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Key points 

• Imaging biomarkers offer the opportunity to move precision diagnostics forward, enabling better 

informed medical decision making and tracking biological changes before, during and after brain tumour 

treatment. 

• Guidelines and standards for data acquisition, image processing, and validation processes for the 

development and eventual implementation of imaging biomarkers are provided by the ESR and the RSNA. 

• Radiomics is a rapidly emerging field of imaging research delivering an almost limitless supply of potential 

imaging biomarkers for improved patient and disease characterisation. 

• The currently available evidence on imaging biomarkers and radiomics is still mostly at the discovery level; 

rigorous technical, biological and clinical validation are needed for clinical application. 
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Abstract 

The central role of magnetic resonance imaging (MRI) in neuro-oncology is undisputed, to diagnose and 

monitor disease activity, provide treatment decision support and guide focused treatments, and to determine 

response to treatment both in clinical practice and in clinical trials. Despite recent substantial advances in 

imaging technology and image analysis techniques, clinical MRI is still primarily applied on the basis of 

qualitative, subjective interpretation of macrostructural features rather than quantitatively and with taking 

pathophysiological features into account.  

The field of quantitative imaging and imaging biomarker development is however maturing. The European 

Imaging Biomarker ALLiance (EIBALL) and Quantitative Imaging Biomarker Alliance (QIBA) are important 

drivers setting standards for development, validation and implementation, and promoting the use of 

quantitative imaging and imaging biomarkers by demonstrating their clinical value. In parallel advanced 

imaging techniques are reaching the clinical arena, providing quantitative, commonly physiological parameters 

that further drive the discovery, validation, and implementation of quantitative imaging and imaging 

biomarkers in the clinical routine. Additionally, computational analysis techniques convert medical images into 

objective high-dimensional data to define radiomic signatures of disease states. 

This review addresses the definition and current state of MRI biomarkers, as well as quantitative image 

analysis techniques with clinical potential for neuro-oncology.   



Introduction 

In the current era of precision medicine, brain tumour management is tailored towards the individual patient’s 

characteristics, due to the insight that patients with the same general tumour type exhibit a wide variation in 

survival, response to treatment, and toxicity. This results in an exponential increase in the complexity of 

diagnosis, based on many clinical, pathological and genetic factors, and therapy. In parallel, there is an 

explosion of acquired imaging data together with a diversification of information content, that enable in vivo 

tumour assessment well beyond traditional macrostructural image interpretation.  

Imaging biomarkers offer the opportunity to move precision diagnostics forward. The development of imaging 

biomarkers goes hand in hand with quantitative image acquisition and analysis. Both imaging biomarkers and 

computational imaging approaches have the potential to impact cancer outcome by unlocking the 3D-

morphology and biology of tumours from information-rich imaging modalities thus enabling Radiologists to 

correlate structural with functional information on the cellular level. 

For glioma, these developments are particularly timely, given the recent insights into the importance of 

molecular differences between histopathologically similar tumours. This is reflected in the published literature 

on neuro-oncological imaging biomarkers, which is much more abundant on glioma than other neuro-

oncological entities such as brain metastasis and meningioma. The current World Health Organisation (WHO) 

classification on central nervous system tumours distinguishes three main categories of adult diffuse glioma, 

based on mutation of the isocitrate dehydrogenase (IDH) gene and codeletion of chromosome arms 1 and 19 

(1p/19q codeletion): IDH-mutated 1p/19q non-codeleted (IDHmut astrocytoma), IDHmut 1p/19q codeleted 

(oligodendroglioma), and IDH-wild type (IDHwt glioma) tumours1. While diagnosis of these genotypes is based 

on tissue obtained through surgery, their prediction prior to surgery from imaging phenotypes aids better 

informed medical decision making2, for which it is increasingly recognised that there are multiple intrinsic and 

extrinsic factors that determine how a patient will respond to treatment. Similarly, brain metastases display 

heterogeneity of characteristics even within an individual patient, and non-invasive imaging biomarkers not 

only track biological changes during or after treatment, but potentially also provide information on response 

prior to or early after treatment.  

While the focus of this paper is primarily on magnetic resonance imaging (MRI), because it is by far the most 

commonly used imaging technique in neuro-oncology, it should be noted that radionuclide imaging with 

positron emission tomography (PET) is used increasingly to supplement MRI in the clinical management of 

glioma3, meningioma4, and brain metastasis5.  

This review addresses the definition and current state of MRI biomarkers, as well as quantitative image 

analysis techniques with clinical potential for neuro-oncology.   



Imaging biomarkers 

Biomarkers constitute a broad category of objective indicators of a healthy or disease state that are 

measurable, precise, accurate and true6,7. While the value of biomarkers in both research and clinical practice 

is undisputed, clinical implementation of imaging biomarkers is far from commonplace and this can in part be 

attributed to the current lack of rigorous evaluation and consequent near-absent regulatory qualification of 

imaging biomarkers. Conceptually, requirements for imaging biomarkers are no different from those for 

laboratory assays but these are not trivial to meet, as there is no tradition of standardisation across image 

acquisition, reconstruction or post-processing. This doesn’t mean that these requirements should be 

abandoned, but it is important that these are operationalised for this specifical field of research and 

development. A roadmap towards this aim was developed for cancer studies in general by the European 

Organisation for Research and Treatment of Cancer (EORTC) and Cancer Research UK8. This consensus 

statement provides fourteen recommendations to accelerate imaging biomarker development for grant 

submissions and study publications, technical, biological, and clinical validation, and qualification.  

In Radiology, the advancement of imaging biomarkers is driven by its two major societies, the European 

Society of Radiology (ESR) and the Radiological Society of North America (RSNA). ESR’s European Imaging 

Biomarker Alliance (EIBALL)9 and RSNA’s Quantitative Imaging Biomarker Alliance (QIBA)10 collaborate closely, 

aspiring uniformity and synergy, to provide guidelines and set standards for data acquisition, image processing, 

and the validation processes for the development and eventual implementation of imaging biomarkers in 

clinical practice and trials. While outside the scope of this paper, it should be noted that similar activities are 

undertaken in the field of Nuclear Medicine. An important effort has been the publication of joint practice 

guidelines for glioma imaging using PET with radiolabelled amino acids and fluorodeoxyglucose by the 

European Association of Nuclear Medicine, Society of Nuclear Medicine and Molecular Imaging, the European 

Association of Neuro Oncology, and the Response Assessment in Neurooncology PET-working group11. While 

QIBA also provides guidance on PET-derived biomarkers, this is not available for neuro-oncological 

applications.  

