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ABSTRACT 
 

The transition period is associated with the peak incidence of production problems, 

metabolic disorders and infectious diseases in dairy cows. During this time the cow’s immune 

system seems to be weakened; it is apparent that metabolic challenges associated with the onset 

of lactation are factors capable of affecting immune function. However, the reasons for this state 

are not entirely clear. The negative energy balance associated with parturition leads to extensive 

mobilization of fatty acids stored in adipose tissue, thus, causing marked elevations in blood non-

esterified fatty acids (NEFA) and β-hydroxybutyrate (BHBA) concentrations. Prepartal level of 

dietary energy can potentially affect adipose tissue deposition and, thus, the amount of NEFA 

released into blood and available for metabolism in liver. The current feeding practices for 

pregnant non-lactating cows have been called into question because increasing amounts of 

moderate-to-high energy diets (i.e. those more similar to lactation diets in the content of energy) 

during the last 3 wk postpartum have largely failed to overcome peripartal health problems, 

excessive body condition loss after calving, or declining fertility. Current prepartal feeding 

practices can lead to elevated intakes of energy, which can increase fat deposition in the viscera 

and upon parturition lead to compromised liver metabolism.  Our general hypothesis was that 

overfeeding dietary energy during the dry period, accompanied by the metabolic challenges 

associated with the onset of lactation would render the cow’s immune function less responsive 

early postpartum. The chapters in this dissertation evaluated neutrophil function, metabolic and 

inflammation indices and gene expression affected by the plane of dietary energy prepartum and 

an early post-partum inflammatory challenge in dairy cows. The diet effect in this experiment 

was transcendental during the transition period and potentially during the entire lactation. 

Changes in energy balance were observed and provided a good model to study the challenges 
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associated with the onset of lactation. Overall the LPS model provided a consistent response 

representing an inflammation incident; however the changes in metabolic indices were sudden 

and hard to detect in most of the cases during the days following the challenge. In general 

overfeeding dietary energy during the dry period resulted in a less responsive immune function 

during the early postpartum. In other words, controlling the dietary energy prepartum has more 

benefits for the dairy cow during transition. 

  



 

iv 
 

TABLE OF CONTENTS 
 

INTRODUCTION ...................................................................................................................... 1 
 
LITERATURE REVIEW ............................................................................................................ 2 

 
CHAPTER 1: Blood Polymorphonuclear Leukocyte Function and Metabolic and Inflammation 
Indices in Peripartal Dairy Cows Fed Two Levels of Dietary Energy Prepartum ....................... 29 
 
CHAPTER 2: The Effect of an E. coli Lipopolysaccharide Intra-Mammary Challenge on Cow 
Performance, Metabolic and Inflammation indices and Immune Response of Dairy Cattle during 
Early-Lactation ......................................................................................................................... 52 
 
CHAPTER 3: Immunometabolic Indices and Hepatic Gene Expression are Altered by Level of 
Dietary Energy Prepartum and Postpartum Inflammatory Challenge in Dairy Cows .................. 79 
 
CHAPTER 4: Liver and Mammary Gland Transcript Profiles Affected by Prepartum Dietary 
Energy and Early-Lactation E. coli Lipopolysaccharide Challenge in Dairy Cattle .................. 135 
 
CHAPTER 5: Peripartal Bovine Blood Neutrophil Metabolic, Antioxidant and Inflammatory 
Gene Networks Affected by Prepartal Level of Dietary Energy ............................................... 166 
 
SUMMARY AND CONCLUSIONS. ..................................................................................... 194 
 



 

1 
 

INTRODUCTION 
 

The transition period is associated with the peak incidence of production problems, 

metabolic disorders and infectious diseases in dairy cows (Drackley, 1999). During this time the 

cow’s immune system seems to be weakened; it is apparent that metabolic challenges associated 

with the onset of lactation are factors capable of affecting immune function. However, the 

reasons for this state are not entirely clear (Goff, 2006). The negative energy balance associated 

with parturition leads to extensive mobilization of fatty acids stored in adipose tissue, thus, 

causing marked elevations in blood non-esterified fatty acids (NEFA) and β-hydroxybutyrate 

(BHBA) concentrations (Drackley et al., 2001). Prepartal level of dietary energy can potentially 

affect adipose tissue deposition and, thus, the amount of  NEFA  released into blood and 

available for metabolism in liver (Drackley et al., 2005). The current feeding practices for 

pregnant non-lactating cows has been called into question because increasing amounts of 

moderate-to-high energy diets (i.e. those more similar to lactation diets in the content of energy) 

during the last 3 wk postpartum have largely failed to overcome peripartal health problems, 

excessive body condition loss after calving, or declining fertility (Beever, 2006). Current 

prepartal feeding practices can lead to elevated intakes of energy, which can increase fat 

deposition in the viscera and upon parturition lead to compromised liver metabolism (Beever, 

