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Abstract: The number of smart homes is rapidly increasing. Smart homes typically feature functions
such as voice-activated functions, automation, monitoring, and tracking events. Besides comfort
and convenience, the integration of smart home functionality with data processing methods can
provide valuable information about the well-being of the smart home residence. This study is aimed
at taking the data analysis within smart homes beyond occupancy monitoring and fall detection.
This work uses a multilayer perceptron neural network to recognize multiple human activities from
wrist- and ankle-worn devices. The developed models show very high recognition accuracy across
all activity classes. The cross-validation results indicate accuracy levels above 98% across all models,
and scoring evaluation methods only resulted in an average accuracy reduction of 10%.

Keywords: human activity recognition; artificial neural network (ANN); intelligent buildings (IB);
smart home (SH)

1. Introduction

The availability and affordability of smart home technology have driven the rapid
increase in the number of smart homes. Typically, smart home technologies enable voice-
activated functions, automation, monitoring, and tracking events such as the status of
windows and doors, entry, and presence detection. Besides comfort and convenience, the
integration of smart home functionality with the Internet of Things (IoT) and other com-
munications systems creates new possibilities for assisting and monitoring the well-being
of aged or disabled people [1]. In particular, activity recognition within smart homes can
provide valuable information about the well-being of the smart home residence. Such
information can be utilized to automatically adjust the ambient conditions of the rooms
with the use of heating, ventilation, and air conditioning (HVAC). Another use of this infor-
mation could be the detection of irregularities within the residence’s activities that indicate
that assistance is required or a medical emergency. In general, human activity recognition
systems can be applied to many fields, such as assisted living, injury detection, personal
healthcare, elderly care, fall detection, rehabilitation, entertainment, and surveillance in
smart home environments [2].

In general, human activity recognition is formulated as a classification problem. It is an
important research topic in pattern recognition and pervasive computing [3]. A significant
amount of literature concerning machine learning techniques has focused on the automatic
recognition of activities performed by people and the diversity of approaches and meth-
ods to address this issue [4,5]. Minarno et al. [6] compared the performance of logistic
regression and support vector machine to recognize activities such as lying down, standing,
sitting, walking, and walking upstairs or downstairs. Guan et al. [7] tackled this issue
using wearable deep LSTM learners for activity recognition. Ramamurthy et al. [8] noted
that deep learning methods applied to human activity recognition commonly represent the
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data better compared to the handcrafted features, due to their advantage of hierarchically
self-derived features. Jiang et al. [9] proposed using accelerometer data and convolutional
neural networks for real-time human activity recognition. Lee et al. [10] also considered
using accelerometer data and a convolutional neural network and obtained 92.71% recogni-
tion accuracy. Wan et al. [11] compared four algorithms of neutral networks (convolutional,
long short-term memory, bidirectional long short-term memory, multilayer perceptron) in
the recognition of human behavior from smartphone accelerometer data. Murad et al. [12]
noted that the size of convolutional kernels restricts the captured range of dependencies
between data samples and suggested using deep recurrent neural networks instead.

This work proposes the use of two body-worn devices worn on the wrist and ankle.
These devices measure temperature, humidity, proximity, magnetic field, acceleration, and
rotation and transmit live data to a local host computer. Based on the received data and the
use of artificial neural networks, the local host computer can recognize few human activity
classes. In our previous works [13], IBM SPSS Modeler and IBM SPSS statistics were used
to implement feed-forward neural networks and logistical regression. IBM SPSS Modeler
and IBM SPSS statistics are software tools that are commonly used to implement statistical
methods. The developed models were designed to recognize multiple pre-defined human
activities. Overall, the models showed acceptable levels of recognition accuracy. However,
a few shortcomings need to be addressed; for example, some activity categories were too
general and difficult to predict, only one test subject was used in the experiment, using
two different measurement systems caused synchronization problems, and the accuracy
differences between cross-validation and scoring results showed that larger datasets are
required. This work aims to solve the problems related to the mentioned issues by using
a new methodology. Since the previous works clearly showed the superiority of neural
networks, this work utilizes a multilayer perception neural network. For simplicity of
measurement and to address data synchronization issues, the use of room ambient data
has been eliminated. Besides introducing new activity classes, the least consistent activity
classes have been replaced with more specific activity classes, which results in better
recognition accuracy. To increase the measurement data size, multiple test subjects were
used and new types of equipment were utilized to increase the sampling rate. The above
changes resulted in significant recognition accuracy improvements. Overall, this work
aimed to increase the recognition accuracy and the number of recognizable activities, and
to provide a practical solution that eliminates the typical computational limitations of
wearable devices.

