
 

 

 

 

 

 

 

  

Model-Based Assessment 

of Coastal Aquifer 

Management Options 

A GMDSI worked example report 

by Rui Hugman, John Doherty and Kath Standen 

 



 

 

 

 

 

 

 

 

 

 

 

 

PUBLISHED BY 

The National Centre for Groundwater Research and Training 
C/O Flinders University 
GPO Box 2100 
Adelaide SA 5001 
+61 8 8201 2193 

 

DISCLAIMER 

The National Centre for Groundwater Research and Training, Flinders University advises that the information in 

this publication comprises general statements based on scientific research. The reader is advised and needs to be 

aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions 

must therefore be made on that information without seeking prior expert professional, scientific and technical 

advice. 

CITATION 

For bibliographic purposes this report may be cited as: Hugman, R., Doherty, J. and Standen, K., (2021). Model-

Based Assessment of Coastal Aquifer Management Options. A GMDSI Worked Example Report. National Centre 

for Groundwater Research and Training, Flinders University, South Australia.   

 

FUNDING ACKNOWLEDGEMENT 

The co-author, Kath Standen, has received funding in the frame of the European Union’s Horizon 2020 research 

and innovation programme under the Marie Skłodowska‐Curie grant agreement no 814066. 

 

ISBN:  978-1-925562-63-7 

DOI:    10.25957/a476-x588 

DOI as a weblink:  https://doi.org/10.25957/a476-x588 

COPYRIGHT 

© Flinders University 2021 

Copyright: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be 

reproduced by any process, nor may any other exclusive rights be exercised, without the permission of Flinders 

University, GPO Box 2100, Adelaide 5001, South Australia.  



 

 

PREFACE  
The Groundwater Modelling Decision Support Initiative (GMDSI) is an industry-funded and 

industry-aligned project focused on improving the role that groundwater modelling plays in 

supporting environmental management and decision-making. Over the life of the project, it will 

document a number of examples of decision-support groundwater modelling. These 

documented worked examples will attempt to demonstrate that by following the scientific 

method, and by employing modern, computer-based approaches to data assimilation, the 

uncertainties associated with groundwater model predictions can be both quantified and 

reduced. With realistic confidence intervals associated with predictions of management 

interest, the risks associated with different courses of management action can be properly 

assessed before critical decisions are made.  

GMDSI worked example reports, one of which you are now reading, are deliberately different 

from other modelling reports. They do not describe all of the nuances of a particular study site. 

They do not provide every construction and deployment detail of a particular model. In fact, 

they are not written for modelling specialists at all. Instead, a GMDSI worked example report 

is written with a broader audience in mind. Its intention is to convey concepts, rather than to 

record details of model construction. In doing so, it attempts to raise its readers’ awareness of 

modelling and data-assimilation possibilities that may prove useful in their own groundwater 

management contexts. 

The decision-support challenges that are addressed by various GMDSI worked examples 

include the following: 

• assessing the reliability of a public water supply;  

• protection of a groundwater resource from contamination;  

• estimation of mine dewatering requirements; 

• assessing the environmental impacts of mining; and  

• management of an aquifer threatened by salt water intrusion.  

In all cases the approach is the same. Management-salient model predictions are identified. 

Ways in which model-based data assimilation can be employed to quantify and reduce the 

uncertainties associated with these predictions are reported. Model design choices are 

explained in a way that modellers and non-modellers can understand.  

The authors of GMDSI worked example reports make no claim that the modelling work which 

they document cannot be improved. As all modellers know, time and resources available for 

modelling are always limited. The quality of data on which a model relies is always suspect. 

Modelling choices are always subjective, and are often made differently with the benefit of 

hindsight.  

What we do claim, however, is that the modelling work which we report has attempted to 

implement the scientific method to address challenges that are typical of those encountered 

on a day-to-day basis in groundwater management worldwide. 

As stated above, a worked example report purposefully omits many implementation details of 

the modelling and data assimilation processes that it describes. Its purpose is to demonstrate 

what can be done, rather than to explain how it is done. Those who are interested in technical 

details are referred to GMDSI modelling tutorials. A suite of these tutorials has been developed 

specifically to assist modellers in implementing workflows such as those that are described 

herein.  
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GLOSSARY 
Anisotropy 

A condition whereby the properties of a system (such as hydraulic conductivity) are likely to 

show greater continuity in one direction than in another. At a smaller scale it describes a 

medium whose properties depend on direction. 

Bayesian analysis 

Methods that implement history-matching according to Bayes equation. These methods 

support calculation of the posterior probability distribution of one or many random variables 

from their prior probability distributions and a so-called “likelihood function” – a function that 

increases with goodness of model-to-measurement fit. 

Boundary condition 

The conditions within, or at the edge of, a model domain that allow water or solutes to enter 

or leave a simulated system. 

Boundary conductance 

The constant of proportionality that governs the rate of water movement across a model 

boundary in response to a head gradient imposed across it. 

Capture zone 

The three-dimensional volumetric portion of a groundwater-flow field that discharges water to 

a well. 

Connected linear network (CLN) package 

This package is supported by the MODFLOW-USG simulator. Water flows through a series of 

one-dimensional features, each of which can be linked to another such feature, or to a cell 

within a two or three-dimensional groundwater model domain.  

Contributing area 

The two-dimensional areal extent of that portion of a capture zone that intersects the water 

table and surface water features where water entering the groundwater flow system is 

discharged by a well. (This is also referred to as the area contributing recharge.) 

Covariance matrix 

A matrix is a two-dimensional array of numbers. A covariance matrix is a matrix that specifies 

the statistical properties of a collection of random variables - that is, the statistical properties 

of a random vector. The diagonal elements of a covariance matrix record the variances (i.e. 

squares of standard deviations) of individual variables. Off-diagonal matrix elements record 

covariances between pairs of variables. The term “covariance” refers to the degree of 

statistical inter-relatedness between a pair of random variables. 

Ensemble 

A collection of realisations of random parameters. 

Drain (DRN) package 

A one-way Cauchy boundary condition implemented by MODFLOW. Water can flow out of a 

model domain, but cannot enter a model domain through a DRN boundary condition.  



 

 

Evapotranspiration (EVT) package 

MODFLOW’s implementation of water withdrawal from a groundwater system whereby the 

extraction rate can increase, up to a user-supplied maximum rate, as the head approaches a 

user-prescribed level from below.  

General head boundary (GHB) package 

This is MODFLOW parlance for a Cauchy boundary condition. Water flows into or out of a 

model domain in proportion to the difference between the head ascribed to the boundary and 

that calculated for neighbouring cells. The rate of water movement through the boundary in 

response to this head differential is governed by the conductance assigned to the boundary. 

Hydraulic conductivity 

The greater is the hydraulic conductivity of a porous medium, the greater is the amount of 

water that can flow through that medium in response to a head gradient.  

Jacobian matrix 

A matrix of partial derivatives (i.e. sensitivities) of model outputs (generally those that are 

matched with field measurements) with respect to model parameters.  

Matrix 

A two-dimensional array of numbers index by row and column. 

MODFLOW 

A family of public-domain, finite-difference groundwater models developed by the United 

States Geological Survey (USGS). 

MODFLOW-USG 

A version of MODFLOW which employs an unstructured grid. This was developed by Sorab 

Panday in conjunction with the United States Geological Survey (USGS). 

MODFLOW package 

An item of simulation functionality that describes one aspect of the operation of a groundwater 

system, for example recharge or a boundary condition. The word “package” describes the 

computer code that implements this functionality, as well as its input and output file protocols. 

Null space 

In the parameter estimation context, this refers to combinations of parameters that have no 

effect on model outputs that are matched to field observations. These combinations of 

parameters are thus inestimable through the history-matching process. 

Objective function 

A measure of model-to-measurement misfit whose value is lowered as the fit between model 

outputs and field measurements improves. In many parameter estimation contexts the 

objective function is calculated as the sum of squared weighted residuals. 

Parameter 

In its most general sense, this is any model input that is adjusted in order to promote a better 

fit between model outputs and corresponding field measurements. Often, but not always, 

these inputs represent physical or chemical properties of the system that a model simulates. 



 

 

However there is no reason why they cannot also represent water or contaminant source 

strengths and locations. 

Phreatic surface 

The water table. 

Pilot point 

A type of spatial parameterisation device. A modeller, or a model-driver package such as 

PEST or PEST++, assigns values to a set of points which are distributed in two- or three-

dimensional space. A model pre-processor then undertakes spatial interpolation from these 

points to cells comprising the model grid or mesh. This allows parameter estimation software 

to ascribe hydraulic property values to a model on a pilot-point-by-pilot-point basis, while a 

model can accept these values on a model-cell-by-model-cell basis. The number of pilot points 

used to parameterise a model is generally far fewer than the number of model cells. 

Prior probability 

The pre-history-matching probability distribution of random variables (model parameters in the 

present context). Prior probability distributions are informed by expert knowledge, as well as 

by data gathered during site characterisation. 

Posterior probability 

The post-history-matching probability distribution of random variables (model parameters in 

the present context). These probability distributions are informed by expert knowledge, site 

characterisation studies, and measurements of the historical behaviour of a system.  

Probability density function 

A function that describes how likely it is that a random variable adopts different ranges of 

values. 

Probability distribution 

This term is often used interchangeably with “probability density function”. 

Quadtree mesh refinement 

This term refers to a means of creating fine rectilinear model cells from coarse rectilinear 

model cells by dividing them into four. Each of the subdivided cells can then be further 

subdivided into another four cells. However it is a design specification of a quadtree-refined 

grid that no cell within the domain of a model be connected to more than two neighbouring 

cells along any one of its edges. 

Realisation 

A random set of parameters. 

Regularisation 

The means through which a unique solution is sought to an ill-posed inverse problem. 

Regularisation methodologies fall into three broad categories, namely manual, Tikhonov and 

singular value decomposition. 

Residual 

The difference between a model output and a corresponding field measurement. 



 

 

River (RIV) package 

A MODFLOW package which provides basic simulation of the interaction between 

groundwater and a surface water body. Flow between the two regimes is driven by the head 

difference between them. Through definition of the elevation of the bottom of the river, the 

driving head difference can be limited.  

Singular value decomposition (SVD) 

A matrix operation that creates orthogonal sets of vectors that span the input and output 

spaces of a matrix. When undertaken on a Jacobian matrix, SVD can subdivide parameter 

space into complementary, orthogonal subspaces; these are often referred to as the solution 

and null subspaces. Each of these subspaces is spanned by a set of orthogonal vectors. The 

null space of a Jacobian matrix is composed of combinations of parameters that have no effect 

on model outputs that are used in its calibration, and hence are inestimable. 

Solution space 

The orthogonal complement of the null space. This is defined by undertaking singular value 

decomposition of a Jacobian matrix. 

Specific storage 

The amount of water that is stored elastically in a cubic metre of porous medium when the 

head of water in which that medium is immersed rises by 1 metre. 

Specific yield 

The amount of accessible water that is stored in the pores of a porous medium per volume of 

that medium. 

Stochastic 

A stochastic variable is a random variable. 

Stress 

This term generally refers to those aspects of a groundwater model that cause water to move. 

They generally pertain to boundary conditions. User-specified heads along one side of a model 

domain, extraction from a well, and pervasive groundwater recharge, are all examples of 

groundwater stresses. 

Stress period 

The MODFLOW family of models employs this terminology to describe each member of a 

series of contiguous time intervals that collectively comprise the simulation time of a model.  

Tikhonov regularisation 

An ill-posed inverse problem achieves uniqueness by finding the set of parameters that 

departs least from a user-specified parameter condition, often one of parameter equality and 

hence spatial homogeneity. 

Time-variant specified head (CHD) package 

A Dirichlet (i.e. “fixed head”) boundary condition implemented by MODFLOW in which the 

head can vary with time on a stress-period-by-stress-period basis. 

Vector 

A collection of numbers arranged in a column and indexed by their position in the column. 



 

 

 

Well (WEL) package 

A MODFLOW package that simulates withdrawal of water from a groundwater system. 

  



 

 

EXECUTIVE SUMMARY 
Coastal groundwater management must be handled with care. Excessive extraction of water 

from a coastal aquifer can incur sea water intrusion. This can damage the water resource. 

Numerical simulation can assist in management of coastal aquifers. However its use in a 

decision-support context is far from straightforward. Modern modelling technology allows us 

to simulate details of fresh and saline groundwater flow through heterogeneous porous media. 

However models which can do this are complex and slow-running. Because of this, it is difficult 

for them to assimilate water quality and piezometric data that record the historical behaviour 

of a managed coastal system. The uncertainties of decision-critical model predictions may 

therefore remain high. This can thwart decision-making. 

This GMDSI report describes a model that was built to explore options for management of a 

coastal aquifer in southern Portugal. The aquifer is representative of many around the world; 

if extraction continues at its present rate, it is only a matter of time before it suffers a serious 

degradation in quality. Extraction must therefore be reduced. Alternatively, or as well, recharge 

must be enhanced. 

Enough data has been gathered over the last 20 years to support estimation of aquifer 

properties and inflows. These estimates are enabled by history-matching; however they are 

cloaked in uncertainty.  

Data assimilation is implemented using a single-density, MODFLOW 6 model in conjunction 

with PEST_HP and PESTPP-IES. Use of a single-density model rests on the premise that 

water quality within the coastal aquifer is not yet seriously degraded. Meanwhile, proximity of 

saline waters is acknowledged by deploying a two-dimensional, sectional, density-dependent 

model to assist in stochastic parameterization of the coastal boundary condition employed by 

the single-density model. 

History-matching yields 200 parameter fields, all of which allow the model to reproduce 

historical measurements of aquifer head under the seasonally-variable pumping regime that 

has prevailed over the last twenty years. Water is extracted for irrigation. A suite of history-

matched, LUMPREM soil-moisture accounting models is used to calculate irrigation demand, 

and hence aquifer extraction. 

The composite LUMPREM - MODFLOW 6, history-matched model is given two tasks. First, it 

is used to calculate the overall water balance of the aquifer. Elements of this water balance 

are used to document the state of the system, and to satisfy the terms of its short-term 

management according to criteria set out by the European Union Water Directive. 

