. 
In addition, an absolute rating task was used to investigate the degree of annoyance 
participants experienced in response to the four stimuli used in the paired-comparison 
task. We asked the participants to rate the experienced annoyance on an 11-point ordinal 
scale. The scale was labeled as ‘not at all annoying’ at 0, ‘slightly annoying’ at 2.5, 
‘moderately annoying’ at 5, ‘quite annoying’ at 7.5, and ‘very annoying’ at 10, following 
Keidser et al. (2007). 
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Equipment 
Transient stimuli were recorded with a Samson Q1U microphone and the audio editor 
Audacity (Audacity, 2013) was used for stimulus preparation. All testing was performed in 
a sound-treated room. Participants sat one meter in front of a Westra Lab 251 
loudspeaker (Westra Elektroakustik GmbH, Germany) that was connected to a Roland 
Octa-capture soundcard (model UA-1010, Roland Corporation, U.S.A.), and a computer. 
Stimuli were presented in a custom application (cf. Dingemanse and Goedegebure, 2015) 
running in Matlab (MathWorks, v9.0.0). In the ANL test, participants adjusted the sound 
level of the noise stimuli using the up and down keys of a keyboard. The step size for the 
intensity adjustment for the ANL task was 2 dB per button press. 
All participants were tested with the same new Naida Q70 processor and a new T-mic 
(Advanced Bionics, Stäfa, Switzerland). 

Data analysis 
A priori power analysis using the G*Power software (Faul et al., 2009) indicated that a 
sample of 16 people would be needed to detect a clinically significant ANL difference >= 
3dB (Olsen & Brännström, 2014) and a clinically significant difference of 10% points in the 
word score on a speech intelligibility-in-noise test with 80% power and alpha at .05.  
Speech performance scores were transformed to rationalized arcsine unit (rau) scores in 
order to make them suitable for statistical analysis according to (Studebaker, 1985). In 
cases of multiple comparisons, we used the Benjamini-Hochberg method to control the 
false discovery rate at level 0.05 (Benjamini & Hochberg, 1995). 
Repeated measures analysis of variance (RMANOVA) was used to analyze the ANL and 
speech intelligibility in noise tests. For the analysis of the paired comparisons a one-
sample Wilcoxon Signed Rank test was used. For the absolute annoyance ratings a 
Friedman test was used to detect if ratings were significantly different between sounds. 
Data interpretation and analysis were performed with SPSS (IBM, Version 23, Chicago, 
USA).  

Results 

Speech intelligibility in noise 
A normality check of the transformed percent correct data revealed normally distributed 
data for all conditions. The individualized SNR ranged from 2.4 to 18.7 dB. Figure 4.1 
shows the speech scores for the six conditions and the significance levels of relevant 
differences between conditions. It is evident that speech scores decreased markedly with 
44 percent points on average due to the addition of transients. 
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Figure 4.1. Mean and 95% confidence intervals of percent correct scores for the speech intelligibility 
in noise test for six conditions. The two light grey bars on the left show speech scores for speech 
without transients. The four dark grey bars show speech scores values for speech with transients. 
The annotations C1 to C6 give the condition numbering. Several test conditions were compared and 
uncorrected p-values were shown. Asterisks denote that a difference is significant after correction 
for multiple comparisons. Dashed lines show the significance of differences due to TNR, solid lines 
show the significance of CNR effects, and dash-dotted lines show the significance of the effect of 
transients. 
 
The application of CNR lead to a small increase in speech scores (6.4 percent points on 
average), but the TNR did not alter the speech scores. A repeated measures ANOVA with 
the factors Transients and CNR (conditions C1, C2, C3, C5) showed a significant effect of 
the Transients factor [F(1,15) = 191.5, MSE = 30889.0, p < 0.001, η2p = 0.93] and a 
significant effect of the CNR factor [F(1,15) = 6.8, MSE = 483.1, p = 0.02, η2p = 0.31]. The 
interaction of both factors was not significant [F(1,15) = 0.07, MSE = 3.6, p = 0.80, η2p = 
0.005]. 
The effect of TNR, CNR, and the combined effect of TNR and CNR were analyzed with a 
second repeated measures ANOVA with the factors TNR and CNR (conditions C3, C4, C5, 
C6). A significant effect was found for the CNR factor [F(1,15) = 7.8, MSE = 805.0, p = 
0.013, η2p = 0.34], but no significant effect was found for the TNR factor [F(1,15) = 0.003, 
MSE = 0.15, p = 0.96, η2p < 0.001] and the interaction of both factors [F(1,15) = 0.35, MSE = 
20.2, p = 0.57, η2p = 0.022]. 
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Acceptable noise level 
A normality check revealed that the ANL data is normally distributed for each condition. 
Figure 4.2 presents the group mean ANL values for the six conditions and the significance 
levels of relevant differences between conditions. 
Figure 4.2 shows that in the conditions that have transients added to the speech, the 
noise tolerance was significantly worsened compared to the conditions without transients 
(ΔANL = 4.5dB on average). Switching on TNR did not significantly affect the noise 
tolerance. Use of the CNR significantly improved the ANL value with 2.8 dB on average if 
transients were present and 3.9 dB if transients were absent. A repeated measures 
ANOVA with the factors Transients and CNR (conditions C1, C2, C3, C5) showed a 
significant effect of the Transients factor [F(1,15) = 12.0, MSE = 318.5, p = 0.003, η2p = 
0.44] and a significant effect of the CNR factor [F(1,15) = 15.1, MSE = 181.5, p = 0.001, η2p 
= 0.50]. The interaction of both factors was not significant [F(1,15) = 0.93, MSE = 5.1, p = 
0.35, η2p = 0.059]. 
 
 

 
Figure 4.2. Mean and 95% confidence intervals of ANL values. The two light grey bars on the left 
show ANL values for speech without transients. The four dark grey bars show ANL values for speech 
with transients. The annotations C1 to C6 give the condition numbering. Several test conditions 
were compared and uncorrected p-values were shown. Asterisks denote that a difference is 
significant after correction for multiple comparisons. Dashed lines show the significance of 
differences due to TNR, solid lines show the significance of CNR effects, and dash-dotted lines show 
the significance of the effect of transients. 
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The effect of TNR and the combined effect of TNR and CNR (conditions C3, C4, C5, C6) 
were analyzed with a second repeated measures ANOVA with the factors TNR and CNR. 
This analysis showed no significant effect of the TNR factor [F(1,15) = 0.49, MSE = 2.1, p = 
0.50, η2p = 0.032] and a significant effect of the CNR factor [F(1,15) = 8.8, MSE = 124.2, p = 
0.010, η2p = 0.37]. The interaction of both factors was not significant [F(1,15) = 0.001, MSE 
= 0.004, p = 0.98, η2p < 0.001]. 
Substantial differences were found in the noise tolerance levels (ANL-values) among CI-
users. The reference ANL values (for CNR-off, TNR-off and no transients) ranged from 5.3 
through to 20 dB. No significant correlation was found between the ANL (reference 
condition C1) and the median annoyance score. 

Paired comparisons and annoyance ratings 
Figure 4.3 shows the mean quantified rating score in all three conditions for each sound 
apart and for the average over all sounds. Statistical analysis was performed for the 
ratings averaged over all the sounds. The programme with TNR-on and CNR-off was rated 
as less annoying than the reference condition (TNR-off; CNR-off) for all sounds. This mean 
rating ranged between -1.75 and 0 with a median of -0.75. A Wilcoxon signed-rank test 
showed a statistically significant difference between the median rating and the test value 
of 0, z = -3.3, p = 0.001 and a large effect size of r = -0.8. The rating for the TNR-off CNR-on 
programme ranged between -2.25 and 2 with a median of 0.25. However, the Wilcoxon 
signed-rank test showed no statistically significant difference between the median rating 
 

 
Figure 4.3. Mean and 95% confidence intervals of the relative annoyance rating scores, derived from 
the paired-comparison data, for four different sounds. Each bar indicates the relative annoyance for 
a sound and test condition compared with the reference condition with TNR-off and CNR-off. For the 
mean of all sounds, asterisks indicate differences that were significant on the p<0.05 level.  
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and the test value of 0, z = 1.58, p = 0.11, r = 0.4. With the combination of TNR-on and 
CNR-on, the annoyance perception was not different from the reference condition on 
average, with a median rating of 0 and a range from -1 through to 0.75 (Wilcoxon signed-
rank test, z = -0.11, p = 0.92, r = -0.03). 
When the three conditions were compared with each other, the rating of (TNR-off, CNR-
on) was significantly higher than the rating of (TNR-on, CNR-off) (Wilcoxon signed-rank 
test, z = -2.87, p = 0.002, r = -0.5). The rating of (TNR-on, CNR-on) was also significantly 
higher than the rating of (TNR-on, CNR-off) (Wilcoxon signed-rank test, z = -2.86, p = 
0.003, r = -0.5). The difference between the rating of (TNR-on, CNR-on) and (TNR-off, CNR-
on) was nearly significant (Wilcoxon signed-rank test, z = -1.77, p = 0.08, r = -0.3). 
Overall, the participants rated use of TNR in the direction of less annoyance and use of 
CNR in the direction of more annoyance. 
In the absolute annoyance rating task the sounds were rated as moderately annoying on 
average. The kitchen sound was rated as most annoying (Median = 5, IQR = 3 – 6.5), the 
heels in babble as least annoying (Median = 3.5, IQR = 2 – 6). The ‘hail on car window and 
car noise’ sound had a median rating of 4 (IQR = 2.5 – 6) and the ‘hammering and machine 
noise’ sound had a median rating of 4.5 (IQR =3 – 7). A Friedman test revealed a near 
significant effect of type of sound on annoyance [ χ2(3, N = 16) = 6.89, p < .073]. Ratings 
differed greatly between CI users with a range from 0 (not at all annoying) through to 10 
(very annoying). Additionally, we analyzed if higher annoyance ratings were correlated 
with a bigger effect of TNR-on in the paired comparisons test, but no significant 
correlation was found. 

Discussion 

Effects of transients and need for TNR 
The current study has shown that transient sounds may be perceived as moderately 
annoying and substantially degrade speech understanding in CI users, so there is a need 
for TNR in CI-processors. First, we found an average annoyance rating in CI recipients for 
transient sounds of 4.5 (moderate annoyance) on an 11-point scale, which is lower than 
the reported annoyance scores of 6.3 for average to loud transient sounds in new wearers 
of hearing aids (Hernandez et al., 2006). An explanation for this difference may be that the 
participants of this study were experienced CI users, who were more used to hearing 
average to loud sounds than new wearers of hearing aids. Furthermore, the AGC of the CI-
processor used had a fast compressor with a compression ratio of 12 above 71 dB SPL, 
which prevents sounds becoming too loud. In hearing aids, compression ratios are much 
lower and consequently high input levels may cause more annoyance. Still, in CI users TNR 
may be helpful to reduce the perceived level of annoyance of transient sounds. 
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Secondly, the presence of high level transients caused a large decrease in speech 
intelligibility in noise. Activation of the AGC may be the main explanation of this result. 
The transients in our experiment had durations that were long enough to activate the fast 
compressor (attack time 3ms). The fast compressor has a release time of 80ms and 
affected at least one word in the sentences. Due to the high transient peak levels and the 
high ‘transient-to-speech-ratio’ of at least 22 dB in our experiment, the AGC attenuated 
the speech level to just below 50dB SPL. At this speech level, average speech intelligibility 
in noise for CI users is relatively low at 20%, according to Boyle et al. (2013). Our results 
differ from the findings of Stobich et al. (1999) who reported word scores between 50 and 
60% for speech with a transient and different AGC configurations. However, they used 
only one transient at the beginning of the sentence, a ‘transient-to-speech-ratio’ of 15 dB 
and a compression ratio of 3 or 6. 
Another reason that may have contributed to the drop in intelligibility could be the 
masking of the speech signal by the transients. It is likely that forward masking occurred 
besides simultaneous masking, because the transient levels were much louder than the 
speech level. The recovery of masking in CI users is thought to be a process in the central 
auditory system (Shannon, 1990; Dingemanse et al., 2006; Lee et al., 2012). The time 
required for recovery of masking is highly variable between CI users and ranges between 
100ms and more than one second making it likely that forward masking played a role, at 
least for some patients. 
The finding that transients were highly disruptive for speech perception is clinically 
important. Many of the participants reported that they experience a comparable 
disrupting effect of transient sounds when listening to speech in daily life. This emphasizes 
the need for an effective TNR algorithm in CI processors that is able to (partly) 
compensate for the detrimental effect of transients on speech. 
Thirdly, the presence of transients caused a moderate decrease in noise tolerance 
(increase of ANL). It is most likely that reduced speech intelligibility played an important 
role in the observed decrease in noise tolerance. The ANL test has an instruction that 
contains the words ‘while following the story’, indicating that intelligibility of the speech is 
required in the ANL test. Although the rate of transients was half of that in the speech-in-
noise test, transients made parts of the speech unintelligible, which made it more difficult 
to follow the speech. Therefore, there was less room for adding noise that further reduces 
speech intelligibility. In addition, the combination of transients and noise may be less 
tolerable than noise alone. 

Effects of TNR 
This study has shown that application of TNR can lead to significantly reduced perceived 
annoyance for mixtures of natural transient sounds with high peak levels and continuous 
noises. This finding is in accordance with the intended effect of the algorithm and confirms 
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the efficacy of the algorithm. The amount of annoyance reduction was -0,75 on average 
compared to the condition without TNR, which should be interpreted as slightly better, 
according to the Comparison Category Rating scale described in ITU-T P. 800 Annex E.1 
(ITU-T P.800, 1996). This is only a small improvement, but it is relative to the moderate 
annoyance without TNR. A small improvement still can contribute to improved listening 
comfort in daily practice. Perceived annoyance of transients substantially differed 
between individual CI users. This means that some users did not profit from TNR as they 
hardly perceived the transients as annoying, while the other CI-users that do need TNR 
may have profited substantially.  
Although TNR was able to reduce perceived annoyance, the application of TNR had no 
significant effect on noise tolerance or speech intelligibility in noise in this study. This is in 
contrast with Dyballa and colleagues (2015) who reported a small but significant 
improvement of 0.4dB in SRTn for speech intelligibility in dish-clinking transient noise, 
using a comparable TNR algorithm. They used a speech material that was easier to 
recognize, which consisted of 50 words that participants knew from training. Possibly this 
made their test more sensitive to small changes. In agreement with the results of this 
study, Keidser and co-workers (2007) reported that the TNR had no significant effect on 
speech recognition in background noise in hearing aid users. Furthermore the lack of an 
effect for noise tolerance and speech intelligibility in noise in this study may be due to the 
short duration of the signal reduction by the TNR compared to the duration of the 
transients. If a transient is detected, TNR attenuates the signal by 14 or 20 dB, but within 
5ms this attenuation is reduced to about 5dB, because of the short time constant and the 
exponential reduction of the TNR attenuation. Therefore, the effect of the AGC and the 
amount of masking would be largely the same for the TNR-on and TNR-off conditions. An 
improvement in the TNR algorithm could be made so that the attenuation reduction 
follows the decrease in level of the fast signal envelope that is used in the algorithm. This 
may prevent activation of the AGC, which has a longer release time than the TNR 
algorithm. As a result, transients may be less detrimental for speech intelligibility. Using a 
shorter release time of the AGC could be another option to reduce the detrimental effect 
of transients on speech perception.  

Interaction of TNR and CNR 
The combined application of TNR and CNR did not result in a cumulated improvement of 
speech intelligibility in noise for CI-users. This is in accordance with the absence of an 
effect of TNR alone. Furthermore the effect of CNR was not influenced by the application 
of TNR. An possible explanation for this finding is that on the moment of a transient, 
speech intelligibility is disturbed, regardless of the effect of TNR on the CNR. 
In the paired-comparison experiment, participants perceived more annoyance on average 
(although not significant) with CNR on compared with the reference condition (CNR-off, 
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TNR-off) in noisy backgrounds that contained transient sounds. This is most likely due to 
an increase in M-levels of 5% in the CNR-on programmes. The combined application of 
TNR and CNR resulted in an equal annoyance perception for the conditions (TNR-on, CNR-
on) and (TNR-off, CNR-off), indicating that the increased annoyance that arose from the 
increased M-levels was compensated for by the use of TNR. This shows that TNR may be 
helpful in combination with CNR, as it prevents CI-users from substantially turning down 
the volume due to annoyance to transient sounds. 
These findings suggest to apply CNR and TNR together with a 5% M-level increase in a 
clinical used speech in noise programme, to optimize both speech understanding and 
listening comfort in noise. 

General discussion and conclusions 
This study was designed as an efficacy study to investigate the effect of a TNR algorithm 
and its necessity by investigating the annoyance and detrimental effect of the transients 
that were reduced by the TNR. The large disturbing effect of transients on speech 
intelligibility in noise and the positive effect of TNR on noise annoyance we found in our 
study shows that it is worthwhile to further study the perception of transient sounds and 
effects of TNR in CI users. A limitation of this study is that only transients with high peak 
levels were used. This is only a subset of transients that occur in daily life. It is expected 
that transients with lower peak levels are less annoying and less detrimental for speech 
perception. Future studies should investigate the effect of transients on speech in quiet 
and noise at several speech levels and several ‘transient-to-speech’ ratios to get more 
insight in the detrimental effects of transients on speech perception in CI users. They 
should also investigate more in general how transients are perceived by CI-users, and 
what factors may improve the listening conditions in the presence of transients. 
Furthermore it should be noted that CI users may prefer to perceive some transients, like 
transients in music or in alarm signals. Also transients may be important cues in sound 
perception and TNR should not disrupt these cues. Ultimately, field studies should be 
used, investigating both disrupting and positive effects of transients and possible 
improvements or negative side effects of TNR. Smart algorithms based on sound 
environment classification would be a desirable development. 
Another limitation of this study is that we included good performers only (CVC scores 
>=70%). The effect of the CNR and TNR algorithms is not necessarily the same for CI users 
with less benefit of the CI. These CI users complain more often that sounds are too loud or 
too disturbing, so there is more room for improvement, at least for listening comfort. On 
the other hand, the effect of TNR may be too small to really cause a significant shift in 
listening comfort and performance as noisy conditions remain extremely challenging for 
this group of CI users 
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We conclude that the investigated TNR algorithm in a CI processor was effective in 
reducing annoyance from transient sounds with high peak levels, without causing a 
negative effect on speech understanding. However, TNR was not able to compensate for 
the large decrease in speech understanding caused by transient sounds. TNR did not 
reduce the beneficial effect of CNR on speech intelligibility in noise, but no cumulated 
improvement was found either. Both types of noise reduction serve different goals and 
work independently, so they can be easily combined in one CI system. 
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Abstract 
Objectives: This study aimed to evaluate the effect of speech recognition performance in 
noise, a noise reduction algorithm (NRA), and working memory capacity (WMC) on 
listening effort as measured with pupillometry in cochlear implant (CI) users. 
Methods: Speech recognition and pupil responses (peak dilation, peak latency, and 
release of dilation) were measured during a speech recognition task at three speech-to-
noise ratios (SNRs) with an NRA on and off. WMC was measured with a reading span task. 
Twenty experienced CI users participated in this study. 
Results: With increasing SNR and speech recognition performance 1) the peak pupil 
dilation decreased by only a small amount, 2) the peak latency decreased, and 3) the 
release of dilation after the sentences increased. The NRA had no effect on speech 
recognition in noise, nor on the peak or latency values of the pupil response, but caused 
less release of dilation after the end of the sentences. A lower reading span score was 
associated with higher peak pupil dilation, but not with peak latency, release of dilation, 
or speech recognition in noise. 
Conclusions: In CI users speech perception is effortful, even at higher speech recognition 
scores and high SNRs, indicating that CI users are in a chronic state of increased effort in 
communication situations. Application of a clinically used noise reduction algorithm did 
not improve speech perception, nor did it reduce listening effort. Participants with a 
relatively low working memory capacity exerted relatively more listening effort, but did 
not have better speech reception thresholds in noise. 
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Introduction 
Users of Cochlear Implants (CI) often report that speech understanding is effortful, as it 
requires increased attention and mental processing, especially when background noise is 
present (Hughes et al., 2018). This perceived effort is also seen in the response to 
questionnaires which include questions about listening effort and concentration (e.g. 
Farinetti et al., 2015; Dingemanse & Goedegebure, 2020). Listening effort is defined as 
“the deliberate allocation of mental resources to overcome obstacles in goal pursuit when 
carrying out a listening task” (Pichora-Fuller et al, 2016). In this definition, the effort 
exerted to listen is related to the difficulty of the task but also to a listener’s task 
engagement. The role of both factors in listening effort is demonstrated in several studies. 
Wu and colleagues (Wu et al., 2016) measured listening effort in a speech recognition task 
in listeners with normal-hearing (NH) using the reaction time on a simultaneous secondary 
task as a measure of listening effort and found that the effort increased for decreasing 
speech-to-noise ratios (SNR), but decreased at the lowest SNRs. This decrease at low SNRs 
can be interpreted as a decrease in task engagement, because listening may become too 
difficult. A similar inverse U-shaped pattern is found in studies using pupil dilation as a 
measure of listening effort during speech perception in noise (Ohlenforst et al., 2017; 
Wendt et al., 2018). Various behavioral and physiological measures have been developed 
and explored to measure listening effort, like reaction time in single-task and dual-task 
paradigms, scores on the secondary task in dual-task experiments, 
electroencephalography, and pupillometry (McGarrigle et al., 2014; Pichora-Fuller et al., 
2016). 
Studies exploring listening effort in cochlear implant (CI) users with such effort measures 
found increased listening effort compared to NH controls in a speech-in-noise recognition 
task. Using reaction time on a secondary task during speech recognition in noise, Perreau 
and colleagues showed that listening effort decreased to a lesser degree in CI users 
compared to NH controls if the signal-to-noise ratio increased. Speech recognition 
performance also improved to a lesser extent in the CI group (Perreau et al., 2017). Winn 
(2016) showed with pupillometric data that CI users exerted more effort than NH 
participants while listening to speech in quiet, especially for high-context sentences. The 
NH listeners had virtually perfect intelligibility and the CI users had an average sentence 
score of 93%. However, in the studies of Winn (2016) and Perreau et al., 2017) the CI users 
had a lower speech score compared to the NH listeners, which may have influenced the 
listing effort. Hughes and Galvin (2013), using a setup comparable to Perreau and 
collegaues, showed that listening effort in adolescent CI users was comparable to NH 
participants if the signal-to-noise ratio was increased by 15 dB, to make the speech 
recognition scores of both groups comparable. 



Chapter 5   
 

100 

Increased listening effort in CI users may be related to limitations in speech recognition 
generally found in CI users, at least in background noise (e.g. Gifford et al., 2008). This 
limited speech perception originates from the fact that CI recipients receive an 
impoverished signal inherent to CI processing and signal delivery, with a limited spectral 
resolution (Friesen et al., 2001; Henry & Turner, 2003) and limited temporal fine-structure 
cues (Rubinstein, 2004; Loizou, 2006). However, the effort to recognize speech is not fully 
indicated by the speech recognition score itself, as this score may have been achieved 
with different levels of effort.  
When the speech encoding is degraded, the reliance on top-down processing in speech 
understanding increases and this processing may be different in CI users in several 
aspects, compared to NH listeners. First, as speech unfolds over time, prelexical and lexical 
processes act to resolve the ambiguity of lexical representations (McClelland & Elman, 
1986; Luce & Pisoni, 1998). Second, semantic context and coherence of the speech help to 
enhance speech recognition of degraded speech. In CI users, a delay in commitment to 
lexical judgements has been reported, indicating that CI users wait until substantial 
information has accumulated (Farris-Trimble et al., 2014; McMurray et al., 2017). 
Furthermore, Dingemanse and Goedegebure (2019) suggested that CI users make more 
use of such contextual information than NH listeners in a speech-in-noise task, which 
implies more reliance on top-down processing. Winn (2016) found that presence of 
contextual information in high-context sentences resulted in decreased listening effort 
compared to low-context sentences, but in CI users this reduction was smaller and the 
latency to reach 10% reduction of pupil dilation was longer, compared to NH listeners. 
This indicates that CI users rely more on top-down processing than NH listeners. Third, 
top-down repair based on phonemic restoration can enhance speech recognition in noise 
in NH listeners (Samuel, 1981) but on average no phonemic restoration benefit was found 
in CI users, although an effect was observed in some individual CI users (Bhargava et al., 
2014). Together, these findings suggest that the recognition of degraded speech may 
result in more top-down processing, with higher or more prolonged listening effort in CI 
users than in NH listeners. 
To measure listening effort, pupillometry is frequently used. Pupillometry is a 
physiological measure of changes in pupil diameter during a task. This change in pupil 
diameter is an established index of changes in cognitive demands (Kahneman, 1973; 
Beatty, 1982b, 1982a; Granholm et al., 1996). Pupil dilation is measured over time and its 
response to changes in listening effort is relatively fast. The peak pupil dilation (PPD) 
derived from aligned and averaged task-evoked responses is most often used as the 
primary measure of listening effort and also the peak latency is reported frequently (e.g. 
Zekveld et al., 2010, 2011; Winn et al., 2018). In addition, the reduction of the pupil 
dilation during the interval between the end of a sentence and the response prompt, 
known as the retention interval, may reflect differences in processing of the incoming 
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speech (Winn & Moore, 2018), like a repair of misperceived parts or resolving ambiguity in 
perception of some speech elements. 
Research has shown that the pupil dilation is dependent on the speech recognition 
performance in a speech-in-noise test in NH listeners, using steady-state speech noise 
(Kramer et al., 1997; Zekveld et al., 2010). The largest PPD and peak latency were found 
for sentence intelligibility levels around 50% correct. For intelligibility levels well below 
50% the PDD decreases due to a decrease in task engagement, as already mentioned 
(Ohlenforst et al., 2017; Wendt et al., 2018). For increasing intelligibility levels above 50%, 
the PPD and peak latency decrease, indicating that less effort is needed for speech 
recognition. A decrease of PPD for increasing intelligibility levels is also found for other 
noise types, although the PPDs are higher for a single-talker masker, than in stationary or 
fluctuating noise (Koelewijn et al., 2012a). For hearing-impaired listeners, several studies 
reported that the highest PPDs were found in a broad range of SNRs around 50% 
intelligibility, with smaller maximum PPDs than found in normal-hearing listeners, and less 
decline for increasing SNR, at least for steady-state speech noise (Zekveld et al., 2011; 
Ohlenforst et al., 2017). It would be of interest to investigate whether this pattern is also 
seen in CI users. 
Individual cognitive abilities may have an effect on the exerted effort when performing a 
difficult listening task. Several studies reported that better cognitive abilities are 
associated with a smaller pupil dilation, at least for non-auditory tasks (Ahern & Beatty, 
1979; Verney et al., 2004; Heitz et al., 2008). In contrast, some studies reported that 
better cognitive abilities are associated with a larger pupil size in a speech-in-noise 
recognition task. This association was especially apparent if cognitive ability was measured 
with Text Reception Thresholds (TRTs) (Zekveld et al., 2011; Koelewijn et al., 2012b; 
Zekveld & Kramer, 2014). Others observed no significant relationship between cognitive 
abilities and pupil dilation, when a measure of working memory capacity (WMC) was used 
in combination with pupil dilation responses to sentences masked by interfering speech in 
listeners with normal hearing (Koelewijn et al., 2012b; Zekveld et al., 2014) or hearing loss 
(Koelewijn et al., 2014). In CI users, Perreau and colleagues (2017) did not find a significant 
relationship between WMC and listening effort during speech recognition in noise. 
Overall, the exact relation between cognitive abilities and listening effort as measured 
with pupillometry in a speech recognition task is not clear yet (Zekveld et al., 2018) and 
available data is limited, especially for CI users. 
Another factor that may influence listening effort as reflected by the pupil dilation in CI 
users is the type of speech processing applied in the CI processor. In this study we aimed 
to study the effect of a single microphone noise reduction algorithm (NRA) on listening 
effort. Single-microphone NRAs aim to reduce noise within a single input signal. In current 
CI processors single-microphone NRAs use a noise level estimator that estimates the noise 
level in a given time window. If the instantaneous SNR in a frequency channel is below an 
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SNR threshold, the algorithm lowers the gain of that channel assuming that the channel 
contains mainly noise (Advanced Bionics, 2012; Mauger et al., 2012). The effect of single-
microphone NRAs on speech recognition is small or absent (for an overview of studies, see 
Dingemanse & Goedegebure, 2018). But single-microphone NRAs have been found to 
reduce the listening effort or cognitive load in normal-hearing and hearing-impaired 
people. Some studies found faster reaction times or improved task performance on a 
secondary task when an NRA was applied during speech perception in noise at low SNRs, 
where speech reception thresholds remain unchanged (Sarampalis et al., 2009; Desjardins 
& Doherty, 2014). The authors of these papers interpreted these faster reaction times or 
improved secondary task performance as a reduction of listening effort. Other studies 
used recall of final words of sentences at the end of a sentence list and reported that word 
recall was increased by the use of an NRA (Ng et al., 2013; Ng et al., 2015; Lunner et al., 
2016). The authors of these studies argued that noise reduction decreased the disruptive 
effect of noise on word identification, which facilitated the storage of the words in 
memory. The improved word recall was interpreted as a result of decreased listening 
effort during the speech recognition. 
The effect of noise reduction techniques on listening effort was also studied with 
pupillometry. Wendt and colleagues (2017) showed that activation of an NRA 
(beamforming followed by single-channel NR) at ceiling speech recognition performance 
reduced peak pupil dilation in hearing-impaired listeners, but left speech-in-noise 
performance unchanged. Ohlenforst and colleagues (2018) studied the effect of an NRA 
(beamforming followed by single-channel NR) on speech intelligibility and peak pupil 
dilation at different SNRs in hearing-impaired listeners. The NRA shifted the performance 
function and the corresponding peak pupil dilation to lower SNRs in stationary noise. In 
the case of a 4-talker masker, the noise reduction scheme lowered the average peak pupil 
dilation by approximately 35% compared to the inactive NRA condition. Because a 
combined NRA was used, it is not clear whether the single-channel NRA contributed to 
reducing the listening effort. Wendt et al. (2017) also used a single-channel NRA in one of 
their experiments and found virtually no reduction in PPD due to this NRA. It is currently 
unknown how clinically available single-microphone NRAs in CI processors affect listening 
effort as measured with pupillometry. 
In this study, we evaluated listening effort during a speech recognition task at various 
background noise levels, by measuring the pupil response in CI users. This was done with a 
clinically available single-microphone NRA on and off, to examine the effect of this NRA. 
The questions and hypotheses of this study were: 1) Does the pupil response in CI users 
depend on the speech intelligibility level and the speech-to-noise ratio? It is hypothesized 
that listening effort in CI users decreases with increasing speech performance, but that 
this decrease is less than that reported for NH listeners. The peak latency of the pupil 
response may be larger than latency values reported for NH listeners due to the different 
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top-down processing. 2) Is the pupil response reduced if a clinically available noise 
reduction algorithm (NRA) is applied? It is hypothesized that listening effort is reduced 
due to the NRA, regardless of whether speech understanding in noise is improved or not. 
3) Does working memory capacity (WMC) as measured with a reading span task correlated 
with the pupil response? As CI users receive a degraded speech signal, they possibly rely 
more on cognitive processing in the speech recognition process, making a relationship 
with a WMC measure more likely. However, it is difficult to hypothesize the direction of 
this relation, because of the conflicting evidence of this direction in the literature. 

Materials and methods 

Study design 
Pupil dilation responses were recorded during speech tests administered in two sessions 
in one visit. In the first session of the experiment, participants started with a practice run 
of an adaptive speech reception threshold (SRT) measurement, to make participants 
familiar with the experimental procedures. Next, speech intelligibility in noise was 
measured at three SNRs, with three corresponding performance levels: adaptively 
estimated SRTs at performance levels of 50% (condition p50 at SRT50) and 70% (condition 
p70 at SRT70), and performance level at a fixed SNR of 11 dB above the SRT50n of the 
practice run (condition pNearMax). This condition aimed to test speech perception in 
noise at a performance level that is close to the maximum speech recognition level in 
quiet and used an SNR step of 11 dB based on pilot testing. With these three performance 
levels, the top half of the psychometric curve is sampled at multiple points and it was 
expected that a reduction in listening effort at higher performance levels could be 
measured with these measurement conditions similar to the studies of Zekveld et al. 
(2010, 2011). In a second session, the speech intelligibility in noise was measured in the 
same way at the three levels: the SRT for 50% and 70% correct was adaptively measured 
and pNearMax was measured at the fixed SNR. The NRA was activated in one of these test 
sessions according to a double-blind crossover design. Within each test session, the three 
SNR conditions were tested simultaneously in a randomly interleaved order of trials. There 
was a small break after the practice run and an initialization of the pupil measurement 
equipment and a longer break between the first and second test session. The results of 
the speech tests were described by Dingemanse and Goedegebure (2015). In a third 
session, two to seven days later, a Reading Span was measured among other measures 
used in Dingemanse and Goedegebure (2015).  

Participants 
Twenty adults participated in this study (age range 37-85 years; mean 65 years), which 
were unilaterally implanted with an Advanced Bionics HiRes 90K implant and used a 
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Harmony processor for at least one year (mean of 4.2 (std 2.0) years of CI use). All 
participants had 16 active electrodes and HiRes120 sound processing, and all but two used 
the noise reduction algorithm ClearVoice with Medium setting in their daily program. All 
participants were Dutch native speakers that reported normal reading ability and normal 
or corrected-to-normal visual acuity. Only CI users with a phoneme score of at least 80% 
on clinically used Dutch consonant-vowel-consonant word lists were included. Participants 
signed a written informed consent form before participating in the study. Approval of the 
Erasmus Medical Center Ethics Committee was obtained. 

Noise reduction algorithm 
The NRA used in this study is ClearVoice, a proprietary single-microphone algorithm 
developed by Advanced Bionics (Stäfa, Switzerland). The NRA aims to improve the overall 
signal-to-noise ratio (SNR) by suppression of frequency channels lacking useful 
information for understanding speech. Within each frequency channel, the algorithm 
calculates a long-term estimation of the noise level using a 1.3s time window and an 
instantaneous SNR. Depending on the difference between the instantaneous SNR and the 
long-term average SNR, a negative gain is applied. In this study we used the Medium 
setting of ClearVoice, with a within-channel gain of up to −12 dB, as this showed a small 
enhancement in speech recognition and a good preference rating while the overall 
loudness of sounds is not decreased too much (Buechner et al., 2010; Koch et al., 2014),.  

Speech-in-noise test 
Speech recognition in noise was measured with Dutch female-spoken, unrelated 
sentences of 5-9 words (median length of 6 words, median duration 1.8s) in steady-state 
speech spectrum noise (Versfeld et al., 2000). For each condition one list of 26 sentences 
was used. The presentation level of the sentences was fixed at 70 dB(SPL) and the noise 
level depended on the condition. Because of the mostly positive SNRs, the perceived 
stimulus level was mainly determined by the fixed speech level. For the p50 and p70 
condition an adaptive stochastic approximation procedure was used to bring and keep the 
performance level at a target of resp. 50% or 70% correct word recognition. The stochastic 
approximation procedure changed the SNR with a step size of 4 ∙ (Pc(n − 1) – Pctarget), with 
Pc(n − 1) being the proportion correct words of the previous trial (Kushner & Yin, 2003;  
Dingemanse & Goedegebure, 2019). The SRT was defined as the average SNR over the last 
23 presentation levels. (The 27th level was calculated from the response on the 26th 
sentence). An average percentage of correct words per sentence list was calculated, based 
on the last 22 trials. The use of an adaptive procedure was needed because the effect of 
the NRA on the SRT was unknown. Zekveld and colleagues (2010) used similar adaptive 
procedures and target performance levels and showed that differences in pupil dilation 
can be measured even if the different target levels are measured adaptively. This suggests 
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that the use of an adaptive procedure adds relatively little variation in pupil dilation 
measures, compared to the effect of different target performance levels. For the 
pNearMax condition a fixed SNR was used. For the three conditions p50, p70, and 
pNearMax, the initial SNRs were respectively 0, 4, and 11 dB above a participant’s SRT50, 
which was estimated in a practice run of the adaptive procedure. 
The noise started 3s before the speech, so that the NRA was activated before the start of 
the speech and had enough time to make a good noise estimate, and ended 0.5s after the 
speech. Participants were asked to repeat as many words of the sentence as possible, 
after a short tone that was given 3 seconds after the end of each sentence and the 
response was scored by the experimenter. The time between the completion of the 
participant’s verbal response and a new trial was 4 to 5 s, depending on the sentence 
length.  

Reading span test 
We used a computerized Dutch version of the Reading Span test as a measure of verbal 
WMC (van den Noort et al., 2008) which closely resembles the original reading span test 
of Daneman and Carpenter (Daneman & Carpenter, 1980). Sentences appeared on a 
computer screen for 6.5s in series of 2 to 6 sentences. Participants had to read them aloud 
and to remember the final word of each sentence. After a series was finished, participants 
had to recall the final word of each sentence in the series (in free order). The reading span 
(Rspan) score was the proportion of correctly recalled words from three lists of 20 
sentences. 

Pupil dilation measurements 
During the speech recognition tasks, participants were asked to look at a small dot placed 
on a white wall 1m in front of the participant, which was almost uniformly illuminated. 
The dimmable illumination was set in such a way that the pupil diameter was at half the 
diameter range from the minimum pupil diameter at 300 lux to the maximum diameter in 
darkness. It resulted in an average illumination of 22 lux at eye position. 
Pupil data were cleaned from artifacts (blinks) by removal of data points that had a 
calculated slope higher than 10mm/s or were more than 2mm away from the mean of the 
detrended signal. The removed parts were filled with linearly interpolated data points and 
afterward, the data was filtered with a zero-phase low-pass filter (10 Hz) to smooth the 
edges without affecting the data. Trials comprised of over 20% blinks were excluded from 
the dataset. For each trial, the pupil response was selected from 4 seconds before 
sentence onset to 7 seconds after sentence onset. These pupil responses were averaged 
over trials 5 to 26 for each condition. Trials 1 to 4 were excluded because the adaptive 
procedure required several trials to converge to the target. 
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From the resulting traces, we determined three pupil dilation outcome measures for each 
condition: (1) the peak of the pupil dilation (PPD) relative to the minimum of the pupil 
dilation around the start of the sentence, using pupil trace alignment to the start of the 
sentence; (2) the latency of the peak (LPPD) relative to the start of the sentence; (3) the 
release of pupil dilation (RPD), defined as the difference between the peak pupil size and 
the minimum pupil size in the interval between the peak and the start of the response, 
using pupil trace alignment to the end of the sentence. 
To test whether the effect of increasing percent correct words on PPD in CI users is 
different from effects reported for listeners with normal hearing or hearing loss, the PPDs 
of this study were compared with PPDs reported by Zekveld et al. (2011). That study used 
the same speech material and comparable procedures, as used in this study. Although the 
calibration procedures of the Zekveld study and this study were similar, small differences 
in absolute PPD values due to differences in experimental setup and calibration cannot be 
ruled out. Therefore, we calculated the difference in PPDs between conditions and 
compared these differences between studies. Details are given in the Results section. To 
test whether the LPPD is prolonged in CI listeners compared to listeners with normal 
hearing or hearing loss, the LPPDs of this study were compared with LPPDs reported by 
Zekveld et al. (2011). RPDs were not compared with the study of Zekveld and colleagues, 
because they were not reported in that study. 

Equipment 
The speech-in-noise stimuli were presented with a loudspeaker 1m in front of the 
participants and connected to a Madsen OB822 audiometer, a Behringer UCA202 
soundcard, and a Macbook pro (type A1278) notebook. Data acquisition was done using 
Matlab (v7.11.0, The MathWorks Inc., Natick, Massachusetts, USA). The test was set up in 
a sound-treated room. Pupil size was measured at a rate of 120.8Hz with an EyseSeeCam 
head-worn eye tracker (Bartl et al., 2009; Schneider et al., 2009) which was calibrated with 
pupil images of different sizes. 

Data analysis 
Initial and exploratory data analysis revealed that one participant had no systematic 
phasic pupillary response in reaction to the onset of the speech-in-noise task and another 
participant had oscillations in the pupil trace, not synchronized to the stimuli. Both 
participants were excluded. 
Differences in pupil measures between conditions were tested on significance with paired 
t-tests. The Benjamini-Hochberg method was used to control the false discovery rate at 
level 0.05 (Benjamini & Hochberg, 1995). To investigate the combined effects of the 
listening conditions, the NRA, the Rspan, and age, we used linear mixed-model analyses 
with SPSS (IBM SPSS Statistics, Version 25.0, IBM Corp., Armonk, NY). For each pupil 
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dilation measure, a model was built. To account for differences between participants, 
random intercepts for participants were included. Level 1 of the models was the 
participants level, and level 2 was the level of test conditions. The proportion of correctly 
recognized words (PC), NRA, Rspan, age, the test session number, and the interaction of 
Rspan with PC were considered as variables. Initially, these variables were included as 
fixed and random effects. But the mixed-effects analyses showed that random slopes for 
these variables did not significantly contribute to any of the models. Therefore, in the 
reported model the variables were only included as fixed effects. A centered version of 
Rspan was used in the interactions to reduce multicollinearity and to make interpretation 
more straightforward. Proportions of correctly recognized words were transformed to 
rationalized arcsine units (rau) in order to make them suitable for use in statistical 
analysis, according to Studebaker (1985). Variables that were not included in an 
interaction term and did not contribute significantly to the model were sequentially 
removed and changes in the model were evaluated using restricted maximum likelihood 
estimation and Akaike's Information Criterion (AIC) until the final model with the best AIC 
was found. 
Variance Partition Coefficients (VPC) were calculated as a measure of explained variance 
(Nakagawa & Schielzeth, 2013; LaHuis et al., 2014). The variance was partitioned into a 
fixed-effects variance, a between-participants variance (level1), and a between-conditions 
variance (level 2). Each of these variances was divided by the total variance. For the 
calculation of the VPCs the maximum likelihood estimation method was used (Garson, 
2019). The VPCs of the final models were compared with the VPCs of a null model that 
only contained the random intercept. 

Results 

Speech intelligibility in noise and reading span test 
Table 5.1 shows the mean results of the speech recognition in noise task together with 
standard errors as previously reported by Dingemanse and Goedegebure (2015). In that 
study no significant differences were found between speech-in-noise scores for NRA-on 
and NRA-off conditions, and no learning or fatigue effects were observed. The mean value 
of the Rspan was 0.46 (SD = 0.13; range 0.20 to 0.73) and proved to be normally 
distributed. A higher age was significantly associated with a lower Rspan value (r = -0.65, p 
= 0.002). No significant effect of Rspan on the SRT was found in the p50 and p70 
conditions, using a linear mixed model with a random intercept and NRA and Rspan as 
fixed effects (Rspan t = -1.46, p = 0.17; NRA t = 0.33, p = 0.74), nor on the percent correct 
intelligibility scores in the pNearMax condition, using the same model (Rspan t = 1.98, p = 
0.07; NRA t = -1.4, p = 0.18). 
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Table 5.1. Mean and SD (presented in parentheses) of the three speech-in-noise conditions. 

Test condition NRA SNR 
(dB) 

Percent correct words 
(%) 

p50 Off   4.7  (3.8) 51.3    (3.2) 

 On   4.4  (3.5) 49.8    (5.4) 

p70 Off   6.8  (3.0) 70.5    (4.0) 

 On   7.4  (3.5) 72.3    (3.2)  

pNearMax Off 17.6  (3.7) 91.6    (8.6) 

 On 17.6  (3.7) 90.7    (7.5) 

Pupil dilation responses 
Figure 5.1 shows the mean values of the calculated pupil dilation parameters as described 
in the method section, together with the results of paired t-tests. Table 5.2 shows the 
significant predictors that resulted from the linear mixed-model analyses that 
included all conditions. It also lists Variance Partition Coefficients (VPC) that represent the 
effect size of the prediction.  
For the PPD no statistical differences were found between listening conditions, not for 
different percent correct speech, nor for NRA-on/off differences (Figure 5.1).  
The model for peak pupil dilation (PPD) (Table 5.2) showed significant variability across 
participants, as indicated by a high between-participants VPC and the highly significant 
intercept variance. In the null-model, 79% of the variance in the PPD is related to 
differences between participants. In the full model this between-participants VPC is 
 

 

 
Figure 5.1. Mean peak pupil dilation (PPD), mean release of pupil dilation (RPD) directly after the 
sentence, and peak latency (LPPD) for the different conditions and the noise reduction algorithm 
(NRA) on and off. Error bars represent 95% confidence intervals. The brackets between conditions 
show which conditions were significantly different at a p < .05 level after correction for multiple 
comparisons. 
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reduced to 0.61 indicating that 23% ((0.79-0.61)/0.79) of the between-participants 
variance is explained by the fixed effects in the model. This is mainly the result of adding 
Rspan to the model, as the PPD decreased significantly for participants with higher Rspan 
scores. The model also shows a small effect of the proportion correctly recognized words 
(PC) on PPD. The interaction between Rspan and PC was not significant (t(87.4) = 1.23, p = 
0.22), indicating that the effect of Rspan on the PPD was similar over conditions. NRA was 
not a significant factor (t(86.8) = 0.25, p = 0.80) and was therefore excluded. Also age was 
not a significant factor (t(15.0) = -0.12, p = 0.91) in the model and was excluded. Since the 
speech tests were performed twice, once in test session 1 and once in test session 2, we 
checked for a time effect in the pupil measurements by including the test session factor in 
the model. The PPDs in test session 1 were significantly greater than in test session 2. 
The reduction in mean PPD with increasing PC was calculated for the CI group and was 
compared with the change in mean PPD reported by Zekveld et al. (2011) for middle-aged 
listeners with normal hearing (MANH) and hearing impairment (MAHI). As Zekveld and 
colleagues scored the proportion of sentences that were repeated completely correct, we 
derived the sentence score from our data for this comparison. The mean sentence score 
of the p70 NRA-off condition was 49% and the mean sentence score of the pNearMax 
NRA-off condition was 78%. Therefore, the p70 condition was compared to Zekvelds 
SRT50% condition and the pNearMax condition to the mean of Zekvelds SRT71% and SRT84% 
conditions. The reduction in PPD between the pNearMax and the p70 condition was 0.01 
mm. This is significantly smaller than the corresponding reduction of 0.05 mm in the 
MANH group (Welch's t-test, t(46.38) = -2.820, p = 0.0035) but not significantly different 
from the corresponding PPD reduction of 0.01mm in the MAHI group (Welch's t-test, 
t(34.44) = 0.049, p = 0.48) in the Zekveld et al. study. 
The second outcome measure analyzed was the latency of the peak pupil dilation (LPPD). 
The LPPD decreased for the pNearMax NRA-on condition (Figure 5.1) compared to the p70 
NRA-on condition (t(17) = 2.52, p = 0.02) and also for the pNearMax NRA-off condition 
compared to the p50 NRA-off condition (t(17) = 2.89, p = 0.01). The model for LPPD (Table 
5.2) showed significant variability in intercepts across participants and significant 
decreasing effect for an increasing proportion of correctly recognized words (PC). This 
effect of PC explained 8% (0.04/0.48) of the between-conditions variance. The factors NRA 
(t(88.0) = 1.61, p = 0.11), Rspan t(16.0) = -076, p = 0.46), age (t(16.0) = -1.25, p = 0.23), and 
test session (t(88.0) = 0.83, p = 0.40) did not result in a significant contribution to the 
model and were excluded.  
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Table 5.2. Models for the pupil dilation measures, showing the significant fixed effects found in 
linear mixed-model analyses, together with the variance partition coefficients (VPC), showing how 
the variance is divided across fixed effects, participants, and test conditions. For each fixed factor 
the change of the VPCs is given, as indicated by a plus or minus sign. The sum of the changes may be 
slightly different from the total change in VPC because VPCs were calculated from variance 
estimates and values were rounded. The peak latency is given in seconds (s). 

