
Streamlined Quantitative Imaging 
Biomarker Development

Generalization of radiomics through automated machine learning

Martijn P. A. Starmans



Streamlined Quantitative
Imaging Biomarker

Development
Generalization of radiomics through

automated machine learning

Martijn Pieter Anton Starmans



Acknowledgements:
This work is part of the research programme STRaTeGy with project numbers 14929, 14930,
and 14932, which is (partly) financed by the Dutch Research Council (NWO).

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school. ASCI dissertation series number 431.

For financial support for the publication of this thesis the following organizations are
gratefully acknowledged: NWO, the ASCI graduate school, Quantib BV, and the department
of Radiology and Nuclear Medicine of Erasmus MC.

ISBN: 978-94-6416-970-6
Cover: Susan Starre & Martijn Starmans
Layout: Martijn Starmans
Printing: Ridderprint | www.ridderprint.nl

© Martijn Pieter Anton Starmans, 2022
Except for the following chapters:
Chapter 2: © Elsevier Inc., 2020
Chapter 5: © Wiley, 2019
Chapter 6: © Elsevier Inc., 2020
Chapter 10: © Society for Endocrinology, 2021

All rights reserved. No part of this thesis may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without written permission from the author or,
when appropriate, from the publisher.

www.ridderprint.nl


Streamlined Quantitative
Imaging Biomarker

Development
Generalization of radiomics through

automated machine learning

Gestroomlijnde ontwikkeling van kwantitatieve
biomarkers op basis van beeldvorming

Generalisatie van radiomics door automatische machine learning

THESIS

to obtain the degree of Doctor from the
Erasmus University Rotterdam

by command of the
rector magnificus

Prof. dr. A.L. Bredenoord

and in accordance with the decision of the Doctorate Board.

The public defence shall be held on
Tuesday 01 Februari 2022 at 13.00 hrs

by

Martijn Pieter Anton Starmans
born in Velsen, The Netherlands



Doctoral Committee

Promotors Prof. dr. W.J. Niessen

Other members Prof. dr. M.W. Vernooij
Prof. dr. ir. A.L.A.J. Dekker
Dr. K. Lekadir

Co-promotors Dr. ir. S. Klein
Dr. J.J. Visser



This thesis is dedicated to the memory of my mother







Contents

1 Introduction 3
1.1 Personalized medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Radiomics: biomarkers based on quantitative medical imaging features 4
1.3 Research aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Part I Adaptive radiomics framework 11

2 Radiomics: Data mining using quantitative medical image features 13

3 Reproducible radiomics through automated machine learning validated
on twelve clinical applications 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 The WORC∗ database: MRI and CT scans, segmentations, and clinical
labels for 930 patients from six radiomics studies 53
4.1 Value of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Experimental design, materials and methods . . . . . . . . . . . . . . . 61
4.4 Ethics statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 CRediT author statement . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7 Declaration of competing interest . . . . . . . . . . . . . . . . . . . . . . 64

Part II Radiomics biomarkers in clinical applications 67

i



ii Contents

5 Radiomics approach to distinguish between well differentiated liposar-
comas and lipomas on MRI 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.A Radiomics feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 83
5.B Technical details on decision model creation . . . . . . . . . . . . . . . 84

6 Differential diagnosis and mutation stratification of desmoid-type fibro-
matosis on MRI using radiomics 93
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.A Radiomics feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 110
6.B Adaptive workflow optimization for automatic decision model creation111

7 Differential diagnosis and molecular stratification of gastrointestinal
stromal tumors on CT images using a radiomics approach 127
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.4 Evaluation of models for the differential diagnosis . . . . . . . . . . . 133
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.A Radiomics feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 142
7.B Adaptive workflow optimization for automatic decision model creation143

8 A multi-center, multi-vendor study to evaluate the generalizability of a
radiomics model for classifying prostate cancer: high grade vs. low grade 153
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.2 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.A Radiomics features extraction . . . . . . . . . . . . . . . . . . . . . . . . 165
8.B Adaptive workflow optimization for automatic decision model creation167

9 The BRAF P.V600E mutation status of melanoma lung metastases can-
not be discriminated on computed tomography by LIDC criteria nor
radiomics using machine learning 173
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.2 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182



Contents iii

9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.A Radiomics feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 186
9.B Model optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

10 Predicting symptomatic mesenteric mass in small intestinal neuroen-
docrine tumors using radiomics 197
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
10.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
10.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
10.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
10.A Radiomics feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 212
10.B Significant features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

11 Distinguishing pure histopathological growth patterns of colorectal liver
metastases on CT using deep learning and radiomics: a pilot study 221
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
11.2 Methods and materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
11.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
11.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
11.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
11.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
11.A Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
11.B Model optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

12 Automated differentiation of malignant and benign primary solid liver
lesions on MRI: an externally validated radiomics model 247
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
12.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
12.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
12.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
12.A Pathological examination . . . . . . . . . . . . . . . . . . . . . . . . . . 263
12.B Radiomics feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 264
12.C Radiomics decision model creation . . . . . . . . . . . . . . . . . . . . . 265
easter egg to add white line
easter egg to add white line
General discussion and summary 275

13 Discussion 277
13.1 Contributions and impact . . . . . . . . . . . . . . . . . . . . . . . . . . 278
13.2 Roadmap for future research and vision . . . . . . . . . . . . . . . . . . 285
13.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Summary 299

Nederlandse samenvatting 305



iv Contents

Acknowledgements 311

About the author 321

Publications 323

PhD portfolio 333

Acronyms 341

Bibliography 349







1.
Introduction



1

4 Chapter 1. Introduction

1.1 Personalized medicine

In the last decades, there has been a paradigm shift in healthcare, moving from a
reactive, one-size-fits-all approach, towards a more proactive, personalized approach
[1, 2, 3]. In personalized medicine, healthcare takes an individual person’s unique
characteristics into account, with a focus on the individual’s outcomes instead of
general population statistics, and a focus on prevention instead of solely on treatment.
This requires the integration of data from various sources, such as genetic, anatomic,
environmental, metabolomic, clinical, laboratory, and imaging data, see Figure 1.1.
Therefore, personalized medicine heavily relies on multidisciplinary health teams
to integrate all data in order to gain a comprehensive understanding of a person’s
health status. As the amount of health data has drastically increased, these teams
face the increasingly complicated task of combining all the available data to support
screening, diagnosis, prognosis, monitoring, treatment planning (e.g. chemotherapy,
radiotherapy, immunotherapy), drug usage, surgery, follow-up, and so on.

To aid in this process, personalized medicine generally involves clinical decision
support systems, including technologies leveraging big data to relate specific patient
characteristics to clinical variables, so-called biomarkers [4]. Biomarkers relate to
clinical variables such as a biological state, outcome or condition. Especially in
cancer medicine, there is a high need for accurate biomarkers, as cancer is a hetero-
geneous disease with a wide variety of presentations [1, 5]. Hence, personalized
medicine has received steep interest in oncology, with medical imaging, such as
Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron Emis-
sion Tomography (PET) and Ultrasound (US), gaining an increasingly important
role [1, 6, 7]. Medical imaging has several advantages over other data acquisition
methods, as it is relatively quick, non-invasive (depending on the type of imaging),
rich in information, and can be conducted repeatedly at various stages of healthcare.

Currently, in clinical practice, medical imaging is assessed by radiologists, which
is generally qualitative and observer dependent. In the oncology domain, various
guidelines have been proposed to overcome these issues in specific applications.
Examples include RECIST [8] to evaluate treatment response for tumors, LIRADS
[9] to assess liver lesions in patients with chronic liver disease, PI-RADS [10] to
assess prostate cancer, and the World Health Organization (WHO) guidelines for
classification of tumors of the central nervous system [11], the digestive system [12],
or soft tissue tumors [13]. However, quantitative, objective biomarkers are required
to leverage the full potential of medical imaging. Moreover, as medical imaging has
become more accessible, there is a worldwide shortage of (specialized) radiologists,
increasing the need for clinical decision support systems that reduce the working
load on radiologists [6, 14].

1.2 Radiomics: biomarkers based on quantitative medical imaging
features

Quantitative imaging biomarkers describe specific properties of an image in a
quantitative way. They can describe the properties of a complete image, or those
of a specific region of interest, e.g. a tumor or an organ. Within the field of



1.2. Radiomics: biomarkers based on quantitative medical imaging features

1

5
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Medical Imaging Biopsy Blood Samplesg

Genetic Identificationg Urine Testg Microscopy

Big Data
Radiological Data Histopathology Blood Markersg
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Figure 1.1: Illustration of the challenges of personalized medicine. Each patient has unique characteristics.
To uncover these characteristics, a variety of data acquisition methods can be used. This results in a big
amount of data being available for each patient. The complicated task of the clinicians is to, for each
patient, make decisions on a suitable healthcare plan using the gathered data.
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radiology, the term “radiomics” has been coined to describe the use of a large
number of quantitative medical imaging features to predict clinical variables [15].
The hypothesis of radiomics is that, since there is a relation between a person’s
anatomy, physiology, metabolism, proteins and, genome, there exists a relation
between imaging features and these underlying variables (Figure 1.2). Hence,
imaging data may be used to create biomarkers to predict these underlying variables.
This is especially useful when gathering information on these underlying variables
in another way (e.g. chromatography, histopathology, genetic sequencing, based on
material from biopsies or resections) is more expensive, time-consuming, invasive,
high-risk, or even impossible.

To create radiomics biomarkers, machine learning can be used to discover much
more complex features and patterns than humans, and is thus a powerful method
to establish relations between imaging features and clinical variables. The use of
machine learning in radiomics has led to a rise in popularity, which has resulted in
a large number of papers, biomarkers, and radiomics methods being proposed [6,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

However, radiomics faces several challenges. In a new clinical application, the
main challenge is to find a suitable radiomics method from the wide variety of
available options. Most published radiomics methods roughly consist of the same
steps: data acquisition and preparation, segmentation, feature extraction, and data
mining. The data mining step may itself consist of a combination of various steps:
1) feature imputation; 2) feature scaling; 3) feature selection; 4) dimensionality
reduction; 5) resampling; and 6) machine learning algorithms to find relationships
between the remaining features and the clinical labels or outcomes. For each of these

Figure 1.2: Illustration of the hypothesis behind radiomics: since there is a relation between a person’s
anatomy, physiology, metabolism, proteins and, genome, there exists a relation between imaging features
and these underlying biological variables. Reprinted from [15] with permission from Elsevier (https:
//www.sciencedirect.com/science/article/pii/S0959804911009993).

https://www.sciencedirect.com/science/article/pii/S0959804911009993
https://www.sciencedirect.com/science/article/pii/S0959804911009993
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steps, numerous algorithms have been proposed. Most algorithms have parameters,
whose values need to be tuned per application as these influence the performance.
As most steps are not independent, and the performance of an algorithm depends
on its parameter values, finding the most suitable algorithm and parameter values
for each step is not trivial.

Currently, in a new clinical application, finding the optimal radiomics method
out of the wide range of available options has to be done manually through a
heuristic trial-and-error process. This process has several disadvantages, as it: 1)
is time-consuming; 2) requires expert knowledge; 3) does not guarantee that an
optimal solution is found; 4) negatively affects the reproducibility; 5) has a high risk
of overfitting when not carefully conducted [24, 29]; and 6) limits the translation to
clinical practice [20].

Radiomics faces several additional challenges that are vital for the translation to
clinical practice.:

1. There is a need for publicly sharing large, multi-center cohorts, to improve
the training of radiomics methods, to benchmark radiomics methods, and
especially for external validation [1, 17, 20, 24, 25, 27, 30, 31].

2. There is a lack of image acquisition standardization, while radiomics methods
are generally sensitive to acquisition variations [16, 18].

3. There is a lack of reproducibility of both radiomics methods and biomarkers
[18, 20, 24].

1.3 Research aim

The overall aim of this thesis is to address these challenges, thereby streamlin-
ing radiomics research, facilitating the reproducibility of radiomics methods and
biomarkers, and ultimately simplifying the use of radiomics in (new) clinical appli-
cations. To this end, the following three objectives have been identified.

Our first objective was to propose an adaptive framework to automatically
construct and optimize the radiomics method per application. We hypothesized that,
instead of manually tuning a radiomics method per application, it should be possible
to create one radiomics method that works on multiple applications. Clinically,
radiomics applications may be independent and show substantial differences (e.g.,
prostate cancer versus Alzheimer’s disease). Technically, however, the radiomics
methods used often show substantial overlap.

Our second objective was to evaluate our adaptive framework on a large number
of different clinical applications. In this way, we extensively validated our method
and evaluated its generalizability across clinical applications. To maximize the
clinical relevance, we focused on oncology applications with a clear need for clinical
decision support systems. Moreover, we aimed to facilitate generalization of the
resulting biomarkers across image acquisition protocols and thus across clinical
centres, increasing the feasibility of applying such a biomarker in routine clinical
practice. To this end, we aimed to collect routinely collected, clinically representative,
multi-center datasets to train and evaluate our biomarkers.
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Our third objective was to make (part of) the collected datasets publicly available
and release our code for all methods and experiments open-source. This database
would facilitate the reproducibility of our radiomics methods and biomarkers. Ad-
ditionally, it would enable other researchers to improve the training of radiomics
methods and externally validate radiomics biomarkers, and would facilitate public
benchmarking.

1.4 Outline

This thesis is divided in two parts. The first part focuses on describing the field
of radiomics, our proposed adaptive radiomics method, and our publicly released
database. The second part describes in detail the evaluation of our adaptive radiomics
method to develop radiomics biomarkers in nine different clinical applications.

Part I Chapter 2 serves as an introduction to radiomics, introduces common
terminology, provides an overview of popular approaches, and serves as a guide
through the several aspects of designing a radiomics study. Additionally, it describes
some of the limitations and future prospects of radiomics.

Chapter 3 describes how recent advances in automated machine learning (Au-
toML) [32] are exploited to create an adaptive radiomics method. The method is
implemented in a Python toolbox, which is coined WORC (Workflow for Optimal
Radiomics Classification), and made open-source. We validate our method and
evaluate its generalizability in twelve clinical applications.

Chapter 4 describes the publicly released WORC database, consisting of MRI and
CT scans, segmentations, and clinical labels for 930 patients from six radiomics
studies.

Part II For each of the chapters in this part, an in-depth evaluation of WORC in a
different clinical application is provided to answer the following research questions:

• Chapter 5: can radiomics distinguish between well differentiated liposarcomas
and lipomas on MRI?

• Chapter 6: can radiomics distinguish desmoid-type fibromatosis (DTF) from
non-DTF tumors in the DTF differential diagnosis on MRI, and predict genetic
mutations in DTF?

• Chapter 7: can radiomics distinguish gastrointestinal stromal tumors (GISTs)
from non-GIST tumors in the GIST differential diagnosis on CT, and predict
genetic mutations in GISTs?

• Chapter 8: can radiomics classify high grade versus low grade prostate cancer
on multi-parametric MRI?

• Chapter 9: can radiomics determine the BRAF P.V600E mutation status of
melanoma lung metastases on CT?
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• Chapter 10: can radiomics predict symptomatic mesenteric mass in small
intestinal neuroendocrine tumors on CT?

• Chapter 11: can radiomics distinguish pure replacement from pure desmoplas-
tic histopathological growth patterns (HGP) of colorectal liver metastases on
CT?

• Chapter 12: can radiomics distinguish malignant from benign primary solid
liver lesions on MRI?

Lastly, Chapter 13 discusses the main findings of this thesis, including my method-
ological, clinical, open science, and education contributions, and provides a roadmap
for future research in this field.





Part I

Adaptive radiomics framework
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Abstract

Radiomics uses multiple image features from medical imaging data to predict clinical variables.
Various features can be constructed to describe the properties of the full image, or those
of a specific region of interest such as a tumor. These features may be related to a wide
variety of clinical variables, such as disease characteristics, genetics and therapy response.
This can be done through the use of machine learning, which enables the training of a model
on these features using data of patients for which the relevant clinical variables are already
known. The resulting models may be used as a diagnostic aid for the prediction of labels
such as tumor phenotype and therapy response in new patients. Thereby, radiomics can
provide a non-invasive alternative for invasive procedures, such as biopsies, to uncover disease
characteristics or clinical outcomes. Radiomics therefore has a high potential to be a valuable
tool for clinical practice. This may explain the rise in popularity of radiomics in the medical
imaging research field in recent years, resulting in many methods and applications. This
chapter provides a guide through the several aspects of designing a radiomics study.
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Abstract

Radiomics uses quantitative medical imaging features to predict clinical outcomes. While
many radiomics methods have been described in the literature, these are generally designed
for a single application. The aim of this study is to generalize radiomics across applications
by proposing a framework to automatically construct and optimize the radiomics workflow
per application. To this end, we formulate radiomics as a modular workflow, consisting of
several components: image and segmentation preprocessing, feature extraction, feature and
sample preprocessing, and machine learning. For each component, a collection of common
algorithms is included. To optimize the workflow per application, we employ automated
machine learning using a random search and ensembling. We evaluate our method in
twelve different clinical applications, resulting in the following area under the curves: 1)
liposarcoma (0.83); 2) desmoid-type fibromatosis (0.82); 3) primary liver tumors (0.81); 4)
gastrointestinal stromal tumors (0.77); 5) colorectal liver metastases (0.68); 6) melanoma
metastases (0.51); 7) hepatocellular carcinoma (0.75); 8) mesenteric fibrosis (0.81); 9) prostate
cancer (0.72); 10) glioma (0.70); 11) Alzheimer’s disease (0.87); and 12) head and neck cancer
(0.84). Concluding, our method fully automatically constructs and optimizes the radiomics
workflow, thereby streamlining the search for radiomics biomarkers in new applications. To
facilitate reproducibility and future research, we publicly release six datasets, the software
implementation of our framework (open-source), and the code to reproduce this study.
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3.1 Introduction

In the last decades, there has been a paradigm shift in health care, moving from a
reactive, one-size-fits-all approach, towards a more proactive, personalized approach
[1, 2, 3]. To aid in this process, personalized medicine generally involves clinical
decision support systems such as biomarkers, which relate specific patient character-
istics to some biological state, outcome or condition. To develop such biomarkers,
medical imaging has gained an increasingly important role [1, 7]. Currently, in
clinical practice, medical imaging is assessed by radiologists, which is generally
qualitative and observer dependent. Therefore, there is a need for quantitative, ob-
jective biomarkers to leverage the full potential of medical imaging for personalized
medicine to improve patient care.

To this end, machine learning, both using conventional and deep learning meth-
ods, has shown to be highly successful for medical image classification and has thus
become the de facto standard. Within the field of radiology, the term “radiomics” has
been coined to describe the use of a large number of quantitative medical imaging
features in combination with (typically conventional) machine learning to create
biomarkers [15]. Predictions for example relate to diagnosis, prognosis, histology,
treatment planning (e.g. chemotherapy, radiotherapy, immunotherapy), treatment
response, drug usage, surgery, and genetic mutations. The rise in popularity of
radiomics has resulted in a large number of papers and a wide variety of methods
[6, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27]. In a new radiomics application, finding the
optimal method out of the wide range of available options has to be done manually
through a heuristic trial-and-error process. This process has several disadvantages,
as it: 1) is time-consuming; 2) requires expert knowledge; 3) does not guarantee that
an optimal solution is found; 4) negatively affects the reproducibility; 5) has a high
risk of overfitting when not carefully conducted [24, 29]; and 6) limits the translation
to clinical practice [20].

The aim of this study is to streamline radiomics research, facilitate radiomics’
reproducibility, and simplify its application by proposing a framework to fully
automatically construct and optimize the radiomics workflow per application. Most
published radiomics methods roughly consist of the same steps: image segmentation,
preprocessing, feature extraction, and classification. Hence, as radiomics methods
show substantial overlap, we hypothesize that it should be possible to automatically
find the optimal radiomics model in a new clinical application by collecting numerous
methods in one single framework and systematically comparing and combining all
included components.

To optimize the radiomics workflow, we exploit recent advances in automated
machine learning (AutoML) [33]. We define a radiomics workflow as a specific
combination of algorithms and their associated hyperparameters, i.e., parameters
that need to be set before the actual learning step. To create a modular design, we
standardize the components of radiomics workflows, i.e., separating the workflows
in components with fixed inputs, functionality, and outputs. For each component,
we include a large number of algorithms and their associated hyperparameters.
We focus on conventional radiomics pipelines, i.e., using conventional machine
learning, for the following reasons: 1) radiomics methods are quick to train, hence
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AutoML is feasible to apply; 2) the radiomics search space is relatively clear, as
radiomics workflows typically follow the same steps, further enhancing the feasibility
of AutoML; 3) as there is a large number of radiomics papers, the impact of such a
method is potentially large; and 4) radiomics is also suitable for small datasets, which
is relevant for (rare) oncological applications [23, 24]. We describe the construction
of a radiomics workflow per application as a Combined Algorithm Selection and
Hyperparameter (CASH) optimization problem [34], in which we include both the
choice of algorithms and their associated hyperparameters. The CASH problem is
solved through a brute-force randomized search, identifying the most promising
workflows. To boost performance and stability, an ensemble is taken over the
most promising workflows to combine them in a single model. Through this use
of adaptive workflow optimization, our framework automatically constructs and
optimizes the radiomics workflow for each application.

To validate our approach and evaluate its generalizability, we evaluate our
framework on twelve different clinical applications using three publicly available
datasets and nine in-house datasets. To facilitate reproducibility, six of the in-house
datasets with data of in total 930 patients are publicly released with this paper [35]
(i.e., Chapter 4 of this thesis). To further facilitate reproducibility, we have made the
software implementation of our method, and the code to perform our experiments
on all datasets open-source [36, 37].

3.1.1 Background: Radiomics

To outline the context of this study, we here present some background on typical
radiomics studies. Generally, a radiomics study can be seen as a collection of various
steps: data acquisition and preparation, segmentation, feature extraction, and data
mining [19] (i.e., Chapter 2 of this thesis). In this study, we consider the data, i.e.,
the images, ground truth labels, and segmentations, to be given; data acquisition
and segmentation algorithms are therefore outside of the scope of this study.

First, radiomics workflows commonly start with preprocessing of the images and
the segmentations to compensate for undesired variations in the data. For example,
as radiomics features may be sensitive to image acquisition variations, harmonizing
the images may improve the repeatability, reproducibility, and overall performance
[18]. Examples of preprocessing steps are normalization of the image intensities
to a similar scale, or resampling all images (and segmentations) to the same voxel
spacing.

Second, quantitative image features are computationally extracted. As most
radiomics applications are in oncology, feature extraction algorithms generally focus
on describing properties of a specific region of interest, e.g., a tumor, and require a
segmentation. Features are typically split in three groups [38, 39]: 1) first-order or
histogram, quantifying intensity distributions; 2) morphology, quantifying shape;
and 3) higher-order or texture, quantifying spatial distributions of intensities or
specific patterns. Typically, radiomics studies extract hundreds or thousands of
features, but eliminate a large part through feature selection in the data mining step.
Many open-source toolboxes for radiomics feature extraction exist, such as MaZda
[40], CGITA [41], CERR [42], IBEX [43], PyRadiomics [44], CaPTk [45], LIFEx [46],
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and RaCat [47]. A comprehensive overview of radiomics toolboxes can be found in
Song et al. [24].

Lastly, the data mining component may itself consist of a combination of vari-
ous components: 1) feature imputation; 2) feature scaling; 3) feature selection; 4)
dimensionality reduction; 5) resampling; 6) (machine learning) algorithms to find re-
lationships between the remaining features and the clinical labels or outcomes. While
these methods are often seen as one component, i.e., the data mining component,
we split the data mining step into separate components (Subsection 3.2.2).

3.2 Methods

This study focuses on binary classification problems, as these are most common in
radiomics [24].

3.2.1 Adaptive workflow optimization

The aim of our framework is to automatically construct and optimize the radiomics
workflow out of a large number of algorithms and their associated hyperparameters.
To this end, we have identified three key requirements. First, as the optimal combina-
tion of algorithms may vary per application, our optimization strategy should adapt
the workflow per application. Second, while model selection is typically performed
before hyperparameter tuning, it has been shown that these two problems are not
independent [34]. Thus, combined optimization is required. Third, to prevent
over-fitting, all optimization should be performed on a training dataset and thereby
independent from the test dataset [24, 29, 33]. As manual model selection and
hyperparameter tuning is not feasible in a large solution space and not reproducible,
all optimization should be automatic.

The Combined Algorithm Selection and Hyperparameter (CASH) optimization
problem

To address the three identified key requirements, we propose to formulate the com-
plete radiomics workflow as a Combined Algorithm Selection and Hyperparameter
(CASH) optimization problem, which previously has been defined in AutoML for
machine learning model optimization [34]. For a single algorithm, the associated
hyperparameter space consists of all possible values of all the associated hyperparam-
eters. In machine learning, given a dataset D = {(~x1, y1), . . . , (~xn, yn)} consisting of
features ~x and ground truth labels y for n objects or samples, and a set of algorithms

A =
{

A(1), . . . , A(m)
}

with associated hyperparameter spaces ∆(1), . . . , ∆(m), the

CASH problem is to find the algorithm A∗ and associated hyperparameter set λ∗

that minimize the loss L:

A∗, λ∗ ∈ argmin
A(j)∈A,λ∈∆(j)

1
ktraining

ktraining

∑
i=1
L
(

A(j)
λ ,D(i)

train,D(i)
valid

)
, (3.1)
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where a cross-validation with ktraining iterations is used to define subsets of the

full dataset for training (D(i)
train) and validation (D(i)

valid). In order to combine model
selection and hyperparameter optimization, the problem can be reformulated as a
pure hyperparameter optimization problem by introducing a new hyperparameter λr

that selects between algorithms: ∆ = ∆(1) ⋃ . . .
⋃

∆(m) ⋃{λr} [34]. Thus, λr defines
which algorithm from A and which associated hyperparameter space ∆ are used.
This results in:

λ∗ ∈ argmin
λ∈∆

1
ktraining

ktraining

∑
i=1
L
(

λ,D(i)
train,D(i)

valid

)
. (3.2)

We extend the CASH problem to the complete radiomics workflow, consisting
of various components. The parameters of all algorithms are treated as hyperpa-
rameters. Furthermore, instead of introducing a single hyperparameter to select
between algorithms, we define multiple algorithm selection hyperparameters. Two
categories are distinguished: 1) for optional components, an activator hyperparame-
ter is introduced to determine whether the component is actually used or not; and
2) for mandatory components, an integer selector hyperparameter is introduced to
select one of the available algorithms. Optional components that contain multiple
algorithms have both an activator and selector hyperparameter. We thus reformulate
CASH for a collection of t algorithm sets AC = A1

⋃
. . .
⋃At and the collection of

associated hyperparameter spaces ∆C = ∆1
⋃

. . .
⋃

∆t. Including the activator and
selector model selection parameters within the hyperparameter collections, similar to
Equation 3.2, this results in:

λ∗ ∈ argmin
λC∈∆C

1
ktraining

ktraining

∑
i=1
L
(

λC,D(i)
train,D(i)

valid

)
. (3.3)

A schematic overview of the algorithm and hyperparameter search space is shown
in Figure 3.1. The resulting framework is coined WORC (Workflow for Optimal
Radiomics Classification). Including new algorithms and hyperparameters in this
reformulation is straight-forward, as these can simply be added to AC and ∆C,
respectively.

As a loss function L, we use the weighted F1-score, which is the harmonic mean
of precision and recall, and thus a class-balanced performance metric:

F1,w = 2
nclasses

∑
c=1

Nc

Ntotal

PRECc × RECc

PRECc + RECc
, (3.4)

where the number of classes nclasses = 2 for binary classification, Nc the number
of samples of class c, Ntotal the total number of samples, and PRECc and RECc the
precision and recall of class c, respectively.

As optimization strategy, we use a straightforward random search algorithm, as
it is efficient and often performs well [48]. In this random search, NRS workflows are
randomly sampled from the search space ∆C, and their F1,w scores are calculated.
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Ensembling

In radiomics studies showing the performance of multiple approaches there is often
not a clear winner: many workflows generally have similar predictive accuracy.
However, despite having similar overall accuracies, the actual prediction for an
individual sample may considerably vary per workflow. Moreover, due to the
CASH optimization, the best performing solution is likely to overfit. Hence, by
combining different workflows in an ensemble, the performance and generalizability
of radiomics models may be improved [49].

Furthermore, ensembling may serve as a form of regularization, as local mini-
mums in the optimization are balanced by the other solutions in the ensemble. When
repeating the optimization, due to the randomness of the search, which single work-
flow performs best and thus the predictions per sample may vary. This especially
occurs when using a small number of random searches. An ensemble may therefore
lead to a more stable solution of the random search.

Therefore, instead of selecting the single best workflow, we propose to use an
ensemble E . Various ensembling algorithms have been proposed in literature [50].
Optimizing the ensemble construction on the training dataset may in itself lead
to overfitting. Thus, we propose to use a simple approach of combining a fixed
number Nens of the best performing workflows by averaging their predictions (i.e.,
the posterior probabilities for binary classification). The workflows are ranked based
on their mean F1,w on the validation datasets.

The WORC optimization algorithm

The optimization algorithm of our WORC framework is depicted in Algorithm 1.
All optimization is performed on the training dataset by using a random-split
cross-validation with ktraining = 5, using 80% for training and 20% for validation
in a stratified manner, to make sure the distribution of the classes in all sets is
similar to the original. A random-split cross-validation is used as this allows a fixed
ratio between the training and validation datasets independent of ktraining, and is
consistent with our evaluation setup (Subsection 3.2.3). The algorithm returns an
ensemble E .

3.2.2 Radiomics components

In order to formulate radiomics as a CASH problem, the workflow needs to be
modular and consist of standardized components. In this way, for each component,
a set of algorithms and hyperparameters can be defined. We therefore split the
radiomics workflow into the following components: image and segmentation pre-
processing (3.2.2), feature extraction (3.2.2), feature and sample preprocessing (3.2.2),
and machine learning (3.2.2). For each component, we have included a collection
of commonly used algorithms. An overview of the default included components,
algorithms, and associated hyperparameters in the WORC framework is provided in
Table 3.1.
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Table 3.1: Overview of the algorithms and associated hyperparameter search spaces in the random search
as used in the WORC framework for binary classification problems. Definitions: B(p): Bernoulli distribu-
tion, equaling value True with probability p; C(c) a categorical distribution over c categories; U (min, max):
uniform distribution; U d(min, max): uniform distribution with only discrete values; U l(min, max): uni-
form distribution on a logarithmic scale. Abbreviations: AdaBoost: adaptive boosting; ADASYN; adaptive
synthetic sampling; KNN: k-nearest neighbors; LDA: linear discriminant analysis; LR: logistic regression;
PCA: principal component analysis; RBF: radial basis function; QDA: quadratic discriminant analysis;
RF: random forest; SMOTE: synthetic minority oversampling technique; SVM: support vector machine;
XGBoost: extreme gradient boosting.

Step Component Algorithm Hyperparameter Distribution
1 Feature Selection Group-wise selection Activator B(1.0)

Activator per group 17×B(0.5)
2 Feature Imputation Selector C(5)

Mean - -
Median - -
Mode - -
Constant (zero) - -
KNN Nr. Neighbors U d(5, 10)

3 Feature Selection Variance Threshold Activator B(1.0)
4 Feature Scaling Robust z-scoring - -
5 Feature Selection RELIEF Activator B(0.2)

Nr. Neighbors U d(2, 6)
Sample size U (0.75, 0.95)
Distance P U d(1, 4)
Nr. Features U d(10, 50)

6 Feature Selection SelectFromModel Activator B(0.2)
Type C(3)
LASSO alpha U (0.1, 1.5)
RF Nr. Trees U d(10, 100)

7 Dimensionality Reduction PCA Activator B(0.2)
Type C(4)

8 Feature Selection Univariate testing Activator B(0.2)
Threshold U l(10−3, 10−2.5)

9 Resampling Activator B(0.2)
Selector U d(1, 6)

RandomUnderSampling Strategy C(4)
RandomOverSampling Strategy C(4)
NearMiss Strategy C(4)
NeighborhoodCleaningRule Strategy C(4)

Nr. Neighbors U d(3, 15)
Cleaning threshold U (0.25, 75)

SMOTE Type C(4)
Strategy C(4)
Nr. Neighbors U d(3, 15)

ADASYN Strategy C(4)
Nr. Neighbors U d(3, 15)

10 Classification Selector U d(1, 8)
SVM Kernel C(3)

Regularization U l(100, 106)
Polynomial degree U d(1, 7)
Homogeneity U (0, 1)
RBF γ U l(10−5, 105)

RF Nr. Trees U d(10, 100)
Min. samples / split U d(2, 5)
Max. depth U d(5, 10)

LR Regularization U (0.01, 1)
Solver C(2)
Penalty C(3)
L1-ratio U (0, 1)

LDA Solver C(3)
Shrinkage U l(10−5, 105)

QDA Regularization U l(10−5, 105)
Gaussian Naive Bayes Regularization U (0, 1)
AdaBoost Nr. Estimators U d(10, 100)

Learning rate U l(0.01, 1)
XGBoost Nr. Rounds U d(10, 100)

Max. depth U d(3, 15)
Learning rate U l(0.01, 1)
γ U (0.01, 10)
Min. child weight U d(1, 7)
% Random samples U (0.3, 1.0)
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Algorithm 1 The WORC optimization algorithm
1: procedure WORC(∆C, NRS, ktraining, Nens)
2: for n ∈ {1, . . . , NRS} do
3: λn ← Random (∆C)

4: Ln = 1
ktraining

∑
ktraining
i=1 L

(
λn,D(i)

train,D(i)
valid

)
5: end for
6: ∆ranked ← Rank({λ1, . . . , λNRS} ∝ {L1, . . . ,LNRS})
7: ∆ens ← ∆ranked [1 : Nens]
8: Retrain ∆ens on full training set
9: Combine ∆ens into ensemble E

10: return E
11: end procedure

Image and segmentation preprocessing

Before feature extraction, image preprocessing such as image quantization, nor-
malization, resampling or noise filtering may be applied [16, 38, 44]. By default
no preprocessing is applied. The only exception is image normalization (using
z-scoring), which we apply in modalities that do not have a fixed unit and scale (e.g.
qualitative MRI, ultrasound), but not in modalities that have a fixed unit and scale
(e.g. Computed Tomography (CT), quantitative MRI such as T1 mapping).

Feature extraction

For each segmentation, 564 radiomics features quantifying intensity, shape, ori-
entation and texture are extracted through the open-source feature toolboxes
PyRadiomics [44] and PREDICT [51]. A comprehensive overview is provided
in Table 3.A.1. Thirteen intensity features describe various first-order statistics of
the raw intensity distributions within the segmentation, such as the mean, standard
deviation, and kurtosis. Thirty-five shape features describe the morphological prop-
erties of the segmentation, and are extracted based only on the segmentation, i.e.,
not using the image. These include shape descriptions such as the volume, com-
pactness, and circular variance. Nine orientation features describe the orientation
and positioning of the segmentation, i.e., not using the image. These include the
major axis orientations of a 3D ellipse fitted to the segmentation, the center of mass
coordinates and indices. Lastly, 507 texture features are extracted, which include
commonly used algorithms such as the Gray Level Co-occurence Matrix (GLCM)
(144 features) [39], Gray Level Size Zone Matrix (GLSZM) (16 features) [39], Gray
Level Run Length Matrix (GLRLM) (16 features) [39], Gray Level Dependence Matrix
(GLDM) (14 features) [39], Neighborhood Grey Tone Difference Matrix (NGTDM) (5
features) [39], Gabor filters (156 features) [39], Laplacian of Gaussian (LoG) filters
(39 features) [39], and Local Binary Patterns (LBP) (39 features) [52]. Additionally,
two less common feature groups are defined: based on local phase [53] (39 features)
and vesselness filters [54] (39 features).
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Many radiomics studies include datasets with variations in the slice thickness
due to heterogeneity in the acquisition protocols. This may cause feature values
to be dependent on the acquisition protocol. Moreover, the slice thickness is often
substantially larger than the pixel spacing. Hence, extracting robust 3D features
may be hampered by these variations, especially for low resolutions. To overcome
this issue, a 2.5D approach is used: all features except the histogram features are
extracted per 2D axial slice and aggregated over all slices. Afterwards, several
first-order statistics over the feature distributions are evaluated and used as actual
features, see also Table 3.A.1.

In addition to these features, depending on the application, clinical characteristics,
e.g. age and sex, and manually scored features, e.g. based on visual inspection by a
radiologist, can be added.

Some of the features have parameters themselves, such as the scale on which
a derivative is taken. As some features are rather computationally expensive to
extract, we do not include these parameters directly as hyperparameters in the CASH
problem. Instead, the features are extracted for a predefined range of parameter
values. In the next components, feature selection algorithms are employed to select
the most relevant features and thus parameters. The used parameter ranges are
reported in Table 3.A.1.

Radiomics studies may involve multiple scans per sample, e.g. in multimodal
(MRI + CT) or multi-contrast (T1-weighted MRI + T2-weighted MRI) studies. Com-
monly, radiomics features are defined on a single image, which also holds for the
features described in this study. Hence, when multiple scans per sample are included,
the 564 radiomics features are extracted per scan and concatenated.

Feature and sample preprocessing

We define feature and sample preprocessing as all algorithms that can be used
between the feature extraction and machine learning components. The order of these
algorithms in the WORC framework is fixed and given in Table 3.1.

Feature imputation is employed to replace missing feature values. Values may be
missing when a feature could not be defined and computed, e.g. a lesion may be too
small for a specific feature to be extracted. Algorithms for imputation include: 1)
mean; 2) median; 3) mode; 4) constant value (default: zero); and 5) nearest neighbor
approach.

Feature scaling is employed to ensure that all features have a similar scale. As this
generally benefits machine learning algorithms, this is always performed through
z-scoring. A robust version is used, where outliers, defined as feature values outside
the 5th − 95th percentile range are excluded before computation of the mean and
standard deviation.

Feature selection or dimensionality reduction algorithms may be employed to
select the most relevant features and eliminate irrelevant or redundant features.
As multiple algorithms may be combined, instead of defining feature selection or
dimensionality reduction as a single step, each algorithm is included as a single
step in the workflow with an activator hyperparameter to determine whether the
algorithm is used or not.
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Algorithms included are:

1. A group-wise feature selection, in which groups of features (i.e., intensity,
shape, and texture feature subgroups) can be selected or eliminated. To this
end, each feature group has an activator hyperparameter. This algorithm serves
as regularization, as it randomly reduces the feature set, and is therefore always
used. The group-wise feature selection is the first step in the workflows, as it
reduces the computation time of the other steps by reducing the feature space.

2. A variance threshold, in which features with a low variance (< 0.01) are
removed. This algorithm is always used, as this serves as a feature sanity check
with almost zero risk of removing relevant features. The variance threshold
is applied before the feature scaling, as this results in all features having unit
variance.

3. Optionally, the RELIEF algorithm [55], which ranks the features according to
the differences between neighboring samples. Features with more differences
between neighbors of different classes are considered higher in rank.

4. Optionally, feature selection using a machine learning model [56]. Features
are selected based on their importance as given by a machine learning model
trained on the dataset. Hence, the used algorithm should be able to give
the features an importance weight. Algorithms included are LASSO, logistic
regression, and random forest.

5. Optionally, principal component analysis (PCA), in which either only those
linear combinations of features are kept which explained 95% of the variance
in the features, or a fixed number of components (10, 50, or 100) is selected.

6. Optionally, individual feature selection through univariate testing. To this end,
for each feature, a Mann-Whitney U test is performed to test for significant
differences in distribution between the classes. Afterwards, only features with
p-values below a certain threshold are selected. The (non-parametric) Mann-
Whitney U test was chosen as it makes no assumptions about the distribution
of the features.

RELIEF, selection using a model, PCA, and univariate testing have a 27.5% chance
to be included in a workflow in the random search, as this gives an equal chance
of applying any of these or no feature selection algorithm. The feature selection
algorithms may only be combined in the mentioned order in the WORC framework.

Resampling algorithms may be used, primarily to deal with class imbalances.
These include various algorithms from the imbalanced-learn toolbox [57]: 1)
random under-sampling; 2) random over-sampling; 3) near-miss resampling; 4) the
neighborhood cleaning rule; 5) SMOTE [58] (regular, borderline, Tomek, and the
edited nearest neighbors variant); and 6) ADASYN [59]. All algorithms can apply
four out of five different resampling strategies, resampling: 1) the minority class (not
for undersampling algorithms); 2) all but the minority class; 3) the majority class
(not for oversampling algorithms); 4) all but the majority class; and 5) all classes.
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Machine learning

For machine learning, we mostly use methods from the scikit-learn toolbox
[60]. The following classification algorithms are included: 1) logistic regression; 2)
support vector machines (with a linear, polynomial, or radial basis function kernel);
3) random forests; 4) naive Bayes; 5) linear discriminant analysis; 6) quadratic
discriminant analysis (QDA); 7) AdaBoost [61]; and 8) extreme gradient boosting
(XGBoost) [62]. The associated hyperparameters for each algorithm are depicted in
Table 3.1.

3.2.3 Statistics

Evaluation using a single dataset is performed through a random-split cross-
validation with ktest = 100, see Figure 3.A.1(a) for a schematic overview. A random-
split cross-validation was chosen, as it has a relatively low computational complexity
while facilitating estimation of the generalization error [63, 64]. In each iteration,
the data is randomly split in 80% for training and 20% for testing in a stratified
manner. In each random-split iteration, all CASH optimization is performed within
the training set according to Algorithm 1 to eliminate any risk of overfitting on the
test set. When a fixed, independent training and test set are used, only the second,
internal random-split cross-validation with ktraining = 5 on the training set for the
CASH optimization is used, see Figure 3.A.1(b).

Performance metrics used for evaluation of the test set include the Area Under the
Curve (AUC), calculated using the Receiver Operating Characteristic (ROC) curve,
F1,w, sensitivity, specificity, precision, recall, accuracy, and Balanced Classification
Rate (BCR) [65]. When a single dataset is used, and thus a ktest = 100 random-split
cross-validation, 95% confidence intervals of the performance metrics are constructed
using the corrected resampled t-test, thereby taking into account that the samples in
the cross-validation splits are not statistically independent [64]. When a fixed training
and test set are used, 95% confidence intervals are constructed using 1000x bootstrap
resampling of the test dataset and the standard method for normal distributions
([66], table 6, method 1). ROC confidence bands are constructed using fixed-width
bands [67].

3.2.4 Software implementation

The WORC toolbox is implemented in Python3 and available open-source [36] under
the Apache License, Version 2.0. The WORC toolbox supports Unix and Windows
operating systems. Documentation on the WORC toolbox can be found online [68],
and several tutorials are available1. Basic usage only requires the user to spec-
ify the locations of the used data (i.e., images, segmentations, ground truth). A
minimal working example of the WORC toolbox interface in Python3 is shown in
Algorithm 3.A.1.

The WORC toolbox makes use of the fastr package [69], an automated work-
flow engine. fastr does not provide any actual implementation of the required

1https://github.com/MStarmans91/WORCTutorial

https://github.com/MStarmans91/WORCTutorial
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(radiomics) algorithms, but serves as a computational workflow engine, which has
several advantages. Firstly, fastr requires workflows to be modular and split into
standardized components or tools, with standardized inputs and outputs. This nicely
connects to the modular design of WORC, for which we therefore wrapped each
component as a tool in fastr. Alternating between feature extraction toolboxes
can be easily done by changing a single field in the WORC toolbox configuration.
Second, provenance is automatically tracked by fastr to facilitate repeatability
and reproducibility. Third, fastr offers support for multiple execution plugins in
order to be able to execute the same workflow on different computational resources
or clusters. Examples include linear execution, local threading on multiple CPUs,
and SLURM [70]. Fourth, fastr is agnostic to software language. Hence, instead
of restricting the user to a single programming language, algorithms (e.g. feature
toolboxes) can be supplied in a variety of languages such as Python, Matlab, R and
command line executables. Fifth, fastr provides a variety of import and export
plugins for loading and saving data. Besides using the local file storage, these
include use of XNAT [71].

The computation time of a WORC experiment roughly scales with ktraining, ktest,
and NRS. A high degree of parallelization for all these parameters is possible,
as all workflows can be executed independent of each other. We choose to run
the iterations of ktest sequential instead of in parallel to maintain a sustainable
computational load. For the ktraining iterations and NRS samples, all workflows are
run in parallel. The default experiments in this study consist of executing 500000
workflows (ktraining = 5, ktest = 100, and NRS = 1000). On average, experiments in
our study had a computation time of approximately 18 hours on a machine with 24
Intel E5-2695 v2 CPU cores, hence roughly 10 minutes per train-test cross-validation
iteration. The contribution of the feature extraction to the computation time is
negligible.

3.3 Experiments

3.3.1 Evaluation of default configuration on twelve different clinical
applications

In order to evaluate our WORC framework, experiments were performed on twelve
different clinical applications: see Table 3.2 for an overview of the twelve datasets,
and Figure 3.2 for example images from each dataset. All datasets are multi-center
with heterogeneity in the image acquisition protocols. For each experiment, per
patient, one or more scan(s) and segmentation(s), and a ground truth label are
provided. All scans were made at “baseline”, i.e., before any form of treatment or
surgery. One dataset (the Glioma dataset) consists of a fixed, independent training
and test set and is thus evaluated using 1000x bootstrap resampling. In the other
eleven datasets, the performance is evaluated using the ktest = 100 random-split
cross-validation.

The first six datasets (Lipo, Desmoid, Liver, GIST, CRLM, and Melanoma) are
publicly released as part of this study, see [35] (i.e., Chapter 4 of this thesis) for
more details. Three datasets (HCC, MesFib, and Prostate) cannot be made publicly
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Table 3.2: Overview of the twelve datasets used in this study to evaluate our WORC framework. Abbre-
viations: ADC: Apparent Diffusion Coefficient; CT: Computed Tomography; DWI: Diffusion Weighted
Imaging; MRI: Magnetic Resonance Imaging; T1w: T1 weighted; T2w: T2 weighted.

# Dataset Patients Modality Segmentation Description

1. LipoO 115 T1w MRI Tumor Distinguishing well-differentiated liposar-
coma from lipoma in 116 lesions from 115
patients [72] (i.e., Chapter 5 of this thesis).

2. DesmoidO 203 T1w MRI Tumor Differentiating desmoid-type fibromatosis
from soft-tissue sarcoma [73] (i.e., Chapter 6
of this thesis).

3. LiverO 186 T2w MRI Tumor Distinguishing malignant from benign pri-
mary solid liver lesions [74] (i.e., Chapter 12
of this thesis).

4. GISTO 246 CT Tumor Differentiating gastrointestinal stromal tu-
mors (GIST) from other intra-abdominal tu-
mors in 247 lesions from 246 patients [75] (i.e.,
Chapter 7 of this thesis).

5. CRLMO 77 CT Tumor Distinguishing replacement from desmoplas-
tic histopathological growth patterns in col-
orectal liver metastases (CRLM) in 93 lesions
from 77 patients [76] (i.e., Chapter 11 of this
thesis).

6. MelanomaO 103 CT Tumor Predicting the BRAF mutation status in
melanoma lung metastases in 169 lesions
from 103 patients [77] (i.e., Chapter 9 of this
thesis).

7. HCC 154 T2w MRI Liver Distinguishing livers in which no hepatocel-
lular carcinoma (HCC) developed from livers
with HCC at first detection during screening
[78].

8. MesFib 68 CT Surrounding
mesentery

Identifying patients with mesenteric fibrosis
at risk of developing intestinal complications
[79] (i.e., Chapter 10 of this thesis).

9. Prostate 40 T2w MRI,
DWI,
ADC

Lesion Classifying suspected prostate cancer lesions
in high-grade (Gleason > 6 ) versus low-
grade (Gleason <= 6) in 72 lesions from 40
patients [80].

10. Glioma 413 T1w &
T2w MRI

Tumor Predicting the 1p/19q co-deletion in patients
with presumed low-grade glioma with a train-
ing set of 284 patients and an external valida-
tion set of 129 patients [81].

11. Alzheimer 848 T1w MRI Hippocampus Distinguishing patients with Alzheimer’s dis-
ease from cognitively normal individuals in
848 subjects based on baseline T1w MRIs [82].

12. H&N 137 CT Gross tumor
volume

Predicting the T-stage (high (≥ 3) or low (<
3)) in patients with head-and-neck cancer [83].

ODataset publicly released as part of this study [35] (i.e., Chapter 4 of this thesis).
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available. The final three datasets (Glioma, Alzheimer, and H&N) are already
publicly available, and were described in previous studies [81, 83, 84].

For the Glioma dataset, the raw imaging data was not available. Instead, pre-
computed radiomics features are available [85], which were directly fed into WORC.

The Alzheimer dataset was obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI was to test whether serial MRI, positron emission tomography
(PET), other biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org.
This dataset will be referred to as the “Alzheimer” dataset. Here, radiomics was
used to distinguish patients with AD from cognitively normal (CN) individuals. The
cohort as described by Bron et al. [82] was used, which includes 334 patients with
AD and 520 CN individuals with approximately the same mean age in both groups
(AD: 74.9 years, CD: 74.2 years). The hippocampus was chosen as region of interest
for the radiomics analysis, as this region is known to suffer from atrophy early in
the disease process of AD. Automatic hippocampus segmentations were obtained
for each patient using the algorithm described by Bron et al. [86].

The H&N dataset [83] was obtained from a public database2 and directly fed
into WORC. For each lesion, the first gross tumor volume (GTV-1) segmentation was
used as region of interest for the radiomics analysis. Patients without a CT scan or a
GTV-1 segmentation were excluded.

3.3.2 Influence of the number of random search iterations and ensemble
size

An additional experiment was conducted to investigate the influence of the number
of random search iterations NRS and ensemble size Nens on the performance. For
reproducibility, this experiment was performed using the six datasets publicly
released in this study (Lipo, Desmoid, Liver, GIST, CRLM, and Melanoma). We
hypothesize that increasing Nens at first will improve the performance and stability,
and after some point, when the ratio Nens/NRS becomes too high, will reduce the
performance and stability as bad solutions are added to the ensemble.

We varied the number of random search iterations (NRS ∈ [10; 50; 100; 1000; 10000;
25000]) and the ensemble size (Nens ∈ [1(i.e., no ensembling); 10; 50; 100]) and re-
peated each experiment ten times with different seeds for the random number
generator. To limit the computational burden, ktest = 20 was used instead of the
default ktest = 100, and the NRS = 25000 experiment was only performed once
instead of ten times. For each configuration, both the average performance and the
stability were assessed in terms of the mean and standard deviation of F1,w. Based
on these experiments, the default number of random search iterations and ensemble
size for the WORC optimization algorithm were determined and used in all other
experiments.

2https://xnat.bmia.nl/data/projects/stwstrategyhn1

adni.loni.usc.edu
www.adni-info.org
https://xnat.bmia.nl/data/projects/stwstrategyhn1
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3.4 Results

3.4.1 Application of the WORC framework to twelve datasets

Error plots of the AUCs from the application of our WORC framework with the
same default configuration on the twelve different datasets are shown in Figure 3.3;
detailed performances, including other metrics, are shown in Table 3.3; the ROC
curves are shown in Figure 3.A.2. In eleven of the twelve datasets, we successfully
found a prediction model, with mean AUCs of 0.83 (Lipo), 0.82 (Desmoid), 0.81
(Liver), 0.77 (GIST), 0.68 (CRLM), 0.75 (HCC), 0.81 (MesFib), 0.72 (Prostate), 0.70
(Glioma), 0.87 (Alzheimer), and 0.84 (H&N). In the Melanoma dataset, the mean
AUC (0.51) was similar to that of guessing (0.50).

3.4.2 Influence of the number of random search iterations and ensemble
size

The performance of varying the number of random search iterations NRS and
ensemble size Nens in the first six datasets is reported in Table 3.4.

For five out of six datasets in this experiment (Lipo, Desmoid, Liver, GIST, and
CRLM), the mean performance generally improved when increasing both NRS and
Nens. The sixth dataset (Melanoma) is an exception, as the performances for varying
NRS and Nens was similar. This can be attributed to the fact that it is the only dataset
in this study where we could not successfully construct a productive model.

In the first five datasets, the mean F1,w for the lowest values, NRS = 1 (i.e., only
trying one random workflow) and Nens = 1 (i.e., no ensembling), was 0.75 (Lipo),
0.61 (Desmoid), 0.66 (Liver), 0.67 (GIST), and 0.54 (CRLM). The mean performance
for the highest values, NRS = 25000 and Nens = 100, was substantially higher for
all five datasets (Lipo: 0.84; Desmoid: 0.72; Liver: 0.80; GIST: 0.76; and CRLM:
0.63). The mean F1,w of NRS = 1000 was very similar to that of NRS = 25000, while
NRS = 25000 took 25 times longer to execute than NRS = 1000. This indicates that at
some point, here NRS = 1000, increasing the computation time by trying out more
workflows does not result in an increase in performance on the test set anymore.

At NRS = 10 and Nens = 1, the standard deviation of the F1,w (Lipo: 0.026;
Desmoid: 0.023; Liver: 0.022; GIST: 0.038; and CRLM: 0.027) was substantially higher
than at NRS = 10000, Nens = 100 (Lipo: 0.001; Desmoid: 0.004; Liver: 0.002; GIST:
0.002; and CRLM: 0.005). This indicates that increasing NRS and Nens improves the
stability of the model. The standard deviations of NRS = 10000 were similar to
NRS = 1000, illustrating that, similar to the mean performance, the stability at some
point converges. For each NRS value, the standard deviation at first decreased when
increasing Nens, but increased when Nens became similar or equal to NRS.

3.5 Discussion

In this study, we proposed a framework to automatically construct and optimize
radiomics workflows to generalize radiomics across applications. To evaluate the
performance and generalization, we applied our framework to twelve different,
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Table 3.4: Mean and standard deviation (Std) for the weighted F1-score when ten times repeating
experiments with varying number of random search iterations (NRS) and ensemble size (Nens) on six
different datasets (Lipo, Desmoid, Liver, GIST, CRLM, and Melanoma). The color coding of the mean
indicates the relative performance on each dataset (green: high; red: low); the color coding of the standard
deviation indicates the relative variation on each dataset (dark: high; light: low).

Lipo NRS = 10 NRS = 50 NRS = 100 NRS = 1000 NRS = 10000 NRS = 25000
Mean Std Mean Std Mean Std Mean Std Mean Std Mean

Nens = 1 0.754 0.026 0.772 0.021 0.790 0.026 0.784 0.016 0.790 0.012 0.800
Nens = 10 0.771 0.007 0.819 0.015 0.833 0.005 0.841 0.004 0.830 0.004 0.830
Nens = 50 - - 0.801 0.008 0.815 0.004 0.855 0.002 0.843 0.002 0.836
Nens = 100 - - - - 0.808 0.006 0.853 0.002 0.848 0.001 0.842

Desmoid NRS = 10 NRS = 50 NRS = 100 NRS = 1000 NRS = 10000 NRS = 25000
Mean Std Mean Std Mean Std Mean Std Mean Std Mean

Nens =1 0.607 0.023 0.621 0.020 0.612 0.024 0.634 0.018 0.679 0.012 0.689
Nens = 10 0.660 0.020 0.701 0.012 0.690 0.013 0.697 0.015 0.706 0.010 0.719
Nens = 50 - - 0.696 0.012 0.709 0.008 0.712 0.008 0.715 0.004 0.717
Nens = 100 - - - - 0.699 0.005 0.717 0.005 0.719 0.004 0.717

Liver NRS = 10 NRS = 50 NRS = 100 NRS = 1000 NRS = 10000 NRS = 25000
Mean Std Mean Std Mean Std Mean Std Mean Std Mean

Nens = 1 0.661 0.022 0.703 0.027 0.713 0.019 0.743 0.023 0.773 0.008 0.778
Nens = 10 0.709 0.016 0.755 0.015 0.762 0.011 0.792 0.007 0.805 0.005 0.806
Nens = 50 - - 0.753 0.013 0.767 0.005 0.797 0.004 0.801 0.003 0.807
Nens = 100 - - - - 0.766 0.006 0.793 0.003 0.798 0.002 0.803

GIST NRS = 10 NRS = 50 NRS = 100 NRS = 1000 NRS = 10000 NRS = 25000
Mean Std Mean Std Mean Std Mean Std Mean Std Mean

Nens = 1 0.668 0.038 0.709 0.023 0.712 0.023 0.725 0.019 0.735 0.010 0.733
Nens = 10 0.683 0.018 0.744 0.017 0.749 0.009 0.758 0.008 0.756 0.003 0.763
Nens = 50 - - 0.717 0.019 0.738 0.008 0.764 0.002 0.762 0.002 0.762
Nens = 100 - - - - 0.725 0.009 0.766 0.002 0.761 0.002 0.761

CRLM NRS = 10 NRS = 50 NRS = 100 NRS = 1000 NRS = 10000 NRS = 25000
Mean Std Mean Std Mean Std Mean Std Mean Std Mean

Nens = 1 0.545 0.027 0.572 0.038 0.555 0.025 0.589 0.026 0.583 0.015 0.591
Nens = 10 0.586 0.025 0.611 0.014 0.619 0.011 0.621 0.010 0.625 0.008 0.615
Nens = 50 - - 0.620 0.014 0.635 0.013 0.633 0.008 0.626 0.005 0.635
Nens = 100 - - - - 0.633 0.013 0.639 0.007 0.621 0.005 0.633

Melanoma NRS = 10 NRS = 50 NRS = 100 NRS = 1000 NRS = 10000 NRS = 25000
Mean Std Mean Std Mean Std Mean Std Mean Std Mean

Nens = 1 0.500 0.018 0.509 0.020 0.506 0.015 0.528 0.021 0.546 0.020 0.552
Nens = 10 0.489 0.018 0.506 0.016 0.508 0.011 0.522 0.015 0.539 0.011 0.553
Nens = 50 - - 0.488 0.011 0.495 0.008 0.520 0.009 0.534 0.005 0.537
Nens = 100 - - - - 0.490 0.010 0.513 0.004 0.529 0.004 0.536
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independent clinical applications, while using the exact same configuration. We
were able to find a classification model in eleven applications, indicating that our
WORC framework can be used to automatically find radiomics signatures in various
clinical applications.

The increase in radiomics studies in recent years has led to a wide variety of
radiomics algorithms and related software implementations [17, 24]. For a new
clinical application, finding a suitable radiomics workflow has to be done manually,
which is a tedious and time consuming process lacking reproducibility. We exploited
advances in automated machine learning in order to fully automatically construct
complete radiomics workflows from a large search space of radiomics components,
including image preprocessing, feature calculation, feature and sample preprocessing,
and machine learning algorithms. Hence, our WORC framework streamlines the
construction and optimization of radiomics workflows in new applications, and thus
facilitates probing datasets for radiomics signatures.

In the field of radiomics, there is a lack of reproducibility, while this is vital
for the transition of radiomics models to clinical practice [18, 24]. A recent study
[28] even warned that radiomics research must achieve “higher evidence levels” to
avoid a reproducibility crisis such as the recent one in psychology [87]. Hence, to
facilitate reproducibility, besides automating the radiomics workflows construction,
we have publicly released six datasets with a total of 930 patients[35] (i.e., Chapter 4
of this thesis), and made the WORC toolbox and the code to perform our experiments
on all datasets open-source [36, 37]. Besides a lack of reproducibility, there is a
positive publication bias in radiomics, with as few as 6% of the studies between 2015
and 2018 showing negative results as reported by Buvat et al. [88]. They indicate
that, to overcome this bias, sound methodology, robustness, reproducibility, and
standardization are key. By addressing these factors in our study, including extensive
validation of our framework on twelve different clinical applications, we hope to
contribute to overcoming the challenges for publishing negative results.

From the twelve datasets included in this study, the melanoma dataset is the only
dataset for which we were not able to find a biomarker, which is studied in detail
in Angus et al. [77] (i.e., Chapter 9 of this thesis). Additionally, Angus et al. [77]
showed that scoring by a radiologist also led to a negative result. This validates our
framework, showing that it does not invent a relation when one does not exist.

Several initiatives towards standardization of radiomics have been formed. The
Radiomics Quality Score (RQS) was defined to assess the quality of radiomics
studies [30]. While the RQS provides guidelines for the overall study evaluation
and reporting, it does not provide standardization of the radiomics workflows or
algorithms themselves. The Imaging Biomarker Standardization Initiative (IBSI)
[39, 89] provides guidelines for the radiomics feature extraction component and
standardization for a set of 174 features (we use 564 features by default, of which a
part is included in IBSI). In this study, we complement these important initiatives by
addressing the standardization of the radiomics workflow itself.

Related to this work, AutoML has previously been used in radiomics using
Tree Based Optimization Tool (TPOT) [90] by Su et al. [91] to predict the H3 K27M
mutation in midline glioma and Sun et al. [92] to predict invasive placentation.
These studies are examples of using AutoML to optimize the machine learning
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component of radiomics in two specific applications. In this study, we streamlined
the construction and optimization of the complete radiomics workflow, included a
large collection of commonly used radiomics algorithms and algorithms in the search
space, and extensively validated our approach and evaluated its generalizability in
twelve different applications. Additionally, our work shows similarities with the
Medical Segmentation Decathlon (MSD) [93], in which algorithms were compared on
a multitude of segmentation tasks. To this end, the MSD provided data representative
of various challenges in medical imaging and created a framework for benchmarking
segmentation algorithms and evaluating their generalizabily. Although not in a
challenge design, our contributions are similar, but on a different task, as we focus on
radiomics, i.e., classification of clinical outcomes, instead of segmentation. Moreover,
besides comparing a large collection of algorithms, we optimized combining them in
a radiomics prediction model using AutoML and ensembling.