Imaging biomarker requirements 
A first step in the development and implementation is the correct and consistent use of internationally 

standardised and accepted terminology and definitions6,12. 

Precision, trueness, and accuracy 

For biomarkers to be objective and reproducible, they should be precise, accurate, and true. Precision relates 

to the variability in the measurements and constitutes both repeatability and reproducibility. Sources of 

variability include the clinical population, image acquisition, reconstruction and post-processing, as well as the 

measurement methodology, and these should be explicitly identified6. Trueness defines how close the 

measurement is to a true or reference value. For quantitative imaging biomarkers this can be estimated with 

phantoms providing reference values, although it should be noted that physical measurements still come with 

a certain inherent error and the true value can never be known with certainty12. Accuracy has multiple 

meanings, sometimes referring to the level of bias, but here it is used to designate how well a test performs in 

a clinical setting, i.e. in terms of sensitivity and specificity and area under the receiver operating characteristics 

curve (AUC).  

Imaging biomarker validation 

For the typical, biologically determined imaging biomarker, the validation process consists of consecutive 

technical (performance), biological and clinical (endpoint) validation13,14. This validation process starts after the 

discovery phase in which an imaging biomarker with known relation to the underlying biological process is 

identified. For technical validation, data are collected using standardised acquisition protocols in a limited 



number of – expert – centres, to establish that the biomarker can be reliably be obtained under a variety of 

common conditions (e.g. across various widely applied image acquisition platforms). The technical validation is 

combined with an assessment of the biomarker’s biological validation performance, e.g. by correlating the 

imaging biomarker values with tissue features. If successful, the biomarker can then be validated in a clinical 

setting against a certain reference standard or outcome, in independent cohorts and in a multicentre, 

prospective trial setting, to establish the unambiguous relationship between the biomarker and the clinical 

endpoint.  

An alternative approach of imaging biomarker development starts its discovery phase with a large data set, 

from which candidate biomarkers are discovered. Biological validation is not mandatory,  acknowledging the 

notion that such a data driven approach may find associations with disease states of which the underlying 

disease process is not (yet) established and that a biological link may be explored a posteriori14.  

Regulatory standards and qualification 
As yet, regulatory bodies for imaging biomarkers are lacking and there are no routine quality assurance and 

control procedures, and thresholds for acceptance are thus left to the discretion of the professional 

community. To mitigate the risk of poorly validated imaging biomarkers entering clinical practice, the ESR 

proposed minimum criteria inspired by the guideline on bioanalytical method validation of the European 

Medicines Agency15-17. For precision, a coefficient of variation (CoV) of <15% is stipulated, except when 

measurements are below the lowest limit of quantification (LLoQ); in those cases a CoV of up to 20% is 

acceptable. In terms of assessing bias, e.g. through a phantom or biological reference values, standard error 

should be <15%, which can similarly be relaxed to 20% in case of measurements below LLoQ. Finally, for 

clinical validation an area under the curve (i.e. diagnostic accuracy) of >0.85 is required. The QIBA approach is 

to use the known measurement error as the threshold beyond which differences between two longitudinal 

measurements can be confidently attributed to true change. These requirements, together with the 

procedures needed to reach the level of measurement accuracy, are published as so-called claims and profiles 

respectively18. In all instances, the context of the assessment should be described, e.g. the clinical population 

or indication, such that it is explicitly clear how to use and interpret the value of a particular imaging 

biomarker.  

Quantitative imaging 

Quantitative imaging is a fundamental aspect of imaging biomarker development19. QIBA defines quantitative 

imaging as the “extraction of quantifiable features from medical images for the assessment of normal or the 

severity, degree of change, or status of a disease, injury, or chronic condition relative to normal”10. In a recent 

survey on the penetration of quantitative MRI into clinical practice in Europe, diffusion MRI (dMRI, 82%), 

perfusion MRI (pMRI, 67%) and MR spectroscopy (MRS, 64%) were found to be the most commonly used 

quantitative imaging techniques in clinical neuroradiological practice20.   



Quantitative MR imaging in neuro-oncology 

MRI is the workhorse of brain tumour imaging. In contrast to so-called conventional MRI, such as T1-weighted 

and T2-weighed sequences providing macrostructural anatomical information, advanced MRI techniques are 

more sensitive and/or specific to biophysical, cellular, and microstructural processes. These techniques are 

also potentially (semi-)quantitative. Both aspects are important for imaging biomarker acquisition.  

Diffusion MRI (dMRI) 
Diffusion MRI is widely used in neuro-oncology, although rarely quantitatively. From a European-wide survey, 

it was found that ADC maps were overwhelmingly used qualitatively (78%) by visual inspection only21. The 

recently published guideline on paediatric high-grade glioma is the first to include advanced MRI, i.e. dMRI, in 

its response criteria, albeit only qualitatitively22. 

Diffusion MRI measures the displacement of free water molecules due to Brownian motion (Figure 1). The 

most commonly used metric is the apparent diffusion coefficient (ADC). The technique can be extended to also 

assess the directionality of diffusion. An additional metric that is then commonly obtained is fractional 

anisotropy (FA). Diffusion kurtosis imaging (DKI) is yet a further extension with increased sensitivity of 

microstructural tissue changes, most commonly expressed as mean kurtosis (MK)23. 

Further advances of dMRI use models of biophysiology as a priori knowledge for more in depth microstructural 

tissue assessment. These include ‘neurite orientation dispersion and density imaging’ (NODDI)24, which is 

primarily modelled towards normal brain tissue, and ‘vascular, extracellular, and restricted diffusion for 

cytometry in tumours’ (VERDICT)25, which was originally optimised for prostate cancer but has now also been 

applied to brain tumour. Intravoxel incoherent motion (IVIM)26 is a technique on the boundary of diffusion and 

perfusion imaging: it analyses the measured diffusion component that is due to the slow flow of blood in the 

capillaries, the so-called microvascular fraction. 