Models Estimate SE Test-statistic p (Δ)VPC 
fixed 

factors 

(Δ)VPC 
between 
participa

nts 

(Δ)VPC 
between 

conditions 

Peak dilation (PPD) 0.01mm 0.01mm      

- Null model      0  0.79  0.21 

- Full model      0.23  0.59  0.18 

 (Intercept) mean 
 var 

 27.03 
 0.26 

 4.60 
 0.10 

t(17.3) = 5.88 
χ2(1) = 100.8 

 <0.001 
 <0.001 

 
 

  

 PC  -2.5  1.31 t(88.2 = -1.95  0.05  +0.01  -0.006  -0.004 

 Rspan  -20.93  9.22 t(16.0) = -2.27  0.04  +0.21  -0.21  

 Test session 1  1.69  0.52 t(92.0) = 3.27  0.002  +0.02   -0.02 

Peak Latency (LPPD) s s      

- Null model      0  0.52  0.48 

- Full model      0.04  0.52  0.44 

 (Intercept) mean 
 var 

 2.78 
 0.10 

 0.13 
 0.04 

t(81.4) = 21.06 
χ2(1) = 45.9 

 <0.001 <0.001     

 PC  -0.46  0.14 t(90.7) = -3.22  0.002  +0.04   -0.04 

Release of dilation 
(RPD) 

0.01mm 0.01mm      

- Null model      0  0.77  0.23 

- Full model      0.06  0.77  0.17 

 (Intercept) mean 
 var 

 4.40 
 0.37 

 1.77 
 0.13 

t(35.0) = 2.50 
χ2(1) = 127.14 

 0.017 
 <0.001  

   

 NRA  -1.68  0.53 t(88.0) = -3,17  0.002  +0.02    -0.02 

 PC  6.28  1.34 t(88.1) = 4.69  <0.001  +0.04   -0.04 

Rspan = reading span score; PC=proportion correct words; NRA=noise reduction algorithm. 
 

 
The latencies found in the CI group were compared with the latencies reported by Zekveld 
et al. (2011). The mean latency in the p70 condition is 2.4s. This is almost equal to the 
latency of 2.5s for the MANH group (Welch's t-test, t(45.83) = -0.703, p = 0.24) and 2.4s for 
the MAHI group (Welch's t-test, t(49.99) = 0.666, p = 0.25) in the SRT50% condition of 
Zekveld and colleagues. The mean latency in the pNearMax condition is 2.3s and is 
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Figure 5.2. The mean task-evoked pupil dilation over time for condition p70 (see text) with the noise 
reduction algorithm (NRA) on and off. The sentences started at 0s, and pupil responses were aligned 
to this starting point. The small vertical lines on the x-axis give the minimum, median and maximum 
sentence length. The error ribbons represent 95% confidence intervals (±2.1 SEM). 

 
comparable to the mean latency of 2.15s for the MANH group (Welch's t-test, t(45.93) = 
0.84, p = 0.20) and 2.2s for the MAHI group (Welch's t-test, t(41.87) = 0.528, p = 0.30) in 
the SRT71% and SRT84% conditions of the study of Zekveld et al.. 
As a final outcome parameter, the release of pupil dilation (RPD) was analyzed. Figure 5.1 
shows that the NRA resulted in significantly less release of dilation in the p50 and p70 
conditions. This effect is illustrated in Figure 5.2, which shows the mean pupil dilation 
curves for the p70 condition as an example of pupil dilation during listening to a sentence. 
The pupil dilated to a maximum that was reached 0.7s after the end of the sentence. Then 
the pupil size decreased to a local minimum that was reached in the second before the 
start of the response. During the response, the pupil dilated again. With the NRA on, less 
release of dilation after the peak dilation was seen, with a less steep slope in the interval 
between 1 and 2s after the end of the sentences. 
The model for RPD (Table 5.2) also showed that RPD was significantly related to NRA. In 
the NRA-on conditions there was relatively less release of pupil dilation. In addition, the 
RPD was significantly related to PC. For higher PC, more release of dilation was seen (RPD 
had a larger negative value). Together, NRA and PC explained 26% ((0.23-0.17)/0.23) of 
the between-conditions variance. The model for RPD showed significant variability in 
intercepts across participants as well. The between-subjects VPC of the null-model 
indicated that 77% of the variance in the RPD is related to differences between 
participants. The factors Rspan (t(16.0) = -0.41, p = 0.69), age (t(16.0) = 0.65, p = 0.52), and 
test session (t(87.0) = 0.34, p = 0.73) did not result in a significant contribution to the 
model and were excluded. 
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Baseline values were not significantly different for the conditions used. For the three 
conditions p50, p70 and pNearMax the baseline values in millimeters were respectively 
3.90(0.80), 3.91(0.78), and 3.90(0.79) for the NRA-on conditions and 3.86(0.83), 
3.88(0.82), and 3.85(0.8) for the NRA-off conditions. 

Discussion 
In this study we used pupillometry to evaluate listening effort in CI users during a speech-
in-noise recognition task at various noise levels in test conditions with a single-
microphone noise reduction algorithm (NRA) on and off. We analyzed the peak pupil 
dilation (PPD) as well as the peak latency (LPPD) and the release of pupil dilation (RPD), 
which is the decay in dilation after the peak response. 

Speech intelligibility and pupil dilation response 
This study revealed that listening effort in CI users is only slightly reduced at increasing 
intelligibility levels and corresponding speech-to-noise ratios (SNRs), as the PPD decreased 
by only a small amount for an increasing proportion of correctly recognized words (PC). 
This decrease is substantially smaller compared to the decrease found in NH people 
(Zekveld et al., 2010, 2011) which confirms our hypothesis that listening remains effortful 
for CI users, even at more favorable listening conditions. Perreau and colleagues (2017) 
also found less decrease in the reaction time on secondary task during speech recognition 
for an increasing SNR in CI users compared to NH listeners, with a lower speech 
perception score in the CI group at the same time. In contrast, we compared CI users and 
NH listeners not at equal SNRs, but at equal mean speech recognition levels, which 
ensures that the difference in listening effort between CI users and NH listeners was not 
confounded by speech performance level. Our finding is in accordance with the smaller 
decrease in PPD seen in hearing-impaired people (Zekveld et al., 2011; Ohlenforst et al., 
2017). The strongly degraded auditory input in CI users may have led to a relatively high 
PPD even at high performance levels, compared to NH listeners. The degraded input may 
cause more uncertainty in the recognition process almost independent of the SNR of the 
stimulus. This is in accordance with Winn et al. (2015) who reported increased PPDs for 
increasing signal degradation in speech vocoding, even when speech intelligibility 
remained near perfect. 
There was no sign of decreased task engagement for the most challenging condition (p50) 
as no inverse U-shaped pattern was found for the PPD, which is in accordance with other 
studies (Zekveld et al., 2011; Ohlenforst et al., 2017). The randomly interleaved 
presentation of stimuli of the different conditions may have contributed to this result, 
although a lapse in task engagement at the most difficult trials cannot ruled out. Based on 
the results, it is likely that the task was not too difficult and listeners were engaged to 
perform the task in all conditions. 
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The peak latency also decreased slightly for increasing speech performance. This decrease 
and also the absolute latency values appeared not to be different from the latencies found 
for middle-aged listeners with normal-hearing or hearing loss in the study of Zekveld and 
colleagues (Zekveld et al., 2011). Other studies reported delays in lexical decisions in CI 
users compared to NH listeners (Farris-Trimble et al., 2014; McMurray et al., 2017), but 
such delays were apparently not visible in the peak latencies of the present study. The 
delays reported in Farris-Trimble et al. (2014) and McMurray et al. (2017) were 100-
200ms, which are small with respect to the SD of the latencies found in this study. As such, 
the SD of latencies may have prevented us from detecting such delays. Furthermore, the 
time needed for lexical access to one individual word as reported in the studies of Farris-
Trimble et al. and McMurray et al. is not necessarily representative of lexical access of 
words in sentences, where contextual cues also play a role and reduce the number of 
competing words. 
In conditions with a higher speech recognition score more release of pupil dilation (RPD) 
after the sentence was seen. This observation suggests that most of the sentence 
recognition is achieved during the unfolding of the sentence and less post-stimulus 
cognitive processing is needed or at least less post-stimulus uncertainty in speech 
recognition is left at higher performance levels. It is in accordance with a study of Winn 
and Moore (2018) showing shorter peak latency and larger decrease of pupil dilation after 
the peak in high-context sentences than in low-context sentences. As high-context 
sentences were used in this study the findings of Winn and Moore (2018) imply that use of 
context quickly resulted in a coherent and meaningful response most of the time, at least 
for higher performance levels. Prolonged processing is only needed if the auditory input is 
insufficient for easy recognition or if recognized words do not lead to a coherent sentence 
(c.f. Rönnberg et al., 2019). This likely occurred more often for lower performance levels, 
resulting in less release of dilation in the most challenging conditions. Overall, the small 
decrease in PPD, the shorter latency, and the increase in RPD after the sentence for 
increasing speech recognition performance reflected a small decrease in listening effort 
for increasing speech performance levels during the sentence. 

Working memory capacity and pupil dilation response 
Participants with a relatively low WMC had higher PPDs than participants with a relatively 
high WMC. This finding is in accordance with the efficiency hypothesis or the Ease of 
Language Understanding (ELU) model. The efficiency hypothesis states that listeners with 
a large cognitive capacity may allocate their capacity more efficiently regardless of task 
difficulty, resulting in less effort (Neubauer & Fink, 2009; Zekveld et al., 2011). The ELU 
model states that cognitive abilities and working memory are particularly relevant in 
challenging conditions (Rönnberg, 2003; Rönnberg et al., 2013). We cannot distinguish 
between the effort hypothesis and ELU model with the data of this study, because all 
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speech-in-noise conditions in this study seem to be challenging as argued in a previous 
paragraph. The smaller PPD in high WMC individuals in the current study is in accordance 
with how Rönnberg et al. (2019) described the role of working memory: “participants with 
high WMC are expected to adapt better to different task demands than participants with 
low WMC, and hence are more versatile in their use of semantic and phonological coding 
and re-coding after mismatch”.  
The effect of WMC on PPD was especially apparent in the interval during the sentence 
presentation and just after the sentence until the peak was reached, as the release of 
dilation were not related to Rspan scores. This suggests that WMC mainly played a role in 
the fast recognition of speech elements and the prediction of the candidates for next 
words based on the part of the sentence that is recognized already, which is as expected 
for sentences with a relatively high amount of semantic context. We hypothesize that the 
repair of misperceived parts in the retention interval may play only a minor role in a 
relatively small number of trials and therefore the Rspan was not a significant factor in the 
model for RPD in the retention interval. 
The greater effort in participants with low WMC did not result in better SRT50 values 
compared to individuals with a high WMC, as no significant association of Rpan with 
SRT50 was found in this study. Dingemanse and Goedegebure (2019) even found a 
significant negative correlation between Rspan and SRT50 in a larger group of CI users 
using the same tests, indicating that low-WMC CI users had worse speech recognition in 
noise thresholds than high-WMC CI users. This is in accordance with the findings of 
Gordon-Salant and Cole (2016), who reported that in older adults with normal hearing and 
a low WMC speech recognition thresholds for sentences in noise were worse than in 
young listeners with normal hearing and a high WMC. But in older adults with normal 
hearing and a high WMC the speech recognition thresholds were as good as in young 
listeners with normal hearing and a high WMC. 

General discussion and conclusions 
In this study no effect of age on PPD was found. It has been reported that the dynamic 
range of the pupil dilation reduces with increasing age, at least in response to light (Winn 
et al., 1994; Piquado et al., 2010), which may be related to age-related atrophy of 
pupillary dilator muscles. Koch and Janse (2016) reported a smaller PPD for older and 
middle-aged adults compared to young adults in a speech perception task with 
conversational fragments. However, others did not found an age effect in PPD data 
(Koelewijn et al., 2012a; Ayasse et al., 2016; Kuchinsky et al., 2016). We found decreasing 
Rspan values for increasing age and higher PPDs for lower Rspan. This effect may have 
counteracted the effect of age on the amplitude of the pupil dilation. 
This study included only participants with a relatively high phoneme score in quiet to 
ensure that the adaptive procedure used in the sentence-in-noise test could be applied. 
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Results are therefore limited to a the group of better-than-average scoring CI users. For 
less-than-average scoring CI users, the speech recognition is lower at the SNRs used in this 
study. This may result in differences in perceived task difficulty and task engagement, 
which in turn can result in different pupil dilations. 
The PPDs were smaller in the second test session, which can be related to increased 
familiarity with the task (Polt, 1970), or to increased fatigue (McGarrigle et al., 2017). As 
the trials of the speech-in-noise conditions were randomly interleaved, the order of test 
sessions was balanced, and the test session was included as a fixed factor in the linear 
mixed models, it is not expected that task familiarity or fatigue had influenced the 
answers on the main questions of this study. 
In conclusion, in a speech-in-noise task the task-evoked pupil dilation response in CI-users 
showed that exerted listening effort was only slightly reduced for increasing signal-to-
noise ratios. It indicates that speech perception remains still effortful at higher signal-to-
noise ratios, even when performance improves. CI users are therefore in a chronic state of 
increased effort during communication situations. 
The application of a clinically available single-microphone noise reduction algorithm did 
not result in a reduction of listening effort. Less reduction of post-stimulus pupil dilation 
was found for conditions with the noise reduction algorithm on, suggesting decreased 
confidence in speech understanding, albeit without an effect on speech recognition 
performance. Participants with a relatively low working memory capacity exerted 
relatively more listening effort, but did not have better speech reception thresholds in 
noise. 

Appendix 
The pupil dilation responses were recorded during the speech tests of the experiment 
described by Dingemanse and Goedegebure (2015). In that study Acceptable Noise Levels 
(ANLs) and spectral-ripple discrimination thresholds (SRDT) were also available. In addition 
to the correlation analysis in the study of Dingemanse and Goedegebure (2015), 
correlations between the ANL and Rspan, the ANL improvement due to the noise 
reduction algorithm and Rspan, and ANL and pupil dilation measures were calculated. ANL 
and ANL improvement were not significantly correlated with Rspan. Furthermore, ANLs 
were not significantly correlated with any of the pupil dilation outcome measures. A larger 
Rspan was significantly associated with a better SRDT (r  = 0.52, p = 0.02), indicating that 
working memory is involved in the three interval forced choice task. No significant 
correlations were found for SRDT and any of the pupil response measures after correction 
for multiple testing. 



Chapter 5   
 

116 

References 
Advanced Bionics. (2012). ClearVoice. Technical Facts. 

Ahern, S., & Beatty, J. (1979). Pupillary responses during information processing vary with Scholastic 
Aptitude Test scores. Science, 205(4412), 1289-1292. https://doi.org/10.1126/science.472746  

Ayasse, N. D., Lash, A., & Wingfield, A. (2016). Effort Not Speed Characterizes Comprehension of 
Spoken Sentences by Older Adults with Mild Hearing Impairment. Frontiers in Aging and 
Neuroscience, 8, 329. https://doi.org/10.3389/fnagi.2016.00329  

Bartl, K., Lehnen, N., Kohlbecher, S., & Schneider, E. (2009). Head Impulse Testing Using Video-
oculography. Annals of the New York Academy of Sciences, 1164(1), 331-333. 
https://doi.org/10.1111/j.1749-6632.2009.03850.x  

Beatty, J. (1982a). Phasic not tonic pupillary responses vary with auditory vigilance performance. 
Psychophysiology, 19(2), 167-172. https://doi.org/10.1111/j.1469-8986.1982.tb02540.x  

Beatty, J. (1982b). Task-evoked pupillary responses, processing load, and the structure of processing 
resources. Psychology Bulletin, 91(2), 276-292. https://doi.org/10.1037/0033-2909.91.2.276  

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful 
approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 
289-300. https://doi.org/10.2307/2346101  

Bhargava, P., Gaudrain, E., & Baskent, D. (2014). Top-down restoration of speech in cochlear-implant 
users. Hearing Research, 309, 113-123. https://doi.org/10.1016/j.heares.2013.12.003  

Buechner, A., Brendel, M., Saalfeld, H., Litvak, L., Frohne-Buechner, C., & Lenarz, T. (2010). Results of 
a pilot study with a signal enhancement algorithm for HiRes 120 cochlear implant users. Otology 
& Neurotology, 31(9), 1386-1390. https://doi.org/10.1097/MAO.0b013e3181f1cdc6  

Daneman, M., & Carpenter, P. A. (1980). Individual-Differences in Working Memory and Reading. 
Journal of Verbal Learning and Verbal Behavior, 19(4), 450-466. https://doi.org/10.1016/S0022-
5371(80)90312-6  

Desjardins, J. L., & Doherty, K. A. (2014). The effect of hearing aid noise reduction on listening effort 
in hearing-impaired adults. Ear and Hearing, 35(6), 600-610. 
https://doi.org/10.1097/AUD.0000000000000028  

Dingemanse, G., & Goedegebure, A. (2019). Efficient Adaptive Speech Reception Threshold 
Measurements Using Stochastic Approximation Algorithms. Trends in Hearing, 23, 
2331216520919199. https://doi.org/10.1177/2331216520919199  

Dingemanse, G., & Goedegebure, A. (2020). The relation of hearing-specific patient-reported 
outcome measures with speech perception measures and acceptable noise levels in cochlear 
implant users. International Journal of Audiology, 59(6), 416-426. 
https://doi.org/10.1080/14992027.2020.1727033  

Dingemanse, J. G., & Goedegebure, A. (2015). Application of Noise Reduction Algorithm ClearVoice 
in Cochlear Implant Processing: Effects on Noise Tolerance and Speech Intelligibility in Noise in 
Relation to Spectral Resolution. Ear and Hearing, 36(3), 357-367. 
https://doi.org/10.1097/AUD.0000000000000125  



 Listening effort during recognition of speech in noise 

 

117 

Dingemanse, J. G., & Goedegebure, A. (2018). Optimising the effect of noise reduction algorithm 
ClearVoice in cochlear implant users by increasing the maximum comfort levels. International 
Journal of Audiology, 57(3), 230-235. https://doi.org/10.1080/14992027.2017.1390267  

Dingemanse, J. G., & Goedegebure, A. (2019). The Important Role of Contextual Information in 
Speech Perception in Cochlear Implant Users and Its Consequences in Speech Tests. Trends in 
Hearing, 23. https://doi.org/10.1177/2331216519838672  

Farinetti, A., Roman, S., Mancini, J., Baumstarck-Barrau, K., Meller, R., Lavieille, J. P., & Triglia, J. M. 
(2015). Quality of life in bimodal hearing users (unilateral cochlear implants and contralateral 
hearing aids). European Archives of Oto-Rhino-Laryngology and Head & Neck, 272(11), 3209-
3215. https://doi.org/10.1007/s00405-014-3377-8  

Farris-Trimble, A., McMurray, B., Cigrand, N., & Tomblin, J. B. (2014). The process of spoken word 
recognition in the face of signal degradation. Journal of Experimental Psychology: Human 
Perception and Performance, 40(1), 308-327. https://doi.org/10.1037/a0034353  

Friesen, L. M., Shannon, R. V., Baskent, D., & Wang, X. (2001). Speech recognition in noise as a 
function of the number of spectral channels: comparison of acoustic hearing and cochlear 
implants. Journal of the Acoustical Society of America, 110(2), 1150-1163. 
https://doi.org/10.1121/1.1381538  

Garson, G. D. (2019). Multilevel Modeling: Applications in STATA®, IBM® SPSS®, SAS®, R, & HLMTM. 
SAGE Publications.  

Gifford, R. H., Shallop, J. K., & Peterson, A. M. (2008). Speech recognition materials and ceiling 
effects: Considerations for cochlear implant programs. Audiology and Neurotology, 13(3), 193-
205. https://doi.org/10.1159/000113510  

Gordon-Salant, S., & Cole, S. S. (2016). Effects of Age and Working Memory Capacity on Speech 
Recognition Performance in Noise Among Listeners With Normal Hearing. Ear and Hearing, 
37(5), 593-602. https://doi.org/10.1097/AUD.0000000000000316  

Granholm, E., Asarnow, R. F., Sarkin, A. J., & Dykes, K. L. (1996). Pupillary responses index cognitive 
resource limitations. Psychophysiology, 33(4), 457-461. https://doi.org/10.1111/j.1469-
8986.1996.tb01071.x  

Heitz, R. P., Schrock, J. C., Payne, T. W., & Engle, R. W. (2008). Effects of incentive on working 
memory capacity: Behavioral and pupillometric data. Psychophysiology, 45(1), 119-129. 
https://doi.org/10.1111/j.1469-8986.2007.00605.x  

Henry, B. A., & Turner, C. W. (2003). The resolution of complex spectral patterns by cochlear implant 
and normal-hearing listeners. Journal of the Acoustical Society of America, 113(5), 2861-2873. 
https://doi.org/10.1121/1.1561900  

Hughes, K. C., & Galvin, K. L. (2013). Measuring listening effort expended by adolescents and young 
adults with unilateral or bilateral cochlear implants or normal hearing. Cochlear Implants 
International, 14(3), 121-129.  

Hughes, S. E., Hutchings, H. A., Rapport, F. L., McMahon, C. M., & Boisvert, I. (2018). Social 
Connectedness and Perceived Listening Effort in Adult Cochlear Implant Users: A Grounded 
Theory to Establish Content Validity for a New Patient-Reported Outcome Measure. Ear and 
Hearing, 39(5), 922-934. https://doi.org/10.1097/AUD.0000000000000553  

Kahneman, D. (1973). Attention and effort (Vol. 1063). Prentice-Hall.  



Chapter 5   
 

118 

Kim, G., & Loizou, P. C. (2011). Gain-induced speech distortions and the absence of intelligibility 
benefit with existing noise-reduction algorithms. Journal of the Acoustical Society of America, 
130(3), 1581-1596. https://doi.org/10.1121/1.3619790  

Koch, D. B., Quick, A., Osberger, M. J., Saoji, A., & Litvak, L. (2014). Enhanced hearing in noise for 
cochlear implant recipients: clinical trial results for a commercially available speech-
enhancement strategy. Otology & Neurotology, 35(5), 803-809. 
https://doi.org/10.1097/MAO.0000000000000301  

Koch, X., & Janse, E. (2016). Speech rate effects on the processing of conversational speech across 
the adult life span. Journal of the Acoustical Society of America, 139(4), 1618. 
https://doi.org/10.1121/1.4944032  

Koelewijn, T., Zekveld, A. A., Festen, J. M., & Kramer, S. E. (2012a). Pupil dilation uncovers extra 
listening effort in the presence of a single-talker masker. Ear and Hearing, 32(2), 291-300. 
https://doi.org/10.1097/AUD.0b013e3182310019  

Koelewijn, T., Zekveld, A. A., Festen, J. M., & Kramer, S. E. (2014). The influence of informational 
masking on speech perception and pupil response in adults with hearing impairment. Journal of 
the Acoustical Society of America, 135(3), 1596-1606. https://doi.org/10.1121/1.4863198  

Koelewijn, T., Zekveld, A. A., Festen, J. M., Rönnberg, J., & Kramer, S. E. (2012b). Processing load 
induced by informational masking is related to linguistic abilities. International Journal of 
Otolaryngology, 2012, 865731. https://doi.org/10.1155/2012/865731  

Kramer, S. E., Kapteyn, T. S., Festen, J. M., & Kuik, D. J. (1997). Assessing aspects of auditory 
handicap by means of pupil dilatation. International Journal of Audiology, 36(3), 155-164. 
https://doi.org/10.3109/00206099709071969  

Kressner, A. A., May, T., & Dau, T. (2019). Effect of Noise Reduction Gain Errors on Simulated 
Cochlear Implant Speech Intelligibility. Trends in Hearing, 23. 
https://doi.org/10.1177/2331216519825930  

Kuchinsky, S. E., Vaden, K. I., Jr., Ahlstrom, J. B., Cute, S. L., Humes, L. E., Dubno, J. R., & Eckert, M. A. 
(2016). Task-Related Vigilance During Word Recognition in Noise for Older Adults with Hearing 
Loss. Experimental Aging Research, 42(1), 64-85. 
https://doi.org/10.1080/0361073X.2016.1108712  

Kushner, H. J., & Yin, G. (2003). Stochastic approximation and recursive algorithms and applications. 
Springer.  

LaHuis, D. M., Hartman, M. J., Hakoyama, S., & Clark, P. C. (2014). Explained variance measures for 
multilevel models. Organizational Research Methods, 17(4), 433-451. 
https://doi.org/10.1177/1094428114541701  

Loizou, P. C. (2006). Speech processing in vocoder-centric cochlear implants. In Cochlear and 
Brainstem Implants (Vol. 64, pp. 109-143). Karger Publishers. doi:10.1159/000094648. 
https://doi.org/10.1159/000094648  

Luce, P. A., & Pisoni, D. B. (1998). Recognizing spoken words: The neighborhood activation model. 
Ear and hearing, 19(1), 1. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3467695/pdf/nihms-
410790.pdf  

Lunner, T., Rudner, M., Rosenbom, T., Agren, J., & Ng, E. H. (2016). Using Speech Recall in Hearing 
Aid Fitting and Outcome Evaluation Under Ecological Test Conditions. Ear and Hearing, 37 Suppl 
1, 145S-154S. https://doi.org/10.1097/AUD.0000000000000294  



 Listening effort during recognition of speech in noise 

 

119 

Mauger, S. J., Arora, K., & Dawson, P. W. (2012). Cochlear implant optimized noise reduction. Journal 
of Neural Engineering, 9(6), 065007. https://doi.org/10.1088/1741-2560/9/6/065007  

McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 
18(1), 1-86. https://doi.org/10.1016/0010-0285(86)90015-0  

McGarrigle, R., Dawes, P., Stewart, A. J., Kuchinsky, S. E., & Munro, K. J. (2017). Pupillometry reveals 
changes in physiological arousal during a sustained listening task. Psychophysiology, 54(2), 193-
203. https://doi.org/10.1111/psyp.12772  

McGarrigle, R., Munro, K. J., Dawes, P., Stewart, A. J., Moore, D. R., Barry, J. G., & Amitay, S. (2014). 
Listening effort and fatigue: what exactly are we measuring? A British Society of Audiology 
Cognition in Hearing Special Interest Group 'white paper'. International Journal of Audiology, 
53(7), 433-440. https://doi.org/10.3109/14992027.2014.890296  

McMurray, B., Farris-Trimble, A., & Rigler, H. (2017). Waiting for lexical access: Cochlear implants or 
severely degraded input lead listeners to process speech less incrementally. Cognition, 169, 147-
164. https://doi.org/10.1016/j.cognition.2017.08.013  

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from 
generalized linear mixed‐effects models. Methods in ecology and evolution, 4(2), 133-142. 
https://doi.org/10.1111/j.2041-210x.2012.00261.x  

Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience & Biobehavioral 
Reviews, 33(7), 1004-1023. https://doi.org/10.1016/j.neubiorev.2009.04.001  

Ng, E. H., Rudner, M., Lunner, T., Pedersen, M. S., & Rönnberg, J. (2013). Effects of noise and 
working memory capacity on memory processing of speech for hearing-aid users. International 
Journal of Audiology, 52(7), 433-441. https://doi.org/10.3109/14992027.2013.776181  

Ng, E. H., Rudner, M., Lunner, T., & Rönnberg, J. (2015). Noise reduction improves memory for target 
language speech in competing native but not foreign language speech. Ear and Hearing, 36(1), 
82-91. https://doi.org/10.1097/AUD.0000000000000080  

Ohlenforst, B., Wendt, D., Kramer, S. E., Naylor, G., Zekveld, A. A., & Lunner, T. (2018). Impact of 
SNR, masker type and noise reduction processing on sentence recognition performance and 
listening effort as indicated by the pupil dilation response. Hearing Research, 365, 90-99. 
https://doi.org/10.1016/j.heares.2018.05.003  

Ohlenforst, B., Zekveld, A. A., Lunner, T., Wendt, D., Naylor, G., Wang, Y., Versfeld, N. J., & Kramer, S. 
E. (2017). Impact of stimulus-related factors and hearing impairment on listening effort as 
indicated by pupil dilation. Hearing Research, 351, 68-79. 
https://doi.org/10.1016/j.heares.2017.05.012  

Perreau, A. E., Wu, Y. H., Tatge, B., Irwin, D., & Corts, D. (2017). Listening Effort Measured in Adults 
with Normal Hearing and Cochlear Implants. Journal of the American Academy of Audiology, 
28(8), 685-697. https://doi.org/10.3766/jaaa.16014  

Pichora-Fuller, M. K., Kramer, S. E., Eckert, M. A., Edwards, B., Hornsby, B. W., Humes, L. E., Lemke, 
U., Lunner, T., Matthen, M., Mackersie, C. L., Naylor, G., Phillips, N. A., Richter, M., Rudner, M., 
Sommers, M. S., Tremblay, K. L., & Wingfield, A. (2016). Hearing Impairment and Cognitive 
Energy: The Framework for Understanding Effortful Listening (FUEL). Ear and Hearing, 37 Suppl 
1, 5S-27S. https://doi.org/10.1097/AUD.0000000000000312  

Piquado, T., Isaacowitz, D., & Wingfield, A. (2010). Pupillometry as a measure of cognitive effort in 
younger and older adults. Psychophysiology, 47(3), 560-569. https://doi.org/PSYP947 [pii] 



Chapter 5   
 

120 

10.1111/j.1469-8986.2009.00947.x  

Polt, J. M. (1970). Effect of threat of shock on pupillary response in a problem-solving situation. 
Perceptual and Motor Skills, 31(2), 587-593. https://doi.org/10.2466/pms.1970.31.2.587  

Rönnberg, J. (2003). Cognition in the hearing impaired and deaf as a bridge between signal and 
dialogue: a framework and a model. International Journal of Audiology, 42 Suppl 1, S68-76. 
https://doi.org/10.3109/14992020309074626  

Rönnberg, J., Holmer, E., & Rudner, M. (2019). Cognitive hearing science and ease of language 
understanding. International Journal of Audiology, 58(5), 247-261. 
https://doi.org/10.1080/14992027.2018.1551631  

Rönnberg, J., Lunner, T., Zekveld, A., Sorqvist, P., Danielsson, H., Lyxell, B., Dahlstrom, O., Signoret, 
C., Stenfelt, S., Pichora-Fuller, M. K., & Rudner, M. (2013). The Ease of Language Understanding 
(ELU) model: theoretical, empirical, and clinical advances. Frontiers in Systems Neuroscience, 7, 
31. https://doi.org/10.3389/fnsys.2013.00031  

Rubinstein, J. T. (2004). How cochlear implants encode speech. Current Opinion in Otolaryngology & 
Head and Neck Surgery, 12(5), 444-448. https://doi.org/00020840-200410000-00016  

Samuel, A. G. (1981). Phonemic restoration: insights from a new methodology. Journal of 
Experimental Psychology: General, 110(4), 474-494. https://doi.org/10.1037//0096-
3445.110.4.474  

Sarampalis, A., Kalluri, S., Edwards, B., & Hafter, E. (2009). Objective measures of listening effort: 
effects of background noise and noise reduction. Journal of Speech, Language, and Hearing 
Research, 52(5), 1230-1240. https://doi.org/10.1044/1092-4388(2009/08-0111)  

Schneider, E., Villgrattner, T., Vockeroth, J., Bartl, K., Kohlbecher, S., Bardins, S., Ulbrich, H., & 
Brandt, T. (2009). Eyeseecam: An eye movement–driven head camera for the examination of 
natural visual exploration. Annals of the New York Academy of Sciences, 1164(1), 461-467. 
https://doi.org/10.1111/j.1749-6632.2009.03858.x  

Studebaker, G. A. (1985). A "rationalized" arcsine transform. Journal of Speech and Hearing 
Research, 28(3), 455-462. https://doi.org/10.1044/jshr.2803.455  

van den Noort, M., Bosch, P., Haverkort, M., & Hugdahl, K. (2008). A standard computerized version 
of the reading span test in different languages. European Journal of Psychological Assessment, 
24(1), 35-42. https://doi.org/10.1027/1015-5759.24.1.35  

Verney, S. P., Granholm, E., & Marshall, S. P. (2004). Pupillary responses on the visual backward 
masking task reflect general cognitive ability. International Journal of Psychophysiology, 52(1), 
23-36. https://doi.org/10.1016/j.ijpsycho.2003.12.003  

Versfeld, N. J., Daalder, L., Festen, J. M., & Houtgast, T. (2000). Method for the selection of sentence 
materials for efficient measurement of the speech reception threshold. Journal of the Acoustical 
Society of America, 107(3), 1671-1684. https://doi.org/10.1121/1.428451  

Wendt, D., Hietkamp, R. K., & Lunner, T. (2017). Impact of Noise and Noise Reduction on Processing 
Effort: A Pupillometry Study. Ear and Hearing, 38(6), 690-700. 
https://doi.org/10.1097/AUD.0000000000000454  

Wendt, D., Koelewijn, T., Ksiazek, P., Kramer, S. E., & Lunner, T. (2018). Toward a more 
comprehensive understanding of the impact of masker type and signal-to-noise ratio on the 



 Listening effort during recognition of speech in noise 

 

121 

pupillary response while performing a speech-in-noise test. Hearing Research, 369, 67-78. 
https://doi.org/10.1016/j.heares.2018.05.006  

Winn, B., Whitaker, D., Elliott, D. B., & Phillips, N. J. (1994). Factors affecting light-adapted pupil size 
in normal human subjects. Investigative Ophthalmology & Visual Science, 35(3), 1132-1137. 
https://www.ncbi.nlm.nih.gov/pubmed/8125724  

Winn, M. B. (2016). Rapid Release From Listening Effort Resulting From Semantic Context, and 
Effects of Spectral Degradation and Cochlear Implants. Trends in Hearing, 20. 
https://doi.org/10.1177/2331216516669723  

Winn, M. B., Edwards, J. R., & Litovsky, R. Y. (2015). The Impact of Auditory Spectral Resolution on 
Listening Effort Revealed by Pupil Dilation. Ear and Hearing, 36(4), e153-165. 
https://doi.org/10.1097/AUD.0000000000000145  

Winn, M. B., & Moore, A. N. (2018). Pupillometry Reveals That Context Benefit in Speech Perception 
Can Be Disrupted by Later-Occurring Sounds, Especially in Listeners With Cochlear Implants. 
Trends in Hearing, 22. https://doi.org/10.1177/2331216518808962  

Winn, M. B., Wendt, D., Koelewijn, T., & Kuchinsky, S. E. (2018). Best Practices and Advice for Using 
Pupillometry to Measure Listening Effort: An Introduction for Those Who Want to Get Started. 
Trends in Hearing, 22. https://doi.org/10.1177/2331216518800869  

Wu, Y. H., Stangl, E., Zhang, X. Y., Perkins, J., & Eilers, E. (2016). Psychometric Functions of Dual-Task 
Paradigms for Measuring Listening Effort. Ear and Hearing, 37(6), 660-670. https://doi.org/Doi 
10.1097/Aud.0000000000000335  

Zekveld, A. A., Koelewijn, T., & Kramer, S. E. (2018). The Pupil Dilation Response to Auditory Stimuli: 
Current State of Knowledge. Trends in Hearing, 22. https://doi.org/10.1177/2331216518777174  

Zekveld, A. A., & Kramer, S. E. (2014). Cognitive processing load across a wide range of listening 
conditions: Insights from pupillometry. Psychophysiology, 51(3), 277-284. 
https://doi.org/10.1111/psyp.12151  

Zekveld, A. A., Kramer, S. E., & Festen, J. M. (2010). Pupil response as an indication of effortful 
listening: the influence of sentence intelligibility. Ear and Hearing, 31(4), 480-490. 
https://doi.org/10.1097/AUD.0b013e3181d4f251  

Zekveld, A. A., Kramer, S. E., & Festen, J. M. (2011). Cognitive load during speech perception in noise: 
the influence of age, hearing loss, and cognition on the pupil response. Ear and Hearing, 32(4), 
498-510. https://doi.org/10.1097/AUD.0b013e31820512bb  

Zekveld, A. A., Rudner, M., Kramer, S. E., Lyzenga, J., & Rönnberg, J. (2014). Cognitive processing 
load during listening is reduced more by decreasing voice similarity than by increasing spatial 
separation between target and masker speech. Frontiers in Neuroscience, 8, 88. 
https://doi.org/10.3389/fnins.2014.00088  

Zhou, H., Wang, N., Zheng, N., Yu, G., & Meng, Q. (2020). A New Approach for Noise Suppression in 
Cochlear Implants: A Single-Channel Noise Reduction Algorithm. Frontiers in Neuroscience, 14, 
301. https://doi.org/10.3389/fnins.2020.00301 



 

 

  



 

 

 

CHAPTER 6 
The important role of contextual information in 
speech perception in cochlear implant users and 
its consequences in speech tests 
Gertjan Dingemanse 
André Goedegebure 
 
Trends in Hearing, 2019, 23. 
 

 

 

 

 

 

 

 
 
 
 
  



Chapter 6  
 

124 

Abstract 
Objectives: This study investigated the role of contextual information in speech 
intelligibility, the influence of verbal working memory on the use of contextual 
information, and the suitability of an ecologically valid sentence test containing contextual 
information, compared to a CNC (Consonant-Nucleus-Consonant) word test, in cochlear-
implant (CI) users. 
Methods: Speech intelligibility performance was assessed in 50 post-lingual adult CI users 
on sentence lists and on CNC word lists. Results were compared to a normal-hearing (NH) 
group. The influence of contextual information was assessed by calculation of context 
parameters from three different context models. Working memory capacity was 
measured with a Reading Span test. Results were compared to a normal-hearing (NH) 
group. 
Results: In CI recipients significantly higher values of the context parameters(indicating 
more use of context) were found than in NH listeners, both for recognition of CNC words 
and sentences. 
CI recipients made significantly more use of contextual information in recognition of CNC 
words and sentences than NH listeners. Their use of contextual information in sentences 
was related to verbal working memory capacity but not to age. The presence of context in 
sentences enhanced the sensitivity to differences in sensory bottom-up information, but 
also increased the risk of a ceiling effect. 
Conclusions: Results stress the important role of contextual information when CI 
recipients listen to speech. The extent to which CI  listeners make use of contextual 
information is related to working memory capacity.  An ecological valid sentence test, 
incorporating the use of contextual information, is a valuable tool for both clinical and 
experimental evaluation of CI performance and has added value to more conventional 
CNC word tests. 
A sentence test appeared to be suitable in CI users if word scoring is used and noise is 
added for the best performers. 
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Introduction 
Cochlear implants (CIs) are currently the treatment of choice for bilateral severe to 
profound post lingual sensorineural hearing loss, with significant improvements reported 
in speech intelligibility and quality of life (QOL) (Gaylor et al., 2013; McRackan et al., 
2018a). The effect of a CI on speech intelligibility is usually measured with standardized 
speech tests. However, much variation in used speech materials and scoring methods 
exists between studies, as reported in Table II of the study of McRackan et al. (2017). Most 
studies used lists of CNC (Consonant-Nucleus-Consonant) words with a score of either 
percent correct words or percent correct phonemes. Besides CNC words, several studies 
reported the use of sentence tests. One of the most important differences compared to 
word tests is the possibility of using context, because the words in the sentences are 
related to each other. Although not all words of a sentence may be perceived correctly, a 
listener may reconstruct the correct sentence based on a few perceived words. The 
amount of available contextual information in the sentences of a test has a substantial 
effect on the score that will be obtained. More context will lead to a better predictability 
of missing parts and hence to a higher speech score (Boothroyd & Nittrouer, 1988), 
although the resulting score may depend on the ability of the listener to make use of this 
contextual information (Grant & Seitz, 2000). However, in the literature, it is reported that 
sentence tests may be too difficult for use in CI listeners (van Wieringen & Wouters, 2008) 
or that listening to sentences may require much listening effort (Theelen-van den Hoek et 
al., 2014). This is not in accordance with the finding of Winn (2016) that understanding of 
high context sentences in CI users required less effort than understanding of low context 
sentences. Given these observations, it is important to consider whether clinically 
available sentence tests may be a better choice for evaluating the effect of CI treatment 
compared to CNC word tests. Especially the effect of contextual information in the 
sentences needs to be considered. 
Several studies that focused on sentence tests for CI users mainly reported on test 
properties, like the risk of floor or ceiling effects and good reproducibility (test-retest 
reliability). A floor effect exists if a relatively large proportion of a group of listeners 
obtains a score on or very nearby the minimum score of a test (in case of a speech test 
this is usually zero percent intelligibility). A ceiling effect exists if a relatively large 
proportion of a group of listeners obtains the maximum score of a test. For example, 
Gifford et al. (2008) reported that with the Hearing in Noise Test (HINT) sentence test 28% 
of 156 adult CI users achieved the maximum score and 71% reached a score above 85% 
sentence intelligibility in quiet. This makes the HINT not responsive to differences in 
stimulation strategies or different signal processing options for high-performing CI users. 
The HINT sentences were selected from the Bamford-Kowal-Bench (BKB) sentences 
(Bench et al., 1979). These sentences have an easy structure and consist of relatively easy, 
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frequently used words. Words that are unintelligible in the first instance are identified 
easily, because they were highly predictable. According to Boothroyd and Nittrouer (1988) 
sentences with high predictability result in higher scores than sentences with low 
predictability, and are therefore more prone to ceiling effects. Ebrahimi-Madiseh et al. 
(2016) showed that a ceiling effect also exists in the City University of New York (CUNY) 
sentence test (Boothroyd et al., 1985) if used in CI recipients. Gifford et al. (2008) 
recommended the use of the Arizona Biomedical Institute sentence test (AzBio) (Spahr et 
al., 2012), because this test contains more difficult, less predictable sentences, spoken by 
different talkers in a casual style. Only 0.7% of the CI users reached the maximum score. 
The Minimum Speech Test Battery (MSTB) for adult CI users (Luxford, 2001; MSTB,2011)  
recommends assessment of performance with both CNC word and sentence materials, to 
increase the probability that a patient’s performance will be within the range of at least 
one test, not confounded by either ceiling or floor effects. 
Several studies reported on the reproducibility of sentence tests by describing the test-
retest variability (e.g. Firszt et al., 2004; Spahr et al., 2012). The test-retest variability is, 
among other factors, related to the effective number of statistically independent elements 
in the speech, which depends on the amount of contextual information within the 
sentence (Boothroyd et al., 1985; Boothroyd & Nittrouer, 1988; Spahr et al., 2012; 
Versfeld et al., 2000). 
 
Until recently, relatively little attention has been paid in the literature to the ecological 
validity of a speech test. Ecological validity means that the speech used must be 
characteristic of everyday speech in different aspects, for example speaking rate and 
clarity, sentence structure, and topics. An important aspect of ecological validity is that 
the speech contains contextual information, as in real speech. The performance on an 
ecologically valid speech test may better reflect the perceived difficulties with speech 
intelligibility in real life. A test with sentences could arguably serve as more representative 
of everyday conversation than a word test. The AzBio sentences have relatively good 
ecological validity (Spahr et al., 2012). Another test that is designed to be more 
ecologically valid is PRESTO (Perceptually Robust English Sentence Test Open-set), which 
incorporates variability in words, sentences, talkers, and regional dialects (Gilbert et al., 
2013). In the Netherlands the VU sentences (Versfeld et al., 2000) have good ecological 
validity, because they are taken from newspapers, have variation in sentence structure 
and topics and are spoken with a normal speaking style and rate. 
However, when testing CI recipients, ecological validity is often secondary to the ease of 
the test material or properties that are thought to better suit the capabilities of CI users. 
For example the Dutch Leuven Intelligibility Sentence Test (LIST) (van Wieringen & 
Wouters, 2008) uses a relatively low speaking rate of 2.5 syllables/second and clear 
speech, to make the test easier for CI recipients. Theelen-van den Hoek et al. (2014) 
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investigated if it was possible to reliably measure the SRTn in CI listeners with the Dutch 
matrix test. A matrix test generates sentences with a length of 5 words from a matrix that 
contains 10 alternatives for each word position. This results in meaningful semantically 
unpredictable sentences with a fixed grammatical structure. These sentences contain little 
contextual information and are not very representative for everyday speech. The BKB 
Speech in noise (BKB-SIN) test is often used to test CI users because of its easy sentences 
(Bench et al., 1979). In all these examples, the specific material or test characteristics lead 
to a reduced ecological validity of the test.  
 
CI recipients have more difficulties with speech perception, because their CI delivers a 
degraded signal. The quality of the speech signal is reduced due to limited spectral 
resolution (Friesen et al., 2001; Henry & Turner, 2003; Winn et al., 2012) and temporal 
fine-structure cues (Loizou, 2006; Rubinstein, 2004). In other words, the bottom-up 
information is limited. Consequently CI users have to rely more on top-down processing 
based on linguistic context (Kong et al., 2015; Nittrouer et al., 2014; Oh et al., 2016; Winn 
et al., 2012). 
Therefore, it is reasonable to assume that in CI recipients speech intelligibility depends 
also on non-auditory factors like linguistic skills and cognitive abilities. Some studies 
investigated the relationship between speech intelligibility and linguistic skills or cognitive 
abilities in adult CI users. Heydebrand et al. (2007) found that better intelligibility of CNC 
words 6 months after cochlear implantation was associated with better verbal learning 
scores and verbal working memory (letter span) but not with general cognitive ability. 
Holden et al. (2013) reported a significant positive correlation between a composite 
measure of cognition (including a vocabulary test, a forward and backward digit span 
tests, and a verbal learning test) with CNC word recognition scores. In contrast, Moberly et 
al. (2017) found no significant correlation between sentence intelligibility in noise 
(percentage of words correct) and verbal working memory accuracy scores for serial recall 
of spoken nonrhyming words. Given these inconclusive findings, in the current study we 
explored the relation of working memory capacity with sentence intelligibility and word 
intelligibility within the same group.  
 
Some studies have investigated the use of contextual information in CI users. Amichetti 
and colleagues reported that CI users made effective use of linguistic context (Amichetti et 
al., 2018). Older CI users were able to use context to compensate for their initial 
disadvantage in recognizing words in low context conditions compared to young CI users, 
but were also more hindered by interference from other words that might also be 
activated by context. Winn (2016) showed that listening effort as measured by the 
pupillary response is higher in CI users than in NH listeners, but the listening effort is less 
for high context sentences than for low context sentences. Results from Başkent et al. 
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(2016) suggest that top-down restoration of interrupted speech can only be achieved in a 
more limited manner in CI listeners compared to NH listeners. Uncertainty still exists 
about whether CI users make more or less use of contextual information compared to NH 
listeners. 
 
In summary, contextual information in a speech test is an important factor because of its 
influence on test scores, reliability, the relation with ecological validity, and the relation 
with cognitive and linguistic abilities. In this study we investigated these aspects of 
contextual information in an ecological sentence test and a CNC words test in CI users. The 
purpose was to answer the following questions: 
1. What is the effect of contextual information from the speech materials on speech 

intelligibility in CI users? 
2. Are sentence intelligibility and the use of contextual information related to verbal 

working memory in CI users? 
3. To what extent is an ecologically valid sentence test suitable in CI users with respect 

to a possible ceiling effect, the responsiveness to differences in the CI signal and the 
reproducibility of the test compared to CNC wordlists? 

Materials and methods 

Participants 
Fifty adult CI recipients were included in this study, with a mean age of 63 years (SD 14.4; 
range 29-89 years), 18 female and 32 male. All participants had post-lingual onset of 
hearing loss and were Dutch native speakers. They were unilateral CI users for at least one 
year with severe hearing loss in the other ear and they did not use a contralateral hearing 
aid during the test session. Only CI users that had a phoneme score with the CI of at least 
60% on clinically used Dutch CNC word lists (Bosman & Smoorenburg, 1995) were 
included, because participants must have sufficient intelligibility to perform an adaptive 
speech in noise at a 50% correct level (see below).  
Twenty-seven participants had an Advanced Bionics implant with at least 14 active 
electrode contacts and a Naida Q70 sound processor with all sound enhancement 
algorithms switched off. Twenty-three participants had a Cochlear Ltd implant with at 
least 21 active electrode contacts and a Nucleus 5 sound processor with Autosensitivity 
and ADRO active, as in their daily life program. Volume adjustments were not allowed 
during the test session. 
For the speech in noise test, the reference data for normal hearing (NH) was based on 16 
subjects, with a mean age of 22 years (SD=3.0; range 20-29 years), 8 female and 8 male. 
For the reference data (NH) of the CNC word lists, we used the data of Bronkhorst and co-
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workers (1993) who used the same CNC word material in a group of 20 normal-hearing 
university students. 
Participants signed a written informed consent form and the Erasmus Medical Center 
Ethics Committee approved the study protocols of the original studies whose data were 
taken (as described in the subsection ‘Design and Procedures’). 