2. Related Works

In recent years, the data analysis within smart homes has gained significant attention
among researchers. Geraldo et al. [14] proposed an intelligent decision-making system
for a residential distributed automation infrastructure based on wireless sensors and ac-
tuators. The method increased the precision in decision-making with a neural network
model and reduced node energy consumption using a temporal correlation mechanism.
Ueyama et al. [15] used a probabilistic technique for monitoring a remote alert system for
energy. A Markov chain model was used to calculate the entropy of each device monitored,
and the method identified novelties with the use of a machine learning algorithm. The
results showed that the method could reduce the power consumption of the monitored
equipment by 13.7%. Rocha et al. [16] proposed an intelligent decision system based on
the fog computing paradigm, which provides efficient management of residential appli-
cations. The proposed solution was evaluated both in simulated and real environments.
Goncalves et al. [17] determined and mapped out the physical and emotional state of
home care users, implemented a participatory design that included the user within its
social, psychological, and therapeutic context, and explored the flexible method when
applied to older users. Subbaraj et al. [18] described the process of checking the con-
sistent behavior of a context-aware system in a smart home environment using formal
modeling and verification methods. The results confirmed the consistent behavior of the
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context-aware system in the smart environment. Torres et al. [19] designed an offloading
algorithm to ensure resource provision in a microfog and synchronize the complexity of
data processing through a healthcare environment architecture, and they experimented
with face recognition and fall detection. Balakrishnan et al. [20] discussed and reviewed the
literature on the smart home definition, purpose, benefits, and technologies. Tax et al. [21]
investigated the performance of several techniques for human behavior prediction in a
smart home. Azzi et al. [22] proposed to use a very fast decision tree for activity recognition
and formulated activity recognition as a classification problem where classes correspond
to activities. Sim et al. [23] proposed an acoustic information-based behavior detection
algorithm for use in private spaces. The system classified human activities using acoustic
information, combined strategies of elimination and similarity, and established new rules.

Much of the research in the indirect activity recognition field is focused on fall de-
tection [24,25]. Sadreazami et al. [24] utilized Standoff Radar and a time series-based
method to detect fall incidents. Ahamed et al. [25] used accelerometer-based data and
deep learning methods for fall detection. Other researchers took activity recognition
further than fall detection by recognizing multiple human behaviors. Commonly, camera-
based recognition techniques are used to recognize multiple predefined human activities.
Hsueh et al. [26] used deep learning techniques to learn the long-term dependencies in a
multi-view detection framework to recognize human behavior. Besides the computational
burden, the camera-based solutions frequently introduce privacy and security concerns
for the residence. Therefore, indirect recognition methods are generally preferred. Indirect
recognition methods are often limited to presence detection and occupancy monitoring.
Szczurek et al. [27] investigated occupancy determination based on time series of CO2
concentration, temperature, and relative humidity. Vanus et al. [28] designed a CO2-based
method for human presence monitoring in an intelligent building. The work continued
by replacing measured CO2 with predicted values of CO2. Predictions were performed on
neural networks [29], random trees, and linear regression [30].

