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Problem definition: We examine and analyze a strategy for forecasting the demand for replacement

devices in a large Wireless Service Provider (WSP) that is a Fortune 100 company. The Original Equipment

Manufacturer (OEM) refurbishes returned devices that are offered as replacement devices by the WSP to its

customers, and hence the device refurbishment and replacement operations are a closed-loop supply chain.

Academic/practical relevance: We introduce a strategy for estimating failure time distributions of newly

launched devices that leverages the historical data of failures from other devices. The fundamental assumption

that we make is that the hazard rate distribution of the new devices can be modeled as a mixture of historical

hazard rate distributions of prior devices.

Methodology: The proposed strategy is based on the assumption that different devices fail according to

the same age-dependent failure distribution. Specifically, this strategy uses the empirical hazard rates from

other devices to form a basis set of hazard rate distributions. We then use a regression to identify and fit the

relevant hazard rates distributions from the basis to the observed failures of the new device. We use data

from our industrial partner to analyze our proposed strategy and compare it with a Maximum Likelihood

Estimator (MLE).

Results: To evaluate our forecasting strategies, we use the Kolmogorov-Smirnov (KS) distance between the

estimated Cumulative Distribution Function (CDF) and the true CDF, and the Mean Absolute Scaled Error

(MASE). Our numerical analysis shows that both forecasting strategies perform very well. Furthermore, our

results indicate that our proposed forecasting strategy also performs well (i) when the size of the basis is

small and (ii) when producing forecasts early in the life cycle of the new device.

Managerial implications: A forecast of the failure time distribution is a key input for managing the

inventory of spares at the reverse logistics facility. A better forecast can result in better service and less cost

(see Calmon and Graves (2017)). Our general approach can be translated to other settings and we validate

our hazard rate regression approach in a completely different application domain for Project Repat, a social

enterprise that transforms old t-shirts into quilts.
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1. Introduction

The management of product failures, product replacements, and warranty claims is a significant

challenge in the consumer electronics industry where warranty-related costs commonly exceed 2%

of product revenues (Apple Inc. 2017, HP Inc. 2017, Samsung 2018). We propose and analyze a

strategy for forecasting the demand for replacement devices in a large Wireless Service Provider

(WSP), a Fortune 100 company that sells smartphones and was our partner for this research. More

specifically, this WSP offers a warranty to their customers (usually 12 months in length), and

customers covered by the warranty are entitled to receive a replacement from the WSP if and when

their device fails. When a customer’s device fails under warranty, the customer files a warranty

claim and receives a replacement (usually a refurbished device) that is shipped overnight from the

WSP’s reverse logistics facility. After receiving the replacement device, the customer ships their

failed device to the WSP (usually within one or two weeks), which then proceeds to refurbish/repair

the device (if possible) and stores it in inventory in order to use it as a replacement device in the

future. If the WSP finds that, at some point, it has too many refurbished devices in inventory,

excess devices can be sold through a side-sales channel.

As mentioned in Calmon et al. (2020), our partner WSP faces three operational challenges when

managing this warranty system: (i) forecasting the hazard rates of new products; (ii) deciding how

many devices should be kept in inventory to serve the warranty claims; and (iii) assigning devices

in inventory to incoming customer warranty requests.

Although these problems are intertwined, we study them separately. In this paper, we address

challenge (i) and introduce two strategies for forecasting the failure time distribution of new

products. In Calmon and Graves (2017) we address challenge (ii), namely the inventory management

at the WSP’s reverse logistics facility. The forecasts produced by the methods in this paper were

used as input for the inventory management models in Calmon and Graves (2017). In Calmon et al.

(2020) we address challenge (iii), which we call the warranty matching problem, where we take the

inventory management policy as a given.

Forecasting failure times at the beginning of the life-cycle of a device is challenging since failure

observations are limited in number, and any empirical distribution will be censored or truncated.

For example, t weeks after a device’s launch there cannot be observations of failures where a device’s

age is greater than t weeks. Nevertheless, the WSP has a large amount of historical data available

about sales and failure times from different devices that it sells. In fact, since our partner WSP

is one of the largest players in this market, it has data from millions of customer purchases and

failures. Leveraging this information will play a key role in the estimation strategies that we develop.

We note that the WSP launches around a dozen to two dozen new devices per year, each with life

cycles between one and two years. As the warranty period is usually a year, the WSP is managing
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replacement requests for two to three years for each device, and hence is supporting around 40

different devices at any point in time.

The proposed strategy assumes that we can identify for any new device a set of existing devices

that have similar age-dependent hazard rate as will the new device. An element of the set might be

the entire population of devices for a particular device model, e.g., the iPhone 11 Pro, or possibly

an element of a subset like the iPhone 11 Pro sold in August to customers in California.

For our proposed strategy from the set of existing devices we obtain a set of empirical hazard

rate distributions as a basis. We then use regression to identify and fit the relevant hazard rates

distributions from the basis to the observed hazard rates for the new device. Hence we call this a

hazard rate regression. In addition, we show how our forecasting strategy can be applied to other

settings. Namely, we validate the hazard rate regression using data from Project Repat, a social

enterprise that transforms old t-shirts into quilts.

1.1. Snapshot of the WSP’s data

We motivate the development of our forecast methods with the observation that the hazard rate

distributions of the devices sold by the WSP have a similar temporal shape. For example, in Figure

1 we plot the normalized empirical hazard rate distributions from three devices of three different

manufacturers sold by the WSP. Despite the differences between the devices, their hazard rates are

somewhat similar, resembling scaled versions of each other. Note there is a sharp decrease after one

year1. Our forecasting strategy leverages these similarities. Thus, when a new device is introduced

into the market, the “prior information” available from other devices will be used to estimate the

right-tail of the hazard rate distribution of the new device, for which there may be no observations.

The remainder of this paper is structured as follows. In Section 2 we present a literature review.