The model is also used to establish an upper limit on groundwater extraction subject to the 

condition that fresh groundwater discharge to the sea be maintained. This requires solution of 

a constrained optimisation problem. This problem is solved twice – once (using PESTPP-OPT) 

under risk-neutral conditions, and once (using CMAES_HP) under risk-averse conditions. In 

the latter case, CMAES_HP is asked to maximise water extraction under the constraint that 

flow of water across the coastline remains seaward rather than landward for all 200 samples 

of the posterior parameter probability distribution. 
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 INTRODUCTION 

 General 
Work that is described in this manuscript took longer to complete than we had originally intended. 

This is a common modelling refrain. Furthermore, if we had to start over, there are some things that 

we would do differently. Nevertheless, we learned a lot along the way. The GMDSI worked example 

reporting genre gives us a chance to describe what we did in a way that allows others to benefit from 

both our achievements and our mistakes. 

We tried to keep the modelling simple. Nevertheless, parts of our workflow ended up being rather 

complicated. A benefit of model simplicity is that, with proper design, it readily supports the 

introduction of strategic complexity where this enhances decision-support utility. In order to maintain 

focus on things that matter, our description of some of these complexities is brief. Our intention is to 

describe our modelling approach rather than to recount all of its details.  

Our study area is Vale do Lobo (“Valley of the Wolf” in English), situated on the idyllic southern coast 

of Portugal. A coastal aquifer faces the threat of sea water intrusion because of excessive 

groundwater extraction. Hence extraction must be reduced, or freshwater recharge must be 

enhanced. The area is being studied by personnel from the Universidade do Algarve. GMDSI 

modelling documented herein parallels their work. Our approach recognises the centrality of data 

assimilation and uncertainty quantification to decision-support modelling. It also recognises the need 

to keep model run times short in order to enable these activities.  

Modelling that is documented herein has allowed us to: 

• Derive the water balance of an aquifer system that supports assessment of its status 

according to guidelines set out by the European Union Water Framework Directive; 

• Explore options for maximisation of water extraction while ensuring system sustainability. 

Before describing the Vale do Lobo site, we briefly outline some of the challenges that we faced in 

undertaking the work described herein. Many of these challenges are common to groundwater 

modelling work in general.   

 Challenges 
1.2.1 Data Scarcity 

The only acceptable response to the challenge of data scarcity is to ensure that uncertainty 

assessment is woven into the fabric of model design and deployment. This eliminates the need for 

modelling to rest on one or many untested assumptions. If a parameter, a boundary condition, or 

another aspect of model design, is only partially known, then its representation in a model should be 

stochastic rather than deterministic.  

This approach to decision-support modelling is both practical and forgiving. If model simplification 

facilitates uncertainty analysis and reduction, while incurring errors that are small in relation to ambient 

uncertainties, then they are worthwhile. At the same time, they can make modelling easier. However 

the potential for error that model simplifications incur should be included in model predictive 

uncertainty intervals.  

1.2.2 Salt Water 

Simulation of coastal groundwater processes is numerically difficult. Models which simulate density-

dependent flow must have many layers. Their run times are generally long; they operate under a 



2 

 

cloud of numerical instability. Model-based data assimilation and uncertainty quantification become 

difficult or impossible.  

Problems associated with simulation of coastal groundwater flow are compounded by lack of 

knowledge of under-sea aquifer conditions. This is especially the case for confined aquifers from 

which waters may emerge tens of kilometres offshore.  

Fast-running, sharp interface models can be used in place of density-dependent models. Our 

experience, however, is that they are not immune from numerical instability, and that they may 

therefore prove unreliable when deployed in data assimilation settings.  

The model that is described in the present study is density-independent. Furthermore, its coastal 

boundary coincides with the coast itself. We employ a complementary, two-dimensional, density-

dependent model to provide stochastic characterisation of this boundary. This allows us to express 

uncertainties in boundary parameters that arise from poorly-known but complex conditions that prevail 

on the seaward side of the coast, as well as those that arise from use of a simplified boundary to 

represent these conditions. 

1.2.3 Other Lateral Boundaries 

Selection of the areal extent of a groundwater model domain is often difficult. This is especially the 

case if the “natural” boundaries of a groundwater system are far from areas that are the focus of 

management interest. 

Using an unstructured grid, a model domain can be extended to natural system boundaries without 

the incursion of an unduly high numerical cost. However this does not eliminate the need for stochastic 

representation of hydraulic properties, recharge, extraction and other nuances of water management 

in the extended model domain if these can affect conditions in a study area. Gathering of data that is 

necessary to support stochastic model representation of these conditions may be expensive and time-

consuming. 

Sometimes it may be more efficient to restrict the size of a model domain to the area of immediate 

management interest, and to equip model boundary properties with sufficient stochasticity to span 

uncertainties that are induced by conditions on the other side of the boundary. This may reduce model 

construction costs. However if this option is chosen, it is incumbent on a modeller to guarantee that: 

• use of the boundary in place of spatially-distributed processes on its other side does not 

invalidate simulation integrity inside the boundary; and that 

• the stochasticity of boundary parameters is sufficient to characterise predictive uncertainty 

arising from conditions outside the boundary, as well as from simplifications incurred by use 

of the boundary itself. 

In the present study, one of our model boundaries coincides with a management boundary rather 

than with a natural boundary. Extension of the model domain would have added to the tedium of data 

preparation and model construction; it would have also added to the model run time. However, it could 

have reduced problems associated with parameterisation of the boundary.  

1.2.4 Number of Model Layers 

The aquifer which is the focus of our modelling attention is confined. It is separated from an overlying 

unconfined layer by an aquitard whose thickness varies over the model domain. Water levels within 

the overlying, unconfined aquifer vary seasonally. The strength of its connection with the underlying 

confined aquifer appears to be weak. 

In the interests of speed and simplicity, the unconfined aquifer is not explicitly represented in the 

model that is described herein. It is replaced by a pervasive “general head” boundary with spatially 

varying conductance and temporally varying heads.  
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1.2.5 Historical Pumping 

Extraction of irrigation water from the confined aquifer has resulted in unsustainable drawdown. 

Unfortunately, records of water extraction are incomplete. So we deploy a number of fast-running, 

lumped-parameter, soil moisture models to fill in temporal and spatial gaps in these records. Outputs 

of these models are history-matched against measured extraction rates where the latter are available. 

Meanwhile, stochastic parameterisation of these models ensures that uncertainties in historical 

extraction rates contribute to uncertainties in estimated model parameters, and thence to 

management-critical model predictions. 

 Looking Ahead 
Section 2 of this report describes the Vale do Lobo site and the management problems that modelling 

must address. Section 3 describes simulation of irrigation demand using a series of lumped parameter 

soil moisture accounting models. Details of the Vale do Lobo groundwater model are provided in 

Section 4. Use of a companion density-dependent model to assist in stochastic parameterisation of 

the coastal boundary condition of the groundwater model is described in Section 5. 

History-matching of the composite model (comprised of the groundwater model and the suite of soil 

moisture models) is described in Section 6 of this report. Use of this model to make management-

pertinent predictions, and in assessing the uncertainties of these predictions, is described in Section 

7. Section 8 concludes our report. 
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 THE SITE 

 Location 
Figure 2.1 depicts the domain of the groundwater model that is described in this report. Its boundaries 

roughly coincide with management boundaries which define the Vale do Lobo subsystem of the 

Campina de Faro aquifer.  

 

Figure 2.1 Location and domain of the Vale do Lobo model. 

The study area is located to the west of Faro, capital of the Algarve province of Portugal. It is bounded 

to the southwest by the Atlantic Ocean. It encompasses the town of Almancil, and the two resort 

villages of Quinta do Lago and Vale do Lobo.  

Land use is depicted in Figure 2.2. It includes seven 18-hole golf courses as well as intensive 

agriculture for salad crop production. The remainder of the area is covered by semi-natural sparse 

pine forest, as well as patches of land devoted to avocado and citrus fruit cultivation. Groundwater is 

used for irrigation of golf courses and agricultural land.  
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Figure 2.2 Land use map identifying irrigated areas; adapted from Reis (2007). 

The long term annual average rainfall is about 600 mm/yr. Most rainfall occurs between the months 

of November and April. Potential evapotranspiration is around 1600 mm/yr. There is a substantial 

excess of potential evapotranspiration over rainfall during the summer months. Most irrigation is 

applied between the months of March and October.  

 Hydrogeology  
The Vale do Lobo subsystem (hereafter referred to as the VL subsystem) of the Campina de Faro 

aquifer occupies an area of about 32 km2. The boundary which separates it from the Campina de 

Faro subsystem to the east is a management rather than a hydrogeological boundary; it runs roughly 

perpendicular to topographic contours. To the northwest, the VL subsystem boundary is defined by 

the Carcavai fault zone, on the other side of which lies the Quarteira aquifer. Lower Cretaceous strata 

outcrop to the north of the northern VL subsystem boundary; further to the north, Jurassic sediments 

form a karstic aquifer. 

The VL subsystem is part of a thick series of sediments encompassed in distinct and superimposed 

sedimentary basins of Mesozoic and Cenozoic age. These are underlain by Palaeozoic basement 

rocks. Figure 2.3 maps outcropping geology and hydrogeological features of interest. 
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Figure 2.3 Geological outcrop map of the study area. 

The VL subsystem is comprised of two aquifers. These are as follows: 

• An upper, phreatic aquifer of Plio-Quaternary (PQ) age. This is composed of sands and 

sandy clays, with a red weathered clay typically found at the surface. This aquifer attains a 

maximum thickness of about 70m in the south of the study area; it thins to the north and 

eventually disappears where marls of Lower Cretaceous age outcrop. 

• A lower, confined aquifer of Miocene (MC) age formed of calcareous sandstones and 

limestones. Nearby and offshore drilling suggests that the base of the MC aquifer reaches a 

depth of 350 metres below mean sea level in the south of the study area. It is underlain by 

low permeability marls of Lower Cretaceous age. 

A clay aquitard, typically about 10m thick, separates the MC aquifer from the PQ aquifer. Water levels 

in the PQ aquifer are consistently higher than in the MC aquifer. Most water is extracted from the MC 

aquifer; however some boreholes may be screened across both aquifers. 

The MC and PQ aquifers, together with the aquitard that separates them, dip gently towards the coast 

at about 4 degrees. Fresh water that flows seaward through the MC aquifer emerges into the sea at 

an unknown distance offshore. Presumably, it flows through the aquitard that overlies the MC aquifer 

in order to do so. However the offshore perseverance of this aquitard, together with all other details 

of offshore freshwater flow, are unknown. 

It is apparent from Figure 2.3 that the study area is intersected by several faults. As stated above, the 

Carcavai fault zone bounds it on the west. Two NNW-SSE-oriented faults transect the eastern part of 

the VL area. Their dispositions are somewhat uncertain; it is possible that their alignment is closer to 

those of the Corgo da Gondra and Ribeira da São Lourenço streams than is depicted in Figure 2.3. 

A strike-slip fault parallels the coast approximately 1 km inland from it. 

The Corgo da Gondra and Ribeira da São Lourenço streams flow for an average of 2 months per 

year. In some years they do not flow at all. 
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 Piezometric Heads 
The local regulatory authority is the Agência Portuguesa do Ambiente (APA). APA regularly measures 

water levels in 11 monitoring wells that lie within the study area. Three of these are screened in the 

PQ aquifer, while eight are screened in the MC aquifer; the latter are labelled in Figure 2.4. Only 

heads in the MC aquifer are simulated by the model described herein. Hence only heads in MC-

screened wells are used in model history-matching.  

 

Figure 2.4 Locations of wells in which head measurements have been made.  

Four major groundwater users record water levels at approximately monthly intervals in four extraction 

wells; these are labelled as “pumped wells” in Figure 2.4. Heads from these wells are also used for 

history-matching. However, because at least some of these measurements may have been made 

when the wells were being pumped, the history-matching process does not insist that pertinent model 

outputs match them exactly. Instead, history matching ensures that model-calculated heads are no 

lower than these measured heads. 

Heads measured in bore 606/647 are graphed in Figure 2.5. This is the longest record of piezometric 

heads available in the VL area. It exhibits a gradual decline from the late 1970’s to the late 1990’s, at 

which time groundwater levels appear to reach a new equilibrium. However, seasonal fluctuations 

increase over this time; this probably reflects increased pumping from the MC aquifer. 
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Figure 2.5. Time-series of hydraulic heads measured in piezometer 606/647. The location of this piezometer is 

displayed in Figure 2.4. 

Figure 2.6 shows MC piezometric contours. These are based on average measured heads during 

2020. Groundwater heads are, on average, below sea level in all MC piezometers. Lowest levels are 

in the central and north-western corner of the VL system. Groundwater appears to flow towards this 

area of depressed heads from all system boundaries, including from adjacent aquifers and from the 

coast. 

 

 

Figure 2.6 Contoured average hydraulic heads in 2020 measured in piezometers belonging to the APA monitoring 

network.  

 Recharge 
Because of its impermeable surficial clay layer, diffuse recharge to the unconfined PQ aquifer is 

thought to be low. It is estimated to be about 3.4 mm/yr; this totals about 3.46 Mm3/yr for the whole 

VL system. Ephemeral streams may provide further recharge; however the amount of this recharge 

is limited by short streamflow durations. Vertical recharge to the MC aquifer is likely to be smaller than 

that to the PQ aquifer because of the aquitard that separates these layers. The absence of a response 

to rainfall in MC aquifer piezometric records supports this conclusion. 
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Under natural conditions, the MC aquifer probably receives most of its recharge laterally through lower 

Cretaceous strata which abut the northern boundary of the VL system. An upper limit of 14.3 Mm3/yr 

can be placed on average long-term recharge from this source. This upper limit is calculated by 

multiplying maximum expected diffuse recharge by the outcrop area of aquifers upgradient of the 

northern VL boundary. As is described below, the actual recharge through this boundary (together 

with its associated uncertainty) is estimated through history-matching.  