Speech intelligibility tests 
Speech intelligibility was measured with Dutch female-spoken, unrelated sentences 
(Versfeld et al., 2000). These sentences were representative for daily-used communication 
and mainly selected form a newspaper database. The sentences were pronounced in a 
natural, clear manner with normal vocal effort and speaking rate. For the estimate of the 
amount of context we needed sentences with a fixed number of words (see subsection 
‘Context parameters’). Therefore, we selected sentences with a length of 6 words and 
grouped them into lists of 26 sentences. The presentation level of the sentences was fixed 
at 70 dB(SPL). This speech level is often reached in noisy situations (Pearsons et al., 1977). 
Participants were instructed to repeat as many words as possible of each sentence, and to 
guess when unsure about any word. 
The poroportion of correct recognized words in quiet (PCq) was measured at an SNR of 40 
dB (i.e. a noise level of 30 dB). This is equivalent to the speech score in quiet, but it has the 
advantage that it is a distinct point on the psychometrical curve, instead of being the 
asymptotic value. The Speech Reception Threshold in noise (SRTn) at 50% word 
intelligibility was measured in steady-state noise with a speech spectrum that corresponds 
to the long-term spectrum of the sentences. The noise level was varied following an 
adaptive procedure based on a stochastic approximation method with step size 4 ∙ (PC(t − 
1) – 0.5), and PC(t − 1) being the proportion correct score of the previous trial. The 
average of trials in a stochastic approximation staircase with constant step size converges 
to the target of 50% (Kushner & Yin, 2003). The average proportion correct score was 
calculated over the last 22 presentation levels. The SRTn was defined as the average SNR 
over the last 22 presentation levels and the presentation level of the next trial that was 
calculated from the last response. The starting point was the SRTn of the practice run.  
 
Phoneme perception in quiet was measured with the clinically used Dutch word lists for 
speech audiometry of the Dutch Society of Audiology (Bosman & Smoorenburg, 1995), 
which consist of eleven phonetically balanced CNC words. Data was obtained from a 
participant’s clinical record if it was measured within 6 months before the visit or 
measured just before the experiment otherwise. The phoneme perception score was 
measured at 65 and 75 dB(SPL). These scores were averaged to reduce measurement 
variability and to obtain an estimate of the score at 70 dB(SPL). 
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For the reference data of the speech in noise test in the NH group the SRTn was measured 
along with the proportion of correct words at four SNRs around the individual SRTn. 

Context parameters 
There are several approaches to quantify the use of context information in speech 
perception. In this study we used the approaches of Boothroyd and Nittrouer (1988) and 
Bronkhorst et al. (1993). Boothroyd and Nittrouer (1988) described two equations to 
quantify the role of context. The first equation describes the relationship between the 
recognition probability pe,c of speech elements (e.g. words) presented in context (e.g. 
sentences) and the recognition probability of wholes pwh (i.e. understanding whole 
sentences completely correctly). This relation is given by: 
𝑝𝑝𝑤𝑤ℎ = 𝑝𝑝𝑒𝑒,𝑐𝑐

𝑗𝑗   
where j is a parameter to quantify the amount of contextual information, giving the 
‘effective’ number of statistically independent elements in the whole. If no context 
information is available, j is equal to n, the number of elements. The j factor is strongly 
associated with the ability to fill in the last missing element from contextual information 
(Bronkhorst et al., 2002). 
The second equation describes the relationship between the recognition probability pe,c of 
speech elements presented in context and the recognition probability pe,nc of speech 
elements presented without context (nc=no context), e.g. words in sentences versus 
words in isolation. 

 𝑝𝑝𝑒𝑒,𝑐𝑐 = 1 − (1 − 𝑝𝑝𝑒𝑒,𝑛𝑛𝑛𝑛)𝑘𝑘  𝑜𝑜𝑜𝑜  𝑘𝑘 = log(1−𝑝𝑝𝑒𝑒,𝑐𝑐)
log(1−𝑝𝑝𝑒𝑒,𝑛𝑛𝑛𝑛) 

The parameter k represents the magnitude of the context effect. Due to the context 
information the probability to make an recognition error (1-pe) is reduced. The k factor 
expresses the context effect in terms of the proportional increase of channels of 
information that would be required to produce the same change of proportion correct 
recognition in the absence of context. A k factor >1 means that context information is 
used to recognize speech elements. If pe approaches 1, k reduces to 1. The parameter k is 
a good overall measure of context effects. 
We calculated a j factor for the CNC words, for sentences in quiet, and for sentences in 
noise following equation 1. A k factor for sentences was calculated according equation 2. 
The proportion correct CNC words was used to estimate the pe,nc values, as explained in 
more detail below. For six individuals having a value of one on any of the proportions 
correct in equation 1 or 2, the factor was not calculated because it reached its asymptotic 
and, thus, did not accurately reflect the use of context. 
 
Bronkhorst et al. (1993) developed a more extensive model for context effects in speech 
recognition. Their model gives predictions of the probabilities pwh,m that m (m = 0,...,n) 
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elements of wholes containing n elements are recognized. These probabilities pwh,m are a 
function of the recognition probabilities of the elements if presented in isolation (no 
context) and a set of context parameters ci (i = 0,…,n). 
  𝑝𝑝𝑤𝑤ℎ,𝑛𝑛 = 𝑓𝑓(𝑐𝑐𝑖𝑖, 𝑝𝑝𝑒𝑒,𝑛𝑛𝑛𝑛), 0 ≤ 𝑐𝑐𝑖𝑖 ≤ 1  
The context parameters ci give the probabilities of correctly guessing a missing element 
given that i of the n elements are missing. They quantify the amount of contextual 
information used by the listener. The maximum value of 1 means that a missing element is 
available from context information without uncertainty. If the whole contains no context 
information, the value of ci is zero. It should be noted that the ci values quantify the added 
effects of all contextual cues from a priori knowledge, coarticulation, word frequency, 
syntactic constraints, semantic congruency, with the ability to use these cues included. 
Actually, the model is a set of equations that result in an array of probabilities pwh,m with 
length n for each value of pe,nc. For details of the model we refer to (Bronkhorst et al., 
1993; 2002). From the array pwh,m we can calculate the average element recognition 
probability for elements in context: 

 𝑝𝑝𝑒𝑒,𝑐𝑐 = 𝑝𝑝𝑤𝑤ℎ,𝑛𝑛 + (𝑛𝑛−1)
𝑛𝑛 𝑝𝑝𝑤𝑤ℎ,𝑛𝑛−1  + (𝑛𝑛−2)

𝑛𝑛 𝑝𝑝𝑤𝑤ℎ,𝑛𝑛−2  + ⋯ + 1
𝑛𝑛 𝑝𝑝𝑤𝑤ℎ,1  

The model prediction of the j factor can be calculated from pe,c and pwh,n, and the 
prediction of parameter k from pe,c and pe,nc. A short description of the different context 
parameters is given in Table 6.1.  
 
Table 6.1. Definition of three different context measures. 

 j factor 
(1 ≤ j ≤ n) 

Measure of the use of context, expressed as a number of ‘effective’ 
independent elements from n elements. The lower j the more use of 
context. For a sentence of six words, j=6 in case of no context use (all 
words of the sentence must be recognized independently to correctly 
repeat the sentence) and j=1 in case of maximal context use (recognizing 
only one word is enough to repeat the complete sentence).  

k factor 
(k ≥1) 

Measure of the effect of context, expressed as the increase of proportion 
correct recognized elements due to context, compared to recognition of 
isolated speech elements. The k factor can be interpreted as the 
proportional increase of channels of information that would be required 
to produce the same change of proportion correct recognition in the 
absence of context. 

ci (i=1 .. n) 
(0 ≤ ci ≤ 1) 

Context parameters that give the probability of correctly guessing a 
missing element given that i of the n elements were missed. The higher 
these probabilities, the more use of context. For example, c1 is the 
probability to guess the missing word if only one word of a sentence is 
missing. 
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The context model of Bronkhorst and co-workers was fitted to the data of this study, 
resulting in a set of context parameters ci that give the amount of context use at a group 
level (CI users or NH participants). The fitting process consisted of five steps: (1) Set 
estimates of the parameters ci (i=1 .. n). (2) Sampling of the model with values of pe,nc 
between 0 and 1 in steps of 0.005, resulting in a calculated pe,c for each pe,nc from equation 
3 and 4; (3) Determination of the pe,nc values that correspond to the measured phoneme 
scores pe,c based on linear interpolation; (4) Calculation of pw,m for these pe,nc values. (5) 
Calculation of the rms difference between measured and predicted pw,m. The optimal set ci 
was obtained by minimizing the rms difference using Matlab routine fminsearch, an 
unconstrained nonlinear optimization procedure. Confidence intervals (95%) of ci were 
obtained by bootstrapping. The parameter c0 was set to zero, because participants were 
not forced to make a guess if they did not understand any of the phonemes. 
 
To model the relation between scores for the CNC speech material and the VU sentence 
material, we regarded the CNC word scores as proportions correct of isolated words 
(without context) that could be used as input in the context model of the sentences. 
However, the words in the sentences have different lengths, varying from 2 phonemes to 
10 phonemes (mean 4.4), while CNC words have 3 phonemes. Therefore, we designed a 
transform of the CNC word scores to scores for words of 5 phonemes (as the first integer 
value above the mean phoneme length of 4.4). This transform is a simplification, because 
in fact the transform should be the weighted sum of the transforms for each number of 
phonemes. However that would result in too many parameters. Because we only fit the 
relation between the score of isolated phonemes and average word score from the 
sentence test, a transfer function with 5 parameters appeared to be sufficient to achieve 
an acceptable fit. We hypothesized that participants make more use of contextual 
information for words that consist of more than 3 phonemes, because if they initially 
understood more than half the elements of the word, the number of words that fits with 
the already perceived elements is often very limited. On the other hand, if they perceived 
only one or two phonemes of a long word, the chance to guess the whole word correctly is 
low, because there are still many alternatives. In the context model this means that c1 and 
c2 are relatively high, but the ci for i >= 3 are relatively low. We modeled a transform of 
the proportion correct words pwh,3 from the CNC context model to word scores pwh,5 of a 5 
elements (phonemes) contextual model, with c-values to be fitted to the data. The 
measured pwh,3 was converted to pe,nc, using the known relationship of pwh,3 and pe,nc from 
the CNC context model. Next the pe,nc was converted to pwh,5, using a 5-phonemes context 
model. The obtained pwh,5 values were used as input in the context model of sentences as 
the proportion correct scores for words without sentence context. Figure 6.1 
demonstrates the steps of the transform: a proportion correct CNC words of 0.7 is 
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Figure 6.1. Illustration of the transform of a CNC word score to a words from-sentences score, using 
the context model of CNC words (solid line in left panel), a context model of words with 5 phonemes 
(dashed line in left panel) and the context model of sentences (solid line in right panel). 
 
transformed to a proportion correct words in sentences of 0.97 by following the arrows. In 
the left panel the value is transformed to the value for 5-phoneme words (0.79). The 5-
phoneme words are isolated words that serve as input in the context model of sentence 
intelligibility (equation 3). The use of context leads to a proportion correct of 0.97. The 
output variables of the context model of sentences are the word and sentence scores. We 
fitted the 5-phonemes model by minimizing the summed squares error of the calculated 
word and sentence scores and the measured scores. The CNC words and the VU sentences 
were both spoken by a female talker with a clear articulation. Therefore, talker differences 
were expected to be small. 

Responsiveness and reproducibility  
We defined the responsiveness to bottom-up differences as the change in a speech score 
in reaction on a change in the proportion correct of isolated phonemes ( pisol_ph). We 
regarded the last as an adequate measure of sensory bottom-up information in 
accordance with Boothroyd and Nittrouer (1988). It was not possible to measure these 
proportions correct, because no recordings of isolated phonemes were available. 
However, measured values were not needed, because the context model provided us with 
the relations between the proportion correct isolated phonemes and the other speech 
measures pe,c and pwh,n for both CNC words and sentences. The responsiveness to changes 
in the bottom-up information was defined as 
 pe,c /  pisol_ph and  pwh,n /  pisol_ph.  
For example, in Figure 6.1 the slope of the curve for CNC words (left panel) is almost one. 
This slope is the responsiveness for CNC words. For sentences the transform of Figure 6.1 
was used to obtain the responsiveness. 
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We also defined a measure of reproducibility with the influence of context included. As 
already described by Thornton and Raffin (1978) each score from trials having two 
response options (‘true’ or ‘false’) can be modelled according to a binomial distribution. In 
a sentence test with word scoring, the recognition of each word can be true or false. 
However, in a sentence the recognition of each word is not independent from the 
recognition of the other words. According to equation 1 there are only j independent 
elements. From the binomial distribution the standard deviation is given with the 
equation: 

 𝑠𝑠𝑠𝑠(𝑝𝑝) =  √𝑝𝑝(1−𝑝𝑝)
𝑗𝑗𝑗𝑗   

with T the number of trials. The total number of the ‘effective’ independent elements (as 
if context effects were removed) in a test is j∙T.  
We calculated also responsiveness-reliability ratios. Use of context may enhance the 
responsiveness, but may also enlarge the standard deviation, because j is lower for more 
use of context. The ratio of responsiveness and reliability is a measure of the sensitivity of 
a speech test to reliably measure a change between different test conditions that differ in 
the amount of sensory bottom-up information. 

Reading span task 
We used a computerized Dutch version of the Reading Span Task as a measure of verbal 
working memory capacity (van den Noort et al., 2008). Participants had to read sentences 
aloud, which appeared on a computer screen for 6.5 sec, and to remember the final word 
of each sentence. After reading the sentence they had to press the space bar to go to the 
next item. If participants could not finish the sentence within this time, the next sentence 
was shown automatically. Sentences were presented in different set sizes of 2, 3, 4, 5, or 6 
sentences in random order. After a set, the word ‘recall’ appeared, and the participants 
had to recall the final word of each sentence in the set (in free order). The reading span 
(Rspan) score was the average of the number of correctly recalled words for three sets of 
20 sentences, giving a Rspan score range from 0 to 20. 

Design and procedures 
The speech intelligibility and reading span data were available from three recent studies of 
our department of Otorhinolaryngology: data of Vroegop et al. (2017), data of 
Dingemanse and Goedegebure (2018) and Dingemanse et al. (2018). From Dingemanse 
and Goedegebure (2018) we included only 11 participants, because the other participants 
were already included from Dingemanse et al. (2018). In all studies each participant was 
tested in one test session following partly the same protocol. First, a practice run of the 
sentence-in-noise test was done to make the participants familiar with the voice and the 
task and to obtain a first estimation of a participant’s SRTn. Second, sentence tests in 
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quiet and in noise were performed. Next, tests were performed that were specific of the 
aforementioned studies were the data is taken from. At the end of the test session a 
Reading Span Task was performed to obtain a measure of the verbal working memory 
span. 

Equipment 
All testing was performed in a sound-treated room. Participants sat one meter in front of a 
Westra Lab 251 loudspeaker that was connected to an external soundcard (MOTU 
UltraLite mk3 Hybrid and after failure of the MOTU card a Roland Octa-capture UA-1010, 
calibration was checked), and a computer. The tests were presented in a custom 
application (cf. Dingemanse and Goedegebure, 2015) running in Matlab. 

Data analysis 
Speech performance scores were transformed to rationalized arcsine unit (rau) scores in 
order to make them suitable for statistical analysis according to Studebaker (1985), but 
not for use in the context models. In cases of multiple comparisons, we used the 
Benjamini-Hochberg method to control the false discovery rate at level 0.05 (Benjamini & 
Hochberg, 1995). Data analysis was performed with Matlab (MathWorks, v9.0.0). 

Results 
Table 6.2 shows the descriptive values of proportion correct (PC) for different scoring 
methods and speech materials, Speech Reception Threshold in noise (SRTn), calculated j 
factors, k factor and Rspan values for the CI group. Lower SRTn indicated better 
performance. Lower j factors indicate more use of contextual information. As expected, 
the proportion of completely correctly understood sentences is less than the proportion of 
correctly recognized words from the sentences. Also, the proportion of correctly 
recognized CNC words is less than the proportion of correctly recognized phonemes. The j 
factor for sentences in noise is 2.2, indicating that understanding of a whole sentence of 6 
elements is equivalent to recognition of 2.2 statistically independent elements. In quiet 
the j factor is 3.9, demonstrating that less contextual information is used at higher 
proportion correct scores. For the NH group the mean SRTn value (using word scores) was 
-5.5 dB with a standard deviation of 0.6 dB. 

Use of context 
Figure 6.2 shows the results for each of the three context parameters c(i), j and k derived 
from the CNC scores by fitting the context model of Bronkhorst et al. (1993) to the data. 
The left panel shows the ci values obtained from the CNC scores in CI users compared to ci 
values for normal-hearing subjects (obtained from Bronkhorst et al., 1993). The context  
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Table 6.2. Descriptive values of Mean (M), standard deviation (SD), and range of proportion correct 
(PC) in quiet (q) and noise (n) using phoneme scoring (ph), word scoring (wrd) or sentence scoring 
(sen), Speech Reception Thresholds in noise (SRTn) for different scoring methods, context factors (j 
and k), and Reading Span (Rspan) scores for the group of CI recipients.  

 Speech type Scoring Noise   M    SD Range 
PCq_ph_CNC (rau) CNC Phonemes Quiet 0.82 0.15 0.57-1.21 
PCq_wrd_CNC (rau) CNC Words Quiet 0.42 0.074 0.23-0.50 
j_CNC CNC  Quiet 2.1 0.49 1.0-3.2 
PCq_wrd (rau) Sentences Words Quiet 0.97 0.18 0.61-1.21 
PCq_sen (rau) Sentences Sentences Quiet 0.79 0.25 0.15-1.19 
PCn_wrd (rau) Sentences Words Noise 0.51 0.030 0.43-0.58 
PCn_sen (rau) Sentences Sentences Noise 0.26 0.078 0.077- 0.42 
SRTn (dB) Sentences Words Noise 5.8 4.8 -1.1-19.5 
SRTn_sen (dB) Sentences Sentences Noise 6.8 4.8 -0.1-20.7 
j_q Sentences  Quiet 3.9 1.6 1.5-6.4 
j_n Sentences  Noise 2.2 0.59 1.1-3.9 
k_q Sentences  Quiet 2.5 1.1 1.0-5.0 
Rspan    9.5 2.8 4.0-18.0 

 
 
parameters for the CI users were significantly higher than the context parameters for the 
normal-hearing listeners, even for the listening condition with added noise (NHn). For 
example, the CI users had a 70% chance of correctly guessing the missing phoneme (i=1) if 
they had recognized already two phonemes in quiet, whereas the NH subjects had a 
chance of only 45% in noise.  
The center panel of Figure 6.2 shows the calculated j factor (note that the y-axis is 
reversed) as a function of proportion correct phonemes. The average j factor from the 
data (j_CNC from Table 6.2) is also plotted. The factor j is smaller in CI users than in NH 
users, again indicating more use of context in the CI users group. The j factor increases 
(meaning less use of context) for increasing proportion correct phonemes, as expected.  
However, the j factor remains low (<2) even for a proportion correct phonemes up to 0.8, 
indicating that CI users rely more on context cues even for more easy listening conditions. 
The right panel of Figure 6.2 shows the calculated k factor based on the context model. 
The k factor shows the same observation that CI users make more use of context than NH 
listeners. 
The context model was also fitted to the sentence intelligibility data, following the same 
approach as in the fitting of the CNC words. Both the data of sentences in quiet and in 
noise were used, because we found that the speech intelligibility in quiet (PCq_wrd ) and 
in noise (SRTn ) were highly correlated (r  = 0.87, p < 10-16) and both fitted well in one 
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Figure 6.2. Left panel: context parameters ci that gave the best fit of the context model to the data 
of the CNC word intelligibility in quiet in CI users (CIq), plotted as a function of index i. Higher ci 
values indicate more use of context. Also plotted were the parameters ci obtained in a normal-
hearing group for words in noise (NHn) and in quiet (NHq) taken from Bronkhorst et al. (1993). The 
index i represents the number of missing phonemes and ci is the probability that one of the missing 
phonemes is guessed correctly based on contextual information. Error bars give 95% confidence 
intervals. Significant differences between the CI group and the NHn group are denoted with an *. 
Center and right panel: The predicted j factor and k factor from the model as a function of the 
proportion correct elements (phonemes). The dot in the center panel is a data point (j_CNC) from 
Table 6.2. Note that the y-axis of the center panel is inverted. Lower j values and higher k values 
indicate more use of context.  
 
model (see also Figure 6.4, panel B). The left panel of Figure 6.3 shows the context 
parameters ci for the CI users and the NH group of this study. The context parameters 
were significantly higher for i = 2 to 5 in the CI group. The difference was largest for i = 3, 4 
or 5. This means that if the CI users initially recognized 1, 2 or 3 words, they were better in 
correct prediction of the missing words based on context, than NH subjects 
The center panel of Figure 6.3 shows the calculated j factor from the model. The average j 
factors for speech in noise and in quiet from Table 6.2 (j_q and j_n) were also plotted. 
 
For the NH group we plotted four average j values from the four measurements at fixed 
SNRs. There was no significant difference between the j factors of CI users and NH 
listeners. Below a proportion correct words of 0.8, the j factor was relatively low for both 
groups, indicating that much context information is used. For higher proportions correct 
words there is less need to use contextual information as reflected by a higher j factor. 
The k factor from the model was plotted in the right panel. It is apparent from this panel 
that the use of contextual information is relatively constant over the proportion correct 
words, until this proportion reaches a value of 0.8. CI users made more use of context 
than NH listeners, in accordance with the difference in ci values in the left panel. 
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Figure 6.3. Left panel: context parameters ci that gave the best fit of the context model to the data 
of the sentence intelligibility, plotted as a function of index i. This index represents the number of 
missing words and ci is the probability that one of the missing words is guessed correctly based on 
contextual information. Higher ci values indicate more use of context. Error bars give 95% 
confidence intervals. Significant differences between the CI group and the NH group are denoted 
with an *. Center and right panel: Predictions of the j factor and k factor from the model as a 
function of the proportion correct elements (words). The two dots in the center panel are data 
points from Table 6.2 (j_n and j_q), the cross markers give mean j factors from the data of the NH 
group. Note that the y-axis of the center panel is inverted. The dot in the right panel is k_q from 
Table6. 2. Lower j values and higher k values indicate more use of context. 
 

Speech intelligibility and context factors in relation to the reading span 
Table 6.3 provides Spearman correlation coefficients for correlations of speech 
intelligibility measures with the Rspan measure. The proportion correct CNC phonemes 
was not significantly correlated with the Rspan, but the proportion correct words from 
sentences and the proportion of correct sentences in quiet were positively correlated with 
Rspan. For the SRTn we also found a correlation with Rspan, but after correction for 
multiple comparisons this correlation was not significant. None of the j factors was 
significantly correlated with Rspan. 
Because the j_CNC factor was also dependent on the proportion correct scores of 
elements (see Figure 6.2, center panel), we partialled out this variable, but still no 
significant relationship was found. The k factor was only available for the sentence 
material and had a weak, but not significant correlation with the Rspan. But from the right 
panel of Figure 6.3 it is clear that the k factor is dependent on the proportion correct 
words from sentences. From the context model it follows that this dependence also exists 
for the proportion correct of isolated words. If this effect is partialled out, the k factor is 
significantly related to the Rspan, showing that more use of context is related to a better 
verbal working memory span. 
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Table 6.3. Spearman correlation coefficients of speech intelligibility measures (PC and SRTn), context 
factors (j and k), and age with the Reading Span (Rspan) score. Variables that were partialled out 
were given between brackets. 
     Age      Rspan  
     rho     p     rho     p 
PCq_ph_CNC(rau)  -0.23  0.11  0.18  0.24 
PCq_wrd_CNC (rau)  -0.29  0.043  0.09  0.58 
PCq_wrd (rau)  -0.31  0.030  0.37  0.011* 

PCq_sen (rau)  -0.31  0.026  0.38  0.009* 
SRTn (dB)   0.34  0.016*  -0.30  0.042 
j_CNC  -0.07  0.62  0.17  0.28 
j_CNC (-PCq_ph_CNC)  -0.03  0.82  0.11  0.47 
j_n  -0.11  0.45  0.31  0.039 
k_q  -0.05  0.72  0.24  0.13 
k_q (- PCq_isol_wrd )  -0.14  0.37  0.44  0.0055* 
k_q (- PCq_isol_wrd, -Age )    0.41  0.011* 
Rspan  -0.33  0.024*   

* The correlation is significant (<.05) after correction for multiple testing. 
 
Table 6.3 provides also Spearman correlation coefficients for correlations of speech 
intelligibility measures with age. All speech scores tend to be lower for higher age, but the 
correlations were not significant, except for the SRTn measure. The j and k factors were 
not related to age. For the Rspan a significant negative correlation with age was found. 
Furthermore age was partialled out from the correlation of the k factor with Rspan, but 
this did not change this correlation, indicating that age was not a dominant factor in the 
relation between ability to use contextual information and working memory capacity. 

Responsiveness and reproducibility 
We plotted relations between the different scoring methods and the different speech 
materials in Figure 6.4 to obtain information about floor- and ceiling effects and to get 
more insight into the suitability of the materials and scoring methods in individual CI 
users. In panel A of Figure 6.4 the CNC word scores (PCq_wrd_CNC) are plotted against the 
CNC phoneme scores (PCq_ph_CNC). The j factor from the center panel of Figure 6.2 was 
applied to the proportion correct phonemes to obtain the curve in panel A, showing good 
agreement with the data. Panel B presents the relation of the proportion correct 
recognized sentences (PCq_sen and PCn_sen) and the proportion of correctly recognized 
words from sentences (PCq_wrd and PCn_wrd). The individual data points for the speech 
in noise condition are plotted together with the data from the speech in quiet condition. 
The curve in panel B resulted from the fitting of the context model to the data (for details 
see subsection ‘Use of context’) and is in good agreement with the data. From panels A 
and B it is clear that scoring of the elements causes some ceiling effect, most for words 
from sentence scoring. 
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Panel C of Figure 6.4 shows that, on average, the proportion correct words from sentences 
was higher than CNC phoneme scores for phoneme scores > 0.5. Panel C shows an 
apparent ceiling effect for words from sentences. Panel D shows that the proportion 
correct sentences was less than the proportion correct phonemes, except for phoneme 
scores > 0.8. For sentence scoring, no ceiling effect was seen, but a floor effect was 
obvious. The plotted curves in panel C and D of Figure 6.4 are based on a fitted transform 
of CNC word scores to sentence scores, as described in the methods section and 
illustrated in Figure 6.1. 
 

 
Figure 6.4. Relations between proportions correct recognition for different scoring methods and 
different speech materials. Panel A shows the relation between CNC phoneme scores (PCq_ph_CNC) 
and CNC word scores (PCq_wrd_CNC). Panel B shows the relation of the proportion of correctly 
recognized words from sentences (PCn_wrd) and the proportion correct recognized sentences 
(PCn_sen). The curves in panels A and B are the result of fitting of the context model of Bronkhorst 
et al. (1993) to the data. Panels C, and D show a comparison of CNC phoneme scores with scores 
from the sentence material. See the text for more information. Data from speech in noise are 
plotted with a ‘x’ marker and data from speech-in-quiet conditions with a ’o’ marker. 
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The resulting values of the ci (i = 1, .. ,5) from the fit were (0.98, 0.89, 0.20, 0.04, 0). These 
values show that participants made more use of contextual information for words that 
consisted of more than three phonemes, if they understood a part of a word initially. On 
the other hand, if they perceived only one or two phonemes of a long word, the chance to 
guess the whole word correctly was low. 
Interestingly the sentence scores in panel D differ largely between subjects in a range of 
0.15 to 1 for phoneme scores between 0.5 and 0.8, suggesting that the ability to use 
contextual information differs between subjects. Therefore, we calculated the correlation 
between sentence scores and the k factor. The sentence scores were significantly 
correlated with the context factor k_q (r = 0.41, p = 0.0036).  
 
The left panel of Figure 7.5 shows the proportion correct of the different scoring methods 
and the different speech materials, plotted against the proportion correct for isolated 
phonemes. From this figure it is clear that differences in ceiling effects between materials 
are related to the amount of context within the material. For sentences the proportion 
correct score is already near maximum if still not all isolated phonemes were recognized. 
If the wholes are scored (CNC words or sentences), a larger proportion correct recognized 
isolated phonemes is needed for correct understanding of the wholes.  
The center panel of Figure 6.5 shows the standard deviation (SD) of the different scoring 
methods and the different speech materials, based on 22 trials (the length of two Dutch 
NVA CNC word lists). The x- and y-axis were switched, to make the y-axis of the left panel 
and the center panel the same. For example, for a proportion correct recognized isolated 
phonemes of 0.4, the sentence scoring is 0.43 (left panel). The center panel shows the 
corresponding SD. For a value of 0.43 on the y-axis the SD of sentence scoring is 0.097. As 
expected from equation 5, the SD for element scoring was smaller. The smallest SD was 
found for sentences with word scoring, because of the fact that the j factor for words from 
sentences was greater than the j factor of CNC phoneme scoring in CI users. 
The right panel of Figure 6.5 presents the relative responsiveness-reliability ratios for CNC 
words and sentences with different scoring methods. As explained in the Methods section, 
the slope of the curves of the left panel was divided by the SD, relative to the SD of 
isolated phonemes. A higher ratio value is associated with a better sensitivity of the test 
taking into account the reliability. The ratio of CNC phoneme scoring is below 1, meaning 
that it was slightly less sensitive to reliably measure a change in sensory bottom-up 
information than isolated phonemes. CNC word scoring was even less sensitive. It is 
obvious that scoring the words of sentences gave the best opportunity to reliably measure 
a change in sensory bottom-up information if the isolated phoneme scores are below 
0.75. Above this score of 0.75, word scoring suffered from a ceiling effect, and became 
insensitive to changes in bottom-up information. Between a score of 0.75 and 1  
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Figure 6.5. Left panel: proportion correct values of the different speech materials and scoring 
methods and the plotted against the proportion correct for isolated phonemes as obtained from the 
context models. Center panel: Standard deviations of the proportion correct values of the different 
speech materials and scoring methods from equation 5. Right panel: Responsiveness-reliability 
ratios for CNC words and sentences with different scoring methods from the CI group relative to the 
responsiveness-reliability ratio of isolated phonemes. 
 
CNC phoneme scoring had the best ratio. If an adaptive procedure is used with a target of 
0.5, using words from sentence scoring, the ratio for word scoring is 1.8. 

Discussion 

Use of context 
This study has shown that contextual information from the speech materials has several 
effects on speech intelligibility in CI users. First, an important finding of this study was that 
CI users rely significantly more on contextual information in speech perception than 
normal-hearing listeners. This was true for both CNC words and sentences. In CNC words 
the contextual information comes mainly from phonotactic constraints: the permissible 
phoneme sequences or syllables in a language. In the recall of sentences the difference 
with NH listeners was largest if 3, 4 or 5 words were missing, i.e. if relatively little 
information is available initially (see left panel Figure 6.3). For sentences the difference 
between the CI group and the NH group is mainly the difference in the k factor, not the j 
factor. This reflects that CI users made better use of cues from known morpho-syntactic 
and semantic restrictions (Boothroyd & Nittrouer, 1988). These findings suggest that CI 
users are trained in finding correct words based on scarce information. The CI recipients 
have not had a formal training, but they were all experienced CI users with at least one 
year CI use. Likely they acquired the speech recognition skills by unintentional learning, 
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because they have to practice the use of contextual information in daily life more than NH 
listeners.  
A second effect of the extensive use of contextual information in CI users is that the 
variance in performance scores is somewhat increased, especially in CNC phoneme scores. 
This observation resulted from equation 5, which shows that a lower j factor (more use of 
context) results in a higher variance. Figure 6.2 shows that for CNC words the j factor was 
substantial lower in CI users compared to NH listeners. For the sentences the j factor was 
not very different for the CI group compared to the NH group (Figure 6.3, center panel). 
This result may be explained by the fact that the j factor is mainly related to the c1 
parameter (the probability to guess the last word correctly if one word is missing), as 
described by Bronkhorst et al. (2002). The c1 parameter was already high in the NH group, 
making it difficult to find a significant higher c1 value in the CI group.  
Third, this study showed that the use of contextual information from sentences could 
enhance the responsiveness of the speech test to changes in sensory bottom-up 
information on speech scores. This follows from the interpretation of Figure 6.5 (left 
panel) that due to the use of contextual information the responsiveness (the slope of the 
curves) was greater than one, meaning that a change in sensory bottom-up information 
(isolated phonemes) leads to an even greater change in word scores. This finding is in 
accordance with the study of Kong et al. (2015) who reported that the measured effect of 
electric-acoustic stimulation (EAS) was larger if measured with high context sentences 
compared to low context sentences. So, the use of speech materials with context 
information is more sensitive to changes in bottom-up information than tests that aim to 
measure the amount of bottom-up information directly, for example a non-word 
repetition test (e.g. Moberly et al., 2017). 

Speech intelligibility and context factors in relation to the reading span and age 
The use of contextual information differed between CI users. This individual ability was 
best reflected by the individual k factor. The k factor was significantly positive correlated 
to verbal working memory as measured with the Rspan, if the effect of the proportion 
correctly recognized phonemes was partialled out. This is an indication that lexical-
cognitive processing plays a role in the use of contextual information. Furthermore, the 
Rspan was significantly correlated with the proportion correct words from sentences and 
the proportion of correct sentences in quiet, but not with scores from CNC words. This 
suggests that the recognition of CNC words does not rely much on working memory 
capacity, because these words are short and relatively little processing is required. 
Understanding of sentences is more likely to depend on working memory. For example, if 
one of the first words of a sentence was not recognized, the last word of a sentence could 
make it much easier to predict the missed word. But such a prediction requires that the 
sentence is kept in the working memory and that some processing is done. This finding is 
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in accordance with other studies that reported significant positive correlations between a 
measure of speech perception and a measure of verbal working memory span 
(Heydebrand et al., 2007; Holden et al., 2013; Tao et al., 2014).  
Interestingly, the capacity of using contextual information in sentences was only 
associated with working memory and not with age. As we found a negative correlation 
between working memory and age, as expected, we could also expect that older people 
have more difficulty in using context. This idea is supported by Wingfield et al. (1994) who 
found that older adults are less effective in retrospective identification of an unrecognized 
word that is followed by context words.  Other studies reported a greater degree of 
interference from other words in older adults, that may negatively affect the retrospective 
identification from contextual information (Amichetti et al., 2018; Lash et al., 2013; 
Sommers, 1996; Sommers & Danielson, 1999). However, there is also an effect of aging on 
using context in the opposite direction, as older adults have on average a larger 
vocabulary size than younger adults (Burke & Peters, 1986; Verhaeghen, 2003), which 
could help with recognition of indistinct words from context. The combined effect of these 
factors is that in older adults word recognition is facilitated by sentence context to an 
equal or greater degree than in young adults (Amichetti et al., 2018; Dubno et al., 2000; 
Grant & Seitz, 2000; Nittrouer & Boothroyd, 1990; Pichora-Fuller et al., 1995). This might 
explain our finding that the k factor was not related to age. 

Suitability of an ecologically valid sentence test for testing CI users and 
recommendations for clinical practice 
The results of this study suggest that an ecologically valid sentence test is suitable for 
testing speech intelligibility in CI users if word scoring is used. It appeared that the 
sentences were not too difficult to recognize for CI users.  
The suitability of a test depends on the goal of the test. If the goal is to investigate 
differences in stimulation strategies or different signal processing options, it is 
recommended to use speech materials with contextual information within the sentences, 
word scoring and a target proportion correct in the mid-range (between 0.3 – 0.7). For CI 
users having a proportion correct words from sentences in quiet ≥ 0.7, the addition of 
noise is advised to bring the proportion correct in the responsive mid-range. This 
recommendation is based on the results in Figure 6.5, showing that the sensitivity to 
reliably measure differences between conditions is best if a sentence test with word 
scoring is used. As explained before, the context effect increases the responsiveness to 
differences in sensory bottom-up information on speech scores. 
If the goal is to measure the longitudinal improvement in speech perception due to 
treatment with CI, the use of the same speech tests pre- and post-operatively is required. 
From the two speech materials used in this study the CNC words with phoneme scoring 
seems to be the best candidate for a longitudinal analysis, because with CNC phoneme 
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scoring there is less risk of a floor- or ceiling effect than in a sentence test. The use of 
phoneme scoring is recommended, because the responsiveness-reliability ratio is better 
for phoneme scoring than for word scoring (Figure 6.5, panel C). 
If one wants to combine both goals, we recommend the use of an ecologically valid 
sentence test with word scoring in combination with a CNC word test with phoneme 
scoring. The scoring of elements is recommended because it has the best test-retest 
variability. The combination of a CNC test and an ecologically valid sentence test allows 
the calculation of the k factor, as a measure of the use of contextual information by the 
individual patient. This provides a clinical specialist with a measure of the amount of top-
down processing in an individual CI user. 

Limitations 
This study had several limitations. First, the test-retest reliability was derived from 
equation 5 and was not actually measured. However, the test-retest reliability may not 
only originate from variance due to the binomial distribution, but may be also influenced 
by variability between sentence lists. List equivalency is only known for NH listeners, not 
for CI users. But since lists were randomized over participants and the number of 
sentences was relatively large (n = 26) it is reasonable to assume that differences between 
sentence lists were small and averaged out. Second, no data for performance below 50% 
correct phonemes and sentences was included, because participants must be able to 
perform an adaptive measurement of the SRTn at 50% correct. A third limitation is that 
the mean age of the CI group and the NH group was different. An analysis of the effect of 
age in the CI group showed that the ability to use context was not associated with age, but 
a comparison of age-matched groups would have been even better, because this would 
have given the opportunity to compare both groups directly. The ability to use contextual 
information appeared to be an important factor in explaining individual differences in 
speech intelligibility. In this study the contextual information came from context 
information within words and within sentences. In many daily situations there is even 
more contextual information: supra sentence information from the topic of a discussion 
and visual information from speech reading and more general nonverbal communication 
cues. These types of context information make even greater demands on the cognitive 
processing. We believe that the k factor is indicative for these types of context 
information as well, because the k factor reflects the capability of an individual to make 
use of context information and is also related to working memory capacity. 

Conclusions 
1. CI users rely significantly more on contextual information in speech perception than 

normal-hearing listeners. This was true for both isolated words and sentences.  
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2. The ability to use contextual information differs between CI recipients and this ability 
is related to verbal working memory capacity regardless of age, indicating that post-
processing of the scarce sensory information is dependent on cognitive abilities. 

3. The k factor is a good overall measure of the use of contextual information within 
speech. 

4. Presence of contextual information in the speech of a test improves the 
responsiveness of the test to differences in sensory bottom-up information between 
conditions. 

5. Contextual information increases the risk of a ceiling effect in the speech test, at least 
for high-performing CI listeners, but this potential problem can be mitigated by 
adding noise to bring the scores back into the responsive range. 
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Abstract 
Objective: This study examines whether speech-in-noise tests that use adaptive 
procedures to assess a speech reception threshold in noise (SRT50n) can be optimized 
using stochastic approximation (SA) methods, especially in cochlear-implant (CI) users. 
Methods: A simulation model was developed that simulates intelligibility scores for words 
from sentences in noise for both CI users and normal-hearing (NH) listeners. The model 
was used in Monte Carlo simulations. Four different SA algorithms were optimized for use 
in both groups and compared to clinically used adaptive procedures. 
Results: The simulation model proved to be valid, as its results agreed very well with 
existing experimental data. The four optimized SA algorithms all provided an efficient 
estimation of the SRT50n. They were equally accurate and produced smaller standard 
deviations (SD) than the clinical procedures. In CI users SRT50n estimates had a small bias 
and larger SDs than in NH listeners. At least 20 sentences per condition and an initial 
signal-to-noise ratio below the real SRT50n were required to ensure sufficient reliability. In 
CI users, bias and SD became unacceptably large for a maximum speech intelligibility score 
in quiet below 70%. 
Conclusions: Stochastic approximation algorithms with word scoring in adaptive speech-
in-noise tests are applicable to various listeners, from CI users to NH listeners. In CI users 
they lead to efficient estimation of the SRT50n as long as speech intelligibility in quiet is 
greater than 70%. Stochastic approximation procedures can be considered as a valid, 
more efficient, alternative to clinical adaptive procedures currently used in CI users. 
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Introduction 
Many cochlear-implant (CI) recipients and hearing-impaired people experience difficulties 
with understanding speech in a noisy environment. To characterize a subjects’ ability to 
listen in noise, speech-in-noise tests have been developed in many languages. For clinical 
use of a test it is important that the test is accurate in the sense that the test should have 
a small test-retest variance and bias. With an accurate test a clinician is able to measure 
differences between amplification and signal processing settings. Furthermore, the test 
should be efficient, to be applicable in a busy clinic and to prevent fatigue. Efficiency here 
means that a sufficient accuracy is reached within a limited number of trials. 
A frequently used measure of speech perception in noise is the Speech Reception 
Threshold in noise (SRT50n), defined by the signal-to-noise ratio (SNR) that yields an 
average response of 50% correctly recognized items over a number of trials (Plomp & 
Mimpen, 1979). This SRT50n can be measured with an adaptive procedure that varies the 
SNR based on previous responses of the listener to track the 50% score. The SNR and the 
percent correct score are related by a psychometric curve, which is often referred to as 
the intelligibility function. The slope of this curve is steepest around the 50% correct score 
in normal-hearing (NH) listeners. The adaptive procedure keeps the trials in this steep part 
of the curve and avoids potential floor and ceiling effects. In general, tests of sentence 
recognition in steady-state speech-spectrum noise have intelligibility functions with steep 
slopes, giving the advantage that the SRT50n estimate is accurate, since the test-retest 
variance is inversely related to the slope (e.g. Kollmeier et al., 2015). The slope of the 
intelligibility function is often increased by optimizing the homogeneity of the sentences 
with respect to their SRT50n and slope.  
For CI users speech-in-noise tests may not be optimally designed. First, the just-mentioned 
optimization of the homogeneity of the sentences is usually done in a group of NH 
listeners and it is unknown whether this homogeneity also applies to CI users. Second, the 
slope is often less steep in CI recipients. Dingemanse and Goedegebure (2015) found an 
average slope of 6.4%/dB around 50% for CI recipients, which is much lower than the 
typical slope of 10 to 15 %/dB obtained with NH listeners (e.g. Versfeld et al., 2000). 
However, the step sizes used in adaptive speech tests are often the same in CI recipients 
as in NH listeners (e.g. Chan et al., 2008; Zhang et al., 2010; Dawson et al., 2011), which 
may result in different step size to slope ratios for CI recipients compared to NH listeners. 
This can reduce the accuracy of the adaptive procedure. Third, the maximum proportion 
correct score (measured in quiet) is lowered and may range from 1 to 0.1 (e.g. Gifford et 
al., 2008), making the proportion correct score of 0.5 no longer the point with the 
steepest slope. Consequently, the accuracy of the SRT50n measure may be insufficient for 
CI listeners or an adaptive estimation of the SRT50n is not even feasible if the maximum 
proportion correct score of a CI listener approaches 0.5. Given these concerns, there is a 
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need to address the accuracy of SRT50n measures in CI listeners and to explore if SRT50n 
measurements need special procedures in CI listeners in order to enhance accuracy. 
 
Several researchers have attempted to modify the simple up-down procedure for use in CI 
recipients, because of their reduced speech intelligibility. The Hearing in Noise Test (HINT) 
procedure was modified by allowing one or more errors in repeating a sentence (Chan et 
al., 2008) or allowing a maximum error of 20, 40, or 60% (Wong & Keung, 2013). Wong 
and Keun showed that adaptive procedures based on these criteria could be used in a 
greater percentage of CI users. These modifications of the scoring may improve the 
accuracy because of the increase in maximum proportion correct score and the slope at 
SRT50n. 
Another well-known option to enhance the accuracy of the SRT50n estimate is to score 
the correctly repeated sentence elements (often words, so called ‘word scoring’) (Brand & 
Kollmeier, 2002; Terband & Drullman, 2008). The test-retest reliability is inversely 
proportional to the square root of the number of sentences and for word scoring also to 
the number of statistically independent elements per sentence. The effective number of 
statistically independent elements in a sentence is typically around 2 words per sentence. 
This is less than the number of words in the sentence, because the words in a sentence 
are related by the contextual information of the sentence (Boothroyd & Nittrouer, 1988). 
In CI users having a lowered maximum proportion correct score, word scoring is a good 
option, because this type of scoring can still be used, while sentence scoring is not 
feasible. 
If word scoring is used, an adaptive procedure has to prescribe how the step size depends 
on the proportion of correct words. Hagerman and Kinnefors (1995) described such a 
procedure. They used small step sizes if only some of the words were recognized, and 
larger steps if all words or none of the words were recognized. Brand and Kollmeier (2002) 
proposed a generalization of the Hagerman and Kinnefors procedure based on the 
difference between the proportion of correct words in the previous trial and the target 
proportion correct. This difference was divided by the slope of the intelligibility function 
and scaled by a scaling function that governed the step size sequence. A concern with this 
adaptive procedure is that the optimal step size is related to the slope of the intelligibility 
curve, which is most often unknown and can vary considerably in CI users and hearing-
impaired listeners. 
 
The accuracy of an SRT50n estimate also depends on the adaptive procedures themselves 
and the way in which the SRT50n is calculated. Often, adaptive procedures use a fixed step 
size to govern SNR placement and the average SNR over the trials as the SRT50n estimate 
(Plomp & Mimpen, 1979; Nilsson et al., 1994). These simple up-down procedures are non-
parametric. Several researchers used a parametric maximum likelihood estimation of the 
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SRT50n and the slope, with the aim of improving accuracy (Versfeld et al., 2000; Brand & 
Kollmeier, 2002). However, Versfeld and colleagues showed that maximum likelihood 
estimates were not systematically different from an estimate based on the average of the 
last 10 sentences of the non-parametric simple up-down procedure. Others have 
proposed Bayesian methods to estimate the parameters of the psychometric function 
(King-Smith & Rose, 1997; Kontsevich & Tyler, 1999). Such methods can also be used to 
control SNR placement (e.g. Shen & Richards, 2012; Doire et al., 2017). In general, both 
maximum likelihood estimation and Bayesian estimation require some prior knowledge of 
the intelligibility function. Most studies have assumed the maximum proportion correct 
near 1 and did not test the performance of an estimation method for a lower maximum 
proportion correct score (but c.f. Green, 1995). Shen and Richards (2012) proposed a 
method that includes an estimation of the maximum proportion correct. A disadvantage 
of their method is that all parameters of the psychometric function must be estimated 
concurrently, which requires a larger number of trials at well-distributed SNRs. In contrast, 
non-parametric methods only assume a monotonic increasing intelligibility function (c.f. 
Robbins & Monro, 1951) and are able to estimate the SRT50n as the only parameter. 
Although some prior knowledge of the mean and slope may help to optimize non-
parametric adaptive procedures, this knowledge is not a fundamental requirement. 
Furthermore, non-parametric methods are easier in concept and calculation. 
 
