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Designated driver services use company vehicles to deliver drivers to customers. The drivers then drive the

customers from their origins to their destinations in the customers’ own cars; at the destinations the drivers

are picked up by a company vehicle. We typically see teams of drivers assigned to company vehicles serving

customers. When, however, the drivers may be dropped off by one vehicle and picked up by another, a

challenging, novel pick-up and delivery problem arises. In this paper, we introduce two formulations to solve

this problem to optimality using a general purpose solver. In particular, we present a three-index and a two-

index mixed integer program formulation to generate optimal, least-cost routes for the company vehicles and

drivers. Using these MIPs, we find that the two-index formulation outperforms the three-index formulations

by solving more instances to optimality within a given run time limit. Our computational experiments also

show that up to 60% cost savings are possible from using a flexible operating strategy as compared to a

strategy in which drivers and company vehicles stay together throughout a shift.

Key words : routing, dial-a-ride, pickup and delivery problem, designated driver services, routing with

precedence

Drinking and driving is a problem in nearly every country. According to the National

Highway Transportation Safety Administration in the United States of America, 10,598

people were killed in alcohol impaired driving crashes in 2020 (NHTSA 2020). One of

the primary contributors to this problem is the desire of those who have been drinking

to have their car at home the next morning. To combat this issue many charitable

organizations and businesses have built a system whereby the person who has been

drinking can call for a chauffeur who drives them home in their own car.

For example, Operation Red Nose in Quebec, Canada uses volunteers to drive ine-

briated persons home in their own cars; the drivers accept donations for this service

that are subsequently donated to charities. Ride-share services such as Didi has been
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offering designated driver services since 2015 (Horwitz 2015). Several start-ups in the

U.S. and Australia offer designated driver services (Editors 2014, Fowler 2015) while

in South Korea (Sang-Hun 2007) these services are long-standing and quite common.

In the Netherlands, companies such as Beter Bob, Rent-a-Bob, and Super Bob fill this

role. (Bob in the Benelux region is a slang term for designated driver.) These services

typically use dedicated company cars to move the drivers between customer locations.

In addition to the designated driver services, such companies also run day-time opera-

tions targeting business people and people who are unable to drive their own car home

after a medical procedure.

The main advantage of using a designated driver service as compared to using a reg-

ular taxi, ride-hailing, or public transit service is that it allows people to immediately

take their car back home with them. A designated driver service eliminates the incon-

venience, costs and emissions of an additional back and forth trip to pick up their car

later. Moreover, in some urban areas, it may not be possible to leave the car behind

due to strict overnight parking regulations.

The service of moving cars with a team of drivers is not unique to the designated

driver business. For example, one-way car rental services such as Car2Go regularly need

to re-balance the vehicles in their network when they accumulate at popular destinations

while becoming depleted at popular origins (Nourinejad et al. 2015). In a similar vein,

car dealerships that sell cars online can use a team of drivers to deliver the cars to their

customers. Luxury car brands such as Lexus offer a service to pickup the customers’

cars at their homes when needing to go to the garage for maintenance or repairs.

Whether driving a customer’s car for maintenance or a customer in their car to

prevent drunk driving, the general operations in a designated driver service are as

follows: (i) a vehicle delivers a designated driver (“driver” for short) to the customer’s

origin, (ii) the driver drives the customer to their destination in the customer’s car,

(iii) a vehicle picks up the driver at the customer’s destination. This gives rise to the

optimization problem of determining how to serve all customer requests with a given

fleet of drivers and vehicles. We refer to this problem as the Designated Driver Problem

(DDP)

The DDP falls within the realm of Vehicle Routing Problems with Pickup and Deliv-

ery, in particular, the Pickup and Delivery Problem with Time Windows (PDPTW).

However, the DDP is actually a ‘delivery and pickup’ problem. A driver delivered by
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one vehicle may be subsequently picked up by another. This creates the need to syn-

chronize between different vehicle routes. Furthermore, drivers, once dropped off, move

autonomously using customer cars. As the driver can only be picked-up at the cus-

tomer’s destination after arriving, the pickup time windows are ‘dynamic’ and endoge-

nous (Gschwind et al. 2012). Despite the myriad of PDPTW formulations (Aziez et al.

2020, Furtado et al. 2017, Parragh et al. 2008, Berbeglia et al. 2007), these don’t account

for the specific complexities of the DDP. The synchronization between the different

routes makes it impossible to define ‘small’ local search neighborhoods, e.g., moving

a delivery task between two routes may impact a third route that handles the corre-

sponding pickup task. Therefore, it is unclear how to effectively formulate a model to

solve this problem with a general-purpose solver.

The contributions of this paper are as follows. First, we formalize the designated

driver problem – a problem variant in the family of pickup and delivery problems. Sec-

ond, we propose two integer programming formulations to solve the designated driver

problem using a general-purpose solver. Specifically, we develop a tailored two-index

formulation to overcome the computational limitations of a simpler three-index for-

mulation. Third, we present a computational study to compare the performance of

our proposed formulations and provide insights into the advantages and disadvantages

of different operating strategies for designated driver services. Our results show that

the two-index formulation significantly outperforms the three-index formulation. We

also show that we can solve realistic-sized instances with flexible routing strategies to

optimality using the two-index formulation. The speed and optimality of these routing

solutions may directly benefit practitioners running designated driver services. More-

over, we believe that our two-index formulation can be a valuable starting point for

further research in this area.