 Extraction 
APA estimates that 6.45 Mm3 of water was extracted from the VL system during 2019. The vast 

majority of this water was extracted from the MC aquifer through boreholes that are between 100 m 

and 200 m deep.  

Figure 2.7 shows registered VL extraction wells. These are grouped into 8 major user groups and a 

“small users” group. Groups 1 to 5 are individual golf courses. Groups 6 and 7 are operated by 

companies that irrigate greenspace such as parks and private estates. Group 8 is comprised of 

significant horticultural irrigators. “Small users” are mostly horticultural and agricultural plots and 

private residences. 

 

Figure 2.7 Major groundwater user groups in the Vale do Lobo area.  

Since 2010, major groundwater users have been required to supply monthly records of water use to 

APA. These monthly water use figures comprise important model inputs. However use of these data 

is not without its problems. In particular: 

• As is discussed below, the model history-matching period extends from October 2000 to 

October 2020. Measured extraction rates are not available for the first half of this time 

period. 

• There are gaps in some water use records within the period 2010 to 2020.  

• In general, water use is recorded for groups of wells belonging to a single user group, 

rather than for individual wells.  

• Extraction rates are not available for the “small users” group. 
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A suite of “extraction models”, history-matched against available water use data, is used to fill in data 

gaps.  

 Groundwater Quality 
Chloride concentrations measured at a limited number of observation wells within the MC aquifer are 

generally below 300 mg/L. However these measurements, as well as anecdotal evidence pertaining 

to the quality of water extracted from production wells, suggests increasing salinities over time at 

some locations. There is some evidence that this may be at least partly attributable to dissolution of 

evaporites that are disseminated through sediments which comprise the MC aquifer. It appears, 

therefore, that VL groundwaters have not yet suffered a serious decline in quality as a result of sea 

water intrusion. Nevertheless, Figure 2.6 suggests that its occurrence is inevitable.  

No water bores that have been drilled into the MC aquifer have intersected a freshwater-saltwater 

interface. This does not preclude the existence of this interface at depths greater than have been 

drilled (or sampled) so far, particularly near the shoreline.  

As is stated above, the base of the MC aquifer is thought to be about 350 m below sea level along at 

least some of the coast. The Ghyben-Herzberg principle dictates that a coastal piezometric head of 

8.75 m would be required for the toe of the equilibrium freshwater-saltwater interface to lie directly 

beneath the coast. For piezometric heads less than this, the equilibrium position of the interface toe 

would be further inland. Unfortunately, records of pre-pumping heads in the MC aquifer are non-

existent. The oldest recorded head in the aquifer was made in bore 606/647 (see Figure 2.4) in 1978 

when extraction from the aquifer was in its infancy. This head was 7.5 m. This suggests that the 

equilibrium position of the toe of the freshwater-saltwater interface may be inland of the coast. 

It is not known, however, whether salt water was in equilibrium with fresh water before extraction of 

fresh water from the MC aquifer began. It is not impossible that the interface is still out to sea in 

response to sea level and climatic conditions that prevailed in the past.  

 The Problem 
Continued extraction of water from the VL system at current rates is unsustainable. In the long term, 

it will result in serious degradation of aquifer water quality through seawater intrusion. In the short 

term, it will occasion noncompliance with an EU Water Framework Directive which specifies that 

average ab must be lower than 90% of average annual recharge after accounting for environmental 

flow requirements; the Directive specifies that this condition be met by 2027. 

Local authorities are looking at a number of options. Reduction of extraction through greater water 

use efficiency, and/or revoking of extraction licenses are two options. Managed aquifer recharge is 

another option. Users have already begun to significantly increase water use efficiency. However, 

technical and legal obstacles impede implementation of the latter two options at the present time. 

 Modelling 
Modelling that is described herein serves a number of purposes. Firstly, it enables calculation of water 

extraction from time series of rainfall and evaporation. This provides estimates of historical extraction 

where records are unavailable. It also allows forecasting of future irrigation water requirements. 

Secondly, history-matching of the model enables estimation of important components of the VL 

subsystem water balance, particularly lateral inflow from neighbouring aquifers. It also allows 

inference of aquifer hydraulic properties. Naturally, all of these inferences are accompanied by 

uncertainty; these uncertainties are quantified.  
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Thirdly, the model can be used to inquire into the design of a management strategy that maximises 

use of the MC water resource while mitigating degradation of water quality through seawater intrusion.  
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 SIMULATION OF EXTRACTION 

 Introduction 
Records of historical extraction from the VL system are incomplete. However they comprise the only 

direct measurements of any aspect of the VL water balance. Other aspects of the water balance must 

be inferred from the system’s response to this extraction.  

As is discussed elsewhere in this document, groundwater model history-matching spans the period 

October 2000 to October 2020. Water was extracted from the MC aquifer by all water user groups 

over that time; see Figure 2.7 for specification of water user groupings. The longest continuous record 

of monthly water extraction for any user group spans the period 2008 to 2020. Water use records for 

other groups are shorter than this; for some groups, records are absent for some years. The shortest 

record is that associated with the “small users” group; furthermore, this record comprises estimates 

rather than measured values of monthly water extraction. These estimates span the period 2019 to 

2020. 

Figure 3.1 graphs monthly extraction rates for one user group. (We purposefully omit user group 

identities.) This time series represents accumulated extraction over a number of wells. The same 

applies to water use records for most other groups. Each user group extracts water that services the 

irrigation needs of a specific area; this area is roughly known in all cases.  

 

Figure 3.1 Monthly extraction volumes for a selected user group. 

Because the area serviced by each water user group is known, then ideally its demand for irrigation 

water can be estimated from records of daily rainfall and potential evaporation. 

 The LUMPREM Model 
3.2.1 General 

LUMPREM is a lumped-parameter soil moisture accounting model. In the present worked example, 

it is used to calculate irrigation demand. In another GMDSI worked example, it is used to estimate 

recharge as well as time-varying model boundary heads.; see https://gmdsi.org/blog/water-supply-

security/  

LUMPREM, together with documentation, source code and examples, can be downloaded from the 

PEST web pages at https://www.pesthomepage.org. LUMPYREM Python support utilities can be 

https://gmdsi.org/blog/water-supply-security/
https://gmdsi.org/blog/water-supply-security/
https://www.pesthomepage.org/
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downloaded from http://github.com/rhugman/lumpyrem.The following description of LUMPREM is 

very brief. Refer to its documentation for further details.  

3.2.2 Description 

LUMPREM can deploy either one or two soil moisture containers. The upper container simulates 

process that operate in the plant root zone. The lower container simulates processes that delay 

drainage of sub-root-zone water towards the water table. Only the upper container is used in the 

present study. Processes that are operative in this container are depicted in Figure 3.2. 

 

Figure 3.2 Schematic of processes that are operative in the upper container of the LUMPREM soil moisture 

accounting model. 

LUMPREM operates on a daily time step. Water enters the upper soil moisture store as rainfall. It 

leaves the store as either evapotranspiration, drainage or macropore recharge. Over-topping of the 

store induces runoff. 

Let v' denote the volume of stored moisture at any time relative to the total volume of the store. 

LUMPREM calculates daily evaporation E as a function of v' using the equation: 
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where Ep is potential evaporation. f can be considered as a crop factor and γ as a fitting parameter.  

LUMPREM calculates daily drainage R from v' using the relationship: 
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where Ks represents soil saturated hydraulic conductivity, l is a pore-connectivity parameter and m is 

a fitting parameter. 
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http://github.com/rhugman/lumpyrem
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When used to evaluate irrigation demand, LUMPREM runs in “irrigation mode”. When run in this way, 

v' is never allowed to fall to less than 0.5 during the irrigation season. This represents the average 

soil moisture status of all irrigators for which irrigation demand is evaluated. On any day, LUMPREM 

requests just enough irrigation to maintain the half-full status of the upper soil moisture store. 

However, should a large rainfall event occur, the store is allowed to fill. No irrigation is then required 

until the store drains to half full again. This mode of operation in which irrigation is requested on a 

daily basis facilitates LUMPREM model history-matching. It prevents the occurrence of local optima 

that arise if parcels of irrigation are demanded at discrete intervals of time whenever the store empties.  

 LUMPREM Deployment 
3.3.1 Parameter Adjustment 

One LUMPREM model is assigned to each water user group. Thus nine LUMPREM models are used 

to calculate subsets of water extraction from the MC aquifer, and hence from the groundwater model 

that is described in the next section of this report. 

For each user group, LUMPREM parameters are adjusted by PEST in order to allow LUMPREM-

calculated monthly irrigation volumes to match their user-recorded counterparts where the latter are 

available. Adjustable parameters are as follows: 

• size of the soil moisture store; 

• soil saturated hydraulic conductivity (Ks of equation 3.2); 

• m  of equation 3.2; 

• l  of equation 3.2; 

• f of equation 3.1; 

• γ of equation 3.1; 

• the area requiring irrigation. 

3.3.2 Distribution of Extraction 

It is apparent from Figure 2.7 that, for most user groups, LUMPREM-calculated extraction must be 

distributed between a number of extraction wells. In general, distribution factors between wells that 

belong to a single user group are unknown. Hence they are history-matching-adjustable subject to 

the constraint that, for each user group, they sum to 1.0. Note that distribution factors do not affect 

LUMPREM outputs; they only affect heads that are calculated by the groundwater model. Hence they 

are adjusted during history-matching of the latter model. 

3.3.3 Model Calibration 

As is discussed in Section 6 of this document, model calibration seeks a unique, minimum error 

variance solution to an inverse problem. In the present case, the inverse problem is defined by the 

need for LUMPREM-calculated monthly irrigation volumes to match recorded irrigation volumes 

where and when these are available. As already stated, the amount of recorded irrigation data varies 

from user group to user group. 

The nine LUMPREM models are calibrated simultaneously against their respective measurement 

datasets. This requires estimation of 63 LUMPREM parameters using 9 measurement datasets. The 

inversion process employs Tikhonov regularisation to constrain each parameter of the same type 

used by different LUMPREM models to adopt the same value as long as this does not compromise 

goodness of fit of LUMPREM outputs with respective measurement datasets. Where departures from 

parameter equality are necessary, the regularisation process ensures that these departures are 

minimal.  
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Simultaneous, regularised calibration of all LUMPREM models in this manner reduces the propensity 

for parameter nonuniqueness and for estimation of erratic parameter values. This applies particularly 

to LUMPREM models pertaining to user groups with small historical irrigation datasets.  

Figure 3.3 shows monthly extraction volumes calculated by a calibrated LUMPREM model 

superimposed on the measured monthly extraction volumes depicted in Figure 3.1. 

 

Figure 3.3 LUMPREM-calculated monthly extraction volumes for a selected user group superimposed on measured 

monthly extraction volumes. 

During the overall VL model calibration process, LUMPREM models are calibrated separately from 

the groundwater model that is described in the next section. Well extraction rates calculated by 

calibrated LUMPREM models are provided to the groundwater model as it is itself subjected to 

calibration. However a different strategy is adopted when undertaking history-matching-constrained 

uncertainty analysis. 

3.3.4 Stochastic History-Matching 

Section 6 of this document describes how the PESTPP-IES ensemble smoother is used to calculate 

a suite of random parameter sets that allow model outputs to replicate all elements of the history-

matching dataset. During this process, the nine LUMPREM models and the groundwater model are 

run as a single model; all parameters belonging to all of these models (including extraction distribution 

parameters) are subjected to simultaneous adjustment. 

Figure 3.4 shows LUMPREM-calculated monthly extraction volumes superimposed on measured 

monthly volumes. LUMPREM outputs are calculated using an ensemble of history-match-constrained 

random parameter sets. 
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Figure 3.4 LUMPREM-calculated monthly extraction volumes for a selected user group, superimposed on measured 

monthly extraction volumes. LUMPREM outputs are computed using an ensemble of history-match-constrained 

random parameter sets. 
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 THE GROUNDWATER MODEL 

 General Considerations 
As it is for most aquifers, the spatial distribution of hydraulic properties within the MC aquifer is likely 

to be heterogeneous. This will affect patterns of sea water intrusion that result from excessive 

groundwater extraction. Groundwater modelling, when undertaken in concert with inversion packages 

such as PEST and PEST++, can reveal the broadscale distribution of aquifer hydraulic properties. It 

can also explore uncertainties in management-salient model predictions that arise from hydraulic 

property details that cannot be inferred through history-matching. Use of a fast-running, numerically 

stable model is critical to these endeavours. 

The VL groundwater model possesses only a single layer. This layer represents the MC aquifer. There 

is no need for explicit representation of the PQ aquifer as little water is extracted from it. Furthermore, 

its hydraulic connection with the MC aquifer is weak. Nevertheless, the aquitard which separates the 

PC aquifer from the MC aquifer is represented as a pervasive boundary condition. 

Salt concentration, and its effect on water density, is not simulated by the VL groundwater model. 

This eliminates the need for the large number of model layers that are required to simulate buoyant 

water movement. The decision to neglect density-dependent flow can be justified on the basis that no 

freshwater-saltwater interface has yet been detected within the VL system. Hence its presence can 

be neglected during history-matching.  

The presence of off-shore saline water has some important consequences for design of the coastal 

boundary condition of the VL model. Lu et al (2015) outline these consequences. They show how to 

assign an appropriate head to the coastal boundary of a constant-density groundwater model. 

However their theory does not apply to models wherein current rates of groundwater extraction result 

in landward movement of the freshwater-saltwater interface. Hence our design of the coastal VL 

model boundary rests on complementary use of a density-dependent model. We describe the design 

of this boundary in the following section of this report. 

Neglecting the presence of saline water is problematic when the model is used to explore long-term, 

sustainable rates of water extraction. Under these circumstances, the toe of the freshwater-saltwater 

interface may extend landward of the coastline. Aquifer transmissivities that are estimated under 

conditions of excessive extraction are inapplicable under conditions of steady-state seaward 

movement of fresh water above saline water that is static. For the VL model, the repercussions of 

neglecting the saline wedge are likely to be small; furthermore it will result in conservative, rather than 

exaggerated, estimation of optimal extraction rates. Nevertheless, the problem is addressed by 

modifying the simulator to account for near-coastal head-dependence of transmissivity that is 

available to freshwater flow. This is discussed in Section 7.3 of this document.  