The field of medical deep learning faces several similar challenges to conven-
tional radiomics [21, 22, 23, 26]: a lack of standardization, a wide variety of available
algorithms, and the need for tuning of model selection and hyperparameters per
application. The same problem thus persists: on a given application, from all avail-
able deep learning algorithms, how to find the optimal (combination of) workflows?
Here, we showed that automated machine learning may be used to streamline this
process for conventional radiomics algorithms. Hence, future research may include
a similar framework to WORC to facilitate construction and optimization of deep
learning workflows, including the full workflow from image to prediction, or a
hybrid approach combining deep learning and conventional radiomics. In the field
of computer science, the automatic deep learning model selection is addressed in
Neural Architecture Search (NAS) [94], which is currently a hot topic in the field of
AutoML [95]. In deep learning for medical imaging, NAS is still at an early stage,
and the available algorithms mostly focus on segmentation [96]. While the main
concept of our framework, i.e., the CASH optimization, could be applied in a similar
fashion for deep learning, this poses several challenges. First, deep learning models
generally take a lot longer to train, in the order of hours or even days, compared
to less than a second for conventional machine learning methods. Our extensive
optimization and cross-validation setup is therefore not feasible. Second, the deep
learning search space is less clear due to the wide variety of design options, while
conventional radiomics workflows typically follow the same steps. Lastly, while
current NAS approaches mostly focus on architectural design hyperparameters,
pre- and post-processing choices may be equally important to include in the search
space [97]. Most NAS methods jointly optimize the network hyperparameters and
weights through gradient based optimizations. As the pre- and post-processing
are performed outside of the network and require selector type hyperparameters,
combined optimization with the architectural design options is not trivial.

The two main components of the WORC optimization algorithm are the random
search and the ensemble. Our results show that, in line with our hypothesis,
increasing Nens at first improves both the performance and the stability of the
resulting models. However, as we also hypothesized, when the ratio Nens/NRS
becomes too large, the performance and stability decrease. On the six datasets in
this experiment, the performance and stability at NRS = 1000 was similar to that at
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NRS = 25000, while the computation time does increase. Therefore, NRS = 1000 was
chosen as the default in the WORC optimization algorithm, together with Nens = 100
to have an optimal Nens/NRS ratio.

For the three previously publicly released datasets from other studies, we com-
pared the performance of our WORC framework to that of the original studies. In the
Glioma dataset, our performance (AUC of 0.70) was similar to the original study
(van der Voort et al. [81]: AUC of 0.72). We thus showed that that our framework was
able to successfully construct a signature using an external set of features. Moreover,
as the Glioma dataset consists of a separate training and external validation set, we
also verified the external-validation setup (Figure 3.A.1 b). In the Alzheimer dataset,
our performance (AUC of 0.87) was also similar to the original study (Bron et al. [82]:
AUC range of 0.80 - 0.94, depending on the level of preprocessing). However, Bron
et al. [82] used whole-brain voxel-wise features, while we used radiomics features ex-
tracted from the hippocampus only. We may therefore have missed information from
other brain regions, having a negative effect on the performance in our study. On
the H&N dataset, Aerts et al. [83] did not evaluate the prognostic value of radiomics
for predicting the T-stage, but rather the association through the concordance index
(0.69). Moreover, Aerts et al. [83] trained a model on a separate dataset of patients
with a different clinical application (lung tumors) and externally validated the signa-
ture on the H&N dataset, while we performed an internal cross-validation on the
H&N dataset. As the lung dataset is not publicly available (anymore), the original
experimental setup could not be replicated. Hence the results cannot be directly
compared. Concluding, to the extent possible when comparing the results, our WORC
framework showed a similar performance as the original studies.

In principle, in any radiomics application, our WORC framework can be used
to construct and optimize the radiomics workflow. However, there is a trade-off
between the brute-force optimization of our WORC algorithm versus using prior
(domain) knowledge to develop a “logical” algorithm. Nonetheless, even in a small
search space, deciding purely based on prior knowledge which algorithm will
be optimal is complex and generally not feasible. Therefore, we suggest to use
domain knowledge to reduce the search space, as it may be possible on certain
applications to determine which algorithms a priori have a (near) zero chance of
succeeding. The WORC optimization algorithm can be used to construct and optimize
the radiomics workflow within the remaining search space. Moreover, when the
optimal solution is expected to not be included in the default WORC search space and
thus a new radiomics method is proposed, this can be added to our framework in a
straightforward manner. This facilitates systematic comparison of the new method
with the existing, already included methods, and combining the new method with
(parts of) the existing methods to optimize the radiomics workflow and increase the
overall performance.

In this study, we have not directly compared the performance of WORC to the
current standard practice in radiomics. Implicitly, one could argue that this is already
done by WORC as various workflows are compared. The comparison is complicated
by the lack of standardized methods in radiomics, resulting in variation in “standard”
practice. Based on the literature, standard practice can be defined as a priori selecting
specific methods, commonly one feature selection and one machine learning method,
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only tuning a small set of related parameters [6, 16, 17, 18, 20, 21, 22, 23, 24, 26,
27]. Effectively, this corresponds with substantially limiting the WORC search space
and not using an ensemble, thus resulting in a similar computation time unless
NRS is changed. Future research therefore includes the comparison of the WORC
optimization algorithm with this standard practice in radiomics.

Future research could include, firstly, the use of more advanced optimization
strategies to improve the performance. Generally, random search, as we use in the
WORC optimization algorithm, serves as a solid baseline for optimization problems
[48]. However, there is no guarantee that the optimum has been found, and the result
may differ when repeating an experiment. The original study introducing CASH
used Bayesian optimization, which may overcome these issues [34]. Other strategies
include multi-fidelity optimization (e.g. bandits), genetic or evolutionary algorithms
[91], or gradient based optimization [33]. However, the hyperparameter space in
the WORC framework is relatively large due to the inclusion of multiple (optional)
algorithm collections instead of just one, making optimization more complex and
computationally expensive. Moreover, optimizing the performance further on the
validation set may result in overfitting [33], therefore actually resulting in worse
generalization. Secondly, as we evaluated our framework on twelve different datasets,
when applying WORC on a new dataset, meta-learning could be used to learn from
the results on these previous twelve datasets [33]. Especially on smaller datasets,
taking into account which solutions worked best on previous datasets may improve
the performance and lower the computation time. Thirdly, future research into the
use of more advanced ensembling strategies may also improve the performance
and stability [98]. Lastly, our framework may be used on other clinical applications
to automatically optimize radiomics workflows. While we only showed the use
of our framework on CT and MRI, the used features have also been shown to be
successful in other modalities such as PET [99] and ultrasound [100], and thus the
WORC framework could also be useful in these modalities.

3.6 Conclusions

In this study, we proposed a framework for the fully automatic construction and
optimization of radiomics workflows to generalize radiomics across applications.
The framework was validated on twelve different, independent clinical applications,
on eleven of which our framework automatically constructed a successful radiomics
model. On the three datasets of these that were previously publicly released and
analyzed with different methods, we achieved a similar performance as that of the
original studies. Hence, our framework may be used to streamline the construction
and optimization of radiomics workflows on new applications, and thus for probing
datasets for radiomics signatures. By releasing six datasets publicly, and the WORC
toolbox implementing our framework and the code to reproduce the experiments
of this study open-source, we aim to facilitate reproducibility and validation of
radiomics algorithms.
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Data statement

Six of the datasets used in this study (Lipo, Desmoid, Liver, GIST, CRLM, and
Melanoma), comprising a total of 930 patients, are publicly released as part of
this study and hosted via a public XNAT3 as published in Starmans et al. [35]
(i.e., Chapter 4 of this thesis). By storing all data on XNAT in a structured and
standardized manner, experiments using these datasets can be easily executed at
various computational resources with the same code.

Three datasets were already publicly available as described in Section 3.3. The
other three datasets could not be made publicly available. The code for the experi-
ments on the nine publicly available datasets is available on GitHub [37].
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Appendix

Algorithm 3.A.1 Minimal working example of the WORC toolbox interface in Python

from WORC import SimpleWORC

# Create a Simple WORC o b j e c t
experiment = SimpleWORC( experiment_name )

# Set the input data according to the v a r i a b l e s we defined e a r l i e r
experiment . images_from_this_direc tory ( imagedatadir )
experiment . segmentat ions_from_this_direc tory ( imagedatadir )
experiment . l a b e l s _ f r o m _ t h i s _ f i l e ( l a b e l _ f i l e )
experiment . p r e d i c t _ l a b e l s ( label_name )

# Use the standard workflow f o r binary c l a s s i f i c a t i o n
experiment . b i n a r y _ c l a s s i f i c a t i o n ( )

# Change a c o n f i g u r a t i o n f i e l d to only use an SVM
experiment . add_conf ig_overr ides ( { ’ C l a s s i f i c a t i o n ’ : { ’ c l a s s i f i e r s ’ : ’ SVM’ } } )

# Run the experiment !
experiment . execute ( )
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B. External validation

Figure 3.A.1: Cross-validation setups used by our WORC framework for optimization and evaluation.
When a single dataset is used, internal validation is performed through a ktest = 100 random-split cross-
validation (a). When fixed, separate training and test datasets are used, external validation is performed
by developing the model on the training set and evaluating the performance on the test set through
1000x bootstrap resampling (b). Both include an internal ktraining = 5 random-split cross-validation on
the training set to split the training set into parts for actual training and validation, in which the model
optimization is performed. The final selected model, trained on the full training dataset, is used for
independent testing on the test dataset.
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Abstract

The WORC database consists in total of 930 patients composed of six datasets gathered at
the Erasmus MC, consisting of patients with: 1) well-differentiated liposarcoma or lipoma
(115 patients); 2) desmoid-type fibromatosis or extremity soft-tissue sarcomas (203 patients);
3) primary solid liver tumors, either malignant (hepatocellular carcinoma or intrahepatic
cholangiocarcinoma) or benign (hepatocellular adenoma or focal nodular hyperplasia) (186
patients); 4) gastrointestinal stromal tumors (GISTs) and intra-abdominal gastrointestinal
tumors radiologically resembling GISTs (246 patients); 5) colorectal liver metastases (77
patients); and 6) lung metastases of metastatic melanoma (103 patients). For each patient,
either a magnetic resonance imaging (MRI) or computed tomography (CT) scan, collected
from routine clinical care, one or multiple (semi-)automatic lesion segmentations, and ground
truth labels from a gold standard (e.g., pathologically proven) are available. All datasets are
multi-center imaging datasets, as patients referred to our institute often received imaging at
their referring hospital. The dataset can be used to validate or develop radiomics methods,
i.e., using machine or deep learning to relate the visual appearance to the ground truth labels,
and automatic segmentation methods. See also the research article related to this dataset:
Starmans et al., Reproducible radiomics through automated machine learning validated on twelve
clinical applications, Submitted (i.e., Chapter 3 in this thesis).
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4.1 Value of the data

• This dataset provides imaging data, outlined lesions, age, sex, and ground truth
labels (e.g., diagnosis, genetic mutations, biological characteristics), mostly
obtained from pathology, for a large number of patients from six different
cancer studies. Publicly sharing imaging data with ground truth labels and
segmentations benefits reproducibility, enables external validation, and hence
accelerates transition to clinical practice [18, 24, 31]. This dataset has been
collected in routine clinical care at multiple centers, thus representing the real-
life variability and heterogeneity of the data. For these reasons, this dataset is
a valuable resource.

• This dataset will be beneficial for researchers working on computer aided
diagnosis for cancer based on imaging, specifically in the areas of liposarcoma,
desmoid type-fibromatosis, gastrointestinal stromal lesions, sarcoma, primary
liver cancer, (colorectal) liver metastases, and (melanoma) lung metastases.

• This data can be used to validate or develop radiomics methods (i.e., using
conventional machine learning or deep learning to relate the visual appearance
to the ground truth labels) and automated segmentation methods. For example,
the data can be used as a large, heterogeneous independent test set, or to
increase the size and heterogeneity of train sets for developing new methods.

4.2 Data description

The WORC dataset contains 930 patients and is composed of six radiomics stud-
ies, coined the Lipo (Subsection 4.2.1), Desmoid (Subsection 4.2.2), Liver (Sub-
section 4.2.3), GIST (Subsection 4.2.4), CRLM (Subsection 4.2.5), and Melanoma
(Subsection 4.2.6) dataset. All datasets were collected at the Erasmus MC, Rotterdam,
the Netherlands, but are multi-center imaging datasets, as patients referred to our
institute often received imaging at their referring hospital. Example images of each
dataset are shown in Figure 4.1.

For each study, five different sources of data are provided:

1. Routine clinical MRI (Lipo, Desmoid, Liver) or CT (GIST, CRLM, Melanoma)
scans

2. Details on the acquisition protocols (Subsection 4.2.7)

3. Lesion segmentations

4. Age and sex

5. Pathological ground truth labels

The data is available on an XNAT server; an online platform to store (medical)
imaging data in a standardized way, allowing access through both a Graphical User
Interface (GUI) and an Application Programming Interface (API) [71]. The datasets
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Table 4.1: Specifications of the data.

Subject Medical Imaging

Specific subject
area

Routine MRI and CT scans, lesion segmentations, clinical
labels of six radiomics studies

Type of data Medical Imaging data (NIfTI files):
MRI data:

T1-weighted
T2-weighted

CT data
Medical Imaging metadata (JSON files)
Segmentations (NIfTI files)
Patient data (Excel files):

Age
Sex

Pathological ground truth (Excel files, subject level
variables)

How data were
acquired

MRI and CT scans were acquired on 177 different
scanners.
Age and sex were obtained from patient records.
Ground truth data were obtained from a gold standard,
mainly by pathological analysis of tumor tissue obtained
from either biopsy or resection. An exception was made
for “typical” focal nodular hyperplasia (FNH) [12], which
was confirmed radiologically.
Whole-tumor segmentations were semi-automatically
annotated by various observers.

Data format Raw

Parameters for
data collection

MRI and CT scans were acquired with a variety of image
acquisition protocols.

Description of
data collection

Pre-treatment imaging data and ground truth data were
retrospectively included at the Erasmus MC from patients
with:

Well-differentiated liposarcoma or lipoma between 2009
- 2018

Desmoid-type fibromatosis and extremity
soft-tissue-sarcoma between 1990 - 2018

Primary solid liver tumors between 2002 - 2018
Gastrointestinal stromal tumors or similar

intra-abdominal tumors between 2004 - 2017
Colorectal liver metastases between 2003 - 2015
Lung metastases of melanoma between 2012 - 2018
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Data source
location Erasmus MC (University Medical Center),

Rotterdam, The Netherlands

Data accessibility Repository name: Health-RI XNAT
Data identification number: WORC
Direct URL to data:
https://xnat.bmia.nl/data/projects/worc
Data usage agreement:
https://xnat.bmia.nl/data/projects/worc/resources/License/files/WORC_data_license.pdf

Data downloader:
https://doi.org/10.5281/zenodo.5119040

Related research
article Starmans et al. [101] (i.e., Chapter 3 of this thesis)

for this study are publicly hosted on the Health-RI XNAT 1. Code to download the
data locally, and code to reproduce the experiments from Starmans et al. [102] on
these datasets, have been released open-source [37].

For each study, details on the ground truth labels and the data collection are
given in the respective subsections. The acquisition protocol details for all studies are
described in Subsection 4.2.7. The scans have been converted from DICOM to NIfTI
using the dcm2niix toolbox version v1.0.20180518 [103]. For each patient, a single
scan is included and provided as NIfTI files named “image.nii.gz”. The associated
details on the scan acquisition protocol are given in a JSON file named “metadata.json”.
The corresponding segmentation is given in the NIfTI file “segmentation.nii.gz”, where
a label of 1 indicates a lesion and a label of 0 indicates background. For the CRLM
dataset, multiple segmentations of various lesions made by multiple observers are
given, see Subsection 4.2.5. The ground truth pathological labels for all studies are
combined in the Excel sheet “Clinical_data.xlsx” and as labels on subject level in the
XNAT project to allow for easier automatic processing.

4.2.1 The Lipo dataset

This dataset consists of 115 patients with either a well-differentiated liposarcoma
(WDLPS) (N = 58) or lipoma (N = 58), as described in Vos et al. [72] (i.e., Chapter 5
of this thesis). One patient has both a WDLPS and a lipoma, thus the dataset in total
contains 116 lesions. For each patient, a T1-weighted MRI scan is provided. The
ground truth label, i.e., whether a lesion was a WDLPS or lipoma, is represented
by the MDM2 amplification. The MDM2 amplification status for each patient is
provided, where patients have label 1 if the lesion was a WDLPS, and label 0 if the
lesion was a lipoma.

For the patient with both a WDLPS and a lipoma, a segmentation is provided for
each lesion: “segmentation_WDLPS.nii.gz” and “segmentation_lipoma.nii.gz”

1https://xnat.bmia.nl/data/projects/worc

https://xnat.bmia.nl/data/projects/worc
https://xnat.bmia.nl/data/projects/worc/resources/License/files/WORC_data_license.pdf
https://doi.org/10.5281/zenodo.5119040
https://xnat.bmia.nl/data/projects/worc
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4.2.2 The Desmoid dataset

This dataset consists of 203 patients with either desmoid-type fibromatosis (DTF)
(N = 72) or extremity soft-tissue sarcomas (STS), i.e, the non-DTF group (N = 131),
as described in Timbergen et al. [73] (i.e., Chapter 6 of this thesis). The non-DTF group
consists of 64 myxofibrosarcomas, 31 leiomyosarcomas, and 36 myxoid liposarcomas.
For each patient, a T1-weighted MRI scan is provided. The ground truth label, i.e.,
whether a lesion was a DTF or one of the non-DTF phenotypes, was confirmed by
histology. The differential diagnosis for each patient is provided, where patients
have label 1 if the lesion was a DTF, and label 0 if the lesion was a non-DTF. The
subtype of the non-DTF lesions is also provided.

4.2.3 The Liver dataset

This dataset consists of 186 patients with either a malignant (N = 94) or benign
(N = 93) primary solid liver tumor, as described in Starmans et al. [74] (i.e., Chap-
ter 12 of this thesis). For each patient, a T2-weighted MRI scan is provided. The
malignant group includes 81 hepatocellular carcinoma (HCC) and 13 intrahepatic
cholangiocarcinoma (iCCA); the benign group includes 48 hepatocellular adenoma
(HCA) and 44 FNH. The ground truth label, i.e., the phenotype of a lesion, was
based on pathology. An exception are “typical” FNH [12], for which the ground
truth was established radiologically. The differential diagnosis for each patient is
provided, where patients have label 1 if the lesion was malignant, and label 0 if the
lesion was benign. The phenotype of the lesions is also provided.

4.2.4 The GIST dataset

This dataset consists of 246 patients with either gastrointestinal stromal lesions
(GISTs) (N = 125) or intra-abdominal tumors radiologically resembling GIST (non-
GIST) (N = 122), as described in Starmans et al. [75] (i.e., Chapter 7 of this thesis).
One patient has two GISTs, thus the dataset in total contains 247 lesions. The
non-GIST group consists of 22 schwannoma, 25 leiomyosarcoma, 25 leiomyoma, 25
esophageal or gastri junctional adenocarcinoma, and 25 lymphoma. For each patient,
a contrast-enhanced venous phase CT scan is provided. The ground truth label, i.e.,
whether a lesion was a GIST or one of the non-GIST phenotypes, was confirmed
by histology. The differential diagnosis for each patient is provided, where patients
have label 1 if the lesion was a GIST, and label 0 if the lesion was a non-GIST. The
subtype of the non-GIST lesions is also provided.

4.2.5 The CRLM dataset

This dataset consists of 77 patients with a total of 93 colorectal liver metastases
(CRLM) with either a 100% desmoplastic histopathological growth patterns (HGP)
[104] (N = 46) or 100% replacement HGP (N = 47), as described in Starmans et
al. [76] (i.e., Chapter 11 of this thesis) 2. For each patient, a portal venous phase CT

2Starmans et al. [76] reported a total of 76 patients, but the dataset did actually contain 77 patients.
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scan is provided. The ground truth label, i.e., whether a lesion had a desmoplastic or
replacement HGP, was determined on hematoxylin and eosin stained tissue sections.
The HGP type for each patient is provided, where patients have label 1 if the lesions
had replacement HGP, and label 0 if the lesions had a desmoplastic HGP. As the
HGP is assumed to be the same for all lesions of a subject, the ground truth is
provided on subject level.

For each patient, for each lesion, segmentations by three clinicians (STUD1, PhD,
RAD) and a Convolutional Neural Network (CNN) are available: e.g. “segmenta-
tion_lesion1_STUD1.nii.gz”, “segmentation_lesion1_PhD.nii.gz”,

“segmentation_lesion1_RAD.nii.gz”, and “segmentation_lesion1_CNN.nii.gz”. Addition-
ally, each lesion was segmented a second time by the first observer (STUD2), and is
named e.g. “segmentation_lesion1_STUD2.nii.gz”. Note that 8 out of the 93 lesions
(9%) were missed by the CNN, and thus do not include a CNN segmentation

4.2.6 The Melanoma dataset

This dataset consists of 169 lung metastases of 103 patients with BRAF mutated
(N = 51) or BRAF wild type (N = 52) metastatic melanoma, as described in Angus et
al. [77] (i.e., Chapter 9 of this thesis). For each patient, a contrast-enhanced thoracic
CT scan is provided. When multiple lesions were included, the corresponding
segmentations are named “segmentation_lesion1.nii.gz”, “segmentation_lesion2.nii.gz”,
and so on. The ground truth label, i.e., whether lesions from a patient were BRAF
mutated or BRAF wild type, is provided, where patients have label 1 if the lesions
were BRAF mutated, and label 0 if the lesions were BRAF wild type. As the BRAF
mutation is assumed to be the same for all lesions of a subject, the ground truth is
provided on subject level.

4.2.7 Acquisition protocol details

From the original DICOM files from the MRI and CT scans, the values of several
tags were extracted to provide information on the used acquisition protocols, which
for each scan are included in a metadata.json file.

For both MRI and CT scans, the following general acquisition protocol details
from the following DICOM tags are included:

(0008, 0060) Modality

(0008, 0070) Manufacturer

(0008, 1090) Model name

(0018, 0020) Scanning sequence

(0018, 0022) Scan options

(0018, 0023) Acquisition type

(0018, 0024) Sequence name

(0018, 0050) Slice thickness

(0018, 0083) Number of averages

(0018, 0084) Spacing between slices

(0018, 0093) Percent sampling

(0018, 1030) Protocol name

(0018, 5100) Patient position

(0020, 0037) Orientation

(0028, 0030) Pixel spacing

For each MRI scan, the following specific acquisition protocol details from the
following DICOM tags are additionally included:
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(0018, 0080) Repetition time

(0018, 0081) Echo time

(0018, 0082) Inversion time

(0018, 0084) Imaging frequency

(0018, 0087) Tesla

(0018, 0091) Echo train length

(0018, 1250) Coil

(0018, 1310) Acquisition matrix

(0018, 1312) Encoding direction

(0018, 1314) Flip angle

For each CT scan, the following specific acquisition protocol details from the
following DICOM tags are additionally included:

(0018, 0060) KVP (kilovoltage peak) (0018, 1210) Convolution kernel

4.3 Experimental design, materials and methods

4.3.1 The Lipo dataset

Patients that were either referred to/discussed at, or diagnosed/treated at the
Erasmus MC Cancer Institute, Rotterdam, the Netherlands, between December 2009
and August 2018 with a pathologically confirmed diagnosis of lipoma or WDLPS
were retrospectively included. Inclusion criteria were: a known MDM2 amplification
status tested by fluorescence in situ hybridization (FISH); and at least a T1-weighted
MRI sequence available before treatment (if applicable).

The lipoma and WDLPS lesions were segmented semi-automatically on the T1-
weighted MRI [105]. All images were segmented independently by either a medical
masters student or a PhD candidate with an MD degree. Both were blinded to the
type of lipomatous lesion. To validate segmentation accuracy, a sample set was
verified by a musculoskeletal radiologist, specialized in soft-tissue sarcomas (4 years
of experience). Semi-automatic results were always reviewed and manually corrected
when necessary, to assure the result resembled manual segmentation.

4.3.2 The Desmoid dataset

Patients that were either referred to/discussed at, or diagnosed/treated at the
Erasmus MC Cancer Institute, Rotterdam, the Netherlands, between 1990 and 2018
with histologically proven primary or recurrent DTF, or a malignant extremity STS,
were retrospectively included. Inclusion criteria were: at least a T1-weighted MRI
sequence available before treatment (if applicable); for the STS, a histologically
proven primary myxofibrosarcoma, myxoid liposarcoma or leiomyosarcoma of the
extremities.

The DTF and STS were all segmented semi-automatically on the T1-weighted MRI
[105]. All images were segmented independently by either a medical masters student
or a PhD candidate with an MD degree under supervision of a musculoskeletal
radiologist (4 years of experience). Both were blinded to the type of lesion. Semi-
automatic results were always reviewed and manually corrected when necessary, to
assure the result resembled manual segmentation.
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4.3.3 The Liver dataset

Patients that were either referred to/discussed at, or diagnosed/treated at the
Erasmus MC Cancer Institute, Rotterdam, the Netherlands, between 2002 and 2018
with a primary solid liver lesion were retrospectively included. Inclusion criteria
were: HCC, iCCA, HCA or FNH; pathologically proven phenotype; and availability
of a T2-weighted MRI scan. An exception to the pathologically proven phenotype was
made for typical FNH, which are routinely not biopsied and diagnosed radiologically
[106], as typical FNH imaging characteristics are 100% specific [107]. Exclusion
criteria were: maximum diameter equal to or smaller than 3 cm; underlying liver
disease; and significant imaging artefacts.

The lesions were all segmented semi-automatically on the T2-weighted MRI [105].
All images were segmented independently by one of two experienced abdominal
radiologists (21 and 8 years of experience). Both were blinded to the type of
lesion. Semi-automatic results were always reviewed and manually corrected when
necessary, to assure the result resembled manual segmentation.

4.3.4 The GIST dataset

Patients that were either referred to/discussed at, or diagnosed/treated at the
Erasmus MC Cancer Institute, Rotterdam, the Netherlands, between 2004 and
2017 with a histopathologically proven primary GIST or intra-abdominal tumors
radiologically resembling GIST were retrospectively included. The inclusion criterion
was availability of at least a contrast-enhanced venous-phase CT prior to treatment.
The sample sizes of the non-GIST and the GIST cohort were matched. The non-GIST
subtypes were balanced, i.e. a similar number of patients per subtype was randomly
included.

The lesions were all segmented semi-automatically on the CT scan [105]. All
images were segmented independently by either a medical masters student or a PhD
candidate with an MD degree under supervision of a musculoskeletal radiologist (5
years of experience). Both were blinded to the type of lesion. Semi-automatic results
were always reviewed and manually corrected when necessary, to assure the result
resembled manual segmentation.

4.3.5 The CRLM dataset

Patients that were surgically treated at the Erasmus MC Cancer Institute, Rotterdam,
the Netherlands, between 2003 and 2015 with CRLM were included. Inclusion
criteria were: availability of at least a contrast-enhanced venous-phase CT prior to
treatment; available hematoxylin and eosin stained tissue sections; either a 100%
desmoplastic HGP or a 100% replacement HGP. Exclusion criteria were: recurrent
CRLM or CRLM requiring two-staged resections; and treatment with preoperative
chemotherapy, since chemotherapy may alter HGPs [104]. HGPs were scored on
resection specimens according to the consensus guidelines by an expert pathologist
(PV) [108].

The lesions were all segmented semi-automatically on the CT scan [105]. Lesion
segmentation was performed by four observers: a medicine student with no relevant
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experience (STUD1), a PhD student (PhD) with limited experience, an expert abdom-
inal radiologist (RAD), and an automatic CNN. The student segmented all lesions
a second time (STUD2). All observers were blinded to the type of lesion. Semi-
automatic results were always reviewed and manually corrected when necessary, to
assure the result resembled manual segmentation.

The CNN used for the automatic segmentations was the Hybrid-Dense-UNet,
which achieved state-of-the-art performance on the LITS liver tumor segmentation
challenge and is open-source [109, 110]. The original CNN as trained on the LITS
data was used. From the CNN lesion segmentations, only lesions that had histology
were extracted, and the segmentations were saved per lesion.

4.3.6 The Melanoma dataset

Patients that were diagnosed with metastatic melanoma at the Erasmus MC Cancer
Institute, Rotterdam, the Netherlands, between January 2012 and February 2018
were retrospectively included. Inclusion criteria were: known tumor BRAF mutation,
diagnostic contrast-enhanced thoracic CT scan prior to commencement of any sys-
temic therapy, and at least one lung metastasis of ≥ 10 mm evaluable according to
Response Evaluation Criteria In Solid Tumors (RECIST) v1.1 [8]. Patients with BRAF
mutations other than p.V600E were excluded. Formalin-fixed paraffin embedded
material of the primary tumor and/ or metastasis was tested for BRAF (exon 15)
using a polymerase chain reaction based assay or next generation sequencing as part
of standard care.

Per patient, up to two lung lesions ≥ 10 mm were selected by a clinician super-
vised by an experienced chest radiologist and segmented semi-automatically on the
CT scan [105]. In patients with >2 lung metastases of ≥10 mm, either the two largest
or the two most easily distinguishable lesions were segmented (i.e., two separate
lesions were preferred over two adjacent lesions). The clinician was blinded to the
type of lesion. Semi-automatic results were always reviewed and manually corrected
when necessary, to assure the result resembled manual segmentation.

4.4 Ethics statement

The study protocol for the collection of the WORC database conformed to the ethical
guidelines of the 1975 Declaration of Helsinki. Approval by the local institutional
review board of the Erasmus MC (Rotterdam, the Netherlands) was obtained for col-
lection of the WORC database (MEC-2020-0961), and separately for the six included
studies (Lipo: MEC-2016-339, Desmoid: MEC-2016-339, Liver: MEC-2017-1035, GIST:
MEC-2017-1187, CRLM: MEC-2017-479, Melanoma: MEC-2019-0693). The need for
informed consent was waived due to the use of anonymized, retrospective data.
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Abstract

Background: Well differentiated liposarcoma (WDLPS) can be difficult to distinguish from
lipoma. Currently, this distinction is made by testing for MDM2 amplification, which requires
a biopsy. The aim of this study was to develop a noninvasive method to predict MDM2
amplification status using radiomics features derived from MRI.

Methods: Patients with an MDM2-negative lipoma or MDM2-positive WDLPS and a
pretreatment T1-weighted MRI scan who were referred to Erasmus MC between 2009 and
2018 were included. When available, other MRI sequences were included in the radiomics
analysis. Features describing intensity, shape and texture were extracted from the tumour
region. Classification was performed using various machine learning approaches. Evaluation
was performed through a 100 times random-split cross-validation. The performance of the
models was compared with the performance of three expert radiologists.

Results: The data set included 116 tumours (58 patients with lipoma, 58 with WDLPS)
and originated from 41 different MRI scanners, resulting in wide heterogeneity in imaging
hardware and acquisition protocols. The radiomics model based on T1 imaging features alone
resulted in a mean area under the curve (AUC) of 0.83, sensitivity of 0.68 and specificity
of 0.84. Adding the T2-weighted imaging features in an explorative analysis improved the
model to a mean AUC of 0.89, sensitivity of 0.74 and specificity of 0.88. The three radiologists
scored an AUC of 0.74 and 0.72 and 0.61 respectively; a sensitivity of 0.74, 0.91 and 0.64; and
a specificity of 0.55, 0.36 and 0.59.

Conclusion: Radiomics is a promising, non-invasive method for differentiating between
WDLPS and lipoma, outperforming the scores of the radiologists. Further optimization and
validation is needed before introduction into clinical practice.
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5.1 Introduction

Lipomatous tumours are the most commonly observed soft tissue tumours, mostly
owing to the high incidence of benign lipomas. Also within the malignant spectrum
of soft tissue tumours (soft tissue sarcomas), liposarcoma is among the most fre-
quently observed subtype [111]. Well differentiated liposarcoma (WDLPS) represents
the largest subgroup of liposarcomas; these low-grade, locally aggressive tumours
are characterized by amplification of the MDM2 gene[111]. In rare cases, WDLPS
can progress into a more aggressive subtype: dedifferentiated liposarcoma (DDLPS),
which has a poorer prognosis [111].

Several differences between lipoma and WDLPS on MRI have been described in
the literature: size, location, tumour depth and intratumour heterogeneity. However,
as there can be considerable overlap between these features, distinguishing between
the two tumour types remains difficult, even for trained radiologists [112, 113, 114,
115, 116]. As the differences between lipoma/WDLPS and DDLPS are more obvious,
this distinction can accurately be made solely by eye, [115, 117, 118, 119, 120].

An accurate diagnosis is needed to provide patients with the correct treatment
and follow-up. Whereas lipomas do not necessarily need to be excised, patients
with WDLPS are generally considered candidates for surgery [121]. Currently,
the standard way to differentiate lipoma from WDLPS is through a biopsy, which
is tested for MDM2 amplification using fluorescence in situ hybridization (FISH).
Amplification of the MDM2 gene is present in WDLPS, but absent in lipoma [111,
122, 123]. Taking a biopsy is an invasive and painful procedure for the patient, and is
associated with risks, depending on tumour location, and potential sampling error.

The field of radiomics is based on the hypothesis that there is a relationship
between medical imaging features and the underlying biological information, such as
genetic aberrations [15]. Radiomics approaches have already been used in soft tissue
sarcomas to predict other outcomes, such as differentiating between benign and
malignant soft tissue tumours in general (not specifically lipomatous tumours) [124],
between intermediate- and high-grade soft tissue sarcomas [125], and predicting the
risk of lung metastases from soft tissue sarcoma of the extremities [126]. Based on
these results, it was hypothesized that radiomics might also be able to differentiate
WDLPS from lipoma.

The aim of this study was to develop a model that predicts MDM2 amplification
status using a radiomics approach, thereby differentiating WDLPS from lipoma.
MRI scans obtained during routine diagnostic evaluation were used. Additionally,
the performance of this model was compared with that of three trained radiologists
reading the images. Finally, patients with DDLPS were included and classified by
the radiologists to confirm that these tumours have distinct imaging features and
can be identified without the help of additional models or tests.

5.2 Methods

Patients with a pathologically confirmed diagnosis of lipoma, WDLPS or DDLPS, a
known MDM2 amplification status tested by FISH, and with at least a T1-weighted
MRI sequence available before treatment (if applicable) were included. All patients
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were either referred to/discussed at, or diagnosed/treated at the Erasmus MC Cancer
Institute, Rotterdam, the Netherlands, between December 2009 and August 2018. As
a result, some of the MRI scans were made in the referring hospitals. The study was
reviewed and approved by the local medical ethics review committee (MEC-2016-
339), and performed in accordance with national and international legislation. Need
for informed consent was waived owing to the retrospective and anonymized nature
of the study.

To explore the potential predictive value of different MRI sequences, several
additional sequences were included, when available. Based on their use in clinical
practice, the sequences were grouped into: plain T1 (T1); T1 with fat saturation (T1-
FS) including T1 inversion recovery (IR) approaches (T1-IR; a combination of Spectral
Presaturation with Inversion Recovery (SPIR), Short τ Inversion Recovery (STIR),
Spectral Attenuated Inversion Recovery (SPAIR) and Turbo Inversion Recovery
Magnitude (TIRM)); T1 with gadolinium contrast (T1-GD); T1 with fat saturation
and gadolinium contrast (T1-FS-GD) including T1-IR with GD; T2 imaging (T2)
including T2-Fast Field Echo (T2FFE) and T2∗; and T2-FS including T2-IR.

5.2.1 Segmentation

The lipoma and WDLPS lesions were segmented semiautomatically on the T1 images
to indicate the regions of interest (ROIs) [105]. All images were segmented indepen-
dently by either a medical masters student or a PhD candidate with an MD degree.
Both were blinded to the type of lipomatous tumour. To validate segmentation
accuracy, a sample set was verified by a musculoskeletal radiologist, specialized in
soft tissue sarcomas. Median tumour size, defined as the maximum diameter in
centimetres, and tumour volume, with corresponding i.q.r. values, were extracted
from the segmentations. The DDLPS images were used only for visual classification
by the radiologists, and therefore not segmented.

To transfer the segmentations to the other sequences, all sequences were spatially
aligned to the T1 sequence using automated image registration (elastix software
[127]), thereby compensating for patient movement between scans. Quality assurance
was done by visual inspection.

5.2.2 Radiomics feature extraction

Quantitative imaging features related to intensity, shape and texture were extracted
from the ROIs using PyRadiomics software [44, 51]. More details can be found in
Section 5.A. The shape features quantified were morphological properties such as
volume and similarity to a circle. Intensity features were quantified using first-order
statistics such as the mean and standard deviation. Texture features quantified more
complex properties, such as the presence of heterogeneity and speckle patterns.
When a scan type was missing for a patient, the feature values for the missing image
type were imputed.
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5.2.3 Additional features

Several additional features were selected based on the available literature and
clinical relevance, including patient characteristics (age, sex and tumour location
(extremity,trunk, head and neck or pelvis)) and manually scored features (tumour
depth (superficial or deep), unilobular or multilobular tumour, atypical appearance
on T1 image (yes or no)). These are referred to as patient and manually scored
features respectively. Tumours were considered superficial when entirely located
above the fascia, or as deep-seated when located beneath the fascia, or with invasion
of the fascia.

5.2.4 Decision model creation

To create a decision model from the features, the Workflow for Optimal Radiomics
Classification (WORC) toolbox [36] was used. A schematic overview of the radiomics
methodology is shown in Figure 5.1.

In WORC, decision model creation is divided into several steps. These steps
include, for example, selection of features that offer the highest predictive value
and machine learning to discover the patterns in these features that distinguish
between WDLPS and lipoma. For each of these steps, numerous algorithms have
been proposed in the literature. WORC performs an exhaustive search amongst
these algorithms, in a fully automated way, and establishes the combination of
algorithms that maximizes the prediction accuracy. As the single best solution may
be a coincidental finding, the 50 best performing solutions were combined into
a single model, with the purpose of creating a more robust model and boosting
performance. More details can be found in Section 5.B.

5.2.5 Experimental set-up

To assess the predictive value of the T1 imaging features, and the additional patient
and manually scored features, five models were trained and tested based on: imaging
features only (model 1); patient features only (model 2); manually scored features
only (model 3); a combination of imaging features and manually scored features
(model 4); and volume only (model 5). The fifth model was included because WDLPS
is generally larger than lipoma [113]. Additionally, to investigate the potential of
the features independent of volume, these five models were evaluated on a volume-
matched cohort, that is a subset of the data in which the distribution of tumour
volume was similar among WDLPS and lipoma. These models were trained on the
full data set, but tested only on patients from the volume-matched cohort.

Next, the potential value of other MRI sequences was explored by training and
testing multiple imaging-based radiomics models using combinations of the various
MRI sequences. When a model showed more potential than the T1 imaging-only
model, it was evaluated on the volume-matched cohort as well.
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5.2.6 Evaluation

Model evaluation was performed through cross-validation. The data were randomly
split for 100 iterations, using 80 per cent for training and 20 per cent for testing.
In each iteration, automatic workflow optimization was performed on the training
set in an internal ten times random split cross-validation (Figure 5.A.1). Thus, the
models were optimized solely on the training set; the test set was used only for
evaluation of the final model. All splitting was done in a stratified manner to keep
the balance between WDLPS and lipoma similar in all data sets.

Performance was evaluated using the area under the curve (AUC) of the receiver
operating characteristic (ROC) curve, accuracy, sensitivity, specificity, negative pre-
dictive value and positive predictive value, averaged over the 100 cross-validation
iterations. Positive MDM2 amplification status (WDLPS) was defined as the pos-
itive class. Ninety-five per cent confidence intervals for the mean performance
measures were constructed using the corrected resampled t test based on all 100
cross-validation iterations, thereby taking into account that the samples in the cross-
validation splits were not statistically independent [64].

5.2.7 Model insights

Insight into the model was gained by ranking the patients from typical to atypical for
both lipoma and WDLPS, based on the consistency of the model predictions. This
was determined by the number of times (percentage) that a patient was classified
correctly when included in the test set. Typical examples were patients who were
always classified correctly; and atypical vice versa. In addition, to identify the
individual imaging features included in the radiomics model and to assess their
respective contribution to the model, univariable statistical testing of the imaging
features was undertaken using the Mann–Whitney U test. P values were corrected
for multiple testing using the Bonferroni correction.

5.2.8 Classification by radiologists

Three radiologists with expertise in soft tissue tumours classified the lipomatous
tumours; radiologists 1, 2 and 3 had 3, 10 and 5 years of experience respectively. First,
the radiologists had to classify the tumours as either DDLPS or WDLPS/lipoma
(non-DDLPS), to confirm that DDLPS can be recognized visually. Regardless of
whether a tumour was classified as DDLPS or not, the tumours subsequently had
to be classified as MDM2-negative (lipoma) or MDM2-positive (WDLPS/DDLPS).
The classification was done using a ten-point scale to indicate the certainty of the
radiologists. The radiologists had access to all sequences that were available for each
patient, as well as the age and sex.

5.3 Results

In total, 138 tumours were included: 58 patients had an MDM2-negative lipoma,
58 had an MDM2-positive WDLPS and 22 had an MDM2-positive DDLPS. Most
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patients were men (60.1 per cent) and had a deep-seated tumour located in a leg.
Median WDLPS size was 20.4 cm and median volume was 36.3 cl, compared with
12.3 cm and 12.9 cl for lipoma (Table 5.1).

Most of the patients underwent surgery: 32 with a lipoma, 50 with a WDLPS
and 19 of those with a DDLPS. The eight patients with a WDLPS who did not have
surgery were treated conservatively with an active surveillance approach, whereas
the three with a DDLPS who did not have surgery had an inoperable tumour.

The 116 lipoma and WDLPS scans came from 41 differentMRI scanners; there
was wide heterogeneity in imaging hardware and acquisition protocols used, re-
flected in differences in magnetic field strength (1.5T, 98 scans; 1T, 10 scans; 3T, 8
scans), manufacturer (Siemens, Munich, Germany, 45 scans; Philips, Amsterdam,
the Netherlands, 45 scans; GE, Chicago, Illinois, USA, 26 scans), scanner model (19
different ones), slice thickness, repetition time and echo time. Additional sequences
besides T1 were available in subsets of patients: T1-FS in 55 patients (47.4 per cent),
T1-GD in 42 patients (36.2 per cent), T1-FS-GD in 80 patients (69.0 per cent), T2 in 76
patients (65.5 per cent) and T2-FS in 92 patients (79.3 per cent) (Table 5.A.1).

5.3.1 Evaluation of radiomics models based on T1 imaging and
additional features

The performances of models 1–5 are shown in Figure 5.2 and Table 5.A.2. Model 1,
based on the T1 imaging features, resulted in an AUC of 0.83, sensitivity of 0.68 and
specificity of 0.84. Model 2, based on patient features, had a lower AUC (0.75), higher
sensitivity (0.77), but lower specificity (0.59). Similarly, model 3, based on manually
scored features, also had a lower AUC (0.72), higher sensitivity (0.76) and lower
specificity (0.57). Model 4, combining the imaging and manually scored features,
performed worse than model 1, implying that imaging features are sufficient as
input. Finally, model 5, based on volume alone, performed similarly to model 1 with
an AUC of 0.83, sensitivity of 0.67 and specificity of 0.84. Although the performance
metrics were similar for models 1 and 5, the ROC curves in Figure 5.2 show some
differences. The ROC curve for the volume model (Figure 5.2e) has some sharp
bends, while that for the T1 imaging model is smoother (Figure 5.2a).

5.3.2 Evaluation of the radiomics models with additional MRI sequences

Most models with an additional MRI sequence had a similar performance to the
T1 imaging model (Table 5.A.3). However, the model combining the T1 and T2
imaging features showed a clear improvement in performance, with an AUC of 0.89,
sensitivity of 0.74 and specificity of 0.88. The distribution of patient characteristics
and the distribution of WDLPS and lipoma were similar across patients who had a
T2 scan, indicating that the added value is within the T2 imaging features and not
a result of incidental correlation with these characteristics, for example owing to
selection bias.
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Figure 5.2: Receiver operating characteristic (ROC) curves for the radiomics models based on the T1-
weighted MRI sequence. a Using imaging features only, b using patient features only, c using manually
scored features only, d using T1 imaging features combined with manually scored features, and e using
volume only. The shaded area indicates the 95 per cent confidence intervals of the 100 times random-split
cross-validation; the curve is fit through their means. The performance of the three radiologists is shown.
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Table 5.1: Characteristics of the patients with lipomatous tumours. ∗With percentages in parentheses
unless indicated otherwise; †values are median (i.q.r.). WDLPS, well differentiated liposarcoma; DDLPS,
dedifferentiated liposarcoma.

No. of patients∗ (n = 138)

Age (years)† 64 (54–71)
Sex ratio (M: F) 83: 55
Diagnosis

Lipoma 58 (42.0)
WDLPS 58 (42.0)
DDLPS 22 (15.9)

Tumour location
Upper extremity 14 (10.1)
Lower extremity 71 (51.4)
Trunk 37 (26.8)
Head and neck 6 (4.3)
Retroperitoneum and pelvis 6 (4.3)
Paratesticular 4 (2.9)

Tumour depth
Superficial 20 (14.5)
Deep 118 (85.5)

Tumour size (cm)†

Lipoma 12.3 (9.3–15.5)
WDLPS 20.4 (15.9–26.3)

Tumour volume (cl)†

Lipoma 12.9 (4.6–25.0)
WDLPS 36.3 (22.9–85.5)

∗With percentages in parentheses unless indicated otherwise; †values are median
(i.q.r.). WDLPS, well differentiated liposarcoma; DDLPS, dedifferentiated liposar-
coma.

5.3.3 Evaluation of models on volume-matched cohort

Model 5, based on volume alone, illustrated that volume is indeed a strong predictive
factor. The 17 tumours with a volume above 70 cl were all WDLPS, whereas the
21 tumours with a volume below 7 cl were all lipoma. In the volume-matched
cohort, consisting of the other 78 tumours with a volume between 7 and 70 cl, the
volume distributions for WDLPS and lipoma were more similar. As only the T2
scans provided additional value over the T1 imaging features, the T1+T2 imaging
model was evaluated for the volume-matched cohort as well.

The performance of both imaging-based models (T1 and T1+T2) was worse on
the volume-matched cohort (T1: AUC 0.69; T1+T2: AUC 0.81) (Table 5.2) than on
the entire cohort (AUC 0.83 and 0.89 respectively) (Table 5.A.3). The models based
on the patient and manually scored features performed similarly to the models
tested on the full cohort. The model based on volume alone still performed above
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chance (mean AUC 0.64), but considerably worse than on the entire data set. In this
volume-matched data set, both the T1 imaging model (AUC 0.69, sensitivity 0.60,
specificity 0.74) and the T1+T2 imaging model (AUC 0.81, sensitivity 0.66, specificity
0.84) performed considerably better than volume alone (Table 5.2). This showed that
these models were not based solely on volume, and that other features provided
additional predictive value over volume.

5.3.4 Model insights

Of the 116 lipomatous tumours, 69 (26 WDLPS, 43 lipoma) were always classified
correctly by model 1 in all 100 cross-validation iterations. In contrast, 13 tumours
(9 WDLPS, 4 lipoma) were always classified incorrectly. Figure 5.3 shows four MRI
slices of such typical and atypical examples of lipoma and WDLPS. The lesions that
were always classified incorrectly were checked for possible sampling error of the
biopsy. The MDM2 amplification status of eight of the 13 tumours always classified
incorrectly was already determined on the resection specimen (6 WDLPS, 2 lipoma).
For the other five patients, in whom it was tested on the biopsy (3 WDLPS, 2 lipoma),
pathological examination of the resection specimen confirmed the diagnosis, except
for one patient with a lipoma who did not undergo surgery. In the other patient
with a lipoma, the resection specimen again tested negative for MDM2 amplification.
The three WDLPS resection specimens were not retested.

Analysis of feature importance was done for the volume-matched cohort, as the
results on the full data set were dominated by volume-related measures. In total, 16
individual features were found to be significant after Bonferroni correction on the
volume-matched cohort (Figure 5.A.2, supporting information). These included 11
shape features (including several volume-related statistics), four texture features and
one intensity feature.

5.3.5 Radiomics models compared with radiologists

On the entire cohort, the AUCs of all three radiologists (0.74, 0.72 and 0.61 for
radiologist 1, 2 and 3 respectively) (Table 5.A.4) were below the lower limit of the 95
per cent c.i. of the T1 imaging model (0.75 to 0.90) (Figure 5.2 and Table 5.A.2), as
well as of the 95 per cent c.i. of the T1+T2 imaging model (0.83 to 0.95) (Table 5.A.3).

Table 5.2: Performance of radiomics models trained on the full cohort, but evaluated in the volume-
matched cohort.

T1 imaging T1 + T2 Patient Manually scored Volume
features imaging features features features

AUC 0.69 [0.58, 0.80] 0.81 [0.72, 0.90] 0.74 [0.64, 0.84] 0.67 [0.56, 0.77] 0.64 [0.53, 0.74]
Accuracy 0.67 [0.57, 0.76] 0.75 [0.66, 0.83] 0.66 [0.56, 0.75] 0.60 [0.51, 0.69] 0.66 [0.57, 0.74]
Sensitivity 0.60 [0.45, 0.75] 0.66 [0.52, 0.79] 0.69 [0.55, 0.83] 0.70 [0.53, 0.87] 0.50 [0.36, 0.64]
Specificity 0.74 [0.60, 0.87] 0.84 [0.71, 0.96] 0.62 [0.48, 0.76] 0.51 [0.36, 0.65] 0.82 [0.71, 0.92]
NPV 0.66 [0.54, 0.77] 0.72 [0.60, 0.83] 0.68 [0.56, 0.79] 0.65 [0.49, 0.80] 0.62 [0.53, 0.71]
PPV 0.72 [0.58, 0.85] 0.81 [0.69, 0.93] 0.65 [0.54, 0.76] 0.59 [0.49, 0.69] 0.74 [0.61, 0.87]
Values are mean (95 per cent c.i.) over the cross-validation iterations. AUC: area under the curve; NPV:
negative predictive value; PPV: positive predictive value.
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a Typical lipoma b Atypical lipoma

c Atypical WDLPS d Typical WLPS

Figure 5.3: Examples of typical and atypical lipomas and well differentiated liposarcomas. a Typical
lipoma, b atypical lipoma, c atypical well differentiated liposarcoma (WDLPS) and d typical WDLPS. The
typical examples are from two patients always classified correctly by the T1 imaging model; the atypical
examples are from two patients always classified incorrectly by the T1 imaging model.

The radiologists achieved sensitivity values similar to (0.64 and 0.74) or higher (0.91)
than those of the radiomics models (T1: 0.68; T1+T2: 0.74), but their specificity
was much lower (radiomics: 0.84 and 0.88 respectively; radiologists 1–3: 0.55, 0.36
and 0.59 respectively). The Cohen’s κ value was 0.24, 0.04 and 0.40 for all pairs of
radiologists, with a mean of 0.23, indicating poor interobserver agreement.

On the volume-matched cohort, the radiologists had a performance (AUC 0.68,
0.74 and 0.55) (Table 5.A.4) more similar to that of the T1 imaging model (AUC
0.69) (Table 5.2). On average, the T1 imaging model still performed better in terms
of specificity (radiomics: 0.74; radiologists 1–3: 0.58, 0.37 and 0.50), whereas the
radiologists again performed better on sensitivity (radiomics: 0.60; radiologists 1–3:
0.65, 0.88 and 0.60). However, the T1+T2 imaging model performed much better
(AUC 0.81, sensitivity 0.66, specificity 0.84) than both the T1 imaging model and
the radiologists. On this cohort, the Cohen’s κ values were 0.18, –0.04 and 0.34 for
all pairs of radiologists, with a mean of 0.16, again indicating poor interobserver
agreement.



5.4. Discussion

5

81

5.3.6 Distinction between dedifferentiated liposarcoma and well
differentiated liposarcoma/lipoma

Besides classifying lipoma and WDLPS, the radiologists also classified the scans from
22 patients with DDLPS to evaluate whether DDLPS can indeed be identified by
imaging only, without the help of additional models. Radiologists 1–3 had an AUC
of 0.97, 0.91 and 0.90 respectively; a sensitivity of 0.95, 0.95 and 0.91; and a specificity
of 0.95, 0.56 and 0.89 in distinguishing DDLPS from non-DDLPS (WDLPS/lipoma)
(Table 5.A.4).

5.4 Discussion

This study shows that there is a relationship between quantitative MRI features
and MDM2 amplification status, and that radiomics is a promising non-invasive
method for differentiating lipoma from WDLPS. Although the radiologists were able
to distinguish between DDLPS and non-DDLPS, they were outperformed by the
T1 and T1+T2 imaging models in differentiating WDLPS from lipoma. Moreover,
the agreement between radiologists was very poor, whereas the radiomics-based
predictions were objective and reproducible (given a tumour segmentation).

Remarkably, the model trained on volume alone had a similar performance to
the T1 imaging model, which included many additional features. However, in the
volume-matched data set, the T1 imaging model performed considerably better
than the volume-only model, indicating that other features do provide additional
predictive value. It is already known that WDLPS is on average larger than lipoma
[113], and the relationship with volume (or size) in our data set was also strong;
the database did not contain lipoma larger than 70 cl or WDLPS smaller than 7
cl although these do exist [128, 129]. However, all WDLPS lesions start as small
tumours and grow over time, so the measured tumour volume depends on the
moment of presentation, and a small or intermediate tumour volume is therefore
not a reliable biomarker. Future research should include expansion of the data
set to make the volume distributions more representative (including lipoma larger
than 70 cl and WDLPS smaller than 7 cl), thereby making the radiomics model less
volume-dependent.

The models trained solely on either the patient or manually scored features
performed slightly worse than the model trained on the T1 imaging features only.
As the combined model did not outperform the T1 imaging model, the manually
scored features did not add much in the search for the best radiomics model.
Additionally, the manually scored features may be observer-dependent, and thus
prone to subjectivity. Although patient features (age, sex and tumour location) are
objective, the distribution in the present data set may not be representative of clinical
practice. For example, none of the patients with WDLPS were younger than 35
years, there were no lipomas among patients older than 82 years, no lipomas in the
head and neck region, and no WDLPS in the pelvis or shoulder/trunk; all these
might occur in daily clinical practice. Therefore, the imaging-only models have more
potential as an objective tool in clinical practice.
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The results of present study are similar to those of Thornhill et al. [130], who
used a comparable approach and showed that lipomas can be distinguished from
liposarcomas by texture and shape analysis. Strong points of the present study
include the larger sample size (116 versus 44 in Thornhill et al. [130]). Thornhill et
al. [130] also included other liposarcoma subtypes in their model, such as DDLPS
and myxoid liposarcoma (8 of 20 included liposarcomas). These other liposarcoma
subtypes have distinct radiological features [115, 119], which in general can be easily
discriminated from lipomas by experienced radiologists. By solely including the two
tumour types that are the most difficult to distinguish (WDLPS and lipoma) in the ra-
diomics model, the present data set is more challenging and more clinically relevant.
In contrast to the cases described by Thornhill et al. [130], the diagnosis of all patients
in the present data set was confirmed by verifying the MDM2 amplification status
using FISH, the current standard for diagnosing and differentiating between lipoma
and WDLPS [111, 122, 123]. The present radiomics model only requires routine MRI
scans (T1, and optionally T2) without contrast injection; the other sequences did not
add any predictive value to the model. As almost all standard MRI protocols include
a T1 and T2 sequence, the present radiomics method is generalizable, feasible and
applicable for use in daily practice. Finally, these radiomics models were developed
and evaluated on a heterogeneous data set, thereby increasing the chance that the
reported performance can be reproduced in a routine clinical setting when using
other MRI scanners.

Advantages of using a radiomics approach over pathological assessment to dif-
ferentiate between lipoma and WDLPS include sparing patients an invasive and
painful biopsy, and saving the substantial costs of a radiologist performing the
imaging-guided biopsy and of the pathologist assessing it, including the costs of
molecular testing by FISH. Radiomics makes use of MRI images obtained during
routine diagnostic evaluation and patients do not need becomes a widely available
tool, patients with WDLPS can be identified and referred to a soft tissue sarcoma ex-
pert centre at an earlier stage, with potential beneficial effects on further diagnostics,
treatment and follow-up.

Several limitations of this study should be noted, besides the volume bias already
mentioned. First, segmentation of ROIs of the tumours was done manually, which
inherently leads to both interobserver and intraobserver variability, as has been
quantified for other cancer types [131, 132, 133]. Variability in segmenting the
ROIs might lead to variability in the extracted imaging features and subsequently
influence the classification of tumours. Additionally, manual segmentation is rather
time-consuming. This could be addressed by use of automated segmentation tools
that might be available in the future. Second, variation in imaging protocols might
have influenced the imaging statistics. No restrictions were put on the T1 MRI
sequences regarding field strength, slice thickness, or other MRI acquisition settings,
as selecting a single protocol is an unrealistic reflection of daily clinical practice and
would have made the results non-generalizable. Instead, this study shows that the
present radiomics approach is robust to these variations by both training and testing
the model on heterogeneous data. Third, the model is based on retrospectively
collected data, which might have led to selection and information bias. This potential
selection bias might have occurred particularly in the lipoma subgroup, as usually
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only large and atypical lipomas are referred to a sarcoma centre. However, this
probably made the data set even more challenging and relevant, as these can be seen
as the complex cases. Addition of the ‘small and typical’ lipomas would have made
the classification easier, and radiomics is not needed to make the distinction for such
lipomas.

The present radiomics model could serve as a non-invasive, quick and low-cost
alternative to a biopsy. Although the model needs optimization to match the accuracy
of a biopsy, there could be a certain patient group for whom the model may already
be useful. For example, patients at high risk of complications of biopsy, or those
in whom the radiomics model can predict the MDM2 amplification status with a
high degree of certainty, could already be treated according to the prediction of the
radiomics model. Although further research is required to identify which patients
could benefit most from the present model, initial misclassification of a WDLPS as
a lipoma would not harm the patient, considering that active surveillance seems
a safe option in patients without (invalidating) symptoms and/or tumour growth,
at least in the short term30. In addition, the performance of the radiomics model
improved substantially when T2 images were added. However, only 65.5 per cent of
the patients had a T2 scan available, so for a follow-up study it is proposed to use
MRI with at least both T1 and T2 sequences.
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Appendix

Appendix 5.A Radiomics feature extraction

In this study, radiomics features quantifying intensity, shape and texture were
extracted. Intensity features were extracted using the histogram of all intensity values
within the Regions of Interest (ROIs) and included several first order statistics such as
the mean, standard deviation and kurtosis. Shape features were extracted by solely
using the ROI and included shape descriptions such as the compactness, roundness
and circular variance. Additionally, the volume and orientation of the ROI were
used. Texture features were extracted using the Gray Level Co-occurrence Matrix,
Gray Level Size Zone Matrix Gray Level Run Length Matrix and Neighborhood Grey
Tone Difference Matrix. All features were extracted using the defaults for MR images
from PyRadiomics.

The used dataset is highly heterogeneous in terms of acquisition protocols.
Especially the variations in slice thickness and contrast may cause feature values to
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be highly dependent on the acquisition protocol. The slice thickness varies between
2.5mm and 10mm. Hence, extracting robust 3D features may be hampered by these
variations, especially for the low resolutions. To overcome this issue, all features are
extracted per 2D axial slice and aggregated over all slices. Due to the slice thickness
and pixel spacing heterogeneity, the images were not resampled. Due to variations
in especially the magnetic field strength, echo time, and repetition time, the image
contrast highly varies, which will affect the feature values. To overcome this, each
3D MRI is normalized using z-scoring before feature extraction.

The code to extract the features has been published open-source [134].

Appendix 5.B Technical details on decision model creation

The Workflow for Optimal Radiomics Classification (WORC) toolbox[36] makes us of
adaptive algorithm optimization to create the optimal performing workflow from a
variety of methods. We define a workflow as a sequential combination of algorithms
and their respective parameters.

WORC includes algorithms to perform feature imputation, feature selection,
feature scaling, oversampling, and machine learning. Feature selection was per-
formed to eliminate features which are not useful to distinguish between WDLPS
and lipoma. These included; 1) a group-wise search, in which specific groups of
features (i.e. intensity, shape, and the several subgroups of texture features as de-
fined in Supplementary Materials 1) are selected or deleted; 2) a variance threshold,
in which features with a low variance are removed; and 3) principal component
analysis (PCA), in which only those linear combinations of features were kept which
explained a large part of the variance in the features.

Feature scaling was performed to make all features have the same scale, as
otherwise the machine learning methods may focus only on those features with large
values. This was done through z-scoring, i.e. subtracting the mean value followed
by division by the standard deviation. In this way, all features had a mean of zero
and a variance of one.

Oversampling was used to make sure the classes (i.e. WDLPS and lipoma) were
balanced in the training dataset. These include 1) random oversampling, which
randomly repeats patients of the minority class; and 2) SMOTE [58], which creates
new synthetic patients using a combination of the patients in the minority class.

Lastly, machine learning methods were used to determine a decision rule to
distinguish between WDLPS and lipoma. These included 1) logistic regression;
2) support vector machines; 3) random forests; 4) naive Bayes; and 5) linear and
quadratic discriminant analysis.