On a larger scale, others have taken indirect recognition to a more advanced level by
recognizing specific human activities. Kasteren et al. [31] introduced a sensor and annota-
tion system for performing activity recognition in a house setting using a hidden Markov
model and conditional random fields, resulting in class accuracy of 79.4%. Nweke et al. [2]
reviewed deep learning algorithms for human activity recognition using mobile and wear-
able sensor networks. Albert et al. [32] used mobile phones for activity recognition in
Parkinson’s patients. Hassan et al. [33] proposed using smartphone inertial sensors such as
accelerometers and gyroscope sensors to recognize human activities. The obtained results
showed a mean recognition rate of 89.61%. Zhou et al. [34] used deep learning and datasets
collected from smartphones and on-body wearable devices to perform human activity
recognition within the Internet of Healthcare Things. In similar studies, Kwapisz et al. [35]
and Bayat et al. [36] also suggested using smartphones.

The use of a smartphone as the primary sensor is very convenient but it comes with
major drawbacks. In practice, they fail to identify complicated and real-time human activi-
ties. Ravi et al. [37] found that using a single triaxial accelerometer to recognize human
activity can result in fairly accurate results. The work showed the limitation of a single
worn sensor near the pelvic region when it comes to activities that involve the movement
of only the hands or mouth. Chen et al. [38] noted the variety of smartphone positions or
orientations, and the gross accuracy of their embedded sensors could result in additional
challenges. Other works investigated the use of multiple sensors. Bao et al.’s [39] implemen-
tation involved five small biaxial accelerometers worn simultaneously on different parts of
the body; decision tree classifiers showed an overall accuracy rate of 84%. Furthermore,
the research showed that the recognition accuracy only drops slightly when only two thigh-
and wrist-worn sensors are used. Trost et al. [40] compared results obtained from hip- and
wrist-worn accelerometer data for the recognition of seven classes of activities. On the
other hand, Zhang et al. [41] noted that the computational limitations of wearable devices
can also represent a challenge in real-world applications. Our implementation involves
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wrist-worn and ankle-worn devices that communicate wirelessly with a remote computer,
which eliminates computational limitations. These limitations have been eliminated by the
use of a powerful local host computer.

3. Methods

The proposed method consists of three main stages: data acquisition, pre-processing,
and predictive analytics. Two individual wearable gadgets based on STMicroelectronics
development boards are used to record the movements of the test subjects. With the use
of wireless technology, the obtained information is directly sent to a local host computer.
After data buffering and synchronization, the local host computer performs human activity
recognition using artificial neural networks. The recognition result may be sent to online
cloud services for remote monitoring and visualization. Table 1 shows a list of the nine
activity classes that were used in this research. These classes represent a few of the
most performed daily human activities. This section describes the measurements, data
acquisition methods, and applied mathematical models.

Table 1. The list and description of the measured activities.

Activity Class Description

Class 1 Climbing down the stairs
Class 2 Climbing up the stairs
Class 3 Using a computer
Class 4 Relaxing
Class 5 Running
Class 6 Standing
Class 7 Vacuum cleaning
Class 8 Walking
Class 9 Writing using a pen

3.1. Measurements and Data Acquisition Methods

A development board, B-L475E-IOT01A2 from STMicroelectronics, was used for
data acquisition [42]. It is based on an ultra-low-power MCU from STM32L4 series with
other modules for communication (Bluetooth, Wi-Fi, Sub-RF, NFC) and embedded Micro-
Electro-Mechanical Systems (MEMS) sensors for monitoring environmental parameters
(temperature, humidity, proximity, magnetic field) and mechanical quantities (acceleration,
rotation) [43]. Thanks to its concept and low cost, the development board enables fast
design and commissioning. Figure 1 shows a detailed diagram of the components of the
development board used for measurement and data acquisition. Microcontroller unit
(MCU) “A” collects and processes data from onboard sensors (“F” and “E”). The received
data are then processed and prepared into a data structure to be sent to the Transmission
Control Protocol (TCP) server. Sending takes place asynchronously via the WiFi module
(C). This means that sending is initiated, for example, every 50 ms, independently of the
main program cycle. The current program status is indicated by onboard LEDs (D) and
can be modified via a user button (B).