In Section 3 we formalize our estimation problem and in Section 4 we present our estimation

strategy. In Section 5 we present a few numerical experiments including one utilizing data from

our partner WSP and also discuss how this strategy was used on data from Project Repat.

2. Literature Review

The most popular non-parametric approach for estimating hazard rate distributions with censored

data is the Kaplan-Meier (KM) estimator (Kaplan and Meier 1958). For the estimation problem

faced by our partner WSP, however, the KM estimator is not very useful for estimating the hazard

rate distribution of a new device. When a new device is launched to market, all failure observations

are truncated, since the oldest device sold is no older than the time past since the launch date.

1 Our computation of the hazard rates beyond one year is inaccurate, as it should only include the population of
devices with extended warranties. However, for the WSP, we do not have additional information available on the
extended warranties, and hence are using the entire device population in this calculation.
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for reliability studies in the automotive industry by Rai and Singh (2003) and Zhou et al. (2012,

2017). Kumar et al. (2017) propose hazard rate models to estimate the return delay distribution of

remanufacturing parts in this industry.

Based on an extensive literature search, Krapp et al. (2013) and Govindan et al. (2015) conclude

that forecasting in closed-loop supply chains has been understudied. Kelle and Silver (1989) propose

four forecasting methods, dependent upon the available data, to estimate the returns and (net)

demand during the lead time for reusable containers. For these four methods, de Brito and van der

Laan (2009) investigate the impact of information with respect to the return process on inventory

management. Toktay et al. (2000) use Bayesian methods to estimate parameters for the distribution

of product returns and rely on a distributed lag model to capture the dependence of production

returns on sales. Clottey et al. (2012) elaborate on the distributional assumptions of such lags.

Tsiliyannis (2018) forecast product returns for remanufacturing based on Markov chain modeling

of stock and flows. Recently, Cui et al. (2019) use four machine learning methods to predict the

returns of automotive accessories. A neuro-fuzzy approach and an adaptive network based fuzzy

inference system for forecasting returns have been proposed by Marx-Gómez et al. (2002) and

Kumar et al. (2014) respectively.

Similar to Baardman et al. (2019) and Hu et al. (2019), we generate forecasts of new products by

leveraging the information of existing and past products. However, to the best of our knowledge,

our work is the first to estimate the hazard rate distribution with a regression that uses a basis of

hazard rate distributions.

A detailed analysis of the importance and challenges related to forecasting warranty claims at

our partner WSP’s closed-loop supply chain is explored in Petersen (2013). This paper benefited

from the same partnership, discussions, and data as Petersen (2013) and, because of this, shares

many of its core ideas. However, while Petersen (2013) presents results and strategies tailored to

the WSP, this paper frames the discussion in more generic terms, and we believe our approach has

a wider range of applications.

3. Problem Set-Up

The study and development of methods for estimating failure or survival distributions of products,

machines, and subjects in clinical trials have a long history, dating back to seminal work of Green-

wood and others (1926) in the early 20th century. These methods attempt to build a distribution for

the occurrence time of an event (such as age of failure of a device or death of a patient) based on

a set of observations of the said event. As in most of the reliability literature, we will call the time

at which an event occurs the failure time. In many practical settings, these observations can be

censored, i.e., there is no information available on the exact time that a failure occurs, only that it
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is outside of some interval. For example, if we are trying to estimate the failure time distribution of

electronic devices sold at different times during the last few months, we have censored observations

in that we have yet to observe the failure times for the devices that have yet to fail. All we can say

is that their failure times are at least as long as the devices’ current ages. The age at which the

device first fails is the failure age and we assume that each device has an age of 0 when sent to the

customer.

We consider a discrete-time model where there is a maximum failure age T for devices, such

that, for all practical purposes, devices of age larger than T will never fail. This comes from the

fact that the WSP offers a warranty of at most two years, and customers that are not covered by a

warranty are not entitled to receive a replacement device. In practice, the choice of T depends on

the context of the estimation problem. We assume that the age at which a device first fails2 can be

described by a (initially unknown) discrete failure time distribution, p= (p1, . . . , pT ) where

Pr(failure of device at age t), pt.

It is also useful to describe the failure process in terms of hazard rates. The hazard rate at age t is

the probability that, conditioned on surviving until the beginning of age t, the device fails at age t.

Thus, let h= (h1, . . . , hT ) be the hazard rates where

Pr(failure at age t | survived beyond age t− 1), ht.

The relationship between the hazard rate and the failure distribution is p1 = h1 and, for t > 1,

ht =
pt

1−
∑t−1

k=1
pk

and pt = ht ·

t−1
∏

k=1

(1−hk). (1)

We denote the complementary cumulative distribution function (CCDF) of the failure age by F̄t.

Then, F̄t =Pr(failure > age t) and the relationship between the hazard rate and the CCDF is

F̄t =
t
∏

k=1

(1−hk).

To develop the forecast we assume that we have two sets of observations in hand: (i) a set of

uncensored failure observations y = (y1, . . . , yT ), where yt is the number of devices that failed at

age t, and (ii) a set of censored failure observations z = (z1, . . . , zT ), where zt is the number of

devices that have yet to fail and that are of age t. The total number of observations is
∑T

i=1
(yi+zi).

Another critical assumption is that failure age and censoring are independent. In the WSP case, this

is equivalent to assuming that the sales date and failure date are independent, since all elements of

a devices fail according to the same hazard rate distribution.

2 Similar to Calmon et al. (2020) we do not consider subsequent failures that might occur for repaired devices.
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We denote the estimate of the hazard rate given a set of uncensored and censored failure

observations by a vector ĥ(y,z) = (ĥ1(y,z), . . . , ĥT (y,z)). The estimate of the discrete failure time

distribution from the observations y and z is given by

p̂t(y,z) = ĥt(y,z) ·
t−1
∏

k=1

(1− ĥk(y,z)). (2)

The corresponding estimate of the CDF is then

F̂t(y,z) =
t
∑

i=1

p̂i(y,z).

