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Abstract

In this work, the effects of chemotaxis and steric interactions in active suspensions are analyzed by extending

the kinetic model proposed by Saintillan and Shelley [1, 2]. In this model, a conservation equation for the

active particle configuration is coupled to the Stokes equation for the flow arising from the force dipole exerted

by the particles on the fluid. The fluid flow equations are solved spectrally and the conservation equation is

solved by second-order finite differencing in space and second-order Adams-Bashforth time marching.

First, the dynamics in suspensions of oxytactic run-and-tumble bacteria confined in thin liquid films

surrounded by air is investigated. These bacteria modify their tumbling behavior by making temporal com-

parisons of the oxygen concentration, and, on average, swim towards high concentrations of oxygen. The

kinetic model proposed by Saintillan and Shelley [1, 2] is modified to include run-and-tumble effects and

oxygentaxis. The spatio-temporal dynamics of the oxygen and bacterial concentration are analyzed. For

small film thicknesses, there is a weak migration of bacteria to the boundaries, and the oxygen concentra-

tion is high inside the film as a result of diffusion; both bacterial and oxygen concentrations quickly reach

steady states. Above a critical film thickness (approximately 200 micron), a transition to chaotic dynamics

is observed and is characterized by turbulent-like 3D motion, the formation of bacterial plumes, enhanced

oxygen mixing and transport into the film, and hydrodynamic velocities of magnitudes up to 7 times the

single bacterial swimming speed. The simulations demonstrate that the combined effects of hydrodynamic

interactions and oxygentaxis create collective three-dimensional instabilities which enhances oxygen avail-

ability for the bacteria. Our simulation results are consistent with the experimental findings of Sokolov et

al. [3], who also observed a similar transition with increasing film thickness.

Next, the dynamics in concentrated suspensions of active self-propelled particles in a 3D periodic domain

are analyzed. We modify the kinetic model of Saintillan and Shelley [1, 2] by including an additional nematic

alignment torque proportional to the local concentration in the equation for the rotational velocity of the

particles, causing them to align locally with their neighbors (Doi and Edwards [4]). Large-scale three-

dimensional simulations show that, in the presence of such a torque both pusher and puller suspensions are

unstable to random fluctuations and are characterized by highly nematic structures. Detailed measures are
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defined to quantify the degree and direction of alignment, and the effects of steric interactions on pattern

formation will be presented. Our analysis shows that steric interactions have a destabilizing effect in active

suspensions.
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Chapter 1

Introduction

Collective motion is a spectacular phenomenon that has enthralled scientists across different fields for a

long time. Simply put, it describes the complex, coordinated dynamics exhibited by a system consisting

of interacting elements governed by simple laws. This phenomenon is ubiquitous in biology. Fishes swirl

like a stirred fluid to escape from a nearby predator. Aerial display of birds, locust marching in a field,

rotating colony of fire ants, collectively swarming bacteria are a few more examples [6]. Biologists study the

phenomenon to provide functional explanation. Physicists study the mechanisms that lead to emergence

of collective behavior. Computer scientists try to utilize the understanding of collective motion to design

robots where simple interacting agents can perform complex tasks.

Dynamics in suspensions of micro-organisms (henceforth, called active suspensions) is one other fascinat-

ing instance of collective motion. Micro-organisms can be considered as polar rods that propel themselves by

injecting energy into the surrounding medium. The terms: active particle/swimmer/self-propelled particle

are used interchangably in this thesis to describe micro-organisms. Recent experiments in active suspensions

have reported rich collective behavior characterized by complex pattern formation and density fluctuations

[7, 8], higher swimming speeds [3], spatio-temporal coherence [9], 3D turbulent-like behavior [3, 8], nematic

structures[5], enhanced passive tracer diffusivities [10, 11] and motion which takes the form of whirls, jets

and vortices [12, 13]. In the collective state, individuals induce strong local flows in the fluid medium which

influence the motion of other cells, leading to co-ordinated motion.

To understand the collective dynamics in active suspensions, it is first necessary to understand the motion

of a single active particle. Micro-organisms have length and velocity scales of the order of microns, therefore,

the Reynolds number given by Re = UL
ν is very small. This means that the inertial effects can be ignored

in this regime. As a result, the net force on an active particle is zero, and any external force is directly

transferred to the fluid medium. This means that the strategies used for locomotion by organisms like fish,

birds, human beings does not help when Re << 1. At low Reynolds number, the fluid medium satisfies

the Stokes equation which are linear and time-independent. As a consequence of these two properties, the

aspects of low Reynolds number locomotion can be described by purely a geometric point of view [14, 15].
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Another interesting property of low Reynolds number locomotion is described by the scallop theorem which

states that a swimmer must deform in a way that is not invariant under time-reversal, to propel itself.

Micro-organisms have evolved different propulsion strategies like ciliary or flagellar locomotion to meet

the constraints in the low Reynolds number regime. Irrespective of the mechanism employed by different

swimmers, the hydrodynamics exhibits universal features. An active particle exerts a propulsive force Fp

which is exactly balanced by the viscous drag (Fp = -Fd, because the particle is force-free). To leading order,

this exerts a force dipole on the fluid medium. We introduce two types of swimmers: A pusher particle,

which exerts thrust through its tail; A puller particle, which exerts thrust through its head. The force dipole

exerted on the fluid is positive for pullers and negative for pushers.

While locomotion of single micro-organisms is well studied experimentally and theoretically, the exact

mechanisms and functionality of such collective dynamics in large populations of micro-organisms remain

unclear. Direct numerical simulations of these systems have been performed, using different models [16,

17, 18, 19]. These simulations have been successful in reproducing the experimental observations, but this

approach is very expensive.

A simpler approach is kinetic modeling which involves developing continuum equations that govern the

dynamics of active particles. The first kinetic model for active suspensions was developed by Ramaswamy

et al. [20, 21, 22], who adapted the existing kinetic models for liquid crystals by including the effect of force

dipoles in the Navier Stokes equation, and showed that aligned suspensions of self-propelled particles are

unstable at long wavelengths for a specific range of wave angles. Other kinetic models have been proposed

and the interested reader is referred to recent reviews [23, 24].

The work presented in this thesis is centered on the kinetic model proposed by Saintillan and Shelley

[1, 2], where a conservation equation for the active particle is coupled with the Stokes equation for the

local disturbance velocity (created by the force dipoles exerted by the active particles). Using numerical

analysis and 2D simulations they showed that pusher suspensions were unstable to perturbations from the

isotropic state while puller suspensions were stable. These instabilities were driven by the active stresses

and a criterion for the onset of collective swimming due to hydrodynamic interactions was derived.