The designed measurement chain, for the purpose of recording human movement,
consists of a high-performance 3-axis magnetometer (E, LIS3MDL), 3D accelerometer,
and 3D gyroscope (F, LSM6DSL) [44,45]. These sensors allow the recording of 3-axis
acceleration up to ±16 g and 3-axis angular rate up to ±2000 dps with up to 1 kHz readout
frequency; they also record the 3-axis strength of the magnetic field and orientation up
to ±16 gauss with up to 80 Hz readout frequency. The actual orientation of the sensors is
demonstrated in Figure 2.
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Figure 1. The printed board of B-L475E-IOT02A development board. (A: MCU, B: User button, C: Wifi module, D: LEDs,
E: 3D Magnetometer, F: 3D Accelerometer and Gyroscope).

Figure 2. Location of wearable measurements devices on the body and orientation of the sensors.

Figure 3 shows the utilized hardware and communication architecture of the data
acquisition stage. Data are sent via a Wi-Fi module from Inventek Systems (C, ISM43362-
M3G-L44) using the 802.11n protocol. The Inter-Integrated Circuit (I2C) bus is used
for communication with the sensors and the Serial Peripheral Interface (SPI) bus for
communication with the Wi-Fi module. To guarantee sufficient mobility, the devices
are powered by a Li-Ion-based power source. The data chain consists of two wireless
measurement modules (TCP clients based on B-L475E-IOT01A2) and a remote personal
computer. The personal computer is also used as a Wi-Fi Access Point (AP) for TCP clients.
Communication between these two sides is based on the TCP/IP protocol, where static
IPv4 addressing is used. This solution allows recording of the movement of a person
within the distance of 25 m in open space (actual distance depends on type and number of
obstacles within the path of the signal) from the position of the host computer. Additionally,
this solution provides sufficient communication speed and bandwidth for data transfer
between all participating devices.
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Figure 3. Hardware and communication architecture.

As Figure 4 illustrates, the onboard system initializes necessary modules. If the
initialization is successful, the system establishes a TCP connection and starts two other
threads. The measurement thread is used for data acquisition. After measuring all required
quantities using sensors, the thread prepares the data for sending. The prepared data
row is moved to the data buffer for sending and then sent to the TCP server for further
processing. Sending of data is processed in another thread. The program in this thread is
processed every 15 ms. Proper timing and synchronization of the measured quantities is
also necessary. This is guaranteed by the Real-Time Operational System (RTOS) with the
implementation of the software [46]. The sampling rate is programmatically set to 66.6 Hz,
which results in a single record every 15 ms.

Figure 4. State diagram of the proposed measurement system.

For the data to be properly transferred from the client to the server, a connection must
be established. Clients register before sending data on the server-side. After this, data can
be transferred. Within the TCP server, explained in Figure 5, the data are pre-processed
and stored in files. Due to the possibility of connection loss between the communicating
devices, the TCP server is equipped with a data buffer. The buffer is used as a form of data
cache in case of data transfer failure of one of the clients. The TCP server then receives
more data at once. This is also necessary for preventing data inconsistency. In the buffer,
up to 50 data rows from each TCP client can be saved. There is also an implementation to
discard old irrelevant samples. The TCP server application is written in C#. It consists of
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the SimpleTCP library and its class is called Saver [47]. The SimpleTCP server registers all
clients and receives data from them. Using a received event, the data are passed to the pre-
processing routine, where data are prepared for saving and use in IBM SPSS. After they are
prepared, data are moved into the buffer and synchronized data samples are finally saved.

Figure 5. Data transfer chain of the measurement system.