The remainder of the paper is organized as follows. The next section provides an

overview of the relevant literature. Section 2 gives a formal problem description, includ-

ing the notation. Sections 3 and 4 present three and two-index mixed-integer program-

ming formulations for the Designated Driver Problem, respectively. Section 5 describes

our computational experiments and results. The paper concludes with a discussion and

suggestions for future work in Section 6.
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1. Related Literature

The Designated Driver Problem (DDP) is part of the general class of Vehicle Routing

Problems termed Pickup and Delivery with Time Windows (PDPTW) that forms a

subclass of the Capacitated Vehicle Routing Problem with Time Windows. For more

comprehensive overviews of pickup and delivery problems, see Parragh et al. (2008),

Berbeglia et al. (2007).

In the DDP, a generalization of the PDPTW, the company vehicle capacity can

be greater than one and the customer origins (driver drop-offs) may be served by a

different company vehicle than the customer destinations (driver pick-ups). This is at

the heart of what differentiates the DDP from traditional pickup and delivery problems:

the company vehicles do not directly transfer customers or goods between their origins

and destinations but rather transport the drivers between these customer locations.

This means that the exogenous customer requests do not directly correspond to the

driver transportation requests. In particular, while the origin-destination pairs of the

customer requests are given, we decide on the routing of the drivers, i.e., the origin-

destination pairs of the drivers. This is similar to the VRP with divisible deliveries and

pickups, however, the delivery load and pickup load (while associated with one client)

are geographically disparate (Nagy et al. 2013). This in-turn gives rise to dependencies

between the customer time windows for pickup (driver drop-off) and the driver time

windows for pick-up (customer drop-off).

Using the terminology of Berbeglia et al. (2007), from the perspective of the drivers,

the DDP can be classified as a “one-to-one” pickup and delivery problem in which

each transportation request has one origin and one destination. From the perspective

of the company vehicles, however, the DDP becomes a vehicle routing problem with

precedence constraints. The literature on both strategies is reviewed in turn here.

In a review of models and algorithms for one-to-one pickup and delivery problems,

Cordeau et al. (2008) present a two-index formulation for the single vehicle pickup and

delivery problem, yet when moving to the multi-vehicle pickup and delivery problem

they introduce a three-index model. Interestingly Cordeau et al. (2008) note in the same

review article that when considering the PDPTW as a dial-a-ride problem (DARP)

Ropke and Cordeau (2009) find the superiority of the two-index formulation. In terms of

the DDP, the time dependencies between driver drop-off and driver pick-up are similar

to those arising in DARPs (Gschwind et al. 2012).
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Similar to the DARPs, the DDP focusses on the pickup and delivery of people. The

temporal dependencies in the DDP are conceptually similar to the ride-time constraints

of DARPs. That is, a driver can only be picked up at the customer’s destination after

he/she has driven the customer to this destination. As such, the earliest pickup time at

the customer destination depends on the time that the service starts at the customer’s

origin and this depends on the time that the driver is dropped-off at the customer’s

origin. Moreover, since we specify a maximum waiting time for the driver at the destina-

tion, the problem also involves ‘dynamic’ time windows on the driver pickup (Gschwind

et al. 2012).

The requirement that the driver drop off occurs before the driver pickup also brings

the DDP into the realm of the Pick-up and Delivery Traveling Salesman Problem with

Precedence Relationships (Gouveia and Ruthmair 2015). A problem that Gouveia and

Ruthmair (2015) documented well in both a single and multi-commodity form using a

two-index formulation. While their formulation must respect time-based dependencies

arising from the precedence, they do not include time windows for the initial stop at

the job’s origin.

In addition to the dependencies created in the time windows, allowing drivers to be

picked up by a different vehicle than the one involved in the drop-off gives rise to tem-

poral dependencies between different routes. Figure 1 illustrates a case in which three

customers are served by two company vehicles and three drivers. In this illustration,

one vehicle leaves the depot with two drivers, but returns with none; in contrast, the

second vehicle leaves the depot with one driver but returns with three.

This interplay of routes links the DDP to the stream of literature on vehicle routing

problems with route synchronization (Drexl 2012). The synchronization of different

vehicles that jointly serve a customer request also arises in pickup and delivery problems

with transfers or transshipments that allow for the possibility of transferring passengers

or items between different vehicles at pre-defined transfer locations see e.g., (Danloup

et al. 2018, Maknoon and Laporte 2017, Rais et al. 2014, Masson et al. 2014, 2012,

Cortés et al. 2010). Across this genre of pick-up and delivery problem, the preference

appears to be for three-index formulations.

Another domain in which these route dependencies arise is that of drone delivery

applications that combine both regular and autonomous vehicle movements to serve

demands (Yu et al. 2022, Macrina et al. 2020, Chung et al. 2020, Karak and Abdelghany
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Figure 1 An example DDP solution with flexible pairing between company vehicles and chauffeurs.
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2019, Otto et al. 2018). In settings with a single drone and a single truck one can formu-

late the problem using ‘operations’ as the building blocks to capture all activities when

the drone and truck are separated (Agatz et al. 2018). This involves first enumerating

all possible operations. This, however, cannot be done in settings with multiple drones

per vehicle or flexible drone and truck assignments (Boysen et al. 2018). Again, in this

genre of pick-up and delivery problem, formulations typically use three or more indices.