2006, Drackley et al., 2005).  Our general hypothesis was that overfeeding dietary energy during 

the dry period, accompanied by the metabolic challenges associated with the onset of lactation 

would render the cow’s immune function less responsive early postpartum. The chapters in this 

dissertation evaluated neutrophil function, metabolic and inflammation indices and gene 

expression affected by the plane of dietary energy prepartum and an early post-partum 

inflammatory challenge in dairy cows. 
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LITERATURE REVIEW 

The Transition Period  

The transition period is defined as the stage in the lactation cycle where the cow 

undergoes a transition from being pregnant and non-lactating into the beginning of lactation after 

parturition (Drackley, 1999). The duration of the dry period varies according to management 

strategies and has been divided into the “far-off” (generally the first 4 to 6 wk after dry off) and 

the “close-up” (generally the last 3 wk before expected parturition) (Dann et al., 2006). The 

length of the transition period encompasses the last 3 wk of the dry period (from the close-up) 

until 3 wk after parturition (Drackley, 1999, Grummer, 1995).  

Nutrient demands for support of fetal growth and initiation of milk synthesis are 

increased during the transition period (Grummer, 1995). In contrast, this period is characterized 

by a 30% reduction in dry matter intake (Kedmi and Peer) at 5 to 7 d prepartum followed by a 

steady increase from 0 to 21 (but also after it) d postpartum (Bertics et al., 1992). Marked 

changes in endocrine status occur to prepare parturition and lactogenesis (Grummer, 1995). 

Progesterone concentrations during gestation remain elevated to maintain pregnancy but 

concentrations decline rapidly approximately 2 d before calving; in the same fashion, estrogen 

increases in plasma during late gestation but decreases immediately at calving  (Chew et al., 

1979). Growth hormone increases gradually as the cow progresses from late gestation into early 

lactation; however, the peak occurs at parturition (Kunz et al., 1985). Plasma NEFA increase 

slightly around 2 wk before parturition and the concentration increases dramatically around and 

after parturition (Grummer, 1995). Plasma thyroxine and triiodothyronine concentrations 

gradually increase during late gestation, decreasing substantially at calving and increasing once 

again few weeks after parturition (Kunz et al., 1985). Prolactin increases shortly before 
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parturition (Farmer and Petitclerc, 2003) and Glucocorticoid and prolactin concentrations 

increase on the day of calving and return to near prepartum concentrations soon after parturition 

(Edgerton and Hafs, 1973). The increase in nutrient demand, the drastic changes in endocrine 

status and the decrease in DMI during late gestation influence metabolism; in particular the 

metabolism of lipid (Grummer, 1995). Adipose tissue, liver, gut, and mammary gland are key 

components of the adaptations that dairy cows experience to achieve the necessary balance to 

adapt to the onset of  lactation (Drackley, 1999). 

The transition period is considered the most important phase during the lactation cycle 

since a successful transition can effectively determine a profitable lactation (Drackley, 1999). 

However, immunosuppression during this period  leads to increased susceptibility to invading 

pathogens (Mallard et al., 1998) and the incidence of health problems during this time relative to 

the rest of the lactation cycle is significantly greater (Drackley, 1999). In addition, the transition 

period is where the risk for mammary infections, displaced abomasums, milk fever, ketosis, 

retained fetal membranes and metritis is at a peak (Shaver, 1997, Smith et al., 1985). Besides 

infectious diseases it is also important to mention that a high susceptibility for metabolic 

disorders occurs during this time (Drackley, 1999) and these can be also responsible of pro-

inflammatory cytokine raise with consequent negative effects (Bertoni et al., 2008).  

 

Controlling Energy during the Dry Period 

Energy consumption (or dry matter intake) may be the determining factor for the success 

of the transition period (Drackley, 1999). Conventionally at dry-off, cows are fed high forage 

rations with higher fiber content compared to the lactation diet; this change affects the bacterial 

population, the absorptive capacity and size of the rumen papillae and consequently the 
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absorption capacity of  VFA in the rumen (Goff and Horst, 1997). Cows remain on high fiber 

diets until the close-up period when rations of higher energy and nutrient density are fed 

(“steam-up” diets) in an effort to adapt the rumen microbial population and papillae to the high-

grain diets fed after calving (Grummer, 1995). Regardless of the diet adjustments during the dry-

off and close-up periods, there is evidence that dairy cows can easily consume more energy than 

required during these times (Dann et al., 2006, Janovick and Drackley, 2010) except the fiber, 

energy and protein contents are specifically and well balanced (Bertoni and Trevisi, 2008). 