3.2. Recognition Using Artificial Neural Networks

This section describes the statistical and mathematical methods used for recognition
and evaluation. Using known examples (training sets) to estimate a function is known
as supervised learning. Supervised learning in artificial neural networks is aimed at the
estimation of underlying functions [48–51]. Artificial neural networks are very popular
for modeling non-linear problems and for the prediction of the output values for given
input parameters from their training values. Iwendi et al. [52] used recurrent neural
networks for cyberbullying detection. Sun et al. [53] developed a neural network solution
to evaluate the risk of credit card delinquency based on the spending behaviors and the
client’s personal characteristics. Pinardi et al. [54] explored the application of neural
networks in atmospheric river forecasting. Multilayer perceptron (MLP) is one of the most
commonly used types of artificial neural networks; it utilizes backpropagation for training
(a supervised learning technique). The standard architecture of an MLP artificial neural
network consists of an input layer, multiple hidden layers, and an output layer. The input
layer dedicates an independent input neuron to each input variable with one. The hidden
layer contains the core logic of the network. The output layer provides the predicted values.
Figure 6 shows an example of an MLP network with a single hidden layer.

Figure 6. Example of applied neural network with 9 neurons at the hidden layer.

The MLP artificial neural network can be mathematically described as follows [55]:
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Input layer: jo = p units, a0:1, . . . , a0:j0 ; with

a0:j0 = xj, (1)

where j is the number of neurons in the layer and X is the input.

ith hidden layer: ji units, ai:1, . . . , ai:ji ; with

ai:k = γi(Ci:k) (2)

and

Ci:k =
Ji−1

∑
j=0

ωI:j1,kai−1:j, (3)

where ai−1:0 = 1, ωI:j1,k is the weight leading from layer i− 1, unit j to layer i, unit k. γi is
the hyperbolic tangent activation function for layer i and it is described as follows.

γ(ck)
= tanh(c)

ec − e−c

ec + e−c (4)

where ai−1:0 = 1.

Output layer: jI = R units, aI:1, . . . , aI:JI ; with

aI:k = γI(CI:k) (5)

and

CI:k =
J1

∑
j=0

ωI:j1,kai−1:j, (6)

where ai−1:0 = 1.
The activation function of the output layer defines how the weighted sum of the input

is transformed; the softMax function is used as an activation function for the output layer.

γ(ck)
=

eck

∑j∈Γh
ecj

(7)

Stopping rules determine when to stop MLP training. Training proceeds through
at least one cycle, and then it can be stopped according to one of the criteria in Table 2.
To avoid excessive future training duration, it is better to select results with SR1 and
SR2 criteria.

Table 2. List and description of the stopping rules.

Stopping Rule Description

SR1 Minimum relative change in error achieved
SR2 Error cannot be further decreased
SR3 Maximum training time has been exceeded

The training accuracy is not sufficient to estimate the response of the trained MLP
networks to unknown future input. Cross-valuation is the most commonly used method to
estimate the true performance of statistical methods. If data are not scarce, the dataset is
split into three segments for training, testing, validation. This splitting can be performed
using multiple different method, and computing an average score over different partitions
can reduce bias [56–58]. The models are trained using the training partition and evaluated
using the testing and validation partitions. Most researchers only rely on the validation
results and skip the scoring stage. In the scoring stage, the models are trained and validated
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using entirely different datasets. Typically, cross-validation demonstrates the accuracy of
models for a very large dataset, while scoring shows the real accuracy of the model with
the current training dataset.

4. Measurements and Results

The data acquisition was performed in laboratory EB412 at the new Faculty of Electri-
cal Engineering and Computer Science building of the VSB Technical University of Ostrava.
Six datasets were obtained as the results of these measurements. Table 3 shows the number
records in each recorded dataset, where individual letters are assigned to different test
subjects and numbers represent different measurement dates. This section evaluates the
recognition accuracy of the developed models with the use of cross-validation and scoring.

Table 3. Datasets size.

Dataset Size in Terms of Number of Records (-)

A1 128,300
A2 202,506
B1 114,560
B2 165,224
C1 135,451
C2 181,023

The analysis was performed using IBM SPSS Modeler. In the first stage, models
were trained and evaluated using cross-validation. Figure 7 shows the developed data
stream. It starts with importing the data and continues with selecting relevant data and
assigning a specific type to each datum. Once the input data are established, the partition
nodes split the data into three subsets: training (30% of total data), testing (30% of total
data), validation (40% of total data). In the next stage, an MLP network is trained, tested,
and validated using the above partitions.