 Timing 
4.2.1 General 

This section describes deployment of the VL model to simulate conditions which prevailed between 

October 2000 and October 2020. Over this time, rates of water extraction are calculated by a suite of 

nine LUMPREM models in the manner described in the previous section. Section 6 describes how 

the model is history-matched against observed water levels, this enabling stochastic inference of 

hydraulic and boundary condition properties. History-matching also enables stochastic inference of 

water balance components. As discussed above, these are required for assessing the status of the 

VL system according to EU Water Framework Directive management criteria. 
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Use of the history-matched model to investigate sustainable extraction rates and patterns is described 

in Section 7.3 of this document. 

4.2.2 Details 

The history-matching period extends for 20 years. For simulation purposes, this is subdivided into 240 

monthly stress periods. Aquifer extraction rates, as well as heads assigned to most model boundaries, 

vary from stress period to stress period. 

Initial heads for the history-matching period are calculated during a 30-year transient stress period in 

which time-averaged, LUMPREM-calculated pumping rates are applied to all extraction wells. Another 

steady-state stress period precedes this. No water is extracted from the MC aquifer during this stress 

period; hence it simulates pre-development conditions. Some model-generated quantities calculated 

during this stress period feature in the history-matching process. See Section 6. 

 Model Domain and Grid 
Movement of groundwater within the MC aquifer of the VL system is simulated using the MODFLOW 

6 simulator. A Voronoi grid comprised of 2751 cells was generated using ALGOMESH. Model cell 

density is greater in the vicinity of extraction and observation wells than elsewhere in the model 

domain. The model grid is depicted in Figure 4.1. 

 

Figure 4.1 The VL model grid. 

To its southwest, the model domain is bounded by the coastline. It is bounded to the north and 

northwest by outcropping Cretaceous limestone and the Carcavai fault, respectively. The eastern 

boundary of the model domain roughly coincides with the official management boundary that 

separates the Vale do Lobo subsystem of the Campina de Faro aquifer from the neighbouring Faro 

subsystem. As previously described, this boundary is a bureaucratic convenience and not based on 

physical properties of the system, except for rough orthogonality to topographic contours. 

Top and bottom elevations of the single model layer are interpolated from onshore and offshore 

borehole logs and topographic elevations of outcrops. Top, bottom and thickness contours are 

provided in Figure 4.2a-c. 
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Figure 4.2 Contours of the (a) top elevation, (b) bottom elevation and (c) thickness of the single VL model layer. 

Values of hydraulic conductivity and specific storage must be assigned to all model cells. 

Parameterisation of these hydraulic properties is affected using 565 pilot points. Hydraulic property 

values are assigned to these points. These values then undergo spatial interpolation to the model 

grid. Interpolation is implemented using the PLPROC model preprocessor supplied with the PEST 

suite. Pilot points are shown in Figure 4.3. 

 

Figure 4.3 Pilot points used for parameterisation of hydraulic conductivity, specific storage and aquitard 

conductance. 

 Model Boundaries 
4.4.1 Upper and Lower Boundaries 

The bottom boundary of the VL groundwater model is a no-flow boundary. 

A general head boundary (GHB) is assigned to every cell of the model domain to simulate its 

connection with the overlying PQ aquifer. The conductance of this boundary is parameterized using 
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the same set of pilot points as that which is used for hydraulic conductivity and specific storage; see 

Figure 4.3.  

Heads in the PQ aquifer vary with season. Figure 4.4 shows water levels measured in piezometer 

610/167 which is screened in the PQ aquifer. Head measurements are available from this well over 

the entirety of the simulation period. As is apparent from Figure 4.4, inter-seasonal water level 

variations are generally between one and two metres. 

 

Figure 4.4 Piezometric heads measured in bore 610/167. This bore is open to the unconfined PQ aquifer. 

Heads in the PQ aquifer vary with location as well as with time. However there are few observation 

wells in this layer; apart from 610/167, there are none with head records that span the 20 year 

historical model simulation time. Hence the water level record from 610/167 was used to calculate a 

head time series for the GHB boundary condition that occupies each model cell.  

The elevation of the PQ water table at every cell-based GHB boundary is presumed to vary with time 

in similar fashion to water level variations in bore 610/167. The mean (over time) water table elevation 

at the location of each model cell is assumed to be a linear function of surface elevation. The slope 

and intercept of this linear function is calculated using water levels from bores which tap the PQ 

aquifer for which there are measured data. The mean-adjusted time series depicted in Figure 4.4 is 

then provided to the GHB which occupies each model cell. Meanwhile, the amplitude of water level 

variation is reduced where necessary in order to avoid intersection of the water table with the land 

surface where the latter is of diminished elevation. While this strategy is approximate, it allows 

representation of: 

• seasonal water table variations within the PQ; 

• spatial variation of these temporal variations in accordance with topography. 

Approximations incurred by this GHB head assignment strategy are unlikely to introduce significant 

errors to the model because of the low rate of leakage from the PQ aquifer to the MC aquifer. Nor are 

errors incurred by representation of the PQ aquifer as a spatially continuous GHB likely to be any 

greater than those incurred through explicit representation of this aquifer using another model layer, 

for data available for history-matching is scarce in the upper aquifer. Meanwhile, gains in model 

solution speed incurred by omission of a thin, unconfined surficial layer are significant. 

4.4.2 Lateral Boundaries – General Principles 

Figure 4.6 subdivides the lateral boundaries of the VL groundwater model into three boundary 

segments, namely the north-western boundary, the eastern boundary and the ocean boundary. All of 

these boundary segments are simulated using GHB’s. A head and a conductance are required for 

each instance of this GHB boundary condition in all model boundary cells.  
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Figure 4.5 Subdivision of the lateral boundaries of the VL model into north-western, eastern and coastal segments. 

Pilot points used for head and conductance parameterisation of the north-western and eastern boundary segment 

are also shown.  

For the north-western and eastern boundaries of the VL model, head varies with time while 

conductance is time-invariant. However, as is discussed in the next section, both head and 

conductance are time-invariant within each cell of the coastal boundary over the 20 year history-

matching period.  

Parameterisation of boundary heads and conductances is implemented using pilot points. Thus a 

head and a conductance is assigned to each such point. These are then interpolated along the 

boundary to respective model cells. Pseudolinear interpolation along model boundaries is 

implemented using PLPROC SEGLIST functionality. 

Assignment of heads and conductances to the coastal model boundary is discussed in detail in 

Section 5 of this document. 

4.4.3 North-western Boundary 

The northern part of the north-western model boundary coincides with the outcrop of Cretaceous 

limestone. Inflow from this boundary is thought to be the main source of recharge to the VL system. 

The western segment of the north-western model boundary coincides with the Carcavai fault. The 

hydraulic properties of this fault are unknown; the possibility of cross-fault flow cannot therefore be 

ignored. 

Piezometer 606/1050 is located just to the north of the model domain; see Figure 2.4. Figure 4.6 

graphs heads that were measured in this borehole during the 20 year history-matching period. 

Seasonal fluctuations, as well as variations that span many seasons, are apparent in this time series. 

Water level records from other parts of the wider groundwater system that are outside the domain of 

the VL model are similar in character to this. (Note that only two of these bores reside near model 

boundaries, namely 606/1050 and 606/1033 that is discussed below.) It therefore seems appropriate 

to apply this head signal to all cells along the model boundary; however the signal must be altered to 

accommodate local topographic and other conditions. 
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Figure 4.6 Hydraulic heads recorded in bores (top) 606/1050 and (bottom) 606/1033. 

Let h(t) characterize heads in bore 606/1050. Time-variant heads hi(t) assigned to the i ’th pilot point 

along the north-western model boundary are calculated as: 

 hi(t) = αih(t) + βi        (4.1) 

Values of αi and βi for each pilot point are history-match-adjustable. Thus they comprise part of the 

VL model’s parameter set. The head time series ascribed to each boundary pilot point in this manner 

is then linearly interpolated along the model boundary using PLPROC SEGLIST functionality. Values 

of 0.0 and 1.0 for α and β respectively are assigned to the pilot point that is closest to bore 606/1050; 

these are not adjusted during history-matching. 

Pilot-point-specific values of αi and βi  are time-invariant; they apply under both steady-state, pre-

development conditions, and under transient conditions that span the October 2010 to October 2020 

history-matching period. However under steady state conditions, a value is estimated for the head in 

bore 606/1050. 

4.4.4 Eastern Boundary 

Head and conductance values are assigned to GHBs distributed along the eastern boundary of the 

VL model in an almost identical fashion to that used for assigning heads and conductances to cells 

which are arraigned along its north-western boundary. The reference hydrograph for the eastern 

boundary belongs to bore 606/1033. Its location is shown in Figure 2.4; measured heads are depicted 

in Figure 4.6. 
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 THE COASTAL BOUNDARY 

 Introduction 
In this section we dare to introduce some mathematics. It is not essential that a reader understand 

the maths to understand what we do. As far as we know, the approach to coastal boundary design 

that we describe in this chapter has not been implemented before. We therefore provide enough 

details for others to follow if they wish. If you are not interested in the mathematics, read the first few 

subsections of this section, and then read the summary at its end.  

 Considerations 
5.2.1 Hydraulic Considerations 

The coastline marks the seaward extent of the VL model domain. General head boundaries (i.e. 

GHBs) are introduced to all cells along this boundary; there are 264 coastal boundary cells in all. A 

value of head and conductance is required at each of these cells. Water enters or leaves a GHB in 

proportion to the difference between the head assigned to the boundary and that calculated by the 

model for the cell which the boundary occupies. The constant of proportionality is the boundary’s 

conductance. 

Coastal GHB heads and conductances are history-match-adjustable. Both are parameterised using 

pilot points – 29 in all. The disposition of these points is depicted in Figure 5.1. As is usual for pilot 

points parameterisation, values are first assigned to pilot points. These values are then spatially 

interpolated to pertinent cells of the groundwater model. As for other boundaries of the VL model, 

spatial interpolation is implemented using PLPROC SEGLIST functionality. The presence of 29 pilot 

points along the boundary implies the existence of 58 parameters. Half of these characterise boundary 

head, while the other half characterise boundary conductance. 

 

Figure 5.1 Pilot points used for parameterisation of the coastal boundary of the VL model. 

The coastal boundary of the VL model provides summary numerical representation of complex 

processes that prevail on its seaward side. Under pre-development conditions, this boundary 

accommodates loss of fresh water from the confined MC aquifer. In reality, fresh water probably flows 

for a significant distance under the sea. Small amounts of water are lost per unit length of travel 
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through the aquitard which overlies the MC aquifer. Bakker (2006) and Bakker et al (2017) derive 

analytical equations for this condition under simplistic assumptions of aquifer geometry and 

properties. Meanwhile a small amount of saltwater flows landward beneath a static freshwater-

saltwater interface; this sustains salt water recirculation at the interface. The situation is schematized 

in Figure 5.2a. 

 

Figure 5.2 Schematic representation of (a) emergence of fresh water through the aquitard overlying the MC aquifer 

under pre-pumping conditions, and (b) landward flow of water under present day conditions. 

Under conditions of non-sustainable pumping that prevail at the present time, both fresh and salt 

water flow landward across the coastline under a pumping-induced hydraulic gradient. The 

freshwater-saltwater interface moves inland as a consequence. This situation is schematized in 

Figure 5.2b. 

That coastal GHB of the constant-density VL model must be capable of representing both of the 

conditions that are depicted in Figure 5.2. 

5.2.2 Modelling Considerations 

As is discussed in Section 1 of this document, model construction and deployment is based on the 

premise that stochastic representation be afforded to that which is poorly known. Aquifer and aquitard 

properties on the seaward side of the VL model coastal boundary are, indeed, poorly known, as is the 

means to represent them simplistically using a GHB. Nevertheless, prior probability distributions are 

required for head and conductance parameters ascribed to GHB coastal boundary cells. These can 

be refined through history-matching. 

Let the vector h represent heads ascribed to the 29 pilot points that are used to parameterise the 

coastal model boundary; let the vector c represent pilot point conductances. Collectively, boundary 

parameters are therefore represented by the composite vector [
𝐡
𝐜

]. Stochastic representation of 

boundary parameters requires that mean values be provided for these parameters at the locations of 

all pilot points; these mean values are represented by the vector [
𝐡
𝐜]. It also requires that a covariance 

matrix 𝐶 ([
𝐡
𝐜

]) be ascribed to these parameters. This covariance matrix is used to represent spatial 

correlation between parameters of the same type along the boundary, as well as correlation between 

parameters of different types.  

The prior mean vector and the prior covariance matrix of model parameters play important roles in 

history-matching. If undertaking model calibration in order to infer posterior mean parameter values, 

they can form the basis for Tikhonov regularisation through which this process achieves uniqueness. 

In particular, prior mean parameter values can serve as “preferred” parameter values. Meanwhile, the 

regularisation penalty function can feature the prior parameter covariance matrix. Alternatively, if 

history-matching is accomplished using an ensemble smoother in order to sample the posterior 

parameter probability distribution, prior parameter means and the prior parameter covariance matrix 
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are used to obtain samples of the prior parameter probability distribution; these samples are then 

history-match adjusted until they become samples of the posterior parameter probability distribution. 

5.2.3 Mathematical Considerations 

The prior mean vector and the prior mean covariance matrix of the [
𝐡
𝐜

] parameter set are obtained 

through a two-step process. The first of these steps samples a one-dimensional counterpart of [
𝐡
𝐜

]. 

We refer to this vector as [
ℎ
𝑐

]; it possesses just two elements (each of them random), namely a single 

head h and a single conductance c. Once enough samples of [
ℎ
𝑐

] have been obtained, its mean [
ℎ
𝑐] 

and covariance matrix  𝐶 ([
ℎ
𝑐

]) can be estimated. In the second step, the stochastic description of [
ℎ
𝑐

] 

is modified to provide a stochastic description of [
𝐡
𝐜

]. That is, a mean  [
𝐡
𝐜] vector and a covariance 

matrix 𝐶 ([
𝐡
𝐜

]) are determined. Once these are available, random realisations of [
𝐡
𝐜

] can be generated 

through standard statistical sampling.  