Let {h1, . . . ,hm} be a collection of m different hazard rate distributions from existing devices,

such that hj = (hj
1, . . . , h

j
T ) would typically represent the hazard rates for some device j. We view

this collection as a basis set for modeling the population of possible hazard rate distributions.

Furthermore, we allow for each element j of the basis to be scaled by some non-negative parameter

wj, such that wjh
j = (wjh

j
1, . . . ,wjh

j
T ). We use the set of distributions as the basis in a mixture

model for the estimation of the true hazard distribution h. Namely, we assume that h can be

expressed as a mixture of the scaled hazard rate distributions. That is,

Pr(failure at age t|survived beyond age t− 1) = ht =
m
∑

j=1

wj ·h
j
t , (3)

where wj ≥ 0 is the weight for the scaled basis on the basis element j and, for all t,
∑m

j=1
wj ·h

j
t ≤ 1,

so that the resulting hazard rates are meaningful.

By using (1) the probability of failure of a device at age t in this case is

pt =

(

m
∑

j=1

wjh
j
t

)

·

t−1
∏

k=1

(

1−

(

m
∑

j=1

wjh
j
k

))

. (4)

Hence, our goal is to estimate w= (w1, . . . ,wm). From a practical standpoint, w allows a practi-

tioner to identify if the failure distribution of a newly launched device is a more intense or subdued

version of the hazard rate distributions in the basis.

We use ŵ(y,z) = (ŵ1(y,z), . . . , ŵm(y,z)) to denote the estimate forw. We consider an estimation

strategy to be effective if, given the observations y and z, we have

ŵj(y,z)→wj,∀j almost surely as
T
∑

t=1

yt →∞ and
T
∑

t=1

zt →∞.

Although this is a parametric approach, we make no explicit assumptions on the underlying shape

of the failure time distribution. This is a departure from other models, such as the Cox Proportional

Hazards model, that assume a specific underlying distribution. Nonetheless, our approach requires
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the identification of a reasonable basis such that it will be representative of the actual hazard rate

distribution to be estimated. Our approach is similar to the additive hazards model proposed is

Lin and Ying (1994) and further described in Klein and Moeschberger (2006). However, while the

additive model in Lin and Ying (1994) assumes a base hazard rate distribution that is “shaped” by

a linear combination of covariates, we explicitly assume that the hazard rate distribution we wish

to estimate is in the convex cone of a set of basis hazard distributions.

In the next section, we introduce and discuss our estimation strategy.

4. Maximum Likelihood Estimator and Hazard Rate Regression

With the basis {h1, . . . ,hm} as defined in the prior section we are ready to introduce our strategy

for estimating the hazard rates of a new device. We assume that the failure age of a new device has

a finite discrete support [1, T ] and that observations are truncated at some age τ ≤ T , such that

yt = zt = 0 for t > τ .

We present our estimation strategy in three parts. In the first part we describe the Kaplan-Meier

(KM) Estimator, which is the non-parametric Maximum-Likelihood Estimator (MLE) for hazard

rates. The usefulness of the KM estimator for the WSP’s problem is limited since we cannot observe

failure ages greater than τ . To overcome this, we assume that h can be expressed as a mixture of

historical hazard rates as in Equation (3). We consider two ways to determine the mixture. In the

second part, we introduce the MLE that assumes that the hazard rates are a combination of the

basis {h1, . . . ,hm}. One way is to find the mixture that maximizes the likelihood function under

the assumption that h is of this functional form. The resulting MLE involves solving a concave

optimization problem. The third part approximates this concave optimization problem through in

a simpler problem which we denote hazard rate regression. In this way we choose the mixture to

match the KM estimator as closely as possible.

4.1. The Kaplan-Meier Estimator

The likelihood, L, of some sample (y,z) with hazard rates h is

L(h;y,z) = Pr(y,z|h) =
τ
∏

t=1

(

ht ·

t−1
∏

k=1

(1−hk)

)yt

·

(

t
∏

k=1

(1−hk)

)zt

.

By rearranging the products and defining rt =
∑

k≥t yk + zk we obtain the log-likelihood function

log(L(h;y,z)) =
τ
∑

t=1

yt · loght +(rt − yt) log (1−ht) .

If we make no assumptions on the functional form of h, the non-parametric estimator for the

hazard rates solves

max
h

τ
∑

t=1

yt · log (hj)+ (rt − yt) log (1−hj)
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The solution to the optimization problem above, which we denote by hKM = (hKM
1 , . . . , hKM

τ ), is

commonly known as the Kaplan-Meier non-parametric estimate of the hazard rates. For t≤ τ we

can write hKM
t in closed form as

hKM
t (y,z) =

yt

rt
, (5)

While this approach yields a simple estimator, we cannot use this approach to estimate hazard

rates for periods after τ . As a result, the value of this estimator for WSP’s estimation problem is

limited, in particular early in a device’s life-cycle when most failure observations are truncated.

4.2. Parametric Maximum Likelihood Estimator

We now assume that a device’s hazard rate is a weighted combination of elements of the basis,

i.e. we introduce a variable ht such that ht =
∑m

j=1
wjh

j
t . The likelihood of the weights w given

observations (y,z) is

L(w;y,z) = Pr(y,z|w) =
τ
∏

t=1

(

ht ·

t−1
∏

k=1

(1−hk)

)yt

·

(

t
∏

k=1

(1−hk)

)zt

=
τ
∏

t=1

[(

m
∑

j=1

wjh
j
t

)

·

t−1
∏

k=1

(

1−
m
∑

j=1

wjh
j
k

)]yt

·

[

t
∏

k=1

(

1−
m
∑

j=1

wjh
j
k

)]zt

.

If τ > 1 the log-likelihood then becomes

log(L(w;y,z)) =
τ
∑

t=1

yt ·

(

log

(

m
∑

j=1

wjh
j
t

)

+
t−1
∑

k=1

log

(

1−
m
∑

j=1

wjh
j
k

))

+ zt ·

t
∑

k=1

log

(

1−
m
∑

j=1

wjh
j
k

)

=
τ
∑

t=1

yt · log

(

m
∑

j=1

wjh
j
t

)

+ zt log

(

1−
m
∑

j=1

wjh
j
t

)

+(yt + zt)
t−1
∑

k=1

log

(

1−
m
∑

j=1

wjh
j
k

)

.