The analysis of Saintillan and Shelley [1, 2] considered the sole effect of hydrodynamic interactions.

However, in reality, the motion of the swimming particles are influenced by several other effects. Micro-

organisms swarm near surfaces and bias their motion towards an attractant or away from repellents by a

process called chemotaxis. A fundamental understanding of how chemotaxis in confined environment affects

the collective behavior in active suspensions has potential applications in pathogenesis of diseases caused by

chemotactic bacteria, design of bacterial micromixers etc. Also, micro-organisms like bacteria usually swim
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as concentrated populations where the steric effects between the swimmers become important. So, including

steric interactions in the kinetic model and studying its effect on the collective behavior will help us provide

a realistic description of the experimental observations.

1.1 Overview of the present work

In this work, we extend the Saintillan-Shelley model [1, 2] to include the effect of steric and chemotactic

interactions. In Chapter 2, the dynamics in a suspension of oxytactic bacteria confined in thin films is

investigated using 3D numerical simulations, where we report onset of large scale chaotic dynamics above a

threshold film thickness as observed in recent experiments [3]. Detailed descriptions of the spatio-temporal

evolution of both oxygen and bacterial fields are provided. In Chapter 3, we discuss the dynamics in

concentrated active suspensions, and show that steric interactions lead to instabilities in both pusher and

puller suspensions. Finally, conclusions are provided in Chapter 4.
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Chapter 2

Oxygen transport and mixing
dynamics in suspensions of Oxytactic
bacteria

2.1 Introduction

Chemotaxis is the ability of a micro-organism to modulate its motion in response to changes in chemical

concentration. This ability is important for micro-organisms to better exploit nutrients essential for their

survival and to protect themselves from poisonous substances. When the interaction is attractive, chemotaxis

leads to self-organization of the biological system into coherent structures [25].

Bacterial chemotaxis presents a powerful model system to understand how organisms sense and respond to

chemical gradients [26]. Bacterial locomotion consists of motion along straight lines called ”runs” interspersed

by random reorientation called ”tumbles” (Brown and Berg [27]). This behavior is called run-and-tumble

motion. Bacteria perform chemotaxis by modulation of the tumbling frequency. Since the typical length

of bacteria is of the order of µm,it is difficult for a micro-organism to measure spatial gradients. Instead,

they sense changes in chemical concentration by making temporal comparisons with the recent past. When

a bacterium is moving in the direction of increasing chemo attractant it decreases its tumbling frequency.

Thus the straight runs lengthen in the direction of high oxygen concentration, thus on average, the bacteria

moves towards higher chemo attractant concentration. When the bacteria biases its motion towards higher

concentration of oxygen, it is called aerotaxis. Aerotactic bacteria also consume oxygen and thereby they

create the oxygen gradients themselves. This, when coupled to the aerotactic bias, leads to interesting

dynamics [28] characterized by pattern formation and swimming towards free surfaces. About a decade ago,

such dynamics were attributed to bioconvection. Bioconvection is a mechanism similar to Rayleigh-Benard

convection, where an overturning instability occurs when bacteria denser than water swim (on average)

upward because of aerotaxis [29] or other factors.

Keller and Segel [30] proposed a model for chemotaxis, which is recognized as the Keller-Segel model.

This model consists of two coupled advection-diffusion equations that govern the evolution of number density

of biological cells and evolution of the chemoattractant. This model and its variations have been used by

several researchers [31] to study the effect of chemotactic interactions in bacterial suspensions. Pedley and
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Kessler [28] and Hill and Pedley [29] present a thorough review of the analytical treatment of bioconvection.

However, bioconvection occurs only above a critical Rayleigh number, and the associated length scale

is in the order of metres [32]. In this work, we focus on collective motion at much smaller scales where

bioconvection is not relevant. Recent experiments of Sokolov et al. [3] is the main motivation to consider

this problem.

Sokolov et al. [3] recently studied the dynamics of aerotactic bacteria in free-standing films for different

film thicknesses. They observed that above a critical film thickness, the spatially homogeneous self-organized

bacterial motion transitions to a three-dimensional chaotic state characterized by spontaneous formation and

break-up of dense bacterial plumes. This transition coincides with the onset of a bacterial depletion zone at

the center of the film. It was pointed out that the Rayleigh numbers for these experiments were 2 orders of

magnitude smaller than the critical value for the onset of bioconvection, and the observed collective motion

was attributed to oxygentaxis.

Recent theoretical and experimental studies have suggested a hydrodynamic origin of large scale collective

motion in suspensions of swimming micro-organisms [8, 1, 2, 33]. So, it would be interesting to see if we can

explain the dynamics observed in the experiments of Sokolov et al. [3] based on hydrodynamic interactions

or a coupled effect of oxygentaxis and hydrodynamic interactions.

In section 2.2, we extend the kinetic model, previously introduced by Saintillan and Shelley [1, 2] to model

chemotaxis in suspensions of rod-like run-and-tumble swimmers. In section 2.3, we perform 3D numerical

simulations, analyze the spatio-temporal dynamics and show that our results are in agreement with the

experimental predictions of Sokolov et al [3].

2.2 Kinetic Model

2.2.1 Smoluchowski equation for the conservation of active particles

We represent the active particles using a distribution function Ψ(x,p, t). This function measures the prob-

ability of finding a particle in a center-of-mass position x, oriented along the unit vector p, which describes

the swimming direction. This distribution function satisfies a conservation (or Smoluchowski) equation [4].

∂Ψ

∂t
=

[
− λΨ +

∫
Ω

T (p,p′; δ)Ψ′λ′dp′
]
−∇x · (ẋΨ)−∇p · (ṗΨ). (2.1)

The bracketed terms of Eq. (2.1) accounts for the run-and-tumble behavior of the swimmers. The first

term λΨ(x,p, t) accounts for the active particles that have stopped swimming along the direction p because
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of tumbling (λ represents the tumbling frequency). T (p,p′; δ) describes the probability that a swimming

particle tumbles from an orientation p′ to p. So, the second term accounts for the swimming particles that

have tumbled from other orientations to swim along the direction p.

The particle fluxes ẋ and ṗ in Eq. (2.1) are modeled as

ẋ = V0p + u−D∇x(ln Ψ) (2.2)

ṗ = (I− pp) · [∇xu · p]− d∇p(ln Ψ) (2.3)

The center of mass flux in Eq. (2.2) accounts for the translational motion of the active particle.This is

expressed as a sum of self propulsion velocity V0p, advection by the local fluid velocity u(x, t), and center-

of-mass diffusion with a constant isotropic diffusivity D. Similarly, Eq. (2.3) accounts for particle rotation

under the effect of the local velocity gradient via Jeffery’s equation [34, 35]. Rotational diffusion is also

included with constant diffusivity d.