Existing studies show mixed results on the computational performance of two-index

and three-index formulations for pick-up and delivery problems. Furtado et al. (2017)

show that the two-index formulation computationally outperforms the three-index for-

mulation for the PDPTW. The paper by Aziez et al. (2020) compares a two-index and

three-index formulation, and asymmetric representation (AR), for multi-depot pick-up

and delivery problems with time windows. Their computational study shows that the

AR and three-index formulation outperform the two-index formulation. As such, it is

not clear which formulation is best suited for our specific problem. We contribute to

this line of research by introducing both a three-index and two-index formulation for

the DDP. We demonstrate the capabilities of these formulations relative to the two

operating strategies of fixed and flexible teams.
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2. Problem Description

In this paper, we focus on a static problem setting in which all requests are known

before planning. The static model of the DDP is relevant to settings in which customer

requests are placed in advance, e.g., customer requests are placed during the daytime

for service later that evening. Moreover, the static problem provides a natural starting

point to study dynamic settings within a rolling horizon framework.

We consider a designated driver service that needs to serve a set R of customer

requests using a team of B drivers and a fleet of homogeneous company vehicles V.

Each company vehicle v ∈ V starts and ends at the depot and can carry at most Q

drivers. Note that company vehicles always have a company driver who remains with

the vehicle and is not included in the capacity, Q.

Let P represent all origins of the customer requests in R and D represent all destina-

tions of the customer requests in R. Each customer request r ∈R requires a driver to

transport them from a customer origin or ∈P to a destination (driver pick-up location)

pr ∈ D. Each request r ∈ R has a time window [er, lr] with an earliest er and latest

time lr that service can begin at or. The time windows reflect the fact that customers

typically allow some flexibility around their desired pickup time.

The objective is to find tours for a set of capacity constrained company vehicles and

drivers that minimize the costs of serving customer requests plus the penalty costs

associated with rejecting a customer request.

In practice, to simplify planning the routes for the company vehicles and drivers,

companies often use fixed pairs of a company vehicle and a single driver. This means

that each driver works with one particular company vehicle. With this operational

structure, the problem can be modeled as a truckload pickup and delivery problem

(Srour et al. 2018). Extending beyond this capacity constrained cases, we examine a

capacity of up to three drivers per vehicle in both a fixed and flexible mode of operations.

In the flexible mode of operations, there is no restriction on pairing between drivers and

company vehicles; drivers can be dropped-off by one company vehicle and picked up by

another. While this operational structure makes planning more complex, it allows for

more routing flexibility.

In the flexible mode of operation, while the total number of company vehicles and

drivers is set a priori, there is flexibility in the specific assignment of drivers to company

vehicles when departing from the depot. There is also flexibility in routing as a driver



8 Arslan, Agatz, and Srour: Designated Driver Services

who is dropped off at origin or by one vehicle can be picked up at destination pr by the

same vehicle or another vehicle.

In the flexible pairs case, it might be necessary to drop off a driver earlier than the

start of the customer time window or pick up the driver beyond the end of service. The

time that a driver waits to begin service is only considered waiting when the driver is

alone; there is no restriction on waiting time when the driver is within the company

vehicle (as in the fixed pairs case). To handle waiting time, we specify a maximum

waiting time at the customer location for the driver. In particular, a driver can wait

at most Wor between being dropped off and starting service at the customer’s origin.

Similarly, a driver can wait at most Wpr between arriving at a customer’s destination

and being picked up. In practice, the specific value of this maximum waiting time may

depend on various factors such as weather conditions and whether or not it is possible to

wait inside. That is, the driver may be willing to wait longer inside a nearby restaurant

than outside on the street.

In this context, we study different model formulations across four operating strategies

as summarized in Table 1.

Table 1 Summary of models tested across the specified operating strategies.

3-index 2-index
Fixed Section 3 Section 4
Flexible Section 3 without constraint (5) Section 4 without constraints (24) - (28)

As can be seen in this table, all three-subscript models are derived from the fixed

team three-subscript formulation just as all two-subscript models are derived from the

fixed team two-subscript formulation. To that end, the following two subsections present

those formulations in detail.

3. Three-index Formulation
3.1. Decision Variables

This model version follows a traditional three subscript structure on a graph G =

(N ,E), where N is the union of nodes representing the locations associated with the

requests P ∪D, where P represents the customer pick-up locations and D represents

the customer drop-off locations. To model the fixed pairing, we use a three-subscript

formulation in which the binary decision variable, xv
ij, indicates whether arc (i, j) is

included in the route of vehicle v or not. The associated cij represent the cost of traveling
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on arc (i, j). The variable yr, indicates whether request r is served (1) or not (0) and

cr represent the rejection costs.