The non-parametric adaptive procedures are in fact stochastic approximation (SA) 
methods, that try to approximate the SRT50n based on scores from earlier trials, which 
are stochastic in nature. SA algorithms were originally developed to find the roots of a 
function if only noisy observations are available (Robbins & Monro, 1951). In the context 
of this study it means to find the root of the function f(SNR) – 0.5, in which f is the 
intelligibility function. Nowadays, there is a large body of literature on SA describing a 
variety of recursive SA algorithms with different step size sequences (for an overview, see 
Kushner & Yin, 2003). 
SA algorithms often have step size sequences that decrease with increasing trial number 
n. The rationale is that the estimation of the root (or target proportion correct) is more 
accurate if the step size decreases during the recursive approximation (Kushner & Yin, 
2003). Decreasing step size sequences have sometimes been used for speech-in-noise 
measurements (Brand & Kollmeier, 2002; Keidser et al., 2013). 
A concern of using a decreasing step size sequence in speech tests is that it makes an 
adaptive threshold estimation algorithm more prone to bias due to nonstationary 
behavior of the listener, such as lapses in attention.  Fatigue can also occur, although 
Dingemanse and Goedegebure (2015) have found no effect of fatigue in a typical 
experiment with CI users. A second concern regarding the use of decreasing step sizes is 
that there is a risk of bias if the SNR of the first trial is relatively far from the real SRT50n. 
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So, when using SA algorithms with decreasing step sizes, consideration should be given to 
possible effects of nonstationary behavior of the listener and the selection of the initial 
SNRs. 
 
The aim of this study is to find an efficient stochastic approximation algorithm for SRT50n 
estimation in CI users, using word scoring, and taking into account intelligibility functions 
with less steep slopes and a lower maximum intelligibility score in quiet.  
The research questions are: 
1. Is there a stochastic approximation algorithm based on word scoring that provides a 

more efficient estimate of the speech reception threshold in noise (SRT50n) than 
clinically used procedures in CI users? 

2. What are the conditions for reliable use of adaptive measurements of SRT50n in CI 
users, with respect to the speech intelligibility score in quiet and the initial SNR? 

 
To answer these questions, we selected several stochastic approximation algorithms from 
the literature. We used Monte Carlo simulations to investigate the efficiency and accuracy 
of the stochastic approximation algorithms. The main outcome measures were the 
standard deviation and the bias of the estimated SRT50n. Simulations with NH subjects 
were included to get insight into possible differences in optimal algorithms or parameters 
between CI recipients and NH listeners. 

Materials and methods 

Stochastic approximation algorithms 
To find the root of a function f(SNR) – Pt, with Pt the target proportion correct, SA 
algorithms use an adaptive up-down procedure of the form: 
 𝑥𝑥𝑛𝑛+1 =  𝑥𝑥𝑛𝑛 +  𝑎𝑎𝑛𝑛( 𝑃𝑃𝑡𝑡 − 𝑦𝑦𝑛𝑛 ) (1) 
where xn is the stimulus value (the SNR) of the n-th trial, yn the proportion of correctly 
recognized words as a noisy measurement of the value f(xn), Pt the target proportion 
correct and an the step size parameter of the n-th trial. Robbins and Monro (1951) proved 
that a decreasing step size sequence of an = b/n implies convergence of xn to xt with f(xt) = 
Pt, where b is the step size constant, and f a monotonically increasing function. In the 
literature on SA many other step size sequences and their convergence are described and 
even other recursive formulas have been proposed (Kushner & Yin, 2003). 
For our purpose we need SA algorithms that have the following properties: 1) A good 
small-sample convergence, because sentence lists have a relatively small number of trials 
(10-30 sentences) for reasons of test efficiency. 2) Good rejection of the noise in the yn, 
because the variance of the noise in yn is large. 3) Insensitivity to badly chosen initial 
values or large deviations of yn from Pt early in the procedure to prevent bias. 4) Tolerance 
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with respect to some nonstationarity in the intelligibility function due to nonstationary 
behavior of the participants, like varying attention. Note that these four requirements 
describe different aspects, but are not independent of each other. In general, smaller step 
sizes are better for noise rejection and larger step sizes lead to faster forgetting of initial 
conditions. 
In the SA literature four algorithms were found that may meet the above criteria. The first 
algorithm is the accelerated SA (Kesten, 1958). Kesten proved that the convergence of the 
SA sequence can be accelerated compared to the original form (equation 1) if the step size 
decreases on reversals of the direction of the iterates. 
 𝑥𝑥𝑛𝑛+1 =  𝑥𝑥𝑛𝑛 +  𝑎𝑎𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟( 𝑃𝑃𝑡𝑡 − 𝑦𝑦𝑛𝑛 ),   𝑎𝑎𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑏𝑏

𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟+1  (2) 

where nrev is the number of reversals. The last iterate 𝑥𝑥𝑛𝑛+1 is the estimate of the xt for 
which f(xt) = Pt. The accelerated SA has good small-sample convergence. We need to 
determine the optimal value of b for speech tests. 
A second algorithm is the averaged SA with decreasing step size (dss) sequence (averaged 
dss SA). It uses the original algorithm of equation 1 together with averaging of the 
iterates: 
 𝑥𝑥𝑛𝑛+1 =  𝑥𝑥𝑛𝑛 +  𝑎𝑎𝑛𝑛( 𝑃𝑃𝑡𝑡 − 𝑦𝑦𝑛𝑛 ),    𝑎𝑎𝑛𝑛 = 𝑏𝑏

𝑛𝑛𝛼𝛼    𝑎𝑎𝑎𝑎𝑎𝑎

𝑥̅𝑥𝑛𝑛+1 =  1
𝑛𝑛 − 𝑛𝑛𝑒𝑒 + 1 ∑ 𝑥𝑥𝑖𝑖

𝑛𝑛+1

𝑖𝑖=1+𝑛𝑛𝑒𝑒

 
(3) 

with step size decrease rate α. The average 𝑥̅𝑥𝑛𝑛+1 gives the estimate of xt. Because x has to 
converge to the target, it is likely that the first trials are not close to the target. Therefore, 
the first ne trials may be left out of the average. In the SA literature this algorithm is known 
as Polyak-Ruppert averaging (Ruppert, 1988; Polyak, 1990; Polyak & Juditsky, 1992). It was 
shown by Polyak and Juditsky (1992) that this average is preferable if the step size 
sequence [an] goes to zero slower than order 1/n. The idea is that relative large step sizes 
[an] lead to faster forgetting of initial conditions, while use of the average reduces noise. 
In the original form ne = 0, but it is also possible to introduce exclusion of the initial values 
with ne > 0. For this algorithm we need to determine the optimal step size sequence 
parameters b, α, and ne. 
A third option is the use of a not decreasing step size (ndss) sequence together with 
averaging (averaged ndss SA). In fact this is the Polyak-Ruppert averaging from equation 3 
with α = 0, and an = b. This option was used in speech recognition tests by Hagerman and 
Kinnefors (Hagerman & Kinnefors, 1995). They proposed a procedure with Pt = 0.4 and an 
= b = 5 for 5-word sentences. If applied to 6-word sentences, as in this study, the 
procedure is implemented by choosing Pt = 0.5 and an = b = 6. 
A fourth algorithm that may be suitable to use with a speech test is the so-called 
smoothed SA that was first described by Bather (1989) and was further considered by 
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Schwabe (Schwabe, 1994; Schwabe & Walk, 1996). In this algorithm the average of both 
the iterates xn and the noisy observations yn are used in the recursive equation: 
 𝑥𝑥𝑛𝑛+1 = 𝑥̅𝑥𝑛𝑛 + 𝑛𝑛 𝑎𝑎𝑛𝑛 ( 𝑃𝑃𝑡𝑡 − 𝑦̅𝑦𝑛𝑛 ) (4) 
where 
 

𝑥̅𝑥𝑛𝑛 = 1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 , 𝑦̅𝑦𝑛𝑛 =  1

𝑛𝑛 ∑ 𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1
 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑛𝑛 = 𝑏𝑏

𝑛𝑛𝛼𝛼 (5) 

The average of the iterates 𝑥̅𝑥𝑛𝑛+1 is the estimate of xt, also with the possibility to exclude 
the first ne trials. Schwabe and Walk (1996) showed that for step sizes with ½ < α < 1 the 
influence of inappropriate starting points decays faster than in Polyak-Ruppert averaging. 

Simulation model of a listener 
To be able to test the accuracy of the proposed SA algorithms with Monte Carlo 
simulations, we have made a simulation model of speech recognition, that generates a 
listeners response for a given SNR.  
The first element of the listener model is an intelligibility function that describes the 
average proportion correct words in a sentence as a function of the SNR. The intelligibility 
function was modelled as 
 𝑝𝑝(𝑆𝑆𝑆𝑆𝑆𝑆) =

(1 − 𝜆𝜆) 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
1 + exp (4𝑠𝑠(𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚 − 𝑆𝑆𝑆𝑆𝑆𝑆)) (6) 

with p the proportion of correctly recognized words in a sentence, λ the lapse rate, pmax 
the proportion correct in quiet, SRTm the x where p(x) is half (1-λ)∙pmax, and s the nominal 
slope (the slope of p at SRTm is (1-λ )∙pmax ∙s). For higher p, lapses may occur due to 
moments of inattentiveness and for low p there may be some lapsing because the listener 
gives up (Bronkhorst et al., 1993). 
The intelligibility function was fitted to the data of a group of 20 CI users from a study of 
Dingemanse and Goedegebure (2015). In that study speech intelligibility in noise was 
measured at three SNRs, with three corresponding performance levels: adaptively 
estimated SRTs at 50% and 70% words correct, and performance level at a fixed SNR of 
SRT50% + 11 dB. The performance was measured with and without activation of a noise 
reduction algorithm. Furthermore, speech intelligibility in quiet was measured. For each of 
the participants, the intelligibility function was fitted to all the data, because the noise 
reduction algorithm had no measurable effect on the speech performance. Table 7.1 
shows mean, SD, and range of the group for the different parameters of the intelligibility 
function. Only relatively high performing CI users were included. SRTm and s were not 
significantly correlated. 
The intelligibility function was also fitted to the data of a reference group of 16 normal-
hearing (NH) subjects with a mean age of 22 years, described by Dingemanse and 
Goedegebure (2019). In that study the SRT50n was adaptively measured using word 
scoring and the ndss SA algorithm with b = 4, along with the proportion of correct words 
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at four SNRs around the individual SRT50n. The intelligibility function was fitted to the 
performance at these four SNRs, assuming that λ ≈ 0. Table 7.1 shows the parameter 
values found. In both studies Vrije Universiteit (VU) sentences (two lists of 13 sentences 
for each condition) and steady-state speech-spectrum noise were used (Versfeld et al., 
2000). 
In practice, variation in intelligibility from trial to trial occurs due to variability in the SRT 
and slope of sentences, differences between listeners and variability in listening effort and 
attention. We modelled variability in sentences by adding a normal distribution of SRTm 
values with a small standard deviation SD_SRTm = 0.5 dB and a normal distribution of 
variation is slopes with SD_slope = 0.01. These values were in accordance with Versfeld et 
al. (2000). 
To incorporate differences between subjects, variation of SRT50n between subjects was 
modelled as a normal distribution with an SD of 1 dB for the NH group (based on Versfeld 
et al., 2000) and 3 dB for the CI group (based on Table 7.1). The variation in slope between 
listeners was varied according to a normal distribution with a SD of 0.02, according to 
Table 7.1. To account for variability in attention the lapse rate (λ in formula 6), was set to 
0.02 independent of the proportion correct score. This means that in 2% of the trials the 
listener is not attentive.  
 
Table 7.1. Values of the parameters of the intelligibility function (see text at formula 6) for a group 
of CI recipients and an group of NH listeners. The mean, median, SD, and range are given. For the NH 
group the SRTm and the SRT50n are the same and s and s50 are the same. 
        CI group          NH group    
 mean median      SD range mean median    SD range 
SRTm (dB) 3.7 3.4 2.7 -1.0 – 10.7     
SRT50n(dB) 4.2 3.4 3.3 -1.0 – 12.7 -5.5 -5.5 0.6 -6.6 – -4.6 
s (pc/dB) 0.067 0.065 0.021 0.029 – 0.125     
s50 (pc/dB) 0.064 0.064 0.021 0.026 – 0.122 0.151 0.146 0.025 0.116 – 0.192 
pmax (pc) 0.947 0.965 0.062  0.740 – 1.0 1.0 1.0 0 1.0 – 1.0 

pc = proportion correct; SRT50n, the speech reception threshold at a proportion of correctly 
recognized words of 0.5; s50, the slope at the 0.5 point. 
 
The second element of the listener model models the response of a listener in a trial. For 
this element a multinomial distribution is used, giving the probabilities that k out of l 
words (k = 0,...,l) of a sentence were correctly recognized as a function of the average 
proportion correct word score. The multinomial distribution was obtained from a model of 
Bronkhorst and co-workers for context effects in speech recognition (Bronkhorst et al., 
1993; 2002). This model gives predictions of the probabilities pw,k that k elements (k = 
0,...,l) of wholes containing l elements are recognized. These probabilities pw,k are a 
function of a set of context parameters ci (i = 1,…,l) and the recognition probabilities of the 
elements if presented in isolation (no context) pi,nc. 
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 𝑝𝑝𝑤𝑤,𝑘𝑘 = 𝐹𝐹(𝑐𝑐𝑖𝑖, 𝑝𝑝𝑖𝑖,𝑛𝑛𝑛𝑛), 0 ≤ 𝑐𝑐𝑖𝑖 ≤ 1, 𝑖𝑖 =  1, … , 𝑙𝑙 (7) 
The context parameters ci give the probabilities of correctly guessing a missing element 
given that i of the l elements were missed. They quantify the amount of contextual 
information used by the listener. The maximum value of 1 means that a missing element is 
available from context information without uncertainty. The minimum value is the 
guessing rate if the whole contains no context information. For details of the model we 
refer to Bronkhorst et al. (1993, 2002). From the array of pw,k values we can calculate the 
average proportion of correctly recognized words in sentences: 
 𝑝𝑝𝑒𝑒 = 𝑝𝑝𝑤𝑤,𝑙𝑙 + (𝑙𝑙 − 1)

𝑙𝑙 𝑝𝑝𝑤𝑤,𝑙𝑙−1  + (𝑙𝑙 − 2)
𝑙𝑙 𝑝𝑝𝑤𝑤,𝑙𝑙−2  + ⋯ + 1

𝑙𝑙 𝑝𝑝𝑤𝑤,1  (8) 

This model was fitted to speech recognition data of a group of CI users and a group of 
normal-hearing listeners by Dingemanse and Goedegebure (2019), resulting in a set 
context parameters for each group (see Figure 6.4). In the study of Dingemanse and 
Goedegebure VU sentences (Versfeld et al., 2000) were used as speech material in both 
groups. 
Figure 7.1 shows in the left panel the probabilities pw,k as a function of pe for the CI group. 
For example, at the 50% correct point of the intelligibility function ( pe = 0.5) in 25% of the 
trials the whole sentence is recognized (k=6), but in another 25% no words are recognized 
(k=0), this is illustrated in the right panel of Figure 7.1. 
In the Monte Carlo simulations the response of a listener in a trial was obtained following 
the next steps: First, the average word recognition probability was calculated from the 
intelligibility function (formula 6) for the SNR of the trial, resulting in value px. Next a 
random number from a continuous uniform distribution with a minimum value of 0 and a 
maximum value of 1 was taken, giving value py. Third, point (px , py) was compared with 
the cumulative probabilities shown in the center panel of Figure 7.1. For example, the 
 

 
Figure 7.1. Left panel: probabilities to recognize k words of a sentence correctly as a function of the 
average proportion correctly recognized words pe. Center panel: cumulative probabilities to 
correctly recognize k words or less as a function of pe. Right panel: example of the multinomial 
distribution for an average word score of pe = 0.5 that gives the probability to recognize k words 
from a sentence. 
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point of px = 0.5 and py = 0.7 fell in the area of k = 5. That is, 5 out of 6 words were 
correctly recognized in this trial. We added some variation in the context parameters 
using a normal distribution with a SD of 0.01 for c1 to 0.016 for c5 to simulate differences 
between listeners (Dingemanse & Goedegebure, 2019). 

Validation of the simulation model 
The validity of the model for the description of averaged speech recognition scores has 
already been demonstrated by Bronkhorst and colleagues (1993, 2002). To verify if the 
model not only describes speech recognition on average, but also produces reliable word 
scores for single trials in adaptive procedures, we used the within-staircase SD as a 
measure to compare simulation outcomes with experimental data. The within-staircase SD 
shows whether the simulation model produces realistic variations within a staircase. As 
the model parameters were tuned to the CI group of Dingemanse and Goedegebure 
(2015) the model should produce the same within staircases as found in the experimental 
data. The SRT50n staircases were measured in two conditions in Dingemanse and 
Goedegebure (2015). The mean within-staircase SD was calculated as the root-mean-
square of the individual within-staircase SDs from the two conditions and resulted in a 
value of 2.0 dB. The adaptive procedure used was the averaged ndss SA, with b = 4. 
Simulations with this procedure resulted in a within-staircase SD of 2.1 dB. This 
corresponds very well with the experimental value of 2.0 dB.  
When parameters of the NH group were applied, a within-staircase SD of 1.5 dB was 
found, which is in good agreement with the 1.4 dB found from the SRT50n measure in 
Dingemanse and Goedegebure (2019). From the same study, a within-staircase SD of 1.9 
dB for sentence scoring combined with a fixed step size of 2 dB and 13 trials was available. 
The within-staircase SD of the simulation of this condition was also 1.9 dB.  
Versfeld and colleagues reported that the within-subjects SD of the SRT50n was 1.1 dB for 
sentence scoring and an adaptive up-down procedure with a 2 dB step size (Versfeld et al., 
2000). A simulation of this condition resulted in a within- subjects SD of 1.1 dB. 
These results confirmed the validity of the used listener model for use in simulations of 
adaptive procedures. 

Calculation of reference standard deviations at SRT50n 
The listener model was used to generate 4000 responses based on word scoring at an SNR 
of SRT50n. The SD of these responses was calculated and served as a reference measure 
of the variability in proportion correct speech recognition at the SRT50n due to the 
stochastic nature of the speech recognition process. Table 7.2 presents the reference SDs 
of the simulations at a fixed SNR of SRT50n. The calculated SD was divided by the slope of 
the intelligibility function at the SRT50n point to obtain a reference SD of the SRT50n  
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Table 7.2. Reference standard deviations of proportion correct words from sentences Pt and SRT50n 
values, resulting from simulations of CI and NH listeners at a fixed SNR of SRT50n. 
         Sentence list    CI group        NH group  
         length            SD Pt            SD SRT50n            SD Pt             SD SRT50n 
         13 0.137 2.33 0.121 0.824 
         20 0.104 1.77 0.091 0.616 
         26 0.089 1.52 0.078 0.528 

 
measure. The SDs of the SRT50n estimates of the SA algorithms were compared to these 
reference SDs, to get a measure of the variability introduced by the SA algorithms itself. 
In the simulation model small variations in SRT50n and slope between sentences and 
between subjects were included, as mentioned in the model description. By comparing 
the simulation results with and without applying variations, it turned out that the effect of 
the variations in model parameters was a 4 to 6% increase of the SDs in CI users and a 0.5 
to 1.3% increase in NH users. 
The SDs of the Pt estimates in the CI group were slightly greater than the SDs of the NH 
group, due to the fact that the model for CI users had higher values for the context 
parameters.  
The SDs of SRT50n are higher in CI users, because the slope of the intelligibility function is 
less steep. SDs decreased approximately with the square root of the list length, bearing in 
mind that the first four sentences were excluded in the calculations for all list lengths. 

Simulation procedures  
In the simulations we used a slope of 0.15 dB-1 for NH users and half that value for the CI 
group (equation 6). The parameter pmax was set to 1 for NH listeners. For relatively high-
performing CI users the value was 0.95 according to Table 7.1. To represent a broader 
range of performance values between 0.6 and 1, pmax was set to 0.8 for CI users. The initial 
SNR (the SNR of the first trial) relative to the mean SRT50n was taken from a normal 
distribution with mean = -3 dB (NH) or -6 dB (CI) and SD = 1 dB (NH) or 3 dB (CI). The first 
trial was repeated at increasing SNRs (+2 dB) until at least half of the words were 
recognized correctly or the sentence was three times repeated. 
In the simulations, independent streams of random numbers were generated for each 
variable for which a probability distribution was defined. For each condition 2000 
simulations of staircases were generated and each staircase consisted of 26 trials. For 
each simulation the SRT50n estimate was the average or the end value of the staircase, 
depending of the SA algorithm. For each condition three outcome measures were 
calculated: the SD and bias of SRT50n, and the within-staircase SD calculated as the root-
mean-square average of the 2000 SDs of the SNRs within each staircase. We calculated 
the three outcome measures for sentence list lengths of 13, 20 and 26 sentences, as the 
minimum list length is 13 sentences for the speech material used in the model. A length of 
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26 sentences (two lists) is around a maximum length that can be used in clinical settings, 
in our opinion. A length of 20 sentences is included, because this list length is used in 
other speech material (e.g. Soli & Wong, 2008) and it is in the middle of the clinically 
feasible range of the number of sentences to be used. All simulations and analyzes were 
performed with Matlab (9.6.0, The MatWorks Inc., Natick, Massachusetts, USA) 

Finding optimal parameters for SA algorithms 
In order to find optimal values of the parameters in the SA algorithms, simulations were 
performed while varying the relevant parameters. The step size constant b was varied 
from 2 to 14 dB in steps of 2 dB for the CI group and from 1 to 7 dB in steps of 1 dB for the 
NH group. Because the maximum of (yn – pt) in the equations 1 to 4 is 0.5, b = 4 
corresponded to the often used step size of 2 dB. For the averaged dss SA and the 
smoothed SA, optimal parameters were determined by simulations for step size decrease 
rates α from 0.1 to 0.5 with a step of 0.1 for the averaged dss SA and from 0.5 to 1 (step 
0.1) for the smoothed SA. For the averaging SA algorithms the number of excluded trials ne 
was 4, 6, or 8 trials. 
To find the best parameter set of b, α and ne, we looked for minimum SD and bias of 
SRT50n for each combination of b, α and ne. However, the minima of SD and bias were 
often not reached at the same parameter values. We regarded a minimum SD as the most 
important criterium (i.e. for test-retest purposes), but we did not allow differences in 
intelligibility greater than 5% due to bias, because that may become a clinically relevant 
difference. Based on this criterion, the mean bias should be ≤ 0.85 dB in the CI group and 
≤ 0.33 dB in the NH group. The parameter set that produced the smallest SD of SRT50n 
within these bias criteria was chosen as the optimal parameter set of b, α and ne. The 
optimization was done for each of the three list lengths. 

Simulations with the optimal SA algorithms and clinical procedures 
In the simulations we also included some clinically used procedures. First, sentence 
scoring with a fixed step size of 2 dB was included (Plomp & Mimpen, 1979; Nilsson et al., 
1994). Second, a procedure of modified sentence scoring was added, allowing 2 errors per 
sentence (66.67%) like in Chan et al. (2008);  and Wong and Keung (2013). In this 
procedure the SNR was varied adaptively as in Chan et.al., i.e. in 5 dB steps for the first 
four sentences and in 3 dB steps for the remaining sentences of the list for the CI group. 
For the NH group the steps were 4 dB for the first four sentences and 2 dB for the 
remaining trials as in the HINT procedure (Soli & Wong, 2008). Because the psychometric 
curve of equation 6 applies to word scoring, we calculated the change of the psychometric 
curve from the context model (equations 7 and 8) for sentence scoring and modified 
sentence scoring. Figure 7.2 shows the resulting curves. 
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Figure 7.2. Intelligibility functions of correctly recognized words from sentences, sentence scoring, 
and modified sentence scoring. The three leftmost curves represent the functions of the NH group 
and the three rightmost curves the functions of the CI group. Dots show the target proportion 
correct of 0.5. 
 
Furthermore, we included a third clinically used procedure based on word scoring: the 
procedure of Brand and Kollmeier (2002). They proposed the formula: 
 𝑥𝑥𝑛𝑛+1 =  𝑥𝑥𝑛𝑛 +  𝑎𝑎𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟( 𝑃𝑃𝑡𝑡 − 𝑦𝑦𝑛𝑛 ), 𝑎𝑎𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟 =  1.5 ∙ 1.41− 𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (9) 

We used pmax ∙s as slope value. Brand and Kollmeijer used a maximum likelihood estimate 
of the SRT50n, but because only non-parametric methods are investigated in this study, 
the last iterate 𝑥𝑥𝑛𝑛+1 was used as an estimate of the threshold xt. Henceforth this 
procedure will be referred as the npBK SA procedure. 
We performed simulations with each optimized SA algorithm and the clinical procedures 
to investigate how their accuracy depends on the relative initial SNR by varying this SNR 
from -8 dB to +8 dB relative to the real SRT50n value. In these simulations the first trial 
was not repeated. 
Additionally, we examined the effect of the maximum intelligibility in quiet. The 
parameter pmax was varied in five steps from 0.6 to 1 for each optimized algorithm, and 
the relative initial SNR was taken from a normal distribution, as described earlier. 

Results 

Simulations with SA algorithms to find optimal parameters 
Based on all simulations, we selected optimal parameters for each SA algorithm for both 
listener groups according to the criteria given in the Methods section. Exclusion of the first 
four trials (ne = 4) in the averaging resulted in the smallest SD and bias values of SRT50n 
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for all list lengths, compared to 6 or 8 ignored trials., although differences were small 
(between 0 and 0.15 dB). Therefore, only results for ne = 4 were presented throughout the 
results section.  
For the smoothed SA we found that the last iterate was a better estimate for SRT50n with 
smaller SDs than the average of the iterates. So this end value was used instead of the 
average value. 
Regarding the step size decrease rate α it was found that a midrange value together with a 
moderate initial step size b resulted into the smallest SD and bias in CI users. A small initial 
step size and a large decrease rate resulted in a large bias. A large initial step size and a 
large decrease rate resulted in lower SD and bias, but even lower values were found for a 
moderate decrease rate and initial step size. Table 7.3 shows the optimal parameters and 
the SD and bias that were obtained with these parameters. The optimal step size decrease 
rate α was the same for CI and NH listeners, but the step size constant b was larger for the 
CI group. In CI users the parameters given in Table 7.3 resulted in a bias smaller than the 
criterion value of 0.85 dB in the range of -8 to +4 dB for a staircase length of 26 sentences. 
For relative initial SNRs > 4 dB, the bias exceeded the criterion value for any set of 
parameter values. For a staircase length of 20 sentences, the bias exceeded the criterion 
value for an relative initial SNR > 3 dB. A list length of 13 sentences, resulted in relatively 
high SDs and/or large bias (see also Figure 7.3) and was therefore not suitable.  
 
Table 7.3. Optimal values for the step size constant b and the step size decrease rate α for the 
Accelerated SA algorithm, the Averaged SA algorithm with decreasing step size (dss) or not 
decreasing step size (ndss), and the Smoothed SA algorithm if applied in CI recipients and in NH 
listeners. For each optimized SA algorithm, the SD and bias of the SRT50n estimates are provided. 
SA algorithm      CI group   NH group 
 b α     SD bias b α     SD bias 
Accelerated SA 6 - 1.77 -0.40 4 - 0.55 -0.06 
Averaged dss SA 6 0.3 1.65 -0.23 5 0.3 0.55 -0.02 
Averaged ndss SA 4 - 1.71 -0.02 4 - 0.58 0.01 
Smoothed SA 6 0.7 1.71 -0.30 4 0.7 0.55 -0.06 

 
 
Figure 7.3 shows the effect of the step size constant b on the SDs and biases of SRT50n for 
the different SA algorithms (with optimal α value). The panels on top of the figure show 
the results for the CI group and the bottom panels show the results for the NH group. We 
observed that the SD of SRT50n was much greater in CI recipients than in NH listeners for 
all SA algorithms. In CI users the SD was smallest for b = 4, except for the averaged ndss 
SA, that had the smallest SD for b = 2. But for these b values, too much negative bias was 
found. Therefore, b = 6 (4 for the averaged ndss SA) was found to be optimal. In the NH 
group the SDs of SRT50n were small and almost independent of b, indicating that the step  
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Figure 7.3. Estimated values of SD (solid lines) and bias (dashed lines) of SRT50n as a function of the 
step size constant b from simulations with the different SA algorithms. The upper row of panels 
shows the results of the CI group and the second row shows the results of the NH group. Downward-
pointing triangles: 13 sentences, squares: 20 sentences, upward-pointing triangles: 26 sentences. 
 
 
size constant is not critical. The bias was close to zero for all algorithms and b values. 
Using a larger number of sentences resulted in smaller SD and bias for all conditions. It is 
remarkable that the different SA algorithms resulted in comparable minimum SDs. 

The within-staircase SD 
The left panel of Figure 7.4 shows the Root-mean-square(RMS) within-staircase SD as a 
function of the step size factor b for the CI group. The RMS within-staircase SD increased 
for increasing b, as expected, but differed in size between SA algorithms. The smallest 
values were found for algorithms with decreasing step size. The right panel shows the 
SRT50n estimates minus the true SRT50n as a function of the within-staircase SD for the 
averaged ndss SA algorithm, with b = 4. The data points were grouped in bins of 1 SD 
width and the mean (which is the bias) and SD were calculated for each bin and then 
plotted. Figure 7.4 shows that no clear relationship exists between the within-staircase SD 
and the SD or bias of the SRT50n estimates. This holds also for a list length of 20 
sentences, for the other SA algorithms with optimized parameters, and for the NH 
listeners. 
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Figure 7.4. Left panel: Root-mean-square(RMS) within-staircase SDs for the SA methods as a 
function of the step size constant b for the CI group. Each data point is calculated from 2000 
simulations. Only results for 26 trials were shown. Right panel: SRT50n estimates minus the true 
SRT50n plotted together with the SD and bias of the data as a function of the within-staircase SD. 
The data originate from 2000 simulations of the averaged ndss SA algorithm, with b = 4 and 26 trials. 

The effect of the initial SNR  
Figure 7.5 shows the effect of the initial SNR (the SNR of the first trial relative to the true 
SRT50n of the intelligibility function) on the SD and bias of the SRT50n estimate. The 
simulations were performed with the optimal parameters given in Table 7.3. Figure 7.5 
only shows results for a staircase length of 26 trials, because the pattern of results for 20 
trials (CI and NH) or 13 trials (NH) was very similar. 
The SD and bias were very similar between the different SA algorithms over the entire SNR 
range. A relatively high bias was found for positive initial SNR values for the CI group. The 
bias was around zero and the SDs were smallest for initial SNRs below the true SRT50n. 
From these results it is clear that an initial SNR below the true SRT50n would be 
preferable. In the NH group the SD was almost independent of the initial SNR and the bias 
was within ±0.2 dB. 
As a validation, we compared the simulation of the ndss SA algorithm with b = 4 with data 
of the NH group from Dingemanse and Goedegebure (2019). In that study the SRT50n was 
adaptively measured using the same algorithm and an initial relative SNR of 1 dB on 
average. Additionally, an intelligibility function was fitted to the proportion of correct 
words at four fixed SNRs around the individual SRT50n. The SD of the individual 
differences between the SRT50n of the adaptive procedure and the SRT50n of the fitted 
intelligibility function was 0.55 dB. The SD of the simulations was 0.58 (Figure 7.5) and is in 
good agreement with the experimental SD. 
The clinical algorithms had higher SDs of SRT50n than the SA algorithms over the entire 
SNR range. For the CI group sentence scoring resulted in a high SD and a bias that showed  
 



Chapter 7  
 

168 

 
Figure 7.5. SD and bias of SRT50n estimates as a function of the initial SNR relative to the true 
SRT50n for the SA methods and clinical procedures. In the top left panel, the SD of sentence scoring 
is out of range. At an initial SNR of -8 dB this SD is 4.5 dB and it increases almost linearly to 6.5 dB at 
+6 and +8dB. 
 
that the adaptive procedure was hardly able to move the SNR value away from the initial 
SNR. This is in accordance with the almost flat intelligibility function around a proportion 
correct of 0.5 (see Figure 7.2). The modified sentence scoring resulted in a much better SD 
around 2.8 dB and a positive bias between 0.7 and 1.4 dB. The SD of the npBK SA 
algorithm is nearly as small as the SDs of the SA algorithms in the NH group. But in the CI 
group, the SD is clearly greater than that of the SA algorithms, and the bias is positive.  
The SA algorithms using word scoring resulted in the smallest SD and bias. For the NH 
group, sentence scoring resulted in an SD of 0.92 dB and only a small bias for all initial 
SNRs. The modified sentence scoring resulted in a smaller SD of around 0.73 dB due to the 
steeper slope of the intelligibility function (Figure 7.2), but it was still higher than the SDs 
of the SA algorithms that were around 0.58 dB.  

The effect of reduced maximum intelligibility 
The effect of pmax was investigated for the CI group with each of the optimal algorithms 
and the three clinical algorithms. Figure 7.6 shows that pmax had a large effect on the SD 
and bias of the SRT50n estimates. The SD increased for decreasing pmax. This effect was 
most apparent for sentence scoring, modified sentence scoring and the npBK SA 
algorithm. For the range of pmax between 0.7 and 1 the SA algorithms were efficient, i.e. 
close to the reference SD from Table 7.2 that serves as a theoretical minimum. At pmax = 
0.6 bias values become more negative on average. Only the results for a staircase length 
of 26 trials were shown, because the pattern of results for 20 trials was very similar, with 
small bias and efficient estimation for pmax ≥ 0.7. 
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Figure 7.6. SD and bias of SRT50n estimates as a function of pmax for the SA methods and clinical 
procedures applied in the CI group. Only results of the conditions with 26 trials were shown. The 
dash-dotted line with asterisks gives the minimum SD based on the reference SD in Table 7.2 as a 
function of pmax. 

Discussion 

SA algorithms versus clinical procedures 
The four SA algorithms proposed in this study provide more efficient estimates of the 
SRT50n than clinically used adaptive procedures in CI users, as can be observed from 
Figures 7.5 and 7.6. The SD estimates of the four SA algorithms were close to the 
reference standard deviations from Table 7.2, indicating that the SA algorithms add little 
variance to the SRT50n estimate, compared to the variability due to the stochastic nature 
of the speech recognition process. Even with the more shallow intelligibility functions 
found in CI users, the algorithms remain efficient, provided that pmax ≥ 0.7 and the initial 
SNR is within -8 to +4 dB of the real SRT50n. 
Several researchers recognized the inaccuracy of sentence scoring in CI users and 
proposed a modified sentence scoring that allows some errors per sentence (Chan et al., 
2008; Wong & Keung, 2013). Indeed, the modified sentence scoring resulted in better 
accuracy. But the SA algorithms had both smaller SD and bias, especially when pmax is 
below 1 (Figure 7.6). This can be explained by their use of word scoring that has a higher 
number of statistically independent elements per sentence, as explained in the 
Introduction. 
The new proposed SA algorithms also performed better than the npBK SA algorithm. The 
main reason is that this algorithm has relatively large steps early in the staircase and a 
high decrease rate. Especially in the CI group, having a lowered pmax, this combination 
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resulted in a larger SD and bias. The large steps early in the staircase may result in high 
SNR values, were the intelligibility function is already flat. In this flat part of the function, 
the SNR may jump randomly up and down at high SNRs, while the step size is decreasing. 
As a result, the staircase ends with a large positive bias. 
The four SA algorithms proposed in this study resulted in comparable SD and bias if 
parameters were used that were optimal for the group that was tested. There is no clear 
winner. It is noteworthy that a more complex SA method, such as the smoothed SA, did 
not result in better performance than the simpler ndss SA method. The optimal step size 
decrease rate α was the same in CI and NH listeners, both for the averaged dss SA and for 
the smoothed SA algorithm. The only difference between groups is the step size constant 
b, except for the averaged ndss SA algorithm, where b = 4 applies to both groups. The NH 
group and the CI group represent the extremes of the intelligibility function. The group of 
people with sensorineural hearing loss, using hearing aids or not, is expected to have 
intelligibility functions with slopes in-between the slopes of the NH group and the CI 
group. So, the averaged ndss SA algorithm with a step size constant of 4 is applicable to a 
wide range of hearing-impaired listeners. This algorithm was already used in speech 
recognition tests by Hagerman and Kinnefors (Hagerman & Kinnefors, 1995). Furthermore, 
it was used in several studies with CI recipients, and provided highly reproducible and 
consistent data (cf.Dingemanse & Goedegebure, 2015, Figure 3; Vroegop et al., 2017; 
Dingemanse & Goedegebure, 2018, Figure 3). 
The use of simulations gave the possibility to gain insight into the occurrence of a bias. 
Because the true SRT50n of the listener model is known, the bias can be calculated, which 
is impossible in real subjects with unknown SRT50n. In NH listeners the bias was close to 
zero for all SA algorithms if initial SNRs were within -8 to +8 dB relative to SRT50n. If in the 
first trials a large step in the wrong direction is made due to the stochastic behavior of the 
speech recognition process, than the average proportion correct at the next SNR is much 
higher or lower, because of the steep slope of the intelligibility function. This leads to a 
high chance that a reversal occurs and that is why no bias occurs. Furthermore, the 
intelligibility function is symmetrical in the SRT50n point in NH listeners, making that steps 
from above or from below the SRT50n point on average have equal but opposite effects, 
that are averaged out. In CI users only a small bias (< 0.85 dB) was present if optimal 
parameters are used. The bias depended on the relative initial SNR. An SNR more than 4 
dB above the SRT50n resulted in a relatively large positive bias. The explanation is that the 
slope of the intelligibility function well above SRT50n becomes very shallow, making the 
adaptive procedure not very effective, as already explained for the npBK SA algorithm. 
The within-staircase SD was dependent on the step size constant, the decrease rate of the 
step size, the number of trials, and the intelligibility function (s and pmax) of the group of 
listeners. As a consequence, the within-staircase SD cannot be used as a measure of the 
reliability of a single SRT50n measurement in combination with a fixed criterion (c.f. 
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Keidser et al., 2013). We analyzed if the SD and bias of the SRT50n estimates was 
dependent on the within-staircase SD. In the stimulations, within-staircase SDs up to 
approximately twice the root-mean-square within-staircase SD of the group were seen. 
For this range, no relationship was found for the averaged ndss SA with b = 4, neither in 
the CI group (Figure 7.4), nor in the NH group. This means that the within-staircase SD is 
not really suitable as a measure for the reliability of an individual staircase. Only if a single 
staircase has a very large within-staircase SD compared to the group value (as a rule of 
thumb: more than twice the root-mean-square within-staircase SD of the group), one may 
decide to reject this measurement. 

Influence of maximum intelligibility on accuracy 
A decrease of the maximum intelligibility in quiet pmax caused an increase in the SD of the 
SRT50n estimates. This was as expected and was mainly caused by the decrease of the 
slope of the intelligibility function to pmax times the original slope at p = ½ pmax. At p = 0.5 
the slope is reduced even more, since at this point the slope is no longer at its maximum 
value. For a smaller part the increase in the SD of the SRT50n estimates was caused by a 
decreasing efficiency of the adaptive procedure for decreasing pmax. As can be seen from 
Figure 7.6, if pmax decreases, the difference between the SDs of the SA algorithms and the 
theoretical minimum SD increases. There was also some bias in the SRT50n estimate, but 
this remained acceptable small (< 0.5 dB) if the initial SNR was not too far from the true 
SRT50n value.  
For CI users with pmax ≥ 0.7, but < 1, it is advantageous to start at an SNR that is below the 
real SRT50n. Then the trials are in the steepest part of the intelligibility function, which 
makes the SA algorithms converge better toward the target. As a result both bias and SD 
were smaller (Figure 7.5). According to Figure 7.6 the minimum pmax required for reliable 
use of adaptive estimation of SRT50n is pmax = 0.7 provided that at least 20 sentences are 
used. 

The simulation model 
The development and application of a realistic and detailed simulation model of speech 
recognition was an important part of this study. The usefulness of the model for single 
trials in adaptive procedures was verified by comparing the within-staircase SDs of the 
simulations with the within-staircase SDs of the participants in the studies that were used 
to determine the model parameters. They matched very well. Furthermore, simulation of 
sentence scoring was in good agreement with the data of Versfeld et al. (2000) and 
simulations of word scoring with the ndss SA for NH listeners agreed well with results of 
Dingemanse and Goedegebure (2019). These findings show that the model appears to be 
a valid tool for evaluation of adaptive speech-in-noise algorithms. 
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The good agreement between simulations and experimental data is based on the detailed 
and already validated model of Bronkhorst et al. (1993), that predicts the proportions 
correct of k out of l words correctly. In the model the effect of contextual information is 
incorporated. Due to the contextual information a listener has a higher chance to predict 
initial missed words correctly from the words that were already understood. Brand and 
Kollmeier (2002) also used Monte Carlo simulations to examine adaptive procedures for 
sentences-in-noise tests with word scoring. To account for the effect of the contextual 
information, they used the j factor of Boothroyd and Nittrouer (1988), a factor that 
quantifies the number of statistically independent words in a sentence. In their 
simulations, each trial consisted of j Bernoulli trials and the proportion correct score for 
each trial was calculated by dividing the sum of the results of the Bernoulli trials by j. 
However, the resulting distribution of proportion correct scores is not in accordance with 
the distribution that is found in sentence recognition, having a relatively large proportion 
of 0 and 1 values (see Figure 7.1 and also Hu et al. (2015)). Furthermore, only integer 
values of j can be used. In contrast, the multinomial distribution of proportions from the 
model of Bronkhorst et al. (1993) as shown in Figure 7.1 were in good agreement with 
experimentally found distributions for all percent correct values. Also non-integer values 
of j that were dependent of the proportion correct value were a result of this model 
(Dingemanse & Goedegebure, 2019). 
We added small stochastic between-sentence variations in SRT50n and slope that exist 
within speech materials and individual listeners. We also added between-subject 
variations in context parameters and slopes. Addition of these stochastic variations have 
made the model more realistic, but the effects of these variations were small. This is in 
accordance with the finding of Smits and Houtgast (2006), who also reported that 
variations in SRT50n and slope had a small effect in a digit-in-noise test. 
In the simulation model some lapsing was included, but the lapse rate was kept constant 
over time. In future use of simulation models, it is worth to consider more variation in this 
lapse rate, to simulate variations in attention and/or fatigue. These variation should be 
based on experimental data on attention variations and fatigue effects. However, we 
expect that the effect of lapsing on the accuracy is limited. The effect of lapsing is 
comparable with a reduction of pmax (see equation 6). Figure 7.6 shows that for a 
reduction of pmax from 1 to 0.9, the increase of the SD and bias of SRT50n was limited. So, 
for lapse rates smaller than 10% the effect of lapsing on the SRT50n estimate is small. 

Usefulness of adaptive speech-in-noise tests in CI recipients 
Although SA algorithms provide relatively accurate estimations of the SRT50n in CI users, 
the SD of the SRT50n estimate was still much larger in the CI group than in the NH group, 
depending on pmax and the slope of the intelligibility function. The decreased slope in CI 
users (even for pmax =1) is due to difficulties in understanding the sentences in this open-
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set speech material with relatively good real-life similarity. In contrast, if a closed-set 
speech material is used, like a matrix sentence test (Kollmeier et al., 2015), the difference 
in slope between CI and NH listeners is much smaller (Hey et al., 2014; Theelen-van den 
Hoek et al., 2014) and the j factor is higher: approximately 4 (Wagener et al., 1999). This 
may be of help to obtain a more reliable SRT50n value, but the ecological validity of the 
speech material is much less than the sentences used in this study. 
The question is whether a larger SD of the SRT50n estimate in CI users is problematic. 
From the perspective of CI recipients a perceived increase in speech intelligibility is more 
important than a change in SRT50n. If the slope of the intelligibility curve at 50% is 
shallow, a larger shift in SNR is needed to obtain a relevant increase in speech 
intelligibility. This allows a less accurate estimate of the SNR. A typical SD value for the SA 
procedures is 1.7 dB for 26 sentences of the speech material used in this study. An SNR 
difference of 1.7 dB corresponds to an intelligibility difference of 10%. In NH listeners, the 
SD of the SA methods is 0.6 dB, corresponding to an intelligibility difference of 9%. So, in 
terms of intelligibility, the accuracy of the speech-in-noise test in CI users is comparable to 
the accuracy in NH listeners. 
Because of the relatively large SDs in the CI group, it is often not possible to compare two 
conditions or two algorithms within an individual. The test-retest SD is √2 times the SD of 
a single measurement. A significant difference at the .05 level requires a difference of at 
least 1.96 ∙ √2 ∙ SD. In our example 1.96 ∙ √2 ∙ 1.7 = 4.7 dB. Therefore only differences in 
conditions that result in large SRT differences can be reliably detected in individuals. If one 
wants to compare two conditions in a research setting, the relatively high SD can be 
compensated by the group size. 

General discussion 
In clinical practice often the first sentence is presented repeatedly with increasing SNR 
until the sentence is recognized (Plomp & Mimpen, 1979). We also used this procedure in 
the simulations, but we used a relatively small step of 2dB and restricted the number of 
repetitions to a maximum of 3. This restriction prevented for initial SNRs that are (much) 
greater than the SRT50n, because these SNRs would have resulted in more variability in 
the SRT50n estimate (according to Figure 7.5). We recommend to make an educated guess 
of the SRT50n and to use this guessed SRT50n minus 2 to 4 dB as initial SNR. Such an 
educated guess may be based on norm data, preliminary data, a familiarization run or on 
known relationships of the SRT50n with other clinically available speech recognition data, 
like word scores (e.g. Gifford et al., 2008). Only if one has too little knowledge for an 
educated guess, it is better to use the procedure of repeating the initial trials at higher 
SNR (+2dB) with a maximum of three repetitions. 
In this study the target proportion correct was 0.5, regardless of the maximum speech 
intelligibility in quiet. Another option is to choose the target as half the maximum speech 
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intelligibility in quiet. Then the target is at the steepest part of the intelligibility function 
and the function is more symmetrical around the target. This would lead to a smaller SD 
and bias for SRT50n. However, this option has three drawbacks: first, each participant is 
tested at his own target level, making it impossible to compare the SRT50n values among 
participants; second, the perceived difficulty of the test would become too high, which 
increases the risk that a participant gives up; third, the individual pmax must be measured 
beforehand. 
This study has some limitations. First, the VU sentences were selected for equal 
intelligibility at sentence level in NH listeners and not at word level in CI listeners. We have 
taken this into account by making variations in SRT and slope per sentence in the 
simulation model, but this is only an approximation. Second, the search for the best 
adaptive procedure was only done with use of parameters for the context model and the 
intelligibility function that were derived from data obtained with the VU sentences. 
However, the context parameters of the VU sentences are expected to be comparable 
with other open-set sentence materials. For example, they are comparable to the context 
parameters of the Göttingen sentence test reported by Bronkhorst et al. (2002). Only if a 
very different speech type is used, like a matrix test (Kollmeier et al., 2015) it would be 
safer to repeat the simulations with a context model and an intelligibility function that are 
suitable to these materials.  
To test if the results of this study are applicable to the matrix test, we did some 
simulations for matrix tests. The simulations were based on the context parameters of the 
Olsa test that were reported by Bronkhorst et al. (2002). For the intelligibility function we 
used pmax = 0.82, and a slope of 13.5 ± 4.6 %/dB at Pt = 0.5, based on values of Hey et al. 
(2014). Simulations for a list length of 30 trials with the averaged ndss SA algorithm with b 
= 4 resulted in an test-retest SD of 0.75 dB, giving a 95% confidence interval of about 3 dB. 
This agrees well with the range of test-retest differences reported by Hey and colleagues 
in their Figure 3. This indicates that SA algorithms work well for the matrix test. In matrix 
tests a maximum likelihood estimation of SRT50n is used,. This estimation is 
computationally complex and may sometimes produce more than one maximum, 
especially if the number of sentences is small (Pedersen & Juhl, 2017). As an alternative, 
an SA algorithm could be used, because SA algorithms are nonparametric and provide 
easy to calculate estimations of the SRT50n. 
In this study non-parametric SA algorithms were used to estimate the SRT50n. However, 
as discussed in the Introduction, maximum-likelihood and Bayesian methods are also 
valuable options to estimate the SRT50n. Doire and colleagues reported on a robust 
Bayesian method (Doire et al., 2017) and compared this method with the estimation 
methods of Brand and Kollmeier (2002) and Shen and Richards (2012). They reported 
simulation results for several psychometrical functions. One of these functions, having a 
slope of 0.075 dB-1 and a lapse rate of 0.1, is comparable to the simulations of the CI group 
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in this study. In our study the number of statistically independent trials for 26 sentences is 
52, because the effective number of independent words in the VU sentences is 2 
(Dingemanse & Goedegebure, 2019). Results of this study can therefore be compared to 
52 trials in the Doire et al. study. For 52 trials Doire and colleagues reported an SD of 2 dB 
and a bias of -1 dB for SRT50n for all methods used. In this study the values are better: 
SD=1.3 – 1.5 dB and the bias is around -0.5 – -0.3 dB (Figure 7.6 at pmax=0.9). On the other 
hand, the method of Doire and colleagues may be more robust for initial SNRs that are 
relatively far from the true SRT50n. For future research, we recommend a comparison 
between the non-parametric SA methods, parametric maximum-likelihood-based 
methods, and Bayesian methods, all with the same listener simulation model as used in 
this study. Furthermore, more research is needed on how to extend the different methods 
to measure threshold, slope, and pmax concurrently. 