By rearranging the summations and using rt =
∑

k≥t yk + zk we obtain

log(L(w;y,z)) =
τ
∑

t=1

yt · log

(

m
∑

j=1

wjh
j
t

)

+(rt − yt) log

(

1−
m
∑

j=1

wjh
j
t

)

.

The function above is concave in w since the logarithm of an affine function is concave. The

Maximum-Likelihood Estimator of the weights, which we denote by wML, is the optimizer of the

concave optimization problem

max
w

τ
∑

t=1

yt · log

(

m
∑

j=1

wjh
j
t

)

+(rt − yt) log

(

1−
m
∑

j=1

wjh
j
t

)

s.t.
m
∑

j=1

wjh
j
t ≤ 1, t= 1, . . . , T,

w≥ 0.

(6)
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The constraints above ensure that the resulting estimates are meaningful hazard rates.

Although the optimization problem in Equation 6 is convex (since we maximize a concave

objective with linear constraints), it still requires a specialized numerical optimization solver. Next,

we introduce a simpler approach.

4.3. Hazard Rate Regression

The hazard rate regression approach has two steps: (i) calculate the empirical quantiles with the

available data using a Kaplan-Meier estimator and (ii) use a regression to calculate the weights in

our model. We motivate this approach using both the MLE and the Kaplan-Meier estimator. To

do so, we re-write the optimization problem in (6) as

max
w,h

τ
∑

t=1

yt · log (ht)+ (rt − yt) log (1−ht)

s.t.
m
∑

j=1

wjh
j
t = ht, t= 1, . . . , τ

m
∑

j=1

wjh
j
t ≤ 1, t= 1, . . . , T,

w≥ 0.

(7)

The objective function of the optimization problem above is the same as in Equation (6). Thus,

if there exists a w̃= (w̃1, . . . ,wn) that satisfies the system of constraints

m
∑

j=1

w̃jh
j
t = hKM

t , t= 1, . . . , τ

m
∑

j=1

w̃jh
j
t ≤ 1, t= 1, . . . , T,

w̃≥ 0,

(8)

then w̃=wML. This is because the KM estimator maximizes the objective function in (7); hence

if we can express the KM estimator as a mixture of basis elements, then it is an optimal solution

to (7). However, there may be no feasible solution to (8). To address this we can relax the equality

constraint in (8) and minimize the “relaxation error” by solving

min
w

∥

∥

∥

∥

∥

m
∑

j=1

wjh
j −hKM(y,z)

∥

∥

∥

∥

∥

p,τ

s.t.
m
∑

j=1

wjh
j
t ≤ 1, t= 1, . . . , T,

wj ≥ 0, j = 1, . . . ,m,

(9)

where ‖·‖p,τ is the p-norm of the first τ components of the vector. Namely, for some vector x,

‖x‖p,τ =

(

τ
∑

i=1

|xi|
p

)1/p

.
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Let wHR be the optimal solution to the problem in (9). Then, the hazard rate regression approach

sets ŵ=wHR and ĥ=
∑m

j=1
ŵjh

j. We have wHR =wML when the system of equations in (8) has

a solution. Furthermore, when p= 1 or p= 2, any linear or quadratic numerical optimizer solves

(9).

Simply put, the hazard rate regression approach finds a point in the cone generated by the basis

of hazard rate vectors that is a feasible hazard rate distribution and minimizes the distance to

the KM estimates. If we assume that the original samples were drawn from the mixture model,

and if τ = T , ĥ will converge to h as the number of samples goes to infinity. We prove this result

regarding the convergence of ĥ in Appendix A.

Finally, the optimization in Equation (9) is useful for model selection, i.e., for identifying which

of the basis elements are the most relevant based on the values of w. In the next section we will

analyze the hazard regression approach and the MLE approach through numerical experiments.

5. Numerical Experiments

We now examine the performance of the MLE and hazard rate regression through a set of numerical

experiments. The first set of experiments corresponds to an artificial set-up where we compare, in a

controlled setting, the performance of hazard rate regression to the parametric MLE approach from

Section 4.2, and to a “naive” estimator, where we assume failures ages follow a Weibull distribution.

The second set of experiments uses data from our partner WSP and the goal is to forecast the

amount of weekly customer warranty claims it receives for six different devices. The third set of

experiments uses data from Project Repat, a company that transforms old t-shirts into quilts.

A first performance metric that we use is comparing the maximum distance between the estimated

Cumulative Distribution Function (CDF) and the true CDF. Given a hazard rate distribution

estimate ĥ we denote the CDF estimate by F̂ = (F̂1, . . . , F̂T ), where F̂t is

F̂t = 1−
t
∏

k=1

(1− ĥk).

If the true CDF is F = (F1, . . . , FT ), we have that the maximum distance between the true and

estimated CDFs is

max
t

|Ft − F̂t|.

We call this distance the Kolmogorov-Smirnov (KS) distance, since it has the same form of the

Kolmogorov-Smirnov statistic for an empirical distribution.

The second performance measure is a measure of the forecast accuracy of each estimation method.

We assume that sales of devices happen in some interval [1, Ts], such that there are no sales after

time Ts. Let the sales in each period be denoted by sτ for τ = 1, . . . , Ts, and τ = 1 is when the device
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is launched. For our experiments, we assume that these sales are known. We denote the estimate

of the hazard rate distribution τ periods after launch by ĥτ = (ĥτ
1 , . . . , ĥ

τ
T ).