Overall, research data is unsuccessful demonstrating that steam-up diets reliably and repeatedly 

improve production, body condition, or the immune status of the transition cow. 

Our group at the University of Illinois has been doing extensive research whether 

controlling energy intake during the dry period might lead to a better transition (Dann et al., 

2006, Douglas et al., 2006, Janovick and Drackley, 2010) The strategy used is to formulate and 

feed rations with relatively low and diluted energy density (1.30 – 1.39 Mcal NEL/kg DM) 

during the entire dry period. The incorporation of low energy ingredients (straw or low quality 

grass hays) is key in these types of rations since they allow cows to consume ad libitum without 

exceeding their daily energy requirements (Janovick and Drackley, 2010). Controlling energy 

intake, with high fiber rations, seems to improve DMI after parturition avoiding excessive 

adipose tissue mobilization (Douglas et al., 2006). Milk production appears to be similar to the 

yield obtained with higher energy close-up programs (Douglas et al., 2006, Janovick and 

Drackley, 2010). Some of the benefits of feeding low energy- high fiber rations include a 

reduction in the incidence of displaced abomasum resulting from greater rumen fill that is 

maintained for longer periods, thus, helping regulate feed intake. Body condition, reproductive 

success and foot health also may be improved (Janovick and Drackley, 2010). From a practical 



 

5 
 

standpoint,  feeding a single low energy- high fiber diet simplifies dry cow management 

avoiding social stress due to group changes (Cook and Nordlund, 2009) and a single group 

feeding instead of the two stage group approach (Dann et al., 2006). Finally, in the majority of 

the cases straw is readily available and likely the cost of the ration will be similar or less 

expensive than feeding far-off and close-up diets.  

Energy Balance in the Periparturient Cow 

In general, animals attempt to achieve energy equilibrium regardless of physiological and 

environmental circumstances using the available energy in the diet and the tissue reserves (Baile 

and Forbes, 1974). In the case of dairy cows during transition, as mentioned before, there is a 

marked decrease in DMI which in turn limits the consumption of dietary energy, and has a 

negative impact on the energy balance equilibrium (Bertics et al., 1992). At the same time, 

nutrient demands for fetus needs and for mammary gland development as well as for initiation of 

milk synthesis are increased aggravating the energy balance status (Grummer, 1995). After 

parturition, as milk production increases, the energy needed for milk production increases 

resulting in a stage of negative energy balance (NEB). To meet the energy requirements of this 

period, dairy cattle rely on mobilization of adipose and muscle tissue (Drackley, 1999). This 

period of NEB lasts until the yield of milk starts to decline (6 – 10 wk after parturition) and the 

energy from the DMI becomes sufficient to meet the cow’s requirements (Roche et al., 2009). 

The degree of NEB that cows experience most likely would be a function of the milk yield since 

high producing dairy cows would require a greater amount of energy for lactation (Detilleux et 

al., 1994). A period of severe NEB, where extended mobilization of adipose tissue has occurred, 

could result in the incidence of metabolic disorders such as ketosis and fatty liver (Drackley, 

1999). 
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A central area in the biology of the transition cow is related to the metabolism of lipids. 

In the process of mobilization of energy, the adipose, mammary and liver tissues are key 

components for the adaptations dairy cows undergo. Briefly, high NEFA concentrations in the 

bloodstream are a consequence of hydrolyzed adipose tissue triacylglycerol by the action of 

hormone sensitive lipase (Zammit, 1984). At this point NEFA can be utilized as an energy 

source by other tissues (Drackley, 1999). However, the liver is the most important site for 

removal of NEFA from circulation (Bell, 1979); NEFA that reach the liver are extracted in a 

concentration-dependent manner and converted to acyl-CoA by the enzyme acyl-CoA 

synthethase. Carnitine plays an important role in the transport of  acyl-CoA into the 

mitochondria matrix, where β-oxidation will occur (Zammit, 1984). In the mitochondria, acyl-

CoA is oxidized through β-oxidation into acetyl-CoA and can be further oxidized for energy in 

the citric acid (TCA) cycle. However, if the amounts of acetyl-CoA generated in fatty acid β-

oxidation challenge the processing capacity of the TCA cycle or if activity in the TCA cycle is 

low due to low amounts of intermediates such as oxaloacetate, acetyl-CoA is then used for 

biosynthesis of ketone bodies (Drackley, 1999). Partially oxidized acetyl-CoA is converted into 

the ketone bodies acetoacetate (ACAC), BHBA, and acetone, which are released from the liver 

into the blood (Bell, 1979). Ketones can be used as an alternate water-soluble fuel source by 

many tissues (e.g., heart and skeletal muscle) when glucose is limited (Leslie et al., 2000).  