ADC as an imaging biomarker 

ADC is considered a surrogate marker of cellular density27,28 and has been shown to be inversely correlated 

with the Ki-67 labelling index in a retrospective study of high-grade astrocytoma29. Information on accuracy 

and precision of ADC measurement in the brain is scarce. The QIBA claim is based on three test-retest studies, 

and states that the limit beyond which a longitudinal change can be attributed to true change is 11%30.  

ADC findings in various neuro-oncological scenarios are variable and commonly conflicting. Apart from 

technical and methodological variations, this is probably in large part due to the underlying tumour 

heterogeneity. Higher grade brain tumours, while displaying higher degrees of cellularity with low ADC, also 

display higher degrees of necrosis and vasogenic oedema, with high ADC. One method to account for such 

tumour heterogeneity is to express the proportion of tumour with ADC values above a certain threshold31.  

Even so, there is an abundance of literature supporting ADC’s potential as an imaging biomarker. Various 

meta-analyses report ADC findings to differentiate between high and low-grade glioma both in adult32,33 and 

paediatric patients34, between high-grade glioma and brain metastasis35, and between tumour progression and 

treatment related abnormalities36,37, and to predict survival38 and IDH mutation39 (Table 1). In several separate 

studies ADC was also found to correlate with survival in diffuse infiltrative pontine glioma, irrespective of 

H3K27M-status40-42. The overall finding is that lower ADC is associated with higher tumour grade and tumour 

progression, poorer survival, and unfavourable genotype (IDHwt).  

Other dMRI metrics as imaging biomarkers 

FA has been found to be higher in IDHwt glioma, but doesn’t seem to add to diagnostic accuracy compared 

with ADC in various single studies43. As a global finding, FA was increased in the tumour core in high versus 

low-grade glioma, and the reverse was seen in the periphery of the tumour, suggesting that high-grade glioma 
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are more destructive of the perifocal white matter than low-grade glioma44. Differences in FA between high 

and low-grade glioma seem however to be too small for meaningful use. The same holds true for the 

differentiation between high-grade glioma and brain metastasis, although the peritumoural region of high-

grade glioma showed a significantly higher FA compared with metastasis45. This is presumably due to the 

differences between infiltrative oedema of glioma and vasogenic oedema surrounding metastasis.  

MK seems to hold more promise for differentiating high and low-grade glioma, as indicated by 2 meta-analyses 

(Table 1)23,46. MK is thought to better represent the restricted component in biological tissue. The technique is 

however challenging and not widely available. The same holds true for IVIM, which has shown increased 

perfusion coefficient – as well as reduced ADC and diffusion coefficient  – in high versus low-grade glioma 

(Table 1)47.  

Of the more advanced techniques, not much evidence exists yet. In a prospective study using NODDI, 

extracellular volume fraction in the peritumoural region was found to distinguish solitary brain metastasis 

(N=6) from glioblastoma (N=9), due to the presumed differences between infiltrative and vasogenic oedema48. 

With VERDICT, the intracellular compartment was found to be significantly different between IDHmut (N=7) 

and IDHwt (N=7) glioma, even when no difference in ADC was seen49. 

Perfusion MRI (pMRI) 

Perfusion MRI is also used widely in neuro-oncological practice. The application of pMRI in neuro-oncology 

relies on the differences in (neo)vascularisation between normal and neoplastic tissue, as well as between 

various types of neoplasia. In current clinical practice, about 50% of users apply pMRI quantitatively21. 

Three main pMRI techniques exist, of which dynamic susceptibility contrast (DSC) pMRI is by far the most 

commonly used (Figure 2)20,21. This technique is based on capturing the signal change occurring during the 

passage of an intravenously administered contrast agent bolus through the brain. DSC pMRI provides a semi-

quantitative estimate of relative cerebral blood volume (rCBV), which is mostly measured as a ratio between 

the tumour and the contralateral normal appearing white matter. Despite its extensive use, there is no broad 

consensus on the acquisition technique, post-processing algorithms, or analysis and interpretation, which has 

thus far severely hampered its application as a true imaging biomarker.  

Dynamic contrast enhanced (DCE) MRI is primarily used to assess the leakage of contrast agent through the 

blood brain barrier (Figure 2). The volume transfer constant (Ktrans) is its most widely used metric, providing an 

estimate of vessel permeability. 

Finally, arterial spin labelling uses inflowing blood as an endogenous contrast, thus not requiring the 

administration of a contrast agent, and provides a measure of cerebral blood flow (CBF). While there are 

various implementations of ASL available, the publication of consensus recommendations has achieved some 

form of harmonisation, most notably on the use of pseudocontinuous ASL with a 3D readout, which has since 

been implemented by all main MRI scanner vendors50.  

rCBV as an imaging biomarker 

Relative CBV is the most widely used metric from pMRI in neuro-oncology. Single studies using stereotactic 

biopsy targeting regions of high rCBV have shown a positive correlation with vessel density, as well as with 

endothelial proliferation, and tumour grade51,52. Repeatability and reproducibility of rCBV assessment was 

found to be moderate53. In terms of acquisition, high reliability and reproducibility has been reported on 

various techniques54-57. Several studies have shown that differences in software or applied algorithms are a 

large source of variability of measured values57-59. At present the QIBA profile doesn’t provide a claim for rCBV, 

due to the lack of existing supporting literature60.  
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Indeed, the extensive literature on rCBV in neuro-oncology provides a wide range of cut-off values for each of 

the various indications, but no uniform threshold values are as yet established (Table 2). The global findings 

are that there is increased rCBV in tumours of higher grade61,62 or aggressiveness (IDHwt)39,63, and that rCBV is 

increased in tumour recurrence compared with treatment related abnormalities37,64-66. While overall reported 

accuracies for grading are good, these are very much influenced by the type of glioma. Oligodendroglioma 

display internal vascularisation which results in mildly elevated perfusion, even at low grade. This cross-

confounding effect of IDH and particularly 1p/19q status with tumour grade on perfusion – as well as diffusion 

– parameters is important to keep in mind when appreciating these imaging biomarkers performances, as their 

conditionality depends on a key tumour characteristic. In two meta-analyses, subgroup analyses showed much 

lower accuracy for grading oligodendroglioma than astrocytoma with rCBV61,62.  