As noted in section 2.1 the swimming particle modifies its tumbling frequency in response to changes in

concentration of oxygen that they sample as they swim. This tumbling bias leads to oxygentaxis, and is

accounted by Eq. (2.4) where ξ is the oxytactic response strength.

λ = λ0 exp(−ξDs/Dt) where
Ds

Dt
=
∂s

∂t
+ (p + u) · ∇xs (2.4)

This expression for the tumbling frequency is a generalization of the expression used by Bearon and

Pedley [36] (whose analysis considered steady linear gradients of chemoattractants). It should be noted that

Chen et al [37] also modeled the tumbling frequency in a similar fashion.

The probability distribution function can be normalized as 1
V

∫
V
dx
∫

Ω
dpΨ(x,p, t) = n. Here, n = N/V

denotes mean number density of the suspension, where N is the total number of swimming particles.

To close Eqs. (2.1), (2.2) and (2.3), the fluid velocity u and the evolution of the oxygen concentration s

must be described.

2.2.2 Stokes equation for the local disturbance velocity

In the low-Reynolds-number regime relevant to the locomotion of microorganisms, the disturbance fluid flow

created by the particles satisfies the Stokes equations

∇xq − µ∇2
xu = ∇x ·Σp, ∇x · u = 0, (2.5)
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where µ is the viscosity of the suspending fluid, and q is the fluid pressure. In Eq. (2.5), Σp(x, t) is the

particle extra stress, obtained as the orientational average of the force dipoles exerted by the particles on

the fluid

Σp(x, t) = σ0

∫
Ω

Ψ(x,p, t)pp dp, (2.6)

where the strength of the dipole resulting from self propulsion σ0 is a constant whose sign depends on the

mechanism for swimming: head-actuated swimmers or pullers, such as the alga Chlamydomonas, result in

σ0 > 0, whereas rear-actuated swimmers or pushers, such as most swimming bacteria including E. Coli and

B. Subtilis, result in σ0 < 0. In addition, σ0 is related to the single-particle swimming speed U0 and particle

length l by a relation of the form σ0/µU0l
2 = α, where α is a dimensionless O(1) parameter with the same

sign as σ0.

2.2.3 Evolution of oxygen

The evolution of the oxygen field s(x, t) also can be described considering its convection by the disturbance

velocity field u, consumption by the swimmers and diffusion as shown below

∂s

∂t
+ u(x, t) · ∇xs−Do∇2

xs = −κc(x, t)f(s(x, t)) (2.7)

in which Do is the oxygen diffusion constant, κ is the rate of oxygen consumption by a single bacterium (in

oxygen rich environments), and c =
∫

Ω
Ψ dp. A function f(x) =

(
x−0.1

0.9

)0.2
is included in the consumption

term to account for the fact that the bacterial consumption ceases when the concentration of oxygen falls

below 10 percent of its saturation value in a fluid medium.

2.2.4 Non-Dimensionalization

The coupled system of Eqs. (2.1)–(2.7) can be made dimensionless using the following characteristic length,

velocity, and time scales: lc = (nl2)−1, uc = V0, and tc = lc/uc. The oxygen concentration is normalized

by its value at the boundary. Upon non-dimensionalization, the only remaining parameters in the set of

equations are the dimensionless stress magnitude α, the shape parameter γ, the diffusivities D, d and D0;

the tumbling frequency λ, oxytactic response strength ξ, and oxygen consumption coefficient κ. Therefore,

the dependence on the number density would be through the system size, which is made dimensionless by

(nl2)−1. We choose values for the non-dimensional parameters which are close to that of the experiments of

Sokolov et al [3] to compare results from our model to their experimental observations.
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2.3 Numerical Simulation

Three dimensional numerical simulations are performed by integrating the kinetic equations described in

section 2.2 by using spectral solutions for the Stokes equation, second-order finite differences for the flux

terms and second-order Adams-Bashforth time-marching for the Smoluchowski equation. It should be noted

that the kinetic model has 5 independent variables (x, y, z, θ, φ), making the simulations computationally

expensive. Hence, the simulations were carried out in parallel, using 64 processors [38].

We consider the dynamics in a doubly periodic domain (periodic in x and z directions). The surface of

the film is perpendicular to the y-direction. y = 0 and y = L correspond to the boundary planes for a film

of thickness L. In the y-direction, we use a free-shear stress boundary condition for the velocity given by

Eq. (2.8) and zero net probability flux boundary condition for the bacterial distribution function given by

Eq. (2.9).

ŷ · ∇xu(x, t) = 0 at y=0,L (2.8)

ŷ ·
∫

Ω

ẋdp = 0 at y=0,L (2.9)

These boundary conditions are satisfied by using a reflection condition for the distribution function. For

the oxygen field, we have s = 1 at the boundaries.

We start with a uniform isotropic bacterial concentration. At t=0, the oxygen concentration inside

the film is taken to be zero. We introduce random perturbations to the bacterial distribution and study

the spatio-temporal dynamics of the bacterial number density, oxygen concentration and local disturbance

velocity. Simulations are performed for several different film thicknesses, ranging from 50-600 microns.

As the simulations start, oxygen diffuses into the film from the boundaries and the bacteria start to

consume the oxygen. Both these effects create gradients of oxygen inside the film. The bacteria modify their

run-and-tumble behavior to preferentially move towards the higher oxygen concentration and this leads to

the migration of bacteria towards the boundaries.

Our simulations show that steady states are reached for smaller film thicknesses, but beyond a threshold

concentration, there is a transition to chaotic 3D dynamics. This can be seen from Fig. 2.1 and Fig. 2.2

which shows bacterial and oxygen field in 100 and 500 micron films.

We classify the dynamics into 3 different regimes based on the film thickness.

Regime I: We find that, in films of thickness ≤ 100 micron, the bacterial number density and oxygen

concentration quickly reach steady states where the bacterial and oxygen profiles are uniform along x and z.
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(a) (b)

(c) (d)

Figure 2.1: Bacterial number density field: a) t = 0, Channel size 100µm; b) t = 60 sec, 100µm; c) t = 0,
Channel size 500µm; b) t = 60 sec, 500µm

There is a weak migration of bacteria to the boundaries. This is because of the high availability of oxygen

inside the film because of diffusion. Bacteria can find the oxygen that they need within the film.Therefore,

the tendency to swim towards the boundary is weak.

Regime II: For films of thickness, 200-400 micron, we observe large scale three dimensional flows, chaotic

motion, number density fluctuations, and several other interesting collective features. The striking feature

in this regime is that bacteria which migrate to the boundaries in search of oxygen, travel back into the

center of the film, taking the form of high density plumes, and this, we suggest, leads to the enhancement

of availability of oxygen in the center of the film.