In this setup, we expect the last period in which failures occur to be T + Ts. Hence, we define

Tmax = T + Ts to be the length of time that the WSP has to manage warranty claims for a

device. We recall the assumption that a device fails at most once and that we do not model

the possible subsequent failures of refurbished devices. Let the age distribution of devices be

x(τ) = (x1(τ), . . . , xT (τ)) where xt(τ) represents the number of surviving devices of age t at the

beginning of period τ . Then, we have that x(1) = (s1,0, . . . ,0) and x1(τ) = sτ ,∀t and that

E[xt+1(τ +1)|h] = (1−ht) ·xt(τ),∀t= 2, . . . , T ;∀τ = 1, . . . , Tmax−1.

Furthermore, let the number of failures during period τ be given by a vector f(τ) =

(f1(τ), . . . , fT (τ)), where ft(τ) is the number of failures of age t in period τ . Then, given h we have

E[ft(τ)|h] = ht ·xt(τ),∀t= 1, . . . , T ;∀τ = 1, . . . , Tmax−1, (10)

and the expected total number of failures in period τ will be
∑

t ht ·xt(τ).

We leverage the expectations above to create a forecast of the number of failures as follows.

Assume we are in period τ and that ĥτ is the current hazard rate distribution estimate. For each

k ∈ [τ + 1, Tmax], the forecast of surviving devices, which we denote by x̂(k), and the forecast of

total failures, which we denote by f̂(τ) are given by the equations

x̂t+1(k) =

{

(1−ht) ·xt(τ), if k= τ +1,

(1−ht) · x̂t(k− 1), if k ∈ [τ +2, Tmax],
for t= 1, . . . , T,

f̂(k) =
∑

t

ht · x̂t(k).

At time τ , for each k ∈ [τ +1, Tmax], We denote the true number of failures at time τ by f(τ) and

the forecasting error at time τ by eτ = f̂(τ)− f(τ). We evaluate forecast performance using the

Mean Absolute Scaled Error (MASE) introduced in Hyndman and Koehler (2006). Given that we

observe the true number of failures until time τ , the MASE for the remaining forecasting horizon

[τ +1, Tmax] is

MASE(τ) =
1

Tmax−τ

∑Tmax

k=τ+1
|ek|

1

Tmax−τ

∑Tmax

k=τ+1
|f(k)− f(k− 1)|

.

The denominator above is the average forecasting error of a “naive” one-step estimator that sets

f̂(τ +1) = f(τ).
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5.1. Experiments with simulated data

The first set of experiments consists of comparing the MLE estimator, the hazard rate regression,

and a “naive” estimator that fits a Weibull distribution to the data in a controlled setting. A time

period in the simulation corresponds to one week. Additionally, we assume that T = 100 and that

all devices are sold at time t= 0, and t= 1 is the first period in which a device can fail. We consider

a basis set of 30 hazard rate distributions that will be used to estimate the hazard rate of a new

device. The basis elements are generated as follows

1. For each basis element, we sample integers a and b from a discrete uniform distribution with

parameters [1, T ]. Furthermore, we sample a value p from a uniform distribution with parameters

[0,1];

2. We model the failure time for the basis element as a mixture of a discrete uniform random

variable with parameters [1, a] and an exponential random variable with mean b. The mixture

probability is p;

3. We draw 100 samples from the distribution in the previous step, which represent the failure

time of 100 devices. Namely, with probability p we draw a device’s failure time according to

a discrete uniform with [1, a] and with probability 1− p we draw according to the exponential

distribution;

4. We censor the samples in the previous step. For each failure time observation x, we sample a

censoring random variable y from a uniform distribution on the interval [0, T ]. We observe a failure

of age x when x≤ y, and we observe a censored observation, namely a device that has yet to fail,

when x > y;

5. We use these 100 observations with the KM estimator to estimate the hazard rate distribution.

This estimate of the hazard rate distribution becomes an element of the basis.

The above procedure is repeated 30 times to generate the basis elements. Furthermore, this

reflects the data available to the WSP. In practice, the WSP does not have access to a set of “real”

hazard rates, it only has the hazard rates estimated from past device failures. For the new device,

the target of the estimation problem, we also generate failure times observations for 100 devices

(potentially censored) in the same fashion as described above.

5.1.1. Comparing the Different Forecasting Methods We evaluate the performance

of the two estimation strategies for different times that the new device is released. We run our

experiments for different values of τ , which is the number of periods since the launch of the new

device. For a given τ , we modify the failure time observation for of the new devices to be min(x, y, τ)

and we observe a censored observation when τ = min(x, y, τ).

We then estimate for each value of τ the hazard rate distribution of the new device using both

the regression approach and the MLE. For each value τ ∈ {5,10,15,20,25,30}, we run 100 test cases.
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Figure 2 Boxplot of the KS distance and MASE between the true hazard rate and the estimated hazard rate

for different values of τ . The boxes range from the first quartile to the third quartile and include the

median. The boundaries of the whiskers (lines) are based on 1.5 times the interquartile range and all

other points represent outliers.

For each test case we generate a new device and a basis set of 30 hazard rate distributions using the

sampling strategy described in the beginning of this subsection. As τ increases, the data availability

on the true number of failures of the new device on the interval [0, τ ] increases. Furthermore, a

larger τ implies producing less forecasts as the forecasting horizon [τ +1, T ] becomes smaller.

The results for the KS distance metric and the MASE are summarized in Figure 2a. For τ = 5,

the hazard regression method produces a KS distance of 0.10 on average. Thus, this means that

the hazard regression approach produces already a reasonable estimate of the failure distribution

at 5 periods after launch. For the MLE, we obtain an average KS distance which is comparable

to the hazard regression method for every τ . In Figure 2b, we display the results for the MASE

calculations. For the median values, both forecasting methods perform better than a one-step naive

forecast when τ ≥ 10. Based on these results, we have similar findings as for the KS distance: both

methods perform comparably according to the average MASE for every τ . This means that both

forecasting methods converge to the right weights as we increase τ under the assumption that the

true hazard rate is a mixture of the true basis elements.

For the hazard regression method, none of the observations in the numerical tests used more

than 13 basis elements and the average number of elements selected was 5.0. For the MLE, we

observed a maximum of 12 basis elements and an average of 5.3 elements selected.