Most of the included methods require specific settings or parameters to be set,
which may have a large impact on the performance. As these parameters have to be
determined before executing the workflow, these are so-called “hyperparameters”.
In WORC, we treat all parameters of all methods as hyperparameters, since they
may all influence the decision model creation. Hence, we simultaneously determine
which combination of algorithms and hyperparameters performs best.

In the training phase, a total of 100,000 pseudo-randomly generated workflows is
created and executed. The workflows are ranked from best to worst based on the
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F1-score, which is the harmonic average of precision and recall. Due to the large
number of workflows executed, there is a chance that the best performing workflow
is overfitting, i.e. looking at too much detail or even noise in the training dataset.
Hence, to create a more robust model and boost performance, WORC combines
the 50 best performing methods into a single decision model, which is known as
ensembling. The ensemble is created through averaging of the probabilities, i.e. the
chance of a patient being WDLPS or lipoma, of these 50 workflows.
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All
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Figure 5.A.1: Visualization of the 100x stratified random-split cross-validation, including a second cross-
validation within the training set to perform the automatic workflows optimization. Optimization was
done solely on the training set in order to prevent overfitting on the test set. The ensemble averages the
predictions of the best 50 performing workflows to create a more robust model.
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Table 5.A.1: Several properties of the acquisition protocols of the 116 T1-weighted MRI sequences of
patients with lipoma or well-differentiated liposarcoma (WDLPS) that were used to build the radiomics
model.

Property N %

Magnetic field strength
1T 10 9.6
1.5T 98 84.5
3T 8 6.9
Manufacturer
Siemens 45 38.8
Philips 45 38.8
GE 26 22.4

Setting (Unit) Mean Std. Min. Max.

Slice Thickness (mm) 4.77 1.14 2.5 10.0
Repetition time (ms) 555 108 280 831
Echo time (ms) 13.2 4.3 5.7 37

Available MRI sequences N %

T1 116 100
T1-FS 55 47.4
T1-GD 42 36.2
T1-FS-GD 80 69.0
T2 76 65.5
T2-FS 92 79.3
Std.: standard deviation, min.: minimum value, max.:
maximum value, mm: millimeters, ms: milliseconds, FS:
Fat Saturation, GD: gadolinium contrast.

Table 5.A.2: Performance of the radiomics models based on T1 imaging features only; patient features
only; manually scored features only; the combination of T1 imaging and manually scored features; and of
volume only on the full dataset. Performance for the radiomics models is reported for each experiment as
mean [95% confidence interval] over the cross-validation iterations.

Model 1 Model 2 Model 3 Model 4 Model 5
T1 imaging features Patient features Manually scored T1 imaging + manually Volume

features scored features

AUC 0.83 [0.75, 0.90] 0.75 [0.64, 0.85] 0.72 [0.62, 0.81] 0.69 [0.58, 0.79] 0.83 [0.75, 0.91]
Accuracy 0.68 [0.67, 0.84] 0.68 [0.59, 0.76] 0.67 [0.57, 0.76] 0.61 [0.51, 0.70] 0.76 [0.67, 0.84]
Sensitivity 0.68 [0.53, 0.82] 0.77 [0.63, 0.90] 0.76 [0.58, 0.94] 0.53 [0.37, 0.68] 0.67 [0.52, 0.81]
Specificity 0.84 [0.72, 0.95] 0.59 [0.45, 0.72] 0.57 [0.43, 0.71] 0.69 [0.54, 0.84] 0.84 [0.71, 0.97]
NPV 0.73 [0.63, 0.82] 0.73 [0.61, 0.85] 0.73 [0.59, 0.86] 0.60 [0.50, 0.69] 0.75 [0.66, 0.83]
PPV 0.82 [0.70, 0.93] 0.66 [0.58, 0.73] 0.64 [0.54, 0.74] 0.64 [0.51, 0.76] 0.81 [0.69, 0.93]
AUC: area under the curve, NPV: negative predictive value, PPV: positive predictive value
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Table 5.A.3: Performance of radiomics models trained on features extracted from various MRI sequences
on the full dataset. Performance is reported as mean [95% confidence interval] over the cross-validation
iterations.

T1 T1 + T1-FS T1 + T1-GD T1 + T1-FS-GD T1 + T2 T1 + T2-FS

AUC 0.83 [0.75, 0.90] 0.84 [0.75, 0.92] 0.81 [0.72, 0.90] 0.81 [0.73, 0.89] 0.89 [0.83, 0.95] 0.81 [0.73, 0.88]
Accuracy 0.68 [0.67, 0.84] 0.77 [0.69, 0.85] 0.76 [0.67, 0.84] 0.75 [0.66, 0.83] 0.81 [0.74, 0.87] 0.74 [0.66, 0.81]
Sensitivity 0.68 [0.53, 0.82] 0.69 [0.56, 0.82] 0.69 [0.56, 0.82] 0.66 [0.51, 0.81] 0.74 [0.61, 0.86] 0.66 [0.53, 0.79]
Specificity 0.84 [0.72, 0.95] 0.84 [0.73, 0.95] 0.77 [0.71, 0.83] 0.84 [0.72, 0.95] 0.88 [0.78, 0.98] 0.82 [0.70, 0.93]
NPV 0.73 [0.63, 0.82] 0.74 [0.65, 0.82] 0.73 [0.64, 0.82] 0.72 [0.63, 0.81] 0.78 [0.69, 0.86] 0.72 [0.63, 0.80]
PPV 0.82 [0.70, 0.93] 0.83 [0.72, 0.93] 0.80 [0.69, 0.91] 0.81 [0.69, 0.93] 0.88 [0.78, 0.97] 0.79 [0.68, 0.90]
AUC: area under the curve, NPV: negative predictive value, PPV: positive predictive value, FS: Fat Saturation, GD:
gadolinium contrast

Table 5.A.4: Performance of the three radiologists in differentiating between well-differentiated liposarco-
mas and lipomas on both the full and volume-matched cohort, and in differentiating dedifferentiated
liposarcoma (DDLPS) and non-DDLPS (well-differentiated liposarcoma (WDLPS) / lipomas).

Full cohort Volume-matched cohort DDLPS vs. non-DDLPS
Rad. 1 Rad. 2 Rad.3 Rad. 1 Rad. 2 Rad. 3 Rad. 1 Rad. 2 Rad. 3

AUC 0.74 0.72 0.61 0.68 0.74 0.55 0.97 0.91 0.90
Accuracy 0.64 0.64 0.61 0.62 0.63 0.55 0.95 0.62 0.89
Sensitivity 0.74 0.91 0.64 0.65 0.88 0.60 0.95 0.95 0.91
Specificity 0.55 0.36 0.59 0.58 0.37 0.50 0.95 0.56 0.89
NPV 0.68 0.81 0.62 0.61 0.74 0.54 0.99 0.98 0.98
PPV 0.62 0.59 0.61 0.62 0.59 0.56 0.78 0.29 0.61
AUC: area under the curve; NPV: negative predictive value; PPV: positive predictive value;
Rad.: radiologist
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Figure 5.A.2: P-values of Mann-Whitney U tests of feature values for WDLPS and lipomas. Only the
features that had a corrected P-value <0.05 were included in the graph. The labels on the y-axis correspond
to the feature names: see Section 5.A for more details.
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Abstract

Purpose: Diagnosing desmoid-type fibromatosis (DTF) requires an invasive tissue biopsy
with β-catenin staining and CTNNB1 mutational analysis, and is challenging due to its rarity.
The aim of this study was to evaluate radiomics for distinguishing DTF from soft tissue
sarcomas (STS), and in DTF, for predicting the CTNNB1 mutation types.

Methods: Patients with histologically confirmed extremity STS (non-DTF) or DTF and at
least a pretreatment T1- weighted (T1w) MRI scan were retrospectively included. Tumors
were semi-automatically annotated on the T1w scans, from which 411 features were extracted.
Prediction models were created using a combination of various machine learning approaches.
Evaluation was performed through a 100x random-split cross-validation. The model for DTF
vs. non-DTF was compared to classification by two radiologists on a location matched subset.

Results: The data included 203 patients (72 DTF, 131 STS). The T1w radiomics model
showed a mean AUC of 0.79 on the full dataset. Addition of T2w or T1w post-contrast scans
did not improve the performance. On the location matched cohort, the T1w model had a
mean AUC of 0.88 while the radiologists had an AUC of 0.80 and 0.88, respectively. For
the prediction of the CTNNB1 mutation types (S45 F, T41A and wild-type), the T1w model
showed an AUC of 0.61, 0.56, and 0.74.

Conclusions: Our radiomics model was able to distinguish DTF from STS with high
accuracy similar to two radiologists, but was not able to predict the CTNNB1 mutation status.
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6.1 Introduction

Sporadic desmoid-type fibromatosis (DTF) is a rare borderline, soft tissue tumor
arising in musculoaponeurotic structures [111]. Worldwide epidemiological data
is lacking, but population studies in Scandinavia and the Netherlands show a low
incidence of 2.4–5.4 cases per million per year [135, 136]. Early recognition and
diagnosis of DTF is therefore challenging.

On MRI, DTF can display a wide variety of enhancement patterns [137]. DTF
has imaging characteristics that are often associated with soft tissue sarcomas (STS),
such as crossing fascial boundaries, an invasive growth pattern, little central necrosis,
mildly hyperintense on T1-weighted (T1w) MRI, and hyperintense and heteroge-
neous on T2-weighted (T2w) MRI with hypointense bands [138]. Hence, the distinc-
tion between DTF and STS, i.e. non-DTF, can be difficult. An invasive tissue biopsy,
with additional immunohistochemical staining for β-catenin and mutation analysis
of the CTNNB1 (β-catenin) gene, is therefore currently required to differentiate DTF
from non-DTF [139].

As DTF is a borderline tumor who is unable to metastasize, and requires a
different treatment regimen than malignant STS, this distinction is highly relevant.
Differentiation between DTF and STS based on imaging would be beneficial be-
cause of the rarity of DTF, making clinical and pathological recognition challenging.
Furthermore, DTF exhibits an aggressive growth pattern and growth might be stim-
ulated after (surgical) trauma, including biopsies [140]. Avoiding (multiple) harmful
biopsies which potentially cause tumor growth is therefore of great importance.

Several studies have addressed the prognostic role of the CTNNB1 mutation
in DTF [141, 142, 143], as serine 45 (S45F) tumors appear to have a higher risk of
recurrence after surgery compared to threonine 41 (T41A) and wild type (WT) (i.e.
no CTNNB1 mutation [144]) tumors [145]. Obtaining the CTNNB1 mutation status is
for diagnostic purposes and to guide the clinical work-up, but, for now, the CTNNB1
mutation status has no therapeutic consequences [146]. The majority of DTF harbors
a CTNNB1 mutation at either T41A or S45 F [141]. Assessment of the mutation status
is currently done by Sanger Sequencing or Next Generation Sequencing, which are
time consuming and expensive.

In radiomics, large amounts of quantitative imaging features are related to
clinical outcome [19] (i.e., Chapter 2 of this thesis). Radiomics may serve as a non-
invasive surrogate to contribute to diagnosis, prognosis and treatment planning [147,
148]. Based on the results of previous studies in cancer [23], we hypothesized that
radiomics may also be useful in DTF.

This study investigated whether a radiomics model based on MRI is able to 1)
distinguish DTF from non-DTF in the extremities, and 2) to predict the CTNNB1
mutation status of DTF. Additionally, in the DTF vs. non-DTF distinction, we
evaluated which of the included MRI sequences has the highest predictive value.
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6.2 Material and methods

6.2.1 Data collection

Approval by the Erasmus Medical Center (MC) institutional review board (MEC-
2016-339) was obtained. Patients diagnosed or referred to the Erasmus MC between
1990-2018 with a histologically proven primary or recurrent DTF were included. This
resulted in a multicenter imaging dataset as patients referred to our sarcoma expert
institute often received imaging at their referring hospital. The most frequently
used imaging modality prior to treatment was T1w-MRI, and its availability was
used as an inclusion criterion [23]. When available, other sequences such as T2w,
T1w post-contrast, dynamical contrast enhanced (DCE), proton density (PD) and
diffusion weighted imaging (DWI) MRI were collected.

For the differential diagnosis (DTF vs. non-DTF), histologically confirmed ma-
lignant extremity STS were included. Benign STS were excluded, because this
distinction is clinically less relevant. Nonextremity STS were excluded because of the
infrequent use of MRI. Although DTF tumors commonly occur in the abdominal wall,
their differential diagnosis is broad and includes pseudo-tumors such as myositis,
nodular fasciitis and hematomas, and tumors such as lipomas, STS, endometrio-
sis, carcinomas, lymphomas and metastasis [149]. Hence, we decided to focus on
the distinction between DTF and STS, and included patients with a histologically
proven primary fibromyxosarcoma, myxoid liposarcoma or leiomyosarcoma of the
extremities. Similar to the DTF, patients with at least a pre-treatment T1w-MRI were
retrospectively included.

Sex, age at diagnosis, and tumor location were collected. For the DTF, in case of
a missing CTNNB1 mutation status, Sanger Sequencing was performed after review
of formalin-fixed paraffin-embedded tumor sections by a pathologist. Cases with a
known CTNNB1 mutation did not undergo additional review by a pathologist. Poor
scan quality (e.g. artifacts), poor DTF DNA quality with failure of sequencing, and
CTNNB1 mutation other than S45F, T41A or WT led to exclusion.

6.2.2 Radiomics feature extraction

The tumors were all manually segmented once on the T1w-MRI by one of two
clinicians under supervision of a musculoskeletal radiologist (4 years of experience).
A subset of 30 DTF was segmented by both clinicians, in which intra-observer
variability was evaluated through the pairwise Dice Similarity Coefficient (DSC),
with DSC > 0.70 indicating good agreement [150]. To transfer the segmentations to
the other sequences, all sequences were automatically aligned to the T1w-MRI using
image registration with the Elastix software [127]. For each lesion, per MRI sequence,
411 features quantifying intensity, shape and texture were extracted. Details can be
found in Section 6.A and Table 6.A.2.

6.2.3 Decision model creation

To create a decision model from the features, the WORC toolbox was used, see
Figure 6.1 [36, 72, 151]. In WORC, the decision model creation consists of several



6.2. Material and methods

6

97

steps, e.g. feature selection, resampling, and machine learning. WORC performs
an automated search amongst a variety of algorithms for each step and determines
which combination of algorithms maximizes the prediction performance on the
training set. More details can be found in Section 6.B.

For the differential diagnosis cohort, a binary classification model was created
using a variety of machine learning models. For the DTF cohort (predicting the
CTNNB1 mutation), a multiclass classification model was created using random
forests.

6.2.4 Evaluation

Evaluation of all models was done through a 100x random-split cross-validation. In
each iteration, the data was randomly split in 80 % for training and 20 % for testing
in a stratified manner, to make sure the distribution of the classes in all sets was
similar to the original (Figure 6.A.1). Within the training set, model optimization
was performed using an internal cross-validation (5x). Hence, all optimization was
done on the training set to eliminate any risk of overfitting on the test set.

Performance was evaluated using the Area Under the Curve (AUC) of the
Receiver Operating Characteristic (ROC) curve, balanced classification accuracy
(BCA), sensitivity, specificity, negative predictive value (NPV), and positive predictive
value (PPV). For the multiclass models, we reported the multiclass AUC [152] and
overall BCA [65]. The positive classes included: DTF in the differential diagnosis, and
the presence of the mutation in the mutation analysis. The 95 % confidence intervals
were constructed using the corrected resampled t-test, thereby taking into account
that the samples in the cross-validation splits are not statistically independent [64].
Both the mean and the confidence intervals are reported. ROC confidence bands
were constructed using fixed-width bands [67].

To assess the predictive value of the various features, models were trained based
on: 1) volume; 2) age and sex; 3) T1w-MRI imaging; 4) T1w-MRI imaging, age and
sex. Model 1 was created to verify that the imaging models were not solely based
on volume. Model 2 was created to evaluate potential age and gender biases. In
model 4, the imaging and clinical characteristics are combined by using both the
imaging features and age and sex as features for a total of 413 features. This allows
WORC to combine the imaging and clinical characteristics in the most optimal way.
Additionally, a model was made for each combination of T1w-MRI and one of the
other included MRI sequences (e.g. based on T1w-MRI and T2w-MRI) to evaluate
the added value of these other sequences. When a sequence was missing for a
patient, feature imputation was used to estimate the missing values.

The code for the feature extraction, model creation and evaluation has been
published open-source [153].

6.2.5 Model insight

To explore the predictive value of individual features, the Mann- Whitney U univari-
ate statistical test was used. P-values were corrected for multiple testing using the
Bonferroni correction, and were considered statistically significant at a p-value <0.05.
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Feature robustness to variations in the segmentations was assessed on the subset of
30 DTF segmented by two observers using the intra-class correlation coefficient (ICC),
were an ICC > 0.75 indicated good reliability [154]. To evaluate model reliability,
a separate model was trained using only these features with a good reliability. To
gain insight into the models, the patients were ranked based on the consistency of
the model predictions. Typical examples for each class consisted of the patients that
were correctly classified in all cross-validation iterations; atypical vice versa.

6.2.6 Classification by radiologists

To compare the models with clinical practice, the tumors were classified by two
musculoskeletal radiologists (5 and 4 years of experience), which had access to
all available MRI sequences, age, and sex. They were specifically instructed to
distinguish between STS and DTF. Classification was made on a ten-point scale
to indicate the radiologists’ certainty. As only extremity STS were selected for the
non-DTF group, a location-matched database was used. This included all extremity
DTF and the same number of non-DTF. Agreement between the radiologists was
evaluated using Cohen’s kappa. The radiomics models were evaluated as well in
this cohort. In each cross-validation iteration, these models were trained on 80 % of
the full dataset, but tested only on patients from the location-matched cohort in the
other 20 % of the dataset. The DeLong test was used to compare the AUCs [155].

6.3 Results

6.3.1 Study selection and population

The dataset included 203 patients; see Table 6.1 for the clinical characteristics. The
differential diagnosis cohort consisted of 64 fibromyxosarcomas, 31 leiomyosarcomas,
36 myxoid liposarcomas, and 72 DTFs (65 primary, 7 recurrent), of which 61 were
suitable for the mutation analysis.

The dataset originated from 68 scanners, resulting in a large heterogeneity in the
acquisition protocols, see Table 6.2. From the 72 patients in the DTF cohort, there
were 30 T1w post-contrast (42 %), 49 T1w postcontrast FatSat (68 %), 34 T2w (47
%), 33 T2w FatSat (46 %), 3 proton density (PD) (4 %), 18 DCE (25 %) and 3 DWI (4
%) MRI scans. Due to the limited availability of the PD, DCE, and DWI sequences,
besides the T1w-MRI, only the T1w post-contrast and T2w (with/without FatSat)
sequences were analyzed.

On the subset of 30 DTF that was segmented by both observers, the mean DSC
was 0.77 (standard deviation of 0.20), indicating good agreement. An example of the
image registration results is depicted in Figure 6.2.

6.3.2 Differential diagnosis

The performance of models 1–6 for the differential diagnosis is shown in Table 6.3.
Model 1, based on volume, showed little predictive value (mean AUC of 0.69). Model
2, based on age and sex, performed better (mean AUC of 0.86). Model 3, based
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Table 6.2: Properties of the acquisition protocols of the 203 T1-weighted MRI sequences in the dataset.

Property Number %

Magnetic field strength
1T 20 10
1.5T 167 82
3T 16 8

Manufacturer
Siemens 93 46
Philips 79 39
General Electrics 27 13
Toshiba 4 2

Setting (Unit) Mean Std. Min Max
Slice Thickness (mm) 4.66 1.45 1.0 11.0
Repetition time (ms) 619 533 0.0 4620
Echo time (ms) 14 7 2.0 94.0
∗Abbreviations: T: tesla; Std: standard deviation; mm:
millimeter; ms: milliseconds.

1

2 3

4 5

Figure 6.2: Segmentations on various MRI sequences before and after applying image registration in a
desmoid-type fibromatosis case. The arrows are at the same position in each image and point at two
details where the (mis)alignment is evident. (1) Original T1-weighted (T1w) MRI; (2) Original T2w-MRI;
(3) Registered T2w-MRI; (4) Original T1w post-contrast MRI ; (5) Registered T1w post-contrast MRI.
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on T1w-MRI, had a mean AUC of 0.79, thus performing worse than age and sex,
but better than volume alone. Model 4, combining the T1w-MRI, age, and sex,
showed little improvement in terms of mean AUC (0.88) over model 2. Addition of a
T2w-MRI, i.e. model 5, or T1 post-contrast MRI, i.e. model 6, both with or without
FatSat, both yielded a minor overall improvement over model 3 (mean AUC of 0.84
and 0.84, respectively). These observations were confirmed by the ROC curves in
Figure 6.3. The models using either only non-FatSat or FatSat scans, both for the
T2w and T1w post-contrast MRI, faired similar, see Table 6.A.1.

6.3.3 Comparison with radiologists

As described in the methods, for the comparison with radiologists, a location-
matched cohort consisting of all extremity DTFs and an equal amount of extremity
non-DTF was used. To this end, all 20 extremity DTFs and 20 randomly selected
extremity non-DTFs were included in the location-matched cohort. The performance
of radiomics and the radiologists in this cohort is shown in Table 6.4: model 1 and 5–6
were omitted from the results for brevity. The AUCs of the radiomics models (model
2: 0.93; model 3: 0.88; model 4: 0.98) were generally higher than both radiologists 1
(0.80) and 2 (0.88). This is confirmed by the ROC curves in Figure 6.4. Cohen’s kappa
between the two radiologists was 0.40, indicating intermediate observer agreement.
A DeLong power analysis of the AUCs resulted in a power of only 0.1. Due to the
limited power, the p-values of the DeLong test were omitted.

6.3.4 CTNNB1 mutation status stratification

Table 6.5 depicts the performance of the radiomics models for the CTNNB1 mutation
stratification. Model 4, using T1w-MRI, age, and sex, had a high specificity (S45
F: 0.83, T41A: 0.59 and WT: 0.72), but a sensitivity similar to guessing (S45 F: 0.15,
T41A: 0.49 and WT: 0.56). This indicates a strong bias in the models towards the
negative classes, i. e. not-S45 F, not-T41A and not-WT. As model 4 did not perform
well, models 1, 2, and 3 were omitted from the results, as these contain a subset of
these features. Adding the T2w or T1w post-contrast imaging, i. e. models 5 and 6,

Table 6.3: Performance of the radiomics models for the DTF differential diagnosis based on: model 1:
volume only; model 2: age and sex only; model 3: T1w imaging features, including volume; model
4: the combination of T1w imaging features and age and sex; model 5: the combination of T1w and
T2w imaging features; and model 6: the combination of T1w and T1w post-contrast imaging features.
Outcomes are presented with the 95% confidence interval.

Model 1
Volume

Model 2
Age + Sex

Model 3
T1w

Model 4
T1w + Age
+ Sex

Model 5
T1w + T2w

Model 6
T1w +
T1w post-contrast

AUC 0.69 [0.61, 0.76] 0.86 [0.79, 0.92] 0.79 [0.73, 0.85] 0.88 [0.82, 0.93] 0.84 [0.78, 0.89] 0.84 [0.78, 0.90]
BCA 0.59 [0.53, 0.65] 0.78 [0.71, 0.86] 0.71 [0.65, 0.77] 0.79 [0.72, 0.86] 0.68 [0.62, 0.75] 0.75 [0.69, 0.81]
Sensitivity 0.80 [0.70, 0.91] 0.78 [0.66, 0.90] 0.61 [0.49, 0.72] 0.70 [0.57, 0.83] 0.43 [0.31, 0.55] 0.62 [0.52, 0.73]
Specificity 0.39 [0.28, 0.49] 0.79 [0.71, 0.87] 0.81 [0.73, 0.89] 0.88 [0.82, 0.94] 0.94 [0.88, 0.99] 0.88 [0.82, 0.95]
NPV 0.50 [0.71, 0.89] 0.88 [0.81, 0.94] 0.80 [0.76, 0.75] 0.85 [0.80, 0.91] 0.76 [0.72, 0.80] 0.81 [0.76, 0.85]
PPV 0.41 [0.36, 0.46] 0.72 [0.57, 0.76] 0.64 [0.53, 0.75] 0.76 [0.67, 0.86] 0.80 [0.66, 0.94] 0.76 [0.65, 0.88]
∗Abbreviations: T1w: T1-weighted; T2w: T2-weighted; AUC: area under the receiver operator characteristic curve; BCA:
balanced classification accuracy; NPV: negative predictive value; PPV: positive predictive value.
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Figure 6.4: Receiver operating characteristic curves of the radiomics models based on age and sex (model
2); imaging (model 3); and imaging, age and sex (model 4); and those of the radiologists (Rad1 and Rad2),
in the locationmatched cohort.

Table 6.4: Performance of the two radiologists and the radiomics models in differentiating between DTF
(n = 20) and non-DTF (n = 20) in the location-matched cohort. Outcomes are presented with the 95%
confidence interval.

Model 2
Age + Sex

Model 3
T1w

Model 4
T1w + Age
+ Sex

Rad 1 Rad 2

AUC 0.93 [0.84, >1] 0.87 [0.73, >1] 0.98 [0.92, >1] 0.80 0.88
BCA 0.85 [0.71, 1.00] 0.71 [0.56, 0.87] 0.88 [0.77, 0.99] 0.75 0.90
Sensitivity 0.79 [0.57, >1] 0.49 [0.21, 0.77] 0.78 [0.57, 1.00] 0.65 0.90
Specificity 0.90 [0.71, >1] 0.93 [0.78, >1] 0.98 [0.91, >1] 0.85 0.89
NPV 0.82 [0.61, >1] 0.65 [0.43, 0.76] 0.82 [0.64, >1] 0.71 0.89
PPV 0.91 [0.72, >1] 0.81 [0.47, >1] 0.98 [0.91, >1] 0.81 0.90
∗Abbreviations: T1w: T1-weighted; AUC: area under the receiver operator charac-
teristic curve; BCA: balanced classification accuracy; PPV: positive predictive value;
NPV: negative predictive value.
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did not improve the performance. Hence, the models using either only non-FatSat
or FatSat scans were omitted, as these contain subsets of the scans from models 5
and 6.

6.3.5 Model insight

As the CTNNB1 mutation status stratification models did not perform well, the model
insight analysis was only conducted for the differential diagnosis. The p-values from
the Mann-Whitney U test between the DTF and non-DTF patients of all features are
shown in Table 6.A.3. In the feature importance analysis, 76 T1w-MRI features had
significant p-values (5.4× 10−8 to 4.8× 10−2). These included two intensity features
(entropy and peak), two shape features (radial distance and volume), and 72 texture
features. The p-value of age (1× 10−11) was lower than that of all imaging features.
The ICC values of all T1w-MRI features are shown in Table 6.A.4. Of the 411 features,
270 (66 %) had an ICC > 0.75 and thus good reliability. Only using these features
with a good reliability in model 3 did not alter the performance.

As we are mostly interested in which imaging features define typical DTF, and
not age and sex, the patient ranking was conducted for model 3. Of the 203 patients,
104 tumors (24 DTFs, 80 non-DTFs) were always classified correctly by model 3, i.e.
in all 100 cross-validation iterations. Nineteen tumors (17 DTFs, 2 non-DTFs) were
always classified incorrectly. In Figure 6.5, MRI slices of such typical and atypical
examples of DTFs are shown.

6.4 Discussion

This study showed that radiomics based on T1w-MRI can distinguish from STS.
Adding T2w or T1w post-contrast MRI did not substantially improve the model.
The DTF CTNNB1 mutation status could not be predicted through radiomics. To
our knowledge, this is the first study to evaluate the DTF differential diagnosis and
mutation status through an automated radiomics approach.

Age and sex appeared to be strong predictors for the diagnosis of DTF, performing
better than T1w-MRI. The combination of imaging, age and sex did not improve
the model. This implies that age and sex are sufficient for distinguishing DTF from
STS. In line with previous nationwide DTF cohort studies, females represented
the majority of our cohort, with a lower median age compared to the median age
of the patients from the non-DTF group [135, 156]. The relation in our database
may however be too strong, and thereby not representative of clinical practice. For
example, above 63 years of age, our database included 60 non-DTF and only a
single DTF. While the peak incidence of DTF is between 20–40 years, DTF can
affect patients of all ages with reported ranges from 2 to 90 years [156]. Simply
classifying all tumors in patients above 63 years as non-DTF, regardless of any tumor
(imaging) information, is unfeasible. Such a model cannot be applied in the general
population, while the model purely based on T1w-MRI imaging, as it does not use
any population-based information. Our cohort might be biased due to the focus on
MRI and the extremity as a location, while other modalities (e.g. CT or ultrasound)
may be used for certain locations or for certain types of patients. Further research
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(A) Typical DTF (B) Typical DTF

(C) Atypical DTF (D) Atypical DTF

Figure 6.5: The typical examples (A and B) are two cases always classified correctly by the T1-weighted
(T1w) imaging model; the atypical examples (C and D) are two cases always classified incorrectly by the
T1w imaging model.

should include the expansion of our dataset to make especially the age distribution
more representative.

To estimate the clinical value of our model, we compared the performance with
the assessment of two radiologists. The model based on imaging performed similar
to the radiologists. The model combining age, sex and imaging features, using
the same dataset as the radiologist, had a higher AUC than the musculoskeletal
radiologists. However this model may suffer from the selection bias as mentioned
in the previous section. The agreement between the radiologists was intermediate,
indicating observer dependence in the prediction. The radiomics model is observer
independent, assuming the segmentation is reproducible as indicated by the high
DSC and ICC, and will always give the same prediction on the same image.

The DTF differential diagnosis is highly important for treatment decisions, but



6

108 Chapter 6. Differential diagnosis and mutation stratification of desmoids

difficult on imaging due to its rarity, while using invasive biopsies brings risks such
as tumor growth. The use of our T1w-MRI radiomics model may therefore aid early
recognition and diagnosis of DTF, thus shortening the diagnostic delay by enabling
direct referral to an STS expertise center. Since all routine MRI protocols include a
T1w- MRI, our radiomics method is generalizable, feasible and applicable for use
in daily clinical practice. After further model optimization, it may serve as a quick,
non-invasive, and low-cost alternative for a biopsy, currently limited to extremities
due to the used dataset.

Additionally, we investigated the predictive value of sequences other due to the
multicenter imaging dataset. Although T2w-MRI is often used to correlate DTF
signal intensity with prognosis or response to therapy [157, 158, 159, 160], in the
current study T2w-MRI added little predictive value to the T1w-MRI, similar to
the T1w post-contrast MRI. This may however be attributed to the fact that these
sequences were only available for a subset of the patients. Our cohort contained too
few patients with PD, DCE, or DWI sequences to be analyzed. However, there is
little to no indication of the added value of these sequences in DTF [161, 162, 163].

The second aim of this study was to predict the DTF CTNNB1 mutation status.
Our radiomics model was not able to stratify the CTNNB1 mutation type, which is
in line with the absence of literature linking DTF MRI appearance to the CTNNB1
mutation.

The current study enclosed several limitations. First, due to the rarity of DTF, the
DTF sample size was limited and possibly too small for the mutation stratification
model to learn from. This also resulted in little statistical power for the mutation
analysis, as shown by the large width of our confidence intervals, and for the
comparison with the radiologists in the differential diagnosis. Besides primary
tumors, the DTF cohort contained also recurrent tumors. As this number was
low, and to our knowledge, there are no indications that recurrent DTF appear
different on MRI than primary DTF, the expected influence is small. Within the
DTF cohort, the WT group was relatively large and might have been subjected to
incorrect allocation, as Sanger Sequencing is not always sensitive enough to detect
all mutations [144]. The results of the CTNBB1 mutation status stratification showed
a strong bias towards the majority classes, which may be attributed to the class
imbalance. Although we exploited commonly used imbalanced learning strategies
such as than T1w-MRI. The number of available sequences was however limited
resampling and ensembling. other strategies may improve the performance. Second,
only extremity DTFs were included for comparison with STS. This was due to the
limited availability of MRI in non-extremity soft tissue tumors. However, this is not
representative for the entire DTF population, which also occurs frequently in the
abdominal wall and trunk [136]. Third, the current radiomics approach requires
manual annotations. While accurate, this process is also time consuming and subject
to some observer variability as indicated by our DSC, and thus limits the transition
to clinical practice. Automatic segmentation methods, for example deep learning,
may help to overcome these limitations [164]. Lastly, the dataset originated from
68 different scanners, which resulted in substantial heterogeneity in the acquisition
protocols. The lack of standard imaging parameters can be problematic as these can
affect the appearance of the tumor and thus the radiomics performance. However, our
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method was successfully able to create diagnostic models despite these differences.
As these models were trained on a variety of imaging protocols, there is an increased
chance that the reported performance can be reproduced in a routine clinical setting
when using other MRI scanners. Using a single-scanner with dedicated tumor
protocols may improve the model performance, but will limit the generalizability.

Future work should firstly focus on the prospective validation of our findings.
Although we did use a multicenter imaging dataset and performed a rigorous
cross-validation experiment strictly separating training from testing data, we did not
validate our model on an independent, external dataset. Afterwards, the radiomics
model could be used to predict clinical outcomes of DTF receiving active surveillance
or systemic treatment.

6.5 Conclusions

Our radiomics approach is capable of distinguishing DTF from non- DTF tumors
on T1w-MRI, and can potentially aid diagnosis and shorten diagnostic delay. The
performance of the model was similar to that of two experienced musculoskeletal
radiologists. The model was not able to predict CTNNB1 mutation status of DTF
tumors. Further optimization and external validation of the model is needed to
incorporate radiomics in clinical practice.
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Appendix

Appendix 6.A Radiomics feature extraction

This appendix is similar to Vos et al. [72] (i.e., Chapter 5 of this thesis), but details
relevant for the current study are highlighted.

A total of 411 radiomics features were used in this study. All features were
extracted using the defaults for MRI scans from the Workflow for Optimal Radiomics
Classification (WORC) toolbox [36], which internally uses the PREDICT [51] and
PyRadiomics [44] feature extraction toolboxes. The code to extract the features
for this specific study has been published open-source [153]. An overview of all
features is depicted in Table 6.A.2. For details on the mathematical formulation
of the features, we refer the reader to Zwanenburg et al. [39]. More details on the
extracted features can be found in the documentation of the respective toolboxes,
mainly the WORC documentation [68].

The features can be divided in several groups. Twelve histogram features were
extracted using the histogram of all intensity values within the Regions of Interest
(ROIs), i.e. the tumors, and included several first-order statistics such as the mean,
standard deviation and kurtosis. To create the histogram, the images were binned
using a fixed number of 50 bins. Seventeen shape features were extracted based only
on the ROI, i.e. not using the image, and included shape descriptions such as the
volume, compactness, roundness and circular variance. The orientation of the ROI
was described by three features, which represent the three major axis angles of a 3-D
ellipse fitted to the ROI. Lastly, 379 texture features were extracted using the Gray
Level Co-occurrence Matrix (144 features), Gray Level Size Zone Matrix (16 features),
Gray Level Run Length Matrix (16 features), Gabor filters (72 features), Laplacian
of Gaussian filters (36 features), vessel (i.e. tubular structure) filters (36 features)
[54], local phase filters (36 features) [53], Local Binary Patterns (18 features), and the
Neighborhood Grey Tone Difference Matrix (5 features).

Most of the texture features include parameters to be set for the extraction.
Beforehand the values of the parameters which will result in features with the
highest discriminative power for the classification at hand (e.g. DTF vs non-DTF) is
not known. Including these parameters in the workflow optimization, see Section 6.B,
would lead to repeated computation of the features, resulting in a redundant decrease
in computation time. Therefore, alternatively, these features are extracted at a range
of parameters as is default in WORC. The hypothesis is that the features with high
discriminative power will be selected by the feature selection methods and/or the
machine learning methods as described in Section 6.B. The parameters used are
described in Table 6.A.2.

The dataset used in this study is highly heterogeneous in terms of acquisition
protocols. Especially the variations in slice thickness may cause feature values to be
highly dependent on the acquisition protocol as this varied between 1.0 mm and 11
mm,. Hence, extracting robust 3D features may be hampered by these variations,
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especially for low resolutions. To overcome this issue, all features were extracted per
2D axial slice and aggregated over all slices. Afterwards, several first-order statistics
over the feature distributions were evaluated and used in the machine learning
approach. The images were not resampled, as this would result in interpolation
errors. Due to variations in especially the magnetic field strength, echo time, and
repetition time, the image contrast highly varies, which would affect the feature
values. To partially overcome this, each 3D MRI was normalized using z-scoring
before feature extraction. These settings are also the default in WORC.

Appendix 6.B Adaptive workflow optimization for automatic
decision model creation

This appendix is similar to Vos et al. [72] (i.e., Chapter 5 of this thesis), but details
relevant for the current study are highlighted.

The Workflow for Optimal Radiomics Classification (WORC) toolbox [36] makes
use of adaptive algorithm optimization to create the optimal performing workflow
from a variety of methods. WORC defines a workflow as a sequential combination
of algorithms and their respective parameters. To create a workflow, WORC includes
algorithms to perform feature scaling, feature imputation, feature selection, over-
sampling, and machine learning. If used, as some of these steps are optional as
described below, these methods are performed in the same order as described in this
appendix. More details can be found in the WORC documentation [68].

Feature scaling was performed to make all features have the same scale, as
otherwise the machine learning methods may focus only on those features with large
values. This was done through z-scoring, i.e. subtracting the mean value followed
by division by the standard deviation, for each individual feature. In this way, all
features had a mean of zero and a variance of one.

In the analysis including the T2w or T1w post contrast sequences, in case of a
missing sequence, feature imputation was used to estimate replacement values for
the missing sequence. Strategies for imputation included 1) the mean; 2) the median;
3) the most frequent value; and 4) a nearest neighbor approach.

Feature selection was performed to eliminate features which were not useful to
distinguish between the classes, e.g. DTF vs. non-DTF. These included; 1) a variance
threshold, in which features with a low variance (<0.01) are removed. This method
was always used, as this serves as a feature sanity check with almost zero risk of
removing relevant features; 2) optionally, a group-wise search, in which specific
groups of features (i.e. intensity, shape, and the subgroups of texture features as
defined in Section 6.A) are selected or deleted. To this end, each feature group had an
on/off variable which is randomly activated or deactivated, which were all included
as hyperparameters in the optimization; 3) optionally, individual feature selection
through univariate testing. To this end, for each feature, a Mann-Whitney U test is
performed to test for significant differences in distribution between the labels (e.g.
DTF vs non-DTF). Afterwards, only features with a p-value above a certain threshold
are selected. A Mann-Whitney U test was chosen as features may not be normally
distributed and the samples (i.e. patients) were independent; and 4) optionally,
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principal component analysis (PCA), in which either only those linear combinations
of features were kept which explained 95% of the variance in the features or a limited
amount of components (between 10 – 50). These feature selection methods may be
combined by WORC, but only in the mentioned order.

Oversampling was used to make sure the classes were balanced in the training
dataset. These included; 1) random oversampling, which randomly repeats patients
of the minority class; and 2) the synthetic minority oversampling technique (SMOTE)
[58], which creates new synthetic “patients” using a combination of the features
in the minority class. Randomly, either one of these methods or no oversampling
method was used.

Lastly, machine learning methods were used to determine a decision rule to
distinguish the classes. These included; 1) logistic regression; 2) support vector
machines; 3) random forests; 4) naive Bayes; and 5) linear and quadratic discriminant
analysis.

Most of the included methods require specific settings or parameters to be set,
which may have a large impact on the performance. As these parameters have to be
determined before executing the workflow, these are so-called “hyperparameters”.
In WORC, all parameters of all mentioned methods are treated as hyperparameters,
since they may all influence the decision model creation. WORC simultaneously
estimates which combination of algorithms and hyperparameters performs best. A
comprehensive overview of all parameters is provided in the WORC documentation
[68].

By default in WORC, the performance is evaluated in a 100x random-split train-
test cross-validation. In the training phase, a total of 100,000 pseudo-randomly
generated workflows is created. These workflows are evaluated in a 5x random-split
cross-validation on the training dataset, using 85% of the data for actual training
and 15% for validation of the performance. All described methods were fit on the
training datasets, and only tested on the validation datasets. The workflows are
ranked from best to worst based on their mean performance on the validation sets
using the F1-score, which is the harmonic average of precision and recall. Due to
the large number of workflows executed, there is a chance that the best performing
workflow is overfitting, i.e. looking at too much detail or even noise in the training
dataset. Hence, to create a more robust model and boost performance, WORC
combines the 50 best performing workflows into a single decision model, which is
known as ensembling. These 50 best performing workflows are re-trained using
the entire training dataset, and only tested on the test datasets. The ensemble is
created through averaging of the probabilities, i.e. the chance of a patient being DTF
or non-DTF, of these 50 workflows.

A full experiment consists of executing 50 million workflows (100,000 pseudo-
randomly generated workflows times a 5x train-validation cross-validation times
100x train-test cross-validation), which can be parallelized. The computation time of
training or testing a single workflow is on average less than a second, depending
on the size of the dataset both in terms of samples (i.e. patients) and features. The
largest experiment in this study, i.e. the differential diagnoses including 203 patients
with both a T1w and T2w MRI had a computation time of approximately 32 hours on
a 32 CPU core machine. The contribution of the feature extraction to the computation
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time is negligible.
The code for the model creation, including more details, has been published

open-source as well [153].
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Figure 6.A.1: Visualization of the 100x random split-cross validation, including a second cross validation
within the training set.

Table 6.A.1: Performance of the radiomics models for the DTF differential diagnosis based on T1w and
T2w non-FatSat imaging features; T1w and T2w FatSat imaging features; T1w and T1w post-contrast
non-FatSat imaging features; and T1w and T1w post-contrast FatSat imaging features. Outcomes are
presented with the 95% confidence interval.

T1w + T2w T1w + T2w T1w + T1w T1w + T1w
non-FatSat FatSat post-contrast post-contrast

non-FatSat FatSat

AUC 0.83 [0.76, 0.89] 0.83 [0.77, 0.89] 0.80 [0.74, 0.85] 0.82 [0.75, 0.88]
BCA 0.64 [0.58, 0.71] 0.66 [0.59, 0.72] 0.73 [0.67, 0.79] 0.72 [0.66, 0.79]
Sensitivity 0.32 [0.19, 0.44] 0.34 [0.20, 0.47] 0.60 [0.49, 0.72] 0.59 [0.48, 0.70]
Specificity 0.97 [0.92, >1] 0.97 [0.94, 1.00] 0.85 [0.79, 0.92] 0.86 [0.79, 0.94]
NPV 0.74 [0.70, 0.77] 0.74 [0.70, 0.78] 0.79 [0.74, 0.84] 0.79 [0.74, 0.83]
PPV 0.87 [0.68, >1] 0.88 [0.71, >1] 0.71 [0.60, 0.82] 0.72 [0.61, 0.84]
∗Abbreviations: T1w: T1-weighted images, T2w: T2-weighted images; AUC: area
under the receiver operator characteristic curve; BCA: balanced classification accu-
racy; PPV: positive predictive value; NPV: negative predictive value
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Table 6.A.3: P-values after Bonferonni correction of features in a Mann-Whitney U test between desmoid
type fibromatosis (DTF) and non-DTF patients. Only the features with significant p-values (p<0.05) are
depicted. Besides the feature names, several of the labels also include the parameters used. More details
on the features can be found in Section 6.A.

Feature label P-value

tf_Gabor_0.5A1.57mean 5.39E-08
logf_energy_sigma10 7.98E-07
tf_GLSZM_LargeAreaHighGrayLevelEmphasis 1.18E-06
logf_energy_sigma1 1.64E-06
logf_peak_sigma5 1.69E-06
tf_Gabor_0.5A1.57max 1.87E-06
logf_peak_sigma10 1.93E-06
logf_energy_sigma5 2.30E-06
tf_GLRLM_LongRunHighGrayLevelEmphasis 3.08E-06
tf_GLRLM_LongRunEmphasis 4.97E-06
tf_GLSZM_LargeAreaEmphasis 5.66E-06
hf_peak 7.41E-06
logf_peak_sigma1 7.47E-06
phasef_phasesym_peak_WL3_N5 7.74E-06
tf_Gabor_0.5A1.57std 1.15E-05
vf_Frangi_inner_peak_SR(1.0, 10.0)_SS2.0 1.54E-05
semf_Gender 1.58E-05
phasef_phasecong_peak_WL3_N5 1.60E-05
tf_Gabor_0.5A1.57min 1.89E-05
tf_Gabor_0.5A2.36mean 1.92E-05
tf_GLRLM_RunPercentage 2.36E-05
tf_Gabor_0.5A1.57skew 3.69E-05
sf_rad_dist_avg_2D 4.06E-05
vf_Frangi_full_peak_SR(1.0, 10.0)_SS2.0 4.89E-05
vf_Frangi_edge_peak_SR(1.0, 10.0)_SS2.0 4.89E-05
tf_GLRLM_RunVariance 5.09E-05
phasef_monogenic_peak_WL3_N5 5.23E-05
phasef_monogenic_energy_WL3_N5 5.74E-05
tf_GLSZM_ZoneVariance 5.82E-05
tf_GLSZM_LargeAreaLowGrayLevelEmphasis 6.73E-05
tf_Gabor_0.5A1.57kurt 6.82E-05
hf_entropy 2.29E-04
tf_GLRLM_RunEntropy 2.41E-04
tf_GLRLM_GrayLevelNonUniformity 2.99E-04
tf_GLCMMS_correlationd1.0A1.0std 3.10E-04
tf_GLCMMS_correlationd1.0A1.0mean 3.97E-04
tf_Gabor_0.5A2.36std 4.02E-04
tf_GLCMMS_dissimilarityd1.0A1.0mean 5.21E-04
logf_entropy_sigma1 6.88E-04
tf_GLCMMS_dissimilarityd1.0A1.0std 7.95E-04
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tf_Gabor_0.2A0.0skew 1.12E-03
tf_GLRLM_LongRunLowGrayLevelEmphasis 1.19E-03
tf_GLRLM_RunLengthNonUniformityNormalized 1.73E-03
tf_GLCMMS_homogeneityd1.0A1.0mean 2.18E-03
vf_Frangi_edge_min_SR(1.0, 10.0)_SS2.0 2.59E-03
vf_Frangi_full_min_SR(1.0, 10.0)_SS2.0 2.59E-03
sf_volume_2D 2.71E-03
vf_Frangi_edge_mean_SR(1.0, 10.0)_SS2.0 3.55E-03
vf_Frangi_full_mean_SR(1.0, 10.0)_SS2.0 3.55E-03
tf_GLCMMS_contrastd1.0A1.0std 3.63E-03
tf_GLCMMS_contrastd1.0A1.0mean 4.25E-03
vf_Frangi_full_median_SR(1.0, 10.0)_SS2.0 4.83E-03
vf_Frangi_edge_median_SR(1.0, 10.0)_SS2.0 4.83E-03
phasef_phasecong_energy_WL3_N5 5.85E-03
logf_entropy_sigma5 7.59E-03
vf_Frangi_edge_quartile_range_SR(1.0, 10.0)_SS2.0_Features_0 7.84E-03
vf_Frangi_full_quartile_range_SR(1.0, 10.0)_SS2.0_Features_0 7.84E-03
phasef_phasesym_median_WL3_N5 7.99E-03
tf_GLCMMS_homogeneityd1.0A1.0std 9.21E-03
tf_Gabor_0.5A2.36min 9.93E-03
tf_Gabor_0.05A0.0mean 1.02E-02
tf_Gabor_0.5A0.79min 1.21E-02
tf_Gabor_0.2A0.79min 1.39E-02
tf_GLCM_correlationd1.0A1.0 1.41E-02
tf_GLRLM_ShortRunEmphasis 1.44E-02
tf_GLCM_homogeneityd3.0A3.0 1.59E-02
tf_Gabor_0.2A0.0mean 1.61E-02
tf_GLSZM_ZonePercentage 1.96E-02
vf_Frangi_inner_min_SR(1.0, 10.0)_SS2.0 2.15E-02
tf_Gabor_0.05A0.0kurt 2.40E-02
tf_Gabor_0.05A0.0max 3.38E-02
logf_entropy_sigma10 3.41E-02
tf_Gabor_0.05A0.0skew 3.76E-02
tf_GLRLM_ShortRunLowGrayLevelEmphasis 3.88E-02
tf_Gabor_0.05A0.0std 4.53E-02
tf_GLCMMS_correlationd3.0A3.0std 4.60E-02
tf_GLCM_homogeneityd1.0A1.0 4.81E-02
∗Abbreviations: GLCM: gray level co-occurrence matrix; GLCMMS: GLCM multislice;
NGTDM: neighborhood gray tone difference matrix; GLSZM: gray level size zone
matrix; GLRLM: gray level run length matrix; LBP: local binary patterns; LoG:
Laplacian of Gaussian; std: standard deviation.
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Table 6.A.4: Intra-class correlation coefficient (ICC) values of all features among segmentations of two
clinicians in a set of 30 desmoid type fibromatosis patients. Only the features with an ICC > 0.75, which
are considered as reliable, are included. Besides the feature names, several of the labels also include the
parameters used. More details on the features can be found in Section 6.A.

Feature label ICC

tf_Gabor_0.05A0.79std 0.75
tf_Gabor_0.5A2.36kurt 0.75
tf_GLSZM_SizeZoneNonUniformityNormalized 0.75
tf_GLCM_ASMd1.0A2.36 0.76
logf_mean_sigma1 0.76
tf_Gabor_0.5A2.36skew 0.76
tf_GLRLM_GrayLevelVariance 0.76
tf_GLRLM_GrayLevelNonUniformityNormalized 0.76
tf_GLCMMS_contrastd1.0A0.0std 0.76
tf_Gabor_0.5A0.79mean 0.76
tf_GLCM_ASMd1.0A0.0 0.76
phasef_phasesym_median_WL3_N5 0.77
tf_GLCM_ASMd1.0A1.57 0.77
tf_LBP_skew_R8_P24 0.77
tf_Gabor_0.5A0.79max 0.77
tf_GLSZM_SmallAreaHighGrayLevelEmphasis 0.77
tf_Gabor_0.5A0.79skew 0.77
tf_GLCMMS_ASMd1.0A1.57mean 0.78
tf_GLCMMS_contrastd1.0A0.79std 0.78
tf_GLCMMS_contrastd1.0A0.79mean 0.78
tf_Gabor_0.5A0.79std 0.78
tf_GLSZM_SmallAreaLowGrayLevelEmphasis 0.79
tf_GLCMMS_dissimilarityd1.0A2.36mean 0.79
tf_GLCMMS_ASMd1.0A0.0mean 0.79
tf_Gabor_0.05A0.79min 0.79
hf_entropy 0.79
tf_Gabor_0.5A0.0kurt 0.79
tf_GLCMMS_ASMd1.0A2.36std 0.80
tf_GLCMMS_homogeneityd1.0A1.57std 0.80
tf_GLCMMS_dissimilarityd1.0A2.36std 0.80
tf_GLSZM_SmallAreaEmphasis 0.80
tf_GLCMMS_ASMd1.0A0.79std 0.80
tf_GLCMMS_dissimilarityd1.0A1.57std 0.80
tf_GLCMMS_ASMd1.0A0.0std 0.80
tf_Gabor_0.5A0.0std 0.80
tf_GLCMMS_contrastd1.0A0.0mean 0.80
vf_Frangi_edge_std_SR(1.0, 10.0)_SS2.0 0.80
vf_Frangi_full_std_SR(1.0, 10.0)_SS2.0 0.80
tf_GLCMMS_ASMd1.0A1.57std 0.81
tf_LBP_mean_R8_P24 0.81
tf_GLCMMS_ASMd1.0A0.79mean 0.81
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tf_NGTDM_Contrast 0.81
tf_GLCMMS_dissimilarityd1.0A1.57mean 0.81
tf_GLCMMS_dissimilarityd1.0A0.79mean 0.81
tf_GLCMMS_energyd1.0A1.57mean 0.81
tf_GLCMMS_ASMd1.0A2.36mean 0.81
vf_Frangi_inner_quartile_range_SR(1.0, 10.0)_SS2.0 0.81
tf_LBP_std_R8_P24 0.81
tf_GLCMMS_homogeneityd1.0A0.0std 0.82
tf_GLCMMS_dissimilarityd1.0A0.0std 0.82
tf_GLCMMS_homogeneityd1.0A0.79mean 0.82
tf_Gabor_0.2A2.36std 0.82
tf_GLCMMS_homogeneityd1.0A2.36mean 0.83
tf_GLCMMS_energyd1.0A0.0mean 0.83
tf_GLCMMS_dissimilarityd1.0A0.79std 0.83
tf_GLCMMS_energyd1.0A0.0std 0.83
tf_GLCMMS_correlationd1.0A0.0std 0.83
tf_GLCMMS_energyd1.0A1.57std 0.83
tf_Gabor_0.5A2.36std 0.84
tf_GLCMMS_energyd1.0A0.79mean 0.84
hf_median 0.84
vf_Frangi_inner_max_SR(1.0, 10.0)_SS2.0 0.84
tf_GLCMMS_energyd1.0A0.79std 0.84
tf_Gabor_0.5A2.36mean 0.84
tf_GLCMMS_energyd1.0A2.36std 0.84
tf_GLCMMS_homogeneityd1.0A0.79std 0.84
tf_GLCMMS_homogeneityd1.0A2.36std 0.84
tf_GLCMMS_homogeneityd1.0A1.57mean 0.84
tf_GLSZM_ZoneEntropy 0.84
vf_Frangi_inner_range_SR(1.0, 10.0)_SS2.0 0.85
tf_GLCMMS_energyd1.0A2.36mean 0.85
phasef_phasecong_kurtosis_WL3_N5 0.85
tf_GLCMMS_correlationd1.0A0.79mean 0.85
logf_median_sigma1 0.85
tf_Gabor_0.2A1.57min 0.85
tf_Gabor_0.2A1.57kurt 0.86
tf_GLCMMS_correlationd1.0A0.0mean 0.86
tf_GLCMMS_dissimilarityd1.0A0.0mean 0.86
tf_GLCMMS_homogeneityd1.0A0.0mean 0.86
tf_GLCMMS_correlationd1.0A0.79std 0.86
tf_Gabor_0.5A0.0max 0.86
tf_GLCMMS_correlationd1.0A1.57std 0.87
tf_LBP_mean_R15_P36 0.87
tf_Gabor_0.05A1.57kurt 0.87
sf_cvar_avg_2D 0.87
vf_Frangi_inner_std_SR(1.0, 10.0)_SS2.0 0.87
phasef_phasecong_mean_WL3_N5 0.87
tf_LBP_std_R3_P12 0.87
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tf_LBP_std_R15_P36 0.88
tf_GLCM_energyd3.0A0.79 0.88
tf_GLCM_energyd3.0A1.57 0.88
tf_Gabor_0.2A2.36skew 0.88
tf_Gabor_0.5A1.57std 0.88
tf_GLCMMS_correlationd1.0A2.36std 0.88
tf_GLCM_energyd3.0A0.0 0.88
phasef_monogenic_mean_WL3_N5 0.88
tf_GLCM_energyd1.0A0.79 0.88
tf_GLRLM_LongRunEmphasis 0.88
tf_GLCMMS_correlationd1.0A2.36mean 0.88
tf_Gabor_0.05A0.79max 0.89
tf_GLCM_energyd3.0A2.36 0.89
tf_GLSZM_HighGrayLevelZoneEmphasis 0.89
tf_GLSZM_LowGrayLevelZoneEmphasis 0.89
tf_GLCM_energyd1.0A2.36 0.89
tf_Gabor_0.2A2.36max 0.89
tf_GLCM_energyd1.0A0.0 0.89
tf_GLRLM_LongRunHighGrayLevelEmphasis 0.89
vf_Frangi_inner_entropy_SR(1.0, 10.0)_SS2.0 0.89
tf_Gabor_0.5A1.57max 0.89
tf_GLCM_energyd1.0A1.57 0.89
tf_Gabor_0.2A0.79skew 0.89
tf_Gabor_0.05A0.79skew 0.90
phasef_monogenic_median_WL3_N5 0.90
logf_mean_sigma5 0.90
tf_Gabor_0.05A2.36min 0.90
hf_mean 0.90
tf_Gabor_0.5A0.0min 0.90
tf_Gabor_0.2A0.0kurt 0.90
tf_GLRLM_LongRunLowGrayLevelEmphasis 0.90
tf_Gabor_0.2A0.79min 0.90
tf_Gabor_0.2A1.57std 0.91
phasef_phasecong_skewness_WL3_N5 0.91
hf_min 0.91
tf_Gabor_0.2A0.79kurt 0.91
phasef_phasesym_max_WL3_N5 0.91
phasef_phasesym_range_WL3_N5 0.91
tf_Gabor_0.2A0.79std 0.91
phasef_phasesym_mean_WL3_N5 0.91
hf_quartile_range 0.91
tf_Gabor_0.2A2.36min 0.91
vf_Frangi_edge_max_SR(1.0, 10.0)_SS2.0 0.92
vf_Frangi_full_max_SR(1.0, 10.0)_SS2.0 0.92
vf_Frangi_edge_range_SR(1.0, 10.0)_SS2.0 0.92
vf_Frangi_full_range_SR(1.0, 10.0)_SS2.0 0.92
logf_skewness_sigma1 0.92
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sf_prax_avg_2D 0.92
tf_Gabor_0.05A2.36max 0.92
tf_GLCMMS_correlationd1.0A1.57mean 0.92
tf_Gabor_0.2A0.0skew 0.92
hf_max 0.92
tf_Gabor_0.2A0.79max 0.93
phasef_phasecong_std_WL3_N5 0.93
phasef_phasesym_std_WL3_N5 0.93
tf_GLRLM_RunEntropy 0.93
hf_range 0.93
tf_Gabor_0.05A2.36skew 0.93
tf_Gabor_0.05A0.79kurt 0.93
tf_Gabor_0.05A0.0std 0.93
hf_std 0.93
tf_Gabor_0.2A1.57skew 0.94
sf_rad_dist_std_2D 0.94
tf_Gabor_0.05A1.57min 0.94
tf_Gabor_0.05A2.36std 0.94
tf_Gabor_0.2A1.57mean 0.94
tf_Gabor_0.05A2.36kurt 0.94
tf_Gabor_0.2A0.0std 0.94
tf_Gabor_0.05A0.0max 0.94
tf_Gabor_0.2A2.36mean 0.94
phasef_phasesym_quartile_range_WL3_N5 0.95
logf_min_sigma1 0.95
tf_Gabor_0.2A2.36kurt 0.95
tf_GLCM_contrastd3.0A2.36 0.95
phasef_monogenic_min_WL3_N5 0.95
logf_range_sigma1 0.95
tf_GLCM_homogeneityd3.0A0.79 0.95
hf_peak 0.95
tf_GLCM_homogeneityd3.0A0.0 0.95
tf_Gabor_0.2A0.79mean 0.96
tf_GLCM_homogeneityd3.0A1.57 0.96
vf_Frangi_edge_entropy_SR(1.0, 10.0)_SS2.0 0.96
vf_Frangi_full_entropy_SR(1.0, 10.0)_SS2.0 0.96
tf_GLCM_contrastd3.0A0.0 0.96
logf_max_sigma1 0.96
phasef_monogenic_range_WL3_N5 0.96
tf_Gabor_0.05A1.57std 0.96
tf_GLCM_homogeneityd3.0A2.36 0.96
tf_GLCM_contrastd3.0A1.57 0.96
tf_Gabor_0.05A2.36mean 0.96
tf_GLRLM_RunVariance 0.96
tf_GLCM_contrastd1.0A0.0 0.96
phasef_phasecong_entropy_WL3_N5 0.96
logf_min_sigma5 0.96
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logf_max_sigma10 0.96
tf_GLCM_contrastd3.0A0.79 0.96
tf_GLCM_homogeneityd1.0A0.79 0.96
phasef_monogenic_max_WL3_N5 0.96
tf_GLCM_contrastd1.0A2.36 0.96
tf_Gabor_0.05A1.57skew 0.96
tf_GLCM_contrastd1.0A0.79 0.96
phasef_phasecong_max_WL3_N5 0.96
phasef_phasecong_range_WL3_N5 0.96
logf_range_sigma10 0.96
tf_GLCM_homogeneityd1.0A2.36 0.97
logf_min_sigma10 0.97
phasef_monogenic_std_WL3_N5 0.97
phasef_monogenic_quartile_range_WL3_N5 0.97
tf_GLCM_homogeneityd1.0A0.0 0.97
vf_Frangi_inner_kurtosis_SR(1.0, 10.0)_SS2.0 0.97
tf_GLCM_homogeneityd1.0A1.57 0.97
tf_GLCM_contrastd1.0A1.57 0.97
tf_Gabor_0.2A0.0min 0.97
tf_Gabor_0.05A0.0mean 0.97
tf_GLCM_dissimilarityd1.0A0.0 0.97
tf_Gabor_0.5A0.0mean 0.97
tf_GLCM_dissimilarityd3.0A2.36 0.97
phasef_phasesym_entropy_WL3_N5 0.97
phasef_monogenic_entropy_WL3_N5 0.97
logf_kurtosis_sigma1 0.98
tf_GLCM_dissimilarityd1.0A2.36 0.98
tf_GLCM_dissimilarityd1.0A1.57 0.98
tf_GLCM_dissimilarityd3.0A1.57 0.98
tf_Gabor_0.2A1.57max 0.98
logf_range_sigma5 0.98
vf_Frangi_inner_skewness_SR(1.0, 10.0)_SS2.0 0.98
tf_GLCM_dissimilarityd1.0A0.79 0.98
tf_GLCM_dissimilarityd3.0A0.79 0.98
logf_std_sigma5 0.98
tf_GLCM_dissimilarityd3.0A0.0 0.98
tf_Gabor_0.05A1.57mean 0.98
logf_std_sigma1 0.98
logf_mean_sigma10 0.98
tf_Gabor_0.5A1.57mean 0.98
hf_energy 0.98
logf_entropy_sigma1 0.98
tf_Gabor_0.05A0.0min 0.98
logf_std_sigma10 0.98
logf_entropy_sigma10 0.98
logf_median_sigma10 0.98
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tf_Gabor_0.2A0.0mean 0.99
tf_Gabor_0.2A0.0max 0.99
logf_entropy_sigma5 0.99
phasef_phasecong_energy_WL3_N5 0.99
sf_rad_dist_avg_2D 0.99
phasef_phasesym_energy_WL3_N5 0.99
phasef_monogenic_kurtosis_WL3_N5 0.99
logf_max_sigma5 0.99
tf_Gabor_0.05A1.57max 0.99
vf_Frangi_inner_energy_SR(1.0, 10.0)_SS2.0 0.99
logf_skewness_sigma5 0.99
logf_quartile_range_sigma10 0.99
tf_GLSZM_GrayLevelNonUniformity 0.99
logf_energy_sigma1 0.99
logf_quartile_range_sigma5 1.00
logf_kurtosis_sigma5 1.00
logf_kurtosis_sigma10 1.00
logf_skewness_sigma10 1.00
logf_peak_sigma10 1.00
tf_GLSZM_SizeZoneNonUniformity 1.00
logf_energy_sigma10 1.00
logf_quartile_range_sigma1 1.00
sf_volume_2D 1.00
tf_GLRLM_RunLengthNonUniformity 1.00
logf_peak_sigma1 1.00
logf_peak_sigma5 1.00
logf_energy_sigma5 1.00
phasef_monogenic_peak_WL3_N5 1.00
vf_Frangi_inner_peak_SR(1.0, 10.0)_SS2.0 1.00
tf_Gabor_0.5A1.57min 1.00
phasef_phasesym_peak_WL3_N5 1.00
phasef_monogenic_energy_WL3_N5 1.00
phasef_phasecong_peak_WL3_N5 1.00
vf_Frangi_edge_peak_SR(1.0, 10.0)_SS2.0 1.00
vf_Frangi_full_peak_SR(1.0, 10.0)_SS2.0 1.00
tf_GLRLM_GrayLevelNonUniformity 1.00
phasef_phasecong_min_WL3_N5 1.00
phasef_phasesym_min_WL3_N5 1.00
tf_LBP_median_R8_P24 1.00
tf_LBP_peak_R15_P36 1.00
tf_LBP_peak_R3_P12 1.00
tf_LBP_peak_R8_P24 1.00
∗Abbreviations: GLCM: gray level co-occurrence matrix;
GLCMMS: GLCM multislice; NGTDM: neighborhood gray tone
difference matrix; GLSZM: gray level size zone matrix; GLRLM:
gray level run length matrix; LBP: local binary patterns; LoG:
Laplacian of Gaussian; std: standard deviation.
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Abstract

Distinguishing gastrointestinal stromal tumors (GISTs) from other intra-abdominal tumors
and GISTs molecular analysis is necessary for treatment planning, but challenging due to its
rarity. The aim of this study was to evaluate radiomics for distinguishing GISTs from other
intra-abdominal tumors, and in GISTs, predict the c-KIT, PDGFRA, BRAF mutational status
and mitotic index (MI). All 247 included patients (125 GISTS, 122 non-GISTs) underwent a
contrast-enhanced venous phase CT. The GIST vs. non-GIST radiomics model, including
imaging, age, sex and location, had a mean area under the curve (AUC) of 0.82. Three
radiologists had an AUC of 0.69, 0.76, and 0.84, respectively. The radiomics model had an
AUC of 0.52 for c-KIT, 0.56 for c-KIT exon 11, and 0.52 for the MI. Hence, our radiomics model
was able to distinguish GIST from non-GISTS with a performance similar to three radiologists,
but was not able to predict the c-KIT mutation or MI.
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7.1 Introduction

Gastrointestinal stromal tumors (GISTs) are rare mesenchymal tumors of the gastroin-
testinal tract, with an estimated incidence between 10-15 cases per million inhabitants
per year [165, 166]. The most common tumor locations are the stomach (56%) and
the small intestine (32%); less common locations are the esophagus (<1%) and the
colorectal region (6%) [165]. Differentiating GISTs from other intra-abdominal tumors
(non-GISTs), such as schwannomas, leiomyosarcomas, leiomyomas, esophageal/gas-
tric junctional adenocarcinomas, and lymphomas is highly important for treatment
planning [167]. Computed tomography (CT) is the imaging modality of choice in
GIST diagnosis [168], but as the differential diagnosis remains challenging, assess-
ment through an invasive tissue biopsy is generally required [169]. A non-invasive
and quicker alternative may aid in the early assessment of GISTs.