In addition to the route-related variables, we also have time-related variables to ensure

that time windows are obeyed. Let avi ∈ R
+ be the arrival time of vehicle v at node i

and dvi ∈R
+ the departure time of vehicle v from node i. Furthermore, to restrict the

waiting times of the drivers at the origin and the destination of each request, we need

to model the time at which the drivers start their service. Let sr ∈R
+ be the start of

service from the origin or of request r. At this time, a driver starts driving from or to

the request’s destination pr; a distance that requires tr time. Thus, the arrival time of

the driver at the request’s destination pr is given by sr + tr.

Finally, to obey the capacity constraint of vehicle v we let qvi represent the number

of drivers in the company vehicle when departing from node i.

For ease of reference, Table 2 presents the notation used in the three-subscript for-

mulation of the DDP.

Table 2 Summary of notation used in the three-index formulation

xv
ij Binary decision variable indicating if vehicle v traverses arc (i, j) or not.

yr Binary decision variable indicating if request r is served (1) or not (0).
avi Arrival time of vehicle v at node i∈P ∪D.
dvi Departure time of vehicle v from node i∈P ∪D.
sr The start time for service from or of request r.
qvi The number of drivers in vehicle v when departing node i∈N .

3.2. The Model

The objective (1) minimizes the sum of the cost of serving or rejecting the requests.

min
∑

i∈N

∑

j∈N

cijx
v
ij +

∑

r∈R

cr(1− yr) (1)

Constraint sets (2) - (4) ensure that each node is visited at most once and that the

request origin needs to be visited if the request is served. Constraints (5) make sure

that the same vehicle visits both the origin and the destination of a request. We don’t

need this constraint in the flexible strategy.

∑

v∈V

∑

i∈N

xv
ij ≤ 1, j ∈N (2)
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∑

v∈V

∑

j∈N

xv
ij ≤ 1, i∈N (3)

∑

i∈N

∑

v∈V

xv
ior = yr r ∈R (4)

∑

i∈N

xv
ior −

∑

j∈N

xv
jpr = 0 v ∈ V , r ∈R (5)

Constraints (6) - (9) guarantee that the time that the company vehicle arrives at each

location is time feasible. Constraint set (6) ensures that the company vehicle arrives to

a node before it departs from that node. Constraint set (7) ensures that the arrival to

a request origin occurs before the arrival to a destination in order to ensure that any

customer pick-ups on the route occur before any customer drop-offs. Constraint sets

(8) and (9) ensure that a company vehicle arrives to a subsequent node only after it

has departed from the previous node and traveled the required amount of time.

avj ≤ dvj j ∈P ∪D, v ∈ V (6)

avpr ≥ avor , r ∈R v ∈ V (7)

avj ≥ dvi + tij −M(1− xv
ij), i, j ∈P ∪D,v ∈ V (8)

aj ≤ di + tij +M(1− xij), i, j ∈P ∪D (9)

To restrict the waiting times of the drivers at the origin and the destination of each

request, we need to model the time at which the drivers start their service.

Constraints (10) - (12) restrict the start time of the service at the origin of a request.

Constraint set (10) ensures that service cannot start before a driver has arrived and

constraint set (11) makes sure that a driver does not wait alone for longer than allowed

before starting service. Constraints (12) make sure that the driver starts service within

the service time window. The pickup times of the driver at the destination pr are

assigned according to constraints (13) and (14). Constraint set (13) makes sure that

the company car picks up the driver before his/her maximum waiting time. Constraint
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set (14) ensures that the company vehicle does not depart the customer drop-off (driver

pickup) location before the driver has arrived. One can set M to the length of service

duration.

sr ≥ avor −M(1− xv
ior), r ∈R, i∈N v ∈ V (10)

sr ≤ dvor +Wor +M(1− xv
ior), r ∈R, i∈N v ∈ V (11)

er ≤ sr ≤ lr, r ∈R (12)

avpr ≤ sr + tr +Wpr +M(1− xv
prj), r ∈R, j ∈N , v ∈ V (13)

sr + tr ≤ dvpr +M(1− xv
prj), r ∈R, j ∈N , v ∈ V (14)

We define the number of drivers in company vehicle v at the departure of node i by

qvi . Constraints (15) and (16) enforce load balance in terms of the number of drivers

in the company vehicles. In particular, these constraints ensure that whenever the arc

(i, j) is traveled, the number of drivers in the company car is decreased or increased by

1, depending on whether node j is a customer origin (driver drop-off) or a customer

destination (driver pickup), respectively. We do not specify which driver is dropped

off but make sure that there is at least one driver available in the company car when

visiting an origin. In order to keep track of the number of drivers in the company cars,

we make use of a data vector A, where Ai is equal to -1 if node i is a request origin and

1 if i is a request destination, i is in the set P ∪D.

Constraint set (17) limits the number of drivers in a company vehicle at any point in

time to the maximum capacity Q, while constraint set (18) guarantees that the total

number of drivers leaving the depot does not exceed B. The load balance constraints

along with the flow constraints ensure that all drivers who leave the depot also return

to the depot.

qvj ≤ qvi +Aj +Q(1− xv
ij), i∈N , j ∈P ∪D,v ∈ V , i 6= j (15)
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qj ≥ qi +Aj −Q(1− xij), i∈N , j ∈P ∪D, i 6= j (16)

qvi ≤Q, i∈N (17)

∑

v∈V

qv0 ≤B (18)

4. Two-index Formulation

This formulation is based on the two-index formulation of Srour et al. (2018) in which

each driver remains paired with a company vehicle throughout the operations and

Furtado et al. (2017) in which the pick-up and delivery functions occur on a single

vehicle’s route but may be separated by intervening pick-ups or deliveries.