5.1.2. Sensitivity analysis Table 1 shows the sensitivity to a change in the number of basis

elements for 100 replications. For sensitivity analysis we vary the size of the basis and find that

the hazard regression method and the MLE keep on performing comparably according to the KS

distance as well as the MASE. We observe that these performance measures improve when the

number of basis elements increases from 10 to 30 while increasing the number of basis elements

from 30 to 50 does not a guarantee an improved performance.
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Forecasting τ Performance 10 basis 30 basis 50 basis
method measure elements elements elements

Hazard regression 5 KS distance 0.13 0.10 0.10
MASE 1.23 1.09 1.07

10 KS distance 0.11 0.09 0.09
MASE 1.11 1.00 1.04

15 KS distance 0.10 0.09 0.09
MASE 1.07 0.96 1.02

20 KS distance 0.11 0.07 0.07
MASE 1.05 0.88 0.88

25 KS distance 0.09 0.07 0.07
MASE 0.97 0.80 0.86

30 KS distance 0.09 0.06 0.06
MASE 0.88 0.78 0.79

MLE 5 KS distance 0.11 0.10 0.10
MASE 1.12 1.02 1.07

10 KS distance 0.10 0.09 0.09
MASE 1.11 1.00 1.04

15 KS distance 0.11 0.08 0.08
MASE 1.08 0.95 1.08

20 KS distance 0.10 0.08 0.07
MASE 1.05 0.88 0.88

25 KS distance 0.10 0.07 0.07
MASE 0.98 0.82 0.88

30 KS distance 0.08 0.07 0.07
MASE 0.86 0.75 0.88

Table 1 Median of the KS distance and MASE of each forecasting method for an increase or decrease of 20

basis elements and for τ ∈ {5, 10, 15, 20, 25, 30}.

5.2. Forecasting failures at the WSP
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Figure 3 Number of forecasted and true failures per week for different τ for device E. The maximum of the

curves was normalized to one to preserve data confidentiality.
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Hazard regression
Device τ = 5 τ = 10 τ = 15 τ = 20 τ = 25 τ = 30

A 0.16 0.13 0.11 0.10 0.09 0.07
B 0.12 0.11 0.10 0.09 0.09 0.08
C 0.09 0.08 0.07 0.07 0.06 0.06
D 0.08 0.08 0.07 0.06 0.06 0.05
E 0.15 0.15 0.14 0.13 0.12 0.10
F 0.15 0.14 0.12 0.12 0.10 0.10

MLE approach
Device τ = 5 τ = 10 τ = 15 τ = 20 τ = 25 τ = 30

A 0.16 0.13 0.11 0.10 0.09 0.07
B 0.12 0.11 0.10 0.09 0.09 0.08
C 0.09 0.08 0.07 0.07 0.07 0.07
D 0.08 0.08 0.03 0.06 0.06 0.06
E 0.15 0.14 0.13 0.12 0.11 0.10
F 0.15 0.14 0.13 0.13 0.12 0.11

Table 2 KS distance for forecasting failures at the WSP for τ ∈ {5, 10, 15, 20, 25, 30}

Hazard regression
Device τ = 5 τ = 10 τ = 15 τ = 20 τ = 25 τ = 30

A 1.25 1.21 1.12 1.06 0.88 0.85
B 1.04 0.99 0.97 0.92 0.87 0.88
C 1.11 0.99 0.92 0.92 0.89 0.85
D 1.16 1.04 1.02 0.94 0.96 0.84
E 1.40 1.33 1.22 0.94 0.87 0.86
F 1.29 0.90 0.85 0.83 0.76 0.69

MLE approach
Device τ = 5 τ = 10 τ = 15 τ = 20 τ = 25 τ = 30

A 1.26 1.22 1.16 1.07 0.88 0.84
B 1.04 1.00 0.96 0.95 0.90 0.88
C 1.12 0.99 0.93 0.93 0.85 0.83
D 1.14 1.04 1.03 0.95 0.84 0.83
E 1.37 1.25 1.17 0.95 0.88 0.85
F 1.33 0.90 0.86 0.85 0.79 0.71

Table 3 MASE for the number of forecasted failures τ ∈ {5, 10, 15, 20, 25, 30}

We consider the problem of estimating the weekly number of failures for six device models sold

by our partner WSP. We display the number of sold and failed devices for each model in Figure 6

in Appendix B. These devices were made by four different manufacturers. We take the hazard rate

distributions estimated from five other devices as the set of basis hazard rate distributions in our

estimation. We estimate the true hazard rate distribution for each device from the entire failure

history for the device using the KM estimator.



Calmon, Lemmens, and Graves: Data-Driven Failure Time Estimation in a Consumer Electronics CLSC

Working paper - February 2023; 17

We set T as 100 weeks and Tmax as 150 weeks, since more than 95% of sales happen during the

first 50 weeks from launch. We index the time periods τ = 1 being the launch time period. As

of any time τ , we estimate the hazard rate distribution hτ , based on having observed all of the

sales and failures up until that time. We then can use the hazard rate distribution to forecast all

future failures until time period T , using Equation (10) and the assumption that we have a perfect

forecast of weekly sales for time periods τ +1, . . . , T .

The results for the hazard regression and for the MLE for all devices are displayed in Table 2 and

in Table 3. After receiving 25 weeks of failure data, both estimators produce good results, having

a maximum KS distance of 0.12 and maximum MASE of about 0.90. Note that 25 weeks is still at

the beginning of the warranty life-cycle of the device, which is usually more than 100 weeks long.

Figure 3 displays the normalized number of failures by week for device E and the forecasts

for different weeks from initial launch. The yearly failure probability of device E is 8.9%. In

general, as the amount of information increases, both forecasting strategies improve to capture

the empirical failure distribution and both forecasting strategies keep on performing comparably.

When forecasting in an early stage of the life cycle, the number of failed devices that will need to

be handled by the WSP is underestimated for both strategies.