For differentiation between brain metastasis and high-grade glioma, it is the peritumoural rCBV, rather than 

the intratumoural rCBV, that best distinguishes the two entities, with increased rCBV in the peritumoural 

region of high-grade glioma, presumably due to – microscopic – tumour infiltration (Table 2)67. Compared with 

high-grade glioma, PCNSL typically displays lower rCBV as well as other perfusion metrics, where DSC was 

found to most accurate (AUC=0.98) and sensitive (0.96; 95%CI, 0.92-0.99 and ASL most specific (0.90; 95% CI, 

0.78-0.96) (Table 2)68.  

Given its direct relationship with (neo)angiogenesis, pMRI has also been applied to predict response after 

treatment with bevacizumab, where a decrease of or low post-treatment perfusion was found to be associated 

with improved progression free and overall survival (Table 2)69. 

Other pMRI metrics as imaging biomarkers 

The QIBA claim  for Ktrans in the brain is that a longitudinal change of 21.3% of more can be attributed to true 

change rather than measurement error, noting that this is based on very limited literature70,71 . This can also 

been seen from table 2, where only few DCE studies were identified in various meta-analyses, not allowing for 

reliable quantitative analyses and/or determination of thresholds72. 

While a committee on ASL has been installed, there is as yet no QIBA profile or claim on ASL73. Both absolute 

CBF and CBF ratios have been found to be significantly increased in high-grade glioma (Table 2)74. Due to its 

non-invasiveness, ASL is of particular interest in the paediatric population, where it has been applied to 

differentiate between high and low-grade glioma. At a threshold of a maximum CBF ratio of 1.45 (with a range 

of 0.94 to 1.52 from the literature), 83% accuracy was found, although it should be noted that diffuse midline 

glioma was excluded (Table 2)34. Diffuse midline glioma was found to have low CBF ratios, despite being a high-

grade tumour. ASL has also been used to predict IDH mutation in glioma75 and glioblastoma76 in retrospective 

studies of newly diagnosed patients (N=40 respectively N=149). 

Proton MR Spectroscopy: MRS 
MRS in neuro-oncology is mostly used as a third-line diagnostic tool. Proton MRS is based on the principle that 

protons within different molecules have slightly different resonance frequencies and can thus be detected and 

quantified. There are two main techniques: single voxel spectroscopy and MRS imaging (MRSI), which has 

higher spatial resolution. Even so, spatial resolution remains relatively poor. The visualisation of molecules 

depends on the applied scanning technique, which is as yet not harmonised. Aiming to improve the quality of 

future MRS studies, increase its standardisation, and provide recommendations to MRI scanner vendors for 

best MRS implementations, a group of 49 experts from the International Society for Magnetic Resonance in 

Medicine MRS study group recently published a consensus on clinical proton MRS of the brain77. This guidance 

on how to perform MRS at various field strengths and for specific indications also includes a strong 

recommendation towards automated analysis methods and quality assurance, moving MRS towards more 

quantitative application. 



In routine neuro-oncological practice, the typical molecules of interest are N-acetyl aspartate (NAA), Choline 

(Cho), Lactate, Lipids, and Creatine (Cr), as markers of neuronal viability, cellular membrane turnover, 

anaerobic processes, necrosis, and metabolic activity respectively. Of recent interest is the detection of 2-

hydroxyglutarate (2-HG) with MRS, being an oncometabolite of IDHmut glioma78. 

Common metabolites as imaging biomarkers 

There is no QIBA profile or committee on MRS. Quantification of MRS-derived metabolites is as yet not 

standardised and there are no uniformly accepted thresholds for specific indications in neuro-oncology.  

In  a study differentiating metastases (N=25) from high-grade glioma (N=31), the presence of a Cr peak was 

found to be suggestive of gliobastoma79. Additionally NAA/Cr and Cho/Cr ratios have been found to be higher 

in metastasis than in glioma in a prospective study of 60 patients80. In a study of 42 treatment-naïve patients 

with a variety of brain tumours, the apparent lipid concentration was found to be increased with higher grades 

of astrocytoma, and quantification of lipids and macromolecules combined was found to be the most useful 

single parameter to determine astrocytoma grade81. 

For distinguishing tumour progression from treatment related abnormalities, high diagnostic accuracy of MRS 

was found (Table 3)37. A separate meta-analysis found significantly higher Cho/Cr and Cho/NAA ratios with 

tumour progression (Table 3)64. These findings may however be timing dependent, as radiation necrosis has 

also been reported to show variable changes in choline and creatine intensities over time, due to early 

radiation-induced changes of inflammation and demyelination.  

Oncometabolites as imaging biomarkers 

2-HG is probably the most true imaging biomarker in neuro-oncology, as a direct, quantitative marker of IDH-

mutation in glioma78. One meta-analysis reports very high sensitivity and specificity for differentiating IDHmut 

from IDHwt glioma (Table 3)82. In the context of response assessment, 2-HG has been shown to increase with 

tumour progression and decrease with response in IDHmut tumours in prospective longitudinal studies of 

13683,84and 2584 patients; this is especially of interest for assessing IDH-targeted treatments84. Single studies 

have shown that the detection is positively associated with tumour volume and cellularity43,85. In a 

retrospective study of 82 patients with IDHmut (N=11) and IDHwt (N=71) glioblastoma, a false positive rate of 

21% was seen, which seemed to be associated with the presence of necrosis86. 2-HG MRS is still very much in 

the research domain, requiring specialist sequences and post-processing techniques, and its detection is highly 

technique dependent.  