4.1. Decision variables and parameters

In this formulation, we exploit a two-index formulation in which the binary decision

variable, xij, indicates whether arc (i, j) is included in the route or not. If i is a node

in V and j is a node in P ∪D, then arc (i, j) represents vehicle i serving location j first

from the depot. Similarly, if i is in P ∪D and j is in V, then arc (i, j) represents location

i as the last on the route before returning to the depot. The associated cij represents

the cost of traveling to or from the depot. When both i and j are in V then arc (i, j)

corresponds to vehicle i remaining idle at the depot. If both i and j are nodes in P ∪D,

then (i, j) represents location j following location i on a route where cij is the cost of

traveling on arc (i, j). If both i and j are in P ∪D and i= j, then (i, j) is associated

with the rejection of request i. In order to track these rejections, we introduce a decision

variable yr which takes a value of 1 if job r is served and 0 if it is not served; cr is the

cost associated with rejecting request r.

Decision variable vj specifies the route number that job j ∈P is on; in this way, we can

ensure that the origin and destinations of each job end up on the same route. Through

this convention, we can keep the driver teams paired with the company vehicles.

In addition to the route-related variables, we also have time-related variables to

ensure that time windows are obeyed. Let ai ∈ R
+ be the arrival time at node i and

di ∈R
+ the departure time of a company vehicle from node i. Furthermore, to restrict

the waiting times of the drivers at the origin and the destination of each request, we

need to model the time at which the drivers start their service. Let sr ∈R
+ be the start
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of service from the origin or of request r. At this time, a driver starts driving from or

to the request’s destination pr; a distance that requires tr time. Thus, the arrival time

of the driver at the request’s destination pr is given by sr + tr.

Finally, to obey the capacity constraints of the company vehicles we let qi represent

the number of drivers in the company vehicle when departing from node i.

For ease of reference, Table 3 provides a summary of the notation used in the two-

subscript formulation.

Table 3 Summary of notation used in the two-index formulation.

xij Binary decision variable indicating if arc (i, j) is included on the route or not.
yr Binary decision variable indicating if request r is served (1) or not (0).
vj Integer decision variable specifying the vehicle route on which job j ∈P ∪D is served.
ai Arrival time at node i∈P ∪D.
di Departure time from node i∈P ∪D.
sr The start time for service from or of request r.
qi The number of drivers in the company car when departing node i∈N .

4.2. The Model

The objective (19) minimizes the sum of the cost of serving or rejecting the requests.

min
∑

i∈N

∑

j∈N

cijxij +
∑

r∈R

cr(1− yr) (19)

Constraint sets (20) - (23) ensure that each node is included in exactly one tour and

that if the origin node is not visited, the destination node is similarly not visited –

representing a job rejection.

∑

i∈N

xij = 1, j ∈N (20)

∑

j∈N

xij = 1, i∈N (21)

∑

i∈N/or

xior = yr r ∈R (22)

xprpr = (1− yr) r ∈R (23)
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Constraint sets (24) - (28) serve to make sure that the same drivers remain paired

to the company cars or rather that the drop-off of a particular driver occurs on the

same route as the pick-up of a particular driver. We don’t need these constraint in the

flexible strategy. Specifically, (24) and (25) force the value of vj to j if j is the first

node on a route; otherwise vj may take on any value between 0 and V , the number

of vehicles. Constraint sets (26) and (27) ensure that all jobs on the same route are

assigned the same value for vj. Finally, constraints (28) ensure that the customer pick-

up for a request occurs on the same route as the customer drop-off. The value of M

can be set to the number of requests for constraints (25)- (28).

vj ≥ jxij i∈ V ; j ∈P (24)

vj ≤ jxij +M(1− xij) i∈ V ; j ∈P (25)

vj ≥ vi −M(1− xij) i, j ∈P ∪D (26)

vj ≤ vi +M(1− xij) i, j ∈P ∪D (27)

vR+i = vi i∈P (28)

Constraints (29) - (30) guarantee that the time that the company vehicle arrives at

each location is time feasible. Constraint set (29) ensures that the company vehicle

arrives at a node before it departs from that node. Constraint set (30) ensures that

a company vehicle arrives at a subsequent node only after it has departed from the

previous node and traveled the required amount of time. The minimum value for M in

Constraints 30 is the end of the service day.

aj ≤ dj j ∈P (29)

aj ≥ di + tij −M(1− xij), i, j ∈P ∪D (30)



Arslan, Agatz, and Srour: Designated Driver Services 15

Constraints (31)-(33) restrict the start time of the service at the origin of a request.