In many applications, such as at our partner WSP, estimating a hazard rate distribution as a

mixture of the hazard rate distribution of other devices is also useful to identify which manufacturers

and/or features lead to large number of failures. For example, this estimation strategy can help

identify if devices with similar operating systems have similar hazard functions. Additionally, this

strategy can quickly help identify if a recently launched device has an unusually high (or low)

failure rate.

A tailored version of the estimation strategy was implemented at our partner WSP, and the

implementation is described in Petersen (2013). In addition, a plug-in was developed for Microsoft

Outlook and Excel that allowed managers at the reverse logistics facility to forecast the amount of

failures and also provided an estimate of inventory needs.

5.3. Forecasting returns at Project Repat

The third set of numerical experiments uses data from Project Repat, a social enterprise in the

Boston area that transforms old t-shirts into quilts. Their product is popular among college students

and recent graduates that want to preserve their college (or fraternity/sorority) t-shirts, and among

athletes, particularly runners, who collect t-shirts from races. Depending on the season of the year,

Project Repat can sell from hundreds to thousands of quilts per week.

The dynamics of Project Repat’s customer-facing operation is as follows: (i) customers “purchase”

and pay for a quilt on Project Repat’s website; (ii) Project Repat registers the order and sends the
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Figure 4 Panel (a) is the hazard rate distribution of the time until the customer sends the t-shirts. Panel (b) is

the fraction of customers that never sent their t-shirts.

customer a pre-paid envelope; (iii) the customer puts old t-shirts in the envelope and sends it to

Project Repat; (iv) the t-shirts are received, cut, sewn into a quilt; and (v) the quilt is shipped to

the customer.

Project Repat puts a high value on the social and environmental impact of their work. Besides

being a company that upcycles old t-shirts, Project Repat contracts all of its sewing to textile plants

in the United States as an attempt to “repatriate the textile industry”. Finally, this company actively

works with NGOs that employ individuals with disabilities and that have limited employment

opportunities.

A major issue in Project Repat’s operations is forecasting the volume of envelopes with t-shirts

that they receive from the customers that purchased a quilt online. More specifically, they use these

forecasts to decide how many working-hours they should contract from textile plants; and if the

volume of work needed exceeds the amount contracted, they have to pay overtime.

In this context, we use the hazard rate regression strategy to estimate the lead time between

Project Repat mailing an envelope to the customer, and the customer sending back their old t-shirts.

We model this lead time as a random variable, having a similar interpretation as the failure time.

Previously we were estimating the failure time of devices, here we are estimating the customer

return time, i.e., how many days (or weeks) after purchasing a product do customers send in their

t-shirts.

The hazard rate by week for the time until customers send in their t-shirts is depicted in Figure

4a for three sample months of customer purchases. Note that these hazard rates appear to be scaled

versions of each other. Also, from the return data, we have that customers take between 2 and 3

weeks on average to send their t-shirts, if they send it in at all. However, the lead time is heavy

tailed, and over 20% of customers that eventually send their t-shirts take more than 5 weeks to

send them.
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Figure 5 KS distance for estimates from different cohorts for different amounts of information available.

In Figure 4b, we have the fraction of customers that never sent their t-shirts. This seems to be

the driving factor that makes the hazard rate distributions dissimilar. The fraction of customers

that never send t-shirts is driven by two factors: (i) seasonality effects - quilts purchased as gifts

have a lower percentage of returns; (ii) the promotion in place - coupons and discounts attract

customers with a lower return rate.

For our estimation, we define a cohort as the customers that purchase quilts in a given week. The

goal is to estimate the weekly hazard rate of a customer sending in the t-shirts. In our experiment,

we use T = 24 weeks and use the empirical hazard rate from 35 prior weeks as the basis set. Each

basis element corresponds to the empirical hazard rate associated with sales in a particular week.

We chose 3 cohorts (A, B, C) to estimate; each cohort is from a different month, in order to ensure

that they are not too similar, and they were all chosen from time periods long after the cohort

weeks in the basis.

We observe the performance of the estimation strategies for different amounts of information

available, i.e., different values of τ . As shown in Figure 5, for all 3 cohorts, with two weeks of

information (out of a horizon of 24 weeks) the KS distance is less than 0.15 and, with three weeks

of information, the distance is less than 0.10. Since all customers in a cohort purchase a quilt at

the same time, the KS distance is the same as the maximum error of the cumulative estimate of

the number of t-shirts sent per week. The estimation procedure also led to sparse representations,

and for all cohorts and values of τ no estimate used more than seven elements of the basis.

This estimation procedure was built into a cloud-based forecasting tool that was given to Project

Repat. Through the tool, the company can forecast the volume of t-shirts received given open

pending orders (analogous to devices of different ages that have yet to fail) of each cohort in

the system. Also, by analyzing the basis selected by the estimation procedure, Project Repat can
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identify which weeks best represent a new cohort, and use this to try to identify what influences

the customer lead time.

6. Conclusion

We propose a method for estimating time-based distributions for product and service events, in

contexts where there is relevant historical data on these distributions from comparable events for

related products or services. The proposed strategy can account for censored observations and the

forecasts improve as more observations are collected. This may lead to early information about

how a new product is similar or not to prior products.

This estimation strategy, called hazard rate regression, uses a model selection method, where we

assumed a basis set of hazard rate distributions determined from historical data. We use hazard

rate regression to identify and fit the relevant hazard rates distributions from the basis to the

observed events (failures) from the new cohort.

We compare hazard rate regression with a Maximum Likelihood Estimator (MLE) to estimate

the parameters of a mixture model. Here, the fundamental underlying assumption is that the hazard

rates of a new product can be modeled as a mixture of scaled hazard rate distributions built from

historical data.

We examine both estimation strategies through a series of numerical experiments using hypo-

thetical data as well as data from our partner WSP, and data from Project Repat, a Boston-based

social enterprise that transforms old t-shirts into quilts. We introduce and apply different metrics

to measure the quality of the forecast in these experiments. We also describe how hazard rate

regression can be used to forecast the volume of warranty requests received by our partner WSP.