Recently, oncometabolite MRS has also been described in relation to 1p/19q codeletion. Due to the loss of two 

enzymes located on the short arm of chromosome 1, there is an accumulation of cystathionine which can be 

measured with a dedicated MRS analysis87. Again, techniques to detect this oncometabolite are highly 

specialist and have yet to make their way from the research domain to clinical practice. 

Limitations 

Despite the abundance of literature and widespread use of quantitative imaging for neuro-oncology, none of 

their metrics meet all imaging biomarker standards. The vast majority of published studies are small, 

retrospective and use a wide variety of methods and metrics. None of the meta-analyses were able to provide 

independently validated threshold values. Common sources of heterogeneity were technical aspects 

(acquisition, analysis) and patient cohorts (selection/inclusion/size).  



Radiomics 

Radiomics is the rapidly evolving field of converting medical images into objective high-dimensional data, to be 

collected in and shared through large databases or repositories, with the aim to associate imaging phenotypes 

with clinically or biologically relevant disease or patient characteristics88. Compared to imaging biomarkers 

which are mostly used in isolation, radiomics is by definition based on a multitude of imaging features, thereby 

improving diagnostic accuracy. Automated computational techniques also overcome issues with inter-rater 

and technical variability and are better suited to handle the increasing complexity of both imaging techniques 

and tumour biology. It should also be noted that these techniques are not confined to a single imaging 

technique or modality, but in fact are well suited to combine information for multiparametric and multimodal 

assessment from e.g. MRI and PET. The summary of radiomics features that is specific for a particular disease 

state is called the radiomic signature.  

Radiomics data can also be combined with -omics data from other disciplines. Radiogenomics, for instance, 

combines radiomics and genomics to predict the tumour genetic status based on its imaging phenotype. In the 

field of neuro-oncology, radiogenomics research has had a major boost from The Cancer Genome Atlas 

(TCGA)89 and The Cancer Imaging Archive (TCIA)90 initiatives, publicly providing a wealth of oncological data.  

Manual annotation: VASARI 

One of the first studies to successfully associate gene expression in glioblastoma with MRI characteristics used 

manual annotation of imaging features91. Probably the most widely used lexicon for manual annotation of 

glioma is the visually accessible Rembrandt images (VASARI) lexicon92. VASARI constitutes a set of 24 well-

defined and neuroradiologically well-known descriptors of glioma on conventional MRI. VASARI has been used 

to annotate several TCIA data sets, and has led to some of the first radiogenomics papers on glioblastoma93. 

The essential aspect distinguishing VASARI from routine tumour description, is the provision of a lexicon with 

established high reproducibility amongst a large number of raters. Later work indicates that VASARI features 

correlate well with computationally obtained imaging features in glioblastoma94.  

Computational feature extraction 

With the advancement of image analysis techniques, the manual process of feature extraction is being 

replaced by algorithms that are able to extract large numbers of features from an image automatically. 

Traditionally, these are pre-defined mathematical features, which are independent from the data itself. An 

alternative approach is the discovery of meaningful features from the image data set through deep learning. 

This agnostic approach allows a more powerful data driven feature discovery, but requires much larger 

imaging datasets because the features are highly correlated with the input data. With either approach, it is 

crucial that the input data are representative, well-balanced, and sufficiently heterogeneous to allow 

generalisability of findings to similar scenarios. 

The radiomics pipeline 

The traditional radiomics pipeline consists of the following steps95,96: 1) image pre-processing, 2) 

segmentation, 3) feature extraction, 4) classification, and 5) feature reduction (Figure 3). In the first step, the 

imaging data are prepared for analysis, which includes the alignment of all available imaging types or 

modalities. In the second step, the tumour is outlined. Subregions of the tumour, called habitats, can 

additionally be defined. Third, from these segmented region(s) the imaging features are extracted. Fourth, 

features are classified according to their class label, e.g. the presence/absence of IDH mutation. Typically, the 

number of features is several hundreds, many of which will be cross-correlated, redundant or irrelevant. Thus, 

in the final step, feature reduction is applied to reduce dimensionality and noise due to unnecessary features, 

as well as to reduce the risk of overfitting. Overfitting occurs when there is too perfect a match between the 

classification model and the data set, and results in a model that can’t be generalised to any other data set.  
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Prediction modelling and validation 

Once the appropriate set of features has been selected, a prediction model can be built using e.g. logistic 

regression or machine learning methods. To avoid overfitting, the model needs to be built with data that are 

not used for assessing performance. A common method is to split the data set into a larger training and 

smaller validation set, to train and tune the model using e.g. cross-validation. The final model’s performance 

should then be determined from an independent, so-called test-set, consisting of data from an entirely 

different source that were previously unseen by the model97.  

Applications of radiomics 
The application of machine learning and radiomics has yet to find its way into clinical neuro-oncological 

practice. These approaches have, however, shown encouraging results for a variety of indications. Many single 

studies have been published on a variety of indications in glioma as well as other brain tumours, mostly using 

conventional MRI data95,96. However, the majority of such studies lack appropriate validation and testing, such 

that these results should be considered as exploratory only and interpreted with caution.  

In a meta-analysis of six studies of 440 patients, radiomics showed high accuracy for glioma grading with 

pooled sensitivity and specificity of 0.93 (95% CI, 0.88-0.96) respectively 0.86 (95% CI, 0.81-0.89) and an AUC 

of 0.9698. A single study of 113 patients using deep learning found similar accuracy of 95% in the validation 

set99. For the differentiation between tumour progression and treatment related abnormalities such as 

radiation necrosis, an AUC of 0.85 was found in a study with 95 patients using support vector machine 

learning100. A deep learning approach for the same indication in a study of 78 patients yielded a similar AUC of 

0.83101. A PET-study of 34 patients found an AUC of 0.74102. Furthermore, radiomics analysis has been found to 

outperform clinical and radiological models in several studies each of approximately 100 newly diagnosed 

glioblastoma patients103-105. In lower grade glioma, radiomics also predicted survival as well as Ki-67 expression 

level – with an accuracy of 89% – in a study of 117 patients106. Machine learning was also successfully used to 

map glioblastoma cellularity based on 91 targeted biopsies from 36 patients107. Of note, none of these studies 

used a truly independent test-set, limiting the generalisability of these results. 

