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ABSTRACT 

The rapidly increasing use of structural adhesives, especially in the joining of automotive body structures 

has motivated various investigations of the effects of adhesive curing process on joints. The automotive-

grade structural adhesives require heat curing, which, in the meantime, performs thermal loading on the 

substrates and causes undesirable effects in the joint. For example, the curing process results in complex 

residual stresses in the adhesive bond which are detrimental to the performance of the adhesive bond 

and thereby the automobile body structure, particularly the crashworthiness. To thoroughly evaluate such 

effects, this paper consists of two parts. The first part presents an innovative experimental method to 

characterize the thermal effects of the heat curing process on a multi-material single lap shear joint using 

digital image correlation. The second part of the study compares the performance of residual stress-

induced joints against stress-free joints under tension loading at different strain rates. The proposed 

experimental method and the corresponding results from this study are expected to help 

comprehensively understand the adhesive joining process and its potential side effects on the automobile 

body structure.   

KEYWORDS 

Curing, structural adhesives, automotive, multi-material joints, residual stress, viscoelastic, digital image 

correlation 
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1. INTRODUCTION 

Enhanced concerns associated with increasing levels of emission of local pollutants (such as SO2 and NOX) 

and global greenhouse gases (such as CO2) have driven the automotive industry towards producing 

enhanced fuel-efficient vehicles. Among various strategies, vehicle lightweighting is considered as one of 

the most effective and thus attractive choices. In a steel-dominant automotive body, significant weight 

reduction is achievable by low-density material substitution [1, 2]. Nevertheless, most lightweight 

materials, such as aluminum and reinforced plastics, usually company with increased prices. Based on a 

balanced consideration, multi-material body construction is thereby frequently adopted in the 

automotive industry. However, this solution is strongly limited by the difficulties of multi-material joining 

using conventional joining techniques (like spot-welding) [3, 4]. 

As an alternative, adhesive bonding is applicable for joining dissimilar materials, such as ferrous metals, 

non-ferrous metals, and fiber-reinforced plastics. Such a method not only enables high-performance and 

flexible joints but also eliminates the weight and cost of fasteners, such as bolts, screws, and rivets, 

associated with mechanical joining techniques [5, 6]. Therefore, structural adhesives and sealants have 

been used extensively in automotive body structures and such a trend continues to grow. Nevertheless, 

the fact that automotive structural adhesives are single component adhesives, which need to be heat 

cured (except 2-component adhesives used for CFRP parts) accounts for a critical problem: the difference 

in the coefficients of thermal expansion (CTE) of the joined parts has significant implications on the 

integrity and response of the Body-in-white (BIW) to external loading, especially thermal loading.  

Furthermore, as per the current trend in the automotive industry, the adhesive heat curing process is 

combined with the automotive paint baking process based on the considerations of manufacturing 

process efficiency and economy [7]. At elevated temperature in the paint baking oven, different 

components of the body structure expand at different rates and magnitudes depending on their different 
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CTE and air convection properties in local areas. After the adhesive is cured at the peak temperature, it 

constraints the thermal contraction in the components during the cooling down phase. This (when 

extended to all components and different joints in a BIW) leads to distortions in the structure and, more 

importantly, residual stresses in the adhesive-bonded joints. It is well established that the presence of 

such residual stresses is detrimental to the performance of the adhesive bond and thereby the automobile 

body structure, particularly crashworthiness. 

Several efforts have experimentally shown the effects of residual stresses in adhesively bonded joints. 

Reedy et al. [8] studied the effect of fabrication residual stresses on the strength of a butt joint considering 

the stress relaxation behavior of the adhesive at different temperatures. They concluded that the effects 

of the stresses diminish with time due to the relaxation behavior of the adhesives. Kim and Lee [9] found 

that the load-bearing capacity of an adhesive bonded joint is greatly influenced by the fabrication residual 

thermal stresses. Apalak et al. [10] showed that the thermal mismatch between the substrates can result 

in huge thermal strains and affect the adhesive-bonded joint. Yu et al. [11] studied the residual stresses 

due to curing shrinkage and thermal expansion in epoxy-steel bi-material beams. Kropka et al. [12] 

investigated the role of residual stress on joint strength on a napkin-ring joint geometry.  Experimental 

investigations done by Teutenberg [13] indicated the effect of residual stress in a lap shear joint compared 

to a stress-free joint at different degrees of cure of the adhesive. The results showed a considerable 

decrease in the displacement across the joint before fracture, along with a decrease in maximum force. 