Regime III: For films of thickness greater than 400 micron, we observe a marked change in the dynamics,

characterized by the formation of an oxygen depletion layer in the center of the film, stronger bacterial plumes

and enhanced y-velocities.
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(a) (b)

(c) (d)

Figure 2.2: Oxygen concentration field: a) t = 0, Channel size 100µm; b) t = 60 sec, 100µm; c) t = 0,
Channel size 500µm; b) t = 60 sec, 500µm

2.3.1 Time-averaged dynamics

In this section, we discuss the variation of the various fields across the film by averaging them over time,

and along the directions x and z.

We find it useful to compare the dynamics with a basestate corresponding to a steady bacterial con-

centration uniform along x and z axis. We evaluate this basestate by allowing the probability distribution

function to vary only as a function of y and θ (Ψ = Ψ(y, θ)) and the oxygen concentration to vary only as a

function of y (s = s(y)).Such a profile doesn’t create a local disturbance velocity. This comparison gives us

important information on the effects of large scale collective motion in the dynamics of the suspension.

Fig. 2.3 shows the time-averaged profiles of bacterial number density and oxygen concentration averaged

over x, z and t. We see that for the smallest thickness (100 micron), the film is oxygen rich, oxygen

concentration is almost uniform in the y-direction and hence the migration of bacteria to the boundaries is

weak.
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Figure 2.3: a) Bacterial number density b) Oxygen concentration

For higher thickness (200 to 400 micron), the oxygen gradients in the y-direction become increasingly

stronger. This drives the migration of bacteria to the boundary. As film thickness increases, the migration

to the boundaries and depletion of bacteria in the center of the film becomes more pronounced.

In films of thickness & 400 micron, there is a oxygen depletion layer formed in the center of the film.

Oxygen depletion layer is a region where s < 0.1 where the bacteria stops consuming oxygen. For the 500

micron curve in 2.3 (b), the depletion layer is 100 micron thick (the flat part of the profile from y/L = 0.4

to 0.6). In this oxygen depletion layer, the spatial gradients of oxygen are virtually absent, therefore, the

bacteria in this zone do not perform oxygentaxis. Hence, the bacteria traveling from the film boundaries

and entering this depletion zone becomes incapable of using oxygentaxis to migrate back to the boundaries.

This causes a marked change in the shape of the number density profile when compared to the profiles for

regime II (200-400 micron) as can be seen in 2.3 (a), where the bacterial number density is higher in the

center for 500 micron. It should be noted that Sokolov et al. [3] also reported a similar characteristics in a

530 micron film (where they observed that a stagnant zone of non-motile bacteria was formed in the center

of the film).

We now look into the rate of oxygen consumption across the thickness of the film. This is obtained

by averaging the consumption term (R.H.S) in the oxygen evolution equation over x, z and t as shown in

Eq. (2.10).

oxygen consumption rate(y) = 〈c(x, t)f(s(x, t))〉x,z,t (2.10)

From Fig. 2.4, we find that oxygen consumption is almost uniform across the thickness of the film in
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Figure 2.4: Oxygen consumption rate

regime I, which is expected because of uniform bacterial and oxygen profiles. As thickness is increased in

regime II from 200 to 400 micron, the oxygen consumption by the bacteria increases near the boundaries and

decreases inside the film. In regime III, the curves change in shape, and the inflection point characterizes

the onset of the depletion layer, within which the oxygen consumption reduces drastically.A comparison

with the basestate profile shows that collective motion significantly reduces the oxygen consumption near

the boundary and enhances the oxygen consumption inside the film.

Fig. 2.5 shows the variation of the velocity components across the film thickness. A measure of the

average velocity is given by Eq .(2.11)–(2.14)

vx(t) =
〈
u2
x

〉0.5
(2.11)

vy(t) =
〈
u2
y

〉0.5
(2.12)

vz(t) =
〈
u2
z

〉0.5
(2.13)

v(t) =
〈
|u|2
〉0.5

(2.14)

vx(t),vz(t),v(t) show similar variations characterized by a constant profile for regime I, and a parabolic curve

deepening with increasing film thickness for regime II and III.

The temporal dynamics of the y-velocity is more interesting. We find that the y-velocity is zero for

regime I. In regime II, the profile looks like a downward parabola, which gets progressively flattened at

the center, with film thickness. The pronounced 3 dimensionality of the disturbance flow in larger films is

confirmed by the higher values of y-velocity for larger film thickness, and this leads to the generation of
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Figure 2.5: Average velocity a) x-velocity; b) y-velocity; c) z-velocity; d)velocity magnitude

bacterial plumes for this case. However, for 400 micron and beyond (regime III), the shape of the profile

changes, with depression in the center of the film. This effect needs further investigation.
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Figure 2.6: Correlation of a) bacterial number density b) local disturbance velocity between top and bottom
boundaries

2.3.2 Time dynamics

The correlation of bacterial number density and local disturbance velocity between top and bottom bound-

aries is given by Eq .(2.15) and Eq .(2.16) and their temporal evolution is shown in Fig. 2.6.

cnd(t) =

〈
(ctop − 〈ctop〉x,z)× (cbot − 〈cbot〉x,z)

〉
x,z(〈

(ctop − 〈ctop〉x,z)2 〉
x,z

〈
(cbot − 〈cbot〉x,z)2 〉

x,z

) 1
2

(2.15)

cvel(t) =

〈
utop · ubot

〉
x,z(〈

|utop|2
〉
x,z

〈
|ubot|2|

〉
x,z

) 1
2

(2.16)

In regime I, we find perfect correlation for both concentration, velocity at the center of the film. For 200

micron films, we find that velocities are positively correlated while concentration is anti-correlated, so we

suspect that, this is a transition case that lies between the regime I and regime II. For all larger thicknesses,

the dynamics is uncorrelated between top and bottom boundaries which confirms the three dimensional

nature of the flow.

The temporal evolution of the oxygen field is investigated in Fig. 2.7. Fig. 2.7 (a) shows the flux of the

oxygen into the field. This is defined as

oxygen flux =

〈∣∣∣∣∂s∂y
∣∣∣∣
top

+

∣∣∣∣∂s∂y
∣∣∣∣
bot

〉
x,z

(2.17)

Initially the flux of oxygen is greatest due to the lack of oxygen in the field. The oxygen diffuses into the film

and the bacteria start consuming the dissolved oxygen and migrating towards higher oxygen concentration
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Figure 2.7: a)Oxygen flux into the channel b) Total oxygen inside the film

until the system reaches to a statistically-steady state where consumption balances diffusion. The oxygen

flux for lower thicknesses (i.e. 100, 200µm films) reaches a steady state value, which increases with the

thickness of the film as the population of bacteria increases. However, as the instabilities become 3D for

300− 500µm films, the flow mixes the oxygen from the interfaces into the film, thus making the oxygen flux

to oscillate in time while again reaching to a statistically-steady state at long times.