However, if the rate of lipid mobilization exceeds the rate of ketone body utilization, then 

ketones accumulate and may adversely affect the health and productivity of the cow (Ingvartsen 

and Andersen, 2000). 
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Ketosis and Liver Lipidosis 

Ketosis is characterized by marked increases in circulating ketones and primarily occurs 

within a few weeks after parturition; this problem is closely related with the typical decrease of 

DMI that occurs before parturition and in many cases is aggravated when feed intake is 

significantly reduced after calving (Ingvartsen and Andersen, 2000).  Ketosis can occur as either 

a sub-clinical or clinical condition.  Sub-clinical ketosis is characterized by greater than normal 

concentrations of ketones in circulation (1000-12001400 µmol/L) with no adverse effects 

observed (Duffield et al., 2009).  Clinical ketosis is characterized by even higher concentrations 

of circulating BHBA along with physical signs such as loss of appetite (decreased DMI), a 

decrease in blood pH and a drop in body weight and body condition score. With the drop in 

DMI, there is commonly observed a drop in milk yield, and an increase in susceptibility to 

infectious diseases (Gerloff, 2000). Constant supervision and treatment is necessary in the 

clinical cases. In the worst cases culling or even death occurs (Geishauser et al., 1998, Kremer et 

al., 1993). Nearly 50% of high-producing cows experience a case of sub-clinical ketosis and 

approximately 6% of the sub-clinical cases proceed to clinical ketosis in early lactation 

(Geishauser et al., 1998, Grohn et al., 1989).  

Another fate NEFA can undergo in the liver is to be esterified and exported as 

triglycerides within very low density lipoproteins (VLDL) to extra hepatic tissues such as the 

mammary gland, where the fatty acids are incorporated into milk fat TG (Smith et al., 1997). 

However, this last outcome occurs to a limited extent in dairy cows and when cows consume 

excess energy during the dry period it frequently results in the metabolic disorder of fatty liver 

(Drackley, 1999). During the transition period the ability of the liver to utilize NEFA and secrete 

triglycerides decreases as the duration and seriousness of NEB increases (Morrow, 1976). A 
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further cause of lipidosis can be a lower synthesis of apo-lipoproteins in case of serious 

inflammations at calving time (Bertoni et al., 2004). Therefore, triglycerides tend to build up in 

the liver, decreasing liver function and eventually causing liver lipidosis (Drackley, 1999). When 

the amount of lipid infiltration in the liver becomes severe dairy cows are more susceptible to 

other pathologies and at the same time, when a treatment is functional the recovery period is 

prolonged (Herdt, 1988).  

 

Immune cells and Mechanisms of Defense 

The immune system is integrated by a diversity of cells and molecules that are capable of 

recognizing and eliminating invading foreign microorganisms in a specific manner (Baumann 

and Gauldie, 1994). There are two mechanisms of defense: innate and specific. Both mechanisms 

interact in order to recognize and discriminate between foreign substances and the host’s own 

molecules (Kehrli and Harp, 2001). Among the most common immune cells are the 

macrophages; they are the first line of defense against invading microorganisms and play a key 

role in the innate immune response. Macrophages evolve from monocytes. They are originated in 

the bone marrow during hematopoiesis, and then enter the blood where they differentiate into 

mature monocytes.  Within 8 h, circulating monocytes will enlarge and migrate into tissues 

where they further differentiate into tissue-specific macrophages (Goldsby et al., 2000). They 

detect and recognize non-specific foreign pathogens locally and produce cytokines that initiate 

the immediate sets of reactions that are known as the acute phase response (Baumann and 

Gauldie, 1994). Also they recruit other immune cells to the site of infection and are the bridge 

between the innate and specific immune responses through antigen presentation to prime T cells 

(Rainard and Riollet, 2006) 
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The neutrophils are known as polymorphonuclear (PMN) leukocytes for their multilobed 

nucleus and granulated cytoplasm; these cells constitute up to 70% of the circulating white blood 

cells (Goldsby et al., 2000).  After initiation of the inflammatory response, PMN become the 

predominant cell type observed during an infection.  Like macrophages, PMN are originated 

during hematopoiesis in bone marrow, which takes approximately 10 to 14 d for PMN to mature 