Ma et al. [14] studied the effect of several curing curves on the residual stresses generated in the high-

temperature phosphate adhesive-bonded joint on a single lap joint. Lucas F. M. da Silva et al.[15-17] 

studied the thermal residual stresses generated in the joint due to non-free thermal expansion and 

contraction in the joint, and also due to shrinkage of adhesives caused by the curing process. They 

evaluated the benefits of using a dual adhesive joint design between dissimilar materials over a wide 

range of temperatures, to mitigate the effects of thermal mismatch in the adhesive and adherends. The 
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thermal stresses generated in the paint baking oven due to CTE mismatch or delta-alpha problem were 

also studied by Dietrich [18] and Regensburger [19]. They stated that the thermally induced stresses can 

be reduced by reducing the oven temperature and flattening the heating and the cooling cycle.  

 This paper presents an innovative experimental method to capture the thermal effects on the adhesive-

bonded joint and helps in quantifying the induced effects which will help in better understanding of the 

complex residual stresses generated due to the adhesive heat curing process. In this paper, two types of 

experiments and the corresponding results are discussed: 

(i) First, a unique experimental approach is shown to capture the effects of heat curing on an adhesive 

bonded single lap shear joint during the curing process using 3D digital image correlation. The tests were 

conducted on two metal substrates combinations using an automotive-grade structural adhesive.  

(ii) Second, the effects of the residual stresses on the strength of single-lap shear joints at different strain 

rates are discussed. The joints with residual stresses produced using the mentioned approach in (i) were 

tested in tension and the performance of the joints with residual stress was compared to stress-free joints. 

The highlight of this work is that the tests were performed at three different shear strain rates ranging 

from low (0.005/s) to high (50/s).  

The experimental data generated by the discussed approach in this paper are expected to 

comprehensively reveal the thermal effects in the joint during the curing process. Furthermore, the test 

can be used for the validation of adhesive material models as it yields quantifiable parameters like thermal 

displacement and force (cause of residual stresses in the adhesive joint), which can be used for validating 

adhesive material models in a FE simulation. The adhesive material models can then be used for any 

application, including automotive. In addition, the effects of the residual stresses at different strain rates 

will help in studying the significance of the fabrication residual stresses at low to high strain rates, like in 

the case of a crash event. 
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2. EXPERIMENTS TO CAPTURE THERMAL EFFECTS DURING THE HEAT CURING PROCESS  

The automotive paint baking cycle, which is also used for curing the adhesives, lasts approximately 30 

minutes. When the BIW passes through the paint baking oven, the temperature of the body structure 

rises to the range of 160-180°C, and then slowly falls to the ambient level [20]. The duration and 

temperature of the paint baking cycle are specific to each automotive manufacturer. In this work, the test 

aimed to reproduce the effects caused by thermal expansion of similar and dissimilar substrates in an 

adhesive joint during the adhesive curing process in the automotive paint bake cycle. A testing approach 

was developed to capture the thermal displacements in an uncured specimen during the curing process, 

using Digital Image Correlation (DIC). The test results provide insight into the relative displacement of 

substrates during the adhesive curing process.  

2.1. Specimen geometry and materials 

The tests were conducted on adhesive bonded single lap shear joints as shown in Figure 1. Each specimen 

consisted of two metal substrates joined by an adhesive layer. Each substrate was 100 mm long and 20 

mm wide. The overlap area of the adhesive bond was 20x20 mm2. The minimum thickness of the adhesive 

layer was controlled by adding a 5% volume fraction of 0.30 mm solid glass microspheres to the adhesive. 

The glass microspheres ensured that the minimum adhesive bead thickness in the joint was 0.30 mm.  

The tests proceeded with two sets of substrates combinations: (i) multi-material combination of DP980 

steel and aluminum alloy AA7071, referred in this paper as ST-AL; (ii) similar material combination of 

aluminum alloy AA7071 with itself, referred in this paper as AL-AL. The thickness of the DP980 sheet was 

1.42 mm while the thickness of the AA7071 sheet was 2.55 mm. The mechanical properties of the DP980 

and AA7071 metal substrates at room temperature were obtained by standard uniaxial tension tests. The 

grade and the thickness of aluminum and steel substrates were carefully chosen to ensure that the 
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substrates do not undergo excessive deformation before the joint fails, i.e. making sure that the yielding 

force (yield strength x thickness x width) for the substrates was higher than the force required for the 

adhesive joint to fail. The material properties obtained from the uniaxial tension tests of standard dog-

bone samples of the metal substrates are presented in Figure 2 as force-longitudinal strain curves to 

provide a better understanding of the yielding force. The material properties of the substrates are 

summarized in Table 2. 