Treatment planning of GISTs is also based on their molecular profile. The mitotic
index (MI) reflects the proliferative rate of GISTs, correlates with survival and risk
of metastatic spread [170], and as such determines whether or not a patient with
localized disease should get adjuvant systemic treatment. Treatment decisions are
also based on the mutational status of GISTs. PDGFRA exon 18 mutated (Asp842Val)
GISTs are resistant to imatinib [171] and alternative treatments are being explored
in this specific subgroup. GISTs with a c-KIT exon 11 mutation also have shown a
greater sensitivity for imatinib than those with a c-KIT exon 9 mutations [167], hence
the latter are often treated with a higher imatinib dose. The MI and these genetic
mutations are currently assessed through an invasive tissue biopsy.

The field of radiomics relates imaging features to molecular characteristics in
order to non-invasively contribute to diagnosis, prognosis and treatment decisions.
Several radiomics studies have shown promising results in risk stratification of GISTs
[172, 173, 174, 175, 176, 177, 178, 179, 180, 181]. However, radiomics has not been
previously used to distinguish GISTs from non-GISTs, nor to predict the mutational
status or the MI.

The aim of this study was to evaluate whether an automatically optimized
radiomics model based on CT is capable of 1) differentiating GISTs from other
intra-abdominal tumors resembling GIST prior to treatment, i.e. the differential
diagnosis; and 2) predicting the presence and type of mutation (BRAF, PDGFRA and
c-KIT) and the MI of GISTs, i.e. the molecular analysis.

7.2 Methods

7.2.1 Data collection

Approval by the Erasmus MC institutional review board was obtained (MEC-2017-
1187). Patients from our institute between 2004-2017 with a histopathologically
proven primary GIST or intra-abdominal tumors resembling GIST with at least a
contrast-enhanced venous phase CT prior to treatment [167, 182], were retrospec-
tively included. Several GISTs may have been included in the Dutch GIST registry.
Exact numbers on potential overlap with previous studies using the registry can-
not be determined. As no radiomics studies on this registry have been published,
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potential overlap has little relevance. Age at diagnosis, sex, and tumor location
were collected. Tumor location was based on radiology reports and categorized
into: (distal) esophagus, stomach, small intestine, colon, rectum, pelvis, mesentery,
uterus, and other. The sample sizes of the non-GIST and the GIST cohort were
matched. The non-GIST subtypes were balanced, i.e. a similar number of patients
per subtype was randomly included. GISTs with a known mutation status and/or
MI, prior to therapy were included for the molecular analysis. Both were obtained
from pathology reports and analyzed on either the primary lesion or, in case of
metastatic disease at first presentation, on secondary lesions. The mutation was
categorized as ’absent’ or ’present’ for each type (e.g. c-KIT) and subtype (e.g. c-KIT
exon 11). The MI (expressed in high power fields (HPF), magnification 40x, totaling
5mm2), determined on biopsy or excision material, was split into low (≤5/50 HPF)
and high (>5/50 HPF) [183]. An adjusted MI was calculated per 50 HPF when the
MI was not counted per 50 HPF. In case of unknown mutation status or MI, the case
was excluded from the particular analysis.

7.2.2 Radiomics

The radiomics workflow is depicted in Figure 7.1, adapted from Vos et al. [72] (i.e.,
Chapter 5 of this thesis). The tumors were all manually segmented once by one
of two clinicians under supervision of a musculoskeletal radiologist (5 years of
experience) using in-house developed software [105]. A subset of 30 GISTs was
segmented by both clinicians, in which intra-observer variability was evaluated
through the pairwise Dice Similarity Coefficient (DSC), with DSC > 0.70 indicating
good agreement [150]. For each lesion, 564 features quantifying intensity, shape, and
texture were extracted. For details, see Section 7.A. To create a decision model from
the features, the WORC toolbox was used [36, 72, 151]. In WORC, the decision model
creation consists of several steps, e.g. feature selection, resampling, and machine
learning. WORC performs an automated search amongst a variety of algorithms for
each step and determines which combination maximizes the prediction performance
on the training set. For details, see Section 7.B. The code for the feature extraction
and model creation has been published open-source [184].

7.2.3 Robustness to segmentation and image acquisition variations

Radiomics’ robustness to segmentation variations was assessed using the intra-class
correlation coefficient (ICC) of the features on the subset of 30 GISTs which were
segmented by two observers. “Good” and “excellent” reliability were defined by
ICC > 0.75 and ICC > 0.90, respectively [154]. Moreover, the impact of ICC-based
feature selection on model performance was assessed by creating models using only
features with good or excellent reliability.

Robustness to variations in the acquisition parameters was assessed by using
ComBat harmonization [185, 186]. In ComBat, feature distributions are harmonized
for variations in the imaging acquisition, e.g. due to differences in hospitals, manu-
facturers, or acquisition parameters. When dividing the dataset into groups based
on these variations, the groups have to remain sufficiently large to estimate the har-
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monization parameters. In our study, groups were defined based on manufacturer
alone, or based on protocol, defined as the combination of manufacturer and slice
thickness (above or below the median). No moderation variable was used.

7.2.4 Experimental setup

Evaluation of all models was done through a 100x random-split cross-validation. In
each iteration, the data was randomly split in 80% for training and 20% for testing in
a stratified manner, to make sure the distribution of the classes in all sets was similar
to the original, see Figure 7.A.1. Within the training set, model optimization was
performed using an internal cross-validation (5x). Hence, all optimization was done
on the training set to eliminate any risk of overfitting on the test set.

Performance was evaluated using the Area Under the Curve (AUC) of the
Receiver Operating Characteristic (ROC) curve, balanced classification accuracy
(BCA) [65], sensitivity, and specificity. The positive classes were defined as: GIST,
the presence of the mutations, and a high MI in the respective analyses. The 95%
confidence intervals (CIs) were constructed using the corrected resampled t-test
based on the results from all 100 cross-validation iterations [64]. Both the mean and
the confidence intervals are reported. ROC confidence bands were constructed using
fixed-width bands [67].

To assess the predictive value of the various features, models were trained based
on: 1) volume; 2) location; 3) age and sex; 4) imaging; 5) age, sex, and imaging; and
6) age, sex, imaging, and tumor location. Models 2 and 6, assessing the predictive
value of location, were included in the differential diagnosis because the radiologists
also used tumor location.

In the mutation stratification, only the subset of patients with a known mutation
(sub)type was taken into account for each analysis.

7.2.5 Model insight

To explore the predictive value of individual features, the Mann-Whitney U uni-
variate statistical test was used for continuous variable, and a Chi-square test for
categorical variables. P-values were corrected for multiple testing using the Bon-
ferroni correction, and were considered statistically significant at a p-value <0.05.
To gain insight into the models, the patients were ranked based on the consistency
of the model predictions. Typical examples for each class consisted of the patients
that were correctly classified in all cross-validation iterations; atypical vice versa.
To estimate model robustness to segmentation and acquisition protocol variations,
for the differential diagnosis, additional imaging-only models (i.e. model 4) were
created using only reliable features through ICC-based feature selection and ComBat
harmonization, respectively.

7.2.6 Performance of the radiologists

To compare the models with clinical practice, three radiologists (5, 15 and 12 years of
experience) independently evaluated the tumors. Evaluation was done on a ten-point
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scale to indicate the scoring certainty, i.e. 1 = strongly disagree GIST, 5 = mildly
disagree GIST, 6 = mildly agree GIST, 10 = strongly agree GIST. The radiologists were
blinded for the diagnosis but had access to the CT scan, patient age and sex. Only
the differential diagnosis was scored, as the mutation and MI are based on pathology
in clinical practice. The radiologists’ agreement was evaluated using Cohen’s Kappa.
To enable direct statistical comparison between the radiologists’ performances on the
one hand and the best radiomics model on the other hand, the radiomics model was
evaluated in an additional leave-one-out cross-validation, after which the DeLong
test was used to compare the AUCs [155].

7.3 Results

7.3.1 Study population and dataset

The dataset included 247 patients (125 GISTs, 122 non-GISTs), which were all in-
cluded in the differential diagnosis analysis. Sclerosing mesenteritis (N=16) and
inflammatory fibroid polyp (N=4) were excluded due to their small numbers. Clini-
cal characteristics of the dataset are summarized in Table 7.1. The dataset of 247 CT
scans originated from 66 different scanners, resulting in variation in the acquisition
protocols, see Table 7.1. The scans originated from four different manufacturers
(Siemens, Berlin, Germany: 126, Philips, Eindhoven, the Netherlands: 63, General
Electric, Boston, United States: 10, Toshiba, Tokyo, Japan: 48). On the subset of 30
GISTs that was segmented by both observers, the mean DSC was 0.84 (standard
deviation of 0.20), indicating good agreement.

Two patients were excluded for the molecular radiomics analysis as the molecular
characteristics were obtained after receiving systemic treatment. A total of 123 GISTs
were included in the cohort for the molecular analysis. The mutation analysis was
performed on tissue obtained from the primary lesion, except for three patients
for which this was performed on a metastatic hepatic lesion. A c-KIT mutational
analysis was performed in 98/123 (80%) GIST patients. One patient had a c-KIT
mutation which was not further specified. Twenty-six (27%) patients had no c-KIT
mutation. The majority of patients had a c-KIT exon 11 mutation (N=59, 60%). Due
to the low numbers of c-KIT exon 9 (N=10), c-KIT exon 13 (N=2), PDGFRA (N=14),
and BRAF (N=0), these mutations were excluded from further analysis.

The MI was available in 90/123 (73%) GISTs (55 low, 35 high). The MI of 33
(37%) GISTs was converted to the adjusted MI. The MI was determined on excision
material in 54 (60%) patients, and on biopsy material in 36 (40%) patients, including
one patient in which the MI was based on the hepatic GIST metastasis.

7.4 Evaluation of models for the differential diagnosis

The performances of the models distinguishing GISTs from non-GISTs are shown
in Table 7.2 and Figure 7.2. On average, model 1, based solely on volume, did not
perform well (AUC of 0.56). Model 2, based on location, performed better (AUC of
0.82), but showed a sharp cutoff in the ROC curve (Figure 7.2b). Model 3, based on
age and sex, did not perform well (AUC of 0.61). Model 4, based on CT imaging
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features, performed better with a mean AUC of 0.74. Model 5, combining imaging
with age and sex, did not yield an improvement (AUC of 0.70). Model 6, adding
tumor location, did yield an improvement (AUC of 0.82).

7.4.1 Comparison with radiologists

The performance of the radiologists is shown in Table 7.2 and Figure 7.2. Compared
to model 6, which had the same inputs, i.e. based on imaging, age, sex, and tumor
location, the AUCs of the first two radiologists (0.69 and 0.76) were lower, while the
AUC of the third radiologists was similar (0.84). All radiologists had a relatively
high sensitivity (0.74, 0.90, and 0.78), but a low specificity (0.60, 0.44, and 0.74).
Cohen’s kappa measures between the pairs of radiologists were 0.20, 0.31 and 0.33,
all indicating poor inter-observer agreement. The Delong test between the pairs
of radiologists indicated a significant difference in performance for radiologists 1
versus 3 (p=6× 10−5) and 2 versus 3 (p=0.01); for radiologist 1 versus 2, the power
was too low to claim insignificance. Radiomics model 6 evaluated in a leave-one-out
cross-validation (AUC of 0.82) also performed statistically significantly better than
the first radiologist (p=0.0018); for comparison with the other radiologists, the power
was too low to claim insignificance.

7.4.2 Evaluation of models for the molecular analysis

For the c-KIT mutation stratification and MI predictions, the performance of the
radiomics model based on age, sex and imaging features (model 5) is depicted in
Table 7.3.

In the mutation stratification, the radiomics models had a mean AUC of 0.52, a
low specificity (0.01), and a high sensitivity (0.97) for predicting the presence of a
c-KIT mutation in general (model 5A). Predicting the presence of a c-KIT exon 11
mutation (model 5B) performed similar (AUC of 0.56). The MI prediction (model
5C) had a mean AUC of 0.52, a high specificity (0.71) and a low sensitivity (0.30).
All models thus focus on the majority class and perform close to guessing, as is
confirmed by the ROC curves in Figure 7.A.2. As models 1, 3 and 4 include a subset
of the features from model 5, which already did not perform well, these results are
omitted. Model 2 and 6 were only used in the differential diagnosis.

7.4.3 Model insight

As the molecular analysis models did not perform well, the model insight analysis
was only conducted for the differential diagnosis. The p-values of the feature
importance analysis are shown in Table 7.A.1. In total, 43 features had significant
p-values after Bonferroni correction (1.1× 10−17 to 4.6× 10−2). These included the
tumor location (1.1× 10−17), two intensity features, three orientation features, four
shape features of which three related to the tumor area, and 33 texture features. A
list of these features and their p-values has been added to the mentioned published
code [184]. Volume was not found to be significant.

Results on ranking patients from typical to atypical are only shown for the model
based on imaging, i.e. model 4, as we were interested in the imaging features that
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Figure 7.2: Receiver operating characteristic curves of the radiomics models for the differential diagnosis
based on volume (a); location (b); age and sex (c); imaging (d); imaging, age, and sex (e); imaging, age, sex,
and tumor location (f). Additionally in figure (f), the curves for scoring by three radiologists are shown,
and the cut-off points for both the radiomics model and the radiologists. For the radiomics models, the
grey crosses identify the 95% confidence intervals of the 100x random-split cross-validation; the orange
curve is fit through their means.
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Table 7.3: Performance of radiomics model 5, based on imaging, age, and sex, for the GIST mutation
stratification and the mitotic index for A) c-KIT presence vs. absence B) c-KIT exon 11 presence vs.
absence; and C) mitotic index (≤5/50 HPF vs. >5/50 HPF). The number of patients included in each
analysis (N) is mentioned in the heading. Values are presented with their 95% confidence intervals.

Model 5A
c-KIT (N=98)

Model 5B
c-KIT exon 11 (N=96)

Model 5C
Mitotic index (N=90)

AUC 0.52 [0.38, 0.66] 0.56 [0.44, 0.67] 0.52 [0.38, 0.65]
BCA 0.49 [0.46, 0.52] 0.52 [0.44, 0.61] 0.51 [0.41, 0.60]
Sensitivity 0.97 [0.91, >1.00] 0.78 [0.64, 0.91] 0.30 [0.12, 0.47]
Specificity 0.01 [<0.00, 0.07] 0.27 [0.11, 0.43] 0.71 [0.56, 0.87]
∗Abbreviations: AUC: area under the receiver operating characteristic curve;
BCA: balanced classification accuracy; PPV: positive predictive value; NPV:
negative predictive value

defined typical GISTs. Of the 247 patients, 104 tumors (44 GISTs, 60 non-GISTs,
42%) were always classified correctly, and were thus considered typical. Twenty-nine
tumors (18 GISTs, 11 non-GISTs, 12%) were always classified incorrectly and thus
atypical. In Figure 7.3, four CT slices of such typical and atypical examples of
GISTs are shown. Visual inspection of the tumors defined as typical or atypical
by the radiomics model showed a relation with necrosis (more present in typical
GIST, typically a necrotic core) and shape (more compact, circular and non-lobulated
for typical GIST). The patients which were equally often classified as GIST and
non-GIST in the cross-validation iterations were mostly small tumors. These typical
characteristics and the difficulty with small tumors correspond to the literature for
GIST risk stratification [180, 187]. Smaller tumors were also more often misclassified
by the radiologists in our study.

A list of the ICC values of all imaging features has been added to the mentioned
published code [184]. Of the 564 imaging features, 327 (58%) had an ICC > 0.75 and
thus good reliability, 197 (34%) had an ICC > 0.90 and thus excellent reliability. Only
using features with a good or excellent reliability in model 4 did not substantially
alter the performance (AUC of 0.76 and 0.75, respectively), see Table 7.A.2. Similarly,
using ComBat to harmonize the features for manufacturer or protocol differences did
not substantially alter the performance either (AUC of 0.76 and 0.73, respectively),
see Table 7.A.2.

7.5 Discussion

Radiomics can distinguish GISTs from other intra-abdominal tumors with a perfor-
mance similar to three radiologists. Radiomics could not predict the presence and
subtype of c-KIT mutations or the MI.

Diagnosing GISTs is currently done through a biopsy, aided by manually scored
imaging features [168, 188, 189]. The ability to distinguish GISTs from non-GISTs on
routine CT scans through radiomics could be a non-invasive and quick alternative
for the initial assessment of intra-abdominal tumors. The use of our model would
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a. Typical GIST b. Typical GIST

c. Atypical GIST d. Atypical GIST

Figure 7.3: Examples of GISTs always correctly or always incorrectly predicted by the radiomics CT
imaging model, i.e. model 4. The typical examples (a and b) are two of the GISTs always classified
correctly by the model; the atypical examples (c and d) are two of the GISTs always classified incorrectly
by the model.
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aid quick referral of GIST patients from a peripheral hospital to a center of expertise
without the need to wait for an invasive biopsy and time-consuming pathology
analysis, and it would prevent GIST patients being missed (i.e. false negatives), un-
necessary referral or even treatment for non-GIST (i.e. false positives). Additionally,
for non-GIST benign abnormalities, our differential diagnosis model prevents further
dissemination investigation and pathologic examinations. To our knowledge, this is
the first study to evaluate the GIST differential diagnosis on many locations through
an automated radiomics approach on a large, multi-scanner dataset and compare
the performance with radiologists.

The performance of the differential diagnosis imaging-only model was similar
to two radiologists, and significantly better than one. The agreement between the
radiologists was poor, indicating observer dependence in the prediction, and there
were significant performance differences. The advantage of the radiomics model
is that it is automatic and observer independent, assuming the segmentation is
reproducible as indicated by the high DSC, and that it will always give the same
prediction on the same image, thereby improving over manual scoring.

Tumor location is highly relevant for distinguishing GISTs from non-GISTs as
GISTs grow typically in the stomach or small intestines [165]. In our study, tumor
location was based on radiology reports, which is subjective and occasionally fails to
report the true tumor primary origin [183]. Moreover, the tumor location distribution
in our dataset may not be a correct representation of the overall population, e.g.
only non-GISTs were located in the uterus. Despite the subjectivity of potential bias
in tumor location, we added location to the imaging model for a fair comparison
with the radiologists. Further research on location-matched datasets is required to
investigate the value of location in the GIST differential diagnosis model.

In the literature, risk classification of outcomes such as recurrence or aggressive
behavior for GISTs has mostly been based on criteria such as the Armed Forces
Institute of Pathology criteria, modified National Institutes of Health consensus
criteria of 2008, and the modified Fletcher classification system [167, 190, 191, 192,
193]. Several studies to evaluate radiomics for this risk stratification have been
conducted over the last years [172, 173, 174, 175, 176, 177, 178, 179, 180, 181]. These
studies illustrate the clinical need for new methods to stratify GISTs for guiding
treatment decisions and show the potential of applying radiomics in the setting of
GIST.

Our first contribution with respect to the existing literature is the focus on the
diagnostic trajectory of GISTs by aiming to predict the differential diagnosis, whereas
existing studies mainly focus on risk classification [167, 190, 191, 192, 193]. Second,
our method determines the optimal radiomics pipeline from a large number of
radiomics algorithms and parameters, automatically evaluating a large number
of radiomics methods, whereas existing studies typically report the results of a
“hand-crafted”, manually optimized radiomics pipeline [172, 173, 174, 175, 176, 177,
178, 179, 180, 181]. Moreover, through an extensive cross-validation scheme, all
model optimization was performed on the training dataset, eliminating the risk of
overfitting of the model on the test set. This increases the chances of generalizability
of our performance estimates. Lastly, we evaluated the model’s robustness to
segmentation and scanner variations. In our results, neither ICC-based features
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selection nor ComBat harmonization substantially altered the performance. As the
model performance did not alter when using these measures to increase radiomics
robustness, this may indicate that the model is already robust to these variations.
Evaluating ComBat with the differential diagnosis (e.g. GIST or non-GIST) as
moderation variable did lead to a near perfect performance (AUC of 0.99), but
similar results were obtained with randomly labeling patients as GIST or non-GIST,
indicating that this near perfect performance was a result of overfitting by ComBat.

Our study has several limitations. First, there was substantial heterogeneity
in the acquisition protocols. This heterogeneity may have (negatively) affected
the performance. Nevertheless, even on this heterogeneous dataset, the radiomics
model achieved promising performance, similar to three experienced radiologists,
suggesting high generalizability of the model. Second, the dataset for the mutation
analysis was small (N=98 GISTs with known c-KIT mutation), which may have been
too small for radiomics to learn from. Third, the use of different gene panels for the
GIST mutational analysis over the years might have led to a potential underestimation
of mutation prevalence in the current cohort, as newer sequencing techniques use
larger gene panels and have a higher sensitivity. Additionally, only for a subset of
the patients (e.g. 90 of the 125 (72%) in the MI analysis) complete histologic data
was available. No data regarding the clinical outcome such as survival or recurrence
was available for the GISTs. Fourth, the current radiomics approach requires manual
segmentation. While accurate, this process is also time consuming and potentially
subject to observer variability, although the DSC indicated good agreement and our
ICC-based feature selection shows that only using reliable features resulted in a
similar performance as using all features. Automatic segmentation methods, such
as using deep learning, may help to overcome this limitation. Lastly, the current
study has a retrospective study design. A prospective study confirming our results
is needed.

Future work should focus on the external validation of our findings on an
independent, external dataset. Additionally, extension of the dataset will lead to
more statistical power, may improve the performance as the model has more cases
to learn from, and may facilitate more data driven approaches such as deep learning.
Also, this may result in sufficient samples to study prediction of PDGFRA, BRAF, and
other rare c-KIT mutations. Importantly, an alternative to non-invasively determine
the mutational status of a GIST is by ctDNA [194]. With better performance of both
methods, the combination of radiomics and ctDNA assessment would allow to assess
in patients with metastatic disease the most important determinants rendering an
invasive biopsy redundant. Eventually, this may be followed by a prospective clinical
trial with harmonized acquisition protocols in which the performance, as well as the
cost-effectiveness, are assessed.

7.6 Conclusion

Our radiomics model was able to distinguish GIST from non-GIST intra-abdominal
tumors based on pre-treatment CT imaging with a performance similar to three
experienced radiologists. Our model may therefore aid clinicians early on in the
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diagnostic chain. The model was not able to predict the c-KIT mutational status and
the MI.
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Appendix

Appendix 7.A Radiomics feature extraction

This supplemental material is similar to Vos et al., Timbergen et al. [72, 73] (i.e.,
Chapter 5 and Chapter 6 of this thesis), but details relevant for the current study are
highlighted.

A total of 564 radiomics features were used in this study. All features were
extracted using the defaults for CT scans from the Workflow for Optimal Radiomics
Classification (WORC) [36], which internally uses the PREDICT [51] and PyRa-
diomics [44] feature extraction toolboxes. An overview of all features is depicted in
Table 7.A.3. For details on the mathematical formulation of the features, we refer the
reader to Zwanenburg et al. [39]. More details on the extracted features can be found
in the documentation of the respective toolboxes, mainly the WORC documentation
[68].

For CT scans, the images are by default not normalized as the scans already
have a fixed unit and scale (i.e. Hounsfield), contrary to MRI. The images were
not resampled, as this would result in interpolation errors. The code to extract the
features has been published open-source [184].

The features can be divided in several groups. Thirteen intensity features were
extracted using the histogram of all intensity values within the ROIs and included
several first-order statistics such as the mean, standard deviation and kurtosis.
These describe the distribution of Hounsfield units within the lesion. Thirty-five
shape features were extracted based only on the ROI, i.e. not using the image, and
included shape descriptions such as the volume, compactness and circular variance.
These describe the morphological properties of the lesion. Nine orientation features
were used, describing the orientation of the ROI, i.e. not using the image. Lastly,
483 texture features were extracted using Gabor filters (144 features), Laplacian of
Gaussian filters (36 features), vessel (i.e. tubular structures) filters (36 features) [54],
the Gray Level Co-occurrence Matrix (144 features) [39], the Gray Level Size Zone
Matrix (16 features) [39], the Gray Level Run Length Matrix (16 features) [39], the
Gray Level Dependence Matrix (14 features) [39], the Neighbourhood Grey Tone
Difference Matrix (5 features) [39], Local Binary Patterns (18 features) [52], and local
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phase filters (36 features) [53, 195]. These features describe more complex patterns
within the lesion, such as heterogeneity, occurrence of blob-like structures, and
presence of line patterns.

Most of the texture features include parameters to be set for the extraction.
Beforehand the values of the parameters that will result in features with the highest
discriminative power for the classification at hand (e.g. GIST vs non-GIST) are not
known. Including these parameters in the workflow optimization, see Section 7.B,
would lead to repeated computation of the features, resulting in a redundant decrease
in computation time. Therefore, alternatively, these features are extracted at a range
of parameters as is default in WORC. The hypothesis is that the features with high
discriminative power will be selected by the feature selection methods and/or the
machine learning methods as described in Section 7.B. The parameters used are
described in Table 7.A.3.

The dataset used in this study is heterogeneous in terms of acquisition protocols.
Especially the variations in slice may cause feature values to be dependent on the
acquisition protocol. Hence, extracting robust 3D features may be hampered by
these variations, especially for low resolutions. To overcome this issue, all features
were extracted per 2D axial slice and aggregated over all slices, which is default in
WORC. Afterwards, several first-order statistics over the feature distributions were
evaluated and used in the machine learning approach.

Appendix 7.B Adaptive workflow optimization for automatic
decision model creation

This appendix is similar to Vos et al., Timbergen et al. [72, 73] (i.e., Chapter 5 and
Chapter 6 of this thesis), but details relevant for the current study are highlighted.

The Workflow for Optimal Radiomics Classification (WORC) toolbox [36] makes
use of adaptive algorithm optimization to create the optimal performing workflow
from a variety of methods. WORC defines a workflow as a sequential combination
of algorithms and their respective parameters. To create a workflow, WORC includes
algorithms to perform feature scaling, feature imputation, feature selection, over-
sampling, and machine learning. If used, as some of these steps are optional as
described below, these methods are performed in the same order as described in this
appendix. More details can be found in the WORC documentation [68]. The code to
use WORC for creating the differential diagnosis and molecular analysis decision
models in this specific study has been published open-source [184].

Feature scaling was performed to make all features have the same scale, as
otherwise the machine learning methods may focus only on those features with large
values. This was done through z-scoring, i.e. subtracting the mean value followed
by division by the standard deviation, for each individual feature. In this way, all
features had a mean of zero and a variance of one. A robust version of z-scoring
was used, in which outliers, i.e. values below the 5th percentile or above the 95th
percentile, were excluded from computing the mean and variance.

When a feature could be computed, e.g. a lesion is too small for specific feature
to be extracted or a division by zero occurs, feature imputation was used to estimate
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replacement values for the missing values. Strategies for imputation included 1)
the mean; 2) the median; 3) the most frequent value; and 4) a nearest neighbor
approach. Feature selection was performed to eliminate features which were not
useful to distinguish between the classes, e.g. GIST vs. non-GIST. These included;
1) a variance threshold, in which features with a low variance (<0.01) are removed.
This method was always used, as this serves as a feature sanity check with almost
zero risk of removing relevant features; 2) optionally, a group-wise search, in which
specific groups of features (i.e. intensity, shape, and the subgroups of texture features
as defined in Section 7.A) are selected or deleted. To this end, each feature group
had an on/off variable which is randomly activated or deactivated, which were all
included as hyperparameters in the optimization; 3) optionally, individual feature
selection through univariate testing. To this end, for each feature, a Mann-Whitney
U test was performed to test for significant differences in distribution between the
labels (e.g. GIST vs non-GIST). Afterwards, only features with a p-value above a
certain threshold were selected. A Mann-Whitney U test was chosen as features
may not be normally distributed and the samples (i.e. patients) were independent;
and 4) optionally, principal component analysis (PCA), in which either only those
linear combinations of features were kept which explained 95% of the variance in
the features or a limited number of components (between 10 – 50). These feature
selection methods may be combined by WORC, but only in the mentioned order.

Various resampling strategies can optionally be used, which can be used to
overcome class imbalances and reduce overfitting on specific training samples.
These included various methods from the imbalanced-learn toolbox [57]; random
over-sampling, random under-sampling, near-miss resampling, the neighborhood
cleaning rule, ADASYN, and SMOTE (regular, borderline, Tomek and the edited
nearest neighbors).

Lastly, machine learning methods were used to determine a decision rule to
distinguish the classes. These included; 1) logistic regression; 2) support vector
machines; 3) random forests; 4) naive Bayes; and 5) linear and quadratic discriminant
analysis.

Most of the included methods require specific settings or parameters to be set,
which may have a large impact on the performance. As these parameters have to be
determined before executing the workflow, these are so-called "hyperparameters".
In WORC, all parameters of all mentioned methods are treated as hyperparameters,
since they may all influence the decision model creation. WORC simultaneously
estimates which combination of algorithms and hyperparameters performs best. A
comprehensive overview of all parameters is provided in the WORC documentation
[68].

By default in WORC, the performance is evaluated in a 100x random-split train-
test cross-validation. In the training phase, a total of 25,000 pseudo-randomly
generated workflows is created. These workflows are evaluated in a 5x random-split
cross-validation on the training dataset, using 85% of the data for actual training
and 15% for validation of the performance. All described methods are fit on the
training datasets, and only tested on the validation datasets. The workflows are
ranked from best to worst based on their mean performance on the validation sets
using the F1-score, which is the harmonic average of precision and recall. Due
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to the large number of workflows that is executed, there is a chance that the best
performing workflow is overfitting, i.e. looking at too much detail or even noise in
the training dataset. Hence, to create a more robust model and boost performance,
WORC combines the 50 best performing workflows into a single decision model,
which is known as ensembling. These 50 best performing workflows are re-trained
using the entire training dataset, and only tested on the test datasets. The ensemble
is created through averaging of the probabilities, i.e. the chance of a patient being
GIST or non-GIST, of these 50 workflows.

A full experiment consists of executing 12.5 million workflows (25,000 pseudo-
randomly generated workflows, times a 5x train-validation cross-validation times
100x train-test cross-validation), which can be parallelized. The computation time of
training or testing a single workflow is on average less than a second, depending
on the size of the dataset both in terms of samples (i.e. patients) and features. The
largest experiment in this study, i.e. the differential diagnosis including 247 patients
had a computation time of approximately 32 hours on a 32 CPU core machine. The
contribution of the feature extraction to the computation time was negligible.
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Full Dataset

Training: 80%

Test: 20%

Training: 85%

Validation: 15%

Model
Optimization

5x

Trained Model

100x

Evaluation

AUC=0.84

Confidence
Interval

AUC=(0.78, 0.89)

Figure 7.A.1: Visualization of the 100x random split-cross validation, including a second cross validation
within the training set.
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Figure 7.A.2: Receiver operating characteristic curves of the radiomics models based on the CT imaging
features, age at diagnosis and sex for (a) c-KIT presence vs. absence; (b) c-KIT exon 11 presence vs.
absence; and (c) mitotic index (≤5/50 HPF vs. >5/50 HPF). The grey crosses identify the 95% confidence
intervals of the 100x random-split cross-validation; the orange curve is fit through their means.
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Table 7.A.1: P-values of features from univariate tests between GIST and non-GIST patients after
Bonferonni correction. A Mann-Whitney U test was used for continuous variables, a Chi-square test for
categorical variables. Only features with a p-value < 0.05, which are considered statistically significant,
are shown. Besides the feature names, several of the feature labels also include the parameters used.
More details on the features can be found in Supplemental Materials 1.

Label Mann-Whitney U Chi2
p-value p-value

semf_location 1.14×10−17

of_COM_x 7.46×10−8

hf_energy 1.59×10−5

of_COM_Index_x 3.06×10−5

tf_Gabor_mean_F0.2_A0.79 3.37×10−4

tf_GLRLM_LongRunEmphasis 1.10×10−3

tf_GLRLM_RunVariance 1.15×10−3

tf_GLSZM_ZonePercentage 1.31×10−3

tf_GLRLM_ShortRunEmphasis 1.31×10−3

tf_GLRLM_RunPercentage 1.37×10−3

tf_GLRLM_RunLengthNonUniformityNormalized 1.37×10−3

tf_GLDM_DependenceVariance 1.49×10−3

tf_Gabor_mean_F0.2_A2.36 1.50×10−3

tf_GLDM_LargeDependenceEmphasis 1.57×10−3

tf_GLDM_SmallDependenceLowGrayLevelEmphasis 2.97×10−3

tf_GLCMMS_homogeneityd3.0A0.79mean 4.12×10−3

tf_Gabor_energy_F0.2_A0.79 4.91×10−3

tf_GLRLM_LongRunHighGrayLevelEmphasis 5.86×10−3

tf_GLDM_SmallDependenceEmphasis 6.45×10−3

tf_Gabor_energy_F0.2_A2.36 7.20×10−3

sf_area_std_2D 7.21×10−3

tf_GLDM_DependenceNonUniformityNormalized 8.36×10−3

tf_GLDM_LargeDependenceLowGrayLevelEmphasis 8.70×10−3

tf_Gabor_energy_F0.2_A1.57 8.97×10−3

tf_GLDM_LargeDependenceHighGrayLevelEmphasis 0.010
tf_Gabor_mean_F0.2_A0.0 0.011
tf_GLCMMS_homogeneityd3.0A0.0mean 0.013
sf_area_max_2D 0.015
tf_GLSZM_LargeAreaHighGrayLevelEmphasis 0.016
tf_GLSZM_LargeAreaEmphasis 0.016
tf_GLSZM_ZoneVariance 0.016
tf_Gabor_energy_F0.2_A0.0 0.017
hf_min 0.017
sf_area_avg_2D 0.022
tf_GLRLM_LongRunLowGrayLevelEmphasis 0.024
of_COM_y 0.025
tf_GLSZM_LargeAreaLowGrayLevelEmphasis 0.027
tf_Gabor_median_F0.05_A2.36 0.027
sf_shape_Maximum2DDiameterSlice 0.031
tf_GLRLM_GrayLevelNonUniformityNormalized 0.039
vf_Frangi_inner_energy_SR(1.0. 10.0)_SS2.0 0.039
tf_Gabor_mean_F0.5_A2.36 0.045
tf_Gabor_kurtosis_F0.05_A0.79 0.046
∗Abbreviations: GLCM: gray level co-occurrence matrix; GLCMMS: GLCM multislice;
NGTDM: neighborhood gray tone difference matrix; GLSZM: gray level size zone
matrix; GLRLM: gray level run length matrix; LBP: local binary patterns; LoG:
Laplacian of Gaussian; std: standard deviation.
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Table 7.A.2: Performance of the radiomics models for the differential diagnosis based on imaging
using only features with good (ICC > 0.75) or excellent (ICC > 0.90) reliability; and using ComBat
harmonization per manufacturer or per protocol (manufacturer and high/low slice thickness). For each
metric, the mean and 95% confidence interval over the 100x random-split cross-validation iterations are
given.

ICC >0.75 ICC >0.90 ComBat - ComBat -
Manufacturer Protocol

AUC 0.76 [0.70, 0.82] 0.75 [0.69, 0.82] 0.76 [0.69, 0.82] 0.73 [0.66, 0.80]
BCA 0.70 [0.64, 0.76] 0.69 [0.63, 0.75] 0.70 [0.65, 0.75] 0.67 [0.61, 0.73]
Sensitivity 0.64 [0.52, 0.76] 0.59 [0.49, 0.70] 0.65 [0.56, 0.74] 0.60 [0.49, 0.71]
Specificity 0.75 [0.66, 0.84] 0.79 [0.71, 0.88] 0.75 [0.65, 0.85] 0.75 [0.66, 0.84]
∗Abbreviations: AUC: area under the receiver operating characteristic curve; BCA:
balanced classification accuracy.
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Abstract

Radiomics applied in MRI has shown promising results in classifying prostate cancer lesions.
However, many papers describe single-center studies without external validation. The issues
of using radiomics models on unseen data have not yet been sufficiently addressed. The
aim of this study is to evaluate the generalizability of radiomics models for prostate cancer
classification and to compare the performance of these models to the performance of radiolo-
gists. Multiparametric MRI, photographs and histology of radical prostatectomy specimens,
and pathology reports of 107 patients were obtained from three healthcare centers in the
Netherlands. By spatially correlating the MRI with histology, 204 lesions were identified. For
each lesion, radiomics features were extracted from the MRI data. Radiomics models for
discriminating high-grade (Gleason score ≥ 7) versus low-grade lesions were automatically
generated using open-source machine learning software. The performance was tested both in
a single-center setting through cross-validation and in a multi-center setting using the two
unseen datasets as external validation. For comparison with clinical practice, a multi-center
classifier was tested and compared with the Prostate Imaging Reporting and Data System
version 2 (PIRADS v2) scoring performed by two expert radiologists. The three single-center
models obtained a mean AUC of 0.75, which decreased to 0.54 when the model was applied
to the external data, the radiologists obtained a mean AUC of 0.46. In the multi-center setting,
the radiomics model obtained a mean AUC of 0.75 while the radiologists obtained a mean
AUC of 0.47 on the same subset. While radiomics models have a decent performance when
tested on data from the same center(s), they may show a significant drop in performance when
applied to external data. On a multi-center dataset our radiomics model outperformed the
radiologists, and thus, may represent a more accurate alternative for malignancy prediction.
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8.1 Introduction

Prostate cancer (PCa) is the most common malignancy and second leading cause of
cancer-related death in men [196]. From all patients diagnosed with PCa, those with
low-grade lesions might be candidates for active surveillance, whereas patients with
highgrade PCa require treatment [197]. The gold standard for PCa assessment in
current clinical practice is histopathological verification of biopsy cores [197]. These
cores are evaluated by a pathologist and assigned a grade using the Gleason score
(GS). However, this procedure has shown to be susceptible to under-diagnosis of
high-grade PCa and over-diagnosis of low grade PCa [198].

Multi-parametric magnetic resonance imaging (mpMRI) has received increasing
interest for diagnosing, monitoring and treatment follow up for PCa. MpMRI allows
noninvasive visualization of the whole prostatic tissue and extraction of quantitative
parameters such as tissue density and permeability. To evaluate mpMRI, radiologists
use the Prostate Imaging Reporting and Data System (PIRADS) v2, with a grading
scale from one (highly unlikely to be clinically significant prostate cancer) to five
(highly likely to be clinically significant prostate cancer) [10]. Nevertheless, mpMRI
interpretation is challenging and prone to inter- and intra-reader variability among
expert radiologists [198].

By extracting multiple imaging features, radiomics has the potential to evaluate
the mpMRI data in a more objective way. In the context of PCa, the literature
has shown evidence of the potential of radiomics in classifying PCa lesions [80,
199, 200, 201], with promising performances in terms of sensitivity and specificity
[202]. Nevertheless, current studies on prostate MRI radiomics still lack the quality
required to allow their introduction in clinical practice [202, 203]. This is due to
the fact that most of the radiomics studies validated their approach by splitting
their original dataset in training and validation subsets, while only a few studies
performed a validation using an external set [204, 205, 206]. The latter evaluation
is more relevant for a clinical context, where new data can present variations that
were not taken into account when the original model was created. Three sources of
variations can be identified: at the patient level, at the level of the MRI scanner, and
at the level of the clinician. At the patient level: a model created with patient data
collected in a specialized treatment centre, will differ from a model based on data
collected in a hospital with a surveillance function. Magnetic resonance (MR) images
vary between vendors and between scanner types from the same vendor, even if
the same acquisition parameters are used. Current evidence shows that is possible
to overcome these differences by applying feature harmonization techniques [207].
These techniques aim to estimate the statistical differences between imaging features
computed from different data sets and apply a correction for it. To our knowledge
there is no scientific evidence reporting the usage of feature harmonization in the
context of PCa classification. At the clinician level: the pathologist reports, which
are used as ground truth for the model, are based on the visual Gleason grading
of pathologists, who are prone to considerable inter-observer variation [208, 209].
Therefore, the question arises what performance can be expected when testing
radiomics models on unseen multi-center multi-vendor data: how generalizable
are radiomics model in the context of PCa? The number of studies addressing
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generalizability is limited. To our knowledge, few studies tested their model’s
generalizability for PCa detection regarding tumor aggressiveness using multiple
scanners [210, 211, 212]. Only a few studies have validated their methods using
external datasets for PCa tumor grade prediction [202]. When radiomics models are
being considered as decision support tools for clinical practice, the generalizability
issue should be addressed.

The main contribution of this study is two-fold. First, we assessed the generaliz-
ability of a radiomics approach for classifying PCa in a multi-center, multi-vendor
setting. Second, in the same setting we compared the classification performance of
radiologists to the performance of our radiomics model.

8.2 Material and methods

Our patient cohort was obtained from three healthcare centers in the Netherlands
in the context of the Prostate Cancer Molecular Medicine project (PCMM), in Table
1 some of the clinical variables of this set are summarized. A Kruskal–Wallis test
was performed to check whether the median of the GS distribution, volume, and
prostatic specific antigen (PSA) of the included data sets were comparable.

The data usage of this study was approved by the medical ethics review com-
mittee of Erasmus MC under the number NL32105.078.10. In this PCMM-project,
the mpMRI and pathology data of men with localized PCa who were scheduled for
prostatectomy were prospectively collected from 2011 to 2014. In this study, we will
refer to the data from the respective centers as data set A, B and C. The data of each
center were visually graded by a radiologist and a pathologist working at that center.
In total we included 107 patients for whom MRI, pathology images and reports were
available. The distribution was as follows: A = 29, B = 38 and C = 40, the details
regarding the MRI scanners and acquisition parameters of each set are described in
Section 8.A. The dataset shows considerable variability, with images acquired with
scanners from three different vendors, using various voxel sizes and b values for the
diffusion weighted sequences. In deriving our radiomics models we included the
T2-weighted (T2w) and the diffusion weighted imaging (DWI) sequences and the
apparent diffusion coefficient maps (ADC) derived from the DWI images.

All 107 patients had their prostate surgically removed. After the prostatectomy,
the prostate was cut into 3 mm thick slices. Of the top of each slice, a photograph
was taken, and 4µm coupes were cut and stained with H&E. Based on the H&E, the
pathologist marked the areas with cancerous tissue on the photographs and assigned
a GS to each tumor region. In Figure 1 the number of lesions per GS found in each
set is summarized. We grouped lesions with a GS ≤ 6 as low-grade tumors and
lesions with a GS ≥ 7 as high-grade tumors. Out of the 107 patients, 204 lesions in
total were processed, 92 (45%) low-grade and 112 (55%) high-grade. The methods
used to correlate the lesions found in the pathology with MRI are explained in the
following section.
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Table 8.1: Prostate Cancer Molecular Medicine (PCMM) data set clinical variables and lesions characteris-
tics. PIRADS grading performed by radiologist 1 (R1) and 2 (R2). Age of patients for data sets B and C
was not available (NA). .

Center A B C

Number of Patients 29 38 40
Age at Diagnosis (mean ± std years) 64 ± 7 NA NA
PSA before treatment (mean ± std ng/mL) 12 ± 10 9 ± 5 10 ± 8

Lesions Characteristics

Number of lesions 204
Lesion location
PZ 33 59 45
TZ 15 23 26
AFS NA 2 1
Lesion volume (median and IQR mL) 1.6 (0.2–1.8) 1.4 (0.1–1.5) 0.8 (0.2–1.1)

Radiologist PIRADS grading R1 R2

I 0 4
II 16 9
III 21 36
IV 33 34
V 43 61

Total 113 144
∗Abbreviations: PZ: Peripheral zone. TZ: transition zone. AFS: anterior fibromuscular stroma.
IQR: interquartile range.

Figure 8.1: Distribution of Gleason grading of identified lesions at radical prostatectomy specimen of
three different centers. The number of lesions per group is shown in white.
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8.2.1 Ground truth construction: Pathology-MRI correlation

A mask of identified lesions based on microscopy analysis (H&E staining) was
manually drawn by a pathologist on the prostatectomy specimens’ photos. Using in
house software implemented in Mevislab (v-2.2.1, Germany) [213], the macroscopy
images of the prostatectomy specimen were manually registered and stacked to
generate a prostate volume to enable the registration with MRI. Then, based on the
prostate borders, prostate masks were manually drawn on the MR and macroscopy
images. Afterwards, these two masks were manually aligned in 3D by rotation,
translation, and scaling of the pathology volume. Subsequently, the translation in
slice-direction was fine-tuned while inspecting the pathology and the corresponding
T2w slices. As the last step, the lesion segmentation from the pathology volume was
overlaid on the T2w volume.

8.2.2 Image pre-processing

In order to address the variation in image resolution between and within data sets,
the MR images were resampled to a voxel grid of 0.27 mm × 0.27 mm × 3 mm,
which was the spacing used in the largest proportion (36%) of the T2w images.

8.2.3 Radiomics generalizability evaluation

To assess the generalizability of our radiomics models, we used the experimental
setup as shown in Figure 2. Image data from a single center was used to train a
radiomics classifier for each center. On this training set, an 100× internal random-
split cross-validation was used to assess the single center performance. Finally, the
model was evaluated using the other two sets to assess the generalizability; this
procedure was repeated with each set. The details regarding the development of the
radiomics classifiers are explained in the following section.

Figure 8.2: Scheme of the generalization experiment setting. In this example dataset A is used to develop
a model. The model is tested on the other two sets (B and C)..
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To generate the radiomics classifiers for each data set, we used the open-source
Workflow for Optimal Radiomics Classification (v-3.3.2, Rotterdam, The Netherlands)
platform (WORC) with the default settings [36] and another setting including feature
harmonization with ComBat [185]. WORC performs an automatic search amongst
a wide variety of algorithms and their corresponding parameters to determine the
optimal combination that maximizes the prediction performance on the training
set, a schematic overview of the method is shown in Figure 3. The workflow starts
with the user defining a region of interest (ROI) from the image, which in our
case was the delineation obtained by the pathology–MRI correlation. Within these
tumor masks, features quantifying intensity, shape, texture and orientation were
extracted from the T2w, ADC and the highest b-value image available from the
DWI images. Following feature extraction, a decision model was created, which in
WORC consist of several steps, such as feature selection, oversampling and machine
learning methods. WORC automatically optimizes the radiomics pipeline: during
each iteration WORC generates 100,000 workflows by using different combinations of
methods and parameters. At the end of each cross validation, the 50 best performing
solutions were combined in an ensemble as a single classification model. The final
ensemble of 50 classifiers is the resulting radiomics model, the performance of which
is evaluated on the independent test set (external evaluation). Feature selection
was done to select the most predictive features through enabling/disabling entire
families of features (e.g., shape, local binary patterns, texture based on grey-level
co-occurrence matrices). The code utilized for these experiments is available online
in a GitHub repository [214].

8.2.4 Radiomics classifier evaluation

The internal evaluation of the model was performed by using a 100× random-split
cross validation: First, the data set was split into 80% for training and 20% for testing.
After this, 20% of the training set was used as validation set. This validation set was
used in each training iteration to select the best parameters in order to optimize the
prediction accuracy. The remaining 20% was used for performance evaluation: area
under the curve (AUC), receiver operating characteristic (ROC) curve, sensitivity, and
specificity. The high-grade tumors were considered the positive class. To compute
the 95% confidence intervals (CI) in the cross-validation experiment, we used the
corrected resampled t-test [64]. ROC confidence bands were constructed using
fixed-width bands [67].

To analyze the impact of having multiple lesions from the same patient, we
performed the external evaluation both at the lesion and patient level. At the patient
level, for each patient only the highest grade lesion was taken into account.

8.2.5 Comparison of our radiomics model with the clinical assessment
using PIRADS v2

To compare the classification performance of a multi-center radiomics model with
the clinical assessment using the PIRADS v2 score, a test set was evaluated by both
radiomics and the radiologist, see Figure 4. The PIRADS scoring of the lesions was
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done by two radiologists with 4 years and 10 years of experience, respectively, from
of the partaking centers A and B, fully blinded from histopathology results. The
lesions graded as having a PIRADS ≥ 3 were considered positive for high-grade PCa
and the lesions with a score ≤ 2 as negative for high-grade PCa.

For this experiment, in order to avoid a bias towards a single center, we created
a test set (D) by randomly selecting 20% of the data from each of the three centers.
From this set, the lesions that were not detected by one of the two radiologists were
removed from the study since our goal was to compare the classification performance,
not the detection rate. Subsequently, the remaining patient data (ABC∗) was used
to train a radiomics model to classify the patients in set D. The end performance
for either radiologist and the radiomics model was computed on patient level
classification.

8.3 Results

Statistical analysis of clinical variables The median of the Gleason Score (H =
4.63, p = 0.09), the lesion volume (H = 5.85, p = 0.06) and PSA (H = 1.99, p = 0.36)
were similar for the three data sets.

Radiomics model generalizability Table 2 shows the results for the generalizability
test. Overall, it can be seen that even though reasonable performances in terms of
AUC (mean = 0.75) were obtained from the internal cross-validations, when the
models were tested on the other data sets, the performances dropped considerably
(mean AUC = 0.54). The inclusion of feature harmonization with ComBat did not
improve the performance of the radiomics models. The performance metrics on the
external validation sets were comparable when evaluated lesion and patient wise.
Meanwhile, radiologists’ performance (mean AUC = 0.47) shows high sensitivity
with a low specificity.

Figure 8.4: Scheme of the comparison experiment of our multi-center radiomics model with the evaluation
by the radiologist. A randomly selected of patients in ABC was set apart as test set (D), the rest of the
data (ABC∗) was used to develop the multi-center radiomics model.
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Table 8.2: Generalization study results. Internal: internal evaluation was performed using a 100×
random-split cross-validation, reported with confidence interval. External: by training in one dataset,
testing on the two remaining datasets.

Model Internal External LC External CH External PC R1 and R2

Trained on A A B and C

AUC 0.75 (0.58–0.92) 0.43 0.49 0.55 0.44
Sensitivity 0.91 (0.82–1.00) 0.80 0.78 0.81 0.80
Specificity 0.30 (0.03–0.55) 0.22 0.27 0.21 0.06

Trained on B B A and C

AUC 0.69 (0.57–0.81) 0.60 0.57 0.55 0.50
Sensitivity 0.64 (0.47–0.80) 0.43 0.74 0.86 0.88
Specificity 0.67 (0.50–0.83) 0.62 0.38 0.25 0.13

Trained on C C A and B

AUC 0.80 (0.68–0.92) 0.60 0.62 0.65 0.44
Sensitivity 0.74 (0.66–0.86) 0.52 0.51 0.48 0.69
Specificity 0.66 (0.50–0.82) 0.63 0.69 0.63 0.19
∗Abbreviations: LC: lesion level classification. PC: patient level classification. AUC: area
under the curve. CH: Test result using ComBat feature harmonization. R1 and R2: radiologist
1 and 2.

8.3.1 Comparison of Our Radiomics Model with the Clinical Assessment
using PIRADS v2

The resulting test set was composed of 16 patients with high-grade lesions and eight
patients with low-grade lesions. Table 3 presents the results of the classification
performance for the internal cross-validation and the performance on the test set
(ABC∗) for the model and the two radiologists. It can be seen that the radiomics
model outperformed (AUC = 0.75) the radiologist classification with the PIRADS
score (AUC of 0.50 and 0.44). Radiologists achieved a decent sensitivity (0.76 and
0.88), but near-zero specificity (0.25 and 0.0), whereas the radiomics model achieved
a sensitivity of 0.88 and a specificity of 0.63.

Table 8.3: Performance comparison of the multi-center radiomics model with the PIRADS score performed
by two radiologists. Internal: internal cross validation results reported with confidence intervals. Model:
results from the multi-center model for the unseen data.

Metrics Internal Model R1 R2

AUC 0.72 (0.64–0.79) 0.75 0.50 0.44
Sensitivity 0.76 (0.66–0.89) 0.88 0.76 0.88
Specificity 0.55 (0.44–0.66) 0.63 0.25 0.00
∗Abbreviations: AUC: area under the curve; R1 and R2:
radiologist 1 and 2, respectively.
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8.4 Discussion

The expanding usage of prostate MRI for PCa diagnosis has brought an increased
interest in radiomics research for tumor classification. As a result, many approaches
have been proposed, and promising results have been presented, thus raising the
opportunity of using these models in daily clinical workflow. However, there is
limited evidence regarding the performance of these models with unseen data in a
new clinical contexts, for instance with MR scanners from different vendors and/or
grading by different pathologists and/or different patient profiles. Investigating
how these changes affect radiomics performance is required prior to applying these
models in a clinical setting.

In this study we developed radiomics classifiers starting from three independent
sets and evaluated the performance on the unseen data of the other centers. To
compensate for the differences between data sets and reduce the negative effects
on performance that these differences might have, resampled all the images in
our experiments to the same voxel size, and used the same method to correlate
the pathology data to the MR data. Furthermore, we applied techniques such as
normalization and class unbalance correction. While obtaining a decent performance
working with data from a single center, our results showed a substantial decline in
performance when evaluating the radiomics models on external data. Thus, since
an internal validation on a single-center dataset is not representative of external
performance, it is advisable to carry out external validations to have a realistic
estimation of predictive power.

The decline in performance is most probably related to several factors. One
important factor affecting the feature computation is the dependency of the ra-
diomics features on MR scanning parameters [215]. It has been shown that image
normalization applied with variety of approaches or pre-filtering cannot overcome
the scan-feature dependency problem [216]. Recent literature shows evidence that it
is possible to overcome the scanner-feature dependency issue by applying feature
harmonization techniques such as ComBat [185]. In our experiments, we applied
feature harmonization using ComBat, however the inclusion of this technique did
not improve our results while testing on the external sets.

Another factor is that the delineations on the pathology data were carried out
by different pathologists working at the different centers. These delineations were
transferred to the MRI, but the delineation is a factor that influences the feature
computation [19] (i.e., Chapter 2 of this thesis), compromising the likeness of the
features computed from different datasets. In clinical practice, the delineation of
lesions in MRI is mostly performed by a single clinician, which makes it unfeasible to
test feature robustness for several delineations. Furthermore, manual delineation by
specialists is time consuming and potentially subject to observer variability. Utilizing
either assisted or fully automatic segmentation methods available [217, 218] for the
prostate and PCa lesions could improve feature computation consistency, important
for radiomics approaches, and positively impact the model generalizability.

Various studies have assessed the use of radiomics in PCa classification on
mpMRI [202]. To our knowledge, this is the first study to specifically address the
generalizability of radiomics models in the context of PCa classification. Our study
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consisted of multi-centric data sets: image data from multiple vendors and multiple
scanners from the same vendor, two different radiologists diagnosing the patients,
three different pathology departments grading histology slices of prostatectomies
as ground truth. There are studies in which one factor is varied, e.g., the study
published by Dinh et al. [219]. In their study they developed a model specifically
for peripheral zone PCa detection, maintaining the model’s performance between
two MR scanners belonging to different vendors. However, in their experiments
the data were acquired from the same center, evaluated, and processed by the same
radiologists and pathologists. This might have affected positively the performance
of their method.

When comparing our radiomics model to the PIRADS v2 scoring by radiologists,
our results show that the radiologists achieved high sensitivity at the cost of a low
specificity, while our model increased specificity substantially. This high sensitivity
with PIRADS v2 may translate in clinical practice in overdiagnosis and overtreatment.
A radiomics model may not only provide a more objective quantitative support tool
to recommend surveillance for those cases where treatment may not instantly be
required, but should also maintain a high sensitivity for those cases with aggressive
PCa. However, it is important to take into account the data that the radiomics model
was developed on, and the setting the model will be applied in. In other words, the
safe utilization of a radiomics model in the clinic is feasible, as long as the population
on which it is applied, holds similar characteristics to the population used to develop
the model.

Our study has some limitations. First, our ground truth tumor grading is based
on one pathologist per center, which can cause discrepancies in lesion delineations
and grading. Having a consensus ground truth could have positively impacted our
performance. However, this limitation represents current clinical practice, where
the reader agreement between pathologists is between 70–80% [208, 209]. Secondly,
the number of patients included per medical center is limited. However, the total
number of patients in our study is higher than the average value of 80 patients found
in similar radiomics studies [185]. Thirdly, the clinical assessment was performed
using the PIRADS classification v2.0 because v2.1 was not available at the moment of
the readings. Finally, we did not include clinical variables or epidemiological factors
in our model. This information plays a role in clinical decision making, therefore,
including this information may have a positive impact on the end performance
in a multi-center and multi-vendor setting. Although, clinical patient information
such as the level of PSA, the patient risk group and the outcome of the digital
rectal examination were not available for a substantial number of patients which
represented an obstacle to include these variables. Despite the previous limitations,
our study contributes to the field of PCa classification using radiomics by: (1) being
the first study with the generalizability of PCa classification radiomics models as
main focus; (2) making our scientific code available in a public repository. As
regards this last point, we would like to invite the scientific community to test this
code on their own data sets and so promote discussions and future collaborations.
Additionally, we would like to make some recommendations for future work: when
developing a generalizable radiomics model for PCa classification the data should
represent the variation present in the clinical practice with data of several centers
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with various pathologists and radiologists, and multiple MRI scanners from multiple
vendors. The validation of the model should be performed in a prospective cohort.