Figure 7. Validation data stream developed in IBM SPSS.

The above steps were repeated for seven model settings and six different datasets,
which resulted in 42 models. These models mostly showed accuracy levels above 99%,
which is considerably more accurate than similar implementations. A minimum accuracy
of 94.59% was observed in dataset B1, activity class 1, with eight neurons in the hidden
layer. On other hand, many models showed 100% accuracy across multiple activity classes
and neuron settings. Table 4 shows the average accuracy of the models across all nine
classes. In general, it can be observed that an increase in the number of neurons slightly
improves the accuracy, but this accuracy improvement reverses in models with more
than 128 hidden layer neurons. A closer look shows that these models are limited by the
maximum allowed training time (stopping rule SR3). Therefore, the lowest possible error
state and highest accuracy cannot be reached by these models.
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Table 4. Cross-validation accuracy of the developed model.

Neuron Count Dataset SR Accuracy (%) Dataset SR Accuracy (%)

8 A1 SR1 98.10 A2 SR2 98.60
16 A1 SR2 99.40 A2 SR1 99.30
32 A1 SR2 99.70 A2 SR2 99.70
64 A1 SR2 99.80 A2 SR2 99.80
128 A1 SR2 99.90 A2 SR3 99.90
256 A1 SR3 99.90 A2 SR3 99.80
512 A1 SR3 99.70 A2 SR3 99.60

8 B1 SR2 98.60 B2 SR2 99.70
16 B1 SR2 99.30 B2 SR2 98.90
32 B1 SR2 99.50 B2 SR2 99.50
64 B1 SR2 99.60 B2 SR2 99.70
128 B1 SR2 99.70 B2 SR2 99.80
256 B1 SR2 99.70 B2 SR3 99.90
512 B1 SR3 99.50 B2 SR3 99.70

8 C1 SR2 98.00 C2 SR1 98.48
16 C1 SR2 98.90 C2 SR2 99.16
32 C1 SR2 99.20 C2 SR2 99.50
64 C1 SR2 99.50 C2 SR2 99.67
128 C1 SR2 99.70 C2 SR2 99.77
256 C1 SR3 99.60 C2 SR3 99.77
512 C1 SR3 99.40 C2 SR3 99.60

Table 5 represents the average accuracy of each activity class across multiple datasets.
Class 4 is the most accurate and often shows 100% recognition accuracy on average. Given
that it corresponds to relaxing and minimal movement, this is a very consistent activity
and is easy to recognize. All other activity classes maintained average accuracy levels
above 98.86%.

Table 5. Average cross-validation activity classes accuracy.

Activity Class A1 (%) A2 (%) B1 (%) B2 (%) C1 (%) C2 (%) Average (%)

1 99.26 98.87 99.04 98.88 99.00 98.14 98.86
2 99.53 99.41 98.96 99.20 99.20 98.85 99.19
3 99.99 99.94 99.97 99.94 99.98 99.82 99.94
4 100.00 99.97 99.99 99.99 100.00 99.99 99.99
5 99.28 99.32 99.49 99.36 98.72 99.46 99.27
6 99.63 99.49 99.64 99.54 99.68 99.68 99.61
7 99.15 98.97 99.96 99.97 98.72 98.44 99.20
8 98.89 99.08 98.15 98.19 98.24 98.22 98.46
9 99.95 99.95 99.93 99.92 99.93 99.88 99.93

The above results demonstrate extremely accurate recognition rates and the high
potential of the introduced method. In general, the training dataset and validation dataset
are very similar in cross-validation. Therefore, this indicates the accuracy of models that
are trained with a very large training dataset that includes most of the possible events.
Often, most researchers only rely on these cross-validation results. However, to estimate
the real performance of the models for certain datasets, it is recommended to use an entirely
different dataset for training and evaluation. This process is called scoring. Figure 8 shows
a scoring data stream. Dataset A1 is entirely used for training, and dataset A2 is only used
for evaluation. Since the scored models have never observed the evaluation datasets, it is
expected that noticeable differences will be observed in the accuracy levels in comparison
with the cross-validation results. The larger the difference, the better the indication of the
larger training dataset requirement.
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Figure 8. Scoring data stream developed in IBM SPSS.