Conclusions 
In conclusion, this study showed that stochastic approximation methods based on word 
scoring provide efficient estimations of the SRT50n in sentence-in-noise measurements, 
both in CI recipients and in NH listeners, if used with optimized parameters that govern 
the step size sequence. Although intelligibility functions in CI users have less steep slopes 
and a lower maximum intelligibility score in quiet, SA algorithms are capable to estimate 
the SRT50n efficiently. They have the advantage that knowledge of the maximum 
intelligibility score in silence and slope is not needed in the estimation of SRT50n. 
The SA algorithms proposed in this study provided more efficient SRT50n estimates than 
clinical used adaptive procedures. Therefore, they are recommended for clinical use. They 
may also lead to more statistical power of speech-in-noise tests if used in research, or 
equivalently in a smaller number of participants that is needed to achieve sufficient 
statistical power. 
The different SA algorithms used in this study provide equally accurate estimations of the 
SRT50n. This was found both for CI users and NH listeners. The averaged SA algorithm 
with a step size factor of 4 is recommended for clinical use, because it is relatively easy 
and it is applicable to a wide range of hearing-impaired listeners. In CI users, the most 
accurate estimate of SRT50n is obtained if the initial SNR is chosen below the SRT50n, the 
step size is relatively small, and at least 20 sentences per condition are used. The within-
staircase SD turned out not to be suitable as a measure for test reliability. 
The standard deviation of the SRT50n estimate increases with decreasing maximum 
intelligibility in quiet. The score of words from sentences in quiet should be at least 70% 
correct for reliable use of adaptive estimation of SRT50n. 
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Abstract 
Objectives: The Acceptable Noise Level (ANL) test, in which individuals indicate what level 
of noise they are willing to put up with while following speech, has been used to guide 
hearing aid fitting decisions and has been found to relate to prospective hearing aid use. 
Unlike objective measures of speech perception ability, ANL outcome is not related to 
individual hearing loss or age, but rather reflects an individual's inherent acceptance of 
competing noise while listening to speech. As such, the measure may predict aspects of 
hearing aid success. Crucially, however, recent studies have questioned its repeatability 
(test-retest reliability). The first question for this study was whether the inconsistent 
results regarding the repeatability of the ANL test may be due to differences in speech 
material types used in previous studies. Second, it is unclear whether meaningfulness and 
semantic coherence of the speech modify ANL outcome.  
Methods: We compared ANLs obtained with three types of materials: the International 
Speech Test Signal (ISTS), which is non-meaningful and semantically non-coherent by 
definition, passages consisting of concatenated meaningful standard audiology sentences, 
and longer fragments taken from conversational speech. We included conversational 
speech as this type of speech material is most representative of everyday listening. 
Additionally, we investigated whether ANL outcomes, obtained with these three different 
speech materials, were associated with self-reported limitations due to hearing problems 
and listening effort in everyday life, as assessed by a questionnaire. ANL data were 
collected for 57 relatively good-hearing adult participants with an age range 
representative for hearing aid users.  
Results: Meaningfulness, but not semantic coherence of the speech material affected 
ANL. Less noise was accepted for the non-meaningful ISTS signal than for the meaningful 
speech materials. ANL repeatability was comparable across the speech materials. 
Furthermore, ANL was found to be associated with the outcome of a hearing-related 
questionnaire. This suggests that ANL may predict activity limitations for listening to 
speech-in-noise in everyday situations 
Conclusions: More natural speech materials can be used in a clinical setting as their 
repeatability is not reduced compared to more standard materials.  
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Introduction 
One of the most frequent complaints of adult hearing aid users is that comprehending 
speech is challenging in noisy environments (Nábělek et al., 2006; Cord et al., 2004; Killion 
et al., 2004) Indeed insufficient benefit of hearing aids in noisy situations seems to be an 
important reason for people fitted with a hearing aid not to use it. Hearing rehabilitation 
could be better attuned to the needs of hearing-impaired individuals if audiologists were 
able to identify those hearing-impaired individuals who will have problems with accepting 
higher noise levels in everyday communication situations. Individualized counseling may 
help hearing-impaired individuals to set realistic expectations of hearing-aid benefit in 
noise. Furthermore, the use of assistive listening devices could then be applied early on 
for individuals who can be expected to be unsatisfied with hearing devices in noisy 
environments in order to ultimately minimize disappointment with the device, activity 
limitations and participation restrictions related to hearing disabilities (cf. Nábělek et al., 
2006; Kim et al., 2015). 
This raises the question of how to identify future hearing aid users who may be 
discouraged from using hearing aids because of difficulty listening in noise. One obvious 
approach would be to measure the individual’s objective ability to understand speech in 
noise (e.g., the standard speech-reception threshold measure). However, such objective 
performance measures are not predictive of hearing aid benefit or success (Bender et al., 
1993; Humes et al., 1996; Nábělek et al., 2006). In contrast, one subjective measure called 
“acceptable noise level” or “tolerated SNR” (henceforth, ANL) seems to be predictive of 
hearing aid and cochlear implant success (Bender et al., 1993; Humes et al., 1996; Nábělek 
et al., 1991; Nábělek et al., 2006; Plyler et al., 2008; but cf. Olsen and Brännström, 2014). 
The ANL procedure involves the following two steps: Listeners are first asked to indicate 
the loudness level they find most comfortable (henceforth, Most Comfortable Loudness 
Level, or MCL, cf. Hochberg, 1975) for listening to a continuous speech signal. In a second 
step, listeners adjust the background noise level (henceforth, Background Noise Level, or 
BNL) to the maximum level they are willing to put up with while following the running 
speech presented at their individual MCL level. Subtracting the BNL value from the MCL 
value yields the Acceptable Noise Level (ANL) measure which typically ranges between -15 
dB and 40 dB with a mean of around 5 to 12 dB (cf. Eddins, 2013; Nábělek et al., 1991; 
Nábělek et al., 2006; von Hapsburg and Bahng, 2006; Walravens et al., 2014). The lower 
the ANL value, the more noise the participant accepts while listening to speech. The ANL 
measure quantifies the individual's “willingness to listen to speech in background noise” 
(cf. Nábělek et al., 2006, p. 626). As such, it may be a better indicator of successful hearing 
aid uptake than the individual’s objective ability to understand speech in noise as it is 
more telling about the individual's wishes, motivation, and intentions. 
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Speech perception is generally considered to involve an interaction between the 
processing of acoustic information (bottom-up processing) and linguistic and cognitive 
processing (top-down processing). An important question is how ANL outcome relates to 
this interaction, as participants are explicitly instructed to ‘follow the speech’ during the 
ANL task. Even though listeners may engage in setting up linguistic hypotheses about 
upcoming content when the signal is clear, top-down contextual support may be 
particularly helpful in reconstructing the message when the signal is presented in noise. It 
is unclear whether type of speech material affects ANL. The original ANL publications (e.g., 
Nábělek et al., 1991; Nábělek et al., 2006) used a standard stretch of read speech, making 
up a coherent story (the Arizona Travelogue passage). In contrast, Olsen and Brännström 
(2014) used the International Speech Test Signal (ISTS; Holube et al., 2010), which is non-
meaningful by definition as the signal consists of roughly syllable-sized units from six 
different languages and speakers, concatenated into a continuous speech stream. Olsen 
and Brännström (2014) argue that the ISTS can be used to compare ANL values across 
languages. However, the use of the ISTS precludes top-down processing. In that sense, the 
question whether type of speech material affects acceptable noise level outcome is a 
question about the nature of the acceptable noise level task in the broader context of 
models of speech processing. Regarding the question of whether meaningfulness affects 
ANL outcome, ANLs obtained with unintelligible speech (i.e., reversed or unfamiliar 
speech) have been found to be higher (i.e., indicative of lower noise tolerance) than those 
obtained with intelligible speech (Gordon-Hickey and Moore, 2008). In contrast, 
Brännström et al. (2012a) showed that ANLs were lower for the ISTS in comparison with 
meaningful speech stimuli. We investigate whether ANL depends on meaningfulness and 
coherence by using three different stimulus types that differ in meaningfulness (ISTS vs 
concatenated sentences and fragments of conversational speech) and coherence 
(concatenated sentences vs coherent conversational speech). If meaningfulness of the test 
material does not affect ANL outcome, listeners’ acceptance of noise while following 
speech may mainly rely on bottom-up processing. Consequently, following speech in noise 
as captured by the ANL task would deviate from speech perception and comprehension. In 
line with Gordon-Hickey and Moore (2008), we expect to find increased ANL values for the 
non-meaningful ISTS material compared to the meaningful materials. Our hypothesis 
regarding the direction of a semantic coherence effect is that participants will accept more 
noise (i.e., show lower ANLs) for the conversational stimulus type in comparison with the 
passage of concatenated sentences as redundant information is available on the discourse 
level, which facilitates speech comprehension. Alternatively, however, the faster speech 
rate and less careful articulation observed in conversational speech may make listening 
harder than in the sentence materials and may yield lower noise acceptance. 
In order for ANL to be a clinically useful tool in hearing rehabilitation, it is important to 
establish its repeatability (i.e., consistency over repeated measures or test-retest 
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reliability with the exact same materials). Olsen and Brännström (2014) questioned the 
repeatability of the existing ANL procedures using the ISTS material. In the present study 
we investigate whether speech material type affects ANL outcomes and repeatability. 
Relatedly, repetition of the exact same materials may lead to substantial priming effects, 
especially for the meaningful materials. Consequently, participants would accept more 
noise upon repeated exposure, yielding a lower repeatability. We investigate whether the 
use of meaningful materials yields differential repeatability compared to non-semantic 
ISTS material. 
Nábělek et al. (2006) suggest that future hearing aid use can be predicted on the basis of 
ANL outcome for a majority of hearing aid candidates. Olsen and Brännström (2014), 
however, challenge the predictive value of ANL outcome for hearing-aid use, and report 
that results regarding the association between ANL and self-reported hearing-aid outcome 
measures have been mixed. These inconsistent findings may be caused by the multitude 
of variables that are possibly related to hearing-aid use, hearing-aid satisfaction and 
hearing-aid success, as reviewed by Knudsen et al. (2010) and McCormack and Fortnum 
(2013). Note, however, that self-reported hearing problems have been shown to be 
consistently associated with hearing-aid outcome measures obtained throughout the 
process of getting a hearing aid (help seeking, hearing-aid uptake, use, and satisfaction). 
We investigate whether ANL is associated with (specific components of) the Speech, 
Spatial, and Qualities of Hearing self-report questionnaire (SSQ; Gatehouse and Noble, 
2004) and whether this relation depends on ANL test material type. Our expectation is to 
find differential correlations between the questionnaire outcome and ANL for three 
speech stimulus types with stronger associations for the more ecologically valid materials. 
The central concept of the ANL measure is ‘Listening comfort’. Thus, individual acceptable 
noise levels are not necessarily linked to the listener’s objective ability to comprehend 
speech in noise, as shown in a number of studies (cf. Nábělek et al., 2004; Plyler et al., 
2008; Mueller et al., 2006; von Hapsburg and Bahng, 2006, but cf. Gordon-Hickey and 
Morlas, 2015). Whether and how the concept of comfort in noisy listening situations 
relates to listening effort is unclear. The clinical meaning of the concept of listening effort 
has recently been discussed in several papers (McGarrigle et al., 2014; Schulte et al., 2015; 
Francis and Füllgrabe, 2015; Rennies et al., 2014). One way to quantify listening effort is to 
ask participants to fill in effort-related subscales of self-report questionnaires (cf. 
McGarrigle et al., 2014). We therefore investigate whether listening effort, as measured 
with specific questions of the SSQ (Akeroyd et al., 2014) is associated with ANL. We 
hypothesize that ANL is associated with a listening effort-related subscale of the SSQ with 
more subjective listening effort related to lower noise acceptance (i.e., higher ANLs). 
Listeners need cognitive capacity to map a noisy signal onto stored representations 
(McGarrigle et al., 2014), as laid out in the Ease of Language Understanding model 
(Rönnberg et al., 2008, 2013). Multiple studies have shown that hearing aid users’ 
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objective speech understanding in adverse conditions (such as background noise) is 
related to their working memory capacity, verbal working memory in particular (Akeroyd, 
2008; Rudner et al., 2011; Ng et al., 2013, 2014). Given the relatively large amount of 
unexplained variance for individual acceptable noise levels, ANLs may also be associated 
with working memory. Brännström and colleagues (2012b) found a significant correlation 
between working memory capacity and ANL for a sample of normal-hearing participants, 
with lower noise acceptance (i.e., higher ANLs) relating to poorer working-memory 
capacity. We investigate whether ANL outcomes obtained with the different types of 
speech materials relate to listeners’ working memory capacity, where we expect to 
replicate the results of Brännström et al. (2012b).  
As ANL specifically asks listeners about their willingness to accept noise, ANL may be 
related to personality traits. Indeed, self-control abilities (i.e., the capability to control 
thoughts, feelings, impulses and performance; Baumeister et al., 1994), have been found 
to predict ANL outcomes (Nichols and Gordon-Hickey, 2012). We revisit the question to 
what extent ANL outcome relates to personality characteristics in this study. We expect to 
replicate effects of self-control on ANL with better self-control related to lower acceptable 
noise levels (cf. Nichols and Gordon-Hickey, 2012). Furthermore, even though earlier 
studies have not found a link between ANL and age (Nábělek et al., 1991; Moore et al., 
2011), nor between ANL and pure-tone hearing thresholds (Nábělek et al., 1991; 
Freyaldenhoven et al., 2007; Plyler et al., 2007), or between ANL and speech perception 
accuracy in noise (Nábělek et al., 2004), we investigate whether our data replicate this 
pattern of results.   
This study investigates whether speech material type affects ANL outcomes and 
repeatability for a reference sample of normal-hearing middle-aged and older 
participants. As addressing these questions on speech material and repeatability involves 
relatively long testing sessions with repeated ANL measurements, we tested a non-clinical 
population first so as not to burden a patient population. Future testing is then required to 
see whether material type effects generalize to a patient population and whether ANLs 
based on conversational materials better predict hearing aid success than ANL values 
obtained with  more standard audiology materials (such as, e.g., ISTS). 
The present study was set up to address the following four research questions: 
1. Does ANL outcome depend on the meaningfulness (1A) and semantic coherence (1B) 

of the speech materials? 
2. Does ANL repeatability differ across speech material types? 
3. Are ANLs differentially associated with self-report measures of listening effort and of 

hearing-related activity limitations for the different speech materials? 
4. Do participant characteristics such as working-memory (4A), and self-control abilities, 

age, hearing thresholds, and speech perception in noise predict ANL (4B)? 
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Materials and methods 

Participants 
Seventy-one adults were recruited, all native speakers of Dutch, above 30 years of age (39 
female, 33 male). From the initial sample, we excluded ten participants whose hearing loss 
in one or both ears exceeded the Dutch health insurance criterion for partial 
reimbursement of hearing aids (i.e., pure-tone average over 1000, 2000, and 4000 Hz ≥ 35 
dB HL in either ear). We also excluded two participants who suffered from tinnitus and 
one participant who showed significant binaural low-frequency hearing loss. One 
participant was excluded because she did not manage to perform the ANL task in the 
training phase. The 57 remaining participants (34 female, 23 male) ranged in age from 30 
to 77 years with an overall mean of 60.7 years (SD=11.0). All participants indicated that 
they had no hearing impairment and did not use hearing aids. None of the participants 
had a history of a neurological disease. We followed the protocols of the Radboud 
University Ethics Assessment Committee for the Humanities. All participants provided 
written informed consent and were informed that they could withdraw from the study at 
any time. 

Speech stimuli 
Three types of speech materials were used for ANL testing that differed in meaningfulness 
and semantic coherence: The unintelligible speech-like International Speech Test Signal 
(ISTS, Holube et al., 2010), a concatenated passage of meaningful Dutch sentences taken 
from speech material developed by Versfeld et al. (2000; henceforth, SENT), and 
conversational speech (henceforth, CONV) extracted from the Dutch conversational IFADV 
corpus (van Son et al., 2008). The 60 seconds long ISTS signal is made up of units that are 
roughly syllable sized, originating from six female speakers each reading a short standard 
passage in their native language (being Mandarin, Spanish, English, German, French and 
Arabic). The ISTS signal had been developed on the basis of an automatic procedure to 
cut, concatenate and reassemble the roughly syllable sized segments from the original six 
recordings to create a smooth 60 seconds long speech-like signal including pauses at 
regular intervals (all pause durations being smaller than 600 milliseconds). The resulting 
speech rate is approximately 4 syllables per second (Holube et al., 2010). Furthermore, the 
ISTS signal has been shaped to spectrally match the female international long-term-
average speech spectrum (ILTASS, Byrne et al., 1994).   
To create the second type of material (SENT), we concatenated fifty sentences from the 
female speaker of the materials of Versfeld and colleagues (2000) with intervals of 500 
milliseconds silence between sentences (total duration of the passage was 120 seconds). 
These sentences are all between five and eight words long and are semantically coherent. 
A translated example sentence is: “I hope to be able to catch the train”. The speech rate of 
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the sentences ranges between 3.5 to 5.7 syllables per second (Mean=4.6 syll./sec, 
SD=0.6). In order to match the spectral properties of the SENT materials to the ISTS 
materials, the concatenated SENT material was filtered to the ILTASS (combination of male 
and female signal) using a finite impulse response (FIR) filter between 100 and 16000 Hz. 
The third type of speech material was created by extracting two male and two female 
recordings from the conversational IFADV corpus (van Son et al., 2008). The Dutch open-
source IFADV corpus consists of annotated high-quality recording of dialogues on daily 
topics such as problems in public transport, leisure time activities or vacations. As we 
wanted to spectrally shape these materials, we selected four longer stretches of speech 
(CONV1 (female speaker), CONV2 (male speaker), CONV3 (male speaker), CONV4 (female 
speaker) where only one speaker was speaking, without being interrupted by the dialogue 
partner. These stretches were based on the available corpus annotations. In a few 
instances we cut out verbal backchannelling (e.g. “yes”, “hmm”) of the interlocutor, which 
did not overlap with the target speech. All pauses longer than 500 milliseconds were 
shortened to 500 milliseconds. The four resulting speech files ranged in duration between 
63 and 75 seconds. Speech rate calculated over the breath groups (sequence of words 
between inhalations) ranged between 2.6 and 7.5 syllables per second (Mean=5.7 
syll./sec., SD=1.2; CONV1: 6.10 syll./sec., CONV2: 5.10 syll./sec., CONV3: 5.79 syll./sec., 
CONV4: 5.89 syll./sec.). In order to match the spectral contents of the conversational 
materials to the other types of materials, the four conversational fragments were also 
filtered to the ILTASS (combination of male and female signal) using a FIR filter between 
100 and 16000 Hz. 

Noise material  
The noise stimulus used throughout the ANL test procedure was a non-stationary eight 
speaker babble noise (BAB8, Scharenborg et al., 2014) filtered to the ILTASS (combination 
of male and female spectrum) using a FIR filter between 100 and 16000 Hz. In line with 
the idea of aiming to approximate realistic listening conditions, we used a multi-talker 
babble noise since it is a typical background sound encountered in daily life.  

Experimental procedure 
Test set-up 
All acceptable noise level (ANL) test materials were presented in a sound-attenuated 
booth using an Alesis multimix 4USBFX device and Behringer MS16 loudspeakers in front 
of the listener (0° azimuth) at a distance of 1 meter. Stimuli were presented in a custom 
application (cf. Dingemanse and Goedegebure, 2015) running in Matlab (v7.10.0) on a 
MacBook Pro (type 9,1). Participants adjusted the sound level of the speech stimuli or the 
noise file using the up and down keys of a customized keyboard. The starting intensity for 
the most comfortable loudness level (MCL) was 45 dB (SPL). The intensity of the speech 
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file for the background noise level (BNL) task was set to the mean of the three 
measurements in the preceding MCL task. The step size for the intensity adjustment for 
both tasks was fixed at 2 dB per button press. 
All speech and noise materials were scaled to have the same overall level in dB (RMS). 
Sound level calibration was done using a 2250 Brüel and Kjær real time sound analyzer 
and a 1000 Hz warble test tone with the same RMS-value as the ANL materials. 

 
ANL instructions 
Participants were instructed to first adjust the level of the speech until it was too loud 
(i.e., up to the first deviation point), then to reduce the intensity until the speech became 
very soft (being the second deviation point) and lastly find the most comfortable loudness 
level (MCL). Then the participant's task was to select the maximum background noise level 
(BNL) they were willing to accept while following the speech at their MCL. They were 
instructed to use the same pattern of adjustments as described for MCL: turn up the 
volume of the noise until it was too loud to comfortably listen to the speech (i.e., the first 
deviation point), then to reduce the noise intensity until the speech became very clear 
(i.e., the second deviation point) and lastly to find the maximal background noise level 
they were willing to put up with while following the speech signal (BNL).  
 
Familiarization phase  
In order to familiarize participants with the ANL procedure prior to actual testing, each 
participant was presented with a phonetically balanced Dutch training fragment. A two-
minute-long recording of a female Dutch speaker reading a standard text passage 
(Dappere fietsers - 'Brave cyclists') served as training material. The noise stimulus (BAB8) 
used throughout the actual ANL test (BNL part) also served as background noise during the 
training session. Participants first received written instructions on the experimental task 
(which was a Dutch translation of the instruction provided in Nábělek et al., 2006, p. 639). 
The experimenter then demonstrated the task, using scripted instructions, which again 
followed the translation of Nábělek et al. (2006). A visual display was available during the 
familiarization phase that enabled the participant, as well as the experimenter, to see the 
course of the presentation level during the MCL and the BNL tasks. Each participant had to 
demonstrate the expected intensity pattern (up-down-final adjustments, cf. deviation 
points above) three times in a row for both MCL and BNL components before they could 
proceed with the test phase. 

 
Test phase 
Unlike during the familiarization phase, visual output was available only to the 
experimenter during the ANL test sessions. Participants had to perform the MCL and BNL 
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tasks for each of the six ANL test stimuli, and each of the two tasks was repeated three 
times in a row to decrease measurement error (cf. Brännnström et al., 2014b; Walravens 
et al., 2014). The acceptable noise level for each fragment and for each participant was 
calculated by subtracting the mean BNL from the averaged MCL. Note that stimulus 
presentation was looped such that if participants had not provided their response before 
the end of the stimulus, the stimulus was automatically repeated. All participants 
managed to set the MCL and BNL levels within the stimulus duration in the test phase 
(minimal duration: 60 s. for the ISTS).  

 
Test repetition 
In order to test the repeatability of the ANL measures across the different materials, we 
asked the participants to do the ANL task twice for each stimulus type (ISTS, SENT, CONV) 
with exactly the same material. Note that we took into account that the repetition of the 
exact same materials across sessions could lead to substantial priming effects, especially 
for the meaningful materials, by including a control variable in our models to capture 
changes in ANL over test sessions. Participants first performed the ANL test with the 
different materials at the beginning of the test session, and again (approximately 1 hour 
later) towards the end of the session. Participant characteristics data were collected in 
between these two ANL test sessions. During the first ANL session (session I), six different 
fragments were presented: ISTS, SENT, CONV1, CONV2, CONV3 and CONV4. To restrict 
testing time, we only presented one fragment for each of the three material types in the 
test repetition (session II): ISTS, SENT and CONV4. We selected the CONV4 stimulus from 
the four conversational test fragments because it featured a female speaker (as was the 
case for the ISTS and the SENT material) and because its speech rate was typical for 
conversational speech (i.e., 5.89 syllables per second). 
 
Randomization 
We used a block-wise randomization procedure to minimize presentation order effects for 
the material types. Each participant was pseudorandomly assigned to one out of six 
possible block orders for the speech material types (ISTS, SENT, CONV). The order of the 
presented speech material types for the second test session (session II) matched the order 
of session I.  
The order in which the four conversational materials appeared in the first ANL test session 
was also randomized. Each participant was randomly assigned one out of 24 possible 
presentation orders for the conversational speech stimuli.  
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Tests of participant characteristics 

Hearing (Pure-Tone Average) 
Hearing status was screened with air conduction pure-tone audiometry using the modified 
Hughson-Westlake technique for octave-frequencies between 250 and 8000 Hz, including 
two half-octave frequencies of 3000 Hz and 6000 Hz (see Figure 8.1). Audiometric 
averaged thresholds were calculated for the better ear as auditory presentation of the 
ANL test was binaural. Seven participants showed an asymmetric hearing loss, defined as 
an interaural difference of more than 10 dB averaged over 500, 1000, 2000, and 4000 Hz 
(Noble and Gatehouse, 2004). In addition to the pure-tone average over 1000, 2000, and  
 

 
Figure 8.1. Mean audiometric pure-tone air conduction thresholds (for left and right ear) as a 
function of frequency. Error bars represent interquartile ranges. 
4000 Hz, we calculated high-frequency PTAHF as the mean threshold over 3000, 4000, 
6000, and 8000 Hz. Table 8.1 displays descriptives for the two PTA measures. Higher 
values indicate poorer hearing. 
 
Speech perception in noise 
Speech perception in noise was tested using a standard Dutch speech audiometry test, the 
CVC word material from Bosman and Smoorenburg (1992, 1995), which is common in 
clinical practice in the Netherlands. The test allows presenting the materials at SNRs which 
are reasonably representative of noise levels during everyday communication (Smeds et 
al., 2015). This test material consists of meaningful monosyllables (e.g., kaas, 'cheese') 
produced by a female speaker arranged in lists of twelve words. The material was 
presented in a sound-attenuated booth using Behringer MS16 loudspeakers placed in 
front of the listener (0° azimuth) at a distance of one meter. The CVC words were 
presented at an intensity level of 65 dB (SPL) mixed with a masking noise of the same 
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intensity (long-term-average spectrum of the recorded speaker). The test score was based 
on the number of correctly reproduced phonemes (max. three per test item), discarding 
the first item of each list (which is considered a practice item). Based on Bosman and 
Smoorenburg's standardizations results, we expected a mean phoneme accuracy score of 
about 80 to 85 percent for normal hearing adult participants at an SNR of 0 dB (more 
favorable signal-to-noise ratios may thus lead to ceiling effects in performance). All 
participants were presented with five consecutive lists (list 31–35), which resulted in a 
maximum accuracy score of 165 phonemes correct (5 lists × 11 items × 3 phonemes). The 
speech perception in noise score reported here was quantified as the percentage of 
correct phonemes produced. Table 8.1 provides the descriptives for the perception in 
noise score. Higher values indicate better speech perception in noise.  

 
Table 8.1. Descriptives for the participant characteristics. 
 M SD Range 
Age (years) 60.72 11.04 30 – 77 
PTA (dB HL) 16.05 8.16 0 – 31.67 
PTAHF (dB HL) 25.09 15.68 -1.25 – 56.25 
Speech perception in noise (% correct) 88.22 6.79 67.88 – 96.36 
Reading Span (% correct) 28.43 10.73 0 – 48.15 
Self-Control Scale (% of maximum) 67.34 12.05 38.46 – 93.85 
SSQ Part 1 ‘Speech hearing’ (mean score) 7.07 1.07 4.86 – 9.36 
SSQ Part 3 ‘Qualities of hearing’ (mean score) 7.98 0.93 5.50 – 9.83 
SSQ  ‘effort and concentration’ (mean score) 6.55 1.71 3.00 – 9.50 

 
Reading span 
We used a Dutch version of the well-established reading span test to index working 
memory (cf. Daneman and Merikle, 1996; Besser et al., 2013; Besser, 2015). The Dutch 
test consists of 54 grammatically correct sentences, consisting of a noun phrase plus verb 
phrase. The 54 sentences are divided in twelve sets of three, four, five or six consecutive 
sentences. Half of the 54 sentences make sense (e.g., The student sang a song); the other 
half is absurd (e.g., The daughter climbed the past). The sentences were presented 
orthographically in chunks: first the subject noun phrase was presented (determiner-noun, 
e.g., The student), followed by the verb (e.g., sang), followed by the object noun phrase 
(determiner-noun, e.g., a song; cf. Besser, 2015, p. 173). We used E-prime (2.0, Psychology 
Software Tools) to present the chunks of the respective test sentences (Subject, Verb and 
Object) consecutively on a computer screen (display time of each chunk: 800 ms, blank 
inter chunk interval: 75 ms). Font size was 36 pt (Verdana). The primary unspeeded task 
was to repeat back either the first or the last nouns of the respective test set ranging in 
length from three to six consecutive sentences. Thus, participants were visually prompted 
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to (orally) recall either the subject noun phrases (first nouns) or the object noun phrases 
(last nouns) of the 12 test sets. The order in which participants recalled the first or last 
words was not taken into consideration for the scoring (cf. Besser et al., 2013). 
Additionally, participants were asked to perform a speeded plausibility judgement after 
each sentence as a secondary task. This task ensured that participants read and 
comprehended the sentences. Response time was restricted by imposing a time out of 
1.75 s after a visual prompt appeared that initiated the plausibility judgement task. 
Participants gave their plausibility judgment by either pressing a red (i.e., absurd) or a 
green button (i.e., makes sense) on a customized standard keyboard. Participants received 
written task instructions and completed a training test set before the actual test started. 
Reading span score was quantified as the percentage of correctly recalled nouns across 
the 12 sets. Table 8.1 displays the descriptives for the Reading Span test. Higher values 
indicate better working memory capabilities. 
 
Self control 
Participants filled in a Dutch translation of the Brief Self-Control Scale, a 13 item 
questionnaire using a five-point Likert scale (cf. Kuijer et al., 2008; Tangney et al., 2004). 
Individual test score were quantified as the percentage of points out of the maximum of 
65 points. Table 8.1 displays the descriptives for the self-control predictor variable. Higher 
values indicate better self-control abilities. 
 
SSQ questionnaire 
Prior to the ANL testing session, participants filled in an online (Dutch) version of the 
Speech, Spatial and Quality of Hearing Scale (SSQ, Gatehouse and Noble, 2004). The SSQ 
self-report scale, which consists of 49 items, is subdivided into three parts: Part 1: ‘Speech 
hearing’ (14 questions), Part 2: ‘Spatial hearing’ (17 questions), and Part 3: ‘Qualities of 
hearing’ (18 questions). Following Akeroyd et al. (2014), we extracted a factor related to 
listening effort covering question numbers 15 and 18 of the SSQ subscale ‘Qualities of 
hearing’ (‘Do you have to put in a lot of effort to hear what is being said in conversation 
with others?’;‘Can you easily ignore other sounds when trying to listen to something?’). 
Hence, we calculated the SSQ ‘effort and concentration’ subscale by averaging scores over 
these two questions. We also calculated the average over the first and the third SSQ scale 
as these two were deemed most relevant. Table 8.1 presents the descriptive values for 
averaged SSQ ‘Speech hearing’ and ‘Qualities of hearing’ scores, as well as for the factor 
related to listening effort (SSQ ‘effort and concentration’). Higher values on the SSQ scale 
indicate fewer limitations in self-reported activity due to hearing problems. Table 8.2 
provides a correlation matrix of all the participant-related characteristics. 
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Table 8.2. Correlation matrix with correlation coefficients and significance levels for participant 
characteristics (Spearman’s rank, uncorrected). Significance level notation: 
 ***p < .001; **p < .01; *p < .05; .p < .1. 
 
 
 
 
 
 

 
 
 
 
Age 

 
 
 
 
PTAHF 

Speech 
perception 
in noise 
 
SPIN 

Reading 
Span 
 
 
RST 

Self-
Control 
Scale 
 
SCS 

SSQ 
‘Speech 
hearing’ 
 
SSQ1 

SSQ 
‘Qualities 
of 
hearing’ 
SSQ3 

SSQ 
‘Effort and 
concentration’ 
 
SSQEC 

Age         
PTAHF  .42**        
SPIN -.48*** -.71***       
RST -.35** -.28* .51***      
SCS  .08  .07 .01 -.06     
SSQ1 -.19 -.08 .22. -.03 .39**    
SSQ3 -.17  .01 .21 -.06 .39** .65***   
SSQEC -.10 -.07 .17 -.02 .34** .54*** .64***  
         

Analyses 
RQ1  
Two separate statistical regression models were run to investigate the effects of 
meaningfulness and coherence (RQ1) of the test material on ANL, using linear mixed-
effect models with participants as random variable. The program R was used with the 
lme4 package (Bates et al., 2013) and restricted maximum likelihood estimation. P-values 
were calculated using the Anova function of the car package which calculates type II Wald 
2 values. The categorical within-subject variable meaningfulness included two levels: not 
meaningful (ISTS material) versus meaningful (CONV and SENT material).The within-
subject variable coherence featured two categories: coherent on sentence level (SENT 
material) versus coherent on discourse level (CONV material). Block order (order a–f) was 
included as additional control variable in all models. For the model on meaningfulness 
(model 1A), we allowed for the possibility that the effect of meaningfulness differed 
across participants by including a random participant slope for meaningfulness. Similarly, 
we allowed for the possibility that the effect of semantic coherence differed across 
participants by including a random participant slope for meaningfulness in the ‘coherence’ 
analysis (model 1B). Note that we also included the interaction between session number 
and meaningfulness (in model 1A) or between session number and coherence (in model 
1B), to allow for the possibility that ANLs may systematically change with session number 
due to semantic priming. Consequently, we also allowed for the possibility that the effect 
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of session number differed across participants by including a random participant slope for 
both models (model 1A, model 1B). 
 
RQ2 
We first ran a linear mixed-effect model (with random intercepts for participants) with 
ANL differences between test sessions as dependent variable. The question was whether 
ANL values obtained for the three types of speech materials differed in their repeatability 
across test sessions. One outlier was excluded from repeatability analysis of the ISTS 
material as the ANL difference between sessions I and II of this participant exceeded a 
threshold of the sample mean plus three standard deviations.  
Apart from the mixed-effect analysis described above, we followed the procedures 
described by Brännström et al. (2014b) to assess the repeatability of the three speech 
materials. Hence, we inspected the Bland-Altman plots (Bland and Altman, 1986; Vaz et 
al., 2013) as well as the coefficient of repeatability (henceforth, CR) for each of the three 
test materials for which two test sessions had been run. The CR measure is a repeatability 
(test-retest reliability) measure. It indicates the size of the measurement error in its 
original measured unit (i.e., dB). In our case, it represents the size of the difference 
between one measurement (session) and another measurement using the exact same 
material (with 95% confidence level). The Bland-Altman plots show for each of the three 
speech materials (ISTS, SENT, CONV4) each participant’s mean ANL over the two sessions 
on the x-axis against the difference between the two sessions on the y-axis. The CR was 
calculated for each material by multiplying the standard deviation of the differences 
between ANLs (averaged over repetitions) for the two sessions with 1.96. Additionally, we 
calculated the coefficients of repeatability for all test materials (i.e., incl. CONV1, CONV2 
and CONV3) over their three repetitions within test sessions (repetition 1 versus repetition 
2; repetition 2 versus repetition 3). This enabled us to analyze whether repeatability 
changed within and across test sessions. 
 
RQ3 
To assess the question whether self-reported hearing related activity limitations and 
listening effort differentially predict ANL outcomes for the three different speech 
materials (RQ3) we set up four linear mixed-effect models that included a categorical 
speech material variable (ISTS, SENT, CONV) in interaction with one of three variables 
derived from the SSQ scale (SSQ Part 1, SSQ Part 3, SSQ ‘effort and concentration’). 
Session number was added as categorical covariate to capture repetition effects due to 
semantic priming. Again, we allowed for the possibility that the effects of session number 
and speech material differed across participants and therefore added random slopes for 
the variable speech material and session number to the model. 
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RQ4 
To investigate the effects of participant characteristics (age, hearing thresholds, speech 
perception in noise accuracy, working memory and self-control abilities) on ANL for the 
three speech materials (RQ4) we performed 15 correlation analyses (Pearson’s r) and 
Bonferroni corrected for multiple comparisons. ANL values were pooled across the two 
test sessions. 

Results 
Table 8.3 shows the ANL test results per speech material per test session for the three 
unrepeated conversational materials (CONV1-3) and the three repeated materials 
(CONV4, SENT, ISTS). Mean ANLs are higher for the ISTS material than for the meaningful 
materials. Figure 8.2 gives an overview of the ANL test results per test session including 
the conversational materials that were only presented in test session I (i.e., CONV1, 
CONV2, and CONV3). 
 
Table 8.3. ANL descriptive statistics for the six speech materials and the two test sessions (in dB). 

Test material Test session I  Test session II  
 M SD M SD 
CONV1  4.06 4.59 – – 
CONV2 4.39 4.58 – – 
CONV3 5.50 4.29 – – 
CONV4 5.30 4.43 4.81 4.53 
SENT 4.32 5.57 4.13 5.24 
ISTS 6.25 4.90 5.84 5.25 

 

Research Question 1A: Does ANL outcome depend on the meaningfulness of the 
speech material? 
The results of the statistical model (cf. Table 8.4) showed that ANLs for the meaningful 
materials (SENT, CONV) were significantly different from those for the non-meaningful 
ISTS material (2(1, N = 341) = 17.98, p < .001). Participants showed 1.46 dB higher ANLs 
and thus less noise acceptance for the ISTS signal in comparison with the meaningful 
materials. The observed effect direction matched our a-priori hypothesis that participants 
would accept less noise for the non-semantic ISTS material than for the meaningful 
materials. Block order of presentation did not influence ANL, nor did session number. 
These control variables also did not interact with the meaningfulness of the test material. 
The absence of a significant effect of session number on ANL suggests that ANL was stable 
over sessions and that no semantic priming occurred between sessions. This absence of 
priming held across material types as the meaningfulness × session number interaction  
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Figure 8.2. ANL test results per speech material and per test session. Note that the notch plots 
include a marker for the mean (diamond symbol). 
 

was insignificant. Block order did not affect the ANL outcome, which suggests that our 
randomization procedure was adequate. For reasons of brevity block order is left out in 
the model presented below (the variable having six levels) (2(5, N = 341) = 2.13, p > .1).  
We also investigated the effect of meaningfulness including all conversational materials 
(this implies that it can only be assessed for session I). To that end, we averaged ANLs per 
participant over the conversational materials (CONV1–CONV4). In line with the results 
presented in Table 8.4, this analysis showed an effect of meaningfulness on ANL with less 
noise acceptance for the non-meaningful ISTS material compared to the two types of 
meaningful materials (2(1, N = 170) = 18.47, p < .001). 
 
Table 8.4. Model testing for the effect of meaningfulness on ANL. Significance level notation: 
 ***p < .001; **p < .01; *p < .05; nsp > .1. 
 Estimate SE p 
Intercept  4.79 0.62  
Meaningfulness  1.46 0.44 *** 
Session number -0.32 0.34 ns 
Meaningfulness × session number -0.09 0.59 ns 

 

Research Question 1B: Does ANL outcome depend on the semantic coherence of 
the speech material? 
A significant effect of coherence was observed with higher ANLs for the material with 
coherence on discourse level, i.e. the conversational material (2(1, N = 227) = 6.04, p < 
.05) than for the concatenated sentences (cf. Table 8.5). Thus, for the conversational test 
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material participants accepted less background noise. The size of the effect was 1.05 dB. 
The observed direction of the effect matched the hypothesis that participants would 
accept less noise for the conversational material, which was coherent at the discourse 
level, but may have been more difficult in terms of speech rate and speaking style than 
the concatenated sentences. Again, neither simple nor interaction effects (with the 
variable of interest, i.e., coherence) were found for the predictors session number and 
block order suggesting that the randomization procedures were appropriate and that 
there was no semantic priming from the first to the second session. The control variable 
block order is not included in the model below for reasons of brevity (2(5, N = 227) = 
2.62, p > .1).  
We also investigated whether the coherence effect can be generalized to different 
conversational speech fragments by replacing the conversational ANL values in the 
analysis above (CONV4) by the average ANL over the four conversational speech materials 
(CONV1–CONV4) per participant (for the first session only). The results of this alternative 
analysis did not replicate the previous finding of a coherence effect on ANL (2(1, N = 113) 
= 1.41, p > .1). Thus, there is no clear evidence for a coherence effect on ANL in our data. 
We raised the possibility that speech rate may affect ANL outcomes and that the 
difference between the conversational and concatenated sentences material is not just 
about discourse coherence, but also about speech rate. To follow up on that, we tested 
whether speech rate differences between the four conversational fragments affected ANL 
outcome by setting up a linear mixed-effect model with speech rate as a continuous 
predictor of ANL (first session measurements only, only conversational fragments). Speech 
rate turned out not to be a significant predictor of ANL in this subset analysis (2(1, N = 
228) = 0.33, p > .1).  
 
Table 8.5. Model testing for the effect of semantic coherence on ANL. Significance level notation: 
***p < .001; **p < .01; *p < .05; nsp > .1. 
 Estimate SE p 
Intercept  4.25 0.72  
Coherence  1.05 0.46 * 
Session number -0.12 0.43 ns 
Coherence × session number -0.37 0.60 ns 

 

Research Question 2: Does ANL repeatability differ across speech material 
types? 
The mixed-model analysis did not show a significant speech material effect on 
repeatability of the ANL, quantified as the difference between the ANLs per participant for 
the two test sessions (2(2, N = 169) = 0.57, p > .1). In an additional analysis on 
repeatability across material types we used the statistical approach of the coefficient of 
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repeatability (CR). Figure 8.3 displays the Bland-Altman plots for the three materials for 
which two test sessions had been run.  
 
The highest coefficient of repeatability and thus the lowest repeatability was found for the 
ISTS material (CR = ±6.65 dB). Both the concatenated sentences material (SENT) as well as 
the conversational material showed lower coefficients of repeatability and thus 
numerically slightly better repeatability. For the concatenated sentences material (SENT) 
the CR was ±6.40 dB. The best repeatability (numerically) was found for the conversational 
test material with a CR of ±6.14 dB. The combination of these two analyses suggests 
comparable repeatability across the speech materials.  
 

 
Figure 8.3. Bland-Altman plots for repeated ANL tests using conversational (CONV), concatenated 
sentence (SENT) and ISTS material. Horizontal lines represent the mean of the differences over the 
two test sessions as well as the boundaries for the 95% confidence interval per material type. 
 
In an additional step we calculated the coefficients of repeatability for all test materials 
over subsequent repetitions within test sessions. Table 8.6 shows that ANL repeatability 
increased numerically (i.e., CRs decreased) within test session I for all test materials except 
for CONV3. The same pattern of improved repeatability is seen for the CRs within test 
session II except for the SENT material. Overall, the repeatability in test session II does not 
seem to be numerically different from the repeatability in test session I. Note that 
repeatability seems to be most stable for the CONV4 material both within and across test 
sessions. 
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Research Question 3: Are ANLs differentially associated with self-report 
measures of listening effort and of hearing-related activity limitations for the 
different speech materials? 
We first tested whether the first subscale of the SSQ self-report questionnaire (‘Speech 
hearing’) would be associated with ANL outcomes. The model showed significant material 
effects ( 2(2, N = 341) = 21.39, p < .001) with highest ANLs found for the ISTS material and 
lowest ANLs for the sentence material (SENT). Importantly, this model showed a 
significant effect of the subjective questionnaire predictor SSQ (subscale ‘Speech hearing’) 
on ANL ( 2(1, N = 341) = 4.62, p < .05, see Table 8.7). Higher scores on the SSQ subscale 
(i.e., fewer self-reported limitations due to hearing problems) were associated with more 
noise acceptance and thus lower ANLs.  
However, the model did not show differential SSQ subscale effects on ANL for the three 
materials ( 2(2, N = 341) = 0.74, p > .1). 
We also investigated the association between the third subscale of the SSQ self-report 
questionnaire (‘Qualities of hearing) and ANL. The model showed significant material 
effects with lowest ANLs for the sentence material ( 2(2, N = 341) = 21.31, p < .001). 
However, we did not find an association between ANL and the third subscale of the SSQ 
self-report ( 2(1, N = 341) = 0.43, p > .1), nor differential SSQ ‘Qualities of hearing’ effects 
on ANL for the three materials ( 2(2, N = 341) = 1.56, p > .1). 
In a third step we analyzed the association between the factor ‘Effort and concentration’ 
(questions number 15 and 18 of the ‘Qualities of hearing’ subscale of the SSQ) and ANL. As 
for the analyses above, the model showed significant material effects with lowest ANLs for 
the sentence material ( 2(2, N = 341) = 21.32, p < .001). Yet, neither an association of ANL 
with the factor ‘Effort and concentration’ ( 2(1, N = 341) = 1.80, p > .1) nor differential 
‘Effort and concentration’ effects on ANL for the three materials were found ( 2(2, N = 
341) = 1.30, p > .1). 
 
Table 8.6. Coefficients of repeatability (in dB) for ANL for the six speech materials and the two test 
sessions contrasting subsequent repetitions. 
Test  Test session I  Test session II 
material repetition 1 vs 2 repetition 2 vs 3  repetition 1 vs 2 repetition 2 vs 3 
CONV1  6.04 4.42  – – 
CONV2 6.87 5.29  – – 
CONV3 5.76 6.34  – – 
CONV4 4.98 4.75  5.50 5.07 
SENT 6.38 4.65  4.32 6.06 
ISTS 6.76 4.68  6.16 5.76 

 



 Acceptable noise level and material effects 

201 

Additionally, we explored the strength of the association between the SSQ self-report 
measures (subscale ‘Speech hearing’) and the ANLs (pooled over sessions) separately for 
the three materials by running correlation analyses. Only for the conversational material 
(CONV) a marginally significant correlation (r = -0.23, p = .082, Pearson’s r) was found. 
 
Table 8.7. Model testing for differential associations between SSQ subscale scores and ANLs for 
three speech materials (CONV, SENT, ISTS). Significance level notation: 
 ***p<0.001; **p < .01; *p < .05; nsp > .1. 
 Estimate SE p 
Intercept (CONV material) 12.14 3.65  
SENT material -2.73 2.36 ns 
ISTS material  0.97 2.39 ns 
SSQ Part 1 (‘Speech hearing’) -0.98 0.51 * 
Session number -0.34 0.31 ns 
SSQ (‘Speech hearing’) × SENT material  0.26 0.33 ns 
SSQ (‘Speech hearing’) × ISTS material 0.003 0.33 ns 

 

Research Question 4: Do participant characteristics such as working memory 
(4A), and age, hearing thresholds, speech perception in noise, and self-control 
abilities predict ANL (4B)? 
Again, ANLs were pooled over the two test sessions for each of the three materials. 
Working memory was not correlated with ANL (p > .1). Likewise, none of the other 
correlations (N = 15) were statistically significant at an alpha level of .05 (i.e., not even 
before application of any correction required for multiple testing). Similarly, adding 
participant characteristics as continuous variables to either of the linear mixed-effect 
models discussed above (for research questions 1A and 1B) did not yield any significant 
effects of these participant-related variables. 