The total amount of dissolved oxygen in the field. is shown in Fig. 2.7 (b).

total oxygen inside the film(t) = 〈s〉x,y,z (2.18)

It shows that the level of the oxygen in the field increases in time until it reaches an equilibrium state and

this plateau level also increases with the film thickness as the population of the bacteria and the film volume

increases.

2.4 Concluding Remarks

We have extended the kinetic theory of Saintillan and Shelley [1, 2] to model chemotaxis in suspension

of swimmers undergoing run-and-tumble motion. By choosing appropriate values for the parameters, we

have used this model to study the dynamics in a bacterial suspension confined in thin films. Using three-

dimensional kinetic simulations, we observed a transition to chaotic motion beyond a critical film thickness,

which is consistent with the recent experimental observations of Sokolov et al. [3]

Moreover, we characterized the dynamics by classifying it into 3 regimes: Regime I, when film thickness is
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less than 100 micron, where the bacterial and oxygen fields reach a stable steady state, that is uniform along

x and z directions; Regime II, when film thickness is in the range 200-400 micron, where three-dimensional

chaotic motion is observed and is characterized by dense bacterial plumes; Regime III, when the film thickness

is greater than 400 micron, where the dynamics is characterized by the formation of an oxygen depletion

region in the center of the film, enhancement in the magnitude of hydrodynamic velocities and pronounced

occurence of bacterial plumes.

Our simulations have successfully reproduced the experimental findings of Sokolov et al. [3]. Our analysis

has also provided several new insights and key information on how the oxygen consumption, active power

input, hydrodynamic velocities change due to the chaotic dynamics.

However, the mechanism behind these instabilities remain unclear. One important question remains

to be answered: ’Is the instability purely a hydrodynamic effect or a combination of hydrodynamic and

chemotactic effects?’.

Saintillan and Shelley [2] showed using linear stability analysis in a 3D periodic domain that instabilities

occur only when the size of the simulation box (for a given concentration) exceeds a critical value. If we

assume the instability as purely a hydrodynamic effect, this might be an explanation for the onset of large

scale collective dynamics beyond a threshold film thickness. However, when chemotaxis was switched off in

our simulations, we observed that no instability occur and the isotropic state is stable. This clearly indicates

that oxygentaxis is necessary for instabilities to occur. So, it is safe to claim that the instability is a combined

effect of hydrodynamic interactions and oxygentaxis. Whether the effect of oxygentaxis is to just augment

the hydrodynamic instability driven by active stresses (which causes proliferation of oscillations in swimmer

direction [39]) or provide new mechanisms for concentration fluctuations and large scale motion, needs to

be further explored.

We speculate that, the instabilities occur when the strength of the oxygen gradients becomes higher than

a critical value, which in our simulations and in the experiments of Sokolov et al. [3], happens when the

film thickness becomes greater than 200 micron. Such an instability would be associated with the ability of

the bacteria to orient in a preferrential direction due to oxygentaxis. Analytical treatment of the evolution

Eqs. (2.1)-(2.7) will throw more light on these instabilities.
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Chapter 3

Dynamics of concentrated active
suspensions

3.1 Introduction

While analyzing the interactions between slender rod-like polymers (with diameter b and length L) at finite

concentration, Doi and Edwards [4] divided the polymer solutions into 4 concentration regimes.

• Dilute solution: A solution whose concentration is low enough that the average distance between

the polymers n−
1
3 is much larger than the length of the polymer L or

n . n1 ≈
1

L3
(3.1)

where n is the number of particles per unit volume. In this regime, each polymer rotates freely without

being influenced by other polymers (hydrodynamic and steric interactions are neglible).

• Semi-dilute solution: At concentrations corresponding to n � n1, the rotation of the polymer

is restricted due to the effect of other polymers, but the static properties are not affected seriously

until the concentration reaches another characteristic concentration n2. This concentration regime,

Semi-dilute, occurs for a concentration n that satisfies the equation below.

n1 . n� n2 ≈
1

bL2
(3.2)

In this regime the excluded volume effects are negligible but the hydrodynamic interactions are signif-

icant and have to be taken into account.

• Concentrated isotropic Solutions: When the concentration n becomes greater than n2, the ex-

cluded volume effects become important and the polymer align nematically with their neighbours

because of steric interactions. But the solution remains isotropic till the concentration increases be-

yond another critical value n∗ which is of the order of 1
bL2 . This concentration regime occurs when
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Figure 3.1: Zooming Bio Nematic phase Cisneros et al. [5]

n2 . n . n∗ (3.3)

Even though the solution is macroscopically isotropic, steric interactions influences static and dynam-

ical properties and have to be taken into account.

• Liquid crystalline solution: When concentration n becomes greater than n∗, the polymers align on

a macroscopic scale in equilibrium (without any external field) and the solution becomes anisotropic.

This occurs when

nbL2 > 1 (3.4)

Kinetic theories employed for modeling active suspensions (Saintillan and Shelley [1, 2], Subramanian and

Koch [33]) describe active matter in the semi-dilute regime i.e., they account for hydrodynamic interactions

and exclude steric interactions. One of the key findings of these kinetic models is that pusher suspensions

showed instabilities and large scale flows while pullers were stable to perturbations in the isotropic state.

The stability of puller suspensions is yet to be confirmed experimentally.

However, most experiments which report collective motion in active suspensions used a high concentration

of swimmers. For example, Sokolov et al. [3] who reported collective motion in suspensions of Bacillus subtilis

( diameter 0.7µm, length 4µm ) containing 2×1016 cells per m3. nbL2 = 0.224 for these experiments, where

the semi-dilute assumption is invalid.
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Cisneros et al. [5] studied the dynamics in suspensions of Bacillus subtilis by varying the concentration.

They observed no significant collective motion in the dilute and semi-dilute regime, but beyond a critical

concentration, they observed a collective phase called zooming bionematic (shown in 3.1), characterized by

highly nematic structures, high local swimming speeds. These structures form because of local ordering of

the bacteria at higher concentration. They also noted that regions of high degree of alignment had larger

number density.