(Bainton et al., 1971). In circulation, the half-life of PMN is short (8.9 h), and once in tissues, 

PMN function for only 1 to 2 d (Paape et al., 2002).   The life span of PMN is tightly regulated 

because these cells can cause tissue and blood vessel damage through the production of reactive 

oxygen metabolites during a “respiratory burst”, as well as granular secretion of antimicrobial 

proteins. Therefore, PMN undergo apoptosis once they are released from the bone marrow to 

minimize host tissue damage (Capuco et al., 1986). During an infection, PMN migrate from 

blood to the tissue in response to chemoattractants secreted from either macrophages or the 

epithelial cells within the tissue (Goldsby et al., 2000). During diapedesis (migration from blood 

into the tissue), chemoattractants stimulate endothelial cells to express specific molecules (i.e., 

E-selectin and P-selectin) that allow the PMN to adhere to the endothelial cell surface.   

Lymphocytes are produced in bone marrow by white blood cells through hematopoiesis 

and become activated due to response to a local antigenic stimulation (Asai et al., 1998).  They 

proliferate and recognize foreign antigens through membrane receptors. Lymphocytes consist of 

T and B lymphocytes. The T cells can be sub divided into T-helper and T-cytotoxic (CTL) 

lymphocytes. The T-helper cells produce cytokines, such as interleukin- 2 (IL-2) and interferons 

(IFN), which are crucial for an effective cell mediated immune response. The B lymphocytes 

differentiate to produce proteins called antibodies or immunoglobulins (Ig) and effector B cells, 

or plasma cells (Sordillo et al., 1997).  Plasma cells are important for the specific immunity; one 
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of the main functions is the production of antibodies. Immunoglobulins, such as IgG1, IgG2, and 

IgM, are the primary defense mechanisms for specific immunity (Paganelli et al., 1984).  

 

The Acute Phase Response 

  In the presence of injury, trauma or infection the host organism in an effort of 

preventing further damage, executes a series of vascular reactions that cause inflammation. The 

beginning of this cascade of events is part of the innate immunity and is commonly associated 

with tissue macrophages. Activated macrophages release a broad spectrum of mediators in which 

cytokines interleukin-1 (IL-1) and tumor necrosis factor (TNF) play an important role recruiting 

immune cells (Baumann and Gauldie, 1994). These cytokines perform different functions locally 

and systemically. Locally they act on stromal cells causing a release of a secondary wave of 

cytokines; some of these cytokines might have been released earlier by the macrophages, 

however, it is this secondary wave the one that increases the homeostatic signal that initiates the 

acute phase response (APR). The secondary wave of cytokines released by the local tissues 

includes interleukin-8 (IL-8) and monocyte chemoattractant protein (MCP). These chemokines 

(cytokines with chemotactic capacity), appear to control the migration of immune cells. 

Migration from the blood to the affected tissue takes place by diapedesis (Suriyasathaporn et al., 

1999). The main cells that respond to the innate response are PMN and monocytes that will 

control in a specific manner any invading microorganisms (Paape et al., 1991). During the 

progressing APR, leukocytes also synthesize and release their own particular set of cytokines 

within the tissue. At this point there is an alteration of the temperature set point in the 

hypothalamus generating a febrile response that will inhibit the growth of pathogens (Baumann 
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and Gauldie, 1994). If the infection persists, at this point the specific immunity, also known as 

humoral or acquired immunity, takes control (Mallard et al., 1998). 

 

Phagocytosis 

Some of the immune cells in the innate and specific system perform phagocytosis. This 

process consists in the ingestion of microorganisms by phagocytic cells (Paape et al., 1979). 

Phagocytosis first requires the adherence and tagging for ingestion and destruction 

(opsonization) of macrophages or PMN to the cell wall of bacteria. Cell surface receptors found 

on phagocytic cells that are specific for certain opsonins, such as certain classes of antibodies 

and components of complement, also can enhance adherence and phagocytosis (Goldsby et al., 

2000).  Once the microorganism is completely surrounded and enclosed by the pseudopodia, it 

then enters the cytosol as a membrane-bound structure called a phagosome. The phagosome then 

fuses with a lysosome, which contains enzymes that digest engulfed material, to form a 

phagolysosome.  During this process, a burst of oxidative metabolism called the respiratory burst 

occurs in activated phagocytes via the activation of a membrane-associated nicotinamide adenine 

dinucleotide phosphate (NADPH) linked oxidase that catalyzes the reduction of oxygen to 

superoxide anion (O2
-). After the respiratory burst, the digested contents of the microorganism 

are eliminated by exocytosis (Burvenich et al., 2004). 