Constraint set (31) ensures that service cannot start before a driver has arrived and

constraint set (32) makes sure that a driver does not wait alone for longer than allowed

before starting service. Constraints (33) make sure that the driver starts service within

the service time window. The pick up times of the driver at the destination pr are

assigned according to constraints (34) and (35). Constraint set (34) makes sure that

the company car picks up the driver before his/her maximum waiting time. Constraint

set (35) ensures that the company vehicle does not depart the customer drop-off (driver

pickup) location before the driver has arrived.

sr ≥ aor , r ∈R (31)

sr ≤ dor +Wor , r ∈R (32)

er ≤ sr ≤ lr, r ∈R (33)

apr ≤ sr + tr +Wpr , r ∈R (34)

sr + tr ≤ dpr , r ∈R (35)

We define the number of drivers in each company vehicle at the departure of node i

by qi. Constraints (36) and (37) enforce load balance in terms of the number of drivers

in the company vehicles. In particular, it ensures that whenever the arc (i, j) is traveled,

the number of drivers in the company car is decreased or increased by 1, depending on

whether node j is a customer origin (driver drop-off) or a customer destination (driver

pickup), respectively. In this stage, we do not specify which driver is dropped off but

make sure that there is at least one driver available in the company car when visiting

an origin. In order to keep track of the number of drivers in the company cars, we make

use of a data vector A, where Ai is equal to -1 if node i is a request origin and 1 if i is

a request destination, i is in the set P.

Constraint set (38) limits the number of drivers in a company vehicle at any point in

time to the maximum capacity Q, while constraint set (39) guarantees that the total
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number of drivers leaving the depot does not exceed B. The load balance constraints

along with the flow constraints ensure that all drivers who leave the depot also return

to the depot.

qj ≤ qi +Aj +Q(1− xij), i∈N , j ∈P , i 6= j (36)

qj ≥ qi +Aj −Q(1− xij), i∈N , j ∈P , i 6= j (37)

max{0,Ai} ≤ qi ≤min{Q,Q+Ai} , i∈N (38)

∑

i∈V

qi ≤B (39)

5. Computational Study

In this section, we describe our computational study to test the three-index and two-

index formulations across the fixed and flexible operating strategies. Section 5.1 presents

the instances and parameter settings; Section 5.2 compares the run times of the different

formulations; and Section 5.3 evaluates the operational impacts of the fixed and flexible

team strategies.

5.1. Test instances and testing environment

In our experiments, we use a random selection of the BUS instances from Srour et al.

(2018). We use three sets of 20 instances for a total of 60 instances based on operational

data from a designated driver service company. Each set of 20 instances has a different

number of requests: 10, 20, and 30 requests. Within these requests across these instance

sets, three, six and nine requests, respectively, go from the center of a 100 by 100 square

region to the outer areas of the region; two, four, and six requests, respectively, go

from the outer areas to the center of the region; and five, ten, and fifteen requests,

respectively, go between randomly selected origins and destinations in the region. The

depot, which is the starting and ending point for the company vehicles and drivers,

is located at the lower left corner of the region (point [0,0] in a Cartesian grid) in all

instances.

We ran our experiments on a computer with a 2.4 Gigahertz Intel processor and

8 GB installed RAM. The models were implemented in C++ using GUROBI 9.5
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(Gurobi Optimization 2022) as our IP solver setting a maximum run time of 1800 sec-

onds (30 minutes) with default parameter settings. We use the fixed-team with the unit

capacity solution as a warm start for all formulations.

Unless stated otherwise, we use the following default parameters. The opening of the

time windows at the origin of the requests were as specified in the instances with time

windows set to five minutes i.e., lr − er = 5. We allow drivers to wait at a customer

location for at most five minutes, i.e., Wor =Wpr = 5. All instances had nine company

vehicles and 15 driers available. We run all of the formulations through the instances

sets with varying vehicle capacities of one, two, or three, i.e., Q= 1,2,3.

5.2. Formulations’ computational performances

To compare the performance of the three-index and two-index formulations, Table 4

reports the number of instances solved to optimality within 1800 seconds. Table 5

reports the median and maximum run time bounded by 1800 seconds; and Table 6

shows the median and max optimality gaps of the instances that could not be solved

to optimality within 1800 seconds.

Table 4 Number of instances solved to optimality within 1800 seconds

Three-index Two-index

Cust Q fixed flexible fixed flexible

10 1 20 20 20 20
10 2 20 20 20 20
10 3 20 20 20 20

20 1 20 4 20 20
20 2 0 0 14 20
20 3 0 0 13 20

30 1 6 0 19 20
30 2 0 0 1 20
30 3 0 0 1 20

Total 86 64 128 180

The results in Table 4 show that the two-index formulation clearly outperforms the

three-index formulation. Using the two-index formulation, we solve significantly more

instances to optimality within the maximum run time. In particular, we can solve all

180 instances for the flexible team setting and 128 instances for the fixed team setting.