The adhesive used for the study was an automotive-grade structural adhesive Henkel Teroson EP 5089, 

provided by Henkel Corporation. It is a heat curing, single-component adhesive, based on toughened 

epoxy resin. It is specially developed to provide high peel and impact peel resistance over the wide 

temperature range and is optimized for high crash forces. The mechanical properties of the adhesive as 

per the technical data sheet are given in Table 1.  

Table 1. Properties of the adhesive Teroson EP 5089 

Young’s Modulus (ISO 527-1) 1.6 GPa 

Tensile Strength (ISO 527-1) 35 MPa 

Shear Strength (DIN EN 1465) >20 MPa 

Elongation at break (ISO 527-1) 10% 

Poisson Ratio 0.4 
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Figure 1. (a) Single lap shear joint specimen geometry, (b) an uncured specimen painted with the speckle 

pattern for DIC strain measurement 

 

Figure 2. Force vs. strain curve obtained from uniaxial tension testing of the metal substrates – DP980 

(1.42mm) and AA7071 (2.55mm), both 20mm wide, tested at room temperature 
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2.2. Experimental setup 

The experimental setup used for testing was built on an Instron universal load frame, similar to a standard 

uniaxial tensile test configuration.  

Furnace: The tests were performed on a specialized setup which consisted of a furnace installed on the 

universal load frame. The furnace was a circulating air oven that was capable of maintaining temperature 

consistently up to 450°C with minimum variation. The setup was arranged to have the mounting grips and 

the specimen inside the furnace to simulate automotive paint baking oven conditions. The furnace was 

designed to have a small glass window opening in the front door through which the specimen was 

monitored using the DIC system.  

Grips: The grip rods used in the test were made of nickel-iron alloy (INVAR), known for its uniquely low 

CTE, to minimize the thermal expansion in the grips. The properties of the INVAR alloy are summarized in 

Table 2.  

The grips were designed in such a way that they self-aligned the specimen and prevented rotation in the 

uncured specimen. The specimen mounts consisted of two holes which were used to hold each substrate 

in the proper orientation. Figure 3 shows the specimen mounting grip rods used for the test. 

Table 2. Selected properties of the substrates and grip material 

Property DP980 AA7071 INVAR 

Young’s Modulus (ISO 6892-1) 209 GPa 66 GPa 132 GPa 

Yield Strength (ISO 6892-1) 650 MPa 405 MPa 725 MPa 

Coefficient of Thermal Expansion  1.15E-5 /K 2.18E-5 /K 1.8E-6 /K 

Thermal Conductivity 55 W/m K 230 W/m K 20 W/m K 
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Measurement devices: Three systems were running in sync with each other, including (i) the DIC system 

for displacement measurement, (ii) a temperature logger for temperature profile, and (iii) the 50kN load 

cell for force measurement. 

(i) Temperature measurement: Due to the design of the furnace and nature of hot air, the air at 

the top is always hotter than the bottom. Therefore, different portions of the grips and the 

specimen experience different temperature profiles. Four K-type thermocouples were 

attached to the top grip, top substrate, bottom substrate, and bottom grip to measure the 

surface temperature at four distinct points, as shown in Figure 3. 

(ii) DIC system: it is an optical strain measuring technique, which makes use of cameras and image 

processing to derive 3D strains. The cameras capture the images of the specimen at a pre-

defined frequency and the DIC software then compares the whole set of images (called as 

stages) to the reference stage, to determine the movement of the substrates with respect to 

time. In the test setup, the GOM Aramis 5M system DIC system was used to capture the 

displacement in the substrates during the paint baking cycle. 

(iii) Force measurement: The top grip rod was mounted to a load cell equipped with the Instron 

load frame, to capture the tensile or compressive forces exerted by the specimen due to 

thermal expansion or contraction during the tests. 
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Figure 3. Specimen mounted on the INVAR grips and thermocouples attached at four locations numbered 

in the figure 

2.3. Test Methodology 

The experiment was performed in two stages: (i) heating phase and (ii) cooling phase.  