 

The Liver Systemic Response to Inflammation  

The liver is a central organ during an inflammatory response in the organism. It is 

responsible for determining the level of essential metabolites during the critical stages of stress. 

In addition, the liver synthesizes the necessary components for immediate defense at the site of 
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tissue damage (Baumann and Gauldie, 1994). During an ongoing APR the liver synthesizes 

certain plasma proteins known as acute phase proteins (APP) (Koj et al., 1988). The acute phase 

proteins posses a pathogen pattern recognition capacity and their main role is the activation of 

the complement system cascade that concludes in pathogen destruction (Goldsby et al., 2000). 

The concentration of most of the APP increase during inflammation (positive APP); this group 

includes fribrinogen (FBG), α1-acid glycoprotein (AGP), haptoglobin (HP), α1-proteinase 

inhibitor (API), α1-antichymotrypsin (ACT), C-reactive protein (CRP), C3 complement (C3C), 

serum amyloid A protein (SAA), α2-macroglobulin (A2M) and α1-cysteine proteinase inhibitor 

(CPI). Conversely, the concentration of some APP decrease (negative APP) during 

inflammation; these proteins include albumin (BSA) and transferrin (Koj et al., 1988). However 

the physiological function of many APP is still not completely understood but some of these 

proteins are part of the innate immune system (Goldsby et al., 2000). In cattle, the most sensitive 

acute phase proteins are HP and SAA; the concentration of which in serum can increase over 

100-fold showing a substantial rise in the response to acute inflammation. Also, a moderate APP 

in cattle is AGP, which has a lower relative rise indicating chronic conditions (Pyorala, 2003).  

Regulation of APP synthesis in the liver is accomplished in parallel with the recruitment 

of immune cells by inflammatory mediators. The mediators fall into four major categories: 

Interleukin-6 (IL-6) type cytokines, IL-1 type cytokines, glucocorticoids and growth factors 

(Baumann and Gauldie, 1994). Interleukin-6 type cytokines include IL-6, interleukin-11, 

leukemia inhibitor factor (LIF), oncostatin M (OSM) and ciliary neutrophic factor (CNTF); this 

group of cytokines, especially IL-6, has been recognized to be the principal regulator of most 

APP including HP, FBG, API and A2M (Mackiewicz, 1992). IL-1 type cytokines include IL-1α, 

IL-1β, TNFα and TNFβ. These cytokines regulate AGP, SAA and CRP (Baumann and Gauldie, 
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1994). Glucocorticoids stimulate the expression of APP directly (AGP) and indirectly by 

enhancing the effect of the IL-1 and IL-6 types (Sayers et al., 1990). Finally the growth factors 

include insulin-like growth factor (IGF), insulin, hepatocyte growth factor (HGF), fibroblast 

growth factor (FGF) and transforming growth factor-β1 (TGF-β1). These mediators are able to 

suppress IL-1 and IL-6 type cytokines, having an indirect impact on the APP (Mackiewicz et al., 

1990).    

 

Mastitis  

Mastitis is defined as mammary gland (MG) inflammation; it is frequently associated  

with the presence of a pathogen (Bradley, 2002).The decrease in profit that results from mastitis 

is associated with the loss in milk production, treatment costs, removal of milk from the bulk 

tank after treatment was administered, veterinary costs, increased labor, premature culling, and 

sometimes even death of the animal (Miller et al., 1993). Mastitis can be classified into sub-

clinical and clinical depending on severity and duration of the inflammation. During sub-clinical 

mastitis, there are no visual signs of an infection, somatic cell counts (SCC) in milk are usually 

elevated, and milk production is decreased (Sordillo et al., 1997).  Clinical mastitis is 

characterized by an elevated SCC in milk and visual signs of an infection can be observed such 

as clumpy, watery, bloody and/or yellowish colored milk.  In addition, clinical mastitis causes a 

decrease in milk production and feed intake, swelling of the udder, and, in extreme cases, 

septicemia caused by mastitis can cause death (Constable and Morin, 2003).  Milk composition 

can also be affected, including altered salinity, electrical conductivity, acidity, appearance, and 

flavor, as well as increased SCC and decreased casein and fat content (Gill et al., 1990). 
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A high proportion of intra-mammary infections occur during the first wk of the dry 

period when milk flow ceases and bacteria invade from the streak canal before the gland is fully 

involuted (Sordillo et al., 1997). However, mammary infections at this time often do not result in 

clinical mastitis. Although many of the pathogens are eliminated by the immune cells during the 

dry period, some are simply held in check until the beginning of the next lactation. Clinical 

mastitis is most likely to occur during the first mo of lactation (Oviedo-Boyso et al., 2007) and in 

many cases results from an infection established during the dry period or during early lactation 