Discussion 
The clinical purpose of the acceptable noise level test (ANL) is to predict self-reported 
hearing problems and future hearing aid success as reliably as possible. Therefore, it is 
crucial to know whether and how its clinical applicability depends on what speech 
material listeners are presented with and how the test is administered. Material effects on 
the outcome of the ANL test have been addressed in numerous studies (von Hapsburg and 
Bahng, 2006; Gordon-Hickey and Moore, 2008; Ho et al., 2013; Olsen et al., 2012a, Olsen 
et al, 2012b, Olsen and Brännström, 2014). In a number of recent publications (Olsen et 
al., 2012a; Olsen et al., 2012b; Brännström et al., 2012a; Brännström et al., 2014a; 
Brännström et al., 2014b) – the International Speech Test Signal (ISTS, Holube et al., 2010) 
has been used, which is non-meaningful by definition. However, the original ANL test 



Chapter 8  
 

202 

fragment used by Nábělek et al. (2006), in which ANL outcome was shown to be 
predictive of hearing aid uptake, was a meaningful and coherent read story, and thus 
linguistically different from the ISTS material. With the present study we investigated 
material effects on ANL to find out whether meaningfulness and coherence affect ANL 
(RQ1). In addition, we evaluated the repeatability of the ANL test across a range of test 
materials to check whether ecologically more valid materials yield a comparable 
repeatability as more standard audiology materials and the ISTS signal (RQ2). Further, we 
analyzed the association between ANLs and the outcome of a questionnaire that 
measures activity limitations due to hearing problems to elaborate on the connection 
between listening effort and ANLs. We also re-examined the association of working 
memory and self-control abilities and ANLs (RQ4) found in previous studies (Brännström 
et al., 2012b; Nichols and Gordon-Hickey, 2012). 
As expected, ANLs were higher for the ISTS material in comparison with the meaningful 
materials. Our interpretation of this effect is that the available redundancy for the 
meaningful materials facilitated speech processing (via top-down processing) and thus led 
participants to choose higher levels of acceptable noise (i.e., lower ANLs) than for the non-
meaningful material. The unintelligible ISTS signal might have led participants to still want 
to hear as much as possible (i.e., relying more heavily on bottom-up processing). 
Furthermore, contrasting conversational ANL test materials with a passage of 
concatenated standard audiology sentences, we have not found convincing evidence for a 
semantic coherence effect on ANL. Possibly, the faster and more casual speaking style in 
the conversational material made listening more difficult, but this speaking style effect 
may have been offset by greater semantic coherence in the conversation, providing a form 
of discourse redundancy. The data did not provide clear evidence for priming effects 
across tests sessions (but note that Table 8.6 shows that coefficients of repeatability were 
largest between the first and second measurement within test session I). All in all, these 
results provide some evidence that top-down processing plays a role in ANL performance. 
An important question was whether repeatability differs across the three speech 
materials. Neither the statistical modelling approach nor the analysis of the coefficient of 
repeatability (CR) showed statistically differential repeatability. Rather, repeatability was 
comparable for the three speech material types with CR values ranging between ±6.14 dB 
for the conversational material and ±6.65 dB for the ISTS material. Crucially, a coefficient 
of repeatability lower or equal to ±6 dB ensures that measurement error is lower than the 
distance between the two thresholds used to categorize hearing aid users as either 
successful or unsuccessful (≤ 7 and > 13 dB, cf. Nábělek et al., 2006). Across test sessions, 
all three speech material types yielded CRs just above the critical ±6 dB threshold. With 
respect to ANL repeatability within test sessions, the conversational material (CONV4) 
yielded most stable CRs with values below ±6 dB. Our interpretation of the relatively high 
CR values across sessions is that listeners’ internal criteria for MCL and BNL may be 
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somewhat variable over time, particularly if they are engaged in other activities in-
between test and retest measurements. As suggested by Brännström et al. (2014b), noise 
acceptance while following speech may best be considered a range (Acceptable Noise 
Range), rather than a specific level (ANL). The relatively poor repeatability of ANL may 
raise concerns about the clinical value of the ANL as an indicator for hearing aid use and 
success. However, if the ANL is used to compare two hearing aid conditions within one 
session, within-session reliability seems to be sufficient. For example, the ANL has been 
used successfully to show the effect of a noise reduction algorithm (Mueller et al. 2006; 
Peeters et al. 2009, Dingemanse and Goedegebure, 2015). Further research would be 
required to investigate whether Acceptable Noise Range may be a more reliable predictor 
of hearing problems and future hearing aid success than ANL. 
Our analysis on the association of ANLs and the outcome of a subjective hearing-related 
questionnaire (RQ3) relates to recent discussion about the clinical meaning of concepts 
such as listening effort and fatigue in hearing-impaired individuals (McGarrigle et al., 
2014). Our data showed a significant effect of participants’ score on the subscale ‘Speech 
hearing’ of the Speech, Spatial, and Qualities of Hearing self-report (SSQ, Gatehouse and 
Noble, 2004) on ANL, particularly when listening to conversational speech. Participants 
who reported fewer listening problems also tolerated more noise while listening to speech 
(i.e., lower ANLs). Most questions of the ‘Speech hearing’ subscale are about conversation 
in noise. Both measurements (SSQ and ANL) are subjective judgements, where SRT 
measurements are not. This makes an association between ANL and SSQ more likely than 
an association between SRT and SSQ. The subscale ‘Qualities of Hearing’ was not 
significantly correlated with ANL. The between-participant differences of the ‘quality of 
sound rating’ were relatively small in this group of nearly normal-hearing participants. 
Possibly, perceived sound quality and ANL may be associated among hearing-impaired 
participants. No association was found between ANL and the subscale ‘Effort and 
Concentration’. This suggests that noise tolerance (as one aspect of listening comfort), is a 
different concept than the listening effort concept as formulated in these specific 
questionnaire questions. Further research should clarify differences and commonalities of 
both concepts. 
The association between self-reported listening difficulties in noise and noise acceptance 
(i.e., ANL) only becomes evident when such an ANL test relates to everyday experiences. 
We think this result clearly makes a case for the use of ecologically valid conversational 
materials in clinical testing. Audiologists and speech researchers should think about how 
representative the type of noise and noise levels are of everyday listening, but they should 
also care about differences between read aloud speech and spontaneous conversation.  
Further, the attempt to replicate working memory effects on ANL was unsuccessful. This 
suggests that noise tolerance, as one aspect of listening comfort, is not related to 
individual working memory capacity. Importantly, in line with previous studies (cf. 
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Akeroyd, 2008), working memory was considerably correlated with speech perception in 
noise (cf. Table 8.2), with higher working memory relating to better speech perception. 
The failure to replicate working memory effects on ANL in our study can be accounted for 
in two ways. First, it may be due to the use of different test materials and test procedures 
to quantify working memory. The test that Brännström et al. (2012b) used to quantify 
working memory was an auditory version of the reading span task in which the examiner 
presented the sentences orally, which may have increased the contribution of hearing. 
Alternatively, the lack of a correlation between ANL and working memory can be taken to 
underline that ANL and speech perception in noise are different in nature. The latter 
account ties in with our observation that ANLs did not relate to age, hearing thresholds, 
and speech-in-noise perception abilities. This held in the relatively good-hearing adult 
sample as tested here, but was also found by Nábělek et al. (1991, 2004), Moore et al. 
(2011), Freyaldenhoven et al. (2007) and Plyler et al. (2007) for both normal-hearing and 
hearing-impaired participants. Moreover, we have not found evidence for an association 
between ANL and self-control abilities reported in Nichols and Gordon-Hickey (2012). 
However, the latter study used a self-control scale containing 36 items in contrast to the 
Brief Self-Control Scale with 13 items that we asked our participant to fill in.  
The combined pattern of results converges on material effects being present for the 
acceptable noise level test with better noise tolerance and slightly better and more stable 
repeatability, at least numerically, for meaningful stimuli. We have also shown that 
activity limitations due to hearing problems and ANLs are related, especially if 
conversational materials are used as ANL test material. More natural speech materials can 
thus be used in a clinical setting as repeatability is not reduced compared to more 
standard materials. We aim to conduct follow-up research to investigate whether 
ecologically valid test materials – such as the conversational speech material used in this 
study – can be used to improve the predictive power of the ANL test for hearing aid 
success, relative to more standardized speech materials.  
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Abstract 
Objectives: To investigate the relation of a hearing-specific Patient-Reported Outcome 
Measure (PROM) with speech perception and noise tolerance measurements. It was 
hypothesized that speech intelligibility in noise and noise tolerance may explain a larger 
part of the variance in PROM scores than speech intelligibility in quiet. 
Methods: This cross-sectional study used the SSQ (Speech, Spatial, Qualities) 
questionnaire as a PROM. Speech recognition in quiet, the Speech Reception Threshold in 
noise and noise tolerance as measured with the acceptable noise level (ANL) were 
measured with sentences. A group of 48 unilateral post-lingual deafened cochlear implant 
(CI) users. 
Results: SSQ scores were moderately correlated with speech scores in quiet and noise, 
and also with ANLs. Speech scores in quiet and noise were strongly correlated. The 
combination of speech scores and ANL explained 10-30% of the variances in SSQ scores, 
with ANLs adding only 0-9%. 
Conclusions: The variance in the SSQ as hearing-specific PROM in CI users was not better 
explained by speech intelligibility in noise than by speech intelligibility in quiet, because of 
the remarkably strong correlation between both measures. ANLs made only a small 
contribution to explaining the variance of the SSQ. ANLs seem to measure other aspects 
than the SSQ. 
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Introduction 
Cochlear implants (CIs) are currently an established treatment for adults with post-lingual 
bilateral severe to profound sensorineural hearing loss. Substantial evidence exists that 
CIs improve speech intelligibility and quality of life (QoL) in most CI users (Gaylor et al., 
2013; McRackan et al., 2018a). 
The improvement in speech intelligibility due to the CI is usually measured with 
standardized speech tests, varying from Consonant-Vowel-Consonant(CVC) word lists to 
lists of sentences. The Minimum Speech Test Battery (MSTB) for adult CI users (MSTB, 
2011) recommends assessment of performance with CVC words in quiet and sentence 
materials in quiet and in noise.  
Improvements in QoL were examined by the use of health-related QoL questionnaires or 
patient-reported outcome measures (PROMs) in many studies (see for systematic reviews 
Gaylor et al., 2013; McRackan et al., 2018a; 2018b). The Nijmegen Cochlear Implant 
Questionnaire (NCIQ) (Hinderink et al., 2000) is a CI-specific PROM that is often used. It 
evaluates a CI users’ opinion on domains of auditory perception, but also on speech 
production, social functioning, and self-esteem. Besides this CI-specific PROM several 
hearing-specific PROMs were used in CI outcome research, like the Hearing Handicap 
Inventory in Adults/Elderly (HHIA/HHIE) (Vermeire et al., 2005; Park et al., 2011; Capretta 
& Moberly, 2016) and the Speech, Spatial and Qualities (SSQ) questionnaire (Zhang et al., 
2015; Capretta & Moberly, 2016; Ramakers et al., 2017). Using one or more of these 
questionnaires, many studies showed that a CI improves several aspects beyond speech 
recognition, like social interaction (e.g. Klop et al., 2008; Looi et al., 2011) or emotional 
well-being (e.g. Vermeire et al., 2005; Park et al., 2011). 
Although an improvement in QoL is related to many aspects of functioning, it is 
reasonable to hypothesize that better QoL with respect to CI use is at least associated with 
better speech recognition. However, literature does not provide clear evidence for this 
association. McRackan and colleagues (2018a) reported in their meta-analysis that 
negligible to moderate correlations were found between speech recognition scores and 
QoL. This finding was mainly based on correlations with overall NCIQ scores. They stated 
that the improvement in NCIQ scores was mainly due to the two sound processing 
domains (Basic sound perception and Advanced sound perception).  
The relation between PROM scores and speech recognition scores may be influenced by at 
least three aspects of speech recognition, that may add variability. First, the extent to 
which the speech material of the test is representative of everyday situations may differ 
between speech materials. If the speech material is highly predictable, the intelligibility 
score could be at maximum for a significant amount of CI users, making it less 
representative for more difficult every day listening situations. This may result in smaller 
correlation coefficients between speech scores and PROMs. Second, measures of speech 
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recognition in quiet may be less representative for daily life situations than measures of 
speech recognition in noise. Third, speech recognition is a highly stochastic process and 
therefore speech recognition scores has relatively low test-retest reliability (Thornton & 
Raffin, 1978; Bronkhorst et al., 1993). Furthermore, the relation between PROM scores 
and speech recognition scores may be influenced by factors that are not related to 
auditory functioning, but may influence the reported outcome. Given these 
considerations, only moderate correlations between speech recognition and PROMs are 
expected. This correlation may be highest if ecologically valid speech material in noise is 
used in combination with a hearing-specific questionnaire. 
 
Some studies used hearing-specific questionnaires as a PROM additionally to speech 
intelligibility measurements in CI users. For example, for the SSQ questionnaire, significant 
correlations were reported for phoneme identification scores and all SSQ scales (Fuller et 
al., 2012), word scores and the Speech scale (Zhang et al., 2015), or sentence scores and 
the Speech scale (Capretta & Moberly, 2016) or the Qualities scale (Heo et al., 2013). 
Ramakers et al. (2017) reported correlations between speech in noise measures and the 
SSQ Speech scale but did not find a significant correlation for unilateral CI users. Given 
that little published data on the relation of the SSQ scores and sentence recognition in 
noise exist, it remains unclear if the SSQ scores have a stronger association with speech in 
noise scores than the NCIQ questionnaire. More in general, few studies looked to the 
correlation between sentence recognition in noise and PROMs (McRackan et al., 2018a). 
 
Although speech perception measurements are only weakly or moderately correlated with 
PROMs, subjective judgment of speech intelligibility in noise situations may have a more 
direct relationship with PROMs, because other aspects like listening comfort, experienced 
effort and noise tolerance may be taken into account. The Acceptable Noise Level (ANL) 
test (Nabelek et al., 1991) is a good example of such a subjective judgment. This test 
measures the noise acceptance of a listener while listening to running speech. The 
resulting ANL is the minimum SNR that a listener tolerates during listening to speech in 
noise. Originally, the purpose of the ANL test was to help explain variance in hearing aid 
use between individuals (Nabelek et al., 1991). However, after its introduction it has being 
used in hearing-aid studies as a kind of general measure for noise tolerance/acceptance 
when listening to speech (Mueller et al., 2006; Johnson et al., 2009; Peeters et al., 2009). A 
few studies examined the ANL test in CI recipients. Plyler et al. (2008) studied the ANL test 
in a small group of 9 CI recipients and reported that their ANL values were not significantly 
different from ANL values of listeners with normal hearing. Furthermore, the ANL was not 
correlated with measured Speech Reception Thresholds in noise (SRTn) values and 
subjective outcome measures, except the overall satisfaction with CI listening. Donaldson 
and colleagues (2009) investigated to what extent the ANL and SRTn values could predict 
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perceived communication difficulties as measured with the Abbreviated Profile of Hearing 
Aid Profile (APHAB). They reported that ANL values of CI users were similar to those of 
normal hearing listeners and that ANL values were not correlated to the SRTn value that 
was measured with the Bamford-Kowal-Bench sentence-in-noise test (BKB-SIN). Both SRTn 
and ANL accounted for more than one third of the variance in self-rated communication 
difficulties of the CI users. Dingemanse and Goedegebure (2015) confirmed that both ANL 
and SRTn were significantly correlated with APHAB scores. Further research is needed to 
confirm that ANL is indeed a factor in predicting the subjective outcome measures in CI 
listeners, and if this finding of Donaldson and colleagues extend to other questionnaires. 
The objective of this study was to answer the following questions for unilateral CI users: 
1. To what extent are hearing-specific patient-reported outcomes as measured with the 

SSQ associated with measures of speech intelligibility in noise and quiet? 
2. Is noise tolerance as measured with the ANL test a contributing factor in predicting 

SSQ results, in addition to measures of speech intelligibility in noise and quiet? 
We hypothesize that speech intelligibility in noise and noise tolerance may explain a larger 
part of the variance in SSQ scores than speech intelligibility in quiet. 

Materials and methods 

Participants 
Fifty adult CI recipients were selected for this study. All participants were Dutch native 
speakers and had a phoneme score with their CI of at least 60% on clinically used Dutch 
CVC word lists (Bosman & Smoorenburg, 1995). Furthermore participants had post-lingual 
onset of hearing loss and at least one year CI use. 
Two participants were excluded because they did not manage to perform the ANL task 
reliably. The remaining 48 participants were unilateral CI users with severe hearing loss in 
the other ear. Twelve of them were wearing a contralateral hearing aid, but not during the 
tests. Table 9.1 shows participant characteristics that are known for their influence on 
speech perception outcomes after implantation: Duration of severe-to-profound hearing 
loss (SPHL) (Pure Tone Average over 0.5, 1, 2, 4 kHz ≥ 80 dB(HL) or a hearing threshold ≥ 
110dB(HL) for at least two frequencies or aided phoneme score ≤ 75%), the number of 
years of hearing aid use before CI implantation, and the age at CI implantation. 
Free-field thresholds were better than 40dB HL (average of 0.5, 1, 2 and 4 kHz) for 92.5% 
of the participants. For all patients a Reading Span score as a measure of working memory 
capacity is available. This score is obtained with a computerized Dutch version of the 
Reading Span test (van den Noort et al., 2008). The Reading Span score was the average 
number of correctly recalled words from three lists of 20 sentences. 
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Table 9.1. Characteristics of the CI recipients. Mean values, SD and range were given. SPHL means 
severe-profound hearing loss, HA: Hearing Aid, CI: Cochlear Implant, PTA: Pure Tone Average over 
0.5, 1, 2, 4kHz. 
  N Mean SD Range 
Gender Female 17   (35%)    
 Male 31   (65%)    
Duration of SPHL     5.7   0.48   0 – 21 
Years of HA use before 
CI 

  23.8   4.63   0 – 50 

Age at test (yr)   64.3 14.25 29 – 89 
Age at implantation (yr)   59.4 14.65 27 – 88 
CI use since 
implantation (yr) 

    4.8   3.25   1 – 13 

Reading Span 
(0 -20) 

    9.5   2.78   4 – 18 

Free-field PTA with CI     30.3   7.82 13 – 49 
Contralateral HA  12   (25%)    
Implant type Advanced Bionics 

HiRes90K MS 
01     (2%)    

 Advanced Bionics 
HiRes90K 1J 

22   (46%)    

 Advanced Bionics 
HiRes90K Helix 

04   (08%)    

 Cochlear CI24RE CA 21   (44%)    
Speech processor type Advanced Bionics Naida 

Q70 
27   (56%)    

 Cochlear Nucleus 5 21   (44%)    
 
Participants with an Advanced Bionics implant had at least 14 active electrode contacts 
and HiRes Optima S sound processing. During the study a T-mic microphone was used and 
all sound enhancement algorithms were switched off. In the daily used program all but 
two participants had ClearVoice switched on (near all in Medium setting). The input 
dynamic range setting was 55 to 63 dB. Participants with a Cochlear Ltd implant had at 
least 21 active electrode contacts and an “Everyday” Smartsound program with 
Autosensitivity and ADRO active. 
Participants signed a written informed consent form and the Erasmus Medical Center 
Ethics Committee approved the study protocols of the original studies whose data were 
taken. 
Data of an the age-matched reference group without hearing problems ((henceforth, NH 
group) was also used. This data was taken from the study of Koch et al. (2016). In that 
study the participants (33 female, 22 male) ranged in age from 30 to 77 years with a mean 
of 60.7 years (SD = 11.0). The SRTn reference value is taken from Dingemanse and 
Goedegebure (2019) who measured the SRTn in 16 normal hearing (NH) subjects, with a 
mean age of 22 years (SD=3.0; range 20-29 years). 
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Speech intelligibility tests 
The proportion of correctly recognized words from sentences in quiet (PCq) was measured 
with 26 Dutch female-spoken unrelated sentences (Versfeld et al., 2000). These sentences 
were representative for daily-used communication and mainly selected from a newspaper 
database. The sentences were pronounced in a natural, clear manner with normal vocal 
effort and speaking rate. The presentation level of the sentences was fixed at 70 dB(SPL). 
This speech level is often reached in noisy situations (Pearsons et al., 1977).  
For measurement of SRTn, i.e. the signal-to-noise ratio that yields 50% word intelligibility, 
a steady-state speech spectrum noise was used. The noise level was varied following an 
adaptive procedure to estimate the SRTn, using 26 sentences. An extensive description of 
the SRTn measurement is given in Dingemanse and Goedegebure (2015). 
To estimate the psychometric function, the trials of the SRTn measurement were sorted in 
three SNR groups and for each group the average SNR and proportion correct was 
calculated. These three means and the proportion correct in quiet were used to fit a 
logistic function. It is known that the slope of the psychometric function is biased if the 
function is fitted from adaptive staircase data. Therefore the slope was corrected with a 
factor 0.8 (Brand & Kollmeier, 2002; Smits & Houtgast, 2006). 
The perception of CVC words in quiet was measured with the clinically used Dutch word 
lists for speech audiometry of the Dutch Society of Audiology (Bosman & Smoorenburg, 
1995). Word scores were obtained from a participants’ clinical record if they were 
measured within 6 months before the visit or measured just before the experiment 
otherwise. The word recognition score was measured at 65 and 75 dB(SPL) and these 
scores were averaged to reduce variability and to obtain an estimate of the score at 
70dB(SPL). 

Acceptable noise level test 
The ANL is the difference between the most comfortable level (MCL) for running speech 
and a background noise level (BNL) that was adjusted by the participant in order to select 
the maximum BNL that the participant was willing to accept while following the speech. 
The listeners were given oral and written instructions, which were Dutch translations of 
the instructions in Nabelek et al. (2006). In these instructions participants were asked to 
find the MCL in three steps: to first adjust the level of the speech until it was too loud, 
then to decrease the level until it is too soft. Finally they were asked to carefully select the 
loudness level that was most comfortable by making 2-dB steps up and down. Similarly 
the BNL was measured in three steps. With the running speech presented at MCL, the task 
was to first set the level of the noise too loud, then to decrease the noise level until the 
speech became very clear and finally to adjust the noise level carefully to the level that 
one would put up with for an long time while following the running speech. For each test 
condition the MCL and BNL procedures were repeated 3 times and the mean values were 
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used for calculation of the ANL. To ensure maximum similarity in speech and noise signals 
between the speech in noise test and the ANL test, unrelated sentences of the speech-in-
noise test lists were connected with intervals of 500ms of silence between them to obtain 
running speech. The noise was the same steady-state speech spectrum noise as used in 
the speech in noise test.  

SSQ questionnaire 
All participants were asked to complete the Speech Spatial and Qualities of hearing 
questionnaire (SSQ) to assess the participants’ experience with CI use in everyday 
communication situations (Gatehouse & Noble, 2004). The SSQ has three scales: speech 
comprehension, spatial hearing and quality of sound. The questions ask for abilities that 
relate to listening in more complex and perceptually demanding environments. Only the 
speech and quality scales were used, because participants were unilateral CI users and 
test time was restricted. In addition, the speech and quality scales were divided into a 
pragmatic set of subscales for the SSQ, as proposed by Gatehouse and Akeroyd (2006). 
The Dutch version 3.2.1 (2007) was used in this study and questions were presented 
online with 10cm VAS scales with a marker that could be moved along the scale. 

Test procedures 
For this cross-sectional study the data collection was part of larger test protocols. (cf. 
Vroegop et al., 2017; Dingemanse & Goedegebure, 2018; Dingemanse et al., 2018) In all 
test protocols, a practice run for the sentence-in-noise test was performed to make the 
participants familiar with the voice and the task and to obtain a first estimation of a 
participants’ SRTn. This practice run was followed by a sentence test in quiet, and a 
practice run for the ANL test to learn the procedure and to follow the instruction carefully. 
Next, an ANL test and an SRTn test were performed, the result of which were used for the 
analysis in the current study. After that, other tests were performed, that were specific to 
the aforementioned studies. The SSQ questionnaire was completed before or after the 
tests. The CI was set in the most used daily life program and volume adjustments were not 
allowed during the test session.  
The ANL test and the method of SSQ administration used, were exactly the same for the 
NH group. 

Equipment 
All testing was performed in a sound-treated room. Participants sat one meter in front of a 
loudspeaker. All tests were presented in a custom application (cf. Dingemanse and 
Goedegebure, 2015) running in Matlab. In the ANL test a keyboard was used to increase 
or decrease the sound level of the running speech in the MCL task or the noise level in the 
BNL task. The step size was 2 dB per button press. The application showed the course of 



 Hearing-specific PROM, speech perception and acceptable noise level 
 

219 

the presentation level during the MCL and the BNL task, making it easy to check if 
participants did the task in accordance with the instructions. 

Data analysis 
Speech performance scores were transformed to rationalized arcsine unit (rau) scores in 
order to make them suitable for statistical analysis, according to Studebaker (1985). For 
correlations with SSQ non-parametric Spearman correlation coefficients were used. In 
cases of multiple comparisons, we used the Benjamini-Hochberg method to control the 
false discovery rate at level 0.05 (Benjamini & Hochberg, 1995). Regression curves were 
fitted using the total least squares approach. Multiple regression analyses were performed 
to examine to which extent SRTn, PCq, and ANL could predict the SSQ outcomes. In the 
regression analyses adjusted R2 values were reported as an indicator of the proportion of 
variance explained in addition to the regular R2, which tends to overestimate the 
explained variance. Data analysis was performed with SPSS (IBM, Version 23, Chicago, 
USA) and Matlab (MathWorks, v9.4.0). 

Results 

Speech measures and ANLs 
Figure 9.1 shows the mean SRTn and ANLvalues. Compared to the NH reference, CI users 
had significantly higher SRTn values (t test, t(62) = 9.7, p<0.001) and ANL values (t test, 
t(101) = 5.2, p<0.001). The difference in SRTn values is greater than the difference in ANL 
values. The average MCL values of the CI group (60.2 ± 5.8 dB) and the NH group (59.0 ± 
6.6 dB) were comparable (t test, t(101) =1.0, p=0.31). 
 

 
Figure 9.1. Speech reception thresholds in noise (SRTn) and Acceptable noise levels (ANL) for CI 
users and NH listeners. Lower SRTn and ANL values indicate better performance. Error bars indicate 
the standard deviation. Numbers of mean and SD are given below the bars. 
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For the CI group, the proportion of correct CVC words (PCcvc) had a mean value of 0.65 
rau, an SD of 0.17 and a range from 0.57 to 1.15 rau. The PCq of words from sentences  
was somewhat higher with a mean value of 0.95 rau, an SD of 0.16 and a range of 0.61 to 
1.19 rau. For the CI users, we checked whether patient characteristics were associated 
with the outcome measures by calculating correlation coefficients. Duration of severe-to-
profound hearing loss and years of hearing aid use before CI had no significant 
correlations with any of the speech scores nor with ANLs. A higher age at implantation 
was significantly associated with lower speech scores if the sentence speech material was 
used (for PCq, r  = -0.42, p < 0.001; for SRTn, r  = -0.48, p < 0.001 ). Reading Span scores 
were not significantly correlated with ANLs. Free-field pure-tone averages with CI were 
not significantly related to any of the speech scores, nor to ANLs. The difference of the 
mean SSQ scores (both Speech and Qualities) of the group with a contralateral hearing aid 
and the group without a hearing aid was smaller than 0.1 and not significant. 
Furthermore, the speech scores of both groups (as measured with CI only) were not 
significantly different. Given these findings, we did not expect any influence of the use of a 
contralateral hearing aid on SSQ scores. 
Table 9.2 provides Pearson correlation coefficients between PCcvc, PCq, SRTn, and ANL. 
The correlation analysis showed that better CVC word scores were significantly correlated 
with better scores for words from sentences (PCq). 
Furthermore, lower (=better) speech in noise thresholds were significantly related to 
higher speech scores in quiet, especially to PCq. This relation was plotted in the left panel 
of Figure 9.2, showing the data points together with a regression line. The shared variance 
was 73%. We observed that even the CI participants with the highest PCq scores (near 
maximum) had an SRTn that is higher than the SRTn of the normal-hearing reference 
group. The regression line indicates that a score of 100% correct words corresponds with 
an SRTn of -0.35 dB. This is 5 dB above the SRTn of -5.5 dB in the normal-hearing reference 
group. 
 
 
Table 9.2. Correlation matrix with Pearson correlation coefficients and corrected significance levels 
for proportion of correct CVC words (PCcvc), proportion of correct words from sentences in quiet 
(PCq), speech reception threshold in noise (SRTn), and Acceptable noise level (ANL) as measured in 
the CI group. 
  PCcvc  PCq SRTn 
PCq     0.56*   
SRTn    -0.56*  -0.85*  
ANL    -0.23  -0.50*  0.51* 

* The correlation is significant (<0.001 )after correction for multiple testing. 
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Figure 9.2. Proportion of correct words from sentences in quiet (PCq) plotted against the Speech 
Reception Thresholds in noise (SRTn), obtained with word scoring (left panel), together with a 
regression line. The y-axis on the left shows the proportion correct in rau units and the y-axis on the 
right of the left panel gives the proportion correct scores. The black square shows the normal-
hearing reference value. The right panel shows the intelligibility function of four groups of CI users 
and the NH reference. The gray area is the area with ecological SNRs. 
 
To get more insight into the relationship between speech intelligibility in quiet and in 
noise, individual psychometric functions were fitted from the PCq and SRTn data. In three 
subjects this did not result in a reliable fit. These subjects were excluded from analyses 
with the psychometric curves involved. The individual psychometric functions were sorted 
by their SRTn value and then they were divided into four groups in such a way that the 
mean SRTs of these groups were almost equally spaced. The right panel of Figure 9.2 
shows mean psychometric curves of these four groups, illustrating the strong relation 
between SRTn and PCq. The area with ecological SNRs (Smeds et al., 2015) is shown in 
grey, and makes clear that subjects with PCq < 0.7 have very limited speech understanding 
in background noise at ecological SNRs. 
Furthermore, Table 9.2 indicates that higher ANLs were associated with lower PCq values 
and higher SRTn values. No significant correlation was found between ANLs and PCcvc. 
Figure 9.3 shows the relationship between SRTn and ANL. Because of the strong 
relationship between PCq and SRTn (Figure 9.2), we plotted ANL against SRTn only. From 
this figure it is clear that most ANL values were above the diagonal, according to the 
instruction of the ANL measurement, asking for the maximum acceptable noise level 
“while following the speech”. 

SSQ outcomes 
Figure 9.4 shows the SSQ scores on the different scales and subscales. Higher values on 
the SSQ scale indicate fewer limitations in self-reported activity due to hearing problems.  
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Figure 9.3. Acceptable Noise Levels (ANL) compared with Speech Reception Thresholds in noise 
(SRTn), together with a regression line. 
 
 

Only a small difference was found between the SSQ Speech scale and the SS Qualities 
scale. Both scales were strongly correlated (r  = 0.70, p < 0.0001). The highest scores were 
found for the “speech in quiet” subscale, followed by “sound quality and naturalness”. The 
lowest scores were obtained for subscale “Multiple speech-stream and switching”. 
 
 

 
Figure 9.4. Mean values on the Speech and Qualities scales and pragmatic subscales of the Speech, 
Spatial and Qualities (SSQ) questionnaire for the CI group and the NH group. Error bars indicate the 
standard deviation. Numbers of mean and SD are given below the bars. 
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All SSQ scales and subscales were significantly smaller in the CI group than in the NH group 
(Wilcoxon rank-sum tests, p < 10-3). In general, the variability was greater in the CI group 
than in the NH group. When investigating correlations between SSQ outcomes and patient 
characteristics, we only found a significant correlation of age at implantation and the SSQ 
Qualities scale (r  = -0.42, p <0.01).  

Relation of SSQ with speech measures and ANL 
Spearman correlation coefficients were calculated to examine the relationships between 
the SSQ (sub)scales, the speech measures, and ANL (Table 9.3). The SSQ Speech scale and 
its subscales were not significantly correlated with CVC word scores, except for the 
“Speech in quiet” subscale. In contrast, the scores for the sentence material (PCq and 
SRTn) had significant weak to moderate correlations with the SSQ Speech scale and its 
subscales, and were greater than the correlations for the CVC words. The correlations of 
SRTn and PCq with SSQ (sub)scales were very similar, as expected from the strong 
correlation between SRTn and PCq (Table 9.2 and Figure 9.2). Figure 9.5 provides scatter 
plots of the SSQ scales against the SRTn and ANL data, to gain insight into why the 
correlations found were only moderate. Panel A of Figure 9.5 shows that SSQ Speech 
values had high variability, even for a narrow range of SNRs. For example, for an SNR of 
about 4 dB, the SSQ Speech values varied from 2 to 8. Some CI users rated their  
 
Table 9.3. Correlation matrix with Spearman correlation coefficients for proportion of correct CVC 
words (PCcvc), proportion of correct words from sentences in quiet (PCq), speech reception 
threshold in noise (SRTn), and Acceptable noise level (ANL) as measured in the CI group.  
  PC 

 cvc 
 PCq  SRTn  ANL 

SSQ Speech  0.27  0.39*  -0.37*  -0.31 
- Speech in quiet  0.44*  0.47*  -0.45*  -0.31 
- Speech in speech contexts  0.24  0.32*  -0.27  -0.25 
- Speech in noise  0.20  0.34*  -0.34*  -0.37* 
- Multiple speech-stream and switching  0.17  0.39*  -0.40*  -0.30 
      

SSQ Qualities  0.39*  0.51*  -0.39*  -0.46* 
- Sound quality and naturalness  0.44*  0.52*  -0.43*  -0.40* 
- Identification of sound and objects  0.35*  0.46*  -0.36*  -0.51* 
- Segregation of sounds  0.35*  0.47*  -0.40*  -0.35* 
- Listening effort  0.09  0.23  -0.10  -0.32* 

* The correlation is significant (<0.05) after correction for multiple testing. 
 
speech intelligibility among other sounds as low (SSQ Speech <4), even if their SRTn 
The SSQ Qualities scale and its subscales had significant moderate correlations with ANLs. 
Smaller (better) ANLs were associated with better SSQ Qualities scores (see also Figure 
9.5, panel D).  
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Figure 9.5. Relations of SSQ Speech and SSQ Quality with the Speech Reception Threshold in noise 
(SRTn) and the Acceptable Noise Level (ANL), together with fitted regression lines. 
 
It is noteworthy that higher ANLs were significantly correlated with more listening effort 
(lower scores on the “Listening effort” scale), while speech intelligibility measures did not. 

Prediction of SSQ 
Multiple regression analyses were conducted to examine the predictive value of the ANL 
variable in addition to the speech measures (PCcvc, PCq, SRTn) with respect to both the. 
SSQ Speech and SSQ Qualities subscales. Assumptions of multiple regression analysis were 
checked No outliers were detected in the standard residuals, tests for multicollinearity 
indicated that the level of multicollinearity was low (VIF < 1.35), the assumption of 
independent errors was not violated (Durbin-Watson value < 2.1). The scatterplot of 
standardized predicted values versus standardized residuals, showed that the data met 
the assumptions of homogeneity of variance and linearity, and the residuals were 
approximately normally distributed.  
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The results of the multiple regression analyses for the SSQ Speech scale are shown in 
Table 9.4 as models Sa, Sb, and Sc. These analyses showed that the different combinations 
of speech measures and ANL were significantly related to SSQ Speech, but with a low 
predictive power (R2adj values around 0.1 – 0.15). ANL did not significantly contribute to 
the prediction of SSQ Speech in addition to the speech measures of the sentences (PCq 
and SRTn). 
For SSQ Qualities an analysis of standard residuals was carried out on the data to identify 
any outliers, which resulted in removal of the data of participant 37. All assumptions were 
checked and none was violated (VIF <1.4; Durbin-Watson value < 2.3). The analyses show 
that the combination of PCcvc and ANL and the combination of PCq and ANL predicted  
SSQ Qualities significantly with an explained variance of 27 to 30%, but SRTn had no 
 
 
Table 9.4. Prediction of SSQ Speech and Qualities by proportion of correct CVC words (PCcvc), 
proportion of correct words from sentences in quiet (PCq), speech reception threshold in noise 
(SRTn), and Acceptable noise level (ANL) as measured in the CI group. 
Predicted Predictor B β       F       t       p       R2    Adj. R2 

SSQ Speech         
Model Sa    5,208  0.009 0.188 0.152 

 PCcvc 2.512 0.270  1.952 0.057 0.114 0.095 
 ANL -0.090 0.280  -2.025 0.049 0.119 0.100 
         

Model Sb    4.818  0.013 0.176 0.140 
 PCq 2.975 0.276  1.768 0.084 0.144 0.126 
 ANL -0.067 -0.207  -1.327 0.191 0.119 0.100 

         
Model Sc    3.634  0.034 0.139 0.101 

 SRTn -0.065 -0.164  -1.020 0.313 0.089 0.069 
 ANL -0.084 -0.261  -1.615 0.113 0.119 0.100 

         
SSQ Qualities         

Model Qa    9.610  <.001 0.304 0.272 
 PCcvc 2.467 0.269  2.075 0.044 0.137 0.118 
 ANL -0.133 -0.421  -3.249 0.002 0.239 0.222 
         
Model Qb    9.880  <.001 0.310 0.297 
 PCq 3.086 0.307  2.130 0.039 0.225 0.208 
 ANL -0.101 -0.336  -2.330 0.024 0.239 0.222 
         
Model Qc    7.563  0.002 0.256 0.222 
 SRTn -0.056 -0.153  -1.005 0.320 0.133 0.114 
 ANL -0.123 -0.410  -2.697 0.010 0.239 0.222 

B = nonstandardized regression coefficient; β = standardized regression coefficient; F and t are the F 
and t statistic, p = significance level, R2 = coefficient of determination, adj. R2 = adjusted R2 values. 
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additional predictive value to ANL. Regression coefficients for both ANL and PCcvc or PCq 
were significant. With ANL as the second predictor the adjusted R2 (i.e. de explained 
variance) value increased with 0.09 (PCq) to 0.15 (PCcvc).  
In addition, we have included the use of a contralateral hearing aid as a factor. In none of 
the models this factor was statistically significant and the predictive value of speech 
variables and ANL hardly changed. 

Discussion 

Relation of speech measures and SSQ 
In this study the SSQ was used as hearing-specific PROM in the domains of speech, with 
questions mainly focused on speech perception among other sounds, and qualities, with 
questions about naturalness, identification, segregation of sounds and listening effort. As 
explained in the introduction, we expected a significant relation between speech 
measures and the SSQ. This relationship was clearly seen when comparing CI users with 
NH listeners. The speech in noise thresholds of CI users were substantially poorer than 
those of the NH listeners and also the mean SSQ scores of CI users were on average 
significantly smaller than the mean scores of the NH group (Figure 9.4). 
The mean SSQ scores of the CI group are comparable with values of the speech and 
qualities domains reported by Mertens et al. (2013), but greater than the values found by 
Farinetti et al. (2015). Differences in the inclusion criteria are the most likely explanation. 
Farinetti and colleagues had no inclusion criterion based on speech perception, but we 
only included participants with at least 60% phoneme score on clinically used Dutch CVC 
word lists. Figure 9.5 shows the relation of the SSQ with SRTn and ANL. For the best 
performing CI participants the SSQ values were in the range of older subjects with minimal 
hearing loss (the NH reference group from Figure 9.4, see also Banh et al. (2012)) to adults 
with mild hearing difficulties (mean better ear pure-tone average of 39 dB over 0.5 to 4 
kHz) (Gatehouse & Noble, 2004). However, the SRTn value of the best performing CI users 
is around 5 dB below the values of the NH reference group. This suggests that the best 
performing CI users rated their abilities relatively high on the SSQ. It may be that their 
reference of what performance is normal had changed, because they are used to their 
own speech reception possibilities. The participants with the worst speech scores had SSQ 
values in the range of the values reported by Farinetti et al. (2015). Regarding the 
subscales of the SSQ, Dwyer et al. (2014) reported mean scores for 20 CI users. Their 
scores were comparable to the values found in this study.  
In the CI group more variation in SSQ scores is seen, compared to the NH group. An 
explanation for this observation may be the fact that speech understanding scores had 
also a greater spread. In summary, the significant differences between the CI group and 
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the NH group for both speech measures and SSQ scores, confirm that there is a 
relationship between hearing performance and PROMs. 
Within the CI group, we found that the SSQ Speech scale was significantly correlated with 
the measures of the sentence material but not with the CVC word scores. This suggests 
that speech measures with more ecologically valid speech material may better reflect the 
experienced limitations in daily life. A comparable result was obtained by Moberly et al. 
(2018), who reported a correlation coefficient of 0.18 for words in quiet in relation to the 
Advanced Sound Perception scale of the NCIQ, and 0.49 for sentences in quiet with the 
same NCIQ scale. On the other hand, the regression analyses showed that CVC scores and 
scores of words from sentences were not very different in predictive power.  
Another reason for the higher correlation with sentences may be the fact that the 
proportion of correct words from sentences had a smaller test-retest variability. The test-
retest variance is related to the number of sentences in a list (N=26) and the number of 
statistically independent elements in a sentence. The latter is around 2 (Dingemanse & 
Goedegebure, 2019), giving 52 independent elements. The CVC words test consisted of 22 
independent words. So, the accuracy of the mean word score for sentences is 1.5 times 
better than the accuracy of the CVC words. 
It is remarkable that the PCq scores had higher correlations with the SSQ Qualities scale 
than with the SSQ Speech scale. This is in accordance with an observation by Heo and 
colleagues (2013) who reported correlations of 0.48 and 0.66 for recognition of sentences 
and SSQ Speech and SSQ Qualities respectively in their study of bimodal benefit in CI 
users. The finding suggests that PCq scores and perceived sound quality were both partly 
dependent to the quality of the sound cues in the CI signal. Akeroyd and colleagues (2014) 
reported a factor analysis of the SSQ from a large dataset and stated that the questions of 
the Qualities domain represent mainly clarity, separation, and identification of sounds. So, 
there is good face validity of the relation between SSQ Qualities and speech recognition in 
quiet. 
 
In the introduction, we argued that SSQ scores may have a stronger correlation with 
speech recognition in noise than with speech recognition in quiet, because measures of 
speech recognition in quiet may be less representative for daily life situations than 
measures of speech recognition in noise. Furthermore, most questions in the SSQ Speech 
domain are related to speech in other sounds. The underlying assumption of this 
argument is that both speech recognition in quiet and in noise, are measures of different 
aspects of auditory functioning.  
However, the correlations between sentence recognition in quiet and in noise and the SSQ 
Speech domain were very similar. This can be explained by the finding that speech 
intelligibility in steady-state speech noise (SRTn) was highly correlated with speech 
intelligibility in quiet (PCq) in our CI group (see Figure 9.2). This high correlation is in 
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accordance with the results of Gifford et al. (2008) who reported a linear relationship 
between SRTn scores of the BKB-SIN test and performance on AzBio sentences in quiet in 
CI users. In our study the relationship between SRTn and PCq was even stronger, because 
the same sentence material was used for both speech measures. An explanation for this 
relationship might be that even for speech in quiet the bottom-up information in the CI 
stimulation contains too little speech cues to reach an intelligibility score of 100% in most 
CI users. If noise is added the amount of bottom-up information is partially masked and 
intelligibility is further reduced. The less bottom-up information available in quiet, the 
lower the intelligibility score and the less noise is allowed to reduce the intelligibility to 
50%. Thus the variation of speech intelligibility in quiet and in noise among CI users 
originate from the same source (the available amount of bottom-up information), 
resulting in a high correlation between the two speech measures. The scarcity of bottom-
up information may be due to poor frequency resolution (Won et al., 2007; Anderson et 
al., 2011; Dingemanse & Goedegebure, 2015) and the lack of temporal fine structure 
(Heng et al., 2011) among other factors related to the electro-neural interface of a CI. 
Even in the best performing CI recipients with a score near 100%, the bottom-up CI signal 
contains less information than the sensory bottom-up information in NH listeners. This is 
illustrated by the observation from Figure 9.2 that CI users with a near 100% score had 
SRTn values around the regression line that were around 5 dB worse than the NH group. 
This suggests that the internal signal representation of a CI can have a loss of detail 
equivalent with 5 dB SNR loss if intelligibility in quiet is still at 100%.  

ANL measures in CI users 
We found that ANL values of the CI users were significantly higher than that of the NH 
group. This is in contrast with the findings of two other studies that measured ANL in CI 
users and NH listeners (Plyler et al., 2008; Donaldson et al., 2009). Furthermore, these 
studies reported that ANLs were not correlated with SRTn values, but we found a 
significant moderate correlation (r  = 0.51) between ANL and SRTn scores. An explanation 
for both differences between this study and the findings of Donaldson et al. and Plyler et 
al. may be that in this study the same speech material was used in the ANL test and the 
SRTn test. That made it possible to compare the two measures, while the other studies 
used the original ANL speech (the Arizona Travelogue passage) in 12-talker babble as ANL 
stimuli and other speech materials for the SRTn measurement. The use of different 
materials may have added variability due to differences in spectra of speech and noise or 
due to differences in available contextual information within the speech materials. A 
second factor that may have played a role is related to the ANL instruction. This 
instruction asks to “adjust the noise to the level that would put up with for a long time 
while following the story (or speech)”. It is reasonable to assume that ‘following the story’ 
requires that the speech intelligibility level is greater than 50% correct, i.e. greater than 
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the SRTn. From the left panel of Figure 9.4 it is clear that this holds for most participants. 
This requirement, together with the large range of SRTn values, most likely resulted in the 
correlation between ANL and SRTn. In the studies of Donaldson et al. and Plyler et al. the 
mean ANL values were below the mean SRTn values, so the question is whether the 
speech understanding of the ANL speech was sufficient. Donaldson and colleagues 
reported ANL intelligibility rating with a mean value of 84%. This may indicate that the 
Arizona Travelogue passage is very easy to follow, with many familiar words and with a 
high degree of contextual information. On the other hand, CI recipients are used to low 
intelligibility levels and the usage of contextual information. This may have influenced 
their ratings. 
The instruction of the ANL measurement turned out to be difficult for participants to 
perform, because it contains two criteria that must be used simultaneously. One has to 
follow the speech and one has to maximize the noise with respect to that level that would 
be acceptable. In CI users a change in the noise level also affects the intelligibility of the 
speech, linking the two criteria. In the practice run, participants learned to use both 
criteria simultaneously. Two participants that apparently used a different criterion, namely 
how much noise one was willing to accept, without listening to the speech, were excluded 
from the analyses. Other participants may have focused too much on ‘following the 
speech’,  resulting in high ANL values. However, if ANL values > 15 dB were excluded, the 
correlations did not change much and the regression analysis had similar results. 
Therefore, we conclude that any incorrectly used ANL instruction did not have had major 
effects on the findings of this study. In general, the dependence of the two criteria is a 
weakness of the ANL test construct. 