8.5 Conclusions

In this paper we assessed the generalizability of radiomics models in the context
of PCa grading. When limited to a specific center or, e.g., to a specific scanner or
specific setting, these models perform well and may represent a valuable tool to
differentiate lowgrade from high grade tumors. However, when applying radiomics
on data from different centers and/or scanners, a considerable drop in performance
can be expected, making these models less reliable in this context.

To become clinical viable and support clinical decision making, training and
validation of radiomics models should be performed in multi-center scenarios with
data representative of the population on which the model will be applied.
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Appendix

Appendix 8.A Radiomics features extraction

This supplemental material is similar to Vos et al., Timbergen et al. [72, 73] (i.e.,
Chapter 5 and Chapter 6 of this thesis), but details relevant for the current study are

https://www.mdpi.com/ethics.data
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highlighted.

A total of 540 radiomics features were used in this study. All features were
extracted using Workflow for Optimal Radiomics Classification (WORC) [36], which
internally uses the PREDICT [51] and PyRadiomics [44] feature extraction toolboxes.
For details on the mathematical formulation of the features, we refer the reader to
Zwanenburg et al. [39]. More details on the extracted features can be found in the
documentation of the respective toolboxes, mainly the WORC documentation [68].

For CT scans, the images are by default not normalized as the scans already
have a fixed unit and scale (i.e., Hounsfield), contrary to MRI. The images were
not resampled, as this would result in interpolation errors. The code to extract the
features has been published open-source [184].

The features can be divided in several groups. Thirteen intensity features were
extracted using the histogram of all intensity values within the ROIs and included
several first-order statistics such as the mean, standard deviation and kurtosis.
Thirty-five shape features were extracted based only on the ROI, i.e., not using the
image, and these included shape descriptions, such as the volume, compactness
and circular variance. These describe the morphological properties of the lesion.
Nine orientation features were used, describing the orientation of the ROI, i.e., not
using the image. Lastly, 483 texture features were extracted using Gabor filters (144
features), Laplacian of Gaussian filters (36 features), vessel (i.e., tubular structures)
filters (36 features) [54], the Gray Level Co-occurrence Matrix (144 features) [39],
the Gray Level Size Zone Matrix (16 features) [39], the Gray Level Run Length
Matrix (16 features) [39], the Gray Level Dependence Matrix (14 features) [39],
the Neighbourhood Grey Tone Difference Matrix (five features) [39], Local Binary
Patterns (18 features) [52], and local phase filters (36 features) [53, 195]. These
features describe more complex patterns within the lesion, such as heterogeneity,
occurrence of blob-like structures, and presence of line patterns.

Most of the texture features include parameters to be set for the extraction.
Beforehand the values of the parameters that will result in features with the highest
discriminative power for the classification at hand (e.g., high grade vs. low grade)
are not known. Including these parameters in the workflow optimization, see
Section 8.B, would lead to repeated computation of the features, resulting in a
redundant decrease in computation time. Therefore, alternatively, these features are
extracted at a range of parameters as is default in WORC. The hypothesis is that
the features with high discriminative power will be selected by the feature selection
methods and/or the machine learning methods, as described in Section 8.B.

The dataset used in this study is heterogeneous in terms of acquisition protocols.
Especially the variations in slice may cause feature values to be dependent on the
acquisition protocol. Hence, extracting robust 3D features may be hampered by
these variations, especially for low resolutions. To overcome this issue, all features
were extracted per 2D axial slice and aggregated over all slices, which is default in
WORC. Afterwards, several first-order statistics over the feature distributions were
evaluated and used in the machine learning approach.
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Appendix 8.B Adaptive workflow optimization for automatic
decision model creation

This appendix is similar to Vos et al., Timbergen et al. [72, 73] (i.e., Chapter 5 and
Chapter 6 of this thesis), but details relevant for the current study are highlighted.
The Workflow for Optimal Radiomics Classification (WORC) toolbox [36] makes use
of adaptive algorithm optimization to create the optimal performing workflow from
a variety of methods. WORC defines a workflow as a sequential combination of
algorithms and their respective parameters. To create a workflow, WORC includes
algorithms to perform feature scaling, feature imputation, feature selection, over-
sampling, and machine learning. If used, as some of these steps are optional as
described below, these methods are performed in the same order as described in this
appendix. More details can be found in the WORC documentation [68]. The code to
use WORC for creating the differential diagnosis and molecular analysis decision
models in this specific study has been published open-source [184].

Feature scaling was performed to make all features have the same scale, as
otherwise the machine learning methods may focus only on those features with large
values. This was done through z-scoring, i.e., subtracting the mean value followed
by division by the standard deviation, for each individual feature. In this way, all
features had a mean of zero and a variance of one. A robust version of z-scoring
was used, in which outliers, i.e., values below the fifth percentile or above the 95th
percentile, were excluded from computing the mean and variance.

When a feature could be computed, e.g., a lesion is too small for a specific feature
to be extracted or a division by zero occurs, feature imputation was used to estimate
replacement values for the missing values. Strategies for imputation included: (1)
the mean; (2) the median; (3) the most frequent value; and (4) a nearest neighbor
approach.

Feature selection was performed to eliminate features which were not useful to
distinguish between the classes. These included: (1) a variance threshold, in which
features with a low variance (<0.01) are removed. This method was always used,
as this serves as a feature sanity check with almost zero risk of removing relevant
features; (2) optionally, a group-wise search, in which specific groups of features (i.e.,
intensity, shape, and the subgroups of texture features, as defined in Section 8.A, are
selected or deleted. To this end, each feature group had an on/off variable which
is randomly activated or deactivated, which were all included as hyperparameters
in the optimization; (3) optionally, individual feature selection through univariate
testing. To this end, for each feature, a Mann–Whitney U test was performed to
test for significant differences in distribution between the labels. Afterwards, only
features with a p-value above a certain threshold were selected. A Mann– Whitney
U test was chosen as features may not be normally distributed and the samples
(i.e., patients) were independent; and (4) optionally, principal component analysis
(PCA), in which either only those linear combinations of features were kept which
explained 95% of the variance in the features or a limited number of components
(between 10 – 50). These feature selection methods may be combined by WORC, but
only in the mentioned order.

Various resampling strategies can optionally be used, which can be used to
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overcome class imbalances and reduce overfitting on specific training samples.
These included various methods from the imbalanced-learn toolbox [57]; random
over-sampling, random under-sampling, near-miss resampling, the neighborhood
cleaning rule, ADASYN, and SMOTE (regular, borderline, Tomek and the edited
nearest neighbors).

Lastly, machine learning methods were used to determine a decision rule to
distinguish the classes. These included: (1) logistic regression; (2) support vector ma-
chines; (3) random forests; (4) naive Bayes; and (5) linear and quadratic discriminant
analysis.

Most of the included methods require specific settings or parameters to be set,
which may have a large impact on the performance. As these parameters have to be
determined before executing the workflow, these are so-called “hyperparameters”.
In WORC, all parameters of all mentioned methods are treated as hyperparameters,
since they may all influence the decision model creation. WORC simultaneously
estimates which combination of algorithms and hyperparameters performs best. A
comprehensive overview of all parameters is provided in the WORC documentation
[68].

By default, in WORC, the performance is evaluated in a 100× random-split
train-test cross-validation. In the training phase, a total of 100,000 pseudo-randomly
generated workflows is created. These workflows are evaluated in a 5× random-split
cross-validation on the training dataset, using 80% of the data for actual training
and 20% for validation of the performance. All described methods are fit on the
training datasets, and only tested on the validation datasets. The workflows are
ranked from best to worst based on their mean performance on the validation sets
using the F1-score, which is the harmonic average of precision and recall. Due
to the large number of workflows that is executed, there is a chance that the best
performing workflow is overfitting, i.e., looking at too much detail or even noise in
the training dataset. Hence, to create a more robust model and boost performance,
WORC combines the 50 best performing workflows into a single decision model,
which is known as ensembling. These 50 best performing workflows are re-trained
using the entire training dataset, and only tested on the test datasets. The ensemble
is created through averaging of the probabilities, i.e., the chance of lesion with high
grade or low grade, of these 50 workflows. A full experiment consists of executing
50 million workflows (100,000 pseudo-randomly generated workflows, times a 5×
train-validation cross-validation times 100× train-test cross-validation), which can
be parallelized.
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9.
The BRAF P.V600E mutation status of
melanoma lung metastases cannot be

discriminated on computed tomography by
LIDC criteria nor radiomics using machine

learning

Based on: L. Angus*, M. P. A. Starmans*, A. Rajicic, A. E. Odink, M. Jalving,
W. J. Niessen, J. J. Visser, S. Sleijfer, S. Klein, and A. A. M. van der Veldt, “The BRAF
P.V600E mutation status of melanoma lung metastases cannot be discriminated on
computed tomography by LIDC criteria nor radiomics using machine learning,”
Journal of Personalized Medicine, vol. 11, no. 4, p. 257, 4 Apr. 2021. doi: 10.3390/
jpm11040257
* indicates equal contributions
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Abstract

Patients with BRAF mutated (BRAF-mt) metastatic melanoma benefit significantly from
treatment with BRAF inhibitors. Currently, the BRAF status is determined on archival tumor
tissue or on fresh tumor tissue from an invasive biopsy. The aim of this study was to evaluate
whether radiomics can predict the BRAF status in a non-invasive manner. Patients with
melanoma lung metastases, known BRAF status, and a pretreatment computed tomography
scan were included. After semi-automatic annotation of the lung lesions (maximum two per
patient), 540 radiomics features were extracted. A chest radiologist scored all segmented lung
lesions according to the Lung Image Database Consortium (LIDC) criteria. Univariate analysis
was performed to assess the predictive value of each feature for BRAF mutation status. A
combination of various machine learning methods was used to develop BRAF decision models
based on the radiomics features and LIDC criteria. A total of 169 lung lesions from 103
patients (51 BRAF-mt; 52 BRAF wild type) were included. There were no features with a
significant discriminative value in the univariate analysis. Models based on radiomics features
and LIDC criteria both performed as poorly as guessing. Hence, the BRAF mutation status in
melanoma lung metastases cannot be predicted using radiomics features or visually scored
LIDC criteria.
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9.1 Introduction

Cutaneous melanoma is an aggressive skin cancer most commonly occurring on
the ultra-violet light exposed skin of Caucasians [220, 221]. In Europe, it is the 8th
most common malignancy in men and the 5th most common in women, with an
annual incidence of 144,200 new cases and 27,100 deaths [222]. In the coming years,
the incidence of melanoma is expected to increase rapidly, resulting in an increased
melanoma-associated mortality [223].

The introduction of new systemic treatment modalities, including immunotherapy
and BRAF inhibitors, has significantly improved the prognosis of patients with
metastatic melanoma [224]. Approximately 50% of melanomas harbor a mutation
in the BRAF gene, with p.V600E being the most common variant [225, 226, 227].
Patients with BRAF-mutant (BRAFmt) melanoma benefit significantly from treatment
with BRAF inhibitors and onset of response is often rapid [228]. To enhance response
rates and duration of response, patients are usually treated with a combination of a
BRAF and a MEK inhibitor [229, 230, 231, 232]. Due to the therapeutic consequences,
determination of the BRAF mutation status in patients with metastatic melanoma is
mandatory according to the European Society of Medical Oncology guidelines [233].

Currently, the BRAF mutation status is usually determined by molecular analysis
of a metastatic lesion [222]. However, tissue biopsies are invasive, thereby exposing
patients to potential risks including bleeding, infection and in case a lung biopsy
is taken the risk of pneumothorax. In addition, molecular analyses can be time-
consuming, especially when the tumor specimen has been archived at another
hospital. Since patients with metastatic melanoma can experience rapidly progressive
disease with life-threatening symptoms and an urgent medical need for systemic
therapy, faster and less invasive diagnostics to determine the BRAF mutation status
may significantly improve patient management.

Recently, various tumor characteristics have been predicted non-invasively using
quantitative imaging features, also referred to as “radiomics”. In non-small cell
lung cancer, radiomics on computed tomography (CT) can predict tumor stage and
epidermal growth factor receptor (EGFR) mutation status [83, 234, 235, 236, 237,
238, 239, 240, 241] . In patients with primary colorectal cancer, a CT radiomics
signature that was associated with BRAF mutation status [179]. CT-based radiomics
has been applied to predict response to immunotherapy in melanoma lymph node
metastases [242], but with little success (area under the curve (AUC) of 0.64). The
value of radiomics for predicting BRAF mutation status has not been investigated.
If CT-based radiomics could predict BRAF mutation status with a high positive
predictive value, this may provide a faster and more patient-friendly alternative to
determine the BRAF mutation status in metastatic melanoma.

The aim of this study was to evaluate the utility of CT-based radiomics to
predict BRAF mutation status (mutant versus wild type) in metastatic melanoma.
In metastatic melanoma, lung metastases are relatively easy to annotate on CT as
compared to other metastases since they can be clearly distinguished from healthy
lung tissue. Therefore, the aim of this study was to evaluate the utility of CT-based
radiomics to predict BRAF mutation status (mutant versus wild type) in melanoma
lung metastases.
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9.2 Material and methods

9.2.1 Data collection

This study was approved by the Erasmus MC institutional research board (MEC-2019-
0693). Anonymized patient data was used and therefore need for written informed
consent was waived by the Institutional Review Board. All patients diagnosed
with metastatic melanoma at the Erasmus MC between January 2012 and February
2018 were included retrospectively if they met the following pre-specified criteria:
known tumor BRAF mutation, diagnostic contrast-enhanced thoracic CT scan prior
to commencement of any systemic therapy, and at least one lung metastasis of ≥ 10
mm evaluable according to Response Evaluation Criteria In Solid Tumors (RECIST)
v1.1 [8]. Patients with BRAF mutations other than p.V600E were excluded from the
analysis, since BRAF inhibitors may be less effective in patients with other BRAF
mutations [243]. Formalin-fixed paraffin embedded material of the primary tumor
and/ or metastasis is tested for BRAF (exon 15) using a polymerase chain reaction
based assay or next generation sequencing as part of standard care.

9.2.2 Radiomics

Lung metastases were measured according to RECIST v1.1 [8]. For 3D segmentation,
up to two lung lesions ≥ 10 mm were selected by a clinician supervised by an experi-
enced chest radiologist. In patients with >2 lung metastases of ≥ 10 mm, either the
two largest or the two most easily distinguishable lesions were segmented (i.e., two
separate lesions were preferred over two adjacent lesions). Using in-house developed
software [105], selected lung metastases were segmented semi-automatically using
a lung window for visualization. The result was visually inspected and manually
corrected when necessary by an experienced chest radiologist to ensure that the
semi-automatic segmentation resembled the manual segmentation. The clinician
and chest radiologist were both blinded for BRAF mutation status. From each
segmented lesion, 540 radiomics features were extracted to quantify intensity, shape
and texture. Details are described in Section 9.A. To create a decision model using
these features, the Workflow for Optimal Radiomics Classification (WORC) toolbox
was used (Figure 9.1) [36, 72, 151]. Details are described in Section 9.A. In brief, the
creation of a decision model in WORC consists of several steps, including selection
of relevant features, resampling and machine learning techniques to identify patterns
to distinguish BRAF-mt from BRAF wild type (BRAF-wt) lesions. WORC performs
an automated search including a variety of algorithms for each step and determines
which combination of algorithms maximizes the predictive performance on the
training set. The open-source code for the feature extraction and model optimization
has been published [244].

9.2.3 Scoring by radiologist

An experienced chest radiologist (certified for 8 years) scored the segmented lung
lesions. There are no guidelines to differentiate histologic subtypes in lung metas-
tases; therefore, the Lung Image Database Consortium (LIDC) criteria were used.
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These criteria were developed to standardize the description of radiological features
of lung abnormalities in clinical practice [245]. The following LIDC features were
rated: subtlety, calcification, internal structure, lobulation, likelihood of malignancy,
margin, sphericity, spiculation and texture (see Table 9.A.1 for the rating system). The
radiologist was blinded for the BRAF status, but not to the diagnosis of metastatic
melanoma and had access to the CT scan, age and sex of the patient.

9.2.4 Experimental setup

To assess the predictive value of quantitative imaging features (i.e., radiomics fea-
tures) and LIDC features, five models were trained and tested using WORC based
on: (1) automatically extracted radiomics features only (2) similar to model 1, but
only including the largest lesion per patient; (3) similar to model 1, but only in-
cluding patients with NRAS and BRAF wild type melanoma for the comparison
with BRAF-mt; (4) manually scored LIDC features only; and (5) a simple benchmark
model. Model 2 was applied to assess a potential bias for patients with multiple
lesions. Model 3 was included because activating NRAS mutations could potentially
result in a similar phenotype as BRAF-mt, since mutations in both genes lead to
activation of the mitogen-activated protein kinase (MAPK) pathway. The simple
benchmark model was evaluated in a similar way as model 1, i.e., using all lesions
and automatically extracted radiomics features. Model 5 was applied to compare
the performance of WORC to a simple benchmark machine learning model, which
uses binary logistic regression with LASSO (least absolute shrinkage and selection
operator) feature selection (i.e., ElasticNet).

9.2.5 Statistics

To assess the predictive value of the individual features, the Mann–Whitney U
test was performed for univariate analyses of continuous variables and Pearson’s
chi-squared test was used for categorical variables. For radiomics, p-values were
corrected for multiple testing using the Bonferroni correction according to the default
in WORC. A p-value of <0.05 was considered to be statistically significant.

Evaluation of the radiomics models was performed using a 100x random-split
cross-validation. In each iteration, the data was randomly split into 80% for training
and 20for testing in a stratified manner to guarantee a similar distribution of the
classes in the training and test set as compared to the original set. Metastases from
the same patients were always grouped together in either the training or test set.
To eliminate the risk of overfitting, in each iteration, all model optimization was
performed strictly within the training set by using a second internal 5x random-split
cross-validation (see Figure 9.A.1). The final model consists of an ensemble of the
50 best workflows, i.e., combination of methods and parameters, each defined by
a specific set of hyperparameters. This final model may be different in each of the
100x random-split cross-validation iterations. For each of the five models described
in the experimental setup, these sets hyperparameters are included with the code
[244]. Details are described in Section 9.B.
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The performance of all four models was described by the AUC of the receiver
operating characteristic (ROC) curve, accuracy, sensitivity, specificity, negative predic-
tive value (NPV) and positive predictive value (PPV). The positive class was defined
as BRAF-mt. For each metric, the average over the 100 cross-validation iterations
and a 95% confidence interval (CI) were reported. The 95% CIs were constructed
using the corrected resampled t-test based on the results from all 100 cross-validation
iterations, thereby taking into account that the samples in the cross-validation splits
are not statistically independent [64]. ROC confidence bands were constructed using
fixed-width bands [67].

9.3 Results

9.3.1 Study population

In total, 103 patients were included, see Figure 9.A.2 for a flowchart of patient
inclusion. Characteristics of these patients and their CT scans are summarized in
Table 9.1. The median age was 65 years (interquartile range (IQR) 52–72) and 50.5%
of the patients were men. BRAF mutation status was either determined on the
primary tumor (N = 20), local recurrence (N = 3), or metastasis (N = 79). In these
lesions, BRAF p.V600E was detected in 51 patients, whereas 52 patients had BRAF-wt
melanomas. In total, 103 CT scans were acquired from 10 different CT scanners,
resulting in in the inclusion of data acquired with different acquisition protocols
(Table 9.1). Although for all acquisition parameters the difference between BRAF-mt
and BRAF-wt was not statistically significant, the difference in tube current reached
almost statistical significance (p = 0.05).

9.3.2 Radiomics and LIDC features and models

In total, 169 lung metastases in 103 patients were segmented. Figure 9.2 illustrates
randomly selected segmentations of lung metastases from patients with BRAF-mt
and BRAF-wt metastatic melanoma. Median volume of segmented lung lesions
was 18.3 mL (IQR: 7.3–48.6 mL). None of the radiomics or LIDC features were
significantly different between BRAF-mt and BRAF-wt lung metastases, as none of
the features had a p-value < 0.05 after Bonferroni correction. LIDC criteria scores are
shown in Table 9.2. Using all 169 lung metastases, the radiomics model (model 1)
resulted in a mean AUC of 0.49, sensitivity of 0.61 and specificity of 0.37 (Figure 3A
, Table 9.2.). Model 2, i.e., only inclusion of the largest lesion per patient, slightly
improved the performance (AUC of 0.65), whereas model 3, i.e., only inclusion of
BRAF-wt melanoma who were also NRAS wild type, still had a poor performance
(AUC of 0.49) (Figure 3B, C, Table 9.2.). In addition, model 4, i.e., based on the LIDC
features scored by a radiologist, resulted in an AUC of 0.46 (Figure 3D). The simple
benchmark (model 5) resulted in a similar performance (AUC of 0.50).
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Table 9.1: Patient and imaging characteristics. Values in parentheses are percentages unless indicated
otherwise.

Patient BRAF-mt (N=51) BRAF-wt (N=52) P-value
Age (years)$ 59 (50-69) 66 (57-74) 0.048
Sex 0.768

Male 25 (49) 27 (52)
Female 26 (51) 25 (48)

Primary tumor localization 0.027
Skin 49 (96) 42 (81)
Mucosal 0 (0) 6 (11)
Unknown 2 (4) 4 (8)

Determination of BRAF-mutation status 0.851
Primary tumor 9 (18) 11 (21)
Local recurrence 1 (2) 2 (4)
Metastasis 40 (78) 39 (75)
Unknown 1 (2) 0 (0)

NRAS mutation status$ Not determined
Mutant - 22 (42)
Wild type - 23 (44)
Unknown - 7 (2)

Imaging
Acquisition protocol

Slice thickness (mm)$,1 1.5 (1.5, 1.5) 1.5 (1.5, 1.5) 0.23
Pixel spacing (mm)$ 0.68 (0.64, 0.74) 0.67 (0.61, 0.73) 0.16
Tube current (mA)$ 405 (278, 553) 333 (210, 490) 0.05
Peak kilovoltage$,1 120 (120, 120) 120 (118, 120) 0.44

Contrast Agent 0.84
Visipaque 320 35 37
Ultravist 1 0
Omnipaque 1 1
Optiray 0 1
Unknown 14 13

Number of segmented lesions per patient 0.54
One 20 (39) 17 (33)
Two 31 (61) 35 (67)

Values in parentheses are percentages unless stated otherwise. †Values are median (Inter quartile
range). $NRAS and BRAF mutations are mutually exclusively occurring; hence, we did not test for
significance between BRAF wild type versus mutant cases. 1Other values than those given in the
median and inter quartile range do occur.

Table 9.2: Performance of the models for BRAF mutation prediction based on different sets of features
and lesions.

Model 1
Radiomics All
Lesions - WORC

Model 2
Radiomics
Largest Lesion

Model 3
Radiomics NRAS
Wild Type

Model 4
LIDC All Lesions

Model 5
Radiomics All
Lesions -
Benchmark

AUC 0.49 [0.38, 0.59] 0.65 [0.51, 0.79] 0.49 [0.37, 0.61] 0.46 [0.38, 0.55] 0.50 [0.42, 0.58]
Accuracy 0.48 [0.39, 0.57] 0.61 [0.50, 0.72] 0.65 [0.58, 0.71] 0.49 [0.42, 0.56] 0.50 [0.43, 0.57]
Sensitivity 0.61 [0.44, 0.77] 0.61 [0.42, 0.80] 0.94 [0.87, 1.00] 0.29 [0.11, 0.48] 0.56 [0.32, 0.80]
Specificity 0.37 [0.22, 0.52] 0.60 [0.38, 0.82] 0.08 [0.00, 0.17] 0.66 [0.46, 0.86] 0.44 [0.20, 0.69]
NPV 0.53 [0.39, 0.66] 0.61 [0.46, 0.76] 0.35 [0.00, 0.75] 0.52 [0.42, 0.61] 0.43 [0.21, 0.66]
PPV 0.45 [0.37, 0.53] 0.63 [0.48, 0.77] 0.67 [0.62, 0.72] 0.44 [0.30, 0.58] 0.47 [0.37, 0.56]
∗Abbreviations: AUC: area under the receiver operating characteristic curve; NPV: negative predictive
value; PPV: positive predictive value.
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(A) BRAF wild type (B) BRAF wild type

(C) BRAF mutated (D) BRAF mutated

Figure 9.2: Examples of BRAF wild type (A,B) and BRAF mutant (C,D) lung metastases of four patients
with metastatic melanoma. Contours of the segmentations of the selected metastases are shown in red.
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Figure 9.3: Receiver operating characteristic (ROC) curve of the radiomics model of all lesions (A), only
the largest lesion (B), only BRAF wild type lesions with NRAS wild type (C) and LIDC features (D). The
crosses identify the 95% confidence intervals of the 100x random-split cross-validation; the blue curve is
fit through their means.

9.4 Discussion

The results of this study show that there is no association between radiomics fea-
tures of lung metastases and the BRAF mutation status in patients with metastatic
melanoma. Our model using only the largest lesion per patient performed best with
a moderate mean AUC, but still none of the features had any individual discrimi-
native value. In addition, the performance confidence intervals (e.g., the sensitivity
and specificity) still included many values below the performance of guessing. The
LIDC criteria as scored by a thorax radiologist also failed to discriminate the BRAF
mutation status in melanoma lung metastases.

Despite the remarkable success of BRAF inhibitors and immunotherapy in pa-
tients with metastatic melanoma, only a subset of patients benefits from these
therapies [230, 246] Tools to select the patients most likely to benefit are of great
interest and this has resulted in several radiomics studies aiming to predict tumor
response. Similar to our study, previous radiomics models, either to predict therapy
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response or survival, had a low to moderate performance in metastatic melanoma
[242, 247, 248]. In the largest radiomics study in melanoma thus far, 483 lesions from
80 melanoma patients were included and a greater morphological heterogeneity
of lymph nodes determined by CT was associated with immunotherapy response,
resulting in a moderate AUC of 0.64 [242]. However, the model performed poorly
in lung and liver lesions (AUC of 0.55). Comparable to our CT-based findings, a
recent study showed that radiomics features derived from 18F-FDG positron emis-
sion tomography (PET) to determine the BRAF p.V600E mutation status also had a
moderate performance (AUC of 0.62). They studied 176 lesions, including 18 lung
lesions from 70 patients with melanoma (35 BRAF-mt and 35 BRAF-wt) [249]. To the
best of our knowledge, this PET study [249] and our CT study are the first melanoma
studies aiming to predict BRAF p.V600E mutation status, showing that neither PET
nor CT radiomics features can discriminate between patients with BRAF-mt and
BRAF-wt melanomas. We therefore believe that our comprehensive study provides
insight into the potential of radiomics in this area, which can guide future research
[88].

The lack of discrimination between BRAF-mt and BRAF-wt melanoma could
potentially be explained by activating mutations in the NRAS gene in BRAF-wt
melanoma. Since NRAS and BRAF are involved in the same pathway, i.e., the MAPK
pathway, activating NRAS and BRAF mutations could result in a similar phenotype.
Therefore, we evaluated an additional model which only included NRAS wild type
lesions in patients with BRAF-wt melanoma (model 3). In our cohort of patients
with BRAF-wt melanoma, 22 out of 45 (49%) patients—with known NRAS mutation
status—had a NRAS mutation. Exclusion of all patients with NRAS mutation or
unknown NRAS mutation status resulted in an AUC of 0.54 (95% CI 0.44–0.64). Based
on these findings, it is very unlikely that inclusion of NRAS mutant melanomas
negatively impacted our results. In addition, our findings are supported by the low
predictive value of PET radiomics in the same setting in which patients with NRAS
mutations were also excluded [249].

Our study was designed for a comprehensive evaluation of the relationship
between CT imaging features and the BRAF mutation status in melanoma lung
metastases. To our knowledge this is currently the largest CT-based radiomics study
on the BRAF mutation status in patients with metastatic melanoma and with 103
subjects even large for a radiomics study [24]. It is unlikely that treatment-related
resistance mechanisms influenced the outcome, since the study population was
treatment-naïve, thereby reflecting the appearance of untreated melanoma lung
metastases. The investigated patient population only included melanoma patients
for whom correct determination of the BRAF status is of utmost importance for rapid
treatment stratification. The WORC radiomics method applied has been previously
validated to predict mutation status of several genes in other tumor types, such
as lipoma and liposarcoma [72] (i.e., Chapter 5 of this thesis), desmoids [73] (i.e.,
Chapter 6 of this thesis), gastrointestinal stromal tumors [75] (i.e., Chapter 7 of this
thesis), liver cancer [105, 250], prostate cancer [80] (i.e., Chapter 8 of this thesis) and
mesenteric fibrosis [79] (i.e., Chapter 10 of this thesis). In these previous studies, the
radiomics models had a much better performance (mean AUCs between 0.71–0.89)
and multiple features were statistically significant in univariate statistical testing.
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In the current study, none of the radiomics features had any discriminative value;
therefore, it can be concluded that radiomics features of melanoma lung metastases
are not related to the BRAF mutation status. WORC includes a wide variety of
radiomics approaches and automatically optimizes the combination, thereby eval-
uating many different approaches. Moreover, a different normalization method,
combining z-scoring with a logarithmic transform and a correction term to better
cope with outliers and non-normally distributed features [251], yielded similar nega-
tive results (model 1: AUC of 0.49). Hence, it is unlikely that a different radiomics
approach will lead to a positive result.

In addition to the radiomics analysis, a radiologist visually evaluated the lesions.
Similar to radiomics results, the radiologist could not discriminate between BRAF-
wt and BRAF-mt lesions by applying the LIDC criteria. Although radiomics can
potentially correlate imaging features with clinical outcome even in cases where a
radiologist cannot, the relation between quantitative imaging features and clinical
outcome is considered stronger when clinical outcomes can be discriminated visually
by a radiologist. This was not evident in the current study and it can be considered
additional evidence that a CT-based radiomics signature probably does not exist
for the BRAF mutation status in melanoma lung metastases. Although radiomics is
promising in other fields of research, it is not expected that all cytogenetic changes
are associated with morphological changes. Consequently, it is unlikely that every
DNA alteration can be detected by radiomics.

Our study has several limitations. Firstly, the BRAF mutation status was often
determined on other tumor tissue than the segmented lung metastases. The BRAF
status was determined on biopsy material from a lung metastasis, which did not
necessarily match the segmented lung lesion, in only 12 patients. Although the
concordance rate of the BRAF mutation status between primary melanoma and
metastases is quite high [227, 252, 253], a recent meta-analysis showed a pooled
discrepancy rate of 13.4% between primary melanomas and metastases and a 7.3%
discrepancy rate between metastatic sites [254]. Hence, tumor heterogeneity might
have caused misclassification of BRAF mutation status, thereby negatively affecting
the results. Ideally, in prospective radiomics studies, genomic and radiomics analyses
are performed on the same tumor site. Secondly, the segmentation of regions of
interest (ROI) was performed semi-automatically. Automatic segmentation methods
may improve the consistency of the segmentations and thus affect the radiomics
model. However, due to the clear distinction of lung lesions and their surroundings,
it is not expected that automatic segmentation will substantially alter the results.
Thirdly, the heterogeneity in the acquisition protocols may have negatively affected
the performance or our radiomics model. These variations may have led to variations
in the imaging features, which complicate the recognition of patterns. Using a single
acquisition protocol would give an estimate of the performance unaffected by such
variations. However, the variations in the acquisition protocols were small, making it
unlikely this significantly affected the results of the current study. Feature selection
methods based on feature test-retest reproducibility could be investigated in future
work [18, 255]. The difference in tube current between BRAF-mt and BRAF-wt almost
reached statistical significance and could have been implicitly used by the model to
distinguish these lesions. However, our results show that, despite this difference, the
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performance of the model was similar to guessing. Lastly, although training data
were strictly separated from test data in cross-validation, we did not validate our
findings on an independent, external dataset.

9.5 Conclusions

In summary, our study demonstrates that neither CT-based radiomics features, nor
CT-derived LIDC features scored by a radiologist can discriminate between BRAF
mutant and BRAF wild type lung metastases in patients with metastatic melanoma.
Therefore, CT based parameters cannot replace determination of BRAF mutation
status on tumor tissue.
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Appendix

Appendix 9.A Radiomics feature extraction

This supplementary material is similar to Vos et al. [72] (i.e., Chapter 5 of this thesis),
but details relevant for the current study are highlighted.

A total of 540 radiomics features were used in this study. All features were
extracted using the defaults for CT scans from the Workflow for Optimal Radiomics
Classification (WORC) toolbox [36], which internally uses the PREDICT [51] and
PyRadiomics [44] feature extraction toolboxes. For CT scans, the images are not
normalized as the scans already have a fixed unit and scale (i.e. Hounsfield), contrary
to MRI. The code to extract the features for this specific study has been published
open-source [244]. An overview of all features is depicted in Table 9.A.2. For details
on the mathematical formulation of the features, we refer the reader to Zwanenburg
et al. [39]. More details on the extracted features can be found in the documentation
of the PREDICT, PyRadiomics, and mainly the WORC documentation [68].

The features can be divided in several groups. Thirteen intensity features were
extracted using the histogram of all intensity values within the ROIs and included
several first-order statistics such as the mean, standard deviation and kurtosis.
These describe the distribution of Hounsfield units within the lesion. Thirty-five
shape features were extracted based only on the ROI, i.e. not using the image, and
included shape descriptions such as the volume, compactness and circular variance.
These describe the morphological properties of the lesion. Nine orientation features
were used, describing the orientation of the ROI, i.e. not using the image. Lastly,
483 texture features were extracted using Gabor filters (144 features), Laplacian of
Gaussian filters (36 features), vessel (i.e. tubular structures) filters (36 features) [54],
the Gray Level Co-occurrence Matrix (144 features) [39], the Gray Level Size Zone
Matrix (16 features) [39], the Gray Level Run Length Matrix (16 features) [39], the
Gray Level Dependence Matrix (14 features) [39], the Neighbourhood Grey Tone
Difference Matrix (5 features) [39], Local Binary Patterns (18 features) [52], and local
phase filters (36 features) [53]. These features describe more complex patterns within
the lesion, such as heterogeneity, occurrence of blob-like structures, and presence of
line patterns.

Appendix 9.B Model optimization

This appendix is similar to Vos et al. [72] (i.e., Chapter 5 of this thesis), but details
relevant for the current study are highlighted. The Workflow for Optimal Radiomics
Classification (WORC) toolbox [36] makes use of adaptive algorithm optimization to
create the optimal performing workflow from a variety of methods. WORC defines a
workflow as a sequential combination of algorithms and their respective parameters.
To create a workflow, WORC includes algorithms to perform feature scaling, feature
imputation, feature selection, oversampling, and machine learning. If used, as some
of these steps are optional as described below, these methods are performed in the
same order as described in this appendix. More details can be found in the WORC
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documentation [68]. The code to use WORC for creating the BRAF decision models
in this specific study has been published open-source [244].

When a feature could not be computed, e.g. the lesion is too small or a division
by zero occurs, feature imputation was used to estimate replacement values for the
missing values. Strategies for imputation included 1) the mean; 2) the median; 3) the
most frequent value; and 4) a nearest neighbor approach.

Feature scaling was performed to make all features have the same scale, as
otherwise the machine learning methods may focus only on those features with large
values. This was done through z-scoring, i.e. subtracting the mean value followed
by division by the standard deviation, for each individual feature. In this way, all
features had a mean of zero and a variance of one. A robust version of z-scoring
was used, in which outliers, i.e. values below the 5th percentile or above the 95th
percentile, are excluded from computing the mean and variance.

Feature selection was performed to eliminate features which were not useful
to distinguish between the classes, i.e. BRAF mutant vs. BRAF wild-type. These
included; 1) a variance threshold, in which features with a low variance (<0.01) are
removed. This method was always used, as this serves as a feature sanity check with
almost zero risk of removing relevant features; 2) optionally, a group-wise search, in
which specific groups of features (i.e. intensity, shape, and the subgroups of texture
features as defined in Section 9.A) are selected or deleted. To this end, each feature
group has an on/off variable which is randomly activated or deactivated, which were
all included as hyperparameters in the optimization; 3) optionally, individual feature
selection through univariate testing. To this end, for each feature, a Mann-Whitney
U test is performed to test for significant differences in distribution between the
labels (e.g. BRAF mutant vs BRAF wild-type). Afterwards, only features with a
p-value above a certain threshold are selected. A Mann-Whitney U test was chosen
as features may not be normally distributed and the samples (i.e. lesions) were
independent; and 4) optionally, principal component analysis (PCA), in which either
only those linear combinations of features were kept which explained 95% of the
variance in the features or a limited amount of components (between 10 – 50). These
feature selection methods may be combined by WORC, but only in the mentioned
order.

Oversampling was used to make sure the classes were balanced in the training
dataset. These included; 1) random oversampling, which randomly repeats patients
of the minority class; and 2) the synthetic minority oversampling technique (SMOTE)
[58], which creates new synthetic “lesions” using a combination of the features in the
minority class. Randomly, either one of these methods or no oversampling method
was used.

Lastly, machine learning methods were used to determine a decision rule to
distinguish the classes. These included; 1) logistic regression; 2) support vector
machines; 3) random forests; 4) naive Bayes; and 5) linear and quadratic discriminant
analysis.

Most of the included methods require specific settings or parameters to be set,
which may have a large impact on the performance. As these parameters have to be
determined before executing the workflow, these are so-called “hyperparameters”.
In WORC, all parameters of all mentioned methods are treated as hyperparameters,
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since they may all influence the decision model creation. WORC simultaneously
estimates which combination of algorithms and hyperparameters performs best. A
comprehensive overview of all parameters is provided in the WORC documentation
[68].

By default in WORC, the performance is evaluated in a 100x random-split train-
test cross-validation. In the training phase, a total of 100,000 pseudo-randomly
generated workflows is created. These workflows are evaluated in a 5x random-split
cross-validation on the training dataset, using 85% of the data for actual training
and 15% for validation of the performance. All described methods were fit on the
training datasets, and only tested on the validation datasets. The workflows are
ranked from best to worst based on their mean performance on the validation sets
using the F1-score, which is the harmonic average of precision and recall. Due to
the large number of workflows executed, there is a chance that the best performing
workflow is overfitting, i.e. looking at too much detail or even noise in the training
dataset. Hence, to create a more robust model and boost performance, WORC
combines the 50 best performing workflows into a single decision model, which is
known as ensembling. These 50 best performing workflows are re-trained using the
entire training dataset, and only tested on the test dataset. The ensemble is created
through averaging of the probabilities, i.e. the chance of a lesion being BRAF mutant
or BRAF wild-type, of these 50 workflows.

The code for the model creation, including more details, has been published
open-source [244].
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Figure 9.A.1: Visualization of the 100x random-split cross-validation, including a second 5x random-split
cross-validation within the training set.
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Table 9.A.1: LIDC Nodule Characteristics, Definitions, and Ratings [245].

Characteristic Ratings Description
Calcification 1 Popcorn Calcification appearance in the nodule - the

smaller the nodule, the more likely it must contain
calcium in order to be visualized. Benignity is
highly associated with central, non-central,
laminated, and popcorn calcification

(categorical) 2 Laminated
3 Solid
4 Non-central
5 Central
6 Absent

Internal structure 1 Soft tissue Expected internal composition of the nodule
(categorical) 2 Fluid

3 Fat
4 Air

Lobulation 1 Marked Whether a lobular shape is apparent from the
margin or not - lobulated margin is an indication
for benignity

(ordinal) 2 .
3 .
4 .
5 None

Malignancy 1 Highly unlikely Likelihood of malignancy of the nodule -
malignancy is associated with large nodule size
while small nodules are more likely to be benign.
Most malignant nodules are non-calcified and
have speculated margins.

(ordinal) 2 Moderately unlikely
3 Indeterminate
4 Moderately suspicious
5 Highly suspicious

Margin 1 Poorly defined How well defined the margins of the nodules are
(ordinal) 2 .

3 .
4 .
5 Sharp

Sphericity 1 Linear Dimensional shape of nodule in terms of roundness
(ordinal) 2 .

3 Ovoid
4 .
5 Round

Spiculation 1 Marked Degree to which the nodule exhibits spicules,
spike-like structures, along its border - spiculated
margin is an indication of malignancy

(ordinal) 2 .
3 .
4 .
5 None

Subtlety 1 Extremely subtle Difficulty in detection - refers to the contrast
between the lung and its surroundings(ordinal) 2 Moderately subtle

3 .
4 Fairly subtle
5 Obvious

Texture 1 Nonsolid Internal density of a nodule - texture plays an
important role when attempting to segment a
nodule, since part-solid and nonsolid texture can
increase the difficulty of defining the nodule
boundary

(ordinal) 2 .
3 Part-solid/mixed
4 .
5 Solid
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Table 9.A.2: LIDC criteria scored by a thorax radiologist.

BRAF Mutant
(N=82 lesions)

BRAF wild type
(N=87 lesions)

Calcification
Popcorn

Yes 0 0
No 82 87

Laminated
Yes 0 0
No 82 87

Solid
Yes 0 1
No 82 86

Non-central
Yes 0 0
No 82 87

Central
Yes 1 0
No 82 87

Absent
Yes 75 80
No 7 7

Internal structure
Soft tissue

Yes 75 81
No 7 6

Fluid
Yes 0 0
No 82 87

Fat
Yes 0 0
No 82 87

Air
Yes 1 1
No 81 86

Lobulation (ordinal)
1 Marked 10 7
2 1 0
3 4 5
4 20 26
5 None 47 49

Malignancy
Highly unlikely 8 5
Moderate unlikely 2 0
Indeterminate 0 1
Moderately suspicious 1 1
Highly suspicious 71 80

Margin (ordinal)
1 Poorly defined 8 5
2 3 1
3 12 11
4 4 12
5 Sharp 55 58

Sphericity (ordinal)
1 Linear 9 7
2 3 2
3 Ovoid 33 28
4 20 25
5 Round 17 25

Spiculation (ordinal)
1 Marked 8 6
2 2 1
3 1 2
4 6 6
5 None 65 72

Subtlety
1 Extremely subtle 7 5
2 Moderately subtle 0 0
3 0 0
4 Fairly subtle 0 1
5 Obvious 75 81

Texture
1 Nonsolid 10 5
2 0 0
3 Part-solid/mixed 0 0
4 0 0
5 Solid 72 82
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Figure 9.A.2: Flowchart of patient inclusion.
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Abstract

Metastatic mesenteric masses of small intestinal neuroendocrine tumors (SI-NETs) are known
to often cause intestinal complications. The aim of this study was to identify patients at risk
to develop these complications based on routinely acquired CT scans using a standardized
set of clinical criteria and radiomics. Retrospectively, CT scans of SI-NET patients with
a mesenteric mass were included and systematically evaluated by five clinicians. For the
radiomics approach, 1128 features were extracted from segmentations of the mesenteric mass
and mesentery, after which radiomics models were created using a combination of machine
learning approaches. The performances were compared to a multidisciplinary tumor board
(MTB). The dataset included 68 patients (32 asymptomatic, 36 symptomatic). The clinicians
had AUCs between 0.62 and 0.85 and showed poor agreement. The best radiomics model had
a mean AUC of 0.77. The MTB had a sensitivity of 0.64 and specificity of 0.68. We conclude
that systematic clinical evaluation of SI-NETs to predict intestinal complications had a similar
performance than an expert MTB, but poor inter-observer agreement. Radiomics showed a
similar performance and is objective, and thus is a promising tool to correctly identify these
patients. However, further validation is needed before the transition to clinical practice.
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10.1 Introduction

Small intestinal neuroendocrine tumors (SI-NETs) are rare neoplasms with a mostly
slow, progressive course [256]. Patients frequently present with metastasized disease,
the liver and mesentery being the dominant metastatic sites [257]. SI-NETs are known
to induce fibrosis, most notably surrounding a metastatic mesenteric mass, via the
production of mediators like serotonin. This mesenteric fibrosis causes distortion
and traction on the surrounding intestine and can encase mesenteric vessels. In the
majority of patients, this leads to severe complications such as intestinal obstruction
and ischemia.

In order to prevent future complications, the current European Neuroendocrine
Tumor Society (ENETS) guideline advises consideration of prophylactic surgery in
these patients [258]. However, not all of these patients may benefit from surgery:
approximately 30% of patients with the mesenteric metastasized disease have no
abdominal symptoms [259, 260]. In addition, recent studies found no survival or
clinical benefit of prophylactic palliative surgery in asymptomatic patients [260, 261].
Nonetheless, it has been suggested that a certain subset of patients might benefit
from early surgical intervention [258]. Often the presence of a mesenteric mass and
the severity of mesenteric fibrosis are used to determine the necessity of prophylactic
palliative surgery. However, there is discordance between the histological and
radiological severity of mesenteric fibrosis and the symptomatology [262, 263]. To
our knowledge, there is currently no method to reliably identify patients prone to
develop intestinal complications due to a SI-NET mesenteric mass.

The currently developed stratification methods for SI-NETs focus solely on overall
survival and prognosis and do not include risk factors for intestinal complications
due to mesenteric metastasis and fibrosis [264, 265, 266]. Therefore, we propose two
novel methods for the identification of complications based on contrast-enhanced
abdominal CT scans. First, a visual systematic clinical evaluation of the scan. Second,
a data-driven approach to identify predictive features of symptomatic mesenteric
masses. To this end, we use radiomics, in which quantitative medical imaging
features are related to clinical outcome. Radiomics has been used in combination
with CT in various clinical applications, such as liver cancer [105], lung cancer
[83], clear cell renal carcinoma [267], and many more [16]. In neuroendocrine
tumors, radiomics has been used to predict the grade of pancreatic neuroendocrine
tumors [268]. Given the success in these previous studies and the fact that CT
scans are routinely acquired for assessing disease progression, we hypothesize that
radiomics may be used to quantify the appearance of the SI-NET mesenteric mass
and surrounding mesentery. Besides developing a prediction model using radiomics,
further analysis of the radiomics features of symptomatic patients may elucidate new
insights in the processes involved in the development of symptomatic mesenteric
masses.

The aim of this study was to find a method to reliably identify patients at high
risk of developing complications from a mesenteric mass and surrounding fibrosis.
To this end, routinely acquired CT scans were assessed by five clinicians using
systematic clinical evaluation, and a radiomics approach was used in which we
assessed the predictive value of (1) the SI-NET mesenteric mass; (2) the surrounding
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mesentery; and (3) the mesenteric mass location. To compare the performance with
clinical practice, a multidisciplinary tumor board (MTB) evaluated the patients as
well.

10.2 Materials and methods

10.2.1 Study population

This study was performed in accordance with the Dutch Code of Conduct for Medical
Research of 2004. As the study was retrospectively performed with anonymized
data, no approval from the ethical committee or informed consent was required.
Patients were retrospectively included from the Rotterdam NET-database, which
encompassed all NET patients treated between January 1993 and December 2018 in
the Erasmus MC, University Medical Center Rotterdam, the Netherlands. Included
cases had a pathologically proven SI-NET and radiological evidence of a metastatic
mesenteric mass. A metastatic mesenteric mass was diagnosed if the lesion met
the criteria of a malignant mesenteric lymph node on CT scan in accordance with
the RECIST 1.1 guidelines, as these are validated criteria to determine disease
progression with clear criteria for a malignant lymph node [8, 258].

Patients were included in the symptomatic group in case of palliative abdominal
surgery because of intestinal complications, for example, obstruction, ischemia, or
perforation. For this group, a venous phase contrast-enhanced abdominal CT scan
performed up to 365 days before the surgery was used. Patients were included in
the asymptomatic group when none of the mentioned intestinal complications were
present, and thus no abdominal surgery was performed, for at least 3 years after the
included venous phase contrast-enhanced abdominal CT scan was performed.

Due to the low quality of older scans and to make the outcome more applicable
to the current CT technology, only scans between 2008 and 2018 were included. No
other restrictions on the acquisition parameters or contrast administration protocol
were imposed. It was recorded whether positive enteric contrast was used or not.
Baseline characteristics included age, sex, tumor grade according to WHO criteria,
ENETS disease stage, plasma chromogranin A (CgA) level, and 24-h urinary 5-
hydroxyindoleacetic acid (5-HIAA) excretion [258].

10.2.2 Segmentation

For each patient, three regions of interest (ROIs) were segmented: (1) the mesenteric
mass (MM); (2) the surrounding mesentery (SM); and (3) the origin of the superior
mesenteric artery (SMA). Segmentation was performed manually per voxel by a
clinician (AB) and reviewed by a nuclear physician (TB). For segmentation of the
MM, a mesenteric node of ≥ 15 mm on the short axis was selected in accordance
with RECIST 1.1 criteria for target lymph nodes [8]. In case of multiple pathological
mesenteric nodes, the largest mesenteric node was selected, since the desmoplastic
reaction occurs principally around the dominant mesenteric node [269]. The SM was
segmented by annotating the mesentery between the MM and the surrounding bowel
wall with a maximum distance of 30 mm between the MM and SM contour. This
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cutoff was chosen instead of annotating the entire mesentery between the MM and
bowel wall to reduce differences in the segmentations due to variations in mesenteric
retraction across patients. Determination of the exact middle of the SMA origin,
that is, one point on one slice, is difficult due to the variable and often high slice
thickness (e.g. 5 mm) of the scans and is potentially observer dependent. Instead, to
improve reproducibility, for all scans, the first 10 mm of the SMA branching from
the abdominal aorta were manually delineated per voxel. The center of this ROI was
used to calculate the location features as described in Subsection 10.2.4.

10.2.3 Systematic clinical evaluation by clinicians

The criteria for the systematic clinical evaluation are shown in Table 10.A.1. Fibrosis
was classified as: grade 1 (<10 thin radiating strands), grade 2 (>10 thin and <10
thick radiating strands), grade 3 (>10 thick radiating strands) [269]. Mesenteric
mass staging was classified as: stage I when the mesenteric mas is located close to
the intestine; stage II involves arterial branches close to the origin in the mesenteric
artery; stage III extends along the SMA; and stage IV masses grow around the
mesenteric artery with involvement of the first jejunal arteries [270]. As mesenteric
metastases are known to compromise mesenteric vasculature, vessel encasement (tu-
mor tissue surrounding the vessel), signs of intestinal edema (thickened mucosal and
submucosal layers) or bowel wall ischemia (thickened bowel wall with diminished
contrast-enhancement) were also scored. The criteria were scored by five clinicians:
two radiologists (Rad1 and Rad2, 15 and 5 years of experience, respectively), a
nuclear medicine physician (Nucl, 4 years of experience), a surgeon (Surg, 10 years
of experience), and an endocrinologist (End, 30 years of experience).

10.2.4 Radiomics

From both the MM and the SM segmentations, 564 features quantifying intensity,
shape, and texture were extracted: these will be referred to as the MM features and
the SM features, respectively. The MM and SM features total 1128 imaging features
per patient. More details on the extracted features can be found in Section 10.A and
Table 10.A.2. The positions of the MM with respect to the SMA (x, y, and z) were also
extracted, which we refer to as location features. These location features were used
to approximate the established classification of the lymph node metastases stage
[270]. We included these location features since lesions more proximal to the origin
of the SMA tend to be more often symptomatic [271], bringing the total number of
features to 1131.

To create a decision model from the features, the WORC toolbox was used,
see Figure 10.1 [36, 151]. In WORC, the decision model creation is divided in
several steps, for example, feature selection, resampling and machine learning.
For each step, a number of different methods are included. WORC performs an
automated, exhaustive search among a variety of algorithms and their parameters to
establish workflows that maximize performance and determine which combination
of algorithms maximizes the prediction performance on the training set.
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Several models were created using different features to assess the predictive
value of the various characteristics in predicting the development of symptomatic
mesenteric mass: (1) age and sex; (2) baseline characteristics; (3) MM features; (4)
SM features; (5) location features; (6) MM and SM features combined; (7) MM, SM
and location features combined; (8) all features combined; and (9) similar to model8,
but excluding patients with positive enteric contrast. Model1 and model2 were
created to assess whether simple, objective characteristics may provide information
on symptom development. Model9 was created to assess the impact of the usage of
enteric contrast in the CT scans on the model performance. Even though the main
area of interest is mesentery and not the bowel lumen, which is mostly affected by
the contrast, the differences in appearance may influence the feature values and thus
potentially bias the models. A schematic overview of the various models is given
in Table 10.1. The code for both the feature extraction and creation of the decision
models using WORC has been published open-source [272].

10.2.5 Comparison with clinical practice

In order to compare the performance of our model with current clinical practice,
the CT scans were evaluated by the MTB from the Erasmus MC, an ENETS center
of excellence. The MTB was asked to determine whether the patient was likely to
develop intestinal complications due to the mesenteric mass and fibrosis within 1
year (yes/no), based on the same CT scan used for the radiomics analysis. The MTB
assessed features such as bowel wall ischemia, edema, and severity of mesenteric
fibrosis and vessel encasement. However, as there is no established method to use
these features to guide decision-making, the features were simply assessed and
expert opinion was used to determine if the patient is likely to develop intestinal
complications, which resembles clinical practice.

Table 10.1: Description of the nine models to assess the predictive value of various feature groups in
predicting abdominal complications.

Model Enteric Radiomics Non-imaging Number of
contrast features features patients

Model1 Yes None Age, sex 68
Model2 Yes None All∗ 68
Model3 Yes MM None 68
Model4 Yes SM None 68
Model5 Yes Location None 68
Model6 Yes MM, SM None 68
Model7 Yes MM, SM, Location None 68
Model8 Yes MM, SM, Location All∗ 68
Model9 No MM, SM, Location All∗ 16
∗Abbreviations: Age, sex, tumor grade, ENETS disease stage, CgA,
5-HIAA. CgA, serum chromogranin A; normal range < 94 µg/L;
5-HIAA, urinary 5-HIAA excretion; normal range < 50 µmol/24 h.
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10.2.6 Statistical analysis

Differences between the asymptomatic and symptomatic groups in baseline clinical
characteristics were evaluated using SPSS software (version 21 for Windows, SPSS
Inc.). Data were presented as the median and inter-quartile range (IQR; 25th–75th
percentiles) or percentage with count. Continuous data were compared by using
a Mann– Whitney U test. A chi-square test was performed for the comparison of
categorical data. A P-value of < 0.05 was considered statistically significant.

Agreement between the different raters in the systematic clinical evaluation was
determined using Fleiss Kappa, where a value < 0.40 indicated poor agreement [273].

The statistics for the radiomics models were evaluated using the WORC software
[36, 151]. To evaluate the significance of individual features, a Mann–Whitney U
test was used. The P-values were corrected for multiple testing using the Bonferroni
correction. A P-value of < 0.05 was considered statistically significant.

In all radiomics experiments, evaluation was implemented through a 100×
random-split cross-validation, with 80% of the data used for training and 20%
for independent testing, see Figure 10.2. On the training set, another random-split
cross-validation was performed, splitting the dataset in 85% for training and 15%
for validation to be used for the model optimization. Hence, all optimization was
done on the training dataset: the test dataset was only used for evaluation to prevent
overfitting on the test dataset. In both cross-validations, splitting was done in a strat-
ified manner, to ensure that the balance between the asymptomatic and symptomatic
groups was similar in training and test set.

To gain insight into the predictions of the model, patients were ranked from
typical to atypical for both the asymptomatic and the symptomatic group, based
on the model prediction consistency. This was determined by the number of times

Full Dataset

Training: 80%

Test: 20%

Training: 85%

Validation: 15%

Model
Optimization

5x

Trained Model

100x

Evaluation

AUC=0.84

Confidence
Interval

AUC=(0.78, 0.89)

Figure 10.2: Visualization of the 100× random-split cross-validation, including a second 5× random-split
cross-validation within the training set in which the model optimization was conducted.
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(percentage) that a patient was classified correctly when included in the test set.
Typical examples for each class were defined as patients who were always classified
correctly; atypical vice versa.

Performance was evaluated using the area under the receiver operating charac-
teristic (ROC) curve (AUC), balanced classification accuracy (BCA), sensitivity, and
specificity. For the radiomics models, 95% CIs on the average performance metrics
over all 100 cross-validation iterations were constructed using the corrected resam-
pled t-test, thereby taking into account that samples in the crossvalidation splits are
not statistically independent [64]. ROC confidence bands were constructed using
fixed-width bands [67]. For the MTB, 95% CIs were constructed with Graphpad
Software Prism using the modified Wald method. In all analyses, the symptomatic
group was defined as the positive class.

10.3 Results

10.3.1 Dataset characteristics

A total of 68 patients was included, with 32 in the asymptomatic group and 36 in
the symptomatic group. There were no significant differences between the groups in
baseline clinical characteristics (Table 10.2). For the asymptomatic group, the median
time between the CT scan and development of abdominal symptoms or endof-
follow-up was 70.5 months (IQR; 50–86 months). For the symptomatic group, the
median time between CT scan and palliative surgery was 97 days (IQR; 49–140 days).
In the symptomatic group, indications for surgery were respectively: obstruction (n
= 19, 53%), pain (n = 13, 36%), ischemia (n = 2, 6%), and perforation (n = 2, 6%). For
32 patients, laparotomy findings revealed macroscopic signs of mesenteric fibrosis
and, when acute pain was present preoperatively, signs of ischemia were present in
59% (n = 19). In the remaining four operated patients, documentation of findings
during surgery was scarce.

The resulting multi-center CT dataset originated from 29 different scanners and
thereby showed substantial heterogeneity in the imaging protocols (Table 10.2).
Statistically significant differences in the distribution of the parameters between the
CT scans of the symptomatic and the asymptomatic group were found for the use
of enteric contrast, pixel spacing, tube current, and kilovoltage peak. However, the
absolute differences were generally small, for example, 0.73 mm vs 0.75 mm in mean
pixel spacing. Additionally, nine different reconstruction kernels were used.

10.3.2 Feature significance

After correcting for multiple testing, from the 1137 features (1128 imaging, 3 location,
and 6 patient characteristics), 73 were found to have significant P-values (0.003–0.045),
see Figure 10.A.1. These included only features extracted from the SM: a more
detailed description of these features is given in Section 10.B. No shape features,
thus also not the SM volume, were found to be significant.
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Table 10.2: Baseline characteristics of the 68 patients. Numerical data are presented as median with
interquartile range (IQR) in brackets. Categorical data are presented as percentages with a count in
brackets. P-values are calculated using a Mann–Whitney U test for numerical data, a chi-square test for
categorical data.

Characteristic Symptomatic Asymptomatic P-value
(N = 36) (N =32)

Clinical
Age 66 [55 – 74] 62 [54 – 72] 0.90
Male 56% (20) 78% (25) 0.072
CgA 343 [178 – 1057] 170 [72 – 415] 0.27
5-HIAA 163 [59 – 481] 126 [78 – 288] 0.46
Tumor grade 0.40

Grade I 56 % (20) 56 % (18)
Grade II 31 % (11) 19 % (6)
Unknown 14% (5) 25% (8)

ENETS disease stage 0.15
Stage III 22% (8) 9% (3)
Stage IV 78% (28) 91% (29)

CT Imaging
Enteric contrast 36% (13) 9% (3) 0.009
Pixel spacing (mm) 0.73 [0.70, 0.77] 0.75 [0.73, 0.79] 0.04
Slice thickness (mm) 3.0 [3.0, 3.25] 3.0 [3.0, 5.0] 0.19
Tube current (mA) 158 [99, 312] 271 [144, 346] 0.034
Kilovoltage peak 100 [100, 120] 120 [100, 120] 0.020
Manufacturer 0.55

Siemens 30 30
Philips 2 1
Toshiba 3 1
Unknown 1 0

Surgery indication
Obstruction 53% (19)
Pain 36% (13)
Ischemia 6% (2)
Perforation 6% (2)

∗Abbreviations: CgA, serum chromogranin A; normal range <
94 µg/L; 5-HIAA, urinary 5-HIAA excretion; normal range < 50
µmol/24 h.
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10.3.3 Systematic evaluation by clinicians

The performance of the systematic clinical evaluation by the five raters is shown in
Table 10.3; their ROC curves are shown in Figure 10.3. While all clinicians performed
better than guessing (0.50), their AUCs varied (radiologists: 0.85 and 0.76, nuclear
physician: 0.71, surgeon: 0.82, endocrinologist: 0.62). Fleiss Kappa between the
five clinicians on evaluating patients as asymptomatic or symptomatic was 0.15,
indicating poor agreement. The agreement on the classification of the radiological
features was also poor (0.06–0.35) (Table 10.A.1).