These experimental studies are the main motivation to consider this problem. Steric interactions are

important and have to be taken into account to be able to meaningfully describe collective motion observed

in experiments. In section 3.2, we present the kinetic model for concentrated active suspensions which

accounts for both steric and hydrodynamic interactions. In section 3.3, we probe the existence of a nematic

basestate in the concentrated regime. In section 3.2, we present and analyze the results from the three-

dimensional kinetic simulations of concentrated active suspensions, show that steric interactions have a

destabilizing effect and both puller and pusher suspensions exhibit instabilities and large-scale flows.

3.2 Kinetic model

We extend the kinetic model developed by Saintillan and Shelley [1, 2] for semi-dilute active suspensions by

including a nematic torque that accounts for steric interactions.

The distribution function of the active particles, Ψ (introduced in section 2.1) satisfies

∂tΨ +∇x · (ẋΨ) +∇p · (ṗΨ) = 0, (3.5)

and the translational and rotational fluxes are given by

ẋ = V0p + u(x)−D∇x(log Ψ), (3.6)

ṗ = (I− pp) · ∇xu · p− d∇p(log Ψ)−∇pU(p,x). (3.7)

The local disturbance velocity u satisfies the Stokes equation as described in section 2.2.2.

The last term in the rotational flux ( ṗ ) equation corresponds to the nematic torque which leads to

local alignment of particles. We define the tensor D as the second moment of the probability distribution

function

D(x, t) =

∫
S

Ψpp dp. (3.8)
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It is straightforward from Eq. (2.6) that the active stress tensor Σp = σ0D.

Following Doi and Edwards [4], we define the steric interaction energy U as

U(x,p, t) =

∫
S

Ψ(x,p′, t)β(p,p′) dp′, (3.9)

with

β(p,p′) = −U0(p · p′)2. (3.10)

This function β is minimum when p and p′ are aligned. So, a more nematically aligned suspension has a

lower value of the steric interaction energy.

Substituting the expression for β from Eq. (3.10) in Eq. (3.9), the steric interaction energy simplifies to

U(x,p, t) = −U0pp : D(x, t). (3.11)

The nematic torque then takes the following form

∇pU(x,p, t) = −U0∇p(pp : D) = −2U0(I− pp) ·D(x, t) · p, (3.12)

so that equation (3.7) for ṗ becomes:

ṗ = (I− pp) · [∇xu + 2U0D(x, t)] · p− d∇p(log Ψ). (3.13)

This equation for the rotational flux Eq. 3.13 shows that the orientation distribution in a concentrated

suspensions is influenced by three effects.

• Steric interactions, which tend to align the particles towards a preferred direction, making the distri-

bution more nematic.

• Hydrodynamic interactions, which tend to align the particles with the local disturbance flow.

• Rotational diffusion, which decorrelates the orientation and makes the distribution more isotropic

We use the same scales for non-dimensionalization as in 2.2.4. The dimensionless equations are obtained

by letting µ = 1, V0 = 1, σ0 = α, n = 1, and having U0, D, d and α as dimensionless parameters.
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3.3 Existence of a nematic basestate

We know that, in passive rod suspensions there is a isotropic-nematic transition beyond a threshold con-

centration n∗. So, we try to find spatially uniform non-isotropic solutions to the basestate. We get this by

setting the rotational flux to zero. This gives

∇p log(Ψ||) = ξ(I− pp) ·D(Ψ||) · p (3.14)

Ψ|| is a boltzmann distribution obtained by the balance of rotational diffusion and steric interactions. ξ is

a non-dimensional parameter describing the relative strength of steric interactions and rotational diffusion

given by Eq .(3.15) (It should be noted that ξ << 1 corresponds to the semi-dilute regime) :

ξ =
2U0

d
(3.15)

In 2D, p = e(θ) and Eq. (3.14) becomes,

∂θ log(Ψ||) = ξe⊥e : D(Ψ||) (3.16)

After some algebra this yields,

Ψ|| =
exp(δ cos 2θ)∫
dθ′ exp(δ cos 2θ)

(3.17)

where

δ =
ξ

4

∫
dθ′Ψ′|| exp(δ cos 2θ) (3.18)

It is straightforward that δ = 0, corresponds to the isotropic basestate. A nematic basestate exists if non-zero

solutions for δ exist. Applying delta to both sides of the Eq. 3.17 we get

g(δ) = δ − ξ

4
I(δ) = 0 (3.19)

where I(δ) =

∫ 2π

0
sinω exp(δ sinω)dω∫ 2π

0
exp(δ sinω)dω

=
I1(δ)

I0(δ)
(3.20)

Fig. 3.2 (a) shows the plot of g(δ) for 0 < ξ < 16. For small values of ξ, g(δ) = 0 has only one solution,

δ = 0 (isotropic state). To find the zeros δ(ξ) of g, we use Newton’s method. Fig. 3.2 (b) shows the roots

of g as a function of ξ. We find that non-zero solutions for δ exist when ξ is above a critical value. The
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(a) (b) (c)

Figure 3.2: (a) g(δ) vs δ for 0 < ξ < 16 (b) Roots of g(δ) = 0 vs ξ (c) Nematic basestate profiles for different
values of ξ

bifurcation of solution happens when g′(0) ≤ 0. Eq. 3.23 shows that this happens when ξ > 8.

g(δ) = δ − ξ

4

I1(δ)

I0(δ)
(3.21)

g′(δ) = 1− ξ

4

I0(δ)I2(δ)− I1(δ)2

I0(δ)2
(3.22)

g′(0) = 1− ξ

4

d

dδ

I0(δ)I2(δ)− I1(δ)2

I0(δ)2

∣∣∣∣
δ=0

= 1− ξ

8
(3.23)

where Ij+1(δ) = I ′j(δ)and Ij(δ) =

∫ 2π

0

exp(δ sinω) sinj ωdω (3.24)

So, our analysis shows the existence of a isotropic-nematic transition in the basestate, when ξ > 8. So,

ξ < 8 corresponds to the concentrated isotropic regime described in section 3.1 and ξ > 8 correspond to the

liquid crystalline regime.

3.4 Numerical simulations

In this section, we perform numerical simulations of the kinetic equations discussed in section 3.2 in a three-

dimensional periodic box of dimensions 503. We discretize using 643 grid points in the x, y, z directions and

162 grid points in the θ, φ direction. The probability distribution function Ψ(x,p, t) becomes Ψ(x, y, z, θ, φ, t)

and the orientation vector is given by p = [sin θ cosφ, sin θ sinφ, cos θ].

As discussed in chapter II, the kinetic equations are integrated using spectral solutions for the Stokes

equation, second-order finite differences for the flux terms and second-order Adams-Bashforth time-marching.