ANL as an additional factor in predicting the SSQ 
In our study ANL contributed around 10% to the explained variance in the SSQ Qualities 
values and around 2% to that of the SSQ Speech scale in addition to speech recognition 
measures. The finding of Donaldson and colleagues (2009) that SRTn and ANL contributed 
each around 30% to the explained variance in APHAB scores, therefore, could not be 
reproduced for the SSQ. This difference between the studies may be due to the 
correlation between SRTn and ANL found in this study and the difference in speech 
materials used, as discussed above. An additional explanation may be the difference in the 
questionnaire used. 
A remarkable finding of this study was that ANL correlated significantly with the “Listening 
effort” subscale, while speech intelligibility measures did not. Participants that accepted a 
relatively high noise level reported less listening effort. The Listening effort subscale is 
based on three questions: on concentration when listening, effort during a conversation, 
and the ability to ignore competing sounds. These aspects fit well with the ANL test in 
which ignoring noise and concentrating on speech also play a role. 
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Limitations 
The results of this study are limited to a subgroup of relatively well-performing CI 
recipients, because we used an inclusion criterion of 60% correct CVC phonemes. This was 
required because use of an adaptive speech in noise test or ANL test for a maximum 
intelligibility below 60% has no validity. 
In this study we investigated relationships between a hearing specific PROM and speech 
measurements only at group level. Use of intra-individual differences in the measures, for 
example the difference of post- and pre-CI measures, may result in higher correlations. 
The noise in the speech in noise test was not a realistic noise, but it was a steady-state 
noise with a speech-shaped spectrum. In real life spectra of speech and noise often differ, 
giving a smaller slope of the intelligibility curve as a function of SNR and an SRTn that is 
dependent on the differences between the speech and noise spectra. Therefore it is 
difficult to generalize results if SRTn values were measured with real life noises. The SRTn 
values obtained with a steady-state noise can be seen as an indication of an individual’s 
ability to understand speech in situations with background noise. 
We included unilateral CI users only, with some having a contralateral hearing aid. In the 
speech test this hearing aid was switched off, while the use of a contralateral hearing aid 
(bimodal hearing) may have influenced the SSQ scores. However, the effect of a 
contralateral hearing aid was not statistically significant in this study. This is in accordance 
with the results of Farinetti et al. (2015). They reported outcomes of the SSQ for a group 
with unilateral cochlear implants (n = 54) and a bimodal group with a cochlear implant and 
a contralateral hearing aid (n = 62). They found no significant differences on the Speech 
and Qualities scales, except for the ‘Sound quality and naturalness’ subscale.  

General discussion 
The combination of PCq and ANL explained 14% of the variance in the SSQ Speech scale 
and 30% of the variance in the SSQ Qualities scale, leaving a substantial part of the 
variance in SSQ scores unexplained. Factors beyond speech recognition may have 
contributed to the SSQ scores, like the effect of audiovisual speech recognition (Stevenson 
et al., 2017; Moberly et al., 2018). Also we found that the age of implantation had a 
significant effect on the SSQ scores. 
Another factor that may explain a part of the variance in SSQ scores is personality. SSQ 
scores reflect the opinion of the patient. This opinion may be more positive or more 
negative between persons with comparable speech perception if they judge the same 
situation. The perception of one’s ability is likely to be different from the real ability. 
Huang et al. (2017) conducted a systematic review on the question if personality affects 
health-related QoL scores. They reported that health-related QoL measures are related to 
personality characteristics. Aspects like greater extraversion, agreeableness, openness, 
conscientiousness, optimism, self-esteem, and self-efficacy were related to higher health-
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related QoL scores, while greater neuroticism, negative affectivity, and type D (distressed) 
personality were related to lower health-related QoL scores.  

Conclusions 
Hearing-specific patient-reported outcomes in adult CI users as measured with the SSQ 
questionnaire were moderately associated with measures of speech intelligibility in quiet 
and in noise. Also SSQ scores of CI users were significantly below the scores of a normal-
hearing reference group. The same applied to speech intelligibility in quiet and noise. 
These findings show that hearing-specific PROM scores were clearly related to sentence 
intelligibility.  
The variance in the SSQ as hearing-specific PROM in CI users was not better explained by 
speech intelligibility in noise than by speech intelligibility in quiet. This can be explained by 
the remarkably high correlation between these two measures, suggesting that, even in a 
quiet situation, CI recipients have to rely on incomplete sensory information without 
redundancy. 
Although the ANL is a subjective judgment of  the level of background noise a listener is 
willing to accept, ANLs made only a small contribution to explaining the variance of the 
SSQ in addition to speech perception, even though ANLs correlate significantly with the 
SSQ subscale of listening effort and concentration that was not addressed by speech 
measures.  
The speech measures and ANL only explained a part of the variability in SSQ scores, 
showing that use of a hearing-specific PROM besides speech tests provides information 
not captured by speech measures. 
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Cochlear implants (CI) are the treatment of choice for adults with post-lingual bilateral 
severe-to-profound sensorineural hearing loss. In general CIs improve auditory 
functioning. Nevertheless, speech recognition in noisy situations remains a challenge. The 
studies of this thesis aimed to measure the influence of background noise on speech 
perception in CI users using three outcome measures: speech-in-noise recognition, noise 
tolerance and listening effort. Second, this thesis evaluated the effect of clinically available 
single-microphone noise reduction algorithms on speech perception in noise using the 
same outcome measures. Third, the role of bottom-up auditory input and top-down 
processing capacity in speech-in-noise perception was studied. Fourth, it was investigated 
how an existing Dutch sentence test can be used or adapted, so that it is suitable for 
measuring speech perception in noise in CI users. The following paragraphs show the main 
contributions of this thesis in gray boxes, and discuss answers on the research questions. 
This chapter ends with a paragraph on limitations and recommendations, and a 
conclusion. 

Perception of speech in noise using a cochlear implant 
This paragraph presents an overview of the main findings related to the first research 
question: How to characterize CI users' ability to listen to speech in challenging auditory 
situations in terms of speech recognition in noise, noise tolerance and listening effort? 

Recognition of speech in noise in CI users 
Main contributions 

- Using sentences with reasonable ecological validity, this thesis demonstrated that: 

o the ability to recognize speech in noise is highly variable among CI users and is 
on average much worse than in normal-hearing listeners. 

o recognition of speech in noise is strongly correlated with the speech recognition 
performance in quiet. For decreasing performance in quiet, the ability to 
understand speech in noise decreases rapidly at the speech-to-noise ratios that 
are common in daily life. 

o even for the best performing CI users, the speech reception threshold is still 
decreased with 5 dB or more compared to normal-hearing listeners. 

- These findings are confirmed by hearing-specific patient-reported outcomes, which 
were moderately associated with measures of speech recognition in quiet and in 
noise. 

- The ability to recognize speech in noise was greatly reduced when loud transient 
sounds were present in the noise. 
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The ability to recognize speech in noise differed largely among CI users. For the speech 
reception threshold in noise (SRTn), Chapter 6 reported a range of 20.6 dB (from -1.1 dB to 
19.5 dB) with a mean value of 5.8 dB. At the SRTn a CI listener is able to recognize 50% of 
the words from sentences. The SRTn values found for the CI users that participated in the 
studies of this thesis were in accordance with a study of Van Wieringen and colleagues 
(2008), that reported a range of SRTn values from 1 to 16 dB measured with the Leuven 
intelligibility sentences test in a smaller group of 16 CI users. Smulders and coworkers 
(2016) measured the SRTn using the same VU sentence material, but another type of 
scoring (modified sentence scoring) and found somewhat higher SRTn values (median 9.1 
dB, range 2.2 to 30 dB). 
The SRT values found in CI users were much poorer than the SRTs of normal-hearing 
listeners (Chapter 9). On average the difference was as large as 11 dB and even for the 
best-performing CI users included in the studies of this thesis the difference was still 5 dB. 
In addition, the slope of the psychometric curve relating the speech-to-noise ratio (SNR) 
and the percent correct score, is less steep in CI users than in normal-hearing listeners 
(Chapter 7). As a consequence, for speech performance levels well above 50% correct, a 
much higher SNR is required for CI users than for normal-hearing listeners. 
By comparing the SRTs of CI users with the SNRs that occur in everyday life, we can learn 
how difficult it is for CI users to understand speech in background noise. In daily life, most 
SNRs are within the range of 0-15dB (Smeds et al., 2015; Wu et al., 2018) with a 
decreasing SNR for increasing noise level. For frequently occurring background noises like 
kitchen noise, car noise, and babble noise the median estimated SNRs were in the range of 
4.5 to 7.5 dB (Smeds et al., 2015). For most sounds in daily life the amplitude is not 
constant, but fluctuating. Speech recognition in fluctuating noise is generally worse than in 
steady-state noise in CI users. For example, Zirn and colleagues reported a small 
worsening of the SRTn with 1.4 dB. (Zirn et al., 2016). If the SRTn values found in this 
thesis were compared to the daily-life SNRs, taking into account the effect of the noise 
fluctuations, it is clear that only the best performing CI users can understand most speech 
in background noise in everyday situations, although even they will not recognize 100% of 
the speech. 
The self-reported difficulties with speech perception in background noise as reported on 
the SSQ questionnaire, are in accordance with the conclusions drawn from the SRTn data. 
The SSQ questions ask listeners to rate their ability on a scale of 0 (not at all) to 10 
(perfectly). CI users rated their ability to speech recognition in various situations with 
background sound with a 4.7 on average, while the average ration of normal-hearing older 
subjects was 7.1 (Chapter 9). This shows that CI users experience considerable difficulties 
in speech-in-noise situations. The best ratings were given by CI users having SRTn scores 
between 0 and 5 dB, and the worst ratings were found in CI users with SRTn scores 
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between 5 and 15 dB. This means that self-reported speech recognition ability 
corresponds nicely to the actual performance as measured under controlled conditions. 
Speech recognition in noise is highly correlated to the speech recognition performance in 
quiet (Ch 2 and Ch 9). Only if the average percent correct words from sentences in quiet is 
higher than 95%, the SRTn for 50% speech recognition is below 5dB, indicating that at 
least 50% of the words of sentences in common speech-in-noise situations can be 
recognized. However, speech recognition in quiet was below 95% for a significant part of 
the sample of CI listeners (Ch 6 and 9). For them, speech recognition in noise is only 
possible to a very limited extent. If the speech recognition in quiet is below 60%, speech 
recognition in noise is virtually not possible, because word recognition for speech in noise 
is below 50% even for speech-to-noise ratios up to 15 dB.  
The difficulty to recognize speech in noise is related to how the speech signal is delivered 
in the cochlea by the stimulation strategy that is applied in the CI processor. Current 
stimulation strategies are basically adaptations of continuous interleaved sampling 
strategies. The incoming sound is divided into frequency bands and within each band the 
signal envelope variations are extracted and nonlinearly scaled into the electrical dynamic 
range. The temporal fine structure of the signal is almost lost, and therefore cannot be 
used to separate auditory signals from different sources, like a voice and a noise. Speech 
intelligibility is mainly based on the envelope variations, but if noise is present, the 
envelope variations are distorted. Chapter 9 showed that even in the best performing CI 
recipients with a speech score in quiet near 100%, the speech reception threshold is still 5 
dB poorer compared to normal hearing listeners. Apparently, the bottom-up CI signal 
contains much less information and the degradation is equivalent with 5 dB SNR loss if 
intelligibility in quiet is still (almost) at 100%. 
If loud transient noises interfere with a speech signal, speech recognition is greatly 
reduced, at least in users of the Advanced Bionics CI system (Chapter 4). This reduction is 
most likely due fast acting compression with a high compression ratio in Advanced Bionics 
CI systems. Another explanatory factor may be forward masking.  
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Noise tolerance in CI users 
Main contributions 

- The subjectively measured noise tolerance while listening to speech is significantly 
less in CI users than in normal-hearing listeners. CI users only tolerate noise levels 
far below the average speech level, masking only the lowest-level parts of the 
speech signal. 

- Noise tolerance is moderately associated with the speech reception threshold in 
noise in CI users, but the difference between ANL and SRTn varied among CI users. 

- CI users have in general a reasonable tolerance for loud transient noises, as they 
rated sounds with loud transients as moderately annoying on average. However, 
these transients resulted in significantly reduced noise tolerance while listening to 
speech in continuous noise. 

 
Noise tolerance as measured with the Acceptable Noise Level (ANL) test offers a 
subjective judgment of speech-in-noise perception by CI users. The resulting ANL value is 
the SNR that corresponds to the maximum noise level that a listener is willing to accept, 
while following running speech. For most CI users ANL values (group mean of 9.7 dB) were 
above the SRTn (group mean of 5.4 dB), indicating that they consider it necessary to have 
a higher SNR than the SRTn in order to understand the speech sufficiently. But the 
difference between ANL and SRTn varied among study participants. The SRTn explained 
only 25% of the variance in ANL (Chapter 9).  
The ANL values of the CI users were significantly higher than that of a group of normal-
hearing listeners (Chapter 9) using the same test, most likely due to the fact that the SRTn 
of CI users is much higher than the SRTn in normal-hearing listeners. A more extensive 
discussion of this finding and a comparison with the literature can be found in Chapter 9. 
CI users appeared to have a reasonable tolerance for loud transient noises. On average, 
they rated such transient sounds as moderately annoying (Chapter 4). However, in the 
ANL test with and without transients, the transients caused a substantial increase in ANL 
(about 4 dB). Most likely, this is not only because loud transients are annoying, but also 
because these transients led to deterioration of the perceived speech (Chapter 4). 
The relationship of noise tolerance with the Speech, Spatial and Qualities (SSQ) 
questionnaire was investigated in a sample of CI users (Chapter 9) and in an NH group 
(Chapter 8). In CI users better noise tolerance was significantly related to better ratings on 
the Qualities scale, which measures aspects like sound identification, segregation of 
sounds and listening effort and concentration (Chapter 9). In contrast, in the NH group 
only a marginally significant relation with the ‘Speech’ scale was found, which consists 
mainly of questions regarding speech understanding in noisy situations. This is an 
indication that in CI users the quality and clarity of the sound is an important issue, while 
quality and clarity of sound in NH listeners is already good in all listeners. The association 
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of ANL and SSQ was less strong if the effect of speech recognition was taken into account. 
Then the variance in SSQ scales explained by ANL was only very small (1 a 2%) in both the 
NH group and the CI group. 

Listening effort in CI users 
Main contribution 
- Exerted listening effort during speech perception in noise was only slightly reduced 

for increasing signal-to-noise ratios in CI users.  
 
In this thesis, the variation in listening effort in a sentence recognition task was 
investigated with pupillometry at several performance levels of speech-in-noise 
recognition (Chapter 5). Exerted listening effort was only slightly reduced for increasing 
performance levels and SNRs. This finding is consistent with a study of listening effort that 
used reaction time in a secondary task as a measure of listening effort and reported that 
listening effort in CI users was less reduced than in a normal-hearing group if the SNR was 
increased (Perreau et al., 2017). It is also in accordance with pupil dilations found in 
hearing-impaired persons in studies that used the same speech and noise material and a 
comparable test setting (Zekveld et al., 2011; Ohlenforst et al., 2017). In our study the 
used SNRs were higher than in the studies of Zekveld et al and Ohlenforst et al., but the 
performance levels were comparable. This suggests that listening effort is highly 
dependent on performance level and the quality of the auditory input. Even at the highest 
performance level tested (on average 92% word recognition), the auditory information in 
the CI signal is limited, resulting in considerable effort (c.f. Winn et al., 2015). The study of 
Chapter 9 showed that the speech reception threshold in noise was much higher in CI 
users, even when the performance level in quiet was (nearly) 100%, confirming the 
limitations in auditory input provided by the cochlear implant. In addition to performance 
level, other factors influenced the pupil response, for example personal factors which are 
related to the working memory capacity as was found in Chapter 5. 
The SSQ questionnaire has a pragmatic subscale related to listening effort. The scores on 
this subscale were not significantly related to the speech reception thresholds of the CI 
listeners (Chapter 9). This is another indication that considerable listening effort is 
experienced regardless of the speech-to-noise ratio. 

The effect of single-microphone noise reduction algorithms in CI 
users 
The second research question of this thesis concerned the effect of single-microphone 
noise reduction algorithms on speech-in-noise perception. In this paragraph this question 
is answered for noise reduction algorithm ClearVoice, and transient noise reduction 
algorithm SoundRelax. 
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The effect of noise reduction algorithm ClearVoice in CI users 
Main contributions 

- The application of single-microphone noise reduction algorithm ClearVoice in CI 
users resulted in better noise tolerance, but not in a relevant improvement of 
speech recognition in noise.  

- The noise reduction algorithm ClearVoice did not reduce listening effort in 
challenging speech-in-noise conditions in CI users. 

 
The effect of single-microphone noise reduction algorithm (NRA) ClearVoice, a proprietary 
algorithm of Advanced Bionics (Stäfa, Switzerland), on speech-in-noise perception was 
evaluated using measures of speech recognition in noise, noise tolerance and listening 
effort.  
The NRA had no significant effect on speech recognition of words from sentences in noise 
(Chapter 2). But if the NRA was combined with an increase of the CI current levels related 
to the comfortable level (so-called M-levels), speech scores improved with a statistically 
significant but small amount, as shown in the studies of the Chapter 3 and 4. This small 
improvement was found in both an adaptive SRT test (Ch 3) as well as in the measurement 
of the proportion correct speech recognition at a fixed SNR (Ch 4). The proportion 
correctly recognized words increased with approximately 5% due to the NRA. This is only a 
very small increase, and it is questionable whether listeners can experience it as an 
improvement. All studies were efficacy studies, using an experimental design and stimuli 
that aimed to maximize the power to detect a difference. The noise was a steady-state 
speech spectrum noise, which is optimally suited to show the efficacy of single-
microphone noise reduction algorithms. The effectivity in real life is expected to be lower 
or absent, since noises in real life are generally not as steady-state as the noise used in the 
studies of this thesis. However, Chapter 4 showed that for noise that included transient 
sounds, the effect of the NRA was still significant. In a study of Koch and colleagues a small 
significant improvement was found for recognition of speech in a multitalker babble using 
the same NRA (Koch et al., 2014). In a real life test of one week, no significant 
improvement due to ClearVoice was reported on the APHAB questionnaire (Buechner et 
al., 2010). But Koch and colleagues reported that their participants indicated that 
ClearVoice was particularly helpful during conversations in a car, and to a lesser extent 
during a party or group conversation. 
Noise tolerance was significantly improved by the application of ClearVoice. This was a 
consistent finding in the different studies and conditions described in Chapters 2, 3 and 4. 
This finding shows that CI users experience a reduced noise level if ClearVoice is active. 
Since the improvement in noise tolerance exceeds the change in speech intelligibility, the 
noise is likely to be reduced mainly in the gaps between words and sentences. We 
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hypothesize that the better tolerance of noise may result in prolonged listening to speech 
or participation in a conversation, notwithstanding the fact that speech intelligibility is 
hardly improved due to the NRA. 
NRA ClearVoice had no significant effect on listening effort as measured with pupillometry 
during the speech-in-noise test. It resulted in significant higher pupil dilation after 
sentence offset, possibly related to more uncertainty in speech recognition due to signal 
distortions. Such signal distortions arise from non-ideal behavior of the NRA. The NRA may 
reduce a speech segment if the estimated SNR in the segment is too low, and it may not 
apply any reduction if the level in a noise-dominated segment is relatively high. Such 
errors may occur especially in the transition regions between speech-dominated an noise-
dominated signal parts (Mauger et al., 2012; Kressner et al., 2019). 
Some studies reported on other NRAs in CI users and found higher improvements in 
speech perception than we found for ClearVoice. In a study of Dawson and colleagues an 
improvement in SRT of 2.1 dB was found and Mauger and colleagues reported an increase 
in speech perception of 20% for morphemes of simple sentences. These studies used 
noise estimates with shorter time constants than ClearVoice and gain functions with a 
relatively high threshold (at positive SNRs) for signal reduction. Since ClearVoice is a 
proprietary algorithm the gain function is not known. It would be worth the effort to 
investigate whether the algorithm can be improved by using a more adaptive noise 
estimate and a higher gain threshold. An automatic adjustment of the stimulation level 
instead of the manually applied increase of the M-level (Chapter 3) is a second option to 
improve the algorithm. 

The effect of transient noise reduction algorithm SoundRelax in CI users 
Main contributions 

- The application of transient noise reduction algorithm SoundRelax in CI users 

o slightly reduced the annoyance of loud transients. 

o did not improve noise tolerance for noise with loud transients while listening to 
speech. 

o did not reduce the detrimental effects of loud transients on speech-in-noise 
recognition. 

 
The effect of single-microphone transient noise reduction algorithm (TNRA) SoundRelax 
on speech-in-noise perception was evaluated using subjective annoyance ratings and 
measures of speech recognition-in-noise and noise tolerance. Application of the TNRA 
resulted in a small reduction of the annoyance from transient sounds, having high peak 
levels. The TNRA had no significant effect on speech recognition of words from sentences 
in noise, nor on noise tolerance (Chapter 4). This finding shows that the algorithm did not 
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have a negative effect on speech perception. This means that it is able to improve 
listening comfort by reducing the annoyance to loud sounds, without affecting speech 
intelligibility. But the algorithm is not able to reduce the negative effects of transients with 
high peak levels on speech perception and noise tolerance.  
In the previous paragraph it was discussed that transients were not very annoying in CI 
users. Combined with the finding that the TNRA had only a small effect on perceived 
annoyance, it is questionable whether the TNRA in its current form is necessary in a CI 
processor. The CI sound processing and a fitting procedure that takes the maximum 
comfortable loudnes levels into account, result already in a sufficient reduction of 
transients. A comparable conclusion is drawn by Mauger et al. (2018), using another type 
of CI processor. However, as our study demonstrates the substantial negative impact of 
loud transient sounds on speech perception in CI users, it would be helpful to develop a 
TNRA or a more advanced multiband automatic gain control that actually improves the 
speech recognition performance when transients disrupt the speech signal, while still 
avoiding annoyance from loud transients. 

The influence of bottom-up auditory information and top-down 
processes on speech perception 
Third, this thesis aimed to investigate the role of bottom-up auditory input and top-down 
processing capacity in speech perception in background noise. The role of bottom-up 
auditory information was studied in two ways: (1) with the use of a spectral-ripple 
discrimination test; (2) by looking at the relationship between recognition of isolated 
phonemes and understanding of sentences. 
Top-down processing was addressed (1) by examining the relationship between working 
memory capacity and speech perception; (2) by an investigation of the role of contextual 
information in speech recognition. Findings regarding the role of bottom-up auditory input 
and top-down processing in speech perception are described in the following paragraphs. 

The role of spectral resolution in speech perception in CI users 
Main contributions 

- Spectral-ripple discrimination thresholds show that the spectral resolution of the 
electrical stimulation with a CI is limited. 

- Spectral-ripple discrimination thresholds are related to sentence recognition, but 
not to noise tolerance or pupil response as a measure of listening effort. 

- Spectral-ripple discrimination scores are significantly related to working memory 
capacity. 
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The spectral resolution, i.e. the ability to resolve features in the frequency spectrum of a 
sound, is limited in all tested CI users. This is evidenced by the fact that the spectral-ripple 
discrimination thresholds for CI users (mean resolution of 1.8 ripples/octave; range of 0.3 - 
5.5; Chapter 2) are lower than the spectral-ripple discrimination thresholds of normal 
hearing people (7 to 8 ripples/octave (Aronoff & Landsberger, 2013; Davies-Venn et al., 
2015)). 
Chapter 2 showed that speech intelligibility in quiet was related to the spectral-ripple 
discrimination threshold in a non-linear way because of a ceiling effect in the speech 
scores. However, no significant association was found with the speech reception threshold 
in noise, although this measure is not limited by ceiling or floor effects. A possible 
explanation for this unexpected finding might be that the spectral-ripple discrimination 
threshold is mainly determined by the frequency region with the best resolution. Since in 
adult CI users the spectral resolution is likely to vary over the frequency range due to 
differences in neural survival and variation in the distance of the electrode contacts to the 
auditory nerve, the region with the best resolution may be too small to provide good 
speech intelligibility. Another factor that may have contributed to the lack of a significant 
correlation between speech recognition and spectral-ripple threshold is the relatively high 
amount of top-down processing in sentence recognition in noise, especially the ability to 
use sentence context to fill in initially unrecognized sentence parts. 
Spectral-ripple discrimination thresholds were significantly related to working memory 
capacity (appendix Chapter 5). This is in accordance with a similar finding in older adults 
(Sheft et al., 2015) and in children (Kirby et al., 2019). The most likely explanation is that 
the cognitive demands of the three alternative forced choice task are partly comparable to 
the demands of the working memory task. This makes clear that any test of bottom-up 
information that needs a judgment of stimuli and a response is not free of top-down 
influences. 
No significant correlation was found between spectral-ripple discrimination thresholds 
and noise tolerance or listening effort. Theoretically, these outcome measures cannot be 
completely independent of bottom-up information, but the relationship can be non-linear, 
just like the relationship between spectral resolution and speech intelligibility in quiet due 
to a ceiling effect in speech scores (Chapter 2). In addition, there are other factors such as 
top-down processing, subjective preference, and motivation that likely caused additional 
variability in the data. 
In the introduction it was hypothesized that the benefit of a noise reduction algorithm 
may be greater in CI users with a low spectral resolution than in CI users with a higher 
spectral resolution. This hypothesis could not be confirmed in this thesis. An effect of the 
noise reduction algorithm was only seen for noise tolerance, but no significant interaction 
with spectral-ripple discrimination thresholds was found. This can be explained by our 
suggestion in Chapter 2 that ANLs were related to perceived loudness of the noise in the 
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gaps between words and sentences. It is not likely that a better spectral resolution leads 
to a different loudness perception during these gaps. 
The spectral-ripple test used in Chapter 2 can be improved by using subtests with different 
ripples in different frequency bands. Furthermore, the task should be simplified in such a 
way that less top-down processing is required. 

The role of working memory capacity in speech perception in CI users 
Main contributions 

- Better sentence understanding in quiet and noise is associated with higher working 
memory capacity in CI users. 

- Better use of contextual information within a sentence is related to a higher working 
memory capacity. 

- Higher listening effort in speech recognition is associated with lower working 
memory capacity. 

- Acceptable Noise Levels are not associated with working memory capacity in CI 
listeners, nor in normal-hearing individuals. 

 
Speech can be viewed as an unfolding linguistic signal. If the bottom-up speech signal 
contains many details, speech understanding is easy and the speech recognition process is 
thought to be an automatic process. In the Ease of Language Understanding (ELU) model 
(Rönnberg et al., 2008; Rönnberg et al., 2013) this is called “implicit processing”. If the 
bottom-up speech signal is degraded, then "explicit processing" is needed with temporary 
storage and manipulation of the signal parts to understand the speech. In cognitive 
psychology, working memory (WM) refers to such a temporary storage and processing of 
the incoming information. Working memory has a limited capacity to be shared between 
storage and processing requirements. In this thesis working memory capacity (WMC) was 
measured with a reading span task in order to investigate the role of top-down processing 
in speech perception.  
In CI listeners a higher working memory capacity was related to better speech recognition 
in quiet and noise. This is a remarkable finding, because the heterogeneity of the speech 
recognition performance in noise is much larger in the CI group than in normal-hearing 
listeners, reflecting substantial spread in the amount of bottom-up information available. 
Despite this greater spread in bottom-up information, a significant correlation between 
working memory and speech perception has been found, indicating a substantial use of 
top-down processing. In this top-down processing contextual information within a 
sentence is used to fill in the gaps in the perceived speech. Better use of contextual 
information within sentences was significantly associated with a higher WMC (Chapter 6). 
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This finding also shows that WMC is involved in the top-down processing part of speech 
recognition. 
No significant association was found between WMC and noise tolerance. In Chapter 8 no 
significant effect of WMC on ANL was found in older adults that reported normal-hearing. 
And in Chapters 5 and 9 the ANL was not significantly related to WMC in CI users. This is in 
contrast with Brännström and colleagues (Brännström et al., 2012; Brannstrom et al., 
2014) who reported that ANLs are significantly associated with WMC. The failure to 
replicate the finding of Brännström and colleagues may be due to the different working 
memory tests used. Brännström and colleagues used an auditory version of the reading 
span task, while we used a visual version, which cannot be influenced by auditory factors. 
A lower WMC was significantly associated with higher listening effort during speech 
recognition. This finding fits well with efficiency hypothesis and the Ease of Language 
Understanding (ELU) model. The efficiency hypothesis states that listeners with a large 
cognitive capacity may allocate their capacity more efficiently, resulting in less effort 
(Neubauer & Fink, 2009; Zekveld et al., 2011). The ELU model states that cognitive abilities 
and working memory are particularly relevant in challenging conditions. In the ELU model 
listeners with high WMC are expected to adapt better to different task demands than 
listeners with low WMC (Rönnberg, 2003; Rönnberg et al., 2013; Rönnberg et al., 2019). 
Because all speech-in-noise conditions in Chapter 5 seem to be challenging, more research 
is needed to distinguish between the efficiency and ELU hypotheses. 
Overall, WMC is a significant predictor of several processes that are involved in speech 
perception, with medium effect sizes. These associations were found despite the 
considerable variation in speech perception among CI users. For future research it is 
recommended to measure both the amount of bottom-up information available and 
working memory capacity and to use both variables in one model to investigate the 
contribution of top-down processing with the amount of bottom-up information taken 
into account. 

“Bottom-up” and “top-down” contributions in a model of speech recognition 
Main contributions 

- The combination of two models for use of contextual information available within 
words and sentences (one for words and one for sentences) resulted in a better 
understanding of the relative contribution of both bottom-up information and top-
down processing to speech perception. The relative contribution of top-down 
processing is smaller than the bottom-up contribution and is highest for midrange 
speech scores. 

- CI listeners make probably more use of contextual information within a sentence 
than young normal-hearing listeners. 
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This thesis examined the relative contribution of bottom-up information and top-down 
processing in recognition of speech-in-noise, using a model of the effect of contextual 
information in speech perception developed by Bronkhorst and colleagues (Bronkhorst et 
al., 1993). The model describes how recognition of sentences with semantical and 
syntactical context is related to recognition of isolated words (without context). The 
extent to which contextual information is used, is regarded as a measure of top-down 
processing. The model can also be used to describe the relation between phoneme 
recognition in consonant-vowel-consonant words and recognition of isolated phonemes. 
In Chapter 6 a combination of these two context models (one for words and one for 
sentences) is used to relate the recognition of words from sentences to recognition of 
isolated phonemes. The latter is used as a measure of bottom-up information.  
The recognition of isolated phonemes can be seen as a measure of bottom-up 
information, but it should be noticed that even in the recognition of isolated phonemes 
some cognitive processing is involved, as this is inevitable in any subjective test. To 
recognize a phoneme, the representation of the incoming signal must be compared with 
the phoneme representations stored in memory. But in isolated phonemes no semantical 
or syntactical cues are available, making that recognition of the phoneme depends fully on 
sufficiently detailed auditory input of the phoneme. 
Chapter 6 shows that an inverse relationship exists between available bottom-up 
information and top-down processing: the more bottom-up information is available, the 
less dependence on top-down processing is seen (i.e. the context factors decrease almost 
monotically, see Figures 6.3 and 6.4). However, the effect of the top-down processing on 
the speech score is non-monotonous. Figure 6.5 shows that the effect of top-down 
processing depends on the amount of bottom-up information available. If only a very low 
amount of bottom-up information is available (10-15% correct isolated phonemes), then 
top-down processing does not result in word recognition in most cases. If 50% of the 
isolated phonemes can be recognized correctly, 85% of the words from sentences are 
recognized and 60% of the sentences are fully understood, showing a considerable 
contribution of the top-down processing. Furthermore, Figure 6.5 shows that for an 
increase of sentence recognition from 90% to 100%, the bottom-up information (i.e. 
isolated phonemes recognition) must increase with 27 percent points, indicating that for a 
small proportion of the words in the sentences, the top-down processing is not fully able 
to select the correct word unless there is sufficient bottom-up information to make the 
word representation recognizable. This implies that when examining the influence of top-
down processing on speech understanding, the speech performance levels should be in 
the mid-range. In addition, it should be noted that the relative contribution of bottom-up 
information to speech recognition is much greater than the contribution of top-down 
processing for the whole range of isolated phoneme recognition scores. 
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Even if the speech intelligibility in quiet is 100%, the amount of bottom-up information 
available in CI users is still less than in normal-hearing listeners, resulting in less 
redundancy in the bottom-up information. This is shown in Chapter 2, were CI users 
having a sentence intelligibility score of (almost) 100%, had a lower frequency resolution 
than the resolution reported in normal-hearing people. And Figure 9.2 shows that the 
speech reception threshold in noise in CI users having a 100% intelligibility score is up to 5 
dB higher, compared to young normal-hearing subjects. These observations are signs that 
the bottom-up information is not redundant in nearly all CI users, while redundancy exists 
in normal-hearing listeners. 
Recently, Smits and Zekveld showed that context parameters increased for increasing SNR 
and speech recognition probability (Smits & Zekveld, 2021). They recommend to compare 
groups at the same speech recognition  probability. In the study of Chapter 6, the context 
model was fitted to a range of recognition  probabilities, resulting in context parameters 
averaged over the used range of recognition probabilities. The  context parameters for the 
CNC words were fitted on a range of phoneme scores between 50% and 100% in the CI 
group, but parameters for the NH group from (Bronkhorst et al., 1993) were fitted on a 
range from o to 100%. According to Smits and Zekveld, this difference may explain part of 
the difference in context parameters between the CI group and the NH group. For the VU 
sentences, the speech recognition scores of the CI group ranged from 50% to 100% and in 
the NH group, the range was from 10 to 100%. The scores below 50% were mainly from a 
condition with an SNR below SRT50 (see Figure 6.3, center panel). We refitted the data of 
the NH group without this condition and indeed we found that the context parameters 
were higher. But they were still significantly lower than the context parameters of the CI 
group (except c1). Thus, even for a comparable range of speech recognition probabilities, 
CI users made more use of context, although the difference is small. This finding is in 
accordance with a study of McMurray and colleagues, who showed that CI users were less 
sensitive to mispronunciation of words early in the unfolding sentence (McMurray et al., 
2019). This suggests that CI users keep their options open in case of lexical uncertainty and 
may select the correct word from contextual information later on in the sentence. 
All in all, the model of context effects in word and sentence recognition was helpful to 
enhance the insight into the effect of top-down processing and its dependence on 
bottom-up auditory information. 

Methodological contributions and considerations 
The fourth question of this thesis was how existing Dutch sentence materials can be used 
to measure speech perception in noise in CI users. This paragraph discusses the answers 
found for both the speech-in-noise test and the acceptable noise level test. Furthermore, 
this paragraph describes the methodological contributions of this thesis. 
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Speech-in-noise test 
Main contributions 

- The responsiveness – confidence ratio proved to be a valuable measure to show to 
what extent changes in bottom-up information can be reliably measured with a 
speech test, given a fixed number of trials. 

- The responsiveness – confidence ratio for word scoring of sentences is better than 
for phoneme scores with CVC words as long as the phoneme score is within the 
range of 16 – 89%. The word scoring of sentences is thus more sensitive to changes 
in bottom-up information. 

- Use of word scoring in sentence understanding at an ecological SNR of 8 dB results 
in a suitable test for investigating the ability to understand speech in noise. 

- Stochastic approximation methods in adaptive speech reception threshold 
estimation result in better test efficiency than currently used methods and are 
suitable for research applications. 

 
In this thesis the VU sentences (Versfeld et al., 2000) were used as speech material in the 
speech-in-noise test. The noise was a steady-state speech spectrum noise. Van Wieringen 
and Wouters stated that “with the VU-sentences intelligibility in quiet, let alone in noise, is 
very difficult for cochlear implantees” (van Wieringen & Wouters, 2008), at least in 
Flemish CI users. This thesis showed that VU sentences are suitable for use in Dutch CI 
users if word scoring is used.  
The word scoring with VU sentences in noise can be seen as complementary to or even an 
alternative to clinically used phoneme scores, because the VU sentences have better 
ecological validity than the NVA words (Bosman & Smoorenburg, 1995) and include the 
influence of top-down processing. Furthermore, the responsiveness – confidence ratio is 
better for VU words than for NVA phonemes as long as the phoneme score is within the 
range of 16 – 89% and the VU word score between 5 and 98%. A better responsiveness – 
confidence ratio means that a smaller change in bottom-up information can be measured 
reliably (see Figure 6.5). This property is important because in both clinical and research 
settings a change in CI settings or CI signal processing is often applied, possibly resulting in 
a change in bottom-up auditory information. A speech test with a high responsiveness – 
confidence ratio is best able to measure the effect of the changed bottom-up information. 
The advantages of the VU sentence test have some cost, as the examination of a number 
of sentences requires more testing time than for the same number of CVC words. 
To test the speech-in-noise perception an adaptive procedure can be used, but such a 
procedure is only applicable to good-performing CI users with a word score > 0.7 in quiet, 
as shown in Chapter 7 and the standard deviation is relatively large. As an alternative a 
fixed SNR can be used. Then a speech-to-noise ratio (SNR) of 8 dB prevents a ceiling effect 
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for the vast majority of CI users and reduces the word score to the midrange for good-
performing CI recipients, as can be seen in Figure 9.2. An SNR of 8 dB is a value that is 
ecologically valid, as it is close to the most-frequent SNRs in real-life listening situations 
(Smeds et al., 2015; Wu et al., 2018). For the best-performing CI users, with (almost) 100% 
word score an SNR of 4 dB can be used, which is also in the range of frequently occurring 
SNRs in daily life. The result of the measurement at SNRs of 8 or 4 dB is a good indication 
of the extent to which CI users can understand speech in everyday situations with 
background noise. 
In a research setting an adaptive speech-in-noise test can be a good option, depending on 
the selection criteria of the study in terms of speech perception and the number of 
participants included. The simple up-down adaptive procedure as proposed by Plomp and 
Mimpen (Plomp & Mimpen, 1979), which is based on scoring of correctly repeated 
sentences, appeared to be not suitable for use in the CI group, because of the lowered 
maximum sentence scores generally found in CI users. The sentence recognition score in 
quiet of most CI listeners was 0.79 on average and ranged from 0.15 to 1 (Chapter 6). 
Consequently, the up-down procedure based on sentence scoring does not work properly, 
as up-steps can occur even if the sentence recognition is (nearly) at the maximum score in 
quiet (cf. Kaandorp et al., 2015). Therefore, we used word scoring and applied an adaptive 
procedure based on a stochastic approximation method (Chapter 7). The results of 
Chapter 7 showed that a fixed step size with averaging of the noise levels over the trials, 
resulted in the lowest standard deviation and bias, provided that the word scoring in quiet 
is above 70% and the initial SNR was below the SRT50. 
During the period in which the research of this thesis was conducted, another CI center in 
the Netherlands (UMC Utrecht) developed a speech-in-noise test (the U-STARR) based on 
the same sentence material (Smulders et al., 2015). In the U-STARR the sentences were 
presented at three different stimulation levels and the number of correctly repeated key 
words was used as scoring method. Compared to the sentence-in-noise test used in this 
thesis, the variation in speech levels enhances the ecological validity of the test. The 
scoring method used, is comparable with the modified sentence score as used in the 
simulations described in Chapter 7 that used a 4 out of 6 words (66.6%) criterion. The 
simulations showed that this modified sentence scoring resulted in larger test-retest 
standard deviations than the stochastic approximation methods used in this thesis. 
Furthermore, in this thesis we found that an initial SNR below the SRT50 resulted in 
smaller standard deviation and bias. In the U-STARR the initial SNR was +20 dB, which is 
above the SRT50 for most CI listeners. This may have resulted in a higher SD and a positive 
bias in the U-STARR. 
Two other speech-in-noise tests are available, but not tested in this thesis: the digits-in-
noise (DIN) test and the matrix test. The DIN test uses triples of spoken numbers below 10 
as stimuli. The matrix test generates meaningful semantically unpredictable sentences 
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with a length of five words from a matrix that contains 10 alternatives for each word 
position. The DIN stimuli do not contain contextual information and the matrix test 
sentences contain only a moderate to small amount of contextual information, based on 
the syntactical constraints of the sentences. Both stimuli types are not representative for 
everyday speech and due to the limited number of speech segments used repeatedly, a 
learning effect is apparent. The speech reception thresholds found in CI users result in 
SNRs below the SNRs than are present in daily life (Theelen-van den Hoek et al., 2014; 
Kaandorp et al., 2015). Furthermore, the study of Kaandorp and colleagues showed that 
an adaptive SRT test using VU sentences with keyword scoring is significantly related to 
the linguistic skills of the test participants, whereas the DIN test is not (Kaandorp et al., 
2015). For the matrix test the role of linguistic skills is not known. The responsiveness – 
confidence ratio is most likely higher for the DIN test and the matrix test, compared to the 
VU sentence test, because the slope of the psychometric curve and the number of 
statistically independent elements in a trial are higher (Wagener et al., 1999; Hey et al., 
2014; Theelen-van den Hoek et al., 2014; Kaandorp et al., 2015). All in all, the primary 
value of the DIN test and the matrix test is to reliably measure changes in bottom-up 
information at a supra-threshold sound level. The tests still involve neurocognitive 
processing, but at least the contribution of linguistic factors is less than for speech in noise 
tests with sentences. The VU sentences with word scoring have added value due to the 
better ecological validity (everyday sentences and SNRs), the relationship with linguistic 
and cognitive factors, and the modest increase in the responsiveness – confidence ratio 
compared to monosyllabic words. 

Acceptable noise level test 
Main contributions 

- A comparison of concatenated sentences and conversational speech as stimuli in 
the ANL test showed that concatenated sentences are suitable as stimulus in the 
ANL test. 

- Several aspects of the reliability and validity of the ANL as outcome measure are 
questionable, but the within-subject, within-session accuracy was sufficient. 

 
The acceptable noise level (ANL) test was originally developed with the aim to predict the 
use of hearing aids. It measures the maximum noise level that is tolerated while listening 
to speech. Listeners that tolerate a relatively high noise level while listening to speech, 
show better use of hearing aids than listeners that accept only a relatively low noise level 
(Nabelek et al., 1991; Nabelek et al., 2006). Other researchers used the ANL test to 
measure the effect of noise reduction algorithms in hearing aids and found increased 
noise tolerance when the noise reduction algorithm was active. (Mueller et al., 2006; 
Peeters et al., 2009; Pisa et al., 2010). 
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Several studies of this thesis used the ANL test with concatenated VU sentences. This 
speech material was different from the running English speech of a story that was used in 
the original ANL test. The study of Chapter 8 compared the use of a passage of 
concatenated VU sentences and passages of a conversation that are more semantic 
coherent. Contrary to expectations, we have not found convincing evidence for a semantic 
coherence effect on ANL. The role of context within a sentence may be more important 
than the coherence between sentences. Another explanation is that the discourse 
redundancy (due to between-sentence coherence) may be counteracted by an effect of a 
more casual speaking style. The lack of a between-sentence coherence effect supports 
that concatenated VU sentences are a suitable stimulus in an ANL test. 
In this thesis we found a large variation in ANL values among CI listeners. This is in 
accordance with the large variability in ANLs found in both normal hearing and hearing-
impaired subjects (e.g. Freyaldenhoven et al., 2006; Nabelek, 2006; Brännström et al., 
2014; Wu et al., 2016). This large variation in ANLs may be partly caused by poor test 
properties. Brännström and colleagues reported that the test-retest reliability of the ANL 
test was poor (Brännström et al., 2014). Results reported in this thesis showed that the 
test-retest variability of the ANL test may depend on the time between two ANL 
measurements. In the studies of Chapters 2, 3 and 4 we found consistent better noise 
tolerance for the noise reduction conditions, with very significant differences between 
conditions in the range of 2.1 to 3.8 dB. These findings suggest that repeated application 
of the ANL test within a session results in a sufficient test-retest reliability. On the other 
hand, Chapter 8 reports that the between-session test-retest SD of the ANLtest is around 
6 dB. This is a relatively large value, which is in accordance with the study of Brännström 
and colleagues. This suggests that the criterion of the listeners to rate the ANL may 
change over time. 
Another aspect of the ANL test that may have contributed to the large range in ANL values 
may be the ANL instruction. This instruction asks to “adjust the noise to the maximum 
level they are willing to put up with while following the story (or speech)”. Listeners who 
focus on following the speech tend to lower the noise too much. Listeners who focus on 
the noise and try to accept as much noise as possible, may not pay sufficient attention to 
the intelligibility of the speech. This difficulty of two simultaneous criteria in the 
instruction may have resulted in more variability in the ANL values among CI users. In 
Chapter 2 we found that almost all CI users accepted a higher noise level when the NRA 
was active. The higher noise level must have caused a decrease in speech perception, 
because the NRA did not improve speech recognition. It follows that the experienced 
loudness of the noise apparently is a criterion in the ANL judgements. 
Beside the test properties, several other factors may contribute to the variance in ANLs. 
Wu and colleagues proposed a conceptual model for the ANL (Wu et al., 2014), which was 
revised by Olsen and Brännström (Olsen & Brännström, 2014; Brännström & Olsen, 2017). 
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In this model stimulus features of the incoming signal were extracted and compared to an 
inherent standard for the most comfortable level and for noise acceptance. These 
inherent standards were influenced by central processes, psychological factors and 
measurement procedures. A psychological factor that may influence the ANL value is self-
control. Nichols and Gordon-Hickey (2012) reported a significant relationship between 
self-control and ANL, but this finding was not replicated in Chapter 8 of this thesis. Overall, 
the experimental evidence for the conceptual model is still limited.  
All in all, we have found that short-term repetitions of the ANL test within a session were 
reliable and suitable to measure a subjectively perceived effect of noise reduction 
algorithms. This highlights the potential of the ANL test for measurements of within-
subject differences that may not be directly related to speech recognition. However, the 
value of the ANL test itself is less clear as it is currently not firmly established what it 
measures exactly and it has insufficient between-session test-retest reliability. 

Pupillometry as a measure of listening effort 
Recent studies of listening effort have made it increasingly clear that listening effort is a 
complex and multifaceted phenomenon. Using a qualitative approach, Hughes et al. 
investigated how listening effort is experienced in adults with severe to profound 
sensorineural hearing loss both before and after cochlear implantation (Hughes et al., 
2018). They described listening effort as the mental effort or work undertaken when 1) 
attending to an auditory signal, 2) processing the signal and the information within it, and 
3) adapting to and compensation for the hearing loss. The desire for social connectedness 
turned out to be an important motivation to exert effort to listen. This finding is consistent 
with the Framework for Understanding Effortful Listening, that included motivation to 
exert the effort as an additional dimension in the listening effort construct (Pichora-Fuller 
et al., 2016).  
Until now, there is no single measure that covers all aspects of listening effort. Several 
behavioral and physiological measures were developed and explored, like reaction time in 
single-task and dual-task paradigms, electroencephalography, and pupillometry 
(McGarrigle et al., 2014; Pichora-Fuller et al., 2016). These measures tap into different 
dimensions of listening effort (Alhanbali et al., 2019). Pupillometry shows the momentary 
task-evoked pupil dilation which is related to complex processes in the brain, like 
attention, effort, engagement, and affect (Pichora-Fuller et al., 2016; Zekveld et al., 2018; 
Francis & Love, 2020). The term "listening effort" is generally used to describe the 
combined effect of these interrelated processes on the pupil size. Task-evoked pupil 
dilation is a sensitive measure that shows within-subject variations in response to 
differences in listening conditions and over time. The advantage of pupillometry as a 
measure of listening effort is that it does not affect the primary task, as could happen in a 
dual-task experiment. In addition it shows the momentary effects of listening. However, 
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since pupil dilation is the result of many factors, the interpretation of the pupillometry 
results can be difficult, in the sense that it is not clear which factors had led to the pupil 
dilation in that particular condition at any given time. It is recommended to incorporate 
additional measures in future research, such as registration when a subject gives up, 
which mistakes are made, the degree of attention on the task, and which trials are correct 
and to incorporate these variables in a time series analysis of the pupil response.  
Although the concept of listening effort and how it can be measured is still being explored 
and discussed in the literature, the findings of this thesis contribute to insight into relative 
listening effort in CI users, as they are based on within-subject differences and discover 
differences between conditions which are not revealed by speech intelligibility scores. 
They point in the direction of considerable listening effort during speech perception, even 
if the background noise level is well below the speech level. 