Table 6 shows the average scoring accuracy of the models. Scoring dataset A1 and
dataset A2 against each other resulted in an average of 91.35% and 91.04%, which is
impressive. On the other hand, datasets B1 and B2 experienced a more significant drop
(average of 79.45% and 77.45%). Further investigation showed that these significant
accuracy drops were only present fpr class 7 and class 9 activities, which is the direct result
of the inconsistent actions of the test subject during these activities. Scoring datasets C1 and
C2 against each other resulted in 88.72% and 93.60%, which is also an impressive outcome.

Table 6. Scoring accuracy of the developed model.

Neuron Count (-) A1XA2 (%) A2XA1 (%) B1XB2 (%) B2XB1 (%) C1XC2 (%) C2XC1 (%)

8 88.43 92.80 73.07 77.61 88.05 92.52
16 94.91 89.19 80.32 77.39 87.42 93.61
32 89.82 87.83 76.77 78.54 83.37 96.32
64 89.02 95.82 83.73 78.09 89.81 95.23
128 94.04 96.79 78.82 78.52 91.76 93.52
256 93.35 96.05 83.12 77.79 90.90 94.42
512 89.90 78.82 80.28 74.25 89.70 89.59

Average 91.35 91.04 79.45 77.45 88.72 93.60

Table 7 shows the average scoring accuracy of each activity class across multiple
models and datasets. In general, classes 1, 2, 4, and 5 show highly accurate scoring results.
On the other hand, class 7’s average accuracy suffers from significant accuracy loss. A closer
look shows that this accuracy loss is mainly present in the experiment using datasets B1 and
B2. Otherwise, other datasets performed decently across all classes and models. In total,
the validation accuracy averaged 99.40% and the scoring accuracy averaged 86.94%. This
difference was smaller for specific model settings. Further observations of both evaluations
showed that the accuracy levels increased with an increase in the hidden layer neuron
count. Typically, this relation reversed after 128 or 256 neurons due to the maximum
allowed training times. The model setting with 256 neurons was selected to be the most
suitable model setting. The average validation and scoring accuracies of these models were
99.78% and 89.27%, respectively, which shows approximately a 10% difference. This is a
significant improvement over previous implementations.
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Table 7. Average scoring activity classes accuracy.

Activity A1XA2 A2XA1 B1XB2 B2XB1 C1XC2 C2XC1 Average
Class (%) (%) (%) (%) (%) (%) (%)

1 95.52 95.15 91.68 93.17 96.77 96.97 94.88
2 94.78 94.55 95.73 95.38 93.87 96.87 95.20
3 77.78 86.96 86.91 94.25 82.43 94.84 87.20
4 99.78 99.26 88.04 84.04 91.86 99.38 93.72
5 98.10 95.22 87.43 87.99 95.93 89.96 92.44
6 92.12 82.48 77.58 88.75 86.76 88.49 86.03
7 91.16 87.85 37.92 7.31 73.24 89.91 64.56
8 93.61 88.05 73.38 57.83 92.14 92.82 82.97
9 79.32 89.83 76.33 88.38 85.48 93.18 85.42

5. Discussion

This study aimed to introduce a methodology that addresses most of the concerns
within activity recognition research. The initial research showed that using ankle- and
wrist-worn wearable devices is optimal in terms of the recognizable number of activities.
Using wireless technology to transmit measured body movements and remote processing
of data reduces the computational burden on measurement devices. Essentially, this
allows simpler and perhaps much smaller devices to be utilized in the future. The remote
processing using a powerful local computer also alleviated most of the concerns about the
computational limitations of wearable devices and smartphones. This implementation
used an MLP with only a single hidden layer, which represents a simpler model and
less computationally intensive training. This allows better training of larger models in
a given time. With direct comparison with our previous study [13], which used two
hidden layers, the cross-validation accuracy was almost identical (within margins of error).
However, due to higher and more stable data acquisition rates, the scoring accuracy was
significantly improved.