These two different applications provide evidence that the hazard rate regression approach is

suitable to forecast failure times of new products and return lead times for online rental businesses.

A fundamental requirement is a common time-based pattern in how failures or returns occur. For

the WSP, discovering this pattern for the new offering is key to forecast the load and capacity

requirements for conducting repair services, so as to do operational planning. Additionally, we

foresee that our proposed method is also applicable to products or services with a seasonal or cyclic

demand. Finally, we believe that our method can also be extended to entirely different application

areas such as forecasting mortality rates of a new epidemic given reliable data of survival curves

on prior epidemics.

There are a few open problems that we have yet to examine. First, a more thorough theoretical

characterization of the hazard rate regression procedure, and an analysis of its connections with

other estimation strategies may lead to a deeper understanding of its advantages and disadvantages.

A second problem is the connection between estimation and operational decisions such as inventory
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management. For example, in the original setting for the WSP, it is not clear if the presence of

censored information leads to policies that oversell items, or a policy that undersells items. Finally,

investigating how the basis in the estimation impacts overall estimation quality can lead to a more

precise guideline for defining cohorts and selecting the basis used for estimation.
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Appendix A: Convergence of the Hazard Rate Regression Estimator

We now discuss the convergence of ĥ to h as the number of samples (y,z) increases. For this discussion,

assume that h=
∑m

j=1
wjh

j for some non-negative w= (w1, . . . ,wm). Recall that rt =
∑

k≥t
yk + zk. A bound

on the tail of
∥

∥

∥

∑m

j=1
ŵjh

j −h

∥

∥

∥

p,τ

is given in the next Proposition. The proposition states that as the number

of observations (censored or not) for each age t increases, ĥ will converge to h at an exponential rate for

ages that are less or equal to τ .

Proposition 1. For a given r= (r1, . . . , rτ ), we have that, for any ǫ > 0,

Pr
(

∥

∥h−hKM(y,z)
∥

∥

1,τ
≥ ǫ|r

)

≤ 4

τ
∑

t=1

exp

(

−2rt
ǫ2

m2

)

.

Proof. If samples are drawn independently then, conditional on a given rt =
∑

k≥t
yk + zk

For some τ ≤ T we use the triangle inequality to obtain
∥

∥

∥

∥

∥

m
∑

j=1

ŵjh
j −h

∥

∥

∥

∥

∥

p,τ

≤

∥

∥

∥

∥

∥

m
∑

j=1

ŵjh
j −hKM(y,z)

∥

∥

∥

∥

∥

p,τ

+
∥

∥h−hKM(y,z)
∥

∥

p,τ
.

We will bound the first term in the right-hand side above. To simplify notation, let W = {w|
∑m

j=1
wjh

j
t ≤

1,w≥ 0}. Then,
∥

∥

∥

∥

∥

m
∑

j=1

ŵjh
j −hKM(y,z)

∥

∥

∥

∥

∥

p,τ

= min
w∈W

∥

∥

∥

∥

∥

m
∑

j=1

wjh
j −hKM(y,z)

∥

∥

∥

∥

∥

p,τ

≤ min
w∈W

∥

∥

∥

∥

∥

m
∑

j=1

wjh
j −h

∥

∥

∥

∥

∥

p,τ

+
∥

∥h−hKM(y,z)
∥

∥

p,τ

=
∥

∥h−hKM(y,z)
∥

∥

p,τ

The first equality above is from the definition of ŵ. The inequality is a result of the triangle inequality. The

last equality uses the fact that h is within the cone of (h1, . . . ,hm) and thus minw∈W

∥

∥

∥

∑m

j=1
wjh

j −h

∥

∥

∥

p,τ

= 0.

As a result,
∥

∥

∥

∥

∥

m
∑

j=1

ŵjh
j −h

∥

∥

∥

∥

∥

p,τ

≤ 2
∥

∥h−hKM(y,z)
∥

∥

p,τ
.

We now use the inequality above to obtain bounds on the tail distribution of ĥ. We will do the derivation

for p= 1, i.e. the 1-norm. The derivation for other norms is the same, but with slightly more notation.

As discussed in Section 4, for a sample (y,z) drawn according to the hazard rate distribution h, the Kaplan-

Meier estimator for the hazard rate of age t is given by Equation (5). If samples are drawn independently

then, conditional on a given rt =
∑

k≥t
yk + zk, h

KM
t will be a Binomial random variable with rt trials and

success probability ht. Hence, for a given ǫ > 0 and rt, we can use Hoeffding’s Inequality to bound the tail of

the distribution of the difference of hKM
t and ht. Namely,

Pr
(

|hKM
t −ht| ≥ ǫ|rt

)

≤ 2exp(−2ǫ2rt).

Using the Union Bound and the inequality above, we have

Pr
(

∥

∥h−hKM(y,z)
∥

∥

1,τ
≥ ǫ|r

)

≤
τ
∑

t=1

Pr
(

|ht −hKM
t | ≥

ǫ

m
|r
)
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=

τ
∑

t=1

Pr
(

|ht −hKM
t | ≥

ǫ

m
|rt

)

≤ 2
τ
∑

t=1

exp

(

−2rt
ǫ2

m2

)

.

As a result,

Pr
(

∥

∥h−hKM(y,z)
∥

∥

1,τ
≥ ǫ|r

)

≤ 4

τ
∑

t=1

exp

(

−2rt
ǫ2

m2

)

.

The proposition above, however, does not guarantee convergence of the hazard estimates for ages above

the truncation period τ . Indeed, if τ is small there might be combinations of the basis that lead to a precise

estimate for h for ages less than τ and potentially large errors for ages greater than τ .

Appendix B: Sales and failures for different device models sold by WSP
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Figure 6 Sales and failures for different device models. The maximum of the curves was normalized to one to

preserve data confidentiality.