Radiogenomics of glioma 

Given the recent insights into as well as clinical implications of molecular classification of glioma, a large body 

of work has focused on the prediction of glioma genotype from imaging phenotypes: radiogenomics. One of 

the earliest studies used a subset of VASARI to predict the molecular profile of glioblastoma and found that 

proneural glioblastoma had significantly less enhancement, and mesenchymal glioblastoma had less non-

enhancing tumour93. Another study found that seven robust quantitative imaging features were significantly 

correlated with molecular subgroups of glioblastoma, and three with survival94. A meta-analysis of visually 

assessable features identified preferential frontal lobe location, sharply demarcated borders, T2-FLAIR 

mismatch sign108 and higher ADC, lower FA, and lower rCBV as characteristic for IDH mutation43,109. 

For prediction of IDH-, 1p/19q- and MGMT promotor methylation status high accuracies (0.94, 0.92 and 0.83 

respectively) were found in a study of 259 patients with conventional MRI110. Conventional MRI radiomics was 

also able to identify high-risk glioblastoma111. In a systematic review of machine learning to predict IDH 

mutation, of nine studies on 996 patients, a pooled AUC, sensitivity and specificity of 0.89 (95% CI, 0.86-0.92), 

0.87 (95% CI, 0.76-0.93) and 0.90 (95% CI, 0.72-97) respectively was found112. Of note, only five of nine studies 

had divided their study population into a training and validation set, and none had externally validated their 

results in an independent test-set. A systematic review of fourteen studies on 1,655 lower-grade glioma 

patients reported similar findings113. The best classifier of IDH-mutation had an AUC of 0.95, 94.4% sensitivity, 

86.7% specificity, and that of 1p/19q status an AUC of 0.96, 90% sensitivity, 89% specificity. However, the 

radiomics quality score (RQS) indicated an overall inadequate clinical applicability of studies, identifying 



amongst other issues the lack of prospective validation97. Performance in studies with external validation is 

generally lower than in such unvalidated studies. For instance, in a study of non-enhancing glioma, the AUC for 

prediction of 1p/19q codeletion was 0.72 in an independent test-set114.  

In addition to the prediction of such point mutations, there are also attempts to predict signalling pathways in 

glioma for survival as combinations of several genes. For example, in a study combining patient cohorts from 

the Chinese Glioma Genome Atlas and the TCGA several radiomics features were found to be associated with 

progression-free survival in lower-grade glioma, which in turn were associated with a specific set of genetic 

mutations115. 

Radiomics in brain metastasis 

In brain metastasis116, radiomics has been applied in several single studies to differentiate solitary metastases 

from gliobastoma117, differentiation of metastases from underlying primary cancers118, automated detection 

and segmentation119-121, and differentiating radiation necrosis from tumour progression122.  

Automated response assessment 

Machine learning is also being explored for the automated assessment of treatment response. In a study 

focusing on volumetric tumour assessment, improved prediction of outcome was found with machine learning 

compared with conventional trial review123. Such work is promising to improve both accuracy and reduce the 

substantial manual labour burden of trial outcome assessment. Additionally, radiomics has the potential to 

surpass the current focus on tumour volume burden as the sole radiographic outcome parameter, by also 

capturing the – heterogeneous – molecular and biological characteristics of the tumour state in response to 

treatment. 

Limitations 
Similar to imaging biomarkers, independent clinical validation of radiomics applications is commonly lacking. A 

review of over 500 studies of artificial intelligence (AI) algorithms showed that only 6% had performed external 

validation124. In a more recent review of 51 original radiomics studies on glioma, 29% had performed external 

validation125. Only 2% of studies had conducted test-retest analysis and only 4% had a prospective study 

design. As a result, the vast majority of radiomics findings is as yet not generalisable and reported 

performance is commonly over-optimistic.   



Conclusion  

From a historically qualitative discipline, Radiology is in the process of transitioning into a quantitative science. 

Imaging biomarkers and radiomics are at the core this transformation, addressing the currently unmet need to 

answer questions regarding brain tumour biology and physiology and treatment response, while exploiting the 

wealth of information that can now be obtained from the imaging data. Novel MR imaging techniques, such as 

fast quantitative T1- and T2-mapping126 and chemical exchange saturation transfer (CEST)127, are on the 

horizon for even more detailed tumour characterisation. Additionally, techniques such as CEST and MRS 

benefit from acquisition at ultra-high field strength (7T and higher). In neuro-oncology, this process benefits 

from a multidisciplinary approach such that advances in imaging technology and analysis are paired with 

anticipated novel treatments19. 

While there is clear potential of the various quantitative imaging parameters and radiomics, it is also clear that 

a lot of progress needs to be made before truly quantitative imaging approaches can penetrate clinical 

practice. Variations in imaging acquisition and reconstruction, post-processing, and analysis are numerous, and 

some degree of harmonisation is essential to move the field forward, although some issues can be overcome 

by AI solutions128. Recent consensus recommendations on MRI protocols for glioma129 and brain metastasis130, 

as well as on diffusion71 and ASL50 and DSC131 perfusion MRI are important steps in the right direction. An even 

more important impediment for implementation of imaging biomarkers in clinical practice is the current lack 

of rigorous validation. Only two quantitative imaging metrics (ADC, Ktrans) have a QIBA claim on the technical 

validity, and generally, the available evidence on imaging biomarkers is at the discovery level and biological 

and clinical validation is largely absent.  

By promoting consistent and correct terminology and outlining qualification processes and standards, the main 

radiological societies (ESR, RSNA) as well as independent organisation such as the Image Biomarker 

Standardisation Initiative (IBSI)132 and the Open Source Initiative for Perfusion Imaging (OSIPI)133 move the field 

towards maturity. Uniformity in structuring, naming and annotating of imaging data facilitates the pooling of 

multiple – clinically collected – data sets, such as in imaging biobanks or repositories88,134. This is further 

supported by the FAIR principles that promote the Findability, Accessibility, Interoperability and Reuse of 

research data135. Biological validation can be improved by exploiting concurrent advances in histopathological 

data analysis techniques, allowing for precise spatial correlation between MRI and histopathology136. Publicly 

available data such as the TCIA90 can serve as independent test-sets for technical validation. The annual Brain 

Tumor image Segmentation (BraTS) challenge exemplifies how the image analysis community independently 

validates their algorithms137. Federated approaches, where validation is done remotely, overcome issues with 

data transfer. Open access publication of not only results but also of code and data further supports technical 

validation. Finally, inequality of patient access to quantitative MRI requires attention, with a recent survey 

showing a worrying association between the use of quantitative MRI and gross domestic product within 

Europe20. 