10.3.4 Evaluation of radiomics models

The performance of the various radiomics models is shown in Table 10.3. Model1,
using only age and sex, had a poor performance (AUC of 0.49), indicating that age
and sex are not related to the risk of developing intestinal complications. Inclusion
of tumor grade according to WHO criteria, ENETS disease stage, CgA level, and
urinary 5-HIAA excretion, that is, model2, performed slightly better (AUC of 0.58).
Among the models using radiomics features from a single ROI, model4, including
SM, had the best performance (AUC of 0.81, sensitivity of 0.78, specificity of 0.67).
Interestingly, model5, including only the location features of the MM also had
fair predictive power (AUC of 0.72). Combining all imaging and location features,
model7, performed similarly (AUC of 0.74, sensitivity of 0.70, specificity of 0.65) to

Table 10.3: Performances of systematic evaluation by five raters and the radiomics models. The radiomics
models are based on: age and sex (model1); all non-imaging features (model2); features extracted from
the mesenteric mass (MM) (model3); features extracted from the surrounding mesentery (SM) (model4);
only the location (model5); both MM and SM features (model6); MM, SM, and location features (model7);
MM, SM, location, and non-imaging features (model8); similar to model8 but excluding patients with
positive enteric contrast (model9). Performance for the radiomics models was given as mean (95% CI).

Model AUC BCA Specificity Sensitivity
Radiologist 1 0.85 0.80 0.84 0.75
Radiologist 2 0.76 0.73 0.66 0.81
Nuclear physician 0.71 0.68 0.91 0.44
Surgeon 0.82 0.79 0.78 0.81
Endocrinologist 0.60 0.59 0.63 0.56
Model1 0.49 (0.34, 0.65) 0.50 (0.39, 0.61) 0.49 (0.23, 0.74) 0.52 (0.30, 0.73)
Model2 0.58 (0.44, 0.72) 0.58 (0.46, 0.70) 0.55 (0.34, 0.76) 0.61 (0.41, 0.80)
Model3 0.65 (0.52, 0.79) 0.61 (0.49, 0.73) 0.61 (0.43, 0.78) 0.61 (0.42, 0.81)
Model4 0.81 (0.72, 0.91) 0.72 (0.62, 0.82) 0.67 (0.49, 0.85) 0.78 (0.61, 0.94)
Model5 0.72 (0.60, 0.84) 0.63 (0.51, 0.75) 0.60 (0.41, 0.79) 0.67 (0.47, 0.87)
Model6 0.77 (0.64, 0.90) 0.71 (0.59, 0.83) 0.69 (0.50, 0.88) 0.73 (0.55, 0.90)
Model7 0.74 (0.62, 0.87) 0.68 (0.55, 0.81) 0.65 (0.45, 0.85) 0.70 (0.52, 0.88)
Model8 0.79 (0.66, 0.91) 0.72 (0.61, 0.82) 0.72 (0.54, 0.90) 0.71 (0.52, 0.89)
Model9 0.77 (0.63, 0.91) 0.69 (0.55, 0.84) 0.74 (0.54, 0.94) 0.64 (0.40, 0.88)
∗Abbreviations: AUC, area under the receiver operating characteristic curve; BCA,
balanced classification accuracy.
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Figure 10.3: Receiver operating characteristic curve of radiomics model4, based on the surrounding
mesentery, and of evaluation by five clinical raters (radiologist 1 (blue), radiologist 2 (green), nuclear
physician (purple), surgeon (magenta), and endocrinologist (cyan)). The performance of the multidisci-
plinary tumor board (MTB) is indicated by a red dot. For the radiomics model, the gray crosses identify
the 95% CIs of the performance over the 100× random-split cross-validation iterations; the orange curve is
fit through the mean of the CIs.

the model based solely on the SM. Inclusion of the patient characteristics (model8,
AUC of 0.79) did not improve the predictive power.

In our dataset, 24% (n = 16) of the CT scans were performed with enteric contrast.
Of these patients, 18.6% (n = 3) were asymptomatic; hence, the distribution of enteric
contrast with respect to asymptomatic and symptomatic group was significantly
different (P < 0.05, Table 10.2). Excluding these patients, that is, model9, yielded a
similar performance (AUC of 0.77).

Of the 68 patients, 35 patients (19 asymptomatic, 16 symptomatic) were always
classified correctly, that is, in all 100 cross-validation iterations, by model4, and are
thus considered typical. Of these 32 typical patients, 13 patients (7 asymptomatic,
6 symptomatic) were also correctly classified by all five clinicians. Analogously, 6
patients (3 asymptomatic, 3 symptomatic) were always classified incorrectly and
thus considered atypical. In Figure 10.4, four CT slices of such typical and atypical
examples of asymptomatic and symptomatic patients are depicted. The patients
with enteric contrast were both in the typical (n = 7) and atypical (n = 1) examples
of both classes.
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(A) Typical Asymptomatic (B) Atypical Asymptomatic

(C) Atypical Symptomatic (D) Typical Symptomatic

Figure 10.4: Examples of typical and atypical surrounding mesentery. The typical examples (A,D) are two
of the patients always classified correctly by model4; the atypical examples (B,C) are two of the patients
always classified incorrectly by model4. (A) Typical asymptomatic, (B) atypical asymptomatic, (C) atypical
symptomatic, and (D) typical symptomatic.
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10.3.5 Comparison with multidisciplinary tumor board

The MTB prediction of developing intestinal complications had a specificity of 0.69
(95% CI; 0.51, 0.82), a sensitivity of 0.64 (95% CI; 0.48, 0.78), and an accuracy of 0.66
(95% CI; 0.54, 0.77). For the sake of brevity, only the ROC curves of the single-ROI
model with the highest AUC, model4, the five raters, and the MTB performance are
depicted in Figure 10.3. The performance of the MTB was slightly below the ROC
curve of the mean performance of the radiomics model over all cross-validations,
but within the 95% CI.

10.4 Discussion

We evaluated both systematic clinical evaluation and a radiomics approach for reli-
ably identifying patients who are prone to develop complications of the metastatic
mesenteric mass and fibrosis and thus may benefit from prophylactic surgery. Our
results show that both the systematic clinical evaluation and our best performing ra-
diomics model can identify these patients with a performance similar to a specialized
MTB.

To date, there are no clear clinical or radiological predictors for the development
of a symptomatic mesenteric mass [262, 263]. Therefore, we evaluated a wide array
of clinical characteristics and radiomics features. In contrast to other prognostic
models in SI-NETs, we found that clinical characteristics such as age, sex, ENETS
disease stage, tumor grade and markers had little to no predictive power for the
development of a symptomatic mesenteric mass (model1 and model2) [264, 265, 266].

From the radiomics features, only SM features showed statistically significant
differences between the asymptomatic and symptomatic patients. No MM or location
features showed a statistically significant difference. This highlights the importance
of the mesentery surrounding the metastatic mesenteric mass in the development
of symptoms. In order to gain insight in the underlying profibrotic mechanisms,
we analyzed the predictive features of the SM and found that most (93%) were
texture features. Future detailed analysis of the relation between these features and
clinical characteristics could elucidate the processes involved in the development
of a symptomatic mesenteric mass and fibrosis and guide treatment development.
The importance of the SM was also confirmed by the radiomics models, as the
model solely using SM features (model4) was one of the highest ranking models in
terms of AUC and the performance was not improved by additional features (i.e.
model6–model8). Moreover, model4 is clinically more feasible, as it only requires
annotation of the surrounding mesentery. We will, therefore, further refer to model4
as ’the radiomics model’.

Systematic evaluation by clinicians resulted in similar discriminative power as
the radiomics model. However, evaluation of the separate CT findings demonstrated
poor inter-observer agreement, which is in line with findings in the literature [274].
The relatively low degree of the overall agreement further limits the reliability
of the prediction by the clinicians. The radiomics model, on the other hand, is
independent of the observer and thus any personal training or experience, assuming
the segmentation is reproducible. It could therefore be useful in clinics where
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there are no NET specialists, to better identify patients that may benefit from
prophylactic palliative surgery and refer these patients to a center of expertise.
Moreover, reducing the bias in risk evaluation could aid assessment of treatment
effectiveness for mesenteric metastases and fibrosis, and the development of clear
guidelines for patient selection for prophylactic palliative surgery.

Some limitations to our study should be noted. First, although we used a
multi-center imaging dataset and performed a rigorous cross-validation experiment
strictly separating training from testing data, we did not validate our model on an
independent, external dataset. Moreover, even though our dataset was relatively
large considering the rarity of SI-NETs, it was relatively small for a radiomics study
[24], which may explain why our CIs are quite wide (e.g. the AUCs span between 20
and 30% of the range). Additionally, testing for statistically significant differences of
the AUCs through, for example, a DeLong test was not possible due to limited power.
Expanding the size of the dataset may result in an increase in performance and
increased statistical power. Second, in line with guidelines from the radiomics field
[18], our study included CT scans over a time period of 10 years with variations in
acquisition protocols. On one hand, this is a strength of our study, as the radiomics
models had predictive value despite substantial acquisition variations. Moreover, as
the models were trained on a wide variety of CT scanners and acquisition protocols,
we expect the model to be able to accurately make predictions in a wide variety of
(routine) settings. On the other hand, heterogeneity may have (negatively) affected
our performance. Using a single-scanner study will limit the generalizability but
may positively impact the performance. Further research is required to evaluate the
influence of acquisition parameters on the model performance. When expanding
the dataset to include more patients, feature harmonization techniques such as
ComBat may be employed [185]. Third, our model relies on the manual annotation
of the ROIs. Manual annotation can be time consuming and may lead to observer
dependency of the model. Automation of the segmentation may help overcome
these deficits.

To our knowledge, this is the first study that shows the potential of radiomics
for the prediction of abdominal complications in SI-NETs. In our study, we used
CT, as this was the preferred modality in routine clinical care [275]. Future research
may investigate the potential value of other imaging modalities. The usage of MRI
might be limited in this context as it holds similar information and is not routinely
performed in SI-NETs [275]. On the other hand, use of nuclear imaging in SI-NETs
is well-established, especially PET-CT using 68Ga-labeled somatostatin analogs [275].
Moreover, many new molecular imaging probes for the detection of fibrosis and
fibrogenesis are being developed (e.g. fibroblast activation protein imaging) [276, 277,
278]. However, further research is required to evaluate the value of these imaging
techniques in the context of this study, that is, for the prediction of abdominal
complications in SI-NETs, potentially combined with radiomics.

10.5 Conclusion

This study used routinely acquired CT scans to identify SI-NET patients prone to
the development of intestinal complications due to a metastatic mesenteric mass
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and fibrosis. The CT scans were analyzed by five clinicians with different levels of
experience using systematic visual evaluation and a radiomics model. While all
clinicians were able to identify patients at risk to some degree, the performance of
the clinicians substantially varied and agreement was poor. The radiomics model is
based on automatic feature extraction from contrast-enhanced CT scans and mainly
driven by the appearance of the surrounding mesentery. The predictive power was
similar to that of experienced clinicians and a specialized MTB. It could therefore
aid in guiding the clinical decision on which patients should receive prophylactic
palliative surgery.
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Appendix

Appendix 10.A Radiomics feature extraction

This supplementary material is similar to Vos et al., Timbergen et al. [72, 73] (i.e.,
Chapter 5 and Chapter 6 of this thesis), but details relevant for the current study are
highlighted.

A total of 564 radiomics features per region of interest (ROI) were used in this
study. An overview of all features is provided in Table 10.A.2. All features were
extracted using the defaults for CT scans from the Workflow for Optimal Radiomics
Classification (WORC) toolbox [36], which internally uses the PREDICT [51] and
PyRadiomics [44] feature extraction toolboxes. The code to extract the features
for this specific study has been published open-source [272]. For details on the
mathematical formulation of the features, we refer the reader to Zwanenburg et
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al. [39]. More details on the extracted features can be found in the documentation of
the respective toolboxes, mainly the WORC documentation [68].

Intensity features were extracted using the histogram of all intensity values
within the ROIs and included several first-order statistics such as the mean, standard
deviation and kurtosis. Shape features were extracted based only on the ROI, i.e.
not using the image, and included shape descriptions such as the compactness,
roundness and circular variance. Additionally, the volume and orientation of the
ROIs were used. Texture features were extracted using the Gabor filters, Laplacian of
Gaussian filters, Vessel filters [54], local phase filters [53, 195], Local Binary Patterns
[52], the Gray Level Co-occurrence Matrix [39], the Gray Level Size Zone Matrix [39],
the Gray Level Run Length Matrix [39], the Neighbourhood Grey Tone Difference
Matrix [39], and the Gray Level Difference Matrix [39].

Most of the features include parameters to be set for the extraction. Beforehand,
the values of the parameters that will result in features with the highest discrimi-
native power for the asymptomatic/symptomatic classification task are not known.
Including these parameters in the workflow optimization would lead to repeated
computation of the features, resulting in a redundant increase in computation time.
Therefore, alternatively, these features are extracted at a range of parameters as
is default in WORC. The hypothesis is that the features with high discriminative
power will be selected by the feature selection methods and/or the machine learning
methods. The parameters used are described in Table 10.A.2.

The imaging data used in this study is multi-center, and therefore heterogeneous
in terms of acquisition protocols. Especially the variations in slice thickness may
cause feature values to be highly dependent on the acquisition protocol. Hence,
extracting robust 3D features may be hampered by these variations, especially for
low resolutions. The images were not resampled, as this would result in interpo-
lation errors. To overcome this issue, all features were extracted per 2D axial slice
and aggregated over all slices. Afterwards, several first-order statistics over the
feature distributions were evaluated and used in the machine learning approach.
Additionally, before feature extraction, all images were scaled to Hounsfield Units.
As all images had the same unit, no additional normalization was applied.

Appendix 10.B Significant features

After Bonferroni correction, 73 features had a statistically significant distribution (p
< 0.05 in Mann-Whitney U test) in the asymptomatic and symptomatic group. The
p-values and names of these features are depicted in Figure 10.A.1. Several groups of
features which quantify similar visual appearances in the images can be identified.

All statistically significant features were extracted from the surrounding mesen-
tery (SM): no features from the mesenteric mass, neither the location or patient
characteristics were found to be significant. Out of the 73 statistically significant
features, 68 (93%) were texture features, as indicated by the blue bars. Thus, the
differences between the symptomatic and asymptomatic patients are mostly ex-
plained by texture related characteristics of the surrounding mesentery, and not
by characteristics of the CT intensity distribution or the shape and volume of the
mesentery.
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A total 64 (88%) of the statistically significant features is based on the Gray
Level Co-occurrence Matrix (GLCM). In the GLCM, after discretizing the image in
a fixed number of values, the co-occurrences of specific values between two pixels
are counted. For counting the co-occurrences, different directions (e.g. horizontal,
vertical) and spacings (e.g. one pixel, ten pixels) can be used. From the resulting
GLCM matrix, several features can be computed, such as the homogeneity (uniform
spreading of the counts among the different values), the dissimilarity (two values
occur less equal to each other in one configuration (e.g. left low gray value – right
high gray value) than the opposite (e.g. right low gray value – left high gray value),
and the energy (more instances of intensity value pairs in the image that neighbor
each other at higher frequencies). Using different combinations of the angle and the
distance, 16 (22%) GLCM homogeneity features were significant, of which nine had
the lowest p-values of all features. Hence, for the classification it seemed important
whether only specific gray level values occurred often next to each other (low GLCM
homogeneity), e.g. homogeneous ROI or very distinct patterns, or whether a wide
variety of gray levels occurred often next to each other (high GLCM homogeneity),
e.g. heterogeneous ROI or random patterns. Inspection of the distributions of
these features showed that; 1) the average of the GLCM homogeneity was generally
lower for the symptomatic group, indicating that generally these SMs are more
homogeneous; and 2) the outliers of the GLCM homogeneity generally consisted
of the asymptomatic group, indicating that symptomatic SMs generally were not
extremely heterogeneous or homogeneous but rather in between.

It should be noted that the p-values presented here are not necessarily represen-
tative of which feature contribute most to the predictions made by the radiomics
models. The combination of methods in the WORC toolbox allows for high order,
non-linear combinations of multiple features. Hence, while a feature may have a
low value in univariate testing, a multivariate combination of features (with lower
univariate predictive value) may result in a better performance. Additionally, the
combination of 50 workflows in the final model in WORC serves as a form of regu-
larization to prevent the focus on a single feature (group). In this final model when
using the SM features (model4), all feature groups as defined in Section 10.A were
approximately equally often used.

Thus, while the p-values of univariate statistical testing may give us information
about the differences between asymptomatic and symptomatic patients in terms
of appearance, a different combination of features may result in a better predictive
performance than simply selecting the univariate most significant features.
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10-3 10-2 10-1
Mann-Whitney-U Corrected P-value

texture_GLCMMS_homogeneityd1.0A2.36mean
texture_GLCMMS_homogeneityd1.0A2.36std
texture_GLCMMS_homogeneityd1.0A1.57std

texture_GLCM_homogeneityd3.0A1.57
texture_GLCMMS_homogeneityd1.0A0.79std

texture_GLCM_homogeneityd3.0A2.36
texture_GLCMMS_homogeneityd1.0A0.0std

texture_GLCM_homogeneityd3.0A0.79
texture_GLCM_homogeneityd1.0A2.36

texture_inner_skewness_SR(1.0, 10.0)_SS2.0
texture_inner_kurtosis_SR(1.0, 10.0)_SS2.0

texture_GLCM_homogeneityd1.0A0.79
texture_GLCMMS_homogeneityd1.0A1.57mean

histogram_quartile_range
histogram_skewness

texture_GLCM_dissimilarityd3.0A0.79
texture_GLCMMS_homogeneityd1.0A0.0mean

texture_GLCM_homogeneityd3.0A0.0
texture_GLCM_homogeneityd1.0A1.57

texture_GLCMMS_homogeneityd1.0A0.79mean
texture_GLCM_dissimilarityd3.0A1.57
texture_GLCM_homogeneityd1.0A0.0

texture_GLCMMS_dissimilarityd1.0A1.57std
texture_GLCMMS_energyd1.0A2.36std
texture_GLCM_dissimilarityd3.0A2.36
texture_GLCM_dissimilarityd1.0A0.79

texture_GLCMMS_dissimilarityd1.0A2.36mean
texture_GLCMMS_energyd1.0A2.36mean
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texture_GLCM_dissimilarityd3.0A0.0
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histogram_median
texture_GLCMMS_contrastd1.0A0.0std
texture_GLCMMS_energyd1.0A0.79std

histogram_mean
texture_GLCMMS_energyd1.0A0.0std

texture_GLCMMS_energyd1.0A0.0mean
texture_GLCMMS_dissimilarityd1.0A2.36std

texture_GLCM_dissimilarityd1.0A2.36
texture_GLCMMS_energyd1.0A1.57mean

texture_GLCMMS_dissimilarityd1.0A0.79std
texture_GLCMMS_dissimilarityd1.0A1.57mean

texture_GLCM_dissimilarityd1.0A1.57
texture_GLCMMS_dissimilarityd1.0A0.79mean

texture_GLCM_contrastd3.0A0.79
texture_GLCMMS_dissimilarityd1.0A0.0mean

texture_GLCM_dissimilarityd1.0A0.0
texture_GLCMMS_energyd1.0A0.79mean

histogram_kurtosis
texture_GLCM_contrastd1.0A2.36

texture_GLCMMS_ASMd1.0A1.57std
texture_GLCMMS_contrastd1.0A1.57std
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Figure 10.A.1: P-values of Mann-Whitney U tests of feature values for the asymptomatic and symptomatic
group. Purple bars correspond to texture features, violet bars to histogram features.
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Table 10.A.1: Criteria for systematic evaluation whether patients with SI-NETs are symptomatic or
asymptomatic.

Characteristic Ratings Fleiss Kappa

Fibrosis 1 Grade 1 0.31
(ordinal) 2 Grade 2

3 Grade 3

Encasement of 1 Yes 0.06
vessels 2 Unsure
(ordinal) 3 No

Lymph node 1 Stage I 0.02
location 2 Stage II
(categorical) 3 Stage III

4 Stage IV

Bowel wall 1 Yes 0.35
edema 2 Unsure
(ordinal) 3 No

Bowel wall 1 Yes 0.17
ischemia 2 Unsure
(ordinal) 3 No

Asymptomatic 1 Strongly disagree
(ordinal) 2 Disagree 0.15

3 Neither agree or disagree
4 Agree
5 Strongly agree
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Abstract

Histopathological growth patterns (HGPs) are independent prognosticators for colorectal
liver metastases (CRLM). Currently, HGPs are determined postoperatively. In this study, we
evaluated radiomics for preoperative prediction of HGPs on computed tomography (CT),
and its robustness to segmentation and acquisition variations. Patients with pure HGPs [i.e.
100% desmoplastic (dHGP) or 100% replacement (rHGP)] and a CT-scan who were surgically
treated at the Erasmus MC between 2003–2015 were included retrospectively. Each lesion was
segmented by three clinicians and a convolutional neural network (CNN). A prediction model
was created using 564 radiomics features and a combination of machine learning approaches
by training on the clinician’s and testing on the unseen CNN segmentations. The intra-class
correlation coefficient (ICC) was used to select features robust to segmentation variations;
ComBat was used to harmonize for acquisition variations. Evaluation was performed through
a 100 × random-split cross-validation. The study included 93 CRLM in 76 patients (48%
dHGP; 52% rHGP). Despite substantial diferences between the segmentations of the three
clinicians and the CNN, the radiomics model had a mean area under the curve of 0.69.
ICC-based feature selection or ComBat yielded no improvement. Concluding, the combination
of a CNN for segmentation and radiomics for classification has potential for automatically
distinguishing dHGPs from rHGP, and is robust to segmentation and acquisition variations.
Pending further optimization, including extension to mixed HGPs, our model may serve as
a preoperative addition to postoperative HGP assessment, enabling further exploitation of
HGPs as a biomarker.
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11.1 Introduction

Colorectal liver metastases (CRLM) represent approximately 30% of all metastases
in patients with colorectal carcinoma [279]. Ten-year survival after CRLM resection
is 20%, primarily limited due to recurrent disease [280]. Prognosis estimation is
challenging since powerful prognosticators are lacking.

Histopathological growth patterns (HGPs) have recently been identified as in-
dependent prognosticators in patients after CRLM resection [104]. The interface
between tumor cells and normal liver parenchyma (NLP) is characterized by three
distinct HGPs: two frequent (desmoplastic HGP (dHGP) and replacement HGP
(rHGP), see Figure 11.A.1) and one rare (pushing HGP) type [108, 281]. A previ-
ous study found that dHGP patients have superior survival compared to mixed,
replacement or pushing HGP patients [104]. Moreover, recent studies have suggested
that HGPs could predict systemic chemotherapy effectiveness [282, 283]. Previous
guidelines suggested a cut-off of 50% of a single HGP to determine the dominant
HGP [281]. More recent studies have shown that pure HGPs (i.e., 100% of the
interface expresses the HGP) appear clinically more relevant [284].

Preoperative HGP assessment is currently not possible, as assessment requires
pathology slices of resection specimens to be reviewed with a light microscope.
Biopsy material is not suitable due to lesion heterogeneity. Preoperative assessment,
however, could provide valuable information on prognosis, could help identifying
patients who benefit from perioperative systemic treatment, and could be used to
evaluate response treatment by monitoring changes in the HGP [282, 283]. As there
is currently no method to assess HGPs preoperatively, investigating these potential
improvements is not possible. Hence there is a need to identify HGPs based on
medical imaging to exploit the full potential of HGPs as a biomarker, as concluded
by a recent review [285].

The field of radiomics has emerged as a non-invasive way to establish relations
between quantitative image features and tumor biology or clinical outcomes [19]
(i.e., Chapter 2 of this thesis). Several radiomics studies have shown promising
results in a wide variety of applications [24]. In CRLM, radiomics has been used
to assess chemotherapy response, survival, detect CRLM, and predict mixed HGPs
[286, 287, 288, 289, 290]. A major drawback of many radiomics approaches is the
dependence on manual segmentations, which may introduce observer variability in
the predictions [291, 292, 293]. Additionally, image acquisition variations may affect
the predictions [293].

The primary aim of this study was to evaluate if radiomics can preoperatively
distinguish pure HGPs on computed tomography (CT) scans as a non-invasive
addition to postoperative histological assessment, enabling pre-operative treatment
response prediction and evaluation. The secondary aim was to evaluate and improve
the robustness of the radiomics models to variations in segmentation and acquisition
protocol.
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11.2 Methods and materials

11.2.1 Patients

This study was performed in accordance with the Dutch Code of Conduct for Medi-
cal Research of 2004 and approved by the local institutional review board (“Medische
Ethische Toetsings Commissie” (METC), MEC-2017-479). As the study was retro-
spectively performed with anonymized data, the need for informed consent was
waived. Patients surgically treated at the Erasmus MC between 2003–2015 with a
preoperative CT-scan in the portal venous phase (PVP) and available hematoxylin
and eosin stained tissue sections were included retrospectively. Patients with re-
current CRLM or CRLM requiring two-staged resections were not included. Both
synchronous and metachronous resections were allowed. Pre-contrast and arterial
phase CT were available in a minority of patients and therefore excluded. Patients
treated with preoperative chemotherapy were excluded, since chemotherapy may
alter HGPs [104]. HGPs were scored on resection specimens according to the con-
sensus guidelines by an expert pathologist (PV) [108]. In this pilot, we focused on
pure HGPs as these appear clinically more relevant than mixed HGPs, as a previous
study showed that pure dHGP is an unmatched predictor for improved survival in
chemo-naïve patients with CRLM [284]. Furthermore, we hypothesized that the use
of radiomics has a higher chance of success in distinguishing pure HGPs, as their
morphology is less heterogeneous than mixed HGPs. Patients with pure pushing
HGPs were excluded, as this is rare (< 1%) [108, 281, 282, 284]. The pure dHGPs
and rHGPs both make up about 20% of the total population of chemo-naive patients,
resulting in inclusion of 40% of all available patients [284].

Various clinical characteristics were collected: age, sex, primary tumor location
and nodal status, disease free interval between resection of the colorectal carcinoma
and CRLM detection, and the preoperative carcinoembryonic antigen level. Size and
number of CRLMs, including ablations without histology, were derived from the
CT-scans.

11.3 Segmentation

Lesion segmentation was independently performed by four observers: a medicine
student with no relevant experience (STUD1), a PhD student (PhD) with limited
experience, an expert abdominal radiologist (RAD), and an automatic CNN. The
student segmented all lesions within a week, and immediately afterwards, segmented
all lesions a second time (STUD2) to evaluate the intra-observer variability. As the
order of segmentation was not the same in the first and second time, but randomized,
the time between the first and second segmentation varied between two and seven
days. Segmentation agreement between all observer pairs was determined through
the pairwise dice similarity coefficient (DSC).

Segmentation by the clinicians was performed with in-house Python-based
software [105]. For the lesions, the clinicians could segment manually or semi-
automatically using region-growing or slice-to-slice contour propagation. Segmenta-
tion was performed per slice in the 2D transverse plane, resulting in a 3D volume.



11.3. Segmentation

11

225

Semi-automatic results were always reviewed by the individual clinicians and manu-
ally corrected when necessary to assure the result resembled manual segmentation.

The Hybrid-Dense-UNet, which achieved state-of-the-art performance on the liver
tumor segmentation (LITS) challenge and is open-source, was used to automatically
segment the NLP and lesions [109, 110]. The original CNN as trained on the LITS
data that was published open-source was used. Lesions which were segmented by
the CNN but had no histology were excluded. For lesions that were not segmented by
the CNN, but for which histology was available, the segmentation of the radiologist
(RAD) was used, resembling implementation in clinical practice. As the Hybrid-
Dense-UNet was trained to simultaneously segment the NLP and lesions, this CNN
was also used to segment the NLP [109].

11.3.1 Radiomics

From each region of interest (ROI) on the CT, 564 radiomics features were extracted.
Features were extracted per segmentation, e.g. for each 3D ROI by each observer.
Details can be found in Section 11.A. Based on these features, decision models were
created using the workflow for optimal radiomics classification (WORC) toolbox,
see Figure 11.1 [36, 72, 73] (i.e., Chapter 3 , Chapter 5 and Chapter 6 of this thesis).
WORC performs an automated search among a variety of algorithms for each
step and determines which combination of algorithms maximizes the prediction
performance on the training set. For example, in the machine learning step, one of
the eight following algorithms may be used: (1) logistic regression; (2) support vector
machines; (3) random forests; (4) naive Bayes; (5) linear discriminant analysis; (6)
quadratic discriminant analysis; (7) AdaBoost [61]; and (8) extreme gradient boosting
[294]. Details can be found in Section 11.B. The code including all parameters for
our experiments has been published open-source [295].

11.3.2 Robustness to segmentation and image acquisition variations

Robustness to segmentation variations was assessed using the intra-class correlation
coefficient (ICC) of the features, defining good (ICC > 0.75) and excellent (ICC >
0.90) reliability [154]. Moreover, the impact of ICC-based feature selection on model
performance was assessed by creating models using only these features.

Robustness to variations in the acquisition parameters was assessed by using
ComBat [185, 186]. In ComBat, feature distributions are harmonized for variations
in the imaging acquisition, e.g. due to differences in hospitals, manufacturers, or
acquisition parameters. When dividing the dataset into groups based on these
variations, the groups have to remain sufficiently large to estimate the harmonization
parameters. In our study, groups were defined based on manufacturer alone or
combined with slice thickness (above or below the median) without a moderation
variable.

11.3.3 Experimental setup

For each experiment, a 100x random-split cross-validation [63, 64] was performed,
randomly splitting the data in each iteration in 80% for training and 20% for test-
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ing, see Figure 11.A.2. In each iteration, a second, internal 5x random-split cross-
validation was performed on the training set, using 85% for training and 15% for
validation, where the validation sets were used to optimize the model hyperpa-
rameters. Hence, in each iteration, we enforced a strict separation into training,
validation and test sets: model construction was performed automatically within the
training and validation sets, leaving the test set untouched to minimize the chance
of overfitting. The splitting was stratified to maintain a similar dHGP/rHGP ratio in
all datasets. Lesions of a patient belonged either all to the training or all to the test
dataset.

First, four single-observer radiomics models were created, each using the seg-
mentations of a different observer (STUD2, PhD, RAD, and CNN), but keeping the
same observer for training and testing.

Second, a multi-observer radiomics model was trained with segmentations of
three observers (STUD2, PhD, and RAD) and tested with segmentations of the fourth,
unseen observer (CNN). We hypothesized that a model trained on segmentations
from multiple observers may yield a higher performance, and a higher robustness
to segmentation variations, as the model is forced to find characteristics shared
by all segmentations. For the multi-observer model, the data was split per patient
into training and test sets in the same way as in the single-observer model, see
Figure 11.2. However, each lesion included in the training set appeared three times,
each time with a different segmentation from one of the three observers. The
number of training samples was therefore increased to a threefold of the number
of training samples used for the single-observer model. This can be seen as a form
of data augmentation [296], as compared to the single-observer model, the number
of training samples is increased by adding slightly modified copies of the original
training samples. Each lesion included in the test set appeared only once, using the
segmentation of the CNN.

Third, to estimate model robustness to segmentation and acquisition protocol
variations, additional multi-observer models were created using only reliable features
(good or excellent) through ICC-based feature selection and ComBat, respectively.

Lastly, features extracted from three other ROIs were evaluated: NLP, and based
on the multi-observer setup, NLP plus the lesion, and the lesion border [104, 284],
see Figure 11.A.3. Also, to evaluate the predictive value of the clinical characteristics
(i.e., 1: age; 2: sex; 3: primary tumor location; 4: primary tumor nodal status; 5:
disease free interval; 6: preoperative carcinoembryonic antigen level; 7: CRLM size;
and 8: number of CRLMs), two additional HGP prediction models were evaluated
using: (1) clinical characteristics (“single-observer”); and (2) imaging and clinical
characteristics.

11.3.4 Statistics

The individual predictive values of the radiomics features and the clinical charac-
teristics, and the differences in CT acquisition parameters, were assessed using a
Mann–Whitney U test for continuous variables, and a Chi-square test for categorical
variables. To this end, the radiomics features extracted from the CNN segmentations
were used, as these segmentations were used in the test set in the multi-observer
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Full Dataset
Size: N patients

Training
Size: 0.8 × N patients

Test
Size: 0.2 × N patients

CNN

Train: Single-Observer
Size: 0.8 × N × 1 samples

STUD2 PhD RAD

Train: Multi-Observer
Size: 0.8 × N × 3 samples

CNN

Test: Single-Observer
Size: 0.2 × N × 1 samples

CNN

Test: Multi-Observer
Size: 0.2 × N × 1 samples

Figure 11.2: Schematic overview of the evaluation setup in a single random-split cross-validation iteration
for the single-observer and multi-observer models. For the single-observer models, here illustrated for
observer CNN, for both the patients included in the training and in the testing set, each patient appears
one time with the segmentation of that single observer. For the multi-observer model, the test set is
exactly the same as the single-observer model. However, in the training set, each patient appears three
times, each time with a different segmentation from one of the three other observers (STUD2, PhD, and
RAD). Hence, in the multi-observer model, the training set size is effectively tripled compared to the
single-observer model, while the test set remains unchanged.

models. The p-values of the radiomics features were corrected for multiple testing
using the Bonferroni correction (i.e., multiplying the p-values by the number of tests).
All p-values were considered statistically significant at a p-value ≤ 0.05.

Performance was evaluated in the test dataset using accuracy, area under the
curve (AUC) of the receiver operating characteristic (ROC) curve, sensitivity, and
specificity, averaged over the 100x cross-validation iterations. The corrected resam-
pled t-test was used to construct 95% confidence intervals (CIs), taking into account
that the samples in the cross-validation splits are not statistically independent [64].
ROC confidence bands were constructed using fixed-width bands [67]. The positive
class was defined as dHGP. The performance estimates in the training dataset are not
reported, as these would be too optimistic, since the used methods tend to over-fit
on the training dataset [297].
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11.4 Results

11.4.1 Dataset

The dataset included 93 lesions (46 dHGP; 47 rHGP) of 76 patients (Table 11.1). The
median age was 68 years (interquartile range 60–76 years). No statistically significant
differences in clinical characteristics between dHGP and rHGP CRLM were found.

Since the Erasmus MC serves as a tertiary referral, the CT-scans originated from
37 different scanners, resulting in considerable acquisition protocol variations (Ta-
ble 11.1). The differences in acquisition parameters were not statistically significant,
except for pixel spacing (p = 0.007, median of 0.78 vs. 0.71 mm). Additionally,
nineteen different reconstruction kernels were used, and four manufacturers were
present (Siemens: 43, Philips: 16, Toshiba: 16, General Electric: 1).

11.4.2 Segmentation

Lesion segmentation examples are presented in Figure 11.3. The CNN failed to
detect 8 of the 93 included lesions (9%), for which the radiologist’s segmentation was
used. The pairwise DSC to assess the observer segmentation agreement is shown
in Table 11.A.1. The intra-observer agreement (DSC of 0.80 for STUD1 and STUD2)
was higher than the inter-observer agreement (mean DSC of 0.69 for all other human
observers).

11.4.3 Radiomics

In Table 11.2, the performance of the four single-observer models is shown. The
mean AUC of all models was above random guessing (0.50), but varied per observer
[STUD2: 0.69 (95% CI 0.56–0.82), PhD: 0.66 (95% CI 0.53–0.79), RAD: 0.72 (95% CI
0.59–0.83), and CNN: 0.66 (95% CI 0.54–0.79)]. As the 95% confidence intervals
showed substantial overlap, the differences were not statistically significant. Hence,
in terms of AUC, the models performed similarly.

In Table 11.3 and Figure 11.4, the multi-observer model performance is shown.
Performance was similar [mean AUC of 0.69 (95% CI 0.57–0.81)] to the single-
observer models Figure 11.4a. Using only features with good (N = 263) [mean AUC
of 0.70 (95% CI 0.59–0.81)] or excellent reliability (N = 166) [mean AUC of 0.65
(95% CI 0.53–0.77)] across the human observers did not improve the performance
(Figure 11.4b). Using ComBat to harmonize the features for manufacturer [mean
AUC of 0.64 (95% CI 0.40–0.88)] or protocol [mean AUC of 0.63 (95% CI 0.38–0.87)]
differences yielded a minor performance decrease (Figure 11.4c). As there was only
one General Electric scan, this scan was omitted from harmonization.

Table 11.4 contains the performances of the models trained on other features,
including NLP [mean AUC of 0.65 (95% CI 0.51–0.78)], and based on the multi-
observer setup, NLP plus the lesion [mean AUC of 0.63 (95% CI 0.52–0.75)] and
the lesion border [mean AUC of 0.67 (95% CI 0.56–0.78)]. Hence, the performance
was (slightly) worse than using only lesion features. The model based on clinical
characteristics performed similarly to random guessing [mean AUC of 0.56 (95%



11

230 Chapter 11. Distinguishing pure HGPs of colorectal liver metastases

Table 11.1: Patient and imaging characteristics of the 76 patients included in this study. P-values are
calculated using a Mann–Whitney U test for continuous variables, a chi-square test for continuous
variables. P-values in bold are deemed significant (< 0.05).

Patient All Desmoplastic Replacement P-value

Total 76 37 (48.0%) 39 (52.0%) 0.82
Age† 68.0 (59.5-75.5) 68.0 (60.0-75.5) 68.0 (59.0-77.0)
Sex

Male
Female

44 (57.9%)
32 (42.1%)

24 (64.9%)
13 (35.1%)

20 (51.3%)
19 (48.7%) 0.23

Primary tumor location
Right-sided
Left-sided
Rectum
Missing

6 (8.3%)
29 (54.2%)
27 (37.5%)
4

2 (5.7%)
21 (60.0%)
12 (34.3%)

4 (10.8%)
18 (48.6%)
15 (40.5%)

0.56

Nodal status primary tumor
N0
N+

35 (46.1%)
41 (53.9%)

18 (48.6%)
19 (51.4%)

17 (43.6%)
22 (56.4%) 0.66

Disease free interval
≤ 12 months
≥ 12 months

37 (48.7%)
39 (51.3%)

17 (45.9%)
20 (51.4%)

20 (51.3%)
19 (48.7%) 0.64

Number CRLM
≤ 1
≥ 1

54 (71.1%)
22 (28.9%)

25 (67.6%)
12 (34.4%)

29 (74.4%)
10 (25.6%) 0.51

Size largest CRLM
≤ 5cm
≥ 5cm

Missing

60 (81.1%)
14 (18.9%)
2

30 (83.3%)
6 (16.7%)

30 (78.9%)
8 (21.1%) 0.63

CEA∗

≤ 200 µg/L
≥ 200 µg/L

Missing

65 (92.9%)
5 (7.1%)
6

32 (97.0%)
1 (3.0%)

33 (89.2%)
4 (10.8%) 0.21

Imaging
Slice thickness (mm)† 5.0 (3.0-5.0) 4.0 (3.0-5.0) 5.0 (3.0-5.0) 0.40
Pixel spacing (mm)† 0.74 (0.68-0.78) 0.78 (0.71-0.78) 0.71 (0.67-0.75) 0.007
Tube current (mA)† 239 (143-325) 239 (151-305) 232 (135-332) 0.38
Peak kilovoltage† 120 (120-120) 120 (120-120) 120 (120-120) 0.09

∗Abbreviations: CEA: Carcinoembryonic antigen, CRLM: colorectal liver metastases IQR:
interquartile range.
† Values are median (Inter quartile range). Other values than those given in the median and
inter quartile range may occur.
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a. b. c.

a. b. c.a. b. c.
a. b. c.

a. b. c.

a. b. c.

a. b. c.a. b. c.
a. b. c.

a. b. c.

a. b. c.

a. b. c.a. b. c.Figure 11.3: Examples of segmentations of three colorectal liver metastases (CRLMs) by the human
observers and by the convolutional neural network (CNN) [PhD (dark blue); RAD (light blue); STUD first
try (STUD1) (cyan) and second try (STUD2) (magenta); convolutional neural networkCNN (purple)] on a
single axial slice of CT-scans. The bottom row depicts the zoomed in region without the segmentation
overlays. The three CRLMs displayed are those with a volume at the 25% percentile (a), 50% percentile
(b) and 75% percentile (c) of all metastases in the database.

Table 11.2: Performance of the radiomics models using segmentations from single observers (STUD2,
PhD, RAD, and CNN) both for the patients in the training sets and the other patients in the test sets. For
each metric, the mean and 95% confidence interval over the 100x random-split cross-validation iterations
on the test sets are given.

STUD2 PhD RAD CNN

AUC 0.69 [0.56, 0.82] 0.66 [0.53, 0.79] 0.72 [0.59, 0.83] 0.66 [0.54, 0.79]
Accuracy 0.65 [0.55, 0.75] 0.61 [0.50, 0.71] 0.65 [0.55, 0.76] 0.62 [0.52, 0.72]
Sensitivity 0.64 [0.49, 0.80] 0.57 [0.41, 0.72] 0.62 [0.49, 0.76] 0.61 [0.45, 0.76]
Specificity 0.65 [0.48, 0.82] 0.65 [0.49, 0.81] 0.68 [0.52, 0.85] 0.63 [0.47, 0.78]
∗Abbreviations: AUC: area under the receiver operator characteristic curve.
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Table 11.3: Performance of the radiomics models using segmentations from multiple observers (STUD2,
PhD, and RAD) for the patients in the training sets and the segmentations from another observer (CNN)
in the other patients in the test sets. The performance is reported for: the regular model; using only
features with good (ICC > 0.75) or excellent (ICC > 0.90) reliability; and using ComBat harmonization
per manufacturer (Man) or per acquisition protocol (Prot) without a moderation variable. For each metric,
the mean and 95% confidence interval over the 100x random-split cross-validation iterations are given.

Regular ICC ≥ 0.75 ICC ≥ 0.90 ComBat Man ComBat Prot

AUC 0.69 [0.57, 0.81] 0.70 [0.59, 0.81] 0.65 [0.53, 0.77] 0.64 [0.40, 0.88] 0.63 [0.38, 0.87]
Accuracy 0.65 [0.54, 0.76] 0.65 [0.55, 0.75] 0.61 [0.50, 0.72] 0.60 [0.41, 0.79] 0.58 [0.39, 0.76]
Sensitivity 0.71 [0.57, 0.86] 0.63 [0.48, 0.78] 0.61 [0.44, 0.77] 0.56 [0.30, 0.82] 0.55 [0.29, 0.81]
Specificity 0.58 [0.41, 0.74] 0.67 [0.51, 0.83] 0.61 [0.45, 0.78] 0.63 [0.33, 0.93] 0.60 [0.29, 0.90]
∗Abbreviations: AUC: area under the receiver operator characteristic curve; ICC: intra-class correlation
coefficient; Man: Manufacturer: Prot; Protocol.

CI 0.43–0.70)]: the model trained on clinical characteristics plus lesion features
performed worse than lesion-only [mean AUC of 0.65 (95% CI 0.53–0.77)].

After Bonferroni correction for multiple testing, from the 564 features extracted
using the CNN segmentations, only four texture features derived from Gabor filters
were found to have statistically significant p-values (0.035–0.010).

11.5 Discussion

The aim of this pilot was to evaluate whether radiomics can distinguish pure dHGPs
from pure rHGPs based on CT-scans and to evaluate its robustness to segmentation
and acquisition protocol variations. Despite these variations, our results suggest
that radiomics features have predictive value in distinguishing pure HGPs on CT-
scans, but that caution is warranted when drawing conclusions about the clinical
applicability at this stage.

Currently, HGPs can only be determined after surgery using resection specimens.
Our radiomics approach may overcome this gap. Preoperative HGP assessment may
give an earlier estimate of disease aggressiveness and prognosis, thus improving
patient care [285]. A previous study found a 5-year overall survival of 78% in dHGP
patients compared to 37% (p < 0.001) in patients with other HGPs [284]. Preoperative
assessment of HGPs may even imply a practice change, as HGPs may be associated

Table 11.4: Performance of models using features other than only lesion features. These features were
extracted from a segmentation of the normal liver parenchyma (NLP); the NLP and the lesion (NLP +
Lesion); a ring at the border of the segmentation (Ring); using the clinical characteristics (Clinical); and
the clinical characteristics combined with lesion features (Clinical + Lesion).

Metric NLP NLP+Lesion Ring Clinical Clinical+Lesion

AUC 0.65 [0.51, 0.78] 0.63 [0.52, 0.75] 0.67 [0.56, 0.78] 0.56 [0.43, 0.70] 0.65 [0.53, 0.77]
Accuracy 0.59 [0.49, 0.70] 0.60 [0.50, 0.71] 0.63 [0.54, 0.73] 0.53 [0.41, 0.64] 0.62 [0.51, 0.72]
Sensitivity 0.52 [0.33, 0.70] 0.60 [0.43, 0.76] 0.67 [0.51, 0.83] 0.56 [0.37, 0.75] 0.62 [0.45, 0.79]
Specificity 0.67 [0.50, 0.85] 0.61 [0.46, 0.75] 0.59 [0.45, 0.74] 0.49 [0.31, 0.67] 0.61 [0.45, 0.77]
∗Abbreviations: AUC: area under the receiver operating characteristic curve; NLP:
normal liver parenchyma; CNN: convolutional neural network.



11

234 Chapter 11. Distinguishing pure HGPs of colorectal liver metastases

with efficacy of systemic chemotherapy [104, 282, 283, 284]. Hence, preoperative
HGP assessment through radiomics may also be used predictively to select patients
which may benefit from chemotherapy. Moreover, preoperative HGP assessment may
enable others to study the full potential of HGP as a biomarker [285]. Although it is
difficult at this stage to decide on the accuracy of radiomics-based HGP prediction
required for clinical practice, the current performance is likely not sufficient yet and
further improvements are warranted.

Our secondary aim was to evaluate and improve the robustness of radiomics to
segmentation and acquisition protocol variations. Our results indicate substantial dif-
ferences between the segmentations. In spite of these differences, our multi-observer
model generalized well to segmentations of an unseen “observer”, i.e., the automated
CNN. Generally, improving model robustness to segmentation variations is done by
selecting only reliable features, i.e., high ICC across multi-observer segmentations
[291, 292, 293]. However, in our results, this did not alter the performance, indicating
that training on multiple observers already enforced model robustness to segmen-
tation variations. As the unseen observer was a CNN, our combined approach
(CNN for segmentation, radiomics for classification) is fully automatic and observer
independent. It must be pointed out that, although we used a state-of-the-art CNN
ranking second in the renowned LITS challenge [110], 8 lesions (9%) were missed
by the CNN. These required manual correction, making the method actually semi-
automatic in this minority of cases. The radiologist however initially also missed 19
lesions (20%), which were later corrected based on the pathology outcome, indicating
that human observers also miss lesions. Of these 19 lesions, 16 were detected by
the CNN. This indicates that the CNN may aid identifying false negatives from the
radiologists. However, the CNN detected 257 abnormalities in total, likely including
a large number of false positives, which would require correction by the radiologist.
Future studies should systematically compare the hit and miss ratios of radiologists
and the CNN. Nonetheless, we believe the method’s large degree of automation and
its observer independence are highly desirable aspects for use in clinical practice.

Visual inspection of the lesions indicated that the radiologist’s segmentations
showed the largest difference with the CNN segmentations. In addition, the radi-
ologist’s segmentations had the lowest overlap (in terms of DSC) with the other
observers. Visual inspection indicated that the radiologist generally drew a loose
outline around the lesion, and thus ROIs with a relatively large area, while the CNN
generally drew conservative outlines, thus ROIs with a relatively small area. Caution
should be taken when drawing conclusions, as we only compared ROIs of a single
radiologist with the CNN. Moreover, as annotating lesion boundaries is not part of
routine clinical practice of radiologists, their segmentations cannot be considered as
the ground truth. Additionally, we evaluated models using features extracted from
several ROIs to investigate where the most relevant HGP information is. The NLP
model performed worse than the lesion-only models. As HGPs are represented at
the liver tissue and lesion interface, we expected the combination or usage of the
border to be optimal. However, combining these features, or using the border, did
not yield an improvement over the lesion-only model. This may be attributed to the
fact that determination of the exact border of the lesion is difficult. Our radiomics
model uses a more data-driven approach, using 564 features extracted not only from
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the lesion boundary but from the full lesion segmentation, and machine learning
to determine what information is most relevant. Our results suggest that the lesion
itself contains the most informative features. The clinical characteristics did not yield
any predictive value on their own, nor added predictive value when combined with
the radiomics features. This is in line with the literature, as to our knowledge, no
pre-operative biomarkers for HGPs based on clinical characteristics have so far been
described [285].

Recently, the value of radiomics to predict HGPs was assessed by Cheng et
al. [290] using the former consensus guidelines [281]. This study included 126
CRLMs, using for each patient a pre- and post-contrast arterial and PVP CT-scan. An
AUC of 0.93 in the training and 0.94 in the validation set was reported, which was
much higher than the performance in our study. This difference may be attributed to
various factors in the study design. First, we used the more recent clinical guidelines
and included only pure HGPs, instead of the previous cut-off of > 50% of a single
HGP [281, 284]. There may be considerable uncertainty in the scoring of pure
HGPs, e.g. other HGP types may be missed due to sampling errors [281]. Some
cases could be misclassified due to this possible missing information, limiting our
performance. Second, Cheng et al. [290] used multiple CT-scans per patient: an
AUC of 0.79 was obtained in the used validation set when only using the PVP, as
we did. Also, we used a multi-center CT dataset with much acquisition protocol
heterogeneity, while Cheng et al. [290] used a two-center dataset with comparable
acquisition protocols. Moreover, our radiomics approach is different, e.g. we used
a fully automatic approach optimized on the training set, while the optimization
protocol used by Cheng et al. [290] is not explicitly mentioned.

There are several limitations to this study. First, our dataset included only pure
dHGP or rHGP patients, while mixed and a rare third HGP (pushing) exist as well.
The strict selection resulted in a small sample size, which may explain the wide
CIs. Due to the large width of the CIs, i.e., the AUCs generally spanned between
15–30% of the range, few claims could be made regarding statistical significance of
differences between models. No claims can be made about the performance of the
model on mixed HGPs or the pushing HGP. Future studies should include mixed
HGPs, which will lead to a larger dataset, and will improve clinical applicability.

Second, we used PVP contrast-enhanced CT-scans, as this was mostly used in
clinical routine. Addition of other contrast phases, positron emission tomography or
magnetic resonance imaging, may improve the performance [290, 298, 299].

Third, while our CNN produced segmentations similar to the human observers
as indicated by the DSC, 8 out of the 93 included lesions were missed. As the CNN
segmentations are similar to those of the radiologist and our multi-observer model
is robust to segmentation variations, replacing the missed segmentations with the
radiologist’s is not expected to have substantially influenced our results.

Lastly, our imaging models were trained and evaluated on a multi-center, het-
erogeneous dataset. On one hand, this is a strength of our study, as the models
had predictive value despite substantial acquisition variations. However, hetero-
geneity may have (negatively) affected our performance. The use of ComBat to
compensate for manufacturer variations did not lead to a substantial improvement
in prediction accuracy. Additional experiments with ComBat using the HGP as a
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“moderation variable” showed a near perfect performance; however, such use of
the HGP as a moderation variable in the ComBat algorithm is a form of overfitting,
as it uses the ground truth HGP data of the full dataset (including the test set),
and it tends to give too optimistic performance estimates. Future research could
explore other methods to compensate for manufacturer variations on the one hand
while maintaining the distinction between HGPs on the other hand. Alternatively,
using a single-scanner study will limit the generalizability, but may positively impact
the performance. Additionally, although we used a multi-center dataset, we did
not perform an independent, external validation. However, we used a rigorous
cross-validation, separating the data 100x in training and testing parts. Hence,
as our radiomics approach was optimized on the training set only, the chance of
overestimating performance due to “over-engineering” was limited.

Future research could include HGP classification using CNNs. While our current
method is largely observer independent, classification without use of any segmenta-
tion would be truly observer independent. Also, only four lesion feature showed
statistically significant differences between the dHGP and rHGP lesions, suggesting
that these features may not be optimal for distinguishing these HGPs. The CNN
used for segmentation in our study was not designed for HGP prediction, but rather
segmentation of the liver and various liver abnormalities. Features learned by a
dedicated classification CNN for HGP prediction may yield more predictive value
than the features learned by our segmentation CNN or the generic radiomics features
used in our study. This would probably require a larger dataset to learn from.

11.6 Conclusions

Our combination of deep learning for segmentation and radiomics for classification
shows potential for automatically distinguishing pure dHGPs from rHGPs of CRLM
on CT-scans. The model is observer independent and robust to segmentation
variations. However, the current performance is likely not sufficient yet and further
improvements are warranted, including extension to mixed HGPs, and external
validation. Pending further optimization, radiomics may serve as a non-invasive,
preoperative addition to postoperative HGP assessment, enabling pre-operative
response prediction, response evaluation, and further studies on HGP as a pre-
operative biomarker.

Appendix

Appendix 11.A Feature extraction

This supplementary material is similar to Vos et al., Timbergen et al. [72, 73] (i.e.,
Chapter 5 and Chapter 6 of this thesis), but details relevant for the current study are
highlighted.

A total of 564 radiomics features quantifying intensity, shape, orientation and
texture were extracted. These features were extracted using the defaults for CT
scans from the Workflow for Optimal Radiomics Classification (WORC) toolbox [36],
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which internally uses the PREDICT [51] and PyRadiomics [44] feature extraction
toolboxes. The code to extract the features for this specific study has been published
open-source [295]. An overview of all features is depicted in Table 11.A.2. For details
on the mathematical formulation of the features, we refer the reader to Zwanenburg
et al. [39]. More details on the extracted features can be found in the documentation
of the respective toolboxes, mainly the WORC documentation [68].

Before feature extraction, conversion of the CT scan intensities to Hounsfield
Units (HU) was performed. The features can be divided in several groups. Intensity
features were extracted using the histogram of all intensity values within the ROIs
and included several first-order statistics such as the mean, standard deviation and
kurtosis. These describe the distribution of Hounsfield units within the lesion. Shape
features were extracted based only on the ROI, i.e. not using the image, and included
shape descriptions such as the volume, compactness and circular variance. These
describe the morphological properties of the lesion. Orientation features were used
to describe the orientation of the ROI, i.e. not using the image. Lastly, texture
features were extracted using Gabor filters, Laplacian of Gaussian filters, vessel (i.e.
tubular structures) filters [54], the Gray Level Co-occurrence Matrix [39], the Gray
Level Size Zone Matrix [39], the Gray Level Run Length Matrix [39], the Gray Level
Dependence Matrix [39], the Neighbourhood Grey Tone Difference Matrix [39], Local
Binary Patterns [52], and local phase filters [53, 300]. These features describe more
complex patterns within the lesion, such as heterogeneity, occurrence of blob-like
structures, and presence of line patterns.

Most of the texture features include parameters to be set for the extraction.
Beforehand the values of the parameters that will result in features with the highest
discriminative power for the classification at hand (i.e., dHGP versus rHGP) are not
known. Including these parameters in the workflow optimization, see Section 11.B,
would lead to repeated computation of the features, resulting in a redundant decrease
in computation time. Therefore, alternatively, these features are extracted at a range
of parameters as is default in WORC. The hypothesis is that the features with high
discriminative power will be selected by the feature selection methods and/or the
machine learning methods as described in Section 11.B. The parameters used are
described in the caption of Table 11.A.2.

The imaging data used in this study is multi-center, and therefore heterogeneous
in terms of acquisition protocols. Especially the variations in slice thickness may
cause feature values to be highly dependent on the acquisition protocol. Hence,
extracting robust 3D features may be hampered by these variations, especially for low
resolutions. The images were not resampled, as this would result in interpolation
errors. To overcome this issue, all features were extracted per 2D axial slice and
aggregated over all slices. Afterwards, several first-order statistics over the feature
distributions were evaluated and used in the machine learning approach. As all
images had the same unit (Hounsfield), no additional normalization was applied.

Appendix 11.B Model optimization

This supplementary material is similar to Vos et al., Timbergen et al. [72, 73] (i.e.,
Chapter 5 and Chapter 6 of this thesis), but details relevant for the current study are
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highlighted.
The Workflow for Optimal Radiomics Classification (WORC) toolbox [68] makes

use automated machine learning to create the optimal performing workflow from a
variety of algorithms. Besides deciding whether to use an algorithm, most algorithms
require hyperparameters, i.e., parameters that need to be set before the actual
learning step, to be tuned to enhance the performance. WORC defines a workflow as
a specific sequential combination of algorithms and their respective hyperparameters.
In WORC, the radiomics workflow is split into the following components: image and
segmentation preprocessing, feature extraction, feature and sample preprocessing,
and machine learning. For each component, a collection of algorithms and their
associated hyperparameters is included. Given this search space, WORC uses
automated machine learning to find the optimal solution. The code to use WORC for
creating the decision models in this specific study has been published open-source
[295].

The workflows could be constructed from the following default search space in
WORC, which components can only be combined in the order listed below:

1. Feature group selection: a group-wise search, in which specific groups of
features (i.e., intensity, shape, and the subgroups of texture features as defined
in Table 11.A.2) are selected or deleted. To this end, each feature group had
an on/off variable which is randomly activated or deactivated, which were all
included as hyperparameters in the optimization.

2. Feature imputation: when a feature could not be computed, e.g. a lesion is
too small for a specific feature to be extracted, a feature imputation algorithm
was used to estimate replacement values for the missing values. Strategies for
imputation included 1) the mean; 2) the median; 3) the mode; 4) a constant
(default: zero); and 5) a nearest neighbor approach.

3. Feature selection: a variance threshold, in which features with a low variance
(<0.01) are removed. This method was always used, as this serves as a feature
sanity check with almost zero risk of removing relevant features.

4. Feature scaling was performed to make all features have the same scale, as
otherwise the machine learning methods may focus only on those features with
large values. This was done through z-scoring, i.e., subtracting the mean value
followed by division by the standard deviation, for each individual feature. A
robust version of z-scoring was used, in which outliers, i.e., values below the
5th percentile or above the 95th percentile, were excluded from computing the
mean and variance.

5. Feature selection: optionally, the RELIEF method [55], which ranks the features
according the differences between neighboring samples. Features with more
differences between neighbors of different classes (i.e., dHGP versus rHGP)
are considered higher in rank.

6. Feature selection: optionally, features are selected by training a machine
learning model and selecting features that are regarded important by the model.
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Hence the used model should be able to give the features an importance weight.
Included model choices are LASSO, logistic regression, and a random forest.

7. Dimensionality reduction: optionally, principal component analysis (PCA) is
used, in which either only those linear combinations of features were kept
which explained 95% of the variance in the features or a limited number of
components (between 10 – 50).

8. Feature selection: optionally, individual features were selected through uni-
variate testing. To this end, for each feature, a Mann-Whitney U test was
performed to test for significant differences in distribution between the labels
(i.e., dHGP versus rHGP). Afterwards, only features with a p-value above a
certain threshold were selected.

9. Resampling: optionally, a resampling strategy could be used, which was
used to overcome class imbalances and reduce overfitting on specific training
samples. Various methods from the imbalanced-learn toolbox [57] could be
used: random over-sampling, random under-sampling, near-miss resampling,
the neighborhood cleaning rule, ADASYN, and SMOTE (regular, borderline,
Tomek and the edited nearest neighbors variant).

10. Machine learning: lastly, a machine learning methods was used to determine
a decision rule to distinguish the classes. Methods included were; 1) logistic
regression; 2) support vector machines; 3) random forests; 4) naive Bayes; 5)
linear discriminant analysis; 6) quadratic discriminant analysis; 7) AdaBoost
[61]; and 8) extreme gradient boosting [62].

The performance of WORC was evaluated in this study through a 100x random-
split cross-validation [63, 64], in each iteration splitting the data in 80% for training
and 20% for testing. In each cross-validation iteration, all optimization was per-
formed on the training set in order to prevent overfitting on the test set. To prevent
overfitting on the training dataset, a 5x random-split stratified cross-validation was
performed within the training dataset as well, using 85% for model training and 15%
for model validation, see Figure 11.A.2.

WORC states the radiomics workflow as a combined algorithm selection and
hyperparameter optimization problem (CASH), as algorithm selection and hyper-
parameter optimization are often not independent [34]. In each training-test cross-
validation iteration, CASH optimization is performed within the training dataset
by testing thousand pseudo-randomly generated radiomics workflows from the
above search space. These are trained on the five training sets in the 5x random-split
training-validation cross-validation, and ranked according to their mean perfor-
mance on the five validation datasets. As performance metric, the weighted F1-score
is used, which is the weighted harmonic average of the precision and recall.

Using only the single workflow that on average performs best on the validation
sets may result in poor generalization due to overfitting on the validation sets. Hence,
an ensemble was constructed by combining the workflows that perform best on the
validation sets [50]. Ensembling was done using the default of WORC by averaging
the posteriors of the 100 best workflows.
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The following pseudo code illustrates the algorithm of WORC:

• For each 100x random-split training-test cross-validation iteration:

– Do: Construct the training dataset by randomly selecting 80% of the
patients.

– Do: On this training dataset, define 5x random-split cross-validation splits,
selecting in each iteration 85% of the patients for training and 15% for
validation.

– Do: Pseudo-randomly sample 1,000 workflows from the search space.

– For each of the 1,000 sampled workflows:

* Do: Train the workflow on the five training datasets in the 5x random-
split cross-validation.

* Do: Compute the mean weighted F1-score on the corresponding five
validation datasets in the 5x random-split cross-validation.

– Do: Rank the 1,000 workflows, retrain the best 100 workflows on the full
training set, and combine them into an ensemble model.

– Do: Evaluate the ensemble model on the test dataset, i.e., the remaining
20% of the patients that were not included in the training dataset.
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Figure 11.A.1: Replacement type (A) and desmoplastic type (B) HGP on hematoxylin and eosin stained
tissue sections.

Full Dataset

Training: 80%

Test: 20%

Training: 85%

Validation: 15%

Model
Optimization

5x

Trained Model

100x

Evaluation

AUC=0.84

Confidence
Interval

AUC=(0.78, 0.89)

Figure 11.A.2: Visualization of the 100x random split cross-validation, including a second cross-validation
within the training set for model optimization. The test dataset is only used for evaluation of the trained
model.