We use the following parameters in our simulations: ξ = 30, U0 = 0.3, rotational diffusion d = 0.01,

translational diffusion D = 1.0, γ = 1.0. We choose a higher value of ξ to study the effect of steric
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(d) (e) (f)

Figure 3.3: Number density field: a) t = 0, Pusher; b) t = 150, Pusher; c) t = 300, Pusher; d) t = 0, Puller;
e) t = 150, Puller and f) t = 300, Puller.

interactions.

We start with a uniform and isotropic distribution and impose random perturbations and look at the

evolution of the various fields. Interestingly, in our simulations, we observe instabilities and large scale

flows for both pushers and pullers, while previous studies of semi-dilute active suspensions reported that

puller suspensions were stable to perturbations from the isotropic state [2, 39]. This indicates that steric

interactions have a destabilizing effect. To investigate this further, we look into the spatio-temporal fields

to explore their evolution.

Fig. 3.3 shows the evolution of the number density. At t=0, the isotropic state is perturbed with random

fluctuations. The fluctuations amplify and lead to the formation of dense clusters of active particle which

form, deform and break up. These structures take the length of the simulation box. More interestingly,

puller suspensions exhibit stronger number density fluctuations than pusher suspensions.

Now, to be able to study the effect of steric interaction, we find it useful to quantify alignment. As

mentioned before, a lesser value of the steric interaction energy is indicative of a more aligned distribution.

Therefore, the degree of alignment is directly proportional to the magnitude of the minimum of the steric
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Figure 3.4: Degree of alignment field: a) t = 0, Pusher; b) t = 150, Pusher; c) t = 300, Pusher; d) t = 0,
Puller; e) t = 150, Puller and f) t = 300, Puller.

interaction energy. We define the degree of alignment as,

N(x, t) = −minp(U(x,p, t))

U0c(x, t)
=

α

c(x, t)
(3.25)

where α is the eigen value of the probability distribution function. This can be shown to be 1
3 for an isotropic

distribution and 1 for a perfectly aligned distribution.

Fig. 3.4 shows the typical evolution of the degree of alignment for both pushers and pullers. It can

be seen that perturbations to the initial isotropic state amplify and give rise to highly aligned structures

(red regions indicate high degree of alignment). This is expected, as our simulations correspond to ξ = 30,

where our theory predicts a transition to a spatially uniform nematic steady state. However, this state also

develops spatio-temporal inhomogeneities for both pushers and pullers, which indicates that the nematic

basestate is unstable. Regions of high degree of alignment form, and then they dealign and breakup, this

happens because of an interplay between the steric interaction (which leads to orientation correlation),

rotational diffusion (which leads to orientation decorrelation) and the hydrodynamic velocity (which leads

to the nematic alignment of the particles with the flow).
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(a) (b)

Figure 3.5: a) Spatially averaged degree of alignment b) Correlation between degree of alignment and number
density. Dotted line: semi-dilute pusher suspensions, Dasheddot line: concentrated pusher suspensions, Solid
line: concentrated puller suspensions.

Fig. 3.5 (a) provides a better picture the evolution of degree of alignment in time. In concentrated

pusher suspensions the distribution quickly becomes aligned, and reaches the statistical steady state value

of 0.8. The fluctuations are indicative of the presence of instabilities. Concentrated puller suspensions

reach a highly nematic state, and then become unstable. The semi-dilute pusher suspensions are shown for

comparison. It can be seen that it reaches a statistical steady state value close to 0.4. So, the distribution

is nearly isotropic for semi-dilute pusher suspensions, and the deviation from isotropy is because of the flow

induced alignment.

We define a correlation between the degree of alignment and the number density as follows

r(t) =

〈
(c− 1)× (N − 〈N〉)

〉(〈
(c− 1)

2 〉〈
(N − 〈N〉)2 〉) 1

2

(3.26)

Fig. 3.5 (b) shows that the regions of high number density have a higher degree of alignment in pushers

and this correlation is enhanced due to steric interactions. Puller suspensions show no such correlation.

We define the nematic director dn(x, t) as the preferred direction of nematic alignment. It is the unit

vector along the direction which has the minimum steric interaction energy. It is straightforward to see that

steric interaction energy is minimum when p is directed along the eigenvector of D (the second moment of

the probability distribution) corresponding to the largest eigenvalue α.

Fig. 3.6 shows that the nematic director points in random directions initially, but as time evolves, the

director becomes spatially correlated over length scales comparable to the size of the simulation box (for
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Nematic director: a) t = 0, Pusher; b) t = 150, Pusher; c) t = 300, Pusher; d) t = 0, Puller; e)
t = 150, Puller and f) t = 300, Puller.

both pushers and puller). There is local ordering, and the direction of nematic alignment keeps fluctuating

spatially and temporally. Fig. 3.7 shows the orientation distribution of the active particles at the random

point (normalized by the concentration at that point). It can be seen that at longer times, the distribution

becomes highly aligned about a particular direction, which is expected as the effect of the local alignment

torque. This analysis reveals the existence of spatio-temporal fluctuations in the degree and the direction of

nematic alignment in concentrated active suspensions.

However, the active particles that we consider here are polar. The self-propulsion of the active particles

breaks the (p,−p) symmetry and leads to a net polarity in the system. It would be helpful to define a polar

director:

dp(x, t) =

∫
pΨdp∫
Ψdp

(3.27)

The polar director is the same as the mean direction of swimming of the active particles. The polar

order parameter is simply the magnitude of the polar director |dp(x, t)|. Saintillan and Shelley [2] showed

that a net polarity is required for the creation of number density fluctuations and large scale flows in active
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(a) (b) (c)

(d) (e) (f)

Figure 3.7: Distribution on a sphere of orientation at a random point: a) t = 0, Pusher; b) t = 150, Pusher;
c) t = 300, Pusher; d) t = 0, Puller; e) t = 150, Puller and f) t = 300, Puller.

suspensions. By integrating the active particle conservation Eq. 3.5 over p, we arrive at a conservation

equation for the number density field c(x, t):

∂c

∂t
+ u · ∇xc−D∇2

xc = −∇x · (cdp) (3.28)

This equation clearly shows that a non-zero polarity is required for the number density fluctuations to

grow. So, it is important to study the evolution of polarity and its correlation with hydrodynamic velocity

and preferred direction of nematic alignment.

Fig. 3.8 (a) shows the time evolution of polar order parameter. A comparison of the semi-dilute and

concentrated pusher suspension curves show that the polarity is slightly enhanced by steric effects. For

pullers, the polarity at short times, decay because of the local disturbance velocity, but starts growing when

the destabilizing steric interaction becomes dominant. The statistical steady state value of polar order

parameter is higher for pullers than pushers. This explains why puller suspensions exhibit stronger number

density fluctuations than pusher suspensions.