 Density-Dependent Model 
5.3.1 Model Design 

Figure 5.3 depicts the domain of a two-dimensional, cross-sectional, density-dependent model. This 

model simulates conditions which are illustrated schematically in Figure 5.2. Part of its domain lies 

beneath land, and part of its domain lies beneath the sea. The model simulates head-driven flow of 

water through a confined aquifer and its under-sea emergence through the confining aquitard. Model 

dimensions and hydraulic properties are representative of those that characterise the MC aquifer of 

the VL system. 

 

Figure 5.3 A two-dimensional, density-dependent, cross-sectional model. “CHD” signifies a constant head 

boundary. 

SEAWAT is employed for simulation of density-dependent flow. One hundred different realisations of 

the model were built. Each realisation of the model is endowed with random hydraulic properties, a 

random landward boundary head, and randomized aspects of its geometry. Model construction is 

automated using FloPy. 

Each column of the numerical model grid is 50 m wide. The thickness of each model layer is 5 m. The 

number of model layers and the number of its columns varies between model realisations. So does 

the elevation of the top of the aquitard.  
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On the seaward side of the coast, a constant-head boundary is introduced to all top-layer cells; the 

head is equivalent to 0 m of salt water. Constant-head boundary conditions are also introduced to 

cells disposed along vertical model boundaries at either end of the model domain. Along the seaward 

edge of the model domain, the salt water head is uniformly zero.  

Cells comprising the vertical landward model boundary are assigned a uniform fresh water head. 

Depending on the model stress period, this is either positive (i.e. above sea level) to simulate pre-

development conditions, or negative (i.e. below sea level) to simulate present-day, extractive 

conditions. The value of landward heads varies randomly from realisation to realisation. The distance 

from the coast to the landward model boundary also varies from realisation to realisation. Collectively, 

the range of post-development landward heads, and on-shore distances to these heads, encompass 

those which presently prevail in the MC aquifer at Vale do Lobo. 

The distance from the coast to the seaward boundary is also realisation-dependent. The distance 

required for all fresh water to emerge from the aquifer under pre-development conditions depends on 

aquifer hydraulic properties and on the landward pre-development head. Analytical calculations based 

on equations derived by Bakker et al (2006; 2017) are used to set the offshore extent of the model 

domain for any particular realisation of model properties and boundary conditions. Limiting the length 

of the model domain to only that which is necessary for all fresh water to vacate the MC aquifer 

reduces simulation time.  

5.3.2 Model Timing 

The model depicted in Figure 5.3 simulates three conditions, two of which are identical. The first two 

conditions are those which prevailed prior to pumping. The last pertains to present day management 

in which the aquifer is subjected to groundwater extraction.  

First the model runs for 2×106 years. This is long enough for steady-state conditions to be established. 

It is then run for two 50 year periods; over both of these time periods, outputs are requested at regular 

intervals so that they can be plotted. During the first of these time periods, steady state conditions are 

continued. During the second of these periods the model’s landward head is set in accordance with 

present-day conditions. Fifty years was chosen for the length of these last two time periods as this 

corresponds to the time over which groundwater has been extracted from the VL system. The last 

twenty years of the last period are thus representative of conditions which prevailed during history-

matching of the VL model. 

Simulation times for this model vary between a minute and an hour. Solution convergence was not 

achieved for about 30% of model realisations; these realisations were rejected, and others used in 

their place.  

5.3.3 Model Parameterisation 

For each model realisation, aquifer and aquitard properties are homogeneous within their respective 

subdomains. However they are different between realisations. As for all other aspects of model 

design, they are representative of conditions that prevail at Vale do Lobo. 

Table 5.1 lists aspects of model design which vary from realisation to realisation, together with the 

range of values from which these design variables are selected. A uniform or log-uniform distribution 

is employed in all cases. Note the following: 

• the vertical hydraulic conductivity of the aquifer is equal to its horizontal hydraulic 

conductivity; 

• the horizontal hydraulic conductivity of the aquitard is equal its vertical hydraulic 

conductivity; 

• the porosity and specific storage of the aquitard are equal to that of the underlying aquifer; 

• the thickness of the aquitard is 10m for all realisations. 
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Table 5.1 Aspects of the design of the density-dependent model which vary between realisations. 

Design variable 
Lower 
bound 

Upper 
bound 

 
Units 

Distribution 
type 

Aquifer horizontal hydraulic conductivity 1 100  m/day log-uniform 

Aquifer thickness 20 500  m uniform 

Aquifer porosity 0.1 0.3  -  

Aquifer specific storage 1×10-6 1×10-3  m-1 log-uniform 

Aquitard vertical hydraulic conductivity 1×10-4 1×10-3  m/day log-uniform 

Depth to top of aquitard below sea level at 
landward edge of model domain 

0 100 
 

m uniform 

Seaward dip of all model layers 0 6  degrees uniform 

Pre-development landward head 5 20  m uniform 

Distance from coast to landward model 
boundary 

2.5 5.0 
 

km uniform 

Post-development landward head -10.0 0.0  m uniform 

All realisations employ a longitudinal disperssivity of 25m, a transverse disperssivity of 2.5m and a 

diffusion coefficient of 0 m2/d. These result in a reasonably sharp freshwater-saltwater interface. 

Figure 5.4 shows the distribution of salinity within the model domain for a single realisation. Over all 

realisations the location of the toe of the interface varies from 30km offshore to 500m onshore. 

 

Figure 5.4 Model-calculated water salinity for a single realisation (a) prior to development and (b) post-development. 

Figure 5.5 shows the fresh water head at the coast plotted against time for all 100 realisations. The 

fresh water head is averaged over all model cells which lie above the freshwater-saltwater interface 

in each case. For most realisations, a sudden change in head occurs shortly after landward extraction 

of water commences. The fresh water head remains reasonably constant thereafter. 
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Figure 5.5 Fresh water heads at the coast under pre- and post-development conditions. 

5.3.4 Calculating GHB Head and Conductance 

For any one model realisation, let the fresh water head at the coastline be Ho when water flows toward 

the sea (i.e. under pre-development conditions), and Hi when water flows toward the land (i.e. under 

post-development conditions). Values of Ho and Hi are easily obtained from model outputs; see Figure 

5.5. A value for Hi is established by averaging the model-calculated coastal head over the 50 year 

post-development stress period. 

Let the flow of water (fresh and saline) under the coastline during pre- and post-development 

conditions be qo and qi respectively. In this nomenclature, the “o” and “i” subscripts stand for “out” and 

“in” respectively. Note also that qi and qo have opposite signs. 

Suppose that we wish to describe flow across the coastal boundary using a GHB with head h and 

conductance c. Then, under outflow conditions: 

 𝑞𝑜 =  (𝐻𝑜 − ℎ )𝑐        (5.1a) 

while under inflow conditions: 

 𝑞𝑖 =  (𝐻𝑖 − ℎ )𝑐        (5.1b) 

These two equations can be solved for the two unknowns h and c. The solutions are: 

 𝑐 =  
𝑞𝑜− 𝑞𝑖

𝐻𝑜− 𝐻𝑖 
         (5.2a) 

 ℎ =  
𝑞𝑜𝐻𝑖 − 𝑞𝑖𝐻𝑜

𝑞𝑜− 𝑞𝑖
         (5.2b) 

5.3.5 Stochasticity of GHB Head and Conductance 

By running the two-dimensional, sectional, density-dependent model many times, many different 

values of [
ℎ
𝑐

] can be obtained using equations 5.2a and 5.2b; we represent those calculated for 

realisation i as [
ℎ𝑖

𝑐𝑖
]. After N model realisations have been run, the elements h and c of the mean 

vector [
ℎ
𝑐] can be evaluated as: 

 ℎ =  
∑ ℎ𝑖

𝑁
𝑖=1

𝑁
          (5.3a) 
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𝑐 =  
∑ 𝑐𝑖

𝑁
𝑖=1

𝑁
          (5.3b) 

The variance of h and c are calculated as: 

 𝜎ℎ 
2 =  

∑ (ℎ𝑖−ℎ)𝑁
𝑖=1

𝑁−1
        (5.4a) 

 𝜎𝑐 
2 =  

∑ (𝑐𝑖−𝑐)𝑁
𝑖=1

𝑁−1
         (5.4b) 

The covariance between h and c is calculated as: 

 𝜎𝑐ℎ =  𝜎ℎ𝑐 =  
∑ (𝑐𝑖−𝑐)(ℎ𝑖−ℎ)𝑁

𝑖=1

𝑁−1
       (5.5) 

Putting these variances and covariances together we obtain a covariance matrix: 

 𝐶 ([
ℎ
𝑐

]) =  [
𝜎ℎ

2 𝜎ℎ𝑐

𝜎𝑐ℎ 𝜎𝑐
2 ]        (5.6) 

Table 5.2 lists values for the statistical properties of h and c obtained in this way.  

Table 5.2 Stochastic characterisation of GHB boundary parameters using a suite of 2D, density-dependent 

numerical models. 

Symbol Description Units Value 

h Mean GHB head m 5.47 

c Mean log10 of GHB conductance log(m2/d) -0.19 

σ2
h Variance of h (i.e. square of standard deviation of h) m2 1.88 

σ2
c 

Variance of log10 of c (i.e. square of standard 
deviation of log10 of c) 

[log(m2/d)]2 0.27 

σch Covariance of log10 of c with h m - log(m2/d) -0.35 

 

5.3.6 Spatial Correlation 

As is discussed above, 29 pilot points are used for parameterisation of the VL model coastal 

boundary. A value of GHB head and conductance is associated with each pilot point. Parameterisation 

of this boundary therefore requires that values be assigned to 58 parameters. It also requires that 

these 58 parameters be endowed with a joint prior probability distribution. 

It cannot be assumed that head and conductance are spatially invariant along the boundary. Hence 

it is not appropriate to generate a random realisation of h and c based on the stochastic 

characterisation presented in Table 5.2, and then assign these h and c values to all 29 pilot points. 

Nor is it appropriate to generate 29 different pairs of values for h and c based on this stochastic 

characterisation and then assign these values independently to the 29 different pilot points, for 

parameters are expected to show some degree of spatial correlation along the boundary. Instead, 

parameter values should be selected from a 58-dimensional probability distribution whose mean is 

[
𝐡
𝐜] and whose covariance matrix is 𝐶 ([

𝐡
𝐜

]); see Section 5.2.3.   

To do this, we first assume that the means of h and c (i.e. h and c) are invariant along the model 

boundary. Each of the elements of h is thus equal to h, while each of the elements of c is equal to c.  

The next task is calculation of 𝐶 ([
𝐡
𝐜

]). This requires some care, as a covariance matrix must be 

positive definite, for this ensures that probabilities are never negative. So we first assume a 

specification for spatial correlation of either h or c. In our case we specify an exponential decay of h 
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correlation with distance; the spatial decay constant is 2 km. (An exponential decay of correlation with 

distance – that is, use of an exponential variogram -  always engenders a positive definite covariance 

matrix.) Meanwhile the variance of h (i.e. the sill of the h variogram) is obtained from Table 5.2. In 

characterising stochasticity of h in this way, we have specified C(h). (Utilities such as PPCOV 

provided with the PEST Groundwater Utility suite allow calculation of a covariance matrix from a 

variogram.). 

Next we assume that at any pilot point, the relationship between log(c) and h is described by the 

following linear equation. (We omit the log() transformation in the following equations in order to make 

the linear algebra clearer.) 

 c = ah + ε         (5.7a) 

where a is a constant and ε is a random number. We turn equation 5.7a into a vector equation by 

applying it to all pilot points: 

 c = ah + ε         (5.7b) 

We assume at this stage that: 

 C(ε) = σ2
εI         (5.8) 

where I is the identity matrix. Hence the value of ε at one pilot point is independent of that at another. 

From (5.7b) it follows that: 

 [
𝐡
𝐜

] =  [
𝐈 0

𝑎𝐈 𝐈
] [

𝐡
𝛜

]           (5.9) 

Now we use a well-known relationship for propagation of variance. If x is a random vector with 

covariance matrix C(x), and if the vector y is calculable from x using the equation: 

 y = Ax          (5.10) 

then y is a random vector with covariance matrix C(y) given by: 

 C(y) = AC(x)At        (5.11) 

Applying this to (5.9) we obtain: 

𝐶 [
𝐡
𝐜

] =  [
𝐈 0

𝑎𝐈 𝐈
] 𝐶 ([

𝐡
𝛆

]) [
𝐈 𝑎𝐈
0 𝐈

]        (5.12) 

Now, because h and ε are independent: 

 𝐶 [
𝐡
𝛆

] =  [
𝐶(𝐡) 𝟎

𝟎 𝜎𝜀
2𝐈

]           (5.13) 

After substituting, and then performing the necessary matrix multiplications, (5.12) becomes: 

 𝐶 [
𝐡
𝐜

] =  [
𝐶(𝐡) 𝐶(𝐡)𝑎

𝑎𝐶(𝐡) 𝑎2𝐶(𝐡) + 𝜎𝜀
2𝐈

]      (5.14) 

All that remains is to determine a and σε. Numerical experiments with the density-dependent sectional 

model have already provided the diagonal elements of C(c). These are all σ2
c; see Table 5.2. It follows 

from (5.14) that: 

  σ2
c = a2σ2

h + σ2
ε        (5.15) 

These numerical experiments have also provided the covariance between h and c at any one pilot 

point; see Table 5.2 again. From (5.14) it follows that:  
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  σch = aσ2
h          (5.16) 

A value for a can be calculated from (5.16); this value can be used in (5.15) to calculate σ2
ε. In our 

case values for a and σ2
ε are -0.098 and 0.23.  

Calculation of 𝐶 ([
𝐡
𝐜

]) is therefore complete. 