(i) Heating phase: a single-lap shear joint was prepared by applying adhesive on the mating 

surfaces of the two substrates. Spacer grade soda lime glass beads of 0.30 mm were added to 

the adhesive to ensure a minimum 0.30 mm thickness of the adhesive bead. The specimen 

was held together by a paper clip. Before mounting the specimen on the grips, a target region 

of 50 mm length across the joint was painted in black and white speckle pattern as per the 

DIC standard, shown in Figure 1. The thermocouples were attached to the specimen and the 

grip rods and the furnace controller was set to 185°C. The heating phase was performed for 

40 minutes and then the furnace door was opened for the cooling phase. 

(ii) Cooling Phase: In the cooling phase, the specimen was slowly cooled by natural cooling and 

the test was stopped when the temperature reading for all the thermocouples reached 30°C. 
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The addition of glass beads to the adhesive controls the minimum thickness of the adhesive layer, 

however, the actual thickness could still be more than the diameter of the glass beads. Therefore, the 

thickness of the adhesive joint for each specimen was measured after the test. The thickness of the 

adhesive bead was obtained by subtracting the thickness of the two substrates from the total joint 

thickness. 

A picture of the complete test setup in the heating and cooling phase is shown in Figure 4.   

 

2.4. Results and Discussion 

The temperature data from temperature logger, displacement data from DIC, and the force data from the 

load cell were cross-referenced and studied together to get a holistic picture of the phenomenon induced 

by the thermal expansion during the adhesive curing process. 

 

2.4.1. Temperature profiles 

A sample of the temperature measurements recorded during the tests is shown in Figure 5. It shows the 

temperature ramping up in the heating phase (0 to 2400 sec) and then slowly cooling down (2400 to 

11000 sec). The temperature profile of the four points was found to be the same for both substrate 

combinations (ST-AL and AL-AL). The temperature profile of the top and bottom substrates is nearly the 

same, but it is different from the temperature profile of the top and bottom grip. The top grip heats at a 

faster rate than the bottom grip and cools at a much slower rate. This is because of two reasons: (i) the 

hot air inside the furnace rises and heats the upper half of the furnace more rapidly than the lower half, 

(ii) the variation in the final temperature of the top grip and the bottom grip is due to the different lengths 

and connections of the two grip rods. As a result, two grip rods lose heat to the surroundings in dissimilar 

ways.  
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Figure 4. (a) Test setup with furnace door closed (heating phase); (b) furnace door open (cooling phase) 

 

Figure 5. Surface temperature profiles obtained from the four thermocouples shown in Figure 3. 

2.4.2. Displacement and Force results 

The image series recorded for the entire paint baking cycle was processed and the X/Y/Z displacement 

contour map for the target region was obtained. The full-field DIC Y-displacement map (shown in Figure 

6) shows the movement of the substrates and the grips in the Y direction at different periods during the 
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paint bake cycle. To extract the displacement history in a plot, a virtual extensometer of 30mm (Figure 7) 

was placed in Y direction across the joint with the endpoints on each substrate. Although the substrates 

had expansion in the X direction as well, the magnitude of expansion was beyond the DIC measurement 

error. The relative Y-displacement across the joint for three repetitions for ST-AL and AL-AL tests is shown 

in Figure 8.  

The force measurements recorded by the load cell attached to the top grip rod are shown in Figure 9.  

2.4.3. Discussion 

The trends in the temperature profile, Y-displacement, and force measurements, when studied together, 

indicate the effect of the heat curing process and the behavior of the adhesive joint during the curing 

process.  

During the heating phase, as the temperature of the two metallic substrates and the grip rods start rising, 

they begin to expand. The top substrate, being constrained to the grip rods at its top end, tends to move 

down in the negative Y direction. Similarly, the bottom substrate moves upwards, in the positive Y 

direction. This is represented by a negative relative Y-displacement in the heating phase (Figure 8). 