On the other hand, the three-index formulation only solves 64 instances within the

flexible team setting and 86 instances within the fixed team setting. Interestingly, the
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Table 5 Run times, median (max) seconds, for instances solved to optimality within 1800 seconds

Three-index Two-index

Cust Q Fixed Flexible Fixed Flexible

10 1 4.2 (9.7) 23.4 (69.4) 0.4 (0.5) 0.1 (0.1)
10 2 27.1 (95.3) 27.1 (95.3) 0.3 (0.8) 0.1 (0.2)
10 3 32.3 (74.1) 32.3 (74.1) 0.4 (0.9) 0.1 (0.2)

20 1 144.7 (758.4) 845 (1480.5) 0.7 (3.7) 0.1 (0.2)
20 2 n/a n/a 80.8 (696.5) 0.6 (1.0)
20 3 n/a n/a 121.8 (613.7) 0.5 (1.4)

30 1 852.3 (1576.1) n/a 76.2 (1298.9) 0.2 (0.2)
30 2 n/a n/a 1295.1 (1295.1) 5.9 (16.6)
30 3 n/a n/a 974.3 (974.3) 3.8(10.7)

three-index formulation performs relatively better on the fixed team instances while the

two-index formulation excels on the flexible team cases.

We see a similar pattern when looking at the run times in Table 5. For the flexible

team case, we see that the two-index formulation solves all instances in less than 17

seconds. This indicates that we can use an exact solver in all practical settings without

the need to rely on a heuristic approach.

Table 6 Percentage optimality gaps (median(max)) for instances solved time bound of 1800 seconds

Three-index Two-index

Cust Q fixed flexible fixed flexible

20 1 0 6.4 (10.4) 0 0
20 2 30.1 (42.4) 31.2 (37.8) 5.7 (31.5) 0
20 3 35.7 (50.2) 29.9 (34.8) 6.1 (28.3) 0

30 1 5.1 (17.2) 5.4 (45.9) 2.9 (2.9) 0
30 2 53.7 (69.9) 45.1 (53.1) 26.0 (45.6) 0
30 3 65.1 (74.0) 43.7 (53.2) 28.1 (47.5) 0

Table 6 reports the median and maximum optimality gaps, i.e., (UB − LB)/UB,

for the instances that did not achieve a provably optimal solution within 1800 sec-

onds. These results show that for these instances, the two-index formulation results in

smaller gaps than the three-index formulation. This again suggests that the two-index

formulation is computationally superior.

5.3. Operational performance

This section presents the operational benefits of flexible teams as compared to fixed

teams with varying vehicle capacities across the three instance sets. We use our best

performing formulation, i.e., the 2-index formulation, to derive the savings. Figure

2 provides the proportional total cost savings if the flexible team strategy is chosen



Arslan, Agatz, and Srour: Designated Driver Services 19

instead of the fixed team strategy per instance. The cost savings are calculated by tak-

ing
zfixed−zflex

zflex
, where zfixed and zflex denote the total costs for the fixed and flexible

operating strategies, respectively.

Figure 2 Cost saving of flexible team as compared to fixed team, W=5, n=20
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The results in Figure 2 show savings of up to 60% for the largest instances. We

observe that the savings increase with the size of the instances, particularly when the

capacity of the company vehicle is larger. We also see significant benefits of flexibility

in the cases with more than unit capacity, i.e., Q= 2 and Q= 3. One potential reason

is that the flexible strategy can exploit the additional wiggle room in capacity. It is, for

example, easier to let drivers move around between vehicles.

Table 7 reports the cost per served request and the number of rejected requests for

different instance sizes and vehicle capacities. We see that the costs per request decrease

with the number of customers for the flexible strategy but not for the fixed strategy. This

suggests that the flexible strategy is capable of using the additional routing flexibility to

reduce vehicle miles. We see that a larger vehicle capacity reduces the cost per request

for both strategies.

Table 8 reports the number of company vehicles and drivers across solutions. The

maximum number of vehicles is nine and the maximum number of drivers is 15. As

expected, we use more vehicles and drivers when serving more requests. The solutions

with larger vehicle capacities use fewer vehicles and/ or more drivers. In some instances,
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Table 7 Average cost per served order and rejected requests, W=5, n=20

Cost per served request Rejected

Cust Q fixed flexible fixed flexible

10 1 119.8 112.3 0 0
10 2 118.9 97.8 0 0
10 3 118.9 96.5 0 0

20 1 125.4 112.0 0.05 0.05
20 2 120.4 82.4 0.05 0
20 3 120.4 77.8 0.05 0

30 1 146.5 131.8 1.15 1.15
30 2 126.9 70.8 0.7 0
30 3 126.7 65.8 0.7 0

it is possible to serve more customers by deploying more drivers. In other instances, we

serve the same number of customers with the same number of drivers but fewer vehicles.

Note that in the flexible Q=1 case, we sometimes use more vehicles than drivers. The

addition of an ‘empty’ vehicle adds slack capacity which allows for more flexibility in

connecting different pickups and deliveries.

Table 8 Average number of deployed company vehicles and drivers, W = 5, n= 20

Fixed Flexible
Cust Q=1 Q=2 Q=3 Q=1 Q=2 Q=3

No. of vehicles

10 4.1 4.1 4.1 4.5 3.9 3.9
20 8.1 7.7 7.7 8.7 6.9 6.8
30 9.0 9.0 9.0 9.0 8.3 7.9

No. of drivers

10 4.1 4.2 4.2 4.1 4.8 5.6
20 8.1 8.7 8.7 8.0 9.5 10.8
30 9.0 10.8 10.8 9.0 12.1 14.3

One prominent feature of the flexible operating strategy is that a driver can be

dropped off by one company vehicle and picked up by another vehicle. We call this phe-

nomenon a swap. Figure 3 reports the average percentage of swaps across all instances.