 Summary 
Our single-density, decision-support groundwater model of the MC aquifer at Vale do Lobo features 

a suite of 264 GHB’s arranged along its coastal boundary. This distributed boundary condition allows 

water to leave the VL system and flow towards the sea under conditions of low extraction, and to 

enter the VL system to flow towards production wells under conditions of high extraction. This coastal 

boundary is parameterized using 29 pilot points. Values of GHB head and conductance must be 

assigned to each of these points; these values are spatially interpolated to model boundary cells. 

Parameterisation of GHB heads and conductances is fraught with uncertainty. Much of this 

uncertainty arises from the fact that little is known about hydraulic conditions offshore. Some of it 

arises from the use of a relatively simple boundary to represent these conditions, and from the 

assumption of single-density flow within the domain of the VL model.  

Accommodation of uncertainty is straightforward when using modern modelling software that supports 

stochastic parameterisation of all aspects of a model. This software also allows constraints to be 

imposed on the values assigned to stochastic model parameters through history-matching. However 

use of these methods requires that prior probability distributions be assigned to all parameters 

ascribed to a model. 

Where a polylinear model boundary is used to represent complex, spatially-distributed conditions that 

are omitted from a model, assignment of a prior probability distribution to its parameters is not 

straightforward. A solution to this problem is to simulate the omitted conditions, at least approximately, 

and to calculate the values of equivalent boundary parameters from that simulation. Evaluation of a 

prior probability distribution for boundary parameters requires that this process be repeated across 

the range of possible conditions that the boundary must represent. In order to avoid excessive 

numerical cost, the model that is used for this purpose in the present example simulates density-

dependent flow in only the vertical plane.  

A problem with using a two-dimensional sectional model to assist in parameterisation of a boundary 

that is perpendicular to this section is that of establishing spatial correlation of parameters along the 

boundary. A means of addressing this problem is described. It requires that a modeller choose an 

appropriate correlation length for parameters along the boundary. Outcomes of stochastic runs of the 

sectional model can then be used to build a covariance matrix that supports stochastic pilot points 

parameterisation of the boundary. This covariance matrix expresses spatial correlation of boundary 

head and conductance parameters, as well as correlation between the two parameter types. In so 

doing, it respects the need for a covariance matrix to be positive definite. 
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 HISTORY-MATCHING 

 Concepts 
6.1.1 General 

As is usual in GMDSI worked example reports, we devote a few sentences to clarifying what we mean 

by “history-matching”. 

Taken literally, “history-matching” denotes adjustment of model parameters so that model outputs are 

able to replicate the historical behaviour of a system. Satisfactory replication of past system behaviour 

comprises a necessary, but not sufficient, condition for use of a set of parameters when making 

predictions of future system behaviour. 

6.1.2 Bayes Equation 

In practice, history-matching should serve the imperatives of Bayes equation. Bayes equation is 

discussed extensively in GMDSI training material and webinars.  

From a Bayesian point of view, the purpose of history-matching is to adjust “realistic”, random 

realisations of model parameters by the minimum amount necessary for them to allow the model to 

replicate the past. Their “realistic” status is an outcome of being sampled from the prior parameter 

probability distribution. Their ability to support model replication of past system behaviour also grants 

them membership of the posterior parameter probability distribution. Once a sufficient number of 

samples of the posterior parameter probability distribution has been obtained, they can be used 

collectively to make probabilistic predictions of future system behaviour. 

Adjustment of random parameter sets in this manner can be implemented using the PESTPP-IES 

ensemble smoother. See White (2018) for details. PESTPP-IES works directly with ensembles of 

parameter sets rather than with individual parameter sets. Each member of the ensemble is called a 

“realisation”. The realisation adjustment process can be remarkably model-run-efficient. The number 

of model runs required for its implementation depends on the number of parameter realisations that 

comprise an ensemble, and not on the number of parameters that comprise a realisation. 

6.1.3 Calibration 

In the past, “model calibration” was used to denote the adjustment of a parsimonious parameter set 

so that model outputs provide reasonable replication of past system behaviour. However, modern-

day deployment of complex parameter sets, and a requirement that model deployment be 

accompanied by analysis of the uncertainties of decision-critical model predictions, make the concept 

of “model calibration” somewhat obsolete – unless it is given a specific meaning that acknowledges 

the heterogeneity of natural systems, and the need to endow groundwater models with large numbers 

of parameters. 

In modern modelling parlance, the term “calibration” refers to the process of solving a highly-

parameterised inverse problem. It acknowledges that this inverse problem is nonunique. So it adopts 

numerical measures (referred to as “regularisation”) to render it unique. So-called “Tikhonov 

regularisation” promotes uniqueness by constraining parameters to respect a set of preferred values 

or conditions as much as possible, subject to the requirement that an acceptable fit is attained with a 

measurement dataset. These conditions are generally those of parameter simplicity or parameter field 

smoothness. Meanwhile, the use of many parameters grants the inversion process freedom to 

introduce heterogeneity to those places within the model domain where the calibration dataset 

suggests that this heterogeneity should exist. The resulting parameter set is often characterised as 

being of “minimized error variance” because it enables the model to make predictions that lie 
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somewhere near the centres of their posterior probability distributions. The potential for predictive 

error is therefore symmetrical with respect to these predictions. 

The decision-support modelling process often benefits from postponing uncertainty analysis until a 

model has been calibrated according to the above interpretation of “calibration”. Modern-day model 

calibration allows a modeller to test the concepts on which construction of his/her model rests. If 

highly-parameterized, regularised inversion cannot achieve a good fit with an observation dataset, or 

if the simplest parameter field that enables such a fit is unexpectedly complex because parameters 

must adopt roles that compensate for model defects in order to attain that fit, then a modeller may 

decide that the conceptual basis of his/her model requires revision. Alternatively, he/she may decide 

that his/her stochastic characterisation of parameter variability requires revision.  

Calibration can also teach a modeller much about what should comprise the contents of a history-

matching dataset. It may suggest ways in which observations and corresponding model outputs 

should be processed before being matched in order to ensure that the model is able to replicate 

important aspects of system behaviour. It may also expose the need to supplement a calibration 

dataset with “soft” observations that discourage the inversion process from estimating parameters 

that result in model-calculated states and fluxes that a modeller suspects are incorrect. 

Unfortunately, attainment of a unique, minimum-error-variance solution to an inverse problem can 

incur greater numerical costs than ensemble-based history-matching. This is because it requires 

calculation of a Jacobian matrix. The cost of filling this matrix is at least one model run per parameter 

per iteration of the inversion process.  

This cost accrues benefits, however. Better fits with field measurements can generally be attained 

through regularised adjustment of a single parameter set than through Bayesian adjustment of an 

ensemble of parameter sets. Also, the Jacobian matrix that is calculated as a by-product of 

regularised inversion can form the basis for post-calibration linear analysis. This can be used to 

calculate a linear approximation to the posterior parameter covariance matrix. Hence an ensuing 

PESTPP-IES run can sample a linear approximation to the posterior parameter probability distribution 

at the commencement of its parameter adjustment process. This can enhance its numerical 

performance, particularly where the relationship between model outputs and parameters is nonlinear. 

(The inclusion of nine LUMPREM irrigation-demand models in the overall VL model renders the 

relationship between VL model outputs and some of its parameters highly nonlinear.)  

In light of the above considerations, history-matching of the VL model comprises a two-step process. 

The model is first calibrated using PEST_HP. Subsequently, PESTPP-IES is employed to sample the 

posterior parameter probability distribution. 

 Parameters 
6.2.1 General 

The model that forms the focus of this report is a composite model. A MODFLOW 6 groundwater 

model simulates movement of fresh water within the unconfined MC aquifer; this model calculates 

hydraulic heads at the nodes of an unstructured finite-difference grid. Nine LUMPREM soil moisture 

accounting models simulate processes that are operative in plant root zones; these models calculate 

monthly extraction rates that are used by the groundwater model. All of these models possess history-

matching-adjustable parameters. A total of 2241 parameters require adjustment.  

6.2.2 LUMPREM  

As discussed in Section 3.3.1, each of the nine LUMPREM models is endowed with seven adjustable 

parameters. The values of these parameters influence LUMPREM-calculated groundwater extraction. 

This, in turn, influences heads calculated by the groundwater model. 
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LUMPREM history-matching is described in Section 3 of this report. During the calibration phase of 

history-matching, the nine LUMPREM models undergo simultaneous parameter adjustment. 

Meanwhile, regularisation constraints impose a condition of preferential equality of values of 

parameters of the same type employed by different LUMPREM model instances; departures from 

parameter type equality in order to attain a good fit with the calibration dataset are minimized. The 

targets of the history-matching process are measured extraction rates. 

During Bayesian history-matching, the nine LUMPREM models and the groundwater model are run 

as a composite model. During this phase of the history-matching process, random realisations of 

LUMPREM parameters together with random realisations of MODFLOW 6 parameters are adjusted 

against a history-matching dataset comprised of measured extraction rates, observed borehole 

heads, and some other “soft” observations that are described below. Outputs of one stochastically-

history-matched LUMPREM model are compared with observed extraction rates in Figure 3.4.  

6.2.3 MODFLOW 6 

Three parameters are associated with each of the 565 pilot points whose locations are shown in 

Figure 4.3. These are: 

• hydraulic conductivity of the MC aquifer; 

• specific storage of the MC aquifer;  

• conductance of the aquitard overlying the MC aquifer. 

During calibration, Tikhonov regularisation constraints are imposed on each of these parameter types. 

These are of the “preferred value” type. Preferred values are uniformly 5 m/day for hydraulic 

conductivity, 1×10-5 for specific storage and 1×10-3 m2/day for aquitard conductance. Each set of 565 

constraints (expressed through prior information equations in the PEST control file) is accompanied 

by a covariance matrix whose task is to distribute emergent heterogeneity spatially, and therefore to 

prevent its concentration at the locations of individual pilot points. These covariance matrices are 

constructed using the PPCOV_SVA utility supplied with the PEST Groundwater Utility suite. 

PPCOV_SVA allows spatial parameter correlation to vary with pilot point spatial density. For VL model 

pilot point parameters, the spatial correlation length is about three times the local pilot point spacing.  

Figure 5.1 depicts pilot points ascribed to the coastal boundary of the VL model. Figure 4.5 depicts 

pilot points ascribed to its north-western and eastern boundaries.  

Along the coastal boundary, two parameters are associated with each pilot point. These are GHB 

head and GHB conductance. During model calibration, Tikhonov regularisation constraints for these 

parameters are of the preferred value type. Preferred values for head and conductance parameters 

are obtained using a companion density-dependent flow model as described in Section 5. Meanwhile, 

the composite head-conductance covariance matrix whose construction is described in Section 5.3.6 

of this document is used to distribute emergent parameter heterogeneity along the boundary. 

A conductance parameter is associated with each of the pilot points ascribed to the north-western 

and eastern boundaries of the VL model. Tikhonov regularisation specifies a preferred value of 10 

m2/day for each of these parameters. A covariance matrix for each of these boundary parameter 

families specifies a spatial correlation length of about 1 km. 

At each pilot point along these boundaries, time-varying heads are calculated from one of the 

borehole-measured time series depicted in Figure 4.6 – that pertaining to bore 606/1050 for the north-

western model boundary, and that pertaining to bore 606/1033 for the eastern model boundary. 

Calculation of each of these pilot-point-specific heads requires assignment of a scale and offset 

parameter (that is αi and βi of equation 4.1) to each pilot point. During model calibration, Tikhonov 

regularisation imposes a minimum-difference constraint between neighbouring parameters of the 

same type along each boundary. During the steady-state, pre-development stress period, heads at 
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bores 606/1050 and 606/1033 are also declared to be adjustable; water level records for these bores 

do not extend back to pre-development times. 

Factors that distribute LUMPREM-calculated extraction rates among production wells that belong to 

each irrigation user group comprise the final set of parameters adjusted during VL model history-

matching. There are a 211 of these factors. Tikhonov-preferred values for these factors distribute 

extraction equally over wells belonging to each group. Their estimation is further constrained by the 

necessity for these factors to sum to 1.0 for each user group.  

6.2.4 Summary: Model Calibration 

Calibration of the VL model is a two-step process. The first step comprises simultaneous calibration 

of nine LUMPREM soil moisture accounting models. Monthly extraction rates calculated by these 

calibrated models are then used by the MODFLOW 6 groundwater flow model as it undergoes 

calibration itself. 

Calibration attains parameter uniqueness using Tikhonov regularisation. Depending on the parameter 

type, this is either of the preferred value or preferred difference type. In the former case preferred 

value constraints are accompanied by covariance matrices that subdue the emergence of “spotty” 

heterogeneity on a parameter-by-parameter basis. 

6.2.5 Stochastic History-Matching 

When undertaking stochastic history-matching, covariance matrices play a different role from that 

which they play during model calibration. As stated above, stochastic history-matching enables 

Bayesian uncertainty analysis. In this type of analysis, emergent heterogeneity in history-matched 

parameter fields is encouraged rather than suppressed. Ideally, emergent heterogeneity should be 

constrained to respect the prior parameter probability distribution. Covariance matrices are used to 

define this distribution. 

Often, the same covariance matrices that are used to impose Tikhonov constraints can be used to 

define prior parameter probability distributions. Meanwhile, Tikhonov preferred values become prior 

parameter means. Realisations comprising the initial ensemble of the PESTPP-IES history-matching 

process can be sampled from prior parameter probability distributions that are defined in this way. 

Unfortunately, PESTPP-IES can sometimes experience performance difficulties when the initial 

parameter ensemble is generated in this manner. This is particularly the case where an inverse 

problem is highly nonlinear, as it is in the present case with nine incidences of LUMPREM included 

in the composite model for which stochastic history-matching is required. So instead of sampling the 

prior parameter probability distribution, samples are taken of a linear approximation to the posterior 

parameter probability distribution when initiating the IES history-matching process.  

The workflow is as follows: 

1. Calibrate the model using regularised inversion in the manner described above. 

2. Remove regularisation from the PEST control file. 

3. Combine the nine LUMPREM models and the MODFLOW 6 model so that they run as a 

single composite model. 

4. Use PEST to generate a Jacobian matrix containing sensitivities of all observations 

comprising the history-matching dataset to all parameters. 