Meanwhile, the uncured adhesive is compliant at the beginning and does not pose any restrictions to the 

movement of the substrates, and thereby accounts for a negligible force at the beginning (Figure 9). With 

increasing temperature and time, the adhesive starts curing at around 1800 seconds and the adhesive 

modulus starts rising. Accordingly, the adhesive starts restricting the further expansion of the substrates 

and the load cell picks up compressive forces. The temperature of the system keeps rising until the end of 

the heating phase, generating further expansion in the substrates and the grips. Therefore, the Y-

displacement keeps rising in the negative direction and the compressive force keeps mounting on the 

adhesive.  

At the onset of the cooling phase, the temperature of the system starts dropping. Due to this, the 

substrates and the grips begin to contract, and the direction of the displacement is reversed. The 
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substrates start moving away from each other, back to their original state. The fully cured adhesive bond 

now starts opposing the thermal contraction and the load cell starts picking tensile forces. As a result of 

the bond, the substrates fail to retract to their initial state, and this is shown by a residual Y-displacement 

at the end of the cooling phase. 

It was observed that the level of negative forces at the end of the heating phase was significantly lower 

than the positive forces at the end of the cooling phase. This behavior is well explained by the temperature 

and cure dependent properties of the adhesive. At the peak temperature, although the adhesive gets fully 

cured, the effect of the high temperature keeps the adhesive modulus low and the adhesive stays more 

compliant. At lower temperatures, the modulus of the fully cured adhesive rises sharply, and the tensile 

force applied by the adhesive reaches much higher levels. These tensile forces applied by the adhesive set 

the residual stress in the adhesive bond.  

Effect of substrate combination: The Y-displacement on 30 mm gauge length (GL) for AA7071 - AA7071 

combination shows a higher negative peak as compared to ST-AL combination, at the end of the heating 

phase, owing to a higher coefficient of thermal expansion for aluminum. A higher level of thermal 

expansion and contraction in the aluminum substrate leads to a higher displacement across the joint and 

produces a higher force at the end of the cooling phase.  

Effect of adhesive bondline thickness: It is known from the literature that a thin adhesive bead leads to a 

stiffer joint, which was also observed in this study [21]. The behavior of the joint was found to be very 

sensitive to the thickness of the adhesive bead. Due to the manual application of adhesive in specimen 

preparation, it was a challenge to ensure the same thickness for each specimen. Therefore, the thickness 

of each specimen was recorded after the test and the average thickness was found to be 0.32 ± 0.02 mm. 

It was found that the thickness of the adhesive bead of each sample had a relation with the final force 

value at the end of the cooling phase. During the heating phase, the thickness of the adhesive bondline 

does not affect the expansion in the substrates, therefore similar values of Delta-Y were observed at the 
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end of the heating phase. At the start of the cooling phase, when the adhesive is fully cured, the specimens 

with a thin bondline thickness showed higher stiffness and generated higher force at the end than thicker 

bondline specimens.  

      

Time = 0 min 

Temperature = 25°C 

Time = 20 min 

Temperature = 160°C 

Time = 40 min 

Temperature = 174°C 

Time = 45 min 

Temperature = 115°C 

Time = 85 min 

Temperature = 45°C 

 

Figure 6. Y-displacement contour maps obtained from processing the DIC results 

  

Figure 7. Virtual extensometer of 30 mm length across the adhesive joint 

30 mm 
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Figure 8. Y-displacement on 30 mm gauge length across the joint for ST-AL and AL-AL tests with 

temperature on the secondary vertical axis 

 

Figure 9. Force measurements during the curing cycle for ST-AL and AL-AL tests with temperature on the 

secondary vertical axis 

Based on the results of this test, it is evident that the manufacturing process of a heat-cured adhesive 

joint puts residual stresses on the adhesive bond and causes distortion in the substrates. The effects of 
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thermal expansion during the curing process will be much more magnified on a full vehicle level. 

Therefore, it is important to understand the significance of these process-induced residual stresses on the 

performance of the joint, which is discussed in the next section.  

 

3. EXPERIMENTS TO EVALUATE THE EFFECTS OF RESIDUAL STRESS ON JOINT PERFORMANCE  

In the last set of experiments, it was established that thermal expansion in the metallic substrates induces 

residual stress in the adhesive-bonded joint during the heat curing process. In this section, the single lap 

shear joints with residual stresses were pulled in tension and the results were compared to the 

performance of the joints without residual stresses. The joints were tested at multiple shear strain rates, 

ranging from a very slow rate 0.005/s to intermediate-high rate 50/s. The test results revealed the effects 

of residual stress at high rates which will help in predicting the joint behavior at the time of events like a 

crash. 