This is the number of times a driver switches between vehicles divided by the total

number of requests served. We see that the number of swaps increases with the number

of customers and with the company vehicle’s capacity. We also see that it is these swaps,

emanating from flexibility, that are likely driving the large jump in cost savings seen

between Q= 1 and Q= 2.
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cost savings of 60% when the capacity allowed in the company vehicles is greater than

one. This points to a natural extension of this work with regard to dynamic settings

in which customer requests continually arrive over time. In such settings, one would

typically employ a rolling horizon approach that runs an optimization model each time

new information becomes available. Here, models to solve the problem quickly become

more critical.

Another extension to this work revolves around the trade-off between the number of

drivers used and the cost of the routes. For example, we see that in the largest case with

the most capacity and a flexible routing strategy, an average of 14.3 drivers are needed

to serve the jobs with an average cost per job of 65.8. This is in contrast to only nine

drivers for a flexible routing strategy with a capacity of one and an average routing cost

per job of 131.8. As our objective pertains to the vehicle routes, we did not explicitly

take the number of drivers into account. In other settings, it may be necessary to

explicitly consider the driver working hours or served customer requests. If, for example,

the service provider operates such that the drivers garner tips or remuneration per

request served, then paying careful attention to how the drivers are assigned to requests

is critical. This gives rise to interesting trade-offs between vehicle-related travel costs

and driver-related costs.
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Aziez I, Côté JF, Coelho LC (2020) Exact algorithms for the multi-pickup and delivery problem with

time windows. European Journal of Operational Research 284(3):906–919.

Berbeglia G, Cordeau JF, Gribkovskaia I, Laporte G (2007) Static pickup and delivery problems: a

classification scheme and survey. Top 15(1):1–31.

Boysen N, Briskorn D, Fedtke S, Schwerdfeger S (2018) Drone delivery from trucks: Drone scheduling

for given truck routes. Networks 72(4):506–527.

Chung SH, Sah B, Lee J (2020) Optimization for drone and drone-truck combined operations: A review

of the state of the art and future directions. Computers & Operations Research 123:105004.

Cordeau JF, Laporte G, Ropke S (2008) Recent Models and Algorithms for One-to-One Pickup and

Delivery Problems, 327–357 (Boston, MA: Springer US), ISBN 978-0-387-77778-8, URL http://

dx.doi.org/10.1007/978-0-387-77778-8_15.



Arslan, Agatz, and Srour: Designated Driver Services 23

Cortés CE, Matamala M, Contardo C (2010) The pickup and delivery problem with transfers: Formula-

tion and a branch-and-cut solution method. European Journal of Operational Research 200(3):711–

724.

Danloup N, Allaoui H, Goncalves G (2018) A comparison of two meta-heuristics for the pickup and

delivery problem with transshipment. Computers & Operations Research 100:155–171.

Drexl M (2012) Synchronization in vehicle routing-a survey of vrps with multiple synchronization con-

straints. Transportation Science 46(3):297–316.

Editors T (2014) Dudes, tech aim to put an end to duis. URL https://time.com/27393/

dudes-tech-aim-to-put-an-end-to-duis/.

Fowler GA (2015) Tap your phone, and a designated driver takes

you (and your car) home. URL https://www.wsj.com/articles/

tap-your-phone-and-a-designated-driver-takes-you-and-your-car-home-1435174499.

Furtado M, Munari P, Morabito R (2017) Pickup and delivery problem with time windows: A new

compact two-index formulation. Operations Research Letters 45, URL http://dx.doi.org/10.

1016/j.orl.2017.04.013.

Gouveia L, Ruthmair M (2015) Load-dependent and precedence-based models for pickup and delivery

problems. Computers & Operations Research 63:56–71, ISSN 0305-0548, URL http://dx.doi.

org/https://doi.org/10.1016/j.cor.2015.04.008.

Gschwind T, Irnich S, Mainz D (2012) Effective handling of dynamic time windows and synchronization

with precedences for exact vehicle routing. Technical report .

Gurobi Optimization L (2022) Gurobi optimizer reference manual. URL http://www.gurobi.com.

Horwitz J (2015) Didi kuaidi, uber’s china rival, now offers desig-

nated drivers for drunk car owners. URL https://qz.com/466494/

chinas-uber-competitor-is-bringing-on-demand-designated-drivers-to-inebriated-chinese/.

Karak A, Abdelghany K (2019) The hybrid vehicle-drone routing problem for pick-up and delivery

services. Transportation Research Part C: Emerging Technologies 102:427–449, ISSN 0968-090X,

URL http://dx.doi.org/https://doi.org/10.1016/j.trc.2019.03.021.

Macrina G, Pugliese LDP, Guerriero F, Laporte G (2020) Drone-aided routing: A literature review.

Transportation Research Part C: Emerging Technologies 120:102762.

Maknoon Y, Laporte G (2017) Vehicle routing with cross-dock selection. Computers & Operations

Research 77:254–266.

Masson R, Lehuédé F, Péton O (2012) Simple temporal problems in route scheduling for the dial–a–

ride problem with transfers. Integration of AI and OR Techniques in Contraint Programming for

Combinatorial Optimzation Problems, 275–291 (Springer).
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