5. Use the PREDUNC7 utility supplied with PEST to build a linear approximation to the 

posterior parameter covariance matrix. 

6. Supply calibrated parameters to PESTPP-IES as its “base” parameter set; inform it that the 

“prior” parameter covariance matrix is the linearised posterior parameter covariance matrix 

obtained in the manner described above. 



36 

 

PESTPP-IES performed well when initiated in this manner. In history-matching the VL model, our 

ensemble is comprised of 200 parameter realisations. Within four iterations, adjustment of all of these 

realisations achieved objective functions that are less than 1.5 times that achieved through model 

calibration. 

 Observations 
6.3.1 General 

The history-matching dataset that is used to constrain VL model parameters can be subdivided into 

three broad categories. These are: 

• measurements of groundwater extraction;  

• measurements of groundwater heads; 

• “soft” observations expressed as penalty functions. 

These are now discussed in turn. 

6.3.2 Groundwater Extraction 

The use of groundwater extraction data in LUMPREM model history-matching has already been 

discussed; see Section 3.3.  

It is worth noting that groundwater extraction data appear twice in history-matching datasets provided 

to PEST_HP and PESTPP-IES; in so doing, they comprise two “observation groups”. The first of these 

groups feature raw extraction data. The second group features temporal differences of measured 

monthly extraction rates. Appropriate weighting ensures visibility of each of these groups in the overall 

objective function that PEST_HP and PESTPP-IES are asked to reduce. This strategy encourages 

the history-matching process to replicate seasonal variations of pumping rates, as well as pumping 

rates themselves. 

6.3.3 Groundwater Heads 

Time series of groundwater heads are available from boreholes whose locations are depicted as 

closed circles in Figure 2.4. Water level records are of varying length and quality. Measurements 

made in wells 606/647, 606/1026 and 610/179 are shown in Figure 6.1.  
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Figure 6.1 Time series of heads in three observation wells. See Figure 2.4 for the locations of these wells. 

A similar strategy is adopted for matching of head data as is adopted for matching of extraction data. 

That is, PEST_HP and PESTPP-IES are asked to match successive differences between heads, as 

well as heads themselves. This renders the parameters to which these differences are sensitive more 

visible to the history-matching process. These parameters are principally MODFLOW 6 storage 

parameters and parameters belonging to LUMPREM soil moisture accounting models.  

As mentioned in Section 2.3, the head measurement dataset is supplemented with measurements of 

water levels in extraction wells. These wells are shown as open circles in Figure 2.4.  The VL model 

is not asked to replicate these measurements because:  

• The amount of pumping (if any) at the time of water level measurement is unknown; 

• Model cell areas are considerably greater than those of pumping wells; hence cell-calculated 

drawdowns underestimate drawdowns measured in pumping wells. 

Nevertheless, these data should not be ignored. Hence they are used in formulation of a series of 

penalty functions. If a model-calculated head for the cell containing the production well in which such 

a measurement was made is lower than the corresponding measured head, then a model-to-

measurement misfit is deemed to occur. However if the model-calculated head is greater than the 

corresponding borehole-measured head, the misfit penalty is zero.  

6.3.4 Soft Data 

As discussed in Section 2 of this report, the north-western boundary of the VL model allows water to 

enter the model domain. The amount of water that enters the VL system through this boundary is 

unknown. Indeed, assessment of this inflow is one of the reasons for development of the model. 

However, an upper limit can be calculated for this inflow based on the area of the north-western 

groundwater catchment, and the maximum likely recharge over this area. If inflow through the north-

western boundary is calculated to exceed this amount during history-matching, a misfit penalty is 

deemed to occur. 

As well as ensuring reasonableness of north-western inflow, enforcement of this penalty serves a 

secondary purpose. As is discussed in Section 2, difficult choices accompany specification of the 

eastern boundary of the VL model domain. It coincides with a management boundary rather than with 

a natural system boundary. The natural system boundary is far to the east; much uncertainty is 
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associated with hydraulic and extractive conditions that exist between the management boundary and 

the natural system boundary. Hence, it was decided to transfer this uncertainty to a much closer 

model boundary. The stochasticity of properties (heads and conductances) that are ascribed to this 

boundary must therefore reflect uncertainties associated with partly-known processes and properties 

to its east, as well as the abstract nature of the boundary itself. Once formulated, the uncertainties of 

these boundary properties can be reduced through history-matching. This process is assisted by 

penalizing parameter sets that give rise to unrealistic simulated hydraulic behaviour at and near the 

boundary. As well as respecting expert knowledge, penalising north-western boundary inflow 

discourages water that flows into this boundary from flowing straight out of the northern portion of the 

eastern model boundary.  

Two further measures are introduced to encourage reasonable hydraulic behaviour near the eastern 

model boundary. It is desirable that the model reproduces the following conditions. 

• During the transient component of the history-matching period, water flows predominantly 

into the model domain through its eastern boundary rather than out of it.  

• During simulation of pre-development, steady-state conditions, heads along the eastern 

model boundary descend monotonically towards the coast. (The boundary is roughly 

perpendicular to topographic contours.) 

Penalties are included in the history-matching dataset that ensure estimation of parameters that 

respect these conditions. 

 Results  
6.4.1 Calibration  

Representative modelled and measured extraction rates are plotted together in Figure 3.3. 

Representative modelled and measured heads are graphed in Figure 6.2. Fits are reasonable, but 

also a little disappointing in the case of 610/179; the model is unable to reproduce large dry season 

drawdowns experienced by this well. We are unsure of the reason for this. Both 610/179 and its 

neighbouring well 610/613 (for which model-to-measurement misfit is similar) are close to pumping 

wells. Perhaps high summer drawdowns in these wells arise from local anomalies in hydraulic 

properties that the model is unable to reproduce. Alternatively, it is also possible that their drawdowns 

reflect proximity to unregistered extraction wells. 
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Figure 6.2 Measured and modelled heads in three observation wells. See Figure 2.4 for the locations of these wells. 

Maps of calibrated hydraulic conductivity and specific storage are provided in Figure 6.3a and in 

Figure 6.3b respectively. Being outcomes of a calibration process, these parameter fields exhibit only 

as much heterogeneity as is required to fit the history-matching dataset. Nevertheless, patterns of 

heterogeneity are clearly visible.  

 

Figure 6.3 Spatial disposition of (a) hydraulic conductivity and (b) specific storage estimated through model 

calibration. Black lines delineate mapped faults. 

Areas of anomalously high hydraulic conductivity may be linked to faults which transect the model 

domain. It is also possible that anomalously high and low hydraulic conductivities that are estimated 
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close to the eastern boundary of the VL model compensate for simplifications that are embodied in 

this boundary. This matter is discussed in Section 7.  

High values of estimated specific storage in the western corner of the model domain suggest the 

possibility of a connection with the overlying PQ aquifer, possibly induced by faulting. (It is of interest 

to note the existence of a nearby spring.)  

Figure 6.4 shows heads throughout the model domain calculated by the model (a) under steady-state, 

pre-development conditions and (b) at the end of the history-matching period. 

 

Figure 6.4 Heads calculated by the calibrated model under (a) steady state, pre-development conditions and (b) at 

the end of the history-matching period. 

6.4.2 Stochastic History-Matching 

Measured pumping rates are compared with those calculated using 200 PESTPP-IES-derived 

samples of the posterior parameter probability distribution in Figure 3.4. Measured borehole heads 

are compared with those calculated using these samples in Figure 6.5.   
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Figure 6.5 Measured and modelled heads in three observation wells. Heads are calculated using samples of the 

posterior parameter probability distribution derived by PESTPP-IES. See Figure 2.4 for the locations of these wells. 

Figure 6.6 shows eight hydraulic conductivity fields calculated by PESTPP-IES while Figure 6.7 shows 

corresponding specific storage parameter fields. A comparison of these parameter fields with those 

provided in Figure 6.3 reveals that parameter fields emerging from stochastic history-matching show 

much greater hydraulic parameter heterogeneity than those emerging from calibration 

 

Figure 6.6 Eight hydraulic conductivity fields calculated by PESTPP-IES. 
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Figure 6.7 Eight specific storage fields calculated by PESTPP-IES. 
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  MODEL PREDICTIONS 

 General 
7.1.1 Predictions 

In this section we use the history-matched VL model to make two predictions that are salient to 

management of the VL system. First we examine water balance of the MC aquifer. Then we calculate 

a sustainable rate of groundwater extraction from the MC aquifer. In doing so, we explore how 

pumping should be distributed among existing users in order to maximize this extraction while, at the 

same time, guaranteeing its sustainability. 

 7.1.2 Predictive Bias 

As has been discussed, the position of the eastern boundary of the VL model is somewhat 

problematical. It coincides roughly with the VL management boundary. This has the advantage that 

model-based calculations of water balance are relatively straightforward. Another advantage is that it 

excludes from the model domain parts of the aquifer where hydraulic conditions and pumping rates 

are uncertain. Model run times and parameterisation complexity are also reduced. Meanwhile the 

boundary’s parameterisation is designed to bear the weight of uncertainty arising from conditions 

further to the east.  

This strategy is not without risk. White et al (2014) and Doherty (2015) point out that history-matching 

of a structurally simple model may induce bias in some predictions, despite the fact that model outputs 

fit historical data well. However the propensity for history-matching-induced bias is prediction-specific. 

For data-driven predictions, model imperfections are “calibrated out”; hence while some model 

parameters to which predictions of this type are sensitive may incur bias, these data-driven predictions 

do not. In contrast, other model predictions may inherit bias from history-match-biased parameters to 

which they are sensitive.  

It follows that a model which is built solely to make data-driven predictions can have ease of history-

matching as its sole design criterion. However more caution must be exercised when building a model 

which must make predictions which are partly informed by history-matching and partly informed by 

expert understanding of a system. 

The previous section noted that history-matched hydraulic conductivity parameters exhibit some signs 

of artefacts near the model’s eastern boundary. It does not follow that predictions which are discussed 

in this section are therefore biased or, if they are biased, that their propensity for bias is not included 

in quantified predictive uncertainty intervals. For the VL system, the latter are already large because 

of data scarcity. Nevertheless, we address this issue as we discuss these predictions. 

 Water Balance 
Compliance with EU Water Framework Directives requires that components of the VL system water 

balance be evaluated. This can be done using the history-matched VL model. 

Figure 7.1(a-e) shows five time series. These are inflows into the VL model domain over its history-

matching period from the three families of GHBs that encircle it, and from the spatially distributed 

GHB which overlies it. LUMPREM-calculated water extraction rates are also shown. These 

components of the water balance are computed using 200 samples of the posterior parameter 

probability distribution calculated by PESTPP-IES. Those calculated using the parameter set 

achieved through model calibration are also shown. 
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Figure 7.1 Components of the VL water balance over the 20 year history-matching period. Orange-coloured time 

series were calculated using the parameter set achieved through model calibration. 

Time-averaged components of the water balance, together with respective uncertainty standard 

deviations, are listed in Table 7.1. These statistics are calculated by time-averaging each realisation 

of each flow component, and then computing the mean and standard deviation over all realisations 

using standard formulas.  

Table 7.1 Water balance of VL aquifer over the history-matching period. 

Inflow from Mean (Mm3/yr) Standard deviation (Mm3/yr) 

Eastern boundary 0.23 0.59 

North-western boundary 2.30 0.89 

Aquitard 1.4×10-3 0.01 

Coastal boundary 2.64 0.42 

Pumping -5.17 0.17 

Features of interest in Table 7.1 include the following: 

• Inflow to the MC aquifer from the overlying PQ aquifer comprises only a small component of 

the overall water balance. 

• There is a considerable influx of water to the system from the seaward side of the coastal 

boundary. 

• Inflow to the system from the north-western boundary is large.  

• Uncertainties associated with all boundary inflows are large. 
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The EU Water Framework Directive specifies that abstraction be less than 90% of average annual 

recharge in managed groundwater systems such as Vale do Lobo by 2027. This criterion for “good 

management” is simplistic. For the VL system it is difficult to apply, as extraction from the system 

induces the recharge that it requires. Nevertheless, if the above table is viewed as a static ledger, it 

can be established that 2.9 ± 1.07 Mm/yr of extra recharge is required if all non-coastal inflow is to 

exceed pumping. As stated above, managed aquifer recharge is being contemplated as a system 

management option. 

Simplifications encapsulated in the eastern model boundary are unlikely to compromise the above 

calculation. Reasons are as follows: 

• The posterior uncertainty ascribed to eastern boundary inflow is high; this is likely to exceed 

any history-matching-induced bias that is associated with this inflow.  

• The water balance component of management interest is inflow over the entire boundary; 

local structural and parametric errors are likely to “cancel out” when calculating total inflow. 

• Extraction rates form an important component of the VL model history-matching dataset; this 

creates a data-driven link between the prediction and field measurements. 

 Sustainable Extraction 
7.3.1 Problem Definition 

Extraction of water from the MC aquifer is threatened by salt water intrusion. Protection of the resource 

requires that extraction be limited, and that the spatial distribution of extraction be such as to preclude 

landward flow of saline water. Ideally, the spatial disposition of extraction should be such as to 

maximize it subject to the constraint that the system is protected. This comprises an optimisation 

problem. The optimal disposition of extraction will depend heavily on patterns of hydraulic conductivity 

that prevail within the MC aquifer. History-matching of the VL model has provided some insights into 

these patterns; see Figure 6.3 and Figure 6.6.  

In order to demonstrate how this optimisation problem may be solved, we run the VL model under 

steady state conditions. This allows us to explore long-term sustainability. We designate rates of water 

extraction ascribed to the nine user groups discussed in Section 2.5 as our decision variables. Using 

software described below, we maximize these while maintaining the spatial disposition of pumping 

within each user group that is inherited from the history-matching process. In practice, these 

distribution factors should also be decision-variables. 