Table 11.A.1: Segmentation agreement expressed in Dice Similarity Coefficient (DSC) (mean (standard
deviation)) between the observers and the convolutional neural network (CNN) (STUD (1st and 2nd time),
PhD, RAD, CNN). The average of the mean and standard deviation of the DSC for each observer are
stated in the bottom row.

Observer STUD1 STUD2 PhD RAD CNN

STUD1 - 0.80 (0.15) 0.73 (0.14) 0.60 (0.18) 0.65 (0.26)
STUD2 0.80 (0.15) - 0.77 (0.13) 0.63 (0.18) 0.66 (0.27)
PhD 0.73 (0.14) 0.77 (0.13) - 0.69 (0.16) 0.63 (0.25)
RAD 0.60 (0.18) 0.63 (0.18) 0.69 (0.16) - 0.58 (0.27)
CNN 0.65 (0.26) 0.66 (0.27) 0.63 (0.25) 0.58 (0.27) -

Average 0.70 (0.18) 0.72 (0.18) 0.71 (0.17) 0.63 (0.20) 0.63 (0.26)
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a. b.

c. d.

Figure 11.A.3: Examples of segmentations of various regions of interest on a single axial slice of CT-scans.
A: CT-scan without segmentation; B: lesion; C: normal liver parenchyma; and D: ring on the border
between the lesion and normal liver parenchyma.
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Abstract

Background & Aims: Distinguishing malignant from benign primary solid liver lesions
is highly important for treatment planning. However, diagnosis on radiological imaging is
challenging. In this study, we developed a radiomics model based on magnetic resonance
imaging (MRI) to distinguish the most common malignant and benign primary solid liver
lesions, and externally validated the model in two centers.

Approach & Results: Datasets were retrospectively collected from three tertiary referral
centers (A, B and C) including data from affiliated hospitals sent for revision. Patients
with malignant (hepatocellular carcinoma and intrahepatic cholangiocarcinoma) and benign
(hepatocellular adenoma and focal nodular hyperplasia) lesions were included. For each
patient, only a T2-weighted MRI was included. A radiomics model was developed on dataset
A using a combination of machine learning approaches, and internally evaluated on dataset A
through cross-validation. Next, the model was externally validated on datasets B and C, and
compared to scoring by two experienced abdominal radiologists on dataset C. In the resulting
dataset, in total, 486 patients were included (A: 187, B: 98 and C: 201). Despite substantial
MRI acquisition heterogeneity, the radiomics model developed on dataset A had a mean area
under the receiver operating characteristic curve (AUC) of 0.78 in the internal validation on
dataset A, and a similar AUC in the external validations (B: 0.74, C: 0.76). In dataset C, the
two radiologists showed moderate agreement (Cohen’s κ: 0.61) and achieved AUCs of 0.86
and 0.82, respectively.

Conclusions: Our radiomics model using T2-weighted MRI only can non-invasively distin-
guish malignant from benign primary solid liver lesions. External validation indicated that
our model is generalizable despite substantial differences in the acquisition protocols.
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12.1 Introduction

Liver cancer is the seventh most commonly diagnosed cancer and the third most
common cause of cancer deaths worldwide, with approximately 906,000 estimated
new cases and 830,000 deaths in 2020 [301]. One of the most important tasks in
routine clinical practice is making the distinction between malignant and benign
primary solid liver lesions, which substantially influences treatment planning [302,
303]. Commonly, a first assessment is made by the radiologist based on magnetic
resonance imaging (MRI). Guidelines such as those from the European Association
for the Study of the Liver (EASL) [107, 304] may aid the radiologist. Typically, a
mixture of T2-weighted, T1-weighted, dynamic contrast enhanced MRI, diffusion
weighted imaging, and the apparent diffusion coefficient (ADC) is used. The diagno-
sis is often challenging due to the wide variety of liver lesion phenotypes, sizes, and
appearances [12], and lack of a clear assessment consensus [305].

Patients from peripheral centers may therefore be referred to tertiary centers for
reassessment. This trajectory is time consuming and expensive, while a quick and
accurate diagnosis is crucial for the treatment planning. Often, despite imaging, a
biopsy may be performed to make the final diagnosis, as indicated by the EASL
guidelines. While accurate, biopsies are (minimally) invasive, can be technically
challenging, and bring risks such as bleeding and tumor seeding to the patient [306].
Patient treatment may benefit from a non-invasive tool to shorten time to diagnosis
by enabling quicker referral, refining patient selection prior to biopsies, and assist
diagnosing patients who do not require a biopsy.

In recent years, radiomics, i.e., the use of a large number of quantitative medical
imaging features to predict clinical outcomes, has been successfully used in various
clinical areas [16, 23], [19] (i.e., Chapter 2 of this thesis). In liver cancer, this has
been mostly based on computed tomography to make predictions such as survival,
prognosis, and recurrence [286, 288, 307]. For MRI in liver cancer, radiomics has been
used to classify focal liver lesions [105, 308, 309, 310], and as LI-RADS [311] surrogate
[312]. Radiomics thus shows potential for usage in liver lesion characterization.

However, as concluded in a recent review, the use of radiomics for liver lesion
characterization is still at an early stage [313]. First, there is a need for large,
multi-center cohorts, especially for external validation [24, 25, 30]. Second, a major
challenge is the lack of image acquisition standardization [313], as radiomics methods
are generally sensitive to acquisition variations [18], underlining the need for external
validation. Rather than requiring a comprehensive, standardized set of multiple
MRI sequences, usage of a single sequence would make radiomics models more
universally applicable in a routine clinical setting.

The primary aim of this study was therefore to develop a radiomics model based
on only T2-weighted MRI to distinguish between the most common malignant and
benign primary solid liver lesions, and to externally validate the model in two
multi-center cohorts. We used only T2-weighted MRI, as this sequence is widely
available, reliable for lesion segmentation, minimally sensitive to motion or breathing
artefacts, and informative [107, 304, 311]. Our secondary aim was to compare the
performance of radiomics to clinical practice through visual scoring of the lesions by
two experienced abdominal radiologists.
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12.2 Materials and methods

12.2.1 Data collection

Approval for this study by the institutional review boards of Erasmus MC (Rotterdam,
the Netherlands) (MEC-2017-1035), Maastricht UMC+ (Maastricht, the Netherlands)
(METC 2018-0742), and Hôpital Beaujon (Paris, France) (N◦ 2018-002) was obtained.
Informed consent was waived due to the use of retrospective, anonymized data.
The study protocol conformed to the ethical guidelines of the 1975 Declaration of
Helsinki.

Three datasets were collected retrospectively from three tertiary referral centers:
all patients diagnosed or referred to A) Erasmus MC between 2002 - 2018; B)
Maastricht UMC+ between 2005 - 2018; and C) Hôpital Beaujon, included in reverse
chronological order starting at 2018, until in total 201 patients were identified, in
accordance with the inclusion and exclusion criteria described below. Imaging data,
age, sex, and phenotype were collected for each patient.

Inclusion criteria were: hepatocellular carcinoma (HCC), intrahepatic cholan-
giocarcinoma (iCCA), hepatocellular adenoma (HCA) or focal nodular hyperplasia
(FNH); pathologically proven phenotype, except for “typical” FNH; and availability
of a T2-weighted MRI scan. Exclusion criteria were: maximum diameter equal to
or smaller than 3 cm; underlying liver disease; and significant imaging artefacts.
Details on the pathological examination are given in Section 12.A.

Malignant lesions included HCC (75 - 85% of primary liver cancers), and iCCA
(10 - 15% of primary liver cancers) [12]. Benign lesions included HCA (3 - 4 cases per
100,000 person-years in Europe and North America) and FNH (found in 0.8% of all
adult autopsies) [12]. The most common benign primary liver lesions, hemangioma,
were not included as these are nonsolid and often relatively easy to diagnose on
imaging [12, 107]. Only lesions with a pathologically proven phenotype were
included to ensure an objective ground truth. Pathological analysis for each patient
was performed locally in their admission hospital. An exception was made for
typical FNH [12], which are routinely not biopsied and diagnosed radiologically
[106], as typical FNH imaging characteristics are 100% specific [12]. Not including
these would create a selection bias towards “atypical” FNH: the model performance
would than only be evaluated on atypical FNH, and no claims could be made on the
performance in typical FNH. In patients with multiple lesions, only the largest one
was included.

Patients with underlying liver disease due to alcohol, hepatitis, and vascular
liver disease, such as fibrosis or cirrhosis, were excluded, as the a priori chance of a
lesion being HCC in these patients is by far the largest [314]. Steatosis was not an
exclusion criterium. Diagnosis of liver disease was based on clinical, pathological
and/or imaging findings. In case of HCC, cirrhosis was always excluded from
biopsy or resection. Lesions with a maximum diameter equal to or smaller than 3
cm were excluded, since in non-cirrhotic livers these have a high probability of being
secondary lesions, hemangioma, or cysts [107, 315], which are generally easy to
diagnose on imaging [12, 107]. Hence, a radiomics model would have relatively little
added value in these patients with underlying liver disease or small lesions. When
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T2-weighted MRI with fat saturation was not available, regular T2-weighted MRI
was used, similar to clinical practice. Images with significant artefacts (i.e., patient
or scanner related) and therefore not suitable for diagnostic purposes, as judged by
an experienced radiologist (21 years of experience), were excluded.

12.2.2 Segmentation

Lesion segmentation was done semi-automatically using in-house software [105].
Each lesion was segmented by one of three observers: a radiology resident, and two
experienced abdominal radiologists (21 and 8 years of experience). The observers
were aware of the inclusion and exclusion criteria, and were asked to segment a
primary liver lesion. When the lesions could not be found, e.g. iso-intense lesions,
the observers were able to look at the other sequences if available. The observers
could segment manually or semi-automatically using region-growing or slice-to-slice
contour propagation. Segmentation was performed per slice in the 2D transverse
plane, resulting in a 3D volume. Semi-automatic results were always reviewed
and manually corrected when necessary, to assure the result resembled manual
segmentation. All segmentations were verified by the most experienced radiologist.
A subset of 60 lesions (30 from dataset B, 30 from dataset C) was segmented by two
observers to assess the intra-observer variability using the pairwise Dice Similarity
Coefficient (DSC), with DSC > 0.70 indicating good agreement [150].

12.2.3 Radiomics

An overview of the radiomics methodology is depicted in Figure 12.1. As T2-
weighted MRI scans do not have a fixed unit and scale, the full images were
normalized using z-scoring. No further preprocessing was performed. For each
lesion, 564 features quantifying intensity, shape and texture were extracted from the
T2-weighted MRI scan. For details, see Section 12.B. To create a decision model from
the features, the Workflow for Optimal Radiomics Classification (WORC) toolbox
was used [36, 151]. In WORC, decision model creation consists of several steps,
e.g. feature selection, resampling, and machine learning. WORC performs an
automated search amongst a variety of algorithms for each step and determines
which combination maximizes the prediction performance on the training dataset.
For details, see Section 12.C. The code for the feature extraction and model creation
has been published open-source [316].

12.2.4 Experimental setup

First, to evaluate the predictive value of radiomics within a single center, an internal
validation was performed in dataset A through a 100x random-split cross-validation
[63, 64], see Figure 12.A.1 A. In each iteration, the data was randomly split into 80%
for training and 20% for testing in a stratified manner, to make sure the distribution
of classes in all datasets was similar to that in the full dataset.

Second, to evaluate whether a model developed on data from one center general-
izes well to unseen data from other centers, two external validations were performed
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by training a model on dataset A, and testing it on the unseen datasets B and C, see
Figure 12.A.1 B.

Third, as clinicians frequently use age and sex in their decision making, two
additional models were externally validated based on: 1) age and sex; and 2) age,
sex, and radiomics features.

For both the internal and external validations, model optimization was performed
within the training dataset using an internal 5x random-split cross-validation, see
Figure 12.A.1. Hence, all optimization was done on the training dataset to eliminate
any risk of overfitting on the test dataset.

12.2.5 Performance of the radiologists

To compare the models with clinical practice, the T2-weighted MRI scans were scored
by two experienced abdominal radiologists. They were blinded to the diagnosis, but
aware of the inclusion and exclusion criteria. Classification of malignancy was made
on a four-point scale to indicate the radiologists’ certainty:

1. benign, certain

2. benign, uncertain

3. malignant, uncertain

4. malignant, certain

To obtain binary scores, 1 and 2 were converted to benign, 3 and 4 to malignant. Sev-
eral characteristics used in the decision making were also scored by the radiologists:

1. presence of central scar [12]

2. presence of liquid

3. presence of atoll sign [317]

4. degree of heterogeneity (scale 1 - 4 similar to malignancy)

As the radiologists were from centers A and B, scoring was done on dataset C to
prevent them from having seen the data previously.

12.2.6 Statistical analysis

To evaluate the difference in clinical characteristics and explore the predictive value
of the individual radiomics features between the malignant and benign lesions, per
dataset, univariate statistical testing was performed using a Mann-Whitney U test for
continuous variables and a Chi-square test for categorical variables. For the clinical
characteristics, the statistical significance of the difference between datasets was
assessed using a Kruskal-Wallis test for continuous variables, and a Chi-square test
for discrete variables. P-values of the clinical characteristics were not corrected for
multiple testing as these are purely descriptive: p-values of the radiomics features
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were corrected using the Bonferroni correction (i.e., multiplying the p-values by the
number of tests).

For all models, the Area Under the Curve (AUC) of the Receiver Operating
Characteristic (ROC) curve, Accuracy, Sensitivity, and Specificity were calculated.
ROC confidence bands were constructed using fixed-width bands [67]. The positive
class was defined as the malignant lesions.

For the internally validated model, 95% confidence intervals of the performance
metrics were constructed using the corrected resampled t-test, thereby taking into
account that the samples in the cross-validation splits are not statistically independent
[64]. For the externally validated model, 95% confidence intervals were constructed
using 1,000x bootstrap resampling of the test dataset and the standard method for
normal distributions ([66] table 6, method 1), see Figure 12.A.1 B.

For binary scores, the agreement between radiologists was evaluated using
Cohen’s κ [318]. For ordinal scores, i.e., degree of heterogeneity and malignancy,
the correlation was evaluated using Pearson correlation [319]. The AUCs of the
radiomics model and the radiologists were compared using the DeLong test [155],
and confusion matrices were used to analyze the agreement.

To gain insight into the radiomics model’s decision making, lesions were ranked
based on the probability of a lesion being malignant as predicted by the model.
Ranking was done as:

• archetypal benign (ground truth benign, probability near 0%)

• pitfall malignant (ground truth malignant, probability near 0%)

• borderline (probability around 50%)

• pitfall benign (ground truth benign, probability near 100%)

• archetypal malignant (ground truth malignant, probability near 100%)

This was done on dataset C to enable comparison with the radiologists.
For all statistical tests, p-values below 0.05 were considered statistically signifi-

cant.

12.3 Results

12.3.1 Datasets

In total, 486 patients were included (A: 187; B: 98; C: 201). The clinical and imaging
characteristics are reported in Table 12.1. As all centers serve as tertiary referral
centers, the datasets originated from 159 different scanners (A: 52; B: 21; C: 86),
resulting in substantial heterogeneity in the MRI acquisition protocols. Statistically
significant differences between datasets A, B, and C included magnetic field strength
(p=0.001), manufacturer (p=10−4), slice thickness (p=10−32), repetition time (p=0.006),
flip angle (p=0.05), and use of fat saturation (p=10−17).

On the subset that was segmented by two observers, the mean ± standard
deviation of DSC indicated good agreement (B: 0.80± 0.21; C: 0.81± 0.11).
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12.3.2 Radiomics

The results of the radiomics model are depicted in Table 12.2. The internal validation
on dataset A had a mean AUC of 0.78; the two external validations yielded a similar
performance (B: 0.74; C: 0.76). The ROC curves (Figure 12.2) illustrate that the model
trained on dataset A performed similar in each of the three centers.

The age-and-sex-only model had a high AUC in both the internal validation (A:
0.88) and the two external validations (B: 0.93; C: 0.85). Combining age, sex, and
the radiomics features yielded an improvement (A: 0.93; B: 0.98; C: 0.91), although
not statistically significant. The Accuracy for the age-and-sex-only model (A:0.83; B:
0.92; C: 0.82) and the combined age, sex, and radiomics model (A: 0.85; B: 0.92; C:
0.83) were similar.

12.3.3 Comparison with radiologists

The performance of the two experienced abdominal radiologists on classifying
dataset C is depicted in Table 12.2. The ROC curves (Figure 12.2 C) were mostly just
above the 95% confidence interval of the radiomics model. The AUC of Radiologist
1 (0.87) was statistically significantly better than the radiomics model (DeLong:
p=0.0028): the differences in AUC between Radiologist 2 (0.83) and the radiomics
model and between the two radiologists were not statistically significant. The
Accuracy per phenotype is depicted in Table 12.3. The radiomics model had a similar
Accuracy in HCC (0.83) and iCCA (0.82), while the performance in FNH (0.66) was
slightly better than in HCA (0.54).

Confusion matrices of the predictions on dataset C are depicted in Figure 12.3.
The agreement between the radiologists on classifying the lesions as malignant or
benign was moderate (Cohen’s κ: 0.61) [318]: the two radiologists agreed in 160
of the 201 patients (80%). The agreement between the two radiologists and the
radiomics model was weak (Radiologist 1: κ of 0.47; Radiologist 2: κ of 0.42), as
reflected by the confusion matrices. For the other characteristics scored by the two
radiologists, the agreement was weak for presence of a scar (κ: 0.41) and liquid (κ:
0.52), and strong for presence of the atoll sign (κ: 0.80); the correlation was moderate
for heterogeneity (Pearson coefficient: 0.69) and strong for malignancy (Pearson
coefficient: 0.70) [319].

12.3.4 Model insight

In dataset A, on which the radiomics model was developed, 45 radiomics features
showed statistically significant differences between the malignant and benign lesions
with p-values after Bonferroni correction from 9× 10−10 to 0.049. These included
4 shape features (volume was not significant), 1 orientation feature, and 40 texture
features. Statistically significant differences were found for 49 radiomics features
in dataset B and 10 in dataset C. Four radiomics features (all texture) showed
statistically significant differences in all three datasets. A list of these features and
their p- values can be found in Section 12.A. The differences in volume between the
three datasets was statistically significant (p=10−10).
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Table 12.2: Performance of the radiomics model and the radiologists three datasets (A, B, and C). For
the radiomics model, the mean (internal cross-validation) or point estimate (external validation) and 95%
confidence intervals are reported.

Evaluation Internal cross-validation External validation Radiologist 1 Radiologist 2

Train set A† A A - -
Test set A† B C C C

AUC 0.78 [0.70, 0.85] 0.74 [0.65, 0.84] 0.76 [0.70, 0.83] 0.86 0.83
Accuracy 0.69 [0.62, 0.76] 0.64 [0.54, 0.74] 0.69 [0.62, 0.75] 0.80 0.77
Sensitivity 0.70 [0.57, 0.82] 0.79 [0.67, 0.91] 0.82 [0.74, 0.91] 0.88 0.87
Specificity 0.68 [0.59, 0.78] 0.53 [0.40, 0.66] 0.59 [0.50, 0.68] 0.74 0.69
∗Abbreviations: AUC: area under the receiver operating characteristic curve.
†Training and testing within a single dataset was done through a 100x random-split cross-validation.

Table 12.3: Accuracy per phenotype of the radiologists and the radiomics model in the external
validation on dataset C. The Accuracy per phenotype represents the percentage of the lesions with that
specific phenotype being correctly classified as malignant or benign. The number of lesions per phenotype
in dataset C is given between brackets in the first column.

Accuracy Radiomics Radiologist 1 Radiologist 2
Train dataset A - -
Test dataset C C C

HCC (47) 0.83 0.85 0.83
iCCA (37) 0.82 0.95 0.92
HCA (65) 0.54 0.69 0.62
FNH (52) 0.66 0.82 0.78
∗Abbreviations: HCC: hepatocellular carcinoma; HCA: hep-
atocellular adenoma; FNH: focal nodular hyperplasia; iCCA:
intrahepatic cholangiocarcinoma

a. b. c.

Figure 12.3: Confusion matrices of the predictions by the radiomics model and the two radiologists.
The darker the background, the higher the agreement.
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Examples of lesions from dataset C ranked as archetypal, borderline, or pitfall by
the radiomics model are depicted in Figure 12.4. Visual inspection of the T2-weighted
MRI scans of the archetypal or pitfall lesions showed a relation with heterogeneity
(archetypal malignant: heterogeneous; archetypal benign: homogeneous), area and
volume (archetypal malignant: generally high maximum axial area and high volume),
and irregularity of shape on 2-D axial slices (archetypal malignant lesions: irregular;
archetypal benign: compact). Pitfall lesions showed the opposite, e.g. pitfall benign:
heterogeneous. Borderline lesions, i.e., with an almost equal predicted chance of
being malignant or benign, were mostly of medium size and medium heterogeneity.

The predictions by the radiomics model on dataset C were compared to the char-
acteristic scores of Radiologist 1, who had the highest performance. The correlation
between the probability of malignancy as predicted by the radiomics model and
heterogeneity as scored by Radiologist 1 was moderate (Pearson coefficient: 0.58).
Radiologist 1 performed well when lesions had an apparent atoll sign: from the 19
lesions which Radiologist 1 scored as having an atoll sign and therefore classified
as benign, 17 were indeed benign and 2 malignant. On the contrary, the radiomics
model only classified 11 of these lesions correctly, but these included the 2 malignant
lesions misclassified by Radiologist 1.

12.4 Discussion

In this study, we developed a radiomics model to distinguish between malignant
and benign primary solid liver lesions based on T2-weighted MRI in patients with
non-cirrhotic livers. We showed that our radiomics model can distinguish between
these lesions, both in an internal cross-validation and in two external validations.

The substantial increase of radiomics related research in recent years has led
to various guidelines, vulnerabilities, and gaps [24, 25, 30, 31]. While several
studies have evaluated radiomics for the classification of liver lesions [308, 309, 310],
radiomics for primary liver cancer is still in the early stages, and many of these
aspects still need to be addressed [313]. One of the most important is external
validation, which is crucial to ensure a high level of evidence in a variety of settings
[24, 30]. Furthermore, the lack of standard imaging parameters can be problematic as
these can affect the appearance of the lesion and thus radiomics [18, 313]. Requiring
a comprehensive, standardized set of multiple MRI sequences is hardly feasible
in practice. In this study, we therefore only used T2- weighted MRI without strict
protocol requirements, and externally validated our model on two multi-center
cohorts from different countries to assess the generalizability. The scans of the
486 patients included in this study originated from 159 different MRI scanners,
resulting in substantial heterogeneity in the acquisition protocols. In univariate
analyses, only four radiomics features showed statistically significant differences in
all three datasets. Nevertheless, our method performed well on data from unseen
scanners (i.e., not present in the training dataset), indicating good generalizability.
Furthermore, we used routinely acquired T2-weighted MRI, increasing the chance
that the reported performance can be reproduced in a routine clinical setting. All
lesions in our study, except typical FNH [106], were pathologically proven to ensure
the ground truth was objective. We also set inclusion criteria to maximize the
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relevance to clinical decision making. Usage of a single, widely used sequence and
the fact that the lesion phenotypes included in our study present more than 90% of
all solid lesions, makes our model widely applicable.

To compare the radiomics model to routine clinical practice, the model’s predic-
tions were compared to assessment by two experienced abdominal radiologists. The
agreement between radiologists was moderate, indicating some observer variation
in the predictions. The characteristics apparently used by the radiomics model to
define lesions as archetypal, borderline, and pitfalls, were different than those used
in the scoring of the radiologists. This is also illustrated by the moderate correlation
in the heterogeneity scored by Radiologist 1 and the radiomics model’s score, and
their different predictions on lesions with an apparent atoll sign. As these results
indicate the potential complementary value of the radiomics model, further research
should focus on how the radiologists’ and the radiomics model’s predictions can be
optimally combined to improve clinical decision making.

Our results indicate that assessment of primary solid liver lesions by radiologists
can be challenging and is subject to observer dependence. Existing guidelines may
aid the radiologist in specific scenarios, such as EASL’s guidelines for management
of benign liver tumors [107] and HCC [304], or LI-RADS for patients with cirrhotic
livers [310]. In this study, inclusion and exclusion criteria were determined to
maximize the clinical relevance, covering scenarios not included in these guidelines.
Our radiomics model therefore complements these existing initiatives. Radiomics
may be especially useful on lesions where there is no consensus between radiologists,
or on the pitfalls for radiologists. Additionally, it may serve as a gatekeeper in
non-specialized centers, shortening the diagnostic delay by enabling direct referral
to an expertise center and reducing the number of missed malignant lesions.

Age and sex are known to be strong predictors for distinguishing malignant
from benign liver lesions [12, 301]. In our study, in line with worldwide findings,
(young) females represented the majority of benign lesions, while older patients
represented the majority of malignant lesions [12, 301]. The models based on age and
sex used an age threshold at 49 years. In dataset C, only 19 (17%) of the 114 lesions
of patients below 49 years were malignant. Although this therefore yielded a good
overall performance, it would lead to missing all malignant lesions in young patients,
for whom such a diagnosis is essential as these patients would benefit most from
treatment. Simply classifying all lesions below 49 years as benign, regardless of any
imaging information, would be unacceptable and cannot be applied to the general
population. On the other hand, the radiomics model purely based on T2-weighted
MRI does not use any population-based information. The model rather predicts
the probability of a lesion being malignant based on the imaging appearance. Our
radiomics method could be especially useful in young males to not miss malignant
lesions, and in older females to detect benign lesions. Future research should
therefore also focus on optimally combining imaging, age, and sex.

Our study has several limitations. First, while the inclusion and exclusion
criteria were set to maximize the relevance to clinical decision making, they limit the
applicability, as our model cannot be applied to all liver lesions, and may have led to
selection biases. Future research should therefore focus on loosening these criteria,
for example including patients with smaller lesions (maximum diameter < 3 cm),
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liver disease, more typical lesions, i.e., that are routinely not biopsied, and other
(rare) phenotypes. Second, the current radiomics approach requires semi-automatic
segmentations. While accurate, this process is time consuming and subject to some
observer variability, limiting the transition to clinical practice. We do not believe that
this has substantially affected the results, as the inter-observer DSC indicated good
segmentation reproducibility, and the radiomics model performed similar in the
internal and external validations despite training and testing on segmentations of
various observers. Automatic segmentation methods, for example with deep learning
[164], may help to further automate the method and avoid observer dependence.

On one hand, using a single, widely available (T2-weighted) MRI sequence
without strict protocol restrictions is a strength of our model. On the other hand,
in real life, radiologists use multiple sequences in their assessment, indicating that
a multi-sequence model may lead to an improved performance. EASL’s guidelines
also describe lesion assessment characteristics based on these other sequences,
e.g. wash-out on dynamic contrast enhanced T1-weighted MRI, and diffusion
restrictions (low ADCs) [107, 304]. These other sequences may contain additional
information to improve the radiomics and radiologists’ performance [308]. Especially
when extending our work to phenotyping, these sequences may contain essential
information for an accurate diagnosis. Main additional challenges for such a multi-
sequence model, due to the lack of a standardized protocol in the literature, are
the additional heterogeneity, missing data as not all these sequences are acquired
by default, and overcoming differences in appearance caused by the variations in
contrast agents [320]. We used only T2-weighted MRI, as this sequence suffers
less from these disadvantages; is widely available, thus a T2-weighted MRI based
radiomics model is feasible to use in routine clinical practice; is relatively simple
and thus showing less heterogeneity as e.g. sequences with contrast; is reliable for
lesion segmentation; and is minimally sensitive to motion or breathing artefacts; and
is informative [107, 304, 311]. The latter is also illustrated by our results, as the two
radiologists were already able to distinguish malignant from benign lesions quite
accurately using only T2-weighted MRI.

Future research should, besides the points mentioned in the previous paragraphs,
focus on extending our work to phenotyping (e.g. HCC, iCCA, HCA, FNH), and
possibly even subtyping (e.g. inflammatory HCA, β-catenin activated HCA) to
further aid clinical decision making. Furthermore, to gain better insight into the
complementary value of radiomics, our model may be compared with more radi-
ologists. In our study, two experienced abdominal radiologists who were trained
at the same center scored the patients. Hence, it would be valuable to compare
with radiologists from a variety of institutes, also including less experienced and
non-academic radiologists. This will also give a better insight into which type of
lesions are difficult for radiologists to classify or reach consensus on, and thus where
radiomics could have the highest added value.

In conclusion, our radiomics model based on T2-weighted MRI was able to
distinguish malignant from benign primary solid liver lesions in patients with non-
cirrhotic livers, both in an internal validation and in two external validations on
heterogeneous, multi-center data. Pending further optimization and generalization,
our model may serve as a robust, non-invasive and low-cost aid to enable quicker
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referral and refine patient selection prior to biopsies, and help solve the shortage of
radiologists [14].
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Appendix

Appendix 12.A Pathological examination

In the pathology, a distorted (micro)architecture of liver tissue was the common
feature of the included lesions. Histomorphology often combined with (immuno)
histochemistry served the final diagnosis. Hepatocellular lesions with loss of portal
tracts, cell atypia, thick trabeculae (loss of reticulin fibers), pseudoglandular trans-
formation, isolated small arterial branches, and capillarization of the sinusoidal
areas (CD34 positive) with supportive immunohistochemistry (glypican-3, glutamine
synthetase, HSP-70), were classified as HCC [321]. Cases where the reticulin fibers
were maintained, the pseudoglandular transformation and the cell atypia were
absent or minimal, and the immunohistochemistry (glypican-3, HSP-70) was neg-
ative, were classified as HCA [321]. Lesions composed of non-organoid arranged
glandular structures, localized at the periphery of the second-order bile ducts with
an expression of keratin 7 and 19, were classified as iCCA, either conventional
or cholangiolocarcinoma [322]. Non-neoplastic lesions, composed of hyperplastic
hepatocellular nodules separated by fibrotic septa, creating a microscopic image of
“localized cirrhosis” and often centrally a scar, were classified as FNH. Glutamine

https://doi.org/10.5281/zenodo.5175705
https://doi.org/10.5281/zenodo.5175705
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synthetase showed the pathognomonic “map-like” pattern of immunohistochemical
expression (anastomosing groups of positively stained hepatocytes [323]).

Appendix 12.B Radiomics feature extraction

This appendix is similar to Vos et al., Timbergen et al. [72, 73] (i.e., Chapter 5 and
Chapter 6 of this thesis), but details relevant for the current study are highlighted.

A total of 564 radiomics features were used in this study. All features were
extracted using the defaults for MRI scans from the Workflow for Optimal Radiomics
Classification (WORC) [36], which internally uses the PREDICT [51] and PyRa-
diomics [44] feature extraction toolboxes. An overview of all features is depicted
in Table 12.A.2. For details on the mathematical formulation of the features, we
refer the reader to Zwanenburg et al. [39]. More details on the extracted features
can be found in the documentation of the respective toolboxes, mainly the WORC
documentation [68].

For MRI scans, the images are by default normalized in WORC as the scans do not
have a fixed unit and scale, contrary to e.g. computed tomography (Hounsfield units).
Normalization is performed using z-scoring, i.e., subtracting the mean and dividing
by the standard deviation. As the datasets used in this study exhibit substantial
heterogeneity in the acquisition protocols, the mean and standard deviation were
computed based on the segmentation of the regions of interest (ROIs), i.e., the lesions,
and not on the full image, as the latter is more sensitive to acquisition variations. The
images were not resampled, as this would result in interpolation errors, especially in
the axial direction due to the substantial differences in slice thicknesses. The code to
extract the features has been published open-source [316].

The features can be divided in several groups. Thirteen intensity features were
extracted using the histogram of all intensity values within the ROIs and included
several first-order statistics such as the mean, standard deviation and kurtosis. These
describe the distribution of intensities within the lesion. Thirty-five shape features
were extracted based only on the ROI, i.e. not using the image, and included shape
descriptions such as the volume, compactness and circular variance. These describe
the morphological properties of the lesion. Nine orientation features were used,
describing the orientation of the ROI, i.e. not using the image. Lastly, 507 texture
features were extracted using Gabor filters (156 features) [39], Laplacian of Gaussian
filters (39 features) [39], vessel (i.e. tubular structures) filters (39 features) [54], the
Gray Level Co-occurrence Matrix (144 features) [39], the Gray Level Size Zone Matrix
(16 features) [39], the Gray Level Run Length Matrix (16 features) [39], the Gray Level
Dependence Matrix (14 features) [39], the Neighbourhood Grey Tone Difference
Matrix (5 features) [39], Local Binary Patterns (39 features) [52], and Local Phase
filters (39 features) [53, 300]. These features describe more complex patterns within
the lesion, such as heterogeneity, presence of blob-like structures, and presence of
line patterns.

Most of the texture features include parameters to be set for the extraction. The
values of the parameters that will result in features with the highest discriminative
power for the classification at hand (i.e., malignant versus benign) are not known be-
forehand. Including these parameters in the workflow optimization, see Section 12.C,
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would lead to repeated computation of the features, resulting in a redundant increase
in computation time. Therefore, alternatively, these features are extracted at a range
of parameters as is default in WORC. The hypothesis is that the features with high
discriminative power will be selected by the feature selection methods and/or the
machine learning methods as described inSection 12.C. The parameters used are
described in Table 12.A.2.

The variations in the slice thickness due to the heterogeneity in the acquisition
protocols may cause feature values to be dependent on the acquisition protocol.
Moreover, the slice thickness is substantially larger than the pixel spacing. Hence,
extracting robust 3D features may be hampered by these variations, especially for
low resolutions. To overcome this issue, all features were extracted per 2D axial
slice and aggregated over all slices, which is default in WORC. Afterwards, several
first- order statistics over the feature distributions were evaluated and used in the
machine learning approach.

Appendix 12.C Radiomics decision model creation

This appendix is similar to Vos et al., Timbergen et al. [72, 73] (i.e., Chapter 5 and
Chapter 6 of this thesis), but details relevant for the current study are highlighted.

The Workflow for Optimal Radiomics Classification (WORC) toolbox [36] makes
use of automated machine learning to create the optimal performing workflow
from a variety of algorithms. Besides deciding whether to use an algorithm, most
algorithms require hyperparameters, i.e., parameters that need to be set before the
actual learning step, to be tuned to enhance the performance. WORC defines a
workflow as a specific sequential combination of algorithms and their respective
hyperparameters. In WORC, the radiomics workflow is split into the following
components: image and segmentation preprocessing, feature extraction, feature and
sample preprocessing, and machine learning. For each component, a collection of
algorithms and their associated hyperparameters is included. Given this search
space, WORC uses automated machine learning to find the optimal solution. The
code to use WORC for creating the decision models in this specific study has been
published open-source [316].

The workflows could be constructed from the following default search space in
WORC, which components can only be combined in the order listed below:

1. Features selection: a group-wise search, in which specific groups of features
(i.e., intensity, shape, and the subgroups of texture features as defined in
Section 12.B and Table 12.A.2) are selected or deleted. To this end, each feature
group had an on/off variable which is randomly activated or deactivated,
which were all included as hyperparameters in the optimization.

2. Feature imputation: when a feature could not be computed, e.g. a lesion is
too small for a specific feature to be extracted, a feature imputation algorithm
is used to estimate replacement values for the missing values. Strategies for
imputation included 1) the mean; 2) the median; 3) the mode; 4) a constant
(default: zero); and 5) a nearest neighbor approach.
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3. Feature selection: a variance threshold, in which features with a low variance
(<0.01) are removed. This method was always used, as this serves as a feature
sanity check with almost zero risk of removing relevant features.

4. Feature scaling was performed to make all features have the same scale, as
otherwise the machine learning methods may focus only on those features with
large values. This was done through z-scoring, i.e., subtracting the mean value
followed by division by the standard deviation, for each individual feature. A
robust version of z-scoring was used, in which outliers, i.e., values below the
5th percentile or above the 95th percentile, were excluded from computing the
mean and variance.

5. Feature selection: optionally, the RELIEF method [55], which ranks the features
according the differences between neighboring samples. Features with more
differences between neighbors of different classes (i.e., malignant versus benign)
are considered higher in rank.

6. Feature selection: optionally, features are selected by training a machine
learning model and selecting features that are regarded important by the model.
Hence the used model should be able to give the features an importance weight.
Included model choices are LASSO, logistic regression, and a random forest.

7. Dimensionality reduction: optionally, principal component analysis (PCA) is
used, in which either only those linear combinations of features were kept
which explained 95% of the variance in the features or a limited number of
components (between 10 – 50).

8. Feature selection: optionally, individual feature are selected through univariate
testing. To this end, for each feature, a Mann-Whitney U test was performed to
test for significant differences in distribution between the labels (i.e., malignant
versus benign). Afterwards, only features with a p-value above a certain
threshold were selected.

9. Resampling: optionally, a various resampling strategy could be used, which are
used to overcome class imbalances and reduce overfitting on specific training
samples. These included various methods from the imbalanced-learn toolbox
[57]: random over-sampling, random under- sampling, near-miss resampling,
the neighborhood cleaning rule, ADASYN, and SMOTE (regular, borderline,
Tomek and the edited nearest neighbors variant).

10. Machine learning: lastly, a machine learning method is used to determine a
decision rule to distinguish the classes. Methods included were; 1) logistic
regression; 2) support vector machines; 3) random forests; 4) naive Bayes; 5)
linear discriminant analysis; 6) quadratic discriminant analysis; 7) AdaBoost
[61]; and 8) extreme gradient boosting [62].

By default in WORC, all model construction and optimization was performed
on the training set in order to prevent overfitting on the test dataset. To prevent
overfitting on the training dataset, a 5x random-split stratified cross-validation [63,



12.C. Radiomics decision model creation

12

267

64] was performed within the training dataset as well, using 85% for model training
and 15% for model validation, see Figure 12.A.1.

WORC states the radiomics workflow as a combined algorithm selection and
hyperparameter optimization problem (CASH), as algorithm selection and hyperpa-
rameter optimization are often not independent [34]. Within the training dataset,
CASH optimization is performed by testing thousand pseudo-randomly generated
radiomics workflows from the above search space. These are trained on the five
training datasets in the 5x random-split training-validation cross-validation, and
ranked according to their mean performance on the five validation datasets. As
performance metric, the weighted F1-score is used, which is the harmonic average of
the precision and recall.

Using only the single workflow that on average performs best on the validation
datasets may result in poor generalization due to overfitting on the validation
datasets. Hence, an ensemble was constructed by combining the workflows that
perform best on the validation datasets. Ensembling was done using the default of
WORC by averaging the posteriors of the 100 best workflows.

The following pseudo code illustrates the algorithm of WORC:

• For each 100x random-split training-test cross-validation iteration:

– Do: Construct the training dataset by randomly selecting 80% of the
patients.

– Do: On this training dataset, define 5x random-split cross-validation splits,
selecting in each iteration 85% of the patients for training and 15% for
validation.

– Do: Pseudo-randomly sample 1,000 workflows from the search space.

– For each of the 1,000 sampled workflows:

* Do: Train the workflow on the five training datasets in the 5x random-
split cross-validation.

* Do: Compute the mean weighted F1-score on the corresponding five
validation datasets in the 5x random-split cross-validation.

– Do:Rank the 1,000 workflows, retrain the best 100 workflows on the full
training dataset and combine them in an ensemble.

– Do: Evaluate “the model”, i.e., the ensemble of the best 100 workflows as
trained on the training dataset, on the test dataset, i.e., the remaining 20%
of the patients that were not included in the training dataset.

The largest experiments in this study consists of executing 500,000 workflows
(1,000 pseudo-randomly generated workflows, times a 5x train-validation cross-
validation, times 100x train-test cross-validation for the internal validation), which
can be parallelized. The computation time of training or testing a single workflow is
on average less than a second, depending on the size of the dataset both in terms
of samples (i.e. patients) and features. The largest experiment in this study, i.e.
the internal validation on dataset A, had a computation time of approximately 24
hours on a 32 CPU core machine. The contribution of the feature extraction to the
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computation time was negligible. The code for the radiomics feature extraction and
model creation, including more details, has been published open-source [316].
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B. External validation

Figure 12.A.1: Visualization of evaluation setups. (A) The 100x random-split cross-validation used in
the internal validation; (B) and the 1,000x bootstrap resampling in the external validations. Both include
an internal random- split cross-validation within the training dataset for the model optimization.
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Table 12.A.1: Overview of univariate testing of radiomics features. Per dataset (A, B, and C), the statistical
significance of the difference between the malignant and benign lesions was assessed using a Mann-
Whitney U test for continuous variables, and a Chi-square test for discrete variables. Only the features
that showed statistically significant differences in dataset A are include. All p-values were corrected for
multiple testing by multiplying the p-values with the total number of tests (564). Statistically significant
p-values and names of that showed statistically significant differences in all three datasets are given in
bold.

Feature name p-value A p-value B p-value C

tf_kurtosis_sigma1 9.26×10−10 1.80×10−5 1.00
tf_mean_sigma1 1.06×10−8 1.27×10−4 1.00
tf_LBP_std_R3_P12 3.19×10−8 8.60×10−4 1.00
tf_LBP_quartile_range_R8_P24 1.56×10−7 0.0026 7.77×10−5

tf_peak_sigma1 2.74×10−7 0.0028 1.00
tf_median_sigma1 8.27×10−7 0.0035 1.00
tf_LBP_skewness_R8_P24 1.33×10−6 0,0067 2,16×10−4

tf_LBP_kurtosis_R8_P24 1.51×10−6 0.013 9.44×10−5

tf_LBP_mean_R8_P24 1.53×10−6 0.014 2.20×10−4

tf_LBP_skewness_R15_P36 5.18×10−5 0.13 8.70×10−4

tf_LBP_mean_R15_P36 6.18×10−5 0.14 9.92×10−4

tf_mean_sigma10 8.40×10−5 0.94 1.00
tf_LBP_kurtosis_R15_P36 9.02×10−5 0.19 4.75×10−4

tf_LBP_median_R3_P12 1.29×10−4 0.086 0.27
sf_area_min_2D 2.29×10−4 0.67 1.00
tf_Gabor_std_F0.2_A0.79 3.65×10−4 6.42×10−5 0.50
tf_Gabor_kurtosis_F0.05_A0.79 6.24×10−4 1.00 1.00
tf_LBP_skewness_R3_P12 8.44×10−4 0.28 0.17
tf_Gabor_quartile_range_F0.2_A0.79 0.001 9.71×10−5 0.11
tf_median_sigma10 0.001 0.51 1.00
tf_Gabor_quartile_range_F0.2_A1.57 0.001 3.79×10−5 1.00
tf_Gabor_max_F0.2_A0.79 0.004 2.26×10−4 0.24
tf_Gabor_std_F0.2_A0.0 0.006 0.001 0.18
tf_Gabor_std_F0.2_A1.57 0.008 0.002 1.00
tf_Gabor_range_F0.2_A0.79 0.008 6.92×10−4 0.69
tf_Gabor_quartile_range_F0.2_A2.36 0.009 6.92×10−4 0.12
tf_LBP_mean_R3_P12 0.012 1.00 0.45
tf_kurtosis_sigma10 0.012 0.73 1.00
tf_std_sigma1 0.014 0.44 1.00
tf_LBP_std_R15_P36 0.015 1.00 0.002
tf_Gabor_max_F0.2_A1.57 0.015 0.001 1.00
tf_Gabor_median_F0.5_A0.0 0.015 1.00 1.00
sf_area_avg_2D 0.015 0.010 1.00
tf_Gabor_min_F0.2_A0.79 0.017 0.005 1.00
tf_LBP_std_R8_P24 0.019 1.00 8.80×10−4

tf_LBP_quartile_range_R15_P36 0.020 1.00 0.084
tf_Gabor_quartile_range_F0.2_A0.0 0.020 5.80×10−4 0.090
sf_area_max_2D 0.023 0.011 1.00
sf_shape_Flatness 0.038 1.00 1.00
of_COM_y 0.038 0.69 1.00
tf_Frangi_inner_energy_SR(1.0. 10.0)_SS2.0 0.042 0.033 1.00
tf_GLDM_SmallDependenceHighGrayLevelEmphasis 0.046 0.020 1.00
tf_max_sigma10 0.046 1.00 1.00
tf_Frangi_edge_energy_SR(1.0. 10.0)_SS2.0 0.049 0.081 1.00
tf_Frangi_full_energy_SR(1.0. 10.0)_SS2.0 0.049 0.081 1.00
∗Abbreviations: tf: texture feature; sf: shape features; of: orientation feature.
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General discussion

To assist clinicians in adapting healthcare to each patient’s unique characteristics, the
paradigm shift to personalized medicine has led to an increased need for biomarkers
that reflect the health or disease status of a person. Medical imaging holds much po-
tential to provide such biomarkers, but methods are required to extract quantitative
and objective biomarkers. Radiomics, i.e., the use of quantitative imaging features
and machine learning, has shown many successes in various clinical applications to
identify and extract such biomarkers. However, this field faces several challenges: 1)
it is challenging to find the optimal radiomics method from the wide variety of avail-
able options; 2) there is a need for publicly sharing data to facilitate reproducibility,
to develop accurate biomarkers, and to validate the performance and generalization
of biomarkers; 3) there is a lack of image acquisition standardization; and 4) there is
a lack of reproducibility of both radiomics methods and biomarkers. Overcoming
these barriers is vital for the translation of radiomics models to clinical practice.

In this thesis, these challenges are addressed in order to streamline radiomics
research, facilitate the reproducibility of radiomics methods and biomarkers, and
ultimately simplifying the use of radiomics in (new) clinical applications. Figure 13.1
provides a schematic overview of the biomarkers and the adaptive radiomics frame-
work developed in this thesis. In Chapter 2, we introduced radiomics, described its
potential and several of its challenges. In Chapter 3, to overcome these challenges,
we exploited advances in automated machine learning to automatically construct
and optimize the radiomics workflow per application. We validated the resulting
radiomics method in twelve different, independent clinical applications to evaluate
its generalization across clinical applications. We evaluated in depth our adaptive
framework in eight clinical applications to develop quantitative imaging biomarkers
in Chapters 5, 6, 7, 8, 9, 10, 11, and 12. Lastly, we publicly released six datasets
consisting of 930 patients in total as described in Chapter 4, the WORC toolbox (open-
source), and for each study the code to reproduce our experiments. This database
facilitates reproducibility, enables researchers to use this data for improved training
or external validation, and facilitates public benchmarking.

13.1 Contributions and impact

13.1.1 Methodological

Analysis of quantitative medical image features has been performed for several
decades. However, when in 2012 the term “radiomics” was coined [15], the field
quickly gained more attention. When I started my PhD in 2016 on radiomics, the
idea was to start with a straight-forward radiomics study to get familiar with the
field. However, while radiomics had just started to gain popularity, there already
was a proliferation of radiomics methods. Hence I wondered which method would
work best for my specific application. An additional challenge was the fact that only
a small percentage of the radiomics studies publicly released their software. Thus,
besides finding a suitable method, I would also have to reimplement the method,
which can be challenging.
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g Standard feature set g
Intensity

Shape

Texture

Features

Patients

Class 1
Class 0

Class 1

Labels

Patients

g Automated machine learning to find optimal workflow g

Groupwise Feature
Selection
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Selection

ωTxi + b = 0
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Support Vector
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1.
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Oversampling Naive Bayes

2.

Individual Feature
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Component Analysis

· · ·

Random Forest
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N

Automated Radiomics Framework

Liposarcoma Desmoid Liver tumors Gastric cancer Liver metastasesMelanoma metastases

Liver screening Mesenteric fibrosis Prostate cancer Glioma Dementia Head & Neck cancer

Imaging Data
?? ???? ?? ?? ??

??Public data release:
https://xnat.bmia.nl/data/projects/worc

Open-source code release: https://github.com/MStarmans91/WORC
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Figure 13.1: Schematic overview of the work presented in this thesis. We have performed radiomics
studies on various clinical applications based on imaging data, which we have fed into the adaptive
radiomics framework that we presented, resulting in a multiple biomarkers relating quantitative imaging
features to a specific clinical label or outcome. We have publicly released a database composed six datasets
and the toolbox for our adaptive radiomics framework open source.
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The aim of my PhD was therefore to create one radiomics framework in which
multiple approaches could easily be integrated, and in which the construction of
radiomics models using these approaches would automatically be optimized. In this
way, radiomics could be generalized across clinical applications.

The main contribution of this thesis is to exploit recent advances in automated
machine learning (AutoML) to automatically construct and optimize complete ra-
diomics workflows. The construction of a radiomics workflow was formulated as a
Combined Algorithm Selection and Hyperparameter (CASH) optimization problem,
thereby enabling the use of AutoML. In order to formulate radiomics as a CASH
problem, a modular approach was used, defining radiomics as a workflow, i.e., a
specific combination of algorithms and their associated hyperparameters. A wide
variety of algorithms were included in the framework. The original CASH mathemat-
ical formulation from the field of machine learning was extended to encompass the
complete radiomics workflow. The formulation allows straight-forward integration
of additional algorithms into the search space. As optimization strategy, a straight-
forward random search algorithm was used, as it is efficient and often performs
well. Hyperensembles were introduced to combine different workflows into a single
model, improving both the performance of the resulting radiomics model and the
stability of the workflow optimization. The resulting framework was extensively
validated in twelve applications, which showed the generalization of the method
across clinical applications. These aspects are described in Chapter 3.

From an engineering perspective, I implemented my method as a software pack-
age in Python, resulting in the WORC (Workflow for Optimal Classification) toolbox.
The WORC toolbox enables users to conduct a validated, standardized radiomics
baseline for any study with minimal effort. In this way, for a new application,
one can quickly probe a dataset for potential biomarkers. This has enabled me
to conduct a large number of clinical radiomics studies. The WORC toolbox was
released as an open-source software package, including extensive documentation
[68], and tutorials1. In this way, my work enables others in their radiomics studies
to efficiently probe datasets for radiomics biomarkers by conducting a validated,
standardized baseline with one press of a button.

In one study, and in the secondary goals of two of the other studies, we were
not able to find a biomarker that performed well: the mutation stratification of lung
metastases of melanoma (Chapter 9), and the secondary goals in DTF (Chapter 6)
and GIST (Chapter 7). Coincidentally, these are three of the four studies (the fourth
is the 1p19q mutation stratification from Chapter 3) involving the prediction of
genetics using radiomics, also coined “radiogenomics”. In the DTF and GIST studies,
this may be attributed to the relatively small sample sizes of the mutation analysis,
see the descriptions in the respective chapters. However, in the melanoma study
(Chapter 9) (169 lesions from 103 patients), to our knowledge, the dataset is currently
the largest CT-based radiomics study on the BRAF mutation status in patients with
metastatic melanoma. We concluded in this chapter that there is no relation between
CT-based imaging features and the BRAF mutation. The study thus had a negative
result. Currently, there is a positive publication bias in radiomics, with as few as

1https://github.com/MStarmans91/WORCTutorial

https://github.com/MStarmans91/WORCTutorial
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6% of the studies between 2015 and 2018 showing negative results as reported in
a recent study [88]. The authors of this study indicate that, to overcome this bias,
sound methodology, robustness, reproducibility, and standardization are key. Hence,
by addressing these hurdles of publishing negative results in this thesis (mainly
Chapter 3), I hope to contribute to overcoming the positive publication bias [88].

13.1.2 Clinical

From a clinical perspective, in this thesis, we have shown the following:

• Chapter 5: radiomics can distinguish between well differentiated liposarcomas
and lipomas on MRI.

• Chapter 6: radiomics can distinguish desmoid-type fibromatosis (DTF) from
non-DTF tumors in the DTF differential diagnosis on MRI, but could not
predict genetic mutations in DTF.

• Chapter 7: radiomics can distinguish gastrointestinal stromal tumors (GISTs)
from non-GIST tumors in the GIST differential diagnosis on CT, but could not
predict genetic mutations in GISTs.

• Chapter 8: radiomics can classify high grade versus low grade prostate cancer
on multi-parametric MRI.

• Chapter 9: radiomics cannot determine the BRAF P.V600E mutation status of
melanoma lung metastases on CT.

• Chapter 10: radiomics can predict symptomatic mesenteric mass in small
intestinal neuroendocrine tumors on CT.

• Chapter 11: radiomics can distinguish pure replacement from pure desmoplas-
tic HGP of colorectal liver metastases on CT.

• Chapter 12: radiomics can distinguish malignant from benign primary solid
liver lesions on MRI.

Additionally, in Chapter 3, we validated that:

• radiomics can distinguish livers in which no hepatocellular carcinoma (HCC)
developed from livers with HCC at first detection during screening on MRI.

• radiomics can predict the 1p/19q co-deletion in patients with presumed low-
grade glioma.

• radiomics can distinguishing patients with Alzheimer’s disease from cognitive
normals on MRI.

• radiomics can predict the T-stage in patients with head-and-neck cancer.
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Note that historically, the WORC method has evolved over time, thus leading
to differences within the method between the papers described in Part II. These
include differences in the extracted features, the WORC WORC search space, the WORC
optimization algorithm (specifically the number of random search iterations and
ensemble size), and the ratio’s used in the cross-validations. However, in the paper
presenting WORC as described in Chapter 3, the experiments of the studies in Part II
were all repeated using the exact same WORC version, i.e., the version released at the
moment Chapter 3 was submitted. Although this version was different from those
used in the papers described in Part II, the results were similar.

For all but one study (the melanoma study described in Chapter 9), we have thus
found a successful radiomics biomarker that predicts a clinical label or outcome
based on medical imaging. The resulting biomarkers are not yet ready for usage in
clinical practice, see Subsection 13.2.5 on how to overcome the remaining challenges.
However, these biomarkers can currently be used in research, for example in clinical
trials for inclusion, screening, and monitoring, by radiologists to compare their
scoring to radiomics, or to detect previously unknown patterns in imaging features
which can be studied to uncover relations between underlying biological processes
and outcomes. An example of this is the MINIMALIST clinical trial, in which new
methods to minimize the invasiveness of liposarcoma treatment are studied [324]. In
this study, the radiomics model will be used to aid in the monitoring of patients to
detect changes in the tumor phenotype. Another radiomics research use-case, is to
aid in predictions for which there currently exists no alternative. For example, in
Chapter 11, we used radiomics on pre-operative imaging to predict histopathological
growth patterns (HGPs) in colorectal liver metastases. Currently, these HGPs can
only be determined post-operatively on resection specimen. Being able to predict
the HGP pre-operatively enables a whole new direction of research, for example to
analyze the relation between HGPs and the response to pre-operative chemotherapy
treatment. Currently, this is not possible, as chemotherapy may alter the HGP [104].

The clinical applications evaluated in this thesis vary in the disease studied, body
area, imaging modality, and image acquisition (e.g. scanners from Philips, Siemens,
General Electric, and Toshiba). Moreover, we used radiomics for various prediction
tasks: phenotyping, prognosis, genetic mutations, differential diagnosis, diagnosis
of malignant versus benign, future symptoms, grading, and HGPs. We thus showed
the broad scope of our radiomics method, both in terms of clinical area and outcome
variables. These insights can help both technical and clinical researchers to identify
promising directions for new radiomics studies.

Most datasets used in this thesis were gathered in the Erasmus MC, which gener-
ally serves as a tertiary referral center, resulting in multi-center imaging datasets. As
we imposed little to no restrictions on the included acquisition protocols, the datasets
show substantial differences in the imaging hardware and acquisition parameters,
and thus show heterogeneity in the image appearance. In spite of these differences,
our radiomics method was able to successfully develop biomarkers. We thus showed
that overcoming these differences is possible by training on multi-center, heteroge-
neous datasets, and thus that radiomics models can be used on routinely acquired
clinical scans, paving the way for the translation to clinical practice. However, to
enhance the applicability of our models, further generalization is required, see
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Subsection 13.2.6.
In most applications described in this thesis, the performance was compared with

clinical practice, i.e., scoring by a clinician, primarily radiologists. The clinicians were
asked to perform the same task as the radiomics model: based on the same image as
the radiomics model had access to (or including additional images), predict the same
outcome as the radiomics model was tasked with. In all studies in which clinicians
visually scored the images, there was substantial variation in their predictions.
This indicates that in these applications, assessing these images is not trivial and
subject to observer variability. The scoring by the clinicians gives insight into which
characteristics have the highest predictive value, which cases can be considered
pitfalls or easy to score, and on which cases there is consensus and or substantial
disagreement. Concluding, I showed the importance of comparing radiomics to
current clinical practice, as this aids in assessing when the performance of a radiomics
model is sufficient to serve as a clinical aid. Moreover, this helps to identify the
cases where the complementary value of radiomics is the highest. I recommend to
always include multiple observers to score when comparing radiomics with scoring
by clinicians.

In several applications, the radiomics model performed substantially or even
statistically significantly better than the scoring by the clinicians. Combined with the
substantial disagreement in the scoring, this indicates the potential complementary
value of radiomics with respect to visual assessment. Besides assessing the perfor-
mance, we also analyzed which image features contributed to the resulting radiomics
models. This provides clinicians insights into which imaging characteristics and
associated biological phenomena relate to the outcome of interest. For example, in
Chapter 5, we showed that volume alone was a good predictor of whether a lesion
was a lipoma or well differentiated liposarcoma (WDLPS). While it was already
known that WDLPS were generally larger than lipoma [113], this model performed
better than the scoring by the clinicians. Hence, if the clinicians would have solely
based their decision on volume, their accuracy would have improved. Such radiomics
derived insights may help improve the decision making by clinicians; help in the
acceptance of radiomics, as they may show that part of the radiomics models is based
on characteristics that were clinically already known to be relevant; and improve the
interpretability of radiomics models.

Caution should be taken when drawing strong conclusions on the comparison
of radiomics with scoring by clinicians however. Not all of the visual scores the
clinicians were tasked with in this thesis are routinely performed in clinical practice.
Instead, for most of the described tasks, biopsies are the gold standard. Moreover,
while our radiomics models were tasked to predict pathological outcome, the primary
added value of radiomics to clinical practice would be to provide quantitative
information about imaging data. The hypothesis of radiomics in this context is
that the quantitative information relates to the pathological outcome, but there may
be discrepancies. Similar discrepancies may therefore arise when comparing the
prediction of a radiomics model which predicts pathological outcomes to visual
scoring of clinicians who quantify imaging properties.

Machine learning models are only as good as the data they were trained on [4,
29]. Hence, if a dataset includes a bias, the resulting model may learn this bias
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to leverage its performance. In this thesis, we evaluated (potential) biases in our
datasets relating to: volume (Chapter 5), selection due to specific inclusion and
exclusion criteria (Chapters 5, 6, 12, and 11), age and sex (all chapters in Part II),
class imbalance (all chapters in Part II), tumor location (Chapters 6, 7, and 10), data
originating from specific centers (Chapters 8 and 12), usage of contrast during image
acquisition (Chapter 10), and segmentations by various observers (Chapters 6, 7,
11, and 12). We showed that some of our datasets contained biases, which our
radiomics models in several studies leveraged to increase the overall performance
when allowed to use these biases. These findings emphasize the importance of
assessing potential biases in any radiomics study to prevent the development and
use of biased biomarkers. Simply classifying patients based on one of these biases
towards clinical characteristics, e.g., only using age, sex, tumor location, or purely
based on acquisition parameters or from which hospital a scan originated, regardless
of any imaging information, would be unacceptable and cannot be applied in clinical
practice.

13.1.3 Open science

Open science has become increasingly important in recent years [325]. Open science
is crucial for reproducibility, which is a defining feature of science. Besides provid-
ing the data, software and guides enabling replication of a study are essential to
guarantee reproducibility [87]. However, open science requires substantial additional
efforts by researchers, such as addressing legal practices, ethics, secure data storage
and infrastructure, usage instructions, and covering the associated additional costs.
While these efforts may not directly be rewarded, it has been shown that open science
ultimately brings substantial benefits to the researcher [326]. Moreover, large-scale
open science efforts such as OpenML [87], an initiative from the machine learning
community to build an online ecosystem including data sets, associated scientifically
tasks, training routines, and trained models, and https://grand-challenge.org
[327], a platform to host and facilitate the organization of challenges in medical
imaging, have led to substantial advancements in their respective fields.

All studies conducted in this thesis mainly rely on the methods implemented in
the WORC toolbox, which I published open-source [36]. The WORC toolbox enables
users to automatically conduct a validated radiomics baseline with minimal effort.
Users simply need to provide their imaging data, segmentations, and labels to be
predicted.

Moreover, for all studies conducted in this thesis, the code to reproduce the
experiments has been released open-source [37, 134, 153, 184, 214, 244, 272, 295,
316]. Together with the open-source release of the WORC toolbox, this facilitates
reproducibility of our studies. Moreover, researchers may use the provided code to
repeat our experiments on other datasets to externally validate our methods.

In medical image processing, there is a need for providing access to large,
multi-center datasets, to improve the training of radiomics method, to benchmark
radiomics methods, and especially for external validation [1, 17, 20, 24, 25, 27, 30,
31]. Examples of existing initiatives to address this need are the Cancer Imaging
Archive (TCIA), which hosts a variety of medical imaging datasets [328], ADNI [329],

https://grand-challenge.org
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and grand challenges such as CADDementia [330], LITS [110], BRATS [331], and
the Medical Decathlon challenge [93]. These initiatives have created an enormous
impact in their respective fields.