3.1. Specimen geometry and materials 

The tests were run on a single lap shear specimen geometry discussed in Section 2.1. The tests were 

performed on the same adhesive Henkel EP 5089 and a multi-material substrate combination of ST-AL.  

Two types of samples were prepared for the tests: stress-free samples, and samples with residual stress.  

The stress-free samples were prepared by curing the specimens without constraining the substrates, to 

allow free movement in the substrates induced by thermal expansions during the curing cycle. This allows 

free expansion of the substrates during the heating phase of the curing cycle, and then free contraction 

during the cooling phase of the curing cycle, causing no relative displacement across the adhesive joint. 

Having no displacement across the fully cured adhesive joint (in the cooling phase) ensures stress-free 
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adhesive bonded samples. The specimens were cured for 30 minutes at 180°C. Figure 10 shows the 

method for specimen preparation. 

 

Figure 10. Process used for producing Stress-free adhesive-bonded single lap shear specimens 

The samples with residual stresses were prepared on the same setup and following the same procedure 

as discussed in Sections 2.2 and 2.3. 

3.2. Calculation of Shear Strain Rate 

The shear strain across the lap shear joint is dependent upon the thickness of the adhesive bead in the 

joint. To determine the testing crosshead speed and analyze the results, the measured average thickness 

(0.32 mm) of the adhesive bond was used in the calculation. The shear strain rate was calculated using 

the formula: 

𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑎𝑖𝑛 𝑅𝑎𝑡𝑒 =
𝐶𝑟𝑜𝑠𝑠ℎ𝑒𝑎𝑑 𝑆𝑝𝑒𝑒𝑑

𝐽𝑜𝑖𝑛𝑡 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
 

First, the theoretical crosshead speed was calculated based on the intended shear strain rate and a few 

preliminary tests were run. The displacement across the joint from the preliminary tests was used to 

determine the actual shear strain rate of the test. The test shear strain rate was then used to obtain the 

machine compliance factor and the crosshead speed was adjusted to obtain the exact shear strain rate. 



19 
 

For example, for a shear strain rate of 0.5/s, the theoretically calculated crosshead speed was 0.15 

mm/s, which was later adjusted to 1.10 mm/s to account for the compliance in the testing machine.    

3.3. Experimental Setup 

The tests were performed on two different experimental setups for the different shear strain rates. The 

tests at 0.005/s and 0.5/s were done on an Instron quasi-static electromechanical load frame with a 50kN 

load cell. The single-lap shear joint specimen was held using wedge grips and the strain measurement was 

done using the GOM Aramis 3D DIC system which is capable of capturing images at up to 125 frames per 

second. Figure 11 shows the experimental setup and the specimen mounted on the wedge grips.    

 

Figure 11. Experimental setup for testing at 0.005/s and 0.5/s shear strain rates 

The tests at a shear strain rate of 50/s were performed on an Instron servo-hydraulic machine with a 50kN 

load cell which was capable of running at higher speeds. The setup had a pair of hydraulic wedge grips 

and the strain measurement was done using Photron AX200 high-speed camera at 100,000 frames per 

second. The experimental setup for high-speed testing is shown in Figure 12.   
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Figure 12. Experimental setup for testing at 50/s shear strain rate 

3.4. Results 

Force-Strain Plots: The DIC results were processed to obtain the displacement across the joint. A virtual 

extensometer of 30 mm was drawn with one end on each substrate in order to keep the adhesive joint 

within the extensometer length. Shear strain is defined as the ratio of change in the Y-length (Delta L(y)) 

of the extensometer to the pre-measured bond thickness. The given formula calculates the global shear 

strain across the adhesive joint.  

𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑎𝑖𝑛 =
𝐷𝑒𝑙𝑡𝑎 𝐿(𝑦)

𝐽𝑜𝑖𝑛𝑡 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
 

The force-shear strain curves for the tensile tests of lap shear adhesive joints for the three shear strain 

rates are given in Figure 13, Figure 14 and Figure 15., respectively. 
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Figure 13. Force-Strain curves for ST-AL lap-shear specimens at a shear strain rate of 0.005/s for stress-

free specimens in solid blue and specimens with residual stress in dashed red 

 

Figure 14. Force-Strain curves for ST-AL lap-shear specimens at a shear strain rate of 0.5/s for stress-free 

specimens in solid blue and specimens with residual stress in dashed red 
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Figure 15. Force-Strain curves for ST-AL lap-shear specimens at a shear strain rate of 50/s for stress-free 

specimens in solid blue and specimens with residual stress in dashed red 

Failure Modes: The samples were analyzed after the tests and the failure modes were visually studied. It 

was found that the samples had a cohesive failure for all the strain rates. Figure 16 shows the failure 

mode in the tested samples. 