Limitations and recommendations 
This thesis showed that the use of VU sentences with word scoring for testing the speech 
recognition in CI users has several advantages. However there are also several limitations. 
Although the VU sentences used have better ecological validity than monosyllabic words, 
the sentences were mainly (92%) simple sentences, consisting of only one independent 
clause (Ohlenforst et al., 2017). In conversations more complex sentence structures can be 
used. Furthermore, in the sentence recognition task, the listener has the time to 
reconstruct the sentence and to perform post-processing after sentence offset. In a 
conversation, however, the next sentence may interfere with the post-processing. In 
addition, if one wants to react, speech planning may interfere with the necessary top-
down processes in speech understanding. The noise was still a steady-state speech noise, 
which is not and ecological valid noise. However, for this noise the psychometric curve is 
steeper than for fluctuation noise or noise with a different spectrum (Smits & Festen, 
2013). This results in a better sensitivity of the test to changes in bottom-up information 
and a better test-retest reliability. The speech and noise signals were only presented from 
the front and the CI users listened to the signals in a sound booth. This laboratory test 
condition is still far away from real-world listening environments, in which sound sources 
are generally spatially separated and may be moving, resulting in changes of distance, 
sound spectrum and level. But it should be noted that in many rooms, working places, 
restaurants and so on reverberation makes the noise more or less diffuse, which comes 
closer to the test setting used in this thesis. In real listening situations, there are generally 
visual cues that can be used by the CI users additionally to auditory information (Moberly 
et al., 2020). This can lead to better speech understanding in noise, but also to different 
top-down processing. Future research is needed to find out how ecological validity of 
speech tests can be improved, while maintaining or even improving test properties like 
good test-retest reliability and test efficiency. For example, a fluctuating noise can be used 
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based on several voices, preferably from different directions in a real or simulated 
reverberant room. 
We measured listening effort with pupillometry in a speech-in-noise task. It should be 
noted that the listening effort in a laboratory task is only a first impression of the listening 
effort that may occur in daily life. In real conversations, planning of a response while 
listening may be more effortful. In addition, conversational speech has more variations in 
the complexity of linguistic constructs and may contain disfluencies. Studies are needed 
that investigate listening effort in more natural conversations. 
In this thesis, analysis of the effect of top-down processing was limited to the study of (1) 
relationships between the main variables and the reading span as a measure of working 
memory capacity and (2) the role of contextual information in speech recognition and 
noise tolerance. However, top-down processing has other aspects, like attention, lexical 
access, and processing speech which were not addressed in this thesis (Mattys et al. 
2012). 
The main results of this thesis provide insight into the problems with speech 
understanding in noise as experienced by CI users. However, these findings do not directly 
lead to a specific treatment advice. Both the spectral-ripple test and the speech-in-noise 
test provide one result that gives an overall impression of auditory performance. A 
limitation of these measures is that they do not provide guidance on how to change the 
fitting parameters of a CI to improve the amount of bottom-up information. However, the 
speech-in-noise test can be used to measure the effect of fitting options. Additional 
research is needed to find out how the scores on the proposed speech-in-noise test can be 
used as an indication of a treatment option. The scores could, for example, be used to 
indicate in which situations the use of a wireless microphone leads to sufficient 
improvement of speech understanding in noise. The scores can also be used in counseling 
the CI patient and in discussing realistic expectations about what is possible with the CI. 
The measured ability of speech-in-noise understanding can help to increase the CI users’ 
insight into the limitations of listening with a CI. Furthermore, we recommend to use both 
the score at an SNR of 8 dB and a patient-reported outcome measure like the SSQ 
questionnaire in patient counseling, as this combination gains insight into the difference 
between measured limitations and the perceived disabilities reported by the patient. 
Improving the ability to understand speech in noise is a major challenge. Based on the 
comparison of the speech reception threshold of a group of CI users and a group of 
normal-hearing young adults, an improvement of 11 dB is needed (Chapter 9). Current 
solutions with single-microphone and dual-microphone NRAs cannot deliver such a large 
improvement. The single-microphone NRA studied in this thesis did not result in a 
significant improvement in speech recognition in noise. Dual-microphone NRAs can give 
an improvement in the order of 4-6 dB (Hersbach et al., 2012; Buechner et al., 2014; 
Geissler et al., 2015), although this benefit is likely to diminish or even to disappear in real 
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life, as found, for example, by Wu and colleagues in older adults with mild to moderate 
hearing loss (Wu et al., 2019). A recent development is artificial intelligence-based noise 
reduction (e.g. Samui et al., 2017; Saleem & Khattak, 2020), which promises a large 
improvement in sing-microphone noise reduction. However, it is not clear if and when 
these machine learning techniques can be applied in cochlear implant processors. 
Another option is to help CI users in their coping with difficult listening situations. In the 
rehabilitation process, the CI users can be counseled on how to optimally use the several 
technological options of directional microphones and remote microphones and how to 
cope with the limitations in listening in collaboration with significant others. In a recent 
study Oberg (2017) showed that an Active Communication Education program was most 
effective for participants with a more severe hearing loss and older age. However, two 
systematic reviews concluded that there is no sufficient evidence in the literature to 
support the effect of education and training of the coping with communication situations . 
(Hawkins, 2005; Michaud & Duchesne, 2017). Hughes and colleagues (2018) described 
that CI users have to exert listening effort and they appeared to monitor their energy 
levels and adapt their attending in a conversation depending on these energy levels. While 
adequate coping strategies can help, they cannot fully compensate for the reduced ability 
to understand speech in noise. 
By far the best way to improve the speech perception abilities is to increase available 
speech cues in the bottom-up information. The literature describes many attempts to 
improve the bottom-up information in CI stimulation, such as improving electrode design 
(Risi, 2018), the use of current focusing (Arenberg et al., 2018) or selection of electrode 
contacts that appear to provide a relatively good signal transmission to the neurons 
(Bierer, 2010; Zhou, 2017). These attempts may result in minor improvements, but not the 
major improvement needed for good speech perception in noise. Other innovative 
options are needed, such as injecting neurotrophin (Suzuki et al., 2016) with the aim of 
regenerating synaptic elements and to attract neurons to grow toward electrodes. The 
development of an optical CI is another promising option to increase spectral selectivity of 
the bottom-up auditory information. (Moser & Dieter, 2020). 

Conclusions 
The results of this thesis confirm the frequently heard complaint of CI users that it is 
difficult for them to follow a conversation in background noise. On average, CI users 
tolerate little background noise during listening to speech and speech recognition in noise 
at levels that occur in daily life is reduced. If the background noise level raises, speech 
understanding becomes practically impossible. They have to exert listening effort during 
speech understanding in noise, even at favorable speech-to-noise ratios. 
Single-microphone noise reduction algorithms for continuous noise or transient noise had 
no relevant effect on speech-in-noise perception or listening effort, but improved the  



 General discussion 
 

259 

tolerance for continuous noise and reduced the annoyance of loud transient sounds. The 
effect of the noise reduction was not related to the amount of bottom-up information 
available. 
Considerable differences were found between CI users in their ability to understand 
speech in noise, which can be mainly explained by limitations in bottom-up auditory 
information and to a lesser extent by linguistic-cognitive top-down factors. The limitations 
in the bottom-up auditory information are partly related to a low spectral resolution. A 
model that relates available bottom-up speech elements to final understanding by adding 
the effect of contextual information within words and sentences, showed that CI users 
make better use of contextual information than young normal hearing listeners. 
Nevertheless, according to the model, speech recognition performance in CI users is 
mainly determined by bottom-up information. The effective contribution of top-down 
processing depends on the amount of bottom-up available and is largest if around half the 
phonemes of the speech are recognizable in the bottom-up signal. CI users with a 
relatively low working memory capacity have on average poorer speech recognition in 
noise, make less effective use of contextual information and exert more listening effort 
than CI users with a relatively high working memory capacity. 
The Acceptable Noise Test proved to be a suitable test for measuring effects of a noise 
reduction algorithm on the tolerance of background noise during listening to speech. In CI 
users, the noise tolerance was related to the speech reception threshold in noise. The 
reliability of the Acceptable Noise Test between test sessions, the construct validity, and 
the instruction were not satisfactory, which reduces the value of the Acceptable Noise 
Test. 
Testing the ability of CI users to understand speech in noise is possible with existing Dutch 
sentence lists developed for speech-in-noise testing, when used in combination with word 
scoring. We found that this adapted speech-in-noise test is more responsive to changes in 
auditory bottom-up information than clinically used mono-syllabic consonant-vowel-
consonant words. For CI users with relatively good speech recognition in quiet, a speech-
in-noise test can be performed, which gives an indication of the performance of speech 
perception in background noise in daily life. If interest is in the speech perception 
threshold in noise, a stochastic approximation method for adaptive measuring of this 
threshold is advised. 
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Summary 
A cochlear implant (CI) is a surgically implanted device that converts sound into electrical 
signals that stimulate the auditory nerve in the inner ear. It is a valuable treatment for 
people with severe to profound sensorineural hearing loss. In post-lingually deafened 
adults a CI improves auditory functioning and speech perception in a quiet environment, 
although maximum speech understanding, expressed as percentage of correctly 
recognized speech elements, can vary greatly from person to person. 
In daily life, there are often background sounds that hinder speech perception. Speech 
perception in background noise is a challenge for CI recipients or is not even possible. This 
limited speech perception originates from the fact that the auditory information that 
passes the CI and the auditory nerve is less detailed than in normal-hearing listeners. As a 
consequence, top-down processing of the incoming auditory signal is required  to 
recognize words by filling in the gaps in the incoming auditory signal. Linguistic and 
cognitive processes are involved in this top-down processing. Listening to limited auditory 
information may be effortful. 
First, this thesis investigated how speech perception of CI users is influenced by 
background noise, using three outcome measures: speech recognition in noise, noise 
tolerance and listening effort. A speech test consisting of everyday sentences was used to 
determine the scores of a CI user on these outcome measures. 
Contemporary sound processors of CI systems incorporate a single-microphone noise 
reduction algorithm with the aim of improving the speech-in-noise perception. A second 
topic of this thesis was therefore the evaluation of the effect of clinically available single-
microphone noise reduction algorithms on speech perception in noise using the three 
above-mentioned outcome measures. 
Third, the relative influence of bottom-up auditory speech characteristics in the incoming 
signal and cognitive top-down processing on speech perception in noise was investigated. 
The relationship of the mentioned outcome measures with the amount of bottom-up 
information in the incoming signal was studied with a spectral resolution test. The effect 
of the top-down processing on the outcome measures was investigated with a test for 
working memory capacity. Furthermore, a model was used that models how contextual 
information present within a sentence is used to be able to correctly understand speech 
elements that are not properly recognized in the bottom-up information. 
The fourth element in this thesis concerns the question of how the speech perception in 
noise can best be investigated with the existing Dutch speech material that consists of 
everyday sentences. The measurement methods and various measurement properties of 
the outcome measures, when used in the group of CI users, were investigated. 
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In the study described in Chapter 2 speech recognition in noise was measured at different 
speech-to-noise ratios and in quiet in CI users. Furthermore, noise tolerance was 
measured with the acceptable noise level (ANL) test. These measurements were made 
with and without the noise reduction algorithm ClearVoice. The effective spectral 
resolution was measured with a spectral ripple (SR) discrimination test. The study was 
designed (1) to evaluate the effect of noise reduction algorithm ClearVoice and (2) to 
investigate the influence of the measured spectral resolution in CI users on the speech 
perception in noise and on the effect of ClearVoice. It was hypothesized that CI recipients 
with low spectral resolution might benefit more from noise reduction algorithms than CI 
users with high spectral resolution.  
The results showed that an avarage signal-to-noise ratio of 4.7 dB was required for 50% 
correctly recognized words from sentences in noise. This value is much higher than the 
value of –5 dB value reported for normal-hearing subjects in the literature, showing that 
speech-in-noise recognition is much worse in CI users. Application of the noise reduction 
algorithm had no significant effect on speech recognition in noise. The subjective noise 
tolerance measure showed that little noise was tolerated while listening to speech. The 
mean ANL value was 14 dB, i.e. the noise level was only acceptable if it was around or  
below the level of the softest speech segments.. The noise algorithm improved this 
tolerance with 3.6 dB. The improvement in noise tolerance was not significantly correlated 
with effective spectral resolution, speech intelligibility scores, or signal -to-noise ratio. The 
hypothesis that CI recipients with a low spectral resolution have a greater benefit from 
noise reduction than CI users with a high spectral resolution could not be confirmed for 
speech intelligibility in noise or noise tolerance. 
 
Chapter 3 describes a follow-up to the study in chapter 2. It was hypothesized that an 
increase in maximum comfort stimulation levels (M-levels) in the CI fitting, could increase 
the effect of the noise reduction algorithm ClearVoice. The study showed that a 5%-
increase in M-levels resulted in a small significant improvement in the speech reception 
threshold and a significant improvement in noise tolerance due to the noise reduction 
algorithm. The increase in M-levels alone did not result in a significant change in speech 
understanding in noise or noise tolerance. These findings confirmed the hypothesis of this 
study. 
 
In daily life, CU users experience a variety of sounds that differ in characteristics such as 
duration or loudness. Some of these sounds are transient sounds, i.e. they have a (very) 
short duration. The aim of the study described in Chapter 4 was to investigate the effect 
of loud transient sounds on speech perception in CI users and to evaluate the validity and 
efficacy of a transient noise reduction algorithm (TNRA), both alone and in combination 
with a continuous noise reduction algorithm. Transient sounds were recorded and mixed 
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with speech and steady-state noise. The perceived annoyance was rated and a speech-in-
noise test and a noise tolerance test were also administered.  
CI users rated sounds with transients as moderately annoying. This annoyance was slightly 
but statistically significant reduced by applying the TNRA. The loud transient sounds 
caused a large decrease in speech intelligibility in noise and a moderate decrease in noise 
tolerance. The TNRA had no significant effect on speech intelligibility in noise nor on noise 
tolerance. The TNRA did not reduce the beneficial effect of the continuous noise reduction 
algorithm on speech intelligibility in noise and noise tolerance, but no cumulated 
improvement was found either. 
 
The study described in Chapter 5 focused on listening effort as measured with 
pupillometry during speech recognition of sentences in noise at several speech-to-noise 
ratios and on the effect of the noise reduction algorithm ClearVoice on listening effort. 
Furthermore, the relationship between  working memory capacity (WMC) and listening 
effort  was examined. 
The results showed that CI listeners had to exert listening effort in all speech-in-noise 
conditions, even for relatively high speech-noise ratios. However, for the most favorable 
speech-to-noise ratios, there was on average a small decrease in listening effort during 
and after the sentences. When the noise reduction algorithm was active, the pupil dilation 
decreased less after the end of a sentence, than in conditions without noise reduction. 
This may indicate more uncertainty in speech recognition after a heard sentence. The 
amount of measured listening effort was related to working memory capacity. The pupil 
dilation decreased with increasing signal-to-noise ratio mainly in participants with a 
relatively low working memory capacity and was smaller and almost independent of the 
signal-to-noise ratio in listeners with a relatively high working memory capacity. 
 
Chapter 6 describes an investigation into the top-down processing of an incoming 
auditory signal in which the amount of speech information is limited. This study 
examinated the role of contextual information in the process of speech recognition and 
the influence of verbal working memory on the use of contextual information. Speech 
intelligibility performance was assessed in 50 post-lingual adult CI users and a norm group 
of normal hearing young people, both with sentencea and with consonant-nucleus-
consonant (CNC) words. The influence of contextual information was calculated from 
different context factors and models. Working memory capacity was measured with a 
Reading Span test. 
The study found that CI recipients made significantly more use of contextual information 
in recognizing CNC words and sentences than the normal hearing norm group. Their use of 
contextual information in sentences was related to verbal working memory capacity but 
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not to age, indicating that the ability to use context is dependent on cognitive abilities 
regardless of age. 
The presence of contextual information in speech increased the sensitivity of the test to 
identify differences in auditory bottom-up information between conditions, but also 
increased the risk of a ceiling effect in quiet for high-performing listeners. This ceiling 
effect can be compensated for by adding noise to bring the scores back into the 
responsive range. 
 
Measurement of the speech reception threshold in noise (SRTn) with sentences is not 
always possible in Cochlear Implant (CI) users. Usually, the SRTn is determined by an 
adaptive procedure, in which the speech-to-noise ratio is changed depending on the 
response of the person being tested. A lowered maximum sentence perception in quiet 
and a shallow slope of the psychometric function that relates the speech-to-noise ratio 
and the intelligibility limit the application of an adaptive SRTn estimation. Chapter 7 
describes a study that investigates how adaptive procedures to measure an SRTn can be 
optimized for CI users using stochastic approach (SA) methods and word word scoring. 
Four different SA algorithms have been selected from the literature. The best parameters 
had to be determined for each of these algorithms. Then the performance of the 
algorithms had to be compared with each other and with existing clinical procedures. A 
simulation model was developed, that could accurately simulate scores of words from 
sentences in noise for both CI users and normal hearing (NH) listeners. After validation, 
the model was used in Monte Carlo simulations to optimize the four different SA 
algorithms for use in both groups and next they were compared to clinically used adaptive 
procedures. 
The simulation model proved to be valid, as the simulations agreed very well with existing 
experimental data. The four optimized SA algorithms all provided efficient estimations of 
the SRTn. They were almost equally accurate and produced smaller standard deviations 
(SD) than the clinical procedures. SRTn estimates had a small bias and larger SDs in CI 
users than in NH listeners. A minimum of 20 sentences per test condition was required to 
ensure sufficient reliability. The SD of the SRTn estimate increased with decreasing 
maximum intelligibility in quiet in CI users. Bias and SD became unacceptably large for a 
speech intelligibility score below 70% for speech in quiet. Overall, stochastic 
approximation procedures can be considered as a valid, more accurate, alternative for 
clinical adaptive procedures currently used in CI users. 
 
Chapter 8 reports about research into the Acceptable Noise Level (ANL) test as a measure 
of noise tolerance. In this test, listeners indicate what level of noise they are willing to 
accept while listening to speech. It was investigated whether the speech material used in 
the test influences the outcome. To this end, different speech materials were compared, 
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namely the sentences used throughout this thesis, conversational speech and a 
meaningless speech-like signal used in hearing aid testing. These materials differ in the 
extent to which they are meaningful and coherent. The test-retest reliability of the ANL 
test was also evaluated. In addition, it was investigated whether the ANL is associated 
with working memory capacity. Finally, it was examined whether ANL results obtained 
with these three different speech materials were associated with self-reported limitations 
due to hearing impairment and listening effort in daily life, as assessed with a 
questionnaire. The study was conducted with well-hearing adults with an age range that is 
representative of adult hearing aid users and  CI users. The study was intended to be a 
precursor to an ANL study with CI users. 
The results showed that meaning, but not semantic coherence of the speech material, 
affected the ANL. Less noise was accepted for the non-meaningful speech-like signal than 
for the meaningful speech materials. However, no difference was found between the 
conversational speech and the sentences used in this thesis. The test-retest reliability of 
the ANL was comparable between the speech materials and was not as good as needed 
for a sensitive intra-idividual difference measurement. The ANL was found to be related to 
the outcome of a hearing-related questionnaire, suggesting that ANL measures aspects of 
speech perception that are related to perceived limitations in speech in noise in everyday 
situations. 
 
Chapter 9 addresses the question of whether the noise tolerance measurement and the 
speech measurements in quiet and noise are related to a hearing-specific patient-reported 
outcome measure (PROM). It was hypothesized that speech intelligibility in noise and 
noise tolerance can explain a greater proportion of the variance in PROM scores than 
speech intelligibility in quiet. The SSQ questionnaire (Speech, Spatial, Qualities) was used 
as a PROM. Speech intelligibility in quiet and noise were measured with the VU sentences, 
and noise tolerance was measured with the Acceptable Noise Level (ANL) test in a group 
of 48 CI users. 
It was found that the SSQ scores were moderately correlated with scores of speech in 
quiet and noise, as well as with ANLs. Speech scores in quiet and noise were highly 
correlated. The combination of speech scores and ANL explained 10-30% of the variances 
in SSQ scores, with contributions from ANLs being only 0-9%. 
Thus, the variance in the SSQ as hearing-specific PROM in CI users was not better 
explained by speech intelligibility in noise than by speech intelligibility in quiet. This is due 
to the remarkably strong correlation between the two measures, which may be explained 
by the fact that the available auditory bottom- up information in CI stimulation is very 
limited and largely determines both outcome measures. ANLs make only a small 
contribution to explaining the variance of the SSQ and seem to represent different aspects 
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than the SSQ. Using a PROM in addition to speech tests provides additional information 
relative to the speech measurements alone. 
 
Chapter 10 summarizes and comments on the main findings of the previous chapters and 
answers the research questions formulated in the introduction. The outcome measures 
used in this thesis focused on different aspects of speech understanding and together they 
provide a differentiated picture of the speech understanding problems that CI users 
experience in background noise. On average, CI users have difficulties to understand 
speech in background noise, tolerate little background noise and have to exert listening 
effort during speech understanding in noise, even when there is little background noise. 
When the background noise level increases, speech understanding becomes practically 
impossible. 
The noise reduction algorithms for continuous noise or transient sounds tested in the 
studies of this thesis, improved tolerance to continuous noise and reduced annoyance 
from loud transient sounds, but did not result in a relevant improvement of speech 
understanding in noise. 
The limitations in understanding speech in noise can largely be explained by limitations in 
the auditory information transmitted by the CI and the auditory nerve. These limitations 
are partly related to a low spectral resolution, which was measured in CI users. Linguistic-
cognitive factors also play a role in understanding speech in noise. It was found that CI 
users make better use of contextual information present within a sentence than young, 
normal-hearing listeners. The linguistic-cognitive factors resulted in an increase of up to 
35 percentage points in word recognition for sentences that are typical of daily 
conversation, compared to recognition of isolated phonemes. CI users with a relatively 
low working memory capacity have on average poorer speech recognition in noise, make 
less effective use of contextual information and appear to make more listening effort than 
CI users with a relatively high working memory capacity. 
The Acceptable Noise Level test proved to be a suitable test for measuring the direct 
effects of a noise reduction algorithm on noise tolerance while listening to speech, but not 
for between-session effects due to an insufficient test-retest reliability. Furthermore the 
construct validity and the instruction are questionable. 
The VU sentences appear to be very useful for measuring speech understanding in quiet 
and background noise among CI users, provided that word scoring is used. The speech 
reception threshold in noise can be adaptively measured with a stochastic approximation 
method, provided that the word recognition in quiet is sufficient. 
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Samenvatting 
Een cochleair implantaat (CI) is een chirurgisch geïmplanteerd apparaat dat geluid omzet 
in elektrische signalen die de gehoorzenuw in het binnenoor stimuleren. Het is een 
waardevolle behandeling voor mensen met ernstig tot zeer ernstig perceptief 
gehoorverlies. Bij postlinguaal doof geworden volwassenen verbetert een CI het auditief 
functioneren en het verstaan van spraak in een stille omgeving, hoewel het maximale 
verstaan, uitgedrukt in percentage correct herkende spraakelementen, sterk kan variëren 
van persoon tot persoon.  
In het dagelijks leven zijn er vaak achtergrondgeluiden aanwezig die het verstaan van 
spraak belemmeren. Spraakverstaan in situaties met achtergrondgeluid is een uitdaging 
voor CI-ontvangers of het is zelfs niet mogelijk. Deze beperkte spraakperceptie in 
achtergrondgeluid is een gevolg van het feit dat de auditieve informatie die de CI via de 
gehoorzenuw doorgeeft, minder gedetailleerd is dan bij normaalhorende luisteraars. Er is 
daarom verdere verwerking van het inkomende auditieve signaal nodig om woorden te 
herkennen en de hiaten in het inkomende auditieve signaal op te vullen. Bij deze top-
down verwerking zijn taalkundige en cognitieve processen betrokken. 
In dit proefschrift is onderzocht hoe spraakperceptie van CI-gebruikers wordt beïnvloed 
door achtergrondlawaai. Dit is gedaan met drie uitkomstmaten: spraakverstaan in lawaai, 
subjectieve ruistolerantie en luisterinspanning. Daarbij werd gebruik gemaakt van 
spraakmateriaal dat bestaat uit alledaagse zinnen met vergelijkbare verstaanbaarheid. 
Met deze uitkomstmaten kan een beeld geschetst worden van de mate waarin CI 
gebruikers kunnen verstaan in achtergrondlawaai.  
Hedendaagse geluidsprocessors van CI-systemen bevatten algoritmen voor 
ruisonderdrukking met de bedoeling de perceptie van spraak in lawaai te verbeteren. Een 
tweede onderwerp van dit proefschrift was daarom de evaluatie van het effect van 
algoritmen voor ruisonderdrukking op spraakperceptie in achtergrondgeluid. Deze 
evaluatie is eveneens gedaan met behulp van de drie bovengenoemde uitkomstmaten.  
Ten derde is onderzocht wat de relatieve invloed is van zogenoemde ‘bottom-up’ 
auditieve spraakkenmerken in het binnenkomende signaal en cognitieve ‘top-down’ 
verwerking op de spraakperceptie in lawaai. De relatie van de genoemde uitkomstmaten 
met de hoeveelheid bottom-up informatie in het binnenkomende signaal is onderzocht 
met een spectrale resolutietest. Het effect van de top-down verwerking op de 
uitkomstmaten is onderzocht met een test voor werkgeheugencapaciteit. Verder werd 
een model gebruikt dat modelleert hoe contextuele informatie die binnen een zin 
aanwezig is, gebruikt wordt om spraakelementen die niet goed zijn binnenkomen, alsnog 
correct te kunnen verstaan. 
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De vierde vraag van dit proefschrift was hoe het bestaande Nederlands zinsmateriaal voor 
spraaktesten het beste kan worden gebruikt om spraakperceptie in lawaai bij CI-
gebruikers te meten. 
In de studie beschreven in hoofdstuk 2 werd spraakverstaan in ruis gemeten bij 
verschillende spraak-ruisverhoudingen en in stilte. Verder werd de geluidstolerantie 
gemeten met de Acceptable Noise Level (ANL) test. Deze metingen werden gedaan met en 
zonder ruisonderdrukkingsalgoritme ClearVoice. Ook werd de effectieve spectrale 
resolutie gemeten met een spectral ripple (SR) discriminatietest. De studie was bedoeld 
om (1) het effect van het ruisonderdrukkingsalgoritme ClearVoice te evalueren en (2) de 
invloed van de gemeten spectrale resolutie bij CI-gebruikers op de spraakperceptie in ruis 
en op het effect van ClearVoice te onderzoeken. De hypothese was dat CI-gebruikers met 
een lage spectrale resolutie meer baat zouden kunnen hebben bij algoritmen voor 
ruisonderdrukking dan CI-gebruikers met een hoge spectrale resolutie. 
Het onderzoek toonde aan dat een gemiddelde signaal-ruisverhouding van 4,7 dB nodig 
was voor 50% correct herkende woorden uit zinnen in ruis. Deze waarde is veel hoger dan 
de waarde van –5dB die in de literatuur wordt gerapporteerd voor normaalhorenden, wat 
aantoont dat spraak-in-ruisherkenning veel slechter is bij CI-gebruikers. Toepassing van 
het ruisonderdrukkingsalgoritme ClearVoice had geen significant effect op spraakverstaan 
in lawaai. De meting van de subjectieve geluidstolerantie toonde aan dat er tijdens het 
luisteren naar spraak weinig geluid werd getolereerd. De gemiddelde ANL-waarde was 14 
dB, d.w.z. het ruisniveau was alleen acceptabel als het voor een groot deel onder het 
niveau van de zachte spraaksegmenten lag. Het ruisalgoritme verbeterde deze tolerantie 
met 3,6 dB. De verbetering van de geluidstolerantie was niet significant gecorreleerd met 
de effectieve spectrale resolutie, de spraakverstaanbaarheidscore of de signaal-
ruisverhouding. De hypothese dat CI-ontvangers met een lage spectrale resolutie een 
groter voordeel hebben van ruisonderdrukking dan CI-gebruikers met een hoge spectrale 
resolutie, kon niet worden bevestigd voor spraakverstaanbaarheid in ruis of ruistolerantie. 
 
Hoofdstuk 3 beschrijft een vervolg op de studie die in hoofdstuk 2 beschreven is. De 
hypothese die deze vervolgstudie onderzoekt is dat een toename van maximale comfort 
niveaus (M-levels) in de CI-aanpassing het effect van ruisonderdrukkingsalgoritme  
ClearVoice zou kunnen vergroten. Uit de studie bleek dat de toename van M-levels met 
5% resulteerde in een kleine significante verbetering van de spraakverstaansdrempel in 
ruis en een significante verbetering van de ruistolerantie als gevolg van het 
ruisonderdrukkingsalgoritme. De toename van M-levels alleen resulteerde niet in een 
significante verandering in spraakverstaan in ruis of ruistolerantie. Deze bevindingen 
bevestigden de hypothese van deze studie. 
In het dagelijkse leven ervaren CI-gebruikers een verscheidenheid aan geluiden die 
variëren in klank,  duur of luidheid. Sommige van deze geluiden zijn plotselinge, 
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kortdurende geluiden, zogenaamde transiënten. Het doel van de studie beschreven in 
hoofdstuk 4 was om het effect van luide kortdurende geluiden op spraakperceptie bij CI-
gebruikers te onderzoeken en om de validiteit en werkzaamheid van een transient noise 
reduction algoritme (TNRA) te evalueren, zowel alleen als in combinatie met een 
algoritme voor onderdrukking van continue ruis. Kortdurende geluiden werden 
opgenomen en gemengd met spraak en continue ruis. De ervaren hinder werd nagevraagd 
en er werd ook  een spraak-in-ruis-test en een ruistolerantietest afgenomen.  
CI-gebruikers beoordeelden geluiden met luide kortdurende geluiden erin als matig 
vervelend. Deze hinder werd in lichte mate, maar statistisch significant,  verminderd door 
toepassing van de TNRA. De luide kortdurende geluiden veroorzaakten een grote afname 
van de spraakverstaanbaarheid in lawaai en een matige afname van de geluidstolerantie. 
De TNRA had geen significant effect op de spraakverstaanbaarheid in lawaai en ook niet 
op de geluidstolerantie. De TNRA had geen significante invloed op het gunstige effect van 
het ruisonderdrukkingsalgoritme voor continue ruis  op de spraakverstaanbaarheid in ruis 
en geluidstolerantie niet. 
 
De studie die beschreven is in hoofdstuk 5 richtte zich op de luisterinspanning zoals 
gemeten met pupillometrie tijdens spraakherkenning van zinnen in ruis bij verschillende 
spraak-ruisverhoudingen. Ook werd het effect van een ruisonderdrukkingsalgoritme op de 
luisterinspanning geëvalueerd. Ten derde werd de relatie tussen werkgeheugencapaciteit 
en luisterinspanning onderzocht. 
Uit de resultaten bleek dat CI-luisteraars luisterinspanning moesten leveren in alle spraak-
in-ruis condities, ook bij heel gunstige spraak-ruisverhoudingen. Wel was er voor de meest 
gunstige spraak-ruis verhoudingen gemiddeld enige afname van de luisterinspanning te 
zien tijdens en na de zinnen. Het ruisonderdrukkingsalgoritme zorgde voor minder 
vermindering van pupil dilatatie na de zin, vergeleken met condities zonder 
ruisonderdrukking. Dit kan duiden op meer onzekerheid over de spraakherikenning na een 
gehoorde zin. De mate van gemeten luisterinspanning was gerelateerd aan de 
werkgeheugencapaciteit. De pupildilatatie nam bij een toenemende signaal-
ruisverhouding, voornamelijk af bij deelnemers met een relatief lage 
werkgeheugencapaciteit en was kleiner en vrijwel onafhankelijk van de signaal-
ruisverhouding bij luisteraars met een relatief hoge werkgeheugencapaciteit. 
 
Hoofdstuk 6 beschrijft een onderzoek naar de top-down verwerking van inkomende 
spraaksignalen waarin de hoeveelheid spraakinformatie beperkt is. Deze studie 
onderzocht de rol van contextuele informatie in het proces van spraakverstaan en de 
invloed van het verbale werkgeheugen op het gebruik van contextuele informatie. De 
spraakverstaanbaarheid werd gemeten bij 50 post-linguale volwassen CI-gebruikers en 
een normgroep van normaal-horende jonge mensen, zowel met zinnen als met 
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consonant-nucleus-consonant (CNC) woorden. De invloed van contextuele informatie 
werd berekend op basis van verschillende contextfactoren en modellen. 
Uit de studie bleek dat CI-gebruikers significant meer gebruik maakten van contextuele 
informatie bij het herkennen van CNC-woorden en zinnen dan de normaal-horende 
normgroep. Het gebruik van contextuele informatie in zinnen was gerelateerd aan de 
werkgeheugencapaciteit maar niet aan leeftijd, wat aangeeft dat het vermogen om 
context te gebruiken afhankelijk is van cognitieve vaardigheden, ongeacht de leeftijd. 
De aanwezigheid van contextuele informatie in de spraak verhoogde de gevoeligheid van 
de test om verschillen in sensorische bottom-up informatie tussen condities te 
identificeren, maar verhoogde ook het risico op een plafondeffect bij goed presterende 
luisteraars. Dit laatste kan worden gecompenseerd door ruis toe te voegen om de scores 
weer in het responsieve bereik te brengen. 
 
Meting van de spraakreceptiedrempel in ruis (SRTn) met zinnen is niet altijd mogelijk bij 
gebruikers van een cochleair implantaat (CI). Gewoonlijk wordt de SRTn bepaald met een 
adaptieve procedure, waarbij de spraak-ruisverhouding gewijzigd wordt, afhankelijk van 
de response van degene die getest wordt. Een verlaagde maximale score voor het 
zinsverstaan in stilte en een slappe helling van de psychometrische functie die het verband 
tussen de spraak-ruisverhouding en de verstaanbaarheid beschrijft, beperken de 
toepassing van een adaptieve SRTn-bepaling. Hoofdstuk 7 beschrijft een studie waarin 
onderzocht werd of spraak-in-ruis-tests die adaptieve procedures gebruiken om een SRTn 
te bepalen, voor CI-gebruikers kunnen worden geoptimaliseerd met behulp van 
stochastische approximatiemethoden (SA) en woordscoring. Uit de literatuur zijn vier 
verschillende SA-algoritmen geselecteerd. Voor elk van deze algoritmen moesten de beste 
parameters worden bepaald. Vervolgens moesten de prestaties van de algoritmen worden 
vergeleken met elkaar en met bestaande klinische procedures. Er werd een 
simulatiemodel ontwikkeld waarmee spraakverstaan in lawaai nauwkeurig gesimuleerd 
kon worden voor zowel CI-gebruikers als normaal horende (NH) luisteraars. Na validatie 
werd het model gebruikt in Monte Carlo-simulaties om de vier verschillende SA-
algoritmen te optimaliseren voor gebruik in beide groepen en vervolgens werden ze 
vergeleken met klinische adaptieve procedures met behulp van zinscores. 
Het simulatiemodel bleek valide, aangezien de simulaties zeer goed overeenkwamen met 
bestaande experimentele gegevens. De vier geoptimaliseerde SA-algoritmen leverden 
allemaal efficiënte schattingen van de SRTn op. Ze waren vrijwel even nauwkeurig en 
produceerden kleinere standaarddeviaties (SD) dan de klinische procedures. Bij CI-
gebruikers hadden SRTn-schattingen een grotere SD dan bij NH-luisteraars. Er waren 
minimaal 20 zinnen per testconditie nodig om voldoende betrouwbaarheid te garanderen. 
De SD van de SRTn-schatting nam toe met afnemende maximale verstaanbaarheid in stilte 
bij CI-gebruikers. Bias en SD werden onaanvaardbaar groot voor een 
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spraakverstaanbaarheidsscore van minder dan 70% voor spraak zonder ruis. Stochastische 
benaderingsprocedures die woordscoring gebruiken, kunnen worden beschouwd als een 
valide, nauwkeuriger alternatief voor klinische adaptieve procedures die momenteel 
worden gebruikt. 
 
Hoofdstuk 8 gaat over onderzoek naar de Acceptable Noise Level (ANL) test als maat voor 
ruistolerantie. In deze test geven luisteraars aan welk ruisniveau ze willen verdragen 
tijdens het volgen van spraak. Er is onderzocht of het spraakmateriaal dat in de test 
gebruikt wordt, invloed heeft op de uitkomst. Daartoe werden verschillende 
spraakmaterialen vergeleken, namelijk de zinnen die in dit proefschrift steeds gebruikt 
zijn, conversatiespraak en een betekenisloos spraak-achtig signaal dat wordt gebruikt bij 
het testen van hoortoestellen. Deze materialen verschillen in de mate waarin ze 
betekenisvol en coherent zijn. Ook is onderzocht wat de test-retest betrouwbaarheid van 
de ANL-test is en of de ANL geassocieerd is met werkgeheugen capaciteit.  Daarnaast werd 
onderzocht of ANL-resultaten, verkregen met deze drie verschillende spraakmaterialen, 
geassocieerd waren met zelfgerapporteerde beperkingen als gevolg van gehoorproblemen 
en luisterinspanning in het dagelijks leven, zoals beoordeeld met een vragenlijst. Het 
onderzoek is gedaan met goed-horende volwassenen met een leeftijdscategorie die 
representatief is voor volwassen hoortoestel- en CI-gebruikers. De studie was bedoeld als 
een voorloper van een klinische studie met CI-gebruikers.  
De resultaten toonden aan dat betekenis, maar niet semantische coherentie van het 
spraakmateriaal, de ANL beïnvloedde. Er werd minder ruis geaccepteerd voor het niet-
betekenisvolle spraak-achtige signaal dan voor het zinvolle spraakmateriaal. Er werd 
echter geen verschil gevonden tussen de conversatiespraak en de zinnen die in dit 
proefschrift gebruikt zijn. 
De test-retest betrouwbaarheid van de ANL was vergelijkbaar tussen de spraakmaterialen 
en was niet voldoende voor gebruik van de ANL test in intra-individuele vergelijking van 
condities. De ANL bleek verband te houden met de uitkomst van een gehoorgerelateerde 
vragenlijst, wat suggereert dat ANL aspecten van spraakperceptie meet die gerelateerd 
zijn aan waargenomen beperkingen in spraak in lawaai in alledaagse situaties. 
 
In hoofdstuk 9 gaat het over de vraag of de ruistolerantiemeting en de spraakmetingen in 
stilte en ruis gerelateerd zijn aan een gehoorspecifieke, door de patiënt gerapporteerde 
uitkomstmaat (PROM). De hypothese was dat spraakverstaanbaarheid in ruis en 
geluidstolerantie een groter deel van de variantie in PROM-scores kan verklaren dan 
spraakverstaanbaarheid in stilte. De SSQ-vragenlijst (Speech, Spatial, Qualities) werd 
gebruikt als een PROM. Spraakverstaan in stilte en in ruis werden weer gemeten met de 
VU zinnen, en de ruistolerantie werd weer gemeten met de Acceptable Noise Level (ANL) 
test in een groep van 48 CI gebruikers. 
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Het bleek dat de SSQ-scores matig waren gecorreleerd met spraakscores in stilte en ruis, 
en ook met ANL's. Spraakscores in stilte en ruis waren sterk gecorreleerd. De combinatie 
van spraakscores en ANL verklaarde 10-30% van de varianties in SSQ-scores, waarbij de 
bijdragen van ANL's slechts 0-9% was. 
De variantie in de SSQ als gehoorspecifieke PROM bij CI-gebruikers werd dus niet beter 
verklaard door spraakverstaanbaarheid in lawaai dan door spraakverstaanbaarheid in 
stilte, vanwege de opmerkelijk sterke correlatie tussen beide maten, die mogelijk kan 
worden verklaard door het feit dat de beschikbare auditieve bottom-up informatie in CI-
stimulatie erg beperkt is en beide uitkomstmaten voor een belangrijk deel bepaalt. ANL’s 
leveren slechts een kleine bijdrage aan het verklaren van de variantie van de SSQ. ANL's 
lijken andere aspecten te meten dan de SSQ. Gebruik van een PROM naast spraaktests 
levert extra informatie t.o.v. de spraakmetingen alleen. 
 
Hoofdstuk 10 geeft een samenvatting van de belangrijkste bevindingen uit de voorgaande 
hoofdstukken, becommentarieert deze en beantwoordt de onderzoeksvragen die in de 
introductie gesteld waren. De resultaten van dit proefschrift bevestigen de veelgehoorde 
klacht van CI-gebruikers dat zij een gesprek in achtergrondlawaai moeilijk kunnen volgen. 
De gebruikte uitkomstmaten waren gericht op verschillende aspecten van spraakverstaan 
en samen geven ze een gedifferentieerd beeld van de spraakverstaanproblemen die CI-
gebruikers ervaren in achtergrondlawaai. Gemiddeld tolereren CI-gebruikers weinig 
achtergrondgeluid tijdens het volgen van spraak en moeten ze luisterinspanning leveren 
tijdens spraakverstaan in lawaai, zelfs als er weinig achtergrondlawaai is. Deze resultaten 
suggereren dat motivatie en inspanning vereist zijn om deel te nemen aan een gesprek in 
achtergrondlawaai en als het niveau van het achtergrondgeluid stijgt, wordt 
spraakverstaan praktisch onmogelijk. Deze moeilijkheden werden ook door CI-gebruikers 
zelf gerapporteerd in een evaluatie met een vragenlijst. 
De ruisonderdrukkingsalgoritmen voor continue ruis of plotselinge, kortdurende geluiden 
die in de studies van dit proefschrift getest zijn, resulteren niet in een relevante 
verbetering van het spraakverstaan. Wel kunnen ze de tolerantie voor continue ruis 
verbeteren en de hinder van luide kortdurende geluiden verminderen. 
De beperkingen in het verstaan van spraak in lawaai kunnen voor het grootste deel 
worden verklaard door beperkingen in de auditieve informatie die de CI en de 
gehoorzenuw doorgeven. Deze beperkingen houden deels verband met een lage spectrale 
resolutie, die werd gemeten bij CI-gebruikers. Bij het verstaan van spraak in lawaai spelen 
ook linguïstisch-cognitieve factoren een rol. Uit het onderzoek bleek dat CI-gebruikers 
beter gebruik maken van contextuele informatie die binnen een zin aanwezig is, dan 
jonge, normaal-horende luisteraars. De linguïstisch-cognitieve bijdrage resulteerde in een 
toename van maximaal 35 procentpunten in woordherkenning voor zinnen die typerend 
zijn voor dagelijkse conversatie, ten opzichte van herkenning van losse fonemen. CI 
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gebruikers met een relatief lage werkgeheugencapaciteit hebben gemiddeld een slechtere 
spraakherkenning in lawaai, maken minder effectief gebruik van contextuele informatie 
en lijken meer luisterinspanning te leveren dan CI-gebruikers met een relatief hoge 
werkgeheugencapaciteit. 
De Acceptable Noise Test bleek een geschikte test te zijn voor het meten van directe 
effecten van een ruisonderdrukkingsalgoritme op tolerantie van ruis tijdens het luisteren 
naar spraak. Bij CI-gebruikers was de geluidstolerantie gerelateerd aan de 
spraakperceptiedrempel in lawaai. Volgens de literatuur over geluidstolerantie wordt deze 
relatie niet gevonden voor personen met normaal gehoor of lichte slechthorendheid. De 
test-retest betrouwbaarheid van de Acceptable Noise Test, de constructvaliditeit en de 
instructie zijn als matig beoordeeld, waardoor de waarde van de Acceptable Noise Test 
ook matig is. 
Voor het meten van het spraakverstaan in stilte en in achtergrondlawaai bij CI gebruikers 
blijken de VU-zinnen goed bruikbaar, mits er gebruik gemaakt wordt van woord scoring. 
De spraakperceptiedrempel in ruis kan adaptief gemeten worden met een stochastische 
approximatiemethode mits de woordherkenning in stilte voldoende is. 
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Applications of a sentence-in-noise test in CI users 
Clinical use of the VU sentences (Versfeld et al., 2000) with word scoring is recommended 
to measure speech perception in quiet and noise for several reasons. First, a test with 
these sentences is more ecologically valid compared to a consonant-vowel-consonant 
(CVC) word lists (NVA word lists of Bosman and Smoorenburg (1995)). Second, the role of 
top-down processing is included. Third, the test is better able to find significant 
differences between subjects and conditions than the NVA CVC test, using an equal 
number of stimuli (see Chapter 6). It is recommended to apply the VU sentence test in the 
rehabilitation process after CI implantation, for example at 3 months, 6 months, and one 
year after CI implantation. The test is also likely to be useful in the CI indication phase, 
although the use of the test in the pre-CI phase has not been studied. The greater 
sensitivity of the test to differences in available bottom-up speech information could be 
helpful in the indication process. 
For clinical use 11 lists of 20 6-word sentences were created from the original VU sentence 
lists. It is recommended to test the word score in three steps: 

1. Familiarize the patient with the task and the voice by practicing a few sentences 
in quiet. 

2. Measure the word score for sentences at 65 dBSPL in quiet. 
• If the word score is > 90% after 10 trials, the test condition can be 

terminated. 
3. Measure the word score for sentences at 65 dBSPL in background noise using a 

speech-to-noise ratio (SNR) of 8 dB. 
• If the word score at this SNR is > 90% after 10 trials, the test condition can 

be terminated and a new measurement with an SNR of 4 dB started. 
• If the word score at this SNR is <10% after 10 trials, the test condition can be 

terminated. 
 

In the third step, the SNR of 8 dB is representative of many everyday situations and the 
score for this condition is a measure of the speech-in-noise understanding ability of a CI 
recipient in such real-life situations. 
For high-performing CI recipients, there is a risk of a ceiling effect in the word score for the 
quiet condition. For these recipients the speech-in-noise measure can be used to examine 
differences between conditions or alternatively the sentence score (which requires that all 
words of a sentence are correctly recognized) can be used (see right panel of Figure A.1). 
 
Figure A.1 shows how word scores for VU sentences are related to phoneme scores for 
the NVA CVC test in the group of CI users (according to Chapter 6).  
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The left panel of Figure A.2 shows the relationship between calculated word scores at an 
SNR of 8 dB and word scores in quiet based on data of Chapter 9. The word scores were 
calculated from the psychometric curves fitted to the data of the speech-in-noise test 
used in Chapter 9. From this figure, it is clear that the differences between subjects in the 
speech-in-noise condition are much greater than in the speech-in-quiet condition. In the 
right panel of Figure A.2 the word scores of the speech-in-noise condition are plotted 
against the NVA phoneme scores. In this panel, the regression line of the left panel is 
transformed, using the transform given in the left panel of Figure A.1.  Scores in the range 
of 60 – 80% correct phonemes are often seen in CI revalidation and this range is also 
important for CI indication. With the VU speech-in-noise test, this range is increased to 0 – 
80% word score. So, the VU speech-in-noise test is sensitive to differences between 
severely hearing-impaired persons, which cannot be seen in the CVC phoneme scores. 
The left panel of Figure A.3 shows the limits of the 95% confidence interval for word 
scores from a list of 20 VU sentences. These limits were calculated based on the effective 
number of independent elements in a sentence list, using the context model presented in 
Chapter 6. Statistically, word scores can be seen as a sample of a binomial distribution, 
which has asymmetrical confidence intervals for scores above and below 50%. This 
asymmetry is most pronounced if word scores approach 1 or 0.  The upper and lower 
limits of the confidence intervals were calculated using Jeffreys prior interval for the 
binomial distribution (Jeffreys, 1998) as this interval is a good approximation of the real 
interval (Brown et al., 2001). The 95% confidence interval for word scores using a list of 20 
VU sentences is very comparable to the 95% confidence interval of NVA phoneme scores 
based on two word lists of 11 words (right panel). This confidence interval was also 
calculated with Jeffreys prior interval and the effective number of independent elements 
in a word list, presented in Chapter 6. 
 
For research, it can be considered to measure the speech reception threshold in noise 
(SRT50n) with a stochastic approximation procedure (Chapter 7). The only restriction is 
that the word score on a test with sentences in quiet should be at least 70% correct for 
reliable estimates of the SRT50n (Chapter 7). 
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Figure A.1. Left panel: relationship between word scores of VU sentences and phoneme scores on 
CVC words. Right panel: relationship between sentence scores (all words of a sentence correctly 
recognized) of VU sentences and phoneme scores on CVC words. 
 
 
 

 
Figure A.2. Relationship of calculated word scores at an SNR of 8 dB with word scores in quiet for 
the VU sentence test (left panel) and with phoneme scores on CVC words (right panel). 
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Figure A.3. Limits of the 95% confidence intervals of word scores for VU sentences in CI users using 
lists of 20 sentences (left panel) and phoneme scores in CI users using NVA CVC word lists of 11 
words (right panel). 
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