In addition, this study increased the number of recognizable activities to nine. A total
of 84 models were developed to examine the recognition accuracy of these activity classes.
The models used for cross-validation (42 models) mostly showed accuracy levels above
99%, which is considerably more accurate than similar implementations and our previous
study [13]. The relaxing activity showed mostly 100% recognition accuracy levels, and
other activities cross-validated to accuracy levels above 98.86%. A minimum accuracy of
94.59% was observed in dataset B1, activity class 1, with eight neurons in the hidden layer.
This was expected since dataset B1 represents the smallest data size (Table 3). On the other
hand, many models resulted in 100% accuracy across multiple activity classes and neuron
settings. According to Table 4, increasing the number of neurons slightly improved the
accuracy, but this effect was reversed in larger models due to exceeding the maximum
allowed training time threshold, which did not allow the models to reach a minimum
recognition error state. The methodology was further tested using the scoring technique,
which resulted in additional 42 models (Tables 6 and 7). As mentioned earlier, all activities
showed highly accurate scoring results, but the vacuum cleaning activity’s (class 7) average
accuracy suffered from an accuracy loss. Scoring the dataset A1 and dataset A2 against
each other resulted in an average of 91.35% and 91.04%, and scoring C1 and C2 against each
other resulted in 88.72% and 93.60%, but datasets B1 and B2 experienced a more significant
drop (average of 79.45% and 77.45%), which was mainly caused by class 7’s recognition
accuracy. Since this problem only exists in one dataset, it can be ruled out as a measurement
error. By removing the class 7 results when datasets B1 and B2 were scored against each
other, the scoring accuracy was almost on par with the validation results. This shows that
a sufficient amount of training data were used in this research. Further observations of
both evaluations showed that the accuracy levels increased with an increase in the hidden
layer neuron count. Typically, this relation reversed after 128 or 256 neurons due to the



Sensors 2021, 21, 6207 13 of 15

maximum allowed training times. Overall, the obtained results demonstrated extremely
accurate recognition and the high potential of the introduced method.

This work was aimed at introducing a methodology with high recognition accuracy
and without the typical computational limitations that are described in most existing
research. The novel measurement methodology of this work addressed many previous
concerns, such as inaccurate predefined activity classes, the use of a single test subject,
and the utilization of two different measurement systems. In future works, the obtained
accuracy levels can be further improved by the use of filters and data buffering to eliminate
outliers within the prediction results. In addition, the number of activity classes could be
further increased.

6. Conclusions

This work addresses many previous concerns. These issues are resolved by the
use of a new methodology. It utilizes a multi-layer perceptron neural network and a
novel data acquisition method to recognize nine different human activity classes, with
impressive accuracy levels. The developed models cross-validated to accuracy levels
above 98% across all activity classes. Thanks to the use of higher data acquisition rates
and subsequently larger datasets, the accuracy difference between cross-validation and
scoring was reduced to only 10%. Overall, the recognition accuracy levels were noticeably
improved in comparison with the previous implementation. However, allowing longer
training times may increase the accuracy levels in larger neural networks and allow even
more accurate results. In addition, these results may be further improved by the use of filters
and data buffering to eliminate outliers within the prediction results. The novelty of this
work lies within the simplified recognition methods, highly accurate recognition accuracy
levels, elimination of the computational burden by the use of a remote computer, variety of
recognizable activities, and the possibilities of integration with smart home technologies.
In future works, the trained models will be used in a real-time system that allows live
recognition of the smart home residence, with integration and communication with smart
home technologies and IoT (Internet of Things) platforms. Furthermore, the number of test
subjects, recognizable activities, and accuracy levels will be increased.
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