Prospective clinical validation studies are the final step to transition neuro-oncological imaging from current 

unidimensional markers of tumour burden to high-dimensional, complex biomarkers of tumour biology and 

response to treatment. These – combined with other non-invasive biomarkers – could eventually serve as a 

‘virtual biopsy’ for non-invasive precision diagnostics at every step along the way of brain tumour 

management.  
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Glossary 

Repeatible means that the same measurement under the same conditions, i.e. by the same rater, on the same 

scanner, on the same subject, provides the same result.  

Reproducible means that the same measurement performed on a different scanner or by a different rater but 

otherwise stable conditions provides the same result. 

Phantom is an artificial construct, either physical or digital, providing a reference standard for validation and 

calibration. 

Sensitivity is the proportion of true positive results of a given test. 

Specificity is the proportion of true negative results of a given test. 

N-acetyl aspartate (NAA)  is a neurotransmitter (resonance frequency at 2.0 p.p.m.), abundantly present in 

neurons and thus reduced in any process that destroys neurons, whether neoplastic or non-neoplastic.  

Choline (Cho) is commonly referred to as choline containing compounds and considered a precursor of 

acetylcholine (resonance frequency at 3.2 p.p.m.), which is a cell membrane component, thus considered a 

marker of cellular membrane turnover and increased in neoplastic processes. 

Lipids comprise mobile lipid resonances (broad methyl and methylene resonance frequences at 0.9 and 1.3 

p.p.m.) are metabolites associated with necrosis and as such increased in high-grade tumours such as 

glioblastoma. 

Lactate is not normally present (doublet resonance centred at 1.3 p.p.m.), being a marker of any anaerobic 

process, such as – even non-necrotic – lower grade diffuse glioma or infection/abscess. 

Creatine/phosphocreatine (Cr) is normally present (resonance frequency at 3.0 p.p.m.) in metabolically active 

tissue such as the brain. It is relatively constant and thus commonly used as an internal standard for calculating 

ratios. 

Deep learning is a class of machine learning based on artificial neural networks – inspired by biological 

networks of learning and information processing – where ‘deep’ refers to the use of multiple layers in the 

network.  



Tables 

Table 1. Meta-analyses on diffusion MRI. 

ADC = apparent diffusion coefficient; ADCmean = mean ADC; ADCmin = minimum ADC; D = diffusion coefficient ; 

D* = perfusion coefficient; FA = fractional anisotropy; HGG = high-grade glioma, LGG = low-grade glioma, MD = 

mean diffusivity; MK = mean kurtosis; PWI = perfusion weighted imaging; TP = tumour progression. 

Author 
(year) 

N studies  
(N patients) 

 

Metric  
(N studies) 

Threshold (in 10-3 
mm2/s unless 
ratio)  

AUC  
(95% CI) 

Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

Other 

Glioma grading (HGG vs LGG) 

Hales (2019) 9 (290)* ADCmean 0.95**    
(0.9-1.21) 

- - - Accuracy: 
96%*** 

Hales (2019) 9 (290)* ADCmin 0.82**  
(0.82-0.96) 

- - - Accuracy: 
83%*** 

Zhang 
(2017) 

15 (821) Absolute ADC 
(12), ratio (3) 

- 0.90 0.85  
(0.80-0.90) 

0.80  
(0.71-0.87) 

 

Wang (2020) 18 (1172) ADCmin (8) 

 

0.216-1.60  

0.70-1.252 

0.86-1.50 

0.91  
(0.88–0.93) 

0.81  
(0.75–0.86) 

0.87  
(0.81–0.91) 

 

Miloushev 
(2015) 

17 (772) MDmin 0.98**** 0.84 (0.76-
0.91) 

78% 
(67-88) 

78% 

(64-89) 

 

Falk Delgado 
(2018) 

10 (430) MK - 0.94 0.85  
(0.74- 0.92) 

0.92  
(0.81-0.96) 

 

Abdalla 
(2020) 

9 MK 0.5-0.6 0.87 0.85 0.92  

Li (2018) 9 (318, 185 
HGG) 

ADC, D, D* - - - - D lower and  
D* higher in 
HGG  

Survival (irrespective of grade) 

Zulfiqar 
(2013) 

4 (181) ADCmin 0.6-1.0 - - - Odds ratio: 
12.44 

IDH mutation 

Suh (2019) 8 ADC/PWI - - 84%(75-94) 87%(78-97)  

Solitary metastasis versus high-grade glioma  

Suh (2018) 14 (1143, 
640 HGG) 

ADC (7), FA (7), 
MD (5) 

Wide variation - 80% (71-86) 81% (80-84)  

Jiang (2014) 9 (344, 193 
HGG) 

FA, MD - - - - Only 
peritumoural 
differences 

Glioma recurrence versus treatment related abnormalities (pseudoprogression, radiation necrosis) 

Yu (2020) 6 (214, 131 
TP) 

ADCmean (3) 

Relative ADC (1) 

5th percentile (2) 

1.2-1.6 

0.25 

0.84-0.91 

0.94 0.95 (0.89–
0.98) 

0.83 (0.72–
0.91) 

 

Van Dijken 
(2017) 

7 (204 HGG) ADC - - 71% (60– 
80) 

87% (77–
93) 

 



* paediatric, diffuse midline glioma excluded 

** threshold derived from own independent cohort (N=25), range from literature 

***accuracy based on optimal threshold derived from own cohort 

****determined from individual patient data, N=105 

 

Table 2. Meta- analyses of perfusion MRI 

Author 
(year) 

N studies  
(N patients)  

Technique and 
metric 

Threshold AUC  
(95% CI) 

Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

Other 

Glioma grading LGG v HGG 

Delgado 
(2017) 

28 (727)  DSC: rCBV ratio 2.0* 0.77 - - Only grade 
II and III 

Abrigo 
(2018) 

7 (115 non-
enhancing,  
83 LGG) 

DSC: rCBV ratio 1.75**  0.83 
(0.66-
0.93) 

0.48 
(0.09-
0.90) 

average 
rCBV ratio 
of 1.29 
(0.01-5.10) 
in LGG, 
1.89 (0.30 
to 6.51) in 
HGG 

Hales 
(2019) 

5 (252 
paediatric) 

ASL: nCBFmax 1.45 (0.94-
1.52) 

- - - Accuracy: 
83%*** 

Okuchi 
(2019) 

14 (546, 356 
HGG) 

DCE,  Ktrans mostly 
used, hot-spot 
most accurate 

 0.96 0.93 0.90  

Kong (2019) 9 (305, 197 
HGG) 

ASL: CBF absolute 
and ratio 

- - - - Increased 
values in 
HGG 

Tumour (glioma, brain metastasis) recurrence versus treatment related abnormalities 

Chuang 
(2016) 

10*** 

(325, 228 
TP) 

DSC: rCBV ratio 1.73-6.71 - - -  

Wang 
(2020) 

20 (939) DSC***** 

 

0.71-4.06 0.89 0.83 (0.79 
- 0.86) 

0.83 (0.78 
- 0.87) 

 

 4 DCE***** - 0.94 0.73 (0.66 
-0.80) 

0.80 (0.69 
-0.88) 

 

 3 ASL***** - 0.88 0.79 (0.69 
- 0.87) 

0.78 (0.67 
- 0.87) 

 

Van Dijken 
(2017) 

18 (708 
HGG) 

DSC - - 87% (82–
91) 

86% (77–
91) 

 

Van Dijken 
(2017) 

5 (207 HGG) DCE - - 92% (73– 
98) 

85% (76–
92) 

 

Van Dijken 
(2017) 

2 (102 HGG) ASL - - 52-79% 64-82%  



ASL = arterial spin labeling; DSC = dynamic susceptibility contrast; DCE = dynamic contrast enhanced; HGG = 

high-grade glioma; IVIM = intravoxel incoherent motion; Ktrans = volume transfer constant; LGG = low-grade 

glioma; nCBFmax = maximum cerebral blood flow normalised to contralateral grey matter34; PCNSL = primary 

central nervous system lymphoma; PFS = progression free survival; rCBV = relative cerebral blood volume; TP = 

tumour progression. 

* Optimal threshold value calculated from the available data on 190 individual patients. 

** Predefined, widely used threshold applied to the available data on 115 patients. 

*** threshold derived from own independent cohort (N=25), range from literature. 

****7 on glioma, 3 on brain metastasis 

Patel 
(2017) 

28  (HGG) DSC: rCBV ratiomean 

 

DSC: rCBV ratiomax 

DCE***** 

0.9-2.15 

 

1.49-3.1 

 88%(0.81–
0.94) 

93% 0.86–
0.98) 

89% 
(0.78–
0.96) 

88% 
(0.78– 
0.95) 

75% 
(0.66–
0.85) 

85% 
(0.77–
0.91) 

 

Okuchi 
(2019) 

9 (298, 179 
TP) 

DCE, Ktrans mostly 
used, hot-spot 
most accurate 

- 0.89 0.88 0.86  

Solitary metastasis versus HGG 

Suh (2018) 18 (900, 542 
HGG) 

Peritumoural DSC: 
rCBV (10) or 

 

ASL: rCBF 

0.5-1.7 
(median 
1.2) 

0.4-1.1 

0.96 (0.94-
0.98) 

90% (84–
94) 

91%(84-
95) 

 

HGG versus PCNSL 

Okuchi 
(2019) 

5 (224, 68 
PCNSL) 

DCE, Ktrans mostly 
used, hot-spot 
most accurate 

- 0.86 0.78 0.81  

Xu (2017) 14 (598, 178 
PCNSL) 

pMRI overall 

DSC (6) 

ASL (5) 

DCE (3) 

IVIM (2) 

- (variable) 0.94 

0.98 

0.94 

DCE 

IVIM 

pMRI 

0.96 
(0.92- 
0.99) 

ASL 

DCE 

IVIM 

pMRI 

DSC 

0.90 
(0.78- 
0.96) 

DCE 

IVIM 

Best 
performing 
metric per 
study 

Response prediction of bevacizumab treatment in recurrent glioblastoma 

Choi (2016) 4 on PFS 
(226), 5 on 
OS (247) 

DSC: change in 
rCBV, post-
treatment rCBV 
(max/mean/media
n) 

- - - - Pooled HR 
for 
responders 
0.46 (0.28–
0.76 ) for 
PFS, 0.47 
(0.29–
0.76) for 
OS 



***** best performing metric per study 

 

Table 3. Meta-analyses of MR Spectroscopy  

2-HG = 2-hydroxyglutarate; Cho = Choline; Cr = Creatine; MRS = Magnetic Resonance Spectroscopy; NAA = N-

Acetyl Aspartate; TP = tumour progression 

 

  

Author 
(year) 

N studies  
( N patients) 

Technique and 
metric 

Threshold AUC 
(95% CI) 

Sensitivity 
(95% CI) 

Specificity 
(95% CI) 

Other 

Tumour progression (glioma >> brain metastasis) versus treatment related abnormalities  

Chuang 
(2016) 

7: 5 on 
glioma, 2 on 
brain 
metastases 
(178, 113 TP) 

Cho/Cr 

Cho/NAA 

1.79-3.07 

1.32-3.48 

 

- - - Significantly 
higher in 
tumour 
progression 

Van Dijken 
(2017) 

9 (203) MRS - - 91% (79–
97) 

95% (65– 
99) 

 

IDH mutation 

Suh (2018) 14  

5 (with data 
on 173 
individual 
patients) 

2-HG Summary 

1.76mM 

0.96 0.95 

0.75 

0.91 

0.95 
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