Fig. 3.8 (b) shows the time evolution of spatially averaged velocity magnitude. A comparison of semi-
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Figure 3.8: a) spatially averaged polar order parameter 〈|dp(x, t)|〉 b) spatially averaged velocity magnitude.
Dotted line: semi-dilute pusher suspensions, Dasheddot line: concentrated pusher suspensions, Solid line:
concentrated puller suspensions.

dilute and concentrated regimes is made to highlight the effect of steric interactions. It is clear that steric

interactions lead to greater hydrodynamic velocities. Stronger hydrodynamic flows are created in concen-

trated pusher suspensions than concentrated puller suspensions.

In order to investigate the correlation between the polar director field dp, nematic director field da and

velocity field u we use the spatially averaged contraction between any two fields, defined as

c1(t) =
1

V

∫
V

c(x, t)u(x, t) · dp(x, t)dx (3.29)

c2(t) =
1

V

∫
V

c(x, t)N(x, t)|u(x, t) · dn(x, t)|dx (3.30)

c3(t) =
1

V

∫
V

c(x, t)N(x, t)|dp(x, t) · dn(x, t)|dx (3.31)

Fig. 3.9 (a) shows that the spatially averaged contraction of hydrodynamic velocity and polar director

(mean direction of swimming) which is initially close to zero, and grows to reach a plateau with time. This

net alignment is expected because the effect of the Jeffery’s equation is to nematically align the active rods

with the flow. More interestingly, it can also be seen from Fig. 3.9 (a) that pushers tend to nematically

align in the local disturbance flow and swim along the direction of the flow. A comparison of the semi-dilute

and concentrated pusher suspension curves leads us to a conclusion that steric interactions increases the

tendency of the active particles to align and swim in the direction of the flow. (However, this might also

be associated with increased magnitude of hydrodynamic velocities in the concentrated pusher suspensions
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(a) (b)

(c)

Figure 3.9: spatially averaged contraction of a) hydrodynamic velocity and polar director field b) hydrody-
namic velocity and nematic director field c) polar and nematic director field. Dotted line: semi-dilute pusher
suspensions, Dasheddot line: concentrated pusher suspensions, Solid line: concentrated puller suspensions.
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Figure 3.10: a) active input power b) Entropy Dotted line: semi-dilute pusher suspensions, Dasheddot line:
concentrated pusher suspensions, Solid line: concentrated puller suspensions.

as observed in fig. 3.8 (b)). This preferred alignment and orientation result in an increase in the effective

swimming velocity of the particles for pushers, a phenomenon already shown in some earlier works.

Pullers, on the other hand, align nematically with the local disturbance flow but swim anti-parallel to the

direction of flow. This behavior leads to a decrease in the effective swimming velocity, and in regions where

the swimming velocity is stronger than the polar director, the active particles effectively swim in a direction

opposite to that of their self-propulsion. How this difference in alignment affects pushers and pullers needs

further investigation.

Fig. 3.9 (b) and (c) shows that steric interactions lead to a better correlation of direction of steric

alignment with both the hydrodynamic velocity and the polar director.

Following Saintillan and Shelley [2], we can find an interesting interpretation of the dynamics in terms

of input power generated by the swimming particles. Therefore we define the local active power density as

p(x, t) = −α
∫
S

(p · E · p)Ψ(x,p, t) dp (3.32)

from which we can also define the global input power as P (t) =
∫
S
p(x, t) dx.

Fig. 3.10 (a) shows that the total input power injected by the particles into the fluid increases and reaches

a plateau over long times; The power injected increases because of the inclusion of steric interactions. Pushers

injects more power into the fluid than pullers in the concentrated regime.

We define S =
∫
dx
∫
dp Ψ

Ψ0
ln( Ψ

Ψ0
) as the relative configurational average entropy where Ψ0 is the

probability density for the uniform and isotropic state. This is a positive semi-definite quantity which is

zero for a uniform and isotropic distribution. So, this configurational entropy measures deviations from the
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isotropic state. Fig. 3.10 reiterates the point that concentrated active suspensions form a state that is far

from isotropy/nematic. The statistical steady state value of entropy in the concentrated regime is an order

of magnitude higher than that in the semi-dilute regime.

3.5 Concluding Remarks

In this work, we proposed a model for concentrated active suspensions by extending the existing kinetic

theory for the semi-dilute regime [1, 2], where we accounted for steric interactions by including a local

alignment torque in the equation for rotational flux. Our analysis showed a basestate transition from

isotropic to nematic, when ξ (a non-dimensional number measuring the relative strengths of steric interactions

to rotational diffusion) becomes greater than 8. Three-dimensional kinetic simulations showed that both

pusher and puller suspensions exhibit instabilities and large scale flows, hinting that steric interactions

have a destabilizing effect qualitatively similar to that of hydrodynamic interactions in semi-dilute pusher

suspensions. Degree and direction of nematic alignment and polarity were analyzed. Analysis of the fields

showed several interesting details of the flow. Specially, pushers on average tend to swim along the local

distribution velocity,creating an increase in overall swimming speed, while pullers swim against the local

disturbance flow, creating a decrease in the overall swimming speed.
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Chapter 4

Conclusions

In this work, we have considered two problems in active suspensions in which pattern formation and large

scale flows have been reported in both experimental and theoretical studies. Our main aim was to understand

how chemotaxis and steric interactions affect the collective behavior of these suspensions. Recent experiments

[3, 5] were the main motivation to consider these effects.

In the first part of our work, we studied oxygentaxis in thin films of run-and-tumble bacteria, where recent

experiments [3] show a transition to 3D behavior beyond a critical film thickness. Our three-dimensional

simulations were successful in reproducing these experimental findings. In addition, we performed a detailed

investigation of the spatio-temporal evolution of oxygen and bacterial fields which provides several new

insights on the mixing of the oxygen field, consumption by the bacteria. We found it interesting to observe

that no instabilities were found when oxygen coupling was removed, which show these instabilities are a

combined result of oxygentaxis and hydrodynamic interactions. This also hints that confinement, run-and-

tumble-dynamics have a stabilizing effect on the flow. This needs further investigation.

In the second part of our work, we focused on active suspensions in the concentrated regime, where we

proposed a model that accounts for steric interactions. Our simulations showed instabilities characterized by

number density fluctuations and large scale flows for both pushers and pullers. The degree and direction of

alignment and polarity was quantified, the effect of steric interactions on the flow properties were discussed.

Both chemotactic and steric interactions have a destabilizing effect that is associated with their ability

to align particles towards a preferential direction. In this respect, they have a qualitatively similar effect as

hydrodynamic interactions in semi-dilute pusher suspensions. A more analytical description of these effects,

say, using a linear stability analysis would present a even clearer picture.
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