A single constraint is imposed on the extraction maximisation problem. This is that there be zero net 

flow of water landward from the VL coastal boundary into the model domain. Ideally, we should insist 

that inflow be zero at all places along this boundary. (In fact, even this tighter constraint does not 

necessarily ensure the avoidance of salt water contamination of irrigation water; this requires 

imposition of the constraint that hydraulic heads at all pumping wells are large enough to prevent 

upconing of saline water.) However, we found that, with omission of spatial distribution factors from 

decision variables, the imposition of constraints which are too tight prevents attainment of a feasible 

solution to this optimisation problem when parameter uncertainty is taken into account; see below. 

7.3.2 Difficulties 

A number of difficulties beset solution of this optimisation problem. These are now briefly discussed. 

The high conductances ascribed through history-matching to eastern GHB boundary conditions make 

it clear that the VL system cannot be managed in isolation. Pumping of the MC aquifer to the east of 

this boundary lowers groundwater levels within the VL system itself. This predisposes the system to 

saltwater intrusion when it is pumped. 
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To accommodate this issue we solve the above-defined optimisation problem with the head at the 

eastern boundary set at five different levels, this simulating five different intensities of water extraction 

from the neighbouring system. This is accomplished by assigning five different values to the head in 

well 606/1033, and then using calibrated αi and βi values (see equation 4.1) to ascribe heads to cell-

specific GHBs along the boundary. The highest of these five 606/1033 head values yields GHB 

boundary heads that are close to those calculated for pre-development conditions; the lowest of these 

values yields boundary heads that resemble present-day conditions. The optimisation problem is then 

solved five times, once for each of these boundary head distributions. Meanwhile the groundwater 

level in well 606/1050 that governs heads along the north-western model boundary is set to its 

average value over the history-matching period. 

A second problem is the possible presence of a salt water wedge beneath the coast under steady 

state conditions. With extraction maximized, flow of fresh water towards the coast is reduced. 

Consequently, heads near the coast may be sufficiently low for the elevation of the freshwater-

saltwater interface to exceed that of the base of the MC aquifer. If the interface is sharp, saline water 

below it is motionless under steady state conditions. (In reality, salt water moves slowly inland to 

support the existence of diffusion-driven salt water recirculation at the interface.) Above the interface, 

fresh water flows towards the sea. If the freshwater-saltwater interface extends into the model domain, 

this limits the cross-sectional area that is open to fresh water flow, and hence the transmissivity that 

is available to it. This raises fresh water heads, which lowers the interface. 

In the present study, this phenomenon is accommodated by using a slightly altered version of 

MODFLOW 6. Alterations to the code allow model-calculated transmissivity to reflect the thickness of 

fresh water above the freshwater-saltwater interface. During every iteration of the heads’ solution 

process, the Ghyben-Herzberg relationship is used to calculate the elevation of the freshwater-

saltwater interface from that of fresh water head; transmissivity is adjusted accordingly. 

The third problem is that of parameter uncertainty. To accommodate this difficulty, we solve the 

optimisation problem defined above in two different ways. First we endow the VL model with a single 

parameter set, namely the parameter set of minimum error variance emerging from model calibration. 

This optimisation problem is solved using PESTPP-OPT (supplied with the PEST++ suite). Then we 

solve the optimisation problem using the ensemble of parameter sets that were calculated by the 

PESTPP-IES ensemble smoother. In the latter case, definition of the optimisation constraint varies 

slightly. We now maximize groundwater extraction under the constraint that inland flow from the 

coastal boundary is zero or less (i.e. flow is outward) for all 200 parameter fields. This simulates the 

operation of a very risk-averse management strategy. This optimisation-under-uncertainty problem is 

solved using the CMAES_HP global optimiser (supplied with PEST_HP). 

A fourth difficulty was alluded to in Section 7.1.2. This is the problem of using the eastern GHB as a 

surrogate for processes that operate on the other side of it. We explore this difficulty using linear 

analysis. 

The back row of Figure 7.2 shows pre-history-matching contributions to the uncertainty of model-

predicted coastal inflow by different types of parameters employed by the VL model; parameter type 

names are listed in Table 7.2. This prediction is salient to the optimisation problem posed above as it 

imposes constraints on pumping rates. Note the logarithmic scale in this figure. Note also that 

variance is the square of standard deviation.  
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Figure 7.2 Contributions to the uncertainty of model-predicted coastal boundary inflow by different parameter types 

employed by the VL model. The back row provides pre-history-matching contributions while the front row provides 

post-history-matching contributions. Parameter group names are explained in Table 7.2. 

Table 7.2 Description of parameter type names shown in Figure 7.2. 

Parameter type Name in Figure 7.2 

LUMPREM parameters Names end with an underscore 

Irrigation areas area 

Coastal GHB conductance seac 

Coastal GHB head seah 

North-western boundary conductance gcndnw 

North-western boundary αi (used to calculate boundary heads) goffnw 

North-western boundary βi (used to calculate boundary heads) gmltnw 

Eastern boundary conductance gcnde 

Eastern boundary αi (used to calculate boundary heads) gmlte 

Eastern boundary βi (used to calculate boundary heads) goffe 

Hydraulic conductivity kx1 

Specific storage ss1 

Pre-development heads at E and NW boundaries predvh 

Intra-user group borehole fractions wmlt 

Aquitard boundary conductance pht 

Figure 7.2 demonstrates that some parameters can have large contributions to posterior predictive 

uncertainty while possessing small or zero contributions to prior predictive uncertainty. This is an 

outcome of the definition of “contribution to uncertainty by a parameter type”. It is defined as “the 

reduction in uncertainty of the prediction that is accrued through acquisition of perfect knowledge of 

values of pertinent parameters”. In the present case, the prediction of interest is steady state inflow 

from the coastal model boundary. Obviously, this is insensitive to parameters such as specific storage. 

Hence the prior contribution of this parameter type to the uncertainty of this prediction is zero. 

However, if one were to acquire perfect knowledge of specific storage throughout the model domain, 

this would reduce uncertainties in history-match-estimated values of hydraulic conductivity as the two 

parameter types are highly correlated when calibrated against a small measurement dataset. This, in 

turn, would reduce the posterior uncertainty of predicted coastal inflow.  

Prior contributions to the uncertainties of coastal inflow are dominated by LUMPREM model 

parameters; these determine extraction rates. Posterior contributions to coastal inflow uncertainty are 

dominated by coastal boundary conductances and by hydraulic conductivities within the MC aquifer. 

Pre-and post-history-matching contributions by eastern boundary conductances are significant but 

non-dominant. Those made by parameters that determine eastern boundary heads are of much less 

importance. 
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Because eastern boundary conductances are surrogates for connections between the VL system and 

the groundwater system to its east, their importance is unsurprising. Nor is the reduction in their 

uncertainties accrued through history-matching. Any history-matching-induced bias that these 

parameters transfer to a prediction of coastal inflow is likely to be expressed as an unknown 

component of the difference between their prior and posterior contributions to the uncertainty of this 

prediction. It is also likely to be expressed through contributions to uncertainty, and history-matching-

accrued reductions thereof, made by parameters that determine eastern boundary heads. The latter 

are relatively small compared to other sources of coastal inflow predictive uncertainty.  

This brief analysis suggests that solution of the optimisation problem that is described herein may 

indeed be susceptible to history-matching-induced biases that accompany use of GHBs along the 

eastern model boundary in place of explicit representation of a wider system. However these biases 

do not appear to be sufficient to invalidate the analysis if they are viewed from a perspective that 

acknowledges the considerable uncertainties that arise from data insufficiency. 

7.3.3 Results 

The blue dots in Figure 7.3 depict solutions to the five constrained optimisation problems discussed 

above. As stated, these problems are solved using PESTPP-OPT. The VL model is endowed with the 

minimum error variance parameter field derived through model calibration; see Figure 6.3. Because 

use of this parameter field (ideally) yields model predictions which are at the centres of their posterior 

probability distributions, these are collectively referred to as “risk neutral” solutions to the extraction 

optimisation problem. The vertical axis of Figure 7.3 represents total extraction as a fraction of current 

extraction.  

 

Figure 7.3 Solutions to constrained extraction optimisation problems. Blue dots are risk neutral solutions while 

orange dots are risk averse solutions. 

The highest of the five eastern boundary heads for which the constrained optimisation problem is 

solved corresponds to that which would be expected under pre-development conditions, while the 

lowest corresponds to heads which are slightly above those which are being experienced at present. 

It is apparent that even under the former (benign) conditions, long-term extraction rates should be 

reduced to about 30% of what they are now in order to protect the MC aquifer. Alternatively, if water 

use on the other side of the eastern boundary continues at its present rate, any extraction from the 

VL aquifer is unsustainable, for eastern groundwater extraction already induces flow of water from 

the VL system coastal boundary and through the VL system itself. 

Figure 7.4a shows fractional extraction rates by different user groups for these five solutions. Users 

are labelled “A” to “I” rather than 1 to 9 as we do not wish to disclose who they are.  
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Figure 7.4 Relative extraction rates for different user groups for (a) the five solutions of the risk neutral optimisation 

problem depicted in Figure 7.3 and (b) the three solutions of the risk averse optimisation problem. 

The orange dots in Figure 7.3 show risk averse solutions to the constrained extraction optimisation 

problem. As stated above, these are calculated using CMAES_HP. The VL model employs all 200 

samples of the posterior parameter probability distribution calculated by PESTPP-IES; meanwhile, 

CMAES_HP ensures that none of these fields precipitate landward flow of groundwater from the 

coastal boundary. A solution to this optimisation problem is not feasible for low eastern boundary 

heads. This is because some parameter fields allow landward flow from the coast even if there is no 

pumping of the MC aquifer with these low heads assigned to the eastern model boundary. 

User group extraction rates for the three viable solutions of the risk averse constrained optimisation 

problem are shown in Figure 7.4b. 
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  CONCLUSIONS 
Groundwater modelling that is the subject of this report was far from straightforward. It required the 

making of many design decisions. As is typical of groundwater modelling, with the benefit of hindsight 

some of them would have been made differently if the work were to be repeated. 

In this report we describe, among other things: 

• Construction of a groundwater model for a coastal aquifer system; 

• Employment of a methodology for estimating monthly demand for water extracted from that 

system; 

• Use of the model to assimilate data that can elucidate elements of the system’s water 

balance while estimating some of its hydraulic properties; 

• Quantification of the uncertainties of all such estimates; 

• Optimisation of extraction under both risk-neutral and risk-averse management approaches. 

To our knowledge, there are very few incidences of coastal modelling work in which the last three of 

the above tasks have been successfully completed. Modern simulation technology allows detailed 

numerical replication of complex processes that prevail at a freshwater-saltwater interfaces. However 

it is unable to exploit the information content of data that records the history of groundwater behaviour 

at a particular site. Such data are often both plentiful and information-rich.  

Aquifer hydraulic properties, and the spatial disposition of heterogeneity associated therewith, exert 

a strong influence on a coastal system’s response to human management. Movement of saline and 

non-saline waters is particularly sensitive to horizontal and vertical contrasts in hydraulic conductivity. 

Because simulation of density-dependent flow requires the use of many model layers, the 

parameterisation burden of density-dependent simulation is as heavy as its numerical burden if a 

density-dependent model is to give full stochastic expression to the potential variability of subsurface 

hydraulic properties. Unfortunately, density-dependent models take too long to run, and are too 

numerically unstable, to undergo satisfactory history-matching; nor can they be used in history-match-

constrained predictive uncertainty analysis. 

Compromises must therefore be made if numerical simulation is to support management of coastal 

groundwater systems. The present report documents some workable compromises which may be 

worthy of consideration at other sites. 

Fundamental to the modelling approach that is documented herein is the premise that assessment of 

current groundwater conditions, and predictions of future groundwater behaviour, are uncertain. While 

acceptance of the presence of uncertainty should trigger recognition of the burden of having to 

quantify uncertainty, it also renders the task of decision-support modelling somewhat forgiving – 

especially in areas such as Vale do Lobo where data are relatively scarce. This is because simulation 

errors that may be incurred by numerical compromises that expedite computational speed and 

simulator stability may be small in comparison to uncertainties incurred by data insufficiency. If a 

relatively simple model can provide access to important information through its ability to assimilate 

site data, then its use may engender a reduction in the uncertainties of at least some decision-critical 

model predictions. It may also support quantification of these uncertainties. Naturally, errors accrued 

through use of the simple model for this purpose should be included in the uncertainty intervals that 

it calculates. 

Model simplifications that are discussed in the present GMDSI worked example report include the 

following: 
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1. Restrictions in the area of the model domain, this requiring that conditions on model 

boundaries reflect properties and processes that are operative on the other side of these 

boundaries;  

2. Use of a single-layer, single-density groundwater flow model. 

The second simplification is justified by the fact that although water quality is deteriorating in the VL 

system, measured salt concentrations are still relatively low. However, under pre-extraction 

conditions, fresh water encounters saline water as it flows under the coast and eventually to the sea. 

Conversely, under extractive conditions saline water is induced to move inland. The presence of 

saline water on the seaward side of the model’s coastal boundary must be reflected in its design. To 

the extent that hydraulic conditions on the other side of the boundary are unknown, this must be 

reflected in stochasticity of parameters with which that boundary is endowed.  

In order to accomplish this, parameterisation of the coastal boundary is informed by stochastic runs 

of a density-dependent flow model that roughly simulates offshore conditions at Vale do Lobo. 

Processing of the outcomes of these runs allows construction of a prior probability density function 

from which boundary heads and conductances can be sampled. Uncertainties in these boundary 

parameters are then reduced through history-matching. 

In this report, we describe how the history-matched model can be used to explore two issues that are 

salient to management of the Vale do Lobo groundwater system. The first of these issues is the 

system’s overall water balance. Model-based data assimilation demonstrates conclusively that use of 

water exceeds supply. Simpler calculations, performed without the assistance of a model, would 

probably have led to the same conclusion. However, given the importance of water balance evaluation 

to compliance with EU Water Framework Directives, model-based quantification of its components, 

and assessment of their uncertainties, raises the credibility of these calculations. 

We also demonstrate how the model can be used to manage groundwater extraction in a way that 

supports its sustainability. This is accomplished by using the model in conjunction with partnered 

software to solve a constrained optimisation-under-uncertainty problem. Formulation of this problem 

can account for risks that management is prepared to accept.  
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