(Goff and Horst, 1997). Once a pathogen is detected by the receptors in the epithelial cells of the 

MG the APR response begins, the immune system is activated to eliminate the pathogen. This 

defense mechanism includes anatomical, cellular, and soluble factors that act in coordination and 

are crucial to the modulation of the MG resistance and susceptibility to infection (Oviedo-Boyso 

et al., 2007).  

 The pathogens associated with mastitis can cause significant and irreversible damage to 

the MG. In most of the cases the pathogens consist primarily of bacteria but, in rare cases, yeasts 

can cause infection.  Mastitis pathogens can be environmental or contagious (Anderson et al., 

1982). Environmental pathogens are commonly found in the environment such as manure, soil, 

and bedding. These organisms enter the MG, proliferate, and trigger a host immune response that 

kills the invading bacteria in most cases.  The major environmental bacteria are coliforms such as 

Escherichia coli, Klebsiella species, and environmental Streptococcus and Enterococcus; 

however, Streptococcus uberis can persist and become a chronic infection (Sordillo et al., 1997). 

One of the most important environmental bacteria that cause bovine mastitis is Escherichia coli.  

Mastitis caused by E. coli can be resolved in a few days and it is characterized by pain, 

inflammation of one or all MG quarters, fever, and milk with clots and abnormal appearance 
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(Burvenich et al., 2003). Apparently, the severity of mastitis depends on the bacterial strain that 

infects the MG, and the speed with which neutrophils move from the bloodstream to the MG 

depends on the severity of mastitis. Neutrophil recruitment to an MG infected with E. coli occurs 

with a delay of 16 h post-infection (Oviedo-Boyso et al., 2007). 

Contagious mastitis is transferred by organisms that live and proliferate on or within the 

host and generally do not survive outside of the animal’s body.  They are primarily spread at or 

around the time of milking from one cow to another.  The major contagious pathogens that 

colonize the MG are Staphylococcus aureus, Streptococcus dysgalactiae, Mycoplasma and 

Streptococcus agalactiae (Dinsmore, 2002). 

 

Recognition of Lipopolysaccharide  

When mastitis occurs, the first detection event of the immune response occurs when the 

invading pathogen interacts with membrane receptors of the host capable of precisely 

discriminating between self and non-self. These molecular sensors (e.g. Toll like receptors, 

CD14) are known as pathogen recognition receptors and are capable of distinguishing structures 

that are part of microbial species and in particular recognize molecular patterns. When such 

patterns are found on pathogens, they are called pathogen associated molecular pattern (PAMP) 

(Goldsby et al., 2000). Pathogens that cause mastitis have cell wall structures that are recognized 

by the host molecular sensors. These structures are lipopolysaccharide (Small et al., 2000), 

peptidoglycan (PGN), and lipoteichoic acid (LTA), which constitute the PAMP (Bannerman et 

al., 2004). These PAMP are recognized by Toll like receptors (TLR). It is now known that TLR4 

recognizes the LPS of Gram-negative bacteria (e.g. E. coli) and molecules such as fibrinogen, 
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heat shock proteins, and polypeptides, whereas TLR2 is implicated in recognition of LTA and 

PGN from Gram-positive bacteria (e.g. S. aureus) (Takeuchi et al., 2000). 

In acute mastitis caused by coliforms, recognition of LPS is fundamental to the MG 

immune response. LPS and other bacterial cell wall structural components are recognized by the 

TLR4 and the plasma membrane CD14 receptors. CD14 is a glycoprotein expressed on the 

surface of monocytes, macrophages, and neutrophils (Rietschel et al., 1998). CD14 has been 

assigned a functional role, serving as a receptor for LPS in association with the 

lipopolysaccharide-binding protein (LBP) (Wright et al., 1990). LPS-binding protein is an acute-

phase reactant produced by the liver. In the presence of LBP, CD14 has been implicated as a 

high-affinity LPS receptor, facilitating LPS-induced macrophage activation. In addition, several 

alternate LPS receptors have been described which may participate in the host response to 

endotoxin (e.g. CD18 and p73) (Rietschel et al., 1998).  