In this thesis, in Chapter 4, we described the WORC database, which we publicly
released, consisting of data from 930 patients from six radiomics studies. The public
release of this dataset facilitates reproducibility of our studies. The database has
been collected in routine clinical care at multiple centers, thus representing real-life
variability and heterogeneity of imaging data. This database can be used to validate,
benchmark, or develop radiomics methods, but also for automated segmentation
methods. For most of the clinical applications included (WDLPS, DTF, GIST, primary
liver tumors), to our knowledge, these are the first (large) datasets to be publicly
released.

13.1.4 Collaborations

The core of radiomics methods involves medical image processing and machine
learning. However, it is an interdisciplinary field, in which combining domain knowl-
edge from various expertise is essential for success. The work as presented in this
thesis is the result of many collaborative efforts between anesthesiologists, clinical
technologists, computer scientists, endocrinologists, engineers, gastroenterologists,
hepatologists, internists, medical physicists, oncologists, pathologists, physicists, pro-
grammers, radiologists, surgeons, and urologists. For example, the study described
in Chapter 3 is a collaborative effort by 46 authors associated with thirteen different
departments. The key to success in radiomics therefore lies in the convergence of
these technical and clinical disciplines to combine their respective knowledge and
skills towards one common goal. This thesis is an example of reaping the benefits
of convergence, in which I have contributed to establishing the links between the
different departments and various networks, within the Erasmus Medical Center,
nationally, and internationally.

13.2 Roadmap for future research and vision

13.2.1 Expanding and extending the horizon of radiomics applications

This work in streamlining and automating the construction and optimization of the
radiomics workflow facilitates quick and standardized probing of datasets for devel-
oping radiomics biomarkers. New directions for research and collaborations have
already been initiated: I am currently using WORC in various new studies including
malignant peripheral nerve sheath tumors [332], retro-peritoneal sarcoma, bladder
cancer [333], liquid biopsies in melanoma, liver cancer screening [78], colorectal liver
metastases screening and prognosis, hypertrophic cardiomyopathy [334], magne-
toencephalography [335], a clinical trial towards minimally invasive liposarcoma
treatment [324], breast cancer chemotherapy response [336], and complex regional
pain syndrome [337]. These projects involve many new collaborations, including
other researchers both from the Erasmus MC using my framework and external
users from other institutes or companies. I would like to invite others to try out my
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WORC framework on their clinical applications to assess whether these hold potential
radiomics biomarkers.

Besides expanding the scope of radiomics to other clinical applications, WORC
can also be applied to other modalities. This thesis concentrates on using MRI
and CT, as these were the modalities of choice in routine clinical practice in the
applications included. For example, WORC may perform well in other radiological
imaging modalities such as PET or US: part of the default features included in WORC
have already been shown to result in radiomics biomarkers in other PET and US
studies [99, 100]. It would be interesting to see on which types of imaging data WORC
can also successfully be applied to find imaging biomarkers, and on which ones
different approaches are required.

In this thesis, I have focused on binary classification problems. In the WORC
toolbox, methods for multiclass classification and regression are also included, and a
start has been made for multilabel and survival predictions. Future research involves
the expansion of the WORC landscape to these types of problems.

Lastly, in this thesis, per patient, only a single time point has been analyzed.
Future research involves analyzing multiple timepoints through radiomics, also
coined “delta radiomics”. Delta radiomics may be used to make predictions at
various time points. Additionally, delta imaging features, i.e., features that are
defined using data from multiple time points, may be used to create models that can
make predictions over time, e.g. at future time points.

13.2.2 Methodological innovations

In this thesis, as described in Chapter 3, the construction and optimization of
the radiomics workflow was formulated as a CASH optimization problem. As
optimization strategy, we used a straight-forward random search algorithm, as it
is efficient and often performs well [48], as also observed in this thesis. However,
a wide variety of other optimization strategies exist, see [338, 339, 340, 341] for
more detailed overviews. Examples include particle swarm optimization [342],
genetic programming [343], tree based optimization [91, 344]), and covariance matrix
adaptation evaluation strategies [345]. Employing these optimization strategies
instead of the random search may improve the prediction accuracy, but may result
in a higher computational burden and additional complexity.

One of the most popular and most promising optimization strategies is Sequential
Model-Based Optimization (SMBO) [346], specifically applying Bayesian optimiza-
tion [34, 340, 341, 347]. In the work of one of my students [348], we compared
Bayesian optimization to the default random search in WORC. Summarizing this
work, in the performed experiments, while more computationally demanding, the
Bayesian optimization approach did not result in a better predictive accuracy than the
random search strategy. While the performance of the resulting radiomics workflows
was higher in the validation sets, which is what the optimization strategies are opti-
mizing, this increase in performance did not generalize to the test set. These results
thus validate the use of randomized search as an optimization strategy. Although
other optimization strategies might show an improvement over the randomized
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search, this study clearly showed the limits of optimization and the importance of
generalization.

I believe that automated machine learning is the future to overcome the hurdles
and deficits of manual tuning in medical image processing. The field of radiomics
and thus the number of proposed methods is still rapidly expanding. Hence manual
tuning, in addition to the many disadvantages, is quickly becoming infeasible
altogether. However, besides optimization, at least equal attention should be given to
the generalization of the resulting models to prevent overfitting. To this end, I think
three factors are key. First, to prevent overfitting on a single dataset, I propose to
learn from previous problems which solutions worked best instead of starting from
scratch. To this end, we can learn from the public datasets as presented in Chapter 4.
To learn from these previous problems, a variety of solutions from the field of
meta-learning can be used [338]. Options range from simple solutions such as warm
starting the optimization with workflows that worked well on previous studies, or
favoring workflows that have shown to generalize well in previous studies. Second,
instead of optimizing for validation performance, I suggest to create an ensemble
of complementary solutions using multi-objective or Pareto optimization [349, 350].
Instead of simply optimizing a single objective function focused on the performance
on a validation set, multi-objective optimization can additionally include metrics to
ensure the generalization of the found solutions. Lastly, other ensembling strategies
could be employed [50]. In this thesis, we have shown that ensembling is a powerful
strategy to improve the performance and stability of machine learning solutions. The
used ensembling strategy was effective, but also simple. Hence I suggest to exploit
ensemble learning in the multi-objective optimization.

Radiomics can be seen as a collection of various disciplines from computer science
and medical image processing. Beyond the default machine learning used radiomics,
there are various disciplines from both the fields of image processing and artificial
intelligence which are interesting to integrate into radiomics. In my opinion, three of
these are key to improve radiomics models. Firstly, the interpretation of radiomics
models is vital for its acceptance and translation to clinical practice [351]. Whereas
a segmentation algorithm is relatively easy to verify, i.e., the result can be visually
inspected, the prediction of a radiomics model is not, and thus interpretability is
crucial. Over the last years, as a result of the steep increase in radiomics studies,
interest in radiomics’ interpretability has increased. One could argue that models
should be interpretable in itself instead of trying to explain black box models [352].
I believe that we have to accept that some of the predictions we are trying to achieve
with radiomics may be too complex to fully grasp. Medicine already makes use
of black box concepts: for example, while someone may not fully understand PET
physics, Fourier transformations used in MRI, or reconstruction of CT, that person
may still have a deep understanding of how to use these images to enhance their
(clinical) performance [25]. However, it is important to make radiomics models as
interpretable as possible. The benefit of using conventional radiomics features is
that these are to a certain extent interpretable, i.e., the decision models are based
on a very specific set of features. Moreover, insight into the decision models can be
gained by looking at the individual predictive values of single features or feature
groups as we did in most chapters in Part II. However, some features are complex
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to understand in itself. For example, while the mean of the intensities in a tumor
is simple to understand, exactly determining what kind of patterns a feature such
as “the cluster shade of the gray level co-occurrence matrix after application of a
Laplacian of Gaussian filter” quantifies is complex. The final decision rules are
often complex as well, especially when using higher-order non-linear decision rules,
which are commonly used. Hence, while the standardized set of features and their
individual predictive values give some insight into the interpretation of radiomics
models, the mentioned factors limit the current interpretability of radiomics models.
Two areas that I think are promising for future research to interpret these black box
models, are sensitivity analysis [353] and game theory [354]. These methods are
model agnostic, scalable, and the concepts used are relatively simple and common,
and thus interpretable in itself.

Secondly, closely connected to interpretability, is the uncertainty of radiomics
models. I hypothesize that a correct estimation of a model’s uncertainty may both
add to the interpretability of the model and improve the overall model performance.
For example, when applying a radiomics model, one could decide to reject the
model’s prediction if the model is highly uncertain. Future research should thus
include improved uncertainty estimates and taking uncertainty into account in the
model predictions to improve the performance and interpretability. A relatively
simple first step could be to look at the variations in the used ensembles [50], which
is also model agnostic and scalable. Afterwards, value-of-information analysis could
be used to evaluate the value of such information on a model’s uncertainty [355].

Thirdly, in radiomics based on multiple imaging modalities (e.g. CT and MRI)
or multiple image sequences (e.g. T1w MRI, T2w MRI, and DWI), one has to
deal with additional challenges. First, missing data is common due to the lack of
image acquisition standardization. Second, the sequences are generally not spatially
aligned, which may hamper radiomics methods. In this thesis, we used relatively
simple methods to deal with these challenges, using imputation to estimate the
missing feature values for the missing sequences, and conventional image registration
methods [127] to spatially align the sequences. However, recent advances in the
use of deep learning both for dealing with missing data and for medical image
registration may provide better alternatives. For example, to deal with missing
data, image synthesis may be used to replace the missing sequences itself. A
promising solution for image synthesis is the use of cyclic generative adversarial
neural networks, as these can deal with unpaired training data, and thus with missing
data [88]. To deal with spatial misalignment, VoxelMorph [356], a deep learning
based registration framework, may not only improve the registration accuracy,
but also the registration speed, which is crucial for translation to clinical practice.
Alternatively, deformable convolutions can be used to directly incorporate spatial
transformations in a classification neural network [357].

13.2.3 Conventional radiomics versus deep learning

In this thesis, I have focused on radiomics using conventional machine learning.
In theory, deep learning holds much more potential than conventional radiomics
methods, as deep learning can reach higher levels of complexity, for example learn-
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ing which features work best for a specific application instead of using predefined
features. The field of medical deep learning faces several similar challenges as
conventional machine learning [21, 22, 23, 26], including a wide variety of available
algorithms and the need for model selection and hyperparameter tuning per applica-
tion. The same problem thus persists: on a given application, from all available deep
learning algorithms, how to find the optimal (combination of) workflows? Future
research may therefore include a similar approach to WORC to facilitate construction
and optimization of deep learning workflows. In the field of computer science,
automatic deep learning model selection is addressed in Neural Architecture Search
(NAS) [94]. Simultaneous optimization of the network and model selection hyperpa-
rameters using gradient descent based optimization is highly efficient. However, the
usage of gradient descent based optimization is complicated due to the large number
of categorical or discrete choices to be made in the method selection. I therefore
believe that formulating the optimization as a CASH problem and using associated
optimization strategies is the most promising approach, including adoption of the
meta-learning and multi-objective optimization approaches I previously suggested.
Conventional radiomics models may complement deep learning models [358], espe-
cially on small datasets where learning features is difficult. Future research should
therefore include optimally combining both approaches in a hybrid solution.

In this thesis, I have focused on binary classification problems. Clinical applica-
tions may also include other tasks, such as multi-class or multi-label classification,
regression, or survival. Additionally, while in this thesis segmentation was merely
a means to and end, i.e., to be able to perform radiomics, segmentation can also
be a task on its own. For all these tasks, I would suggest to use the same CASH
approach as introduced in this thesis to optimize the construction of radiomics
workflows from the relevant algorithms. The WORC framework already includes
multi-class classification, which was performed to address the secondary aims of
Chapter 6 and Chapter 7, and regression. As clinical applications may require
multiple of these tasks to be performed, I suggest to combine the relevant tasks
in multi-objective optimization to exploit the various forms of information during
training (e.g., simultaneously using classification labels and survival labels).

13.2.4 Integrated diagnostics

In personalized medicine, integrating complementary information from different
sources is key to aid clinical decision making. In this thesis, we primarily used
radiological imaging (MRI and CT) to create biomarkers. In most studies, we com-
bined imaging with other clinical or patient characteristics, such as age and sex (all
studies in Part II), visual features manually scored by clinicians (Chapter 5: tumor
depth, lobularity, atypical appearance; Chapter 9: Lung Image Database Consor-
tium (LIDC) criteria [245]), tumor location (Chapters 6, 7, and 10), primary tumor
information while looking at secondary tumors (Chapters 10, 11), various biological
characteristics obtained from urine and blood samples (Chapters 10, 11), and disease
progression markers obtained from e.g. blood and urine samples (Chapters 10,
11). Future research should focus on integrating all relevant information into one
comprehensive model. Besides relatively simple clinical characteristics, such as the
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ones mentioned and (basic) clinical information such as medication use, lab values,
and medical history, four data sources seem most promising.

First, integration of radiological data with histopathological data could substan-
tially improve classification performance. Histopathology-derived biomarkers often
serve as the ground truth for radiomics, which also holds for most of the clinical
application included in this thesis. Although the usage of machine learning on
histopathology data has been around for decades, the term pathomics, i.e., radiomics
for histopathological data, has emerged in recent years [359]. Integrating radiomics
and pathomics is in theory relatively straight-forward, as radiomics methods can
also be used on histopathological data. However, due to the difference in the data
dimensions (i.e., 2D slices in pathomics versus 3D images in radiomics), the amount
of detail, and the type of relevant features, the optimal radiomics and pathomics
methods probably differ. Integrating radiomics and pathomics is not relevant in all
applications, for example when histopathological data is not available at the time
point of interest, e.g. before surgery or treatment.

Second, in some applications, radiologists outperform radiomics methods while
using exactly the same data, as also shown in this thesis. To learn from radiologists,
their visual scores may be used to improve radiomics methods. While both radiomics
and the radiologist make use of the same radiological data, radiologists may use
different information when visually scoring, relying on different prior knowledge
and being able to quantify specific characteristics, compared to radiomics features
extracted from the raw imaging data. Characteristics that are commonly visually
scored by radiologists such as necrosis, lobularity, invasion, heterogeneity, presence
of fat, presence of liquid, enhancement, and interaction with vena are generic, inter-
pretable, and used in clinical practice to predict a wide variety of outcomes. Training
radiomics methods to quantify these characteristics could greatly enhance their
performance. However, scoring of these characteristics is generally not standardized,
subjective, and the reporting unstructured. Adopting guidelines for standardized
scoring and advances in structured reporting [360], both in radiology and in other
fields, are therefore key to be able to incorporate this data in radiomics models.

Third, genetic data is currently one of the primary data sources for biomarkers
in personalized medicine [1, 2, 3]. The field of genome wide association studies
(GWAS) has substantially grown and successfully identified common traits in a wide
variety of diseases [361]. In recent years, advances in imaging genetics have shown
that the combination of genetic information and radiological imaging can lead to
improved prediction models, both in terms of performance and interpretability [362].
Future research should therefore aim at combining these domains, either on the
input level by developing methods to combined the data into a single biomarker, or
by simply combining different biomarkers from the two domains into one decision
model [363].

Lastly, more data is readily becoming available through the Internet of Things
(IoT) [364]. In healthcare, these include wearables, actuators, communication tech-
nology, providing information on e.g. activity, nutrition, medication use, symptom
detection. While relatively new, steadily more of these devices are becoming part
of daily live, e.g. smartphones are nowadays able to record a majority of this in-
formation through a wide variety of apps. However, most of the data is not yet
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incorporated in medicine or even accessible. Once these hurdles are however tackled,
to deal with this “big data”, the usage of machine learning, and thus also radiomics
to combine IoT data with imaging, holds much potential to create comprehensive
biomarkers.

13.2.5 Translation to clinical practice

Radiomics holds much potential as an imaging biomarker for clinical practice, as it
can be used at various stages in healthcare: as a gatekeeper in peripheral hospitals,
as a selection method for biopsies and in some cases as an alternative to biopsies,
as an aid to include patients in clinical trials, in follow-up monitoring, in assessing
therapy response, and many more. Despite the steep increase in radiomics studies,
the translation to clinical practice is relatively slow, posing numerous challenges [1,
5, 7, 18, 20, 24, 25, 27, 30, 31, 365, 366, 367, 368]. Based on the literature and my own
experience, I have identified five key factors for the translation to clinical practice.

First, while this may seem trivial, radiomics studies should address clinically
relevant problems. Radiomics researchers may define synthetic problems in ra-
diomics studies, for example to demonstrate the validity of a method, or because
of the availability of specific datasets. I define synthetic problems as problems
including predictions that are not relevant for clinical practice, but also problems
using inclusion or exclusion criteria that are not feasible to apply in clinical practice.
While these studies are definitely valuable for research on radiomics, the resulting
biomarkers are not relevant for clinical research. Additionally, not in all clinical
applications will a radiomics biomarker add additional value to the current gold
standard. In many applications, histopathology derived markers obtained from
biopsies serve as a gold standard. Depending on the clinical application, the biopsy
may be relatively non-invasive, risk free, and easy to conduct. Alternatively, some
clinical problems can be easily solved by radiologists, as also indicated in some
studies in this thesis, e.g. the differentiation between de-differentiated and well
differentiated liposarcoma in Chapter 5. It could be useful to automate routine tasks,
but it may sometimes take more time verifying the output of a (radiomics) biomarker
than performing the actual task. Hence, generally, in these applications, although it
may be interesting to evaluate the potential of a radiomics biomarker from a research
perspective, clinically, these add little value. Thus, for each clinical application,
one should both estimate the potential value of radiomics complementary to that
of existing approaches, and the required efficacy in order to contribute to clinical
practice (e.g. diagnostic accuracy, robustness to acquisition variations) [294].

Second, there is a high need for large-scale multi-center datasets to develop and
validate biomarkers developed through radiomics. Radiomics algorithms are only
as good as their data [4, 29]. Hence, models trained on datasets containing specific
demographics, acquisition protocols, or biases will not generalize. Moreover, as
models might only have a high (or low) performance on such specific datasets, as
a third party, valuing a radiomics biomarker is difficult without having access to
the datasets. International datasets for standardized benchmarking of radiomics
methods and biomarkers are therefore key for the validation and acceptance of these
methods.
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Third, assessment of radiomics studies is hampered, as it is difficult and subjective.
This may be attributed due to the proliferation of radiomics methods and to the
lack of reproducibility of radiomics methods and biomarkers. The latter is primarily
a result of the lack of benchmarking data, and the fact that a substantial part
of radiomics studies not publishing code containing the implementation of their
methods or biomarkers. Standardized evaluation guidelines are thus required to
objectively assess the quality of radiomics studies. Recently, there has been a trend
in creating guidelines for the assessment of radiomics studies, from journals [25,
369], radiomics communities [30], or clinical domains [370]. These efforts are key
to be able to properly assess, compare, and validate radiomics models, and thus
decide when radiomics models are suitable for clinical practice. However, if these
initiatives continue independently, this will result in a proliferation of evaluation
guidelines, hampering not only the translation to clinical practice but also radiomics
research. Moreover, caution should be taken when developing such guidelines: if the
guidelines are too restrictive or demanding, they may substantially limit the scope
of radiomics research.

Fourth, implementation of radiomics models in clinical practice will require a
dynamic approach, as these models will probably not work perfectly upon first
implementation. Ideally, besides detecting radiomics models detecting their own
mistakes, e.g. using uncertainty as I suggested in Subsection 13.2.2, they should
be able to learn from their mistakes and thus improve over time. A promising
solution to achieve this is the use of continuous or active learning (AL), which
predicts which data should be labeled and added to the training dataset of a model
in order to achieve a high improvement in performance [371]. Additionally, AL
contains updating routines to take these new data-points into account. To maximally
profit from AL, AL should already be taken into account in the radiomics model
construction, as not all radiomics methods are suitable for AL. One open challenge of
employing AL in clinical practice is how to perform quality assurance and verification
of the results, e.g. in obtaining FDA and CE marking, which can only be solved by
incorporating dynamic validation routines which can be repeated upon changing
the radiomics models.

Fifth, and most important, is collaboration and convergence between the various
disciplines involved in radiomics. To address clinical relevance, develop large-scale
datasets, integrate standardization and evaluation guidelines, and continuously
improve existing models, i.e., the four key factors discussed previously, researchers
from various clinical and technical domains, and the clinicians who would ultimately
use these radiomics models, have to collaborate. Without the support of clinicians,
especially radiologists, radiomics will not make the transition to clinical practice.
Recent surveys on AI in radiology in over 1,000 radiologists indicated fear of replace-
ment, a lack of knowledge, lack of acceptance, and therefore various hurdles for the
translation to clinical practice [367, 368]. Hence, to overcome these hurdles radiomics
researchers should make an effort to actively reach out to clinicians: to identify
which clinical problems are key; to provide education on radiomics to clinicians,
and vice versa, to provide education about the clinical background and problems
to engineers; and to increase the interpretability of radiomics models, and thus
their acceptance. An example of such an initiative addressing these factors is the
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“convergence alliance”, consisting of the Delft University of Technology, Erasmus
Medical Center, and Erasmus University Rotterdam. To bridge the boundaries be-
tween clinical, technical, economical, and ethical sciences, The convergence alliance
plans to create a technical university medical center [372, 373].

I find it highly unlikely that radiomics will replace radiologists. Rather, radiomics
can serve as an aid for radiologists, replacing tedious, simple routine tasks, identi-
fying patients or regions of interest to help in prioritizing tasks, and thus leave the
radiologists more time to deal with more complex tasks (where radiomics can also
serve as an aid), and free up time for research. To this end, radiomics should be
seamlessly integrated into the radiologist’s workflow. Hence, more research should
also be conducted on how radiologists can use radiomics models in a clinical setting.

13.2.6 Generalization

One of the most important aspects in future research on radiomics is the generaliza-
tion: clinically, technically, methodologically, and demographically. As identified in
the previous section, convergence and collaboration are key for generalization and
thus for the translation of radiomics to clinical practice. While radiomics studies in
clinical niches conducted in single centers are highly important to provide proof-of-
concepts, large scale initiatives are required to bring radiomics to the next level. To
illustrate this, I will shortly discuss various generalization initiatives in which I am
involved and how such initiatives contribute to generalization.

Most radiomics studies target very specific clinical problems, including the
studies described in Part II of this thesis. While in these studies, we set the inclusion
and exclusion criteria to maximize clinical relevance, these limit the generalizability.
Besides generalization to various types of a disease, generalization to different
demographics and various types of image acquisition protocols is highly relevant for
the translation to clinical practice. Gathering sufficient data to facilitate and evaluate
generalizability can only be achieved in large-scale collaborative efforts between
clinical centers. I have co-founded two of such initiatives. The first is coined the “SAI”
(Sarcoma Artificial Intelligence) consortium [374], a collaborative effort between six
medical centers and associations from different countries (The Netherlands, Poland,
United Kingdom, and the United States of America). Our aim is to develop a
comprehensive soft tissue tumor diagnostic radiomics model, both for phenotyping
and grading, trained and validated in a large, multi-center cohort, and evaluated
in a clinical setting. Second, I co-founded the “LAI” (Liver Artificial Intelligence)
consortium [375], a collaborative effort between eighteen medical centers, patient
and clinician associations, and companies, originating from eight different countries
(The Netherlands, Belgium, France, Sweden, Spain, Italy, Austria, and the United
States of America). Our aim is to create a benchmark MRI data collection, and a
comprehensive MRI-based liver lesion phenotyping radiomics model. By combining
domain knowledge from different fields, building large, multi-center, comprehensive
benchmark datasets, and focus on clinical applicability and interpretability, we aim
to contribute to the generalizability of radiomics.

The SAI and LAI consortia are primarily focused on clinical generalization,
thus mostly including clinical experts. Complementary to these initiatives, the
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European Cancer Imaging (EuCanImage) consortium aims to develop a cancer
imaging platform to facilitate AI in oncology [376]. EuCanImage thus focuses on the
technical, methodological, engineering, and infrastructure parts. The infrastructure
and methods developed in EuCanImage to anonymize, curate, and store data, as well
as to train and validate radiomics methods, could therefore substantially contribute
to clinical initiatives such as the SAI and LAI consortia. Convergence of such
complementary clinical and technical initiatives are key for the generalization of
quantitative imaging biomarkers.

The question raises whether true generalization is feasible. In this thesis, we
have shown generalization in dealing with data with substantial heterogeneity from
different centers. However, this was mostly done on data from the Netherlands.
Hence, to truly make these models generalizable, we should widen the scope, not
only in terms of imaging heterogeneity, but also to incorporate variations in for
example demographics and ethnicity. As machine learning models are only as good
as the data on which they are trained, it is difficult to make hard claims relating to
generalizability to unseen instances without comprehensively training (or testing)
of these models on all expected data variations. However, a dataset containing
sufficient samples of all expected data variations is an utopia. Therefore, a more
realistic scenario is to locally adapt these models to the local data variations. To this
end, the AL routines I suggested in Subsection 13.2.5 can be employed.

I hope more of these initiatives will be founded in the future, expanding in scale
and scope. Moreover, I hope that these initiatives will generalize even more, and
one day into one big initiative in science to collaborate on a large scale in an open
fashion.

13.2.7 Overcoming the hurdles towards open science

For radiomics, sharing of data is crucial for algorithm development and repro-
ducibility, benchmarking, external validation, and therefore the translation to clinical
practice. A recent study [28] even warned that radiomics research must achieve
“higher evidence levels” to avoid a reproducibility crisis such as the recent one in
psychology [87]. As open science has been shown to be beneficial for the careers
of researchers [326], nothing seems to be in the way of open science. However, still
relatively few radiomics studies publicly publish their data and make their code
available open-source. I have identified two key factors to overcome this lack of open
science.

Firstly, the current recognizing and rewarding of open science poses a paradox.
On one hand, open science has been shown to contribute to the career of researchers
[326] and is valued by the field, e.g. reproducibility is highly valued. Hence im-
plicitly, open science is recognized and rewarded. On the other hand, open science
is generally not explicitly recognized and rewarded, and thus researchers initially
may not see or gain the added value and will not go through the additional efforts
required by open science for free. The recent AI guidelines published by Radiology,
one of the highest impact radiology journals, include that AI algorithms should
be publicly available [25]. The recent guidelines from another high impact journal,
European Radiology, do not mention sharing of algorithms [369]. Open science should
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thus be explicitly recognized and rewarded. Journals should explicitly mention the
sharing of data and algorithms in their submission guidelines, and incorporate eval-
uating these in their reviewing process. Institutes should encourage researchers to
publish datasets and software implementations in dedicated journals. Grants should
value open science: a good example example is the NWO Open Science fund that
was launched recently in 2020 [377]. Moreover, institutes and research communities
should facilitate the processes involved in open science, such as providing standard
data transfer agreements, ethical committee protocols, anonymization protocols, and
data storing and sharing protocols and infrastructure.

Open science can be conducted in multiple ways. Instead of sharing data between
different centers, algorithms can be shared such that the data does not have to leave
the centers, which is known as “federated learning” [378]. Sharing algorithms is
often easier from a legal and ethical perspective than sharing patient data. Federated
learning is relatively new and faces various challenges [379], including the need
for local expertise for data curation, need for local hardware and expertise to
run the algorithms, and the need to ensure no leakage of privacy. Two major
disadvantages of federated learning are that; 1) it negatively affects interpretability
and bias evaluation, as researchers do not have access to the data; and 2) it limits
the (radiomics) methods that can be applied, as not all central learning methods are
suitable for federated learning. For these reasons, I think that federated learning
brings more disadvantages than benefits, and that open science has more added
value to science.

13.3 Conclusion

To streamline quantitative imaging biomarker development, this thesis describes an
adaptive framework to automatically construct and optimize the radiomics workflow
using automated machine learning. To facilitate reproducibility and provide a
large, multi-center, clinically relevant database for benchmarking, improved training,
and external validation, I contributed to open science by publicly releasing a large
imaging database, releasing the code of my WORC radiomics toolbox open-source,
as well as the code to reproduce all the experiments described in this thesis. The
framework was validated and its generalization evaluated in a large number of
clinical applications. In this thesis, in eight of these applications, the evaluation of my
framework to develop biomarkers is described in detail: 1) liposarcoma and lipoma;
2) desmoid-type fibromatosis; 3) gastrointestinal stromal tumors; 4) prostate cancer;
5) melanoma lung metastases; 6) mesenteric fibrosis; 7) colorectal liver metastases;
and 8) primary solid liver lesions. The resulting biomarkers give insight into the
(absence of a) relation between quantitative imaging features and various clinical
labels or outcomes, and can be used in a research context to discover more about
these specific diseases to improve patient care. The adaptive framework can be used
to efficiently probe datasets for biomarkers by conducting a validated, standardized
radiomics baseline with minimal effort. I have identified several promising directions
for future research, including methodological innovations, integrated diagnostics,
how to facilitate the translation to clinical practice, and improve the generalization
of radiomics biomarkers. Hopefully, one or more of these biomarkers can make the
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translation to clinical practice in order to contribute to personalized medicine and to
improvement of patient care.







Summary

The shift in medicine towards personalized medicine has led to an increased
need for quantitative and objective biomarkers. These biomarkers can be used to
relate patient data to a biological state, outcome or condition. Radiomics, i.e., the use
of quantitative imaging features and machine learning, has shown many successes
in various clinical applications to identify and extract such biomarkers from medical
imaging. However, the field faces various challenges, including how to find the
optimal method per application, a lack of public, large, multi-center cohorts, a lack
of image acquisition standardization, and a lack of reproducibility for both radiomics
methods and biomarkers in a routine clinical setting. Overcoming these barriers is
vital for the translation of radiomics models to clinical practice.

In this thesis, I have addressed these major challenges in radiomics. In Part I,
I have made various contributions to the methodology of radiomics, including
the development of an adaptive radiomics framework, and have contributed to
the publicly available data for radiomics. In Part II, in collaboration with clinical
researchers from various disciplines, I used the developed framework to obtain novel
insights into the use of radiomics-based quantitative imaging biomarkers in eight
clinical applications. Each of these aspects is summarized below.

Part I - Adaptive radiomics framework

In Chapter 2, a general introduction to radiomics is presented. This chapter covers
the complete spectrum of a typical radiomics study, starting from the acquisition
and preparation of the data and the segmentation of regions of interest, to the actual
radiomics methods for feature extraction and data mining to create predictions
models based on the radiomics features. Additionally, insights into the design of
a radiomics study and an overview of the required infrastructure components are
provided.

In Chapter 3, I developed an adaptive radiomics to generalize radiomics across
clinical applications. To this end, we state radiomics as a modular workflow, i.e., a
specific combination of various algorithms and their associated hyperparameters.
Examples of components included in this workflow are feature extraction, feature
selection, dimensionality reduction, dataset resampling, and machine learning. For
each component, the framework includes a large collection of commonly used algo-
rithms in radiomics. To automatically construct and optimize the complete radiomics
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workflow from this search space of algorithms and hyperparameters, I exploited
recent advances in automated machine learning. To this end, the construction of
a radiomics workflow was formulated as a Combined Algorithm Selection and
Hyperparameter (CASH) optimization problem. Instead of selecting the single best
workflow, hyperensembles were introduced to combine different workflows into a
single model, improving both the performance of the resulting radiomics model and
the stability of the workflow optimization. The resulting framework was extensively
validated in twelve clinical applications, which showed the generalization of the
method across applications. I implemented my framework in the WORC software
toolbox, which was released open-source.

In Chapter 4, I describe the publicly released WORC∗ database, consisting of
imaging data, segmentations, and ground truth labels of in total 930 patients from
six clinical applications. The database facilitates reproducibility and allows others
to use the data for training, validation, and benchmarking of both radiomics and
segmentation methods.

Part II - Novel radiomics biomarkers in clinical applications

In Chapter 3, I validated my adaptive radiomics framework in twelve clinical ap-
plications. In this chapter, for each of these applications, a single, relatively simple
experiment was performed. In eight of these applications, we studied the use of
my framework in more detail to evaluate the potential of radiomics as a quantita-
tive imaging biomarker in the specific application. While clinically independent,
these studies were performed in a similar way. Each study includes multi-center,
routinely acquired imaging data with little restrictions on the image acquisition pro-
tocols, resulting in heterogeneity in the imaging data. Next, my adaptive radiomics
framework was used to develop biomarkers. For each study, the code to apply the
WORC toolbox to perform the experiments was released open-source. Six of these
datasets (those from chapters 5, 6, 7, 9, 11 and 12) were included in the public dataset
described in Chapter 4.

In Chapter 5, we evaluated the use of my radiomics framework to distinguish
between well differentiated liposarcomas and lipomas on magnetic resonance imag-
ing (MRI). Currently, the distinction is obtained using a biopsy and determining the
MDM2 amplification status using the obtained tissue. Our results showed that there
is a relationship between radiomics features and the MDM2 amplification status,
and that radiomics models based on T1-weighted (T1w) and T1w + T2-weighted
(T2w) MRI both outperformed three radiologists. Additionally, we showed that a
strong relation between the tumor volume and the MDM2 amplification status, but
also that other radiomics features do provide additional predictive value.

In Chapter 6, we evaluated the use of my radiomics framework for the differential
diagnosis and mutation stratification of desmoid-type fibromatosis on MRI. Currently,
the diagnosis is obtained using a biopsy followed by β-catenin staining of the
obtained tissue and CTNNB1 mutational analysis. Our results showed that there is a
relationship between radiomics features and the differential diagnosis, and that the
radiomics model based on T1-w MRI performed similar to two radiologists. Adding
T2w or T1w post-contrast MRI did not substantially improve the model, indicating
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that a plain T1w MRI scan may be sufficient to make the distinction. However, our
results indicated that there is no relationship between the radiomics features and the
CTNNB1 mutational status, which is in line with the absence of literature linking
DTF MRI appearance to the CTNNB1 mutation.

In Chapter 7, we evaluated the use of my radiomics framework for the differential
diagnosis and mutation stratification of gastro-intestinal stromal tumors (GISTs) on
computed tomography (CT). Currently, the diagnosis is obtained using a biopsy
followed by pathological analysis of the obtained tissue. Moreover, as treatment
planning of GISTs is also based on their molecular profile, the c-KIT mutational status
or mitotic index (MI) are determined. Our results showed that there is a relationship
between radiomics features and the differential diagnosis, and the radiomics model
based on CT performed similar to three radiologists. However, our results indicated
that there is no relationship between the radiomics features and the c-KIT mutational
status or MI. As this may be attributed to the small sample size, we invite others to
validate or improve upon our results on larger datasets or using different methods.

In Chapter 8, we evaluated the use of my radiomics framework to distinguish
high grade from low grade prostate cancer based on multiparametric MRI. Currently,
the diagnosis is obtained using a biopsy followed by determination of the Gleason
score. Our results showed that there is a relationship between radiomics features
and the Gleason score, and that radiomics models based on muliparametric MRI
outperformed two radiologists. Moreover, we evaluated the generalizability by
training and externally validating the model in a multi-center, multi-vendor cohort.
We showed that the models trained on data from a single-center showed a substantial
drop in performance upon external validation, indicating major differences between
centers in imaging of prostate cancer. However, the models trained on multi-center
data showed a similar performance in the internal and external validation, indicating
that training on multi-center data can aid in overcoming these differences. To
make the transition to clinical practice, training and validation of radiomics models
should thus be performed in multi-center scenarios with data representative of the
population on which the model will be applied.

In Chapter 9, we evaluated the use of my radiomics framework for the muta-
tion stratification of melanoma lung metastases on CT. Specifically, we evaluated
radiomics to predict the BRAF P.V600E mutation status, as this is used for treatment
planning. Currently, the mutation status is obtained using a biopsy followed by
using a polymerase chain reaction based assay or next generation sequencing. Our
results showed that there is no relationship between radiomics features and the
BRAF P.V600E mutational status of melanoma lung metastases, nor the visual scores
of a radiologist. This validates my radiomics framework, showing that it does not
invent a relation when one does not exist.

In Chapter 10, we evaluated the use of my radiomics framework to predict
symptomatic mesenteric mass in small intestinal neuroendocrine tumors on CT.
Currently, there is no method to make this diagnosis: whether a mass is symptomatic
is determined during follow-up, as some patients develop severe complications. Our
results showed that there is a relationship between CT-based radiomics features and
whether a mesenteric mass is symptomatic or asymptomatic. We showed that a
radiomics model based on these features performed similar to five clinicians and
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a multi-disciplinary tumor board. Moreover, our results indicated that radiomics
features of the surrounding mesentery were most predictive, which was confirmed
by the radiomics models.

In Chapter 11, we evaluated the use of my radiomics framework to distinguish
pure histopathological growth patterns (HGPs) of colorectal liver metastases (CRLMs)
on preoperative CT. Currently, preoperative HGP assessment is not possible, as
assessment requires pathology slices of resection specimens to be reviewed with a
light microscope. Our results showed that there is a relationship between radiomics
features and the pure replacement and desmoplastic HGPs, and the radiomics model
based on CT showed potential for automatic distinction of these two pure HGPs.
Moreover, we combined the automatic classification of the radiomics model with
a convolutional neural network for automatic segmentation of the CRLMs, and
showed that the resulting model is observer independent and robust to segmentation
variations.

In Chapter 12, we evaluated the use of my radiomics framework to differentiate
malignant and benign primary solid liver lesions on MRI. Currently in clinical
practice, a first assessment is commonly made by the radiologist based on MRI.
However, as the diagnosis is challenging, a biopsy is often performed followed by
pathological examination to make the final diagnosis. In this study, we trained a
radiomics model on a dataset from our hospital (i.e., the Erasmus MC, Rotterdam,
the Netherlands) and externally validated the model in two datasets from the
Maastricht UMC+ (Maastricht, the Netherlands) and Hôpital Beaujon (Paris, France).
Our results showed that there is a relationship between radiomics features and
the differentiation between malignant and benign liver lesions, and the externally
validated radiomics model based on MRI performed similar to two radiologists.

Conclusion

In summary, I have developed an adaptive radiomics framework to streamline the de-
velopment of quantitative imaging biomarkers. To this end, I generalized radiomics
across applications by exploiting recent advances in automated machine learning.
The framework was validated and its generalizability evaluated in twelve different
clinical applications. I publicly released a large database to facilitate reproducibil-
ity and which others can use to improve the training of, externally validate, and
benchmark radiomics and segmentation methods. Hence, my framework may be
used to streamline the construction and optimization of radiomics workflows on
new applications, and thus for probing datasets for radiomics signatures.

In collaboration with clinical researchers from various disciplines, I used the
developed adaptive radiomics framework to obtain novel insights into the use of
radiomics-based quantitative imaging biomarkers in eight clinical applications: 1)
liposarcoma and lipoma; 2) desmoid-type fibromatosis; 3) gastrointestinal stromal
tumors; 4) prostate cancer; 5) melanoma lung metastases; 6) mesenteric fibrosis;
7) colorectal liver metastases; and 8) primary liver cancer. The insights into the
relation between quantitative radiomics features and these various diseases, and
the additional predictive radiomics models, could be invaluable for transition of
quantitative imaging biomarkers to clinical practice. The performances of the various
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radiomics models reported in my studies and the comparison to scoring by various
clinicians indicate that these biomarkers have the potential to improve the diagnostic
work-up and treatment planning of patients in the future.

Future research can build upon my work by using my open-source software
and public datasets. Moreover, future research could benefit by taking into account
my recommendations presented in this thesis relating to the expansion of the
horizon of radiomics applications, extensions of the automated machine learning
approach including meta-learning and (multi-objective) optimization strategies, how
to improve the interpretability of these models and leverage their uncertainty, the
extension of radiomics with deep-learning-based approaches, integrated diagnostics,
the transition to clinical practice, generalization, and open science.





Nederlandse samenvatting

In geneeskunde is er een verschuiving van een uniforme aanpak naar personalized
medicine, i.e., een gepersonaliseerde, op maat gemaakte aanpak op basis van de
unieke kenmerken van een patiënt. Hierdoor neemt de vraag naar objectieve
biomarkers toe, welke gebruikt kunnen worden om data van patiënten te relateren
aan bepaalde biologische processen, uitkomstmaten of aandoeningen. In radiomics
worden kwantitatieve karakteristieken of features op basis van medische beelden
berekend en in combinatie met machine learning gebruikt om biomarkers te iden-
tificeren en ontwikkelen. Radiomics is met veel succes in verschillende klinische
toepassingen gebruikt is. Er zijn echter een aantal uitdagingen, waaronder het vinden
van de optimale methode per toepassing, gebrek aan grote, publieke, multi-center
cohorten, gebrek aan standaardisatie in het maken van de medische beelden, en de
lage reproduceerbaarheid van zowel de radiomics methodes als de biomarkers in
een routine klinische setting. Het overkomen van deze barrières is cruciaal voor de
translatie van radiomics modellen naar de klinische praktijk.

In dit proefschrift heb ik mij gericht op deze uitdagingen in radiomics. In Deel
1 heb ik verschillende methodologische bijdragen op het gebied van radiomics
geleverd, waaronder het ontwikkelen van een adaptieve radiomics methode, en
bijgedragen aan de publiek beschikbare data voor radiomics. In Deel 2 heb ik,
in samenwerking met klinische onderzoekers van verschillende disciplines,deze
methode in acht verschillende klinische gebieden toegepast om nieuwe inzichten
te verkrijgen in het gebruik van kwantitatieve biomarkers op basis van medische
beelden en radiomics. Deze twee bijdrages zijn hieronder samengevat.

Deel 1 - Adaptieve radiomics methode

Hoofdstuk 2 geeft een algemene introductie tot het veld van radiomics. Dit hoofdstuk
beschrijft het complete spectrum van een typische radiomics studie, beginnend bij
het verzamelen en voorbereiden van de data en het intekenen van de belangrijkste
regio’s in de beelden, tot de daadwerkelijke radiomics methodes voor het berekenen
van features en methodes om op basis van deze features voorspellende modellen te
ontwikkelen. Daarnaast wordt het ontwerpen van een radiomics studie behandeld
en een overzicht gegeven van de benodigde infrastructuurcomponenten.

In Hoofdstuk 3 heb ik een adaptieve radiomics methode ontwikkelt om radiomics
te generaliseren naar verschillende klinische toepassingen. Om dit mogelijk te maken
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beschouwen we radiomics als een zogenoemde modulaire workflow: een specifieke
combinatie van bepaalde algoritmes en de bijbehorende hyperparameters. Voor-
beelden van onderdelen die deze workflow bevat zijn het berekenen van features, het
selecteren van features, het reduceren van het aantal dimensies, resampling van de
dataset, en machine learning. Voor elk van deze onderdelen bevat de methode een
grote collectie van algoritmes die in radiomics veel gebruikt worden. Om het con-
strueren van de complete radiomics workflow uit deze verzameling van algoritmes
en hyperparameters te automatiseren, en dit proces ook te optimaliseren, maak ik
gebruik van recente ontwikkelingen uit het gebied van de automatische machine
learning. Hiervoor formulier ik het selecteren van algoritmes en hyperparameters om
een radiomics workflow te construeren als een gecombineerd optimalisatieprobleem.
In plaats van enkel de beste workflow te selecteren, maak ik gebruik van hyper-
ensembles waarin verschillende workflows tot één model gecombineerd worden, wat
zowel de prestaties van de resulterende modellen als de stabiliteit van de workflow
optimalisatie bevorderd. De resulterende methode is uitgebreid gevalideerd in twaalf
klinische toepassingen, wat aantoont dat de methode generaliseert over verschillende
toepassingen. Ik heb deze methode geïmplementeerd in de WORC toolbox, die ik
beschikbaar heb gesteld als open source software.

In Hoofdstuk 4 beschrijf ik de WORC∗ database, welke publiek beschikbaar is
gemaakt. Deze database bestaat uit medische beelddata, intekeningen, en gouden
standaard labels van in totaal 930 patiënten uit zes klinische toepassingen. Deze
database bevordert de reproduceerbaarheid en staat anderen toe de data te gebruiken
voor het trainen, valideren, en benchmarken van zowel radiomics methodes als
methodes om intekeningen te genereren.

Deel 2 - Nieuwe radiomics biomarkers in klinische applicaties

In Hoofdstuk 3 heb ik mijn adaptieve radiomics methode in twaalf verschillende
klinische toepassingen gevalideerd. In dat hoofdstuk heb ik voor elk van deze
toepassingen een enkel, relatief simpel experiment uitgevoerd. In acht van deze
toepassingen hebben we het gebruik van mijn methode in meer detail geëvalueerd
om zo de mogelijkheden voor het gebruik van radiomics als kwantitatieve biomarker
voor medische afbeeldingen beter te analyseren. Hoewel deze studies vanuit een
klinisch oogpunt onafhankelijk van elkaar zijn, hebben we deze op een vergelijkbare
manier uitgevoerd. In elke studie wordt gebruik gemaakt van multi-center, routine
verzamelde beelddata met weinig restricties op de acquisitieprotocollen van de
beelden. Vervolgens hebben we mijn adaptieve radiomics methode toegepast om
biomarkers te ontwikkelen. Voor elke studie is de code om de experimenten met de
WORC toolbox uit te voeren open source beschikbaar gesteld. Zes van deze datasets,
namelijk die uit Hoofdstukken 5, 6, 7, 9, 11 en 12, vormen samen de publieke dataset
die in Hoofdstuk 4 beschreven is.

In Hoofdstuk 5 hebben we het gebruik van mijn radiomics methode om onder-
scheid te maken tussen goed gedifferentieerde liposarcomen en lipomen op basis van
magnetic resonance imaging (MRI) geëvalueerd. Momenteel wordt deze diagnose
bepaald door afname van een biopt en bepaling van de MDM2 amplificatie. Onze
resultaten laten zien dat er een relatie is tussen radiomics features en de MDM2 am-
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plificatie status, en dat radiomics modellen op basis van T1-gewogen (T1w) en T1w
+ T2-gewogen (T2w) MRI beiden beter presteerden dan drie radiologen. We hebben
daarnaast aangetoond dat er een sterke relatie is tussen het volume van de tumor
en de MDM2 amplificatie, maar dat ook andere radiomics features voorspellende
waarde bevatten.

In Hoofdstuk 6 hebben we het gebruik van mijn radiomics methode voor de
differentiaal diagnose en het onderscheiden van verschillende mutaties in desmoïd
tumoren op basis van MRI geëvalueerd. Momenteel wordt deze diagnose bepaald
door afname van een biopt, gevolgd door β-catenine kleuring en bepaling van de
CTNNB1 mutatie. Onze resultaten laten zien dat er een relatie is tussen radiomics
features en de differentiaal diagnose, en dat het radiomics model op basis van
T1w MRI vergelijkbaar presteert als twee radiologen. Het toevoegen van T2w of
T1w MRI na contrast leidde niet tot substantiële verbeteringen in het model, wat
aangeeft dat een gewone T1w MRI scan mogelijk voldoende is om dit onderscheid te
maken. Echter, onze resultaten gaven aan dat er geen relatie bestaat tussen radiomics
features en de CTNNB1 mutatie, wat in lijn is met de absentie van literatuur die de
presentatie van desmoïd tumoren op MRI linkt aan de CTNNB1 mutatie.

In Hoofdstuk 7 hebben we het gebruik van mijn radiomics methode voor de
differentiaal diagnose en het onderscheiden van verschillende mutaties in gastro
intestinale stroma tumoren (GISTs) op basis van computed tomography (CT) geëval-
ueerd. Momenteel wordt deze diagnose bepaald door afname van een biopt, gevolgd
door een histopathologische analyse van het verkregen weefsel. Aangezien het be-
handelplan van GISTs gebaseerd wordt op het moleculaire profiel worden daarnaast
de c-KIT mutatie status en de mitose index (MI) bepaald. Onze resultaten laten zien
dat er een relatie bestaat tussen radiomics features en de differentiaal diagnose, en
dat het radiomics model op basis van CT vergelijkbaar presteert als drie radiologen.
Echter, onze resultaten gaven aan dat er geen relatie bestaat tussen radiomics features
en de c-KIT mutatie status of de MI. Omdat dit mogelijk toegeschreven kan worden
aan de kleine omvang van de dataset, nodigen we anderen uit om onze resultaten
te valideren of te verbeteren op grotere datasets of door het gebruik van andere
methodes.

In Hoofdstuk 8 hebben we het gebruik van mijn radiomics methode om
hooggradig van laaggradig prostaatkanker te onderscheiden op basis van mul-
tiparametrische MRI geëvalueerd. Momenteel wordt de diagnose bepaald door
afname van een biopt, gevolgd door bepaling van de Gleason score. Onze resultaten
laten zien dat er een relatie bestaat tussen radiomics features en de Gleason score,
en dat een radiomics model gebaseerd op multiparametrische MRI beter presteerde
dan twee radiologen. Daarnaast hebben we geëvalueerd hoe ons model generaliseert
door het te trainen en extern te valideren in een cohort uit meerdere ziekenhuizen
en met scanners van verschillende fabrikanten. We hebben laten zien dat modellen
die getraind waren op data van een enkel ziekenhuis substantieel minder goed
presteerden in externe validatie, wat aangeeft dat er grote verschillen zijn in de
MRI scans tussen de ziekenhuizen. De modellen die getraind waren op data van
meerdere ziekenhuizen presteerden daarentegen vergelijkbaar in de interne en ex-
terne validatie. Dit laat zien dat het trainen op data uit verschillende ziekenhuizen
kan helpen om de verschillen tussen de MRI scans te overbruggen. Om de transitie
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naar de klinische praktijk te maken, zou het trainen en valideren van radiomics
modellen dus gedaan moeten worden in datasets vanuit meerdere ziekenhuizen met
data die representatief is voor de gehele populatie waarop het model toegepast zal
worden.

In Hoofdstuk 9 hebben we het gebruik van mijn radiomics methode om de
verschillende mutaties van uitzaaiingen van melanomen in de long te onderscheiden
op CT geëvalueerd. We hebben specifiek gekeken of radiomics de BRAF P.V600E
mutatie status kan voorspellen, omdat deze gebruikt wordt in bepaling van de
behandeling. Momenteel wordt de mutatie status bepaald door afname van een biopt,
gevolgd door het gebruik van een reeks op basis van een polymerasekettingreactie
of “next generation sequencing”. Onze resultaten laten zien dat er noch een relatie
is tussen radiomics features en de BRAF P.V600E mutatie status van uitzaaiingen
van melanomen in de long, noch tussen de visuele scores van een radioloog en de
mutatie status. Dit valideert mijn radiomics methode, omdat dit laat zien dat mijn
methode geen relatie verzint als deze niet bestaat.

In Hoofdstuk 10 hebben we het gebruik van mijn radiomics methode om op
CT te voorspellen of een mesenteriale massa van kleine neuro-endocriene tumoren
symptomatisch is geëvalueerd. Momenteel is er geen methode om deze diagnose te
stellen: of een massa symptomatisch is wordt bepaald tijdens follow-up wanneer
bij sommige patiënten complicaties optreden. Onze resultaten laten zien dat er een
relatie is tussen radiomics features op basis van CT en of een mesenteriale massa
symptomatisch of asymptomatisch is. We hebben laten zien dat een radiomics model
gebaseerd op deze features vergelijkbaar presteerde als vijf artsen en een multi-
disciplinair overleg. Daarnaast geven onze resultaten aan dat radiomics features van
het omliggende mesenterium het meest voorspellend waren, wat bevestigd wordt
door de radiomics modellen.

In Hoofdstuk 11 hebben we het gebruik van mijn radiomics methode om pure
histopathologische groeipatronen (HGPs) van colorectale levermetastasen (CRLMs)
op preoperatieve CT geëvalueerd. Momenteel is het niet mogelijk om preoperatief
het HGP te bepalen, omdat hiervoor pathologie coupes verkregen uit een resectie
beoordeeld moeten worden met een microscoop. Onze resultaten laten zien dat er
een relatie is tussen radiomics features en pure “replacement” en “desmoplastische”
HGPs, en dat een radiomics model gebaseerd op CT potentie heeft om automatisch
deze twee pure HGPs van elkaar te onderscheiden. Daarnaast hebben we het
automatische classificatie model op basis van radiomics gecombineerd met een
convolutioneel neuraal netwerk om automatisch de CRLMs te segmenteren. We
laten zien dat het resulterende model niet afhangt van een waarnemer en robuust is
voor variatie in de segmentaties.

In Hoofdstuk 12 hebben we het gebruik van mijn radiomics methode om maligne
van benigne primaire solide levertumoren op basis van MRI te onderscheiden
geëvalueerd. Momenteel wordt in de klinische praktijk een eerste inschatting gedaan
door een radioloog op basis van MRI. Echter, omdat deze diagnose complex is, wordt
er vaak alsnog een biopt afgenomen gevolgd door een histopathologische analyse om
de uiteindelijke diagnose te bepalen. In deze studie hebben we radiomics modellen
getraind op een dataset uit ons ziekenhuis (het Erasmus MC, Rotterdam), en extern
gevalideerd in twee datasets uit het Maastricht UMC+ (Maastricht) en Hôpital
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Beaujon (Parijs, Frankrijk). Onze resultaten laten zien dat er een relatie bestaat
tussen radiomics features en het onderscheid tussen maligne en benigne tumoren,
en dat het extern gevalideerde radiomics model op basis van MRI vergelijkbaar
presteert als twee radiologen.

Conclusie

Samenvattend heb ik een adaptieve radiomics methode ontwikkeld om het ontwikke-
len van kwantitatieve biomarkers op basis van beeldvorming te stroomlijnen. Om
dit mogelijk te maken heb ik radiomics gegeneraliseerd door recente ontwikkelingen
op het gebied van automatische machine learning te gebruiken. Deze methode is
gevalideerd en de generaliseerbaarheid geëvalueerd in twaalf verschillende klinische
toepassingen. Ik heb een grote dataset publiek beschikbaar gemaakt om de repro-
duceerbaarheid te bevorderen. Deze dataset kan door anderen gebruikt worden om
het trainen van modellen te verbeteren, deze extern te valideren, en om radiomics
en segmentatie methodes te benchmarken. Mijn methode kan gebruikt worden om
het ontwikkelen en optimaliseren van radiomics methodes in nieuwe applicaties te
stroomlijnen, en om in datasets op efficiënte wijze te zoeken naar nieuwe radiomics
patronen.

In samenwerking met klinische onderzoekers van verschillende disciplines heb
ik de ontwikkelde adaptieve radiomics methode gebruikt om nieuwe inzichten te
krijgen in het gebruik van kwantitatieve biomarkers op basis van medische beelden
en radiomics in acht klinische applicaties: 1) liposarcomen en lipomen; 2) desmoide
tumoren; 3) gastro intestinale stroma tumoren; 4) prostaatkanker; 5) long metastasen
van melanomen; 6) mesenteriale fibrose; 7) colorectale levermetastasen; en 8) primaire
levertumoren. De inzichten in de relatie tussen kwantitatieve radiomics features
en deze verschillende ziektes, en daarnaast de voorspellende radiomics modellen,
zouden van onschatbare waarde kunnen zijn voor de transitie van kwantitatieve
biomarkers op basis van beeldvorming naar de klinische praktijk. De prestaties
van de verschillende radiomics modellen gerapporteerd in mijn studies, en de
vergelijking met het scoren door verschillende artsen, laten zien dat deze biomarkers
potentie hebben om het diagnostische traject en de behandelplannen van patiënten
in de toekomst te verbeteren.

Toekomstig onderzoek kan voortborduren op mijn werk door het gebruik van
mijn open source software en publieke datasets. Daarnaast kan toekomstig werk
profiteren van mijn aanbevelingen in deze thesis met betrekking tot het verbreden
van de horizon van radiomics applicaties, het uitbreiden van de automatische ma-
chine learning benadering door het gebruik van meta-learning en (multi-objective)
optimalisatie strategieën, het verbeteren van de interpreteerbaarheid van deze mod-
ellen en het benutten van hun onzekerheid, het integreren van verschillende vormen
van diagnostiek, de transitie naar de klinische praktijk, generalisatie, en open weten-
schap.
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Acronyms

5-HIAA 5-hydroxyindoleacetic acid.

AD Alzheimer’s disease.

AdaBoost adaptive boosting.

ADASYN adaptive synthetic sampling.

ADC apparent diffusion coefficient.

ADNI Alzheimer’s disease neuroimaging initiative.

AFS anterior fibromuscular stroma.

AI artificial intelligence.

AL active learning.

API application programming interface.

AUC area under the curve.

AutoML automated machine learning.

BCA balanced classification accuracy.

BCR Balanced Classification Rate.

BRAF-mt BRAF mutated.

BRAF-mt BRAF wild type.

BraTS brain tumor segmentation challenge.

BSc bachelor of science.

CA chromogranin A.

CASH combined algorithm selection and hyperparameter optimization.

CEA carcinoembryonic antigen.
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CI confidence interval.

cl centiliter.

cm centimeter.

CN cognitively normal.

CNN convolutional neural network.

CoLlAGe co-occurrence of local anisotropic gradient orientations.

COM center of mass.

CRLM colorectal liver metastases.

CT computed tomography.

CTP clinical trial processor.

DCE dynamical contrast enhanced.

DDLPS dedifferentiated liposarcoma.

dHGP desmoplastic histopathological growth pattern.

DICOM digital imaging and communications in medicine.

DSC Dice similarity coefficient.

DTF desmoid-type fibromatosis.

DWI diffusion-weighted imaging.

EASL European association for the study of the liver.

EGFR epidermal growth factor receptor.

EMC Erasmus MC, university medical center, Rotterdam, the Netherlands.

ENETS European neuroendocrine tumor society.

EuCanImage European cancer imaging.

FFE fast field echo.

FISH fluorescence in situ hybridization.

FNH focal nodular hyperplasia.

FPR false positive rate.

FS fat saturation.
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GD gadolinium contrast.

GE general electric.

GIST gastrointestinal stromal tumor.

GLCM gray level co-occurrence matrix.

GLDM gray level dependence matrix.

GLRLM gray level run length matrix.

GLSZM gray level size zone matrix.

GPU graphics processing unit.

GS gleason score.

GTV-1 first gross tumor volume.

GUI graphical user interface.

GWAS genome wide association studies.

HCA hepatocellular adenoma.

HCC hepatocellular carcinoma.

hf histogram feature.

HGP histopathological growth pattern.

HPF high power fields.

HU Hounsfield units.

IBSI imaging biomarker standardization initiative.

ICC intra-class correlation coefficient.

iCCA intrahepatic cholangiocarcinoma.

IoT internet of things.

IQR interquartile range.

IR inversion recovery.

KNN k-nearest neighbors.

KVP kilovoltage peak.

LAI liver artificial intelligence.
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LASSO least absolute shrinkage and selection operator.

LBP local binary pattern.

LDA linear discriminant analysis.

LIDC lung image database consortium.

LITS liver tumor segmentation.

LoG Laplacian of Gaussian.

LR logistic regression.

MCI mild cognitive impairment.

METC medische ethische toetsings commissie.

MI mitotic index.

MM mesenteric mass.

mm millimeter.

mpMRI multi-parametric magnetic resonance imaging.

MR magnetic resonance.

MRI magnetic resonance imaging.

MS multi slice.

ms milliseconds.

MSc master of science.

MSD medical segmentation decathlon.

MTB multidisciplinary tumor board.

NAS neural architecture search.

NGTDM neighbourhood grey tone difference matrix.

NLP normal liver parenchyma.

NPV negative predictive value.

NWO Netherlands organization for scientific research.

of orientation feature.

PC postcontrast.
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PCA principal component analysis.

PCa prostate cancer.

PCMM Prostate cancer molecular medicine.

PDw proton density weighted.

PET positron emission tomography.

PIRADS prostate imaging reporting and data system.

PPV positive predictive value.

PSA prostatic specific antigen.

PVP portal venous phase.

PZ peripheral zone.

QDA quadratic discriminant analysis.

RADISTAT radiomic spatial textural descriptor.

RBF radial basis function.

RECIST response evaluation criteria in solid tumors.

RF random forest.

rHGP replacement histopathological growth pattern.

ROC receiver operating characteristic.

ROI region of interest.

RQS radiomics quality score.

RSNA radiological society of North America.

S45F serine 45.

SAI sarcoma artificial intelligence.

SD standard deviation.

sf shape features.

SI-NET small intestinal neuroendocrine tumor.

SM surrounding mesentery.

SMA superior mesenteric artery.
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SMBO sequential model-based optimization.

SMOTE synthetic minority over-sampling technique.

SPAIR spectral attenuated inversion recovery.

SPIR spectral presaturation with inversion recovery.

std standard deviation.

STIR short τ inversion recovery.

STS soft tissue sarcoma.

SVM support vector machine.

T tesla.

T1w T1-weighted.

T2w T2-weighted.

T41A threonine 41.

TCIA the cancer imaging archive.

tf texture feature.

TIRM turbo inversion recovery magnitude.

TPOT tree based optimization tool.

TPR true positive rate.

TS transition zone.

US ultrasound.

WDLPS well differentiated liposarcoma.

WHO world health organization.

WORC workflow for optimal radiomics classification.

WT wild type.

XGBoost extreme gradient boosting.
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Due to the paradigm shift in health care towards personalized medi-
cine, there is an increased demand for biomarkers. Radiomics lever-
ages quantitative medical imaging features and machine learning to 
create biomarkers based on medical imaging. While many radiomics 
methods have been described in the literature, these are generally 
designed for a single application. The overall aim of this thesis is to 
streamline radiomics research, facilitate its reproducibility, and 
simplify its application. In this thesis, we exploit recent advances in 
automated machine learning to develop an adaptive radiomics 
framework and demonstrate its use to develop radiomics biomark-
ers in eight di�erent, independent clinical applications.
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