     

Figure 16. Failure Modes in the tested lap-shear specimens at (left to right) (a) 0.005/s; (b) 0.5/s; (c) 50/s 

3.5. Discussion 

The force-shear strain curves for tension tests of lap shear joints at all three strain rates show linear nature 

at the beginning followed by some degree of plasticity. It was observed that the maximum force in the 

tests at all speeds was less than the yielding force of the substrates as shown in Figure 2. Hence, the 
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displacement across the virtual extensometer captured by DIC was solely dependent on the adhesive 

bond with minimum elongation in the substrates, and the force measured in the test was not limited by 

the choice of substrates. The following key conclusions were derived from the tests: 

(i) An important difference between the curves for stress-free and samples with residual stress 

is the initial slope of the curve. The stiffness of the specimens with residual stress is higher 

than the stress-free specimens for all the strain rates.  

(ii) Another noticeable effect of residual stresses is the difference in maximum force to failure. 

The maximum force for the stressed specimen is lower than the stress-free specimens for all 

the shear strain rates. 

(iii) There is a drop in the maximum shear strain to failure when the specimens have residual 

stress as compared to stress-free specimens. 

(iv) The results from the tension tests of single-lap shear joints show large strain rate sensitivity. 

The maximum force to failure increases by 19% for a shear strain rate increase of 0.005/s to 

0.5/s and rises to 39% when the shear strain rate increases from 0.005/s to 50/s for the stress-

free specimens. A similar increase in maximum force was observed for specimens with 

residual stress. A comparison of the curves for different strain rates for stress-free and with 

residual stress specimens is shown in Figure 17. 
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Figure 17. Comparison of force vs. strain curves for ST-AL lap-shear specimens at shear strain rates of 

0.005/s, 0.5/s and 50/s for stress-free specimens in blue and specimens with residual stress in red 

4. CONCLUSIONS 

In this paper, two sets of experiments and the corresponding results were discussed. The first set of 

experiments was an innovative approach using 3D DIC system to study the effects of thermal expansion 

on the adhesive joint during the heat curing process. The experimental setup allowed the curing of an 

adhesive bonded single lap shear joint in a specialized oven while monitoring the thermal expansion and 

contraction in the substrates in the heating and the cooling phase. The experimental results shed light on 

the behavior of the adhesive-bonded joint for a multi-material substrate combination and a similar 

material substrate combination during the curing process. It was confirmed that the adhesive-bonded 

joint is subjected to residual stresses at the end of the curing process due to thermal expansion in the 

substrates. The presented experimental technique paves the path for quantifying the global residual 

stress levels in the adhesive bond, which can be explored in future work. 

The second set of experiments presented the effect of residual stresses on the performance of a single 

lap shear joint. The single-lap shear joints were prepared in two ways: (i) Stress-free samples, and (ii) 
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Samples with residual stress. The performance of the joint with residual stresses was compared to stress-

free joints by pulling the single lap shear joints in tension at varying strain rates. The results indicated large 

strain-rate sensitivity as the maximum force to failure increases with an increase in the shear strain-rate. 

The study showed that the residual stresses hinder the peak performance of the joint by limiting the 

maximum force to failure and the total strain to failure. Based on the derived results, it is necessary to 

include the effects of manufacturing induced effects in the design process of adhesively bonded 

structures. Both the tests help in understanding the behavior of the residual stresses on the joint and 

provide quantifiable parameters, which can be utilized for the validation of adhesive material models. The 

effects of manufacturing induced residual stresses in the adhesive joint, if included in the modeling of the 

adhesive joint, will lead to more accurate prediction of the joint performance in simple as well as complex 

structures.  

For future work, it will be interesting to study the effect of aging on the properties of the adhesive bond. 

Since adhesives are viscoelastic materials, the residual stresses are expected to relax with time, and it 

would be interesting to study the change in the behavior of the joint with time.     
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