Several studies have used LPS to evaluate the effect of the APR in production variables 

as well on immune response (e.g. leukocyte function). There is evidence that the LPS model 

generates a local and systemic action involving immune cells and the liver (Mehrzad et al., 

2001). Findings indicate that the liver produces inflammatory cytokines and SAA and HP after 

mastitis induced with LPS (Vels et al., 2009).  

 

Gene Expression Technology 

New molecular biology approaches can be used to understand the basics of the models 

used in dairy cattle research with promising prospects for the future (Drackley et al., 2006). The 

technique broadly known as microarray allows direct and simultaneous comparison of multiple 

samples (Liang et al., 2002) so that relative changes in gene expression between and within 
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individuals can readily be identified. Microarray based technologies for gene expression are 

widely popular in the scientific community and provide several advantages over other techniques 

(Schena et al., 1995). In particular, they allow the global assessment of gene expression. It is 

therefore possible to asses not only the expression status of a particular gene, but also the 

expression pattern of that gene relative to others, which clearly represents an useful approach for 

understanding polygenic regulation of complex processes. There are a variety of microarray 

platforms that have been developed (Cummings and Relman, 2000). Basically a glass slide or 

membrane is spotted or arrayed with DNA fragments or oligonucleotides that represent specific 

coding regions of genes. Construction of microarrays is generally dependent on information 

gained from genome sequencing or EST (expressed sequence tag) projects that provide large sets 

of annotated clones and sequences (Rimm et al., 2001). The construction of cDNA microarray 

slides is based on fragments of candidate genes provided by the investigator. PCR products or 

oligonucleotides are directly spotted or printed onto glass slides to develop a microarray 

(Kauraniemi et al., 2001). Oligonucleotides can be designed and purchased from a number of 

commercial providers.   Purified RNA is then fluorescently or radioactively labeled and 

hybridized to the slide/membrane. In some cases, hybridization is done simultaneously with 

“reference” RNA to facilitate comparison of data across multiple experiments. Signal intensity 

data for each spot on a microarray is obtained by laser scanning or autoradiographic imaging. At 

this point, the data may then be entered into a database and analyzed.  

The University of Illinois has developed a 13,257 oligonucleotide bovine microarray, 

which essentially represented an expansion of the 7,000 cDNA microarray platform developed 

originally (Everts et al., 2005). Details of the development of the microarray plataform used can 

be found in the Supplementary Materials and Methods from (Loor et al., 2007). Briefly, an 
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embryonic bovine cDNA library and 38,732 high-quality expressed sequence tag (EST) 

sequences based on the cattle 7,872 cDNA array (Everts et al., 2005) were filtered for repeats as 

well as sequences of viral, bacterial, or mitochondrial origin using RepeatMasker (Smit and 

Green, 1999).  Subsequently, seventy-base long (i.e., 70-mers) oligos from the unique cluster and 

singlet sequences were designed.  Sequence alignments of designed oligos (Table 1) were done 

by BLASTN similarity searches against human RefSeq, mouse RefSeq, bovine RefSeq, human 

UniGene, mouse UniGene, bovine UniGene, bovine TIGR and the bovine genome using an E-

value cut-off of E ≤ e-5 and scoring threshold of 40 bp (Everts et al., 2005).  Best hits were used 

to annotate the cattle sequences.  NCBI UniGene and Gene databases were used for functional 

annotation (e.g., gene symbol, gene name, function, OMIM number, PubMed identification 

numbers) and Gene Ontology (GO) annotation (Everts et al., 2005).  This microarray contains 

ca. 97% unique elements.   

 Different studies have explored and linked large-scale liver (Loor et al., 2005, Loor et 

al., 2006, Loor et al., 2007) and mammary (Moyes et al., 2010, Piantoni et al., 2010) tissue gene 

expression data with typical blood metabolite, performance and liver composition data to study 

tissue function under different physiological conditions. The integration of functional genomics 

technology with measurements of metabolism obtained by conventional methods is particularly 

promising to find new answers (Drackley et al., 2006). Findings of the experiments previously 

mentioned have revealed genes that could play key roles in hepatic metabolic adaptations to 

negative energy balance. Coupling metabolic and performance data with gene expression 

allowed the development of an integrative model of liver function during ketosis (Loor et al., 

2007). In the mammary gland, gene expression results have provided novel information about 

the early signaling and activation of pro-inflammatory pathways associated with the innate 
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immune response to infection. These pathways have been associated with the inhibition of lipid 

synthesis and PPAR signaling that could partially explain the inverse relationship between 

immune response and milk fat synthesis (Moyes et al., 2010). In this thesis proposal, the use of 

the current microarray technology is applied to actual problems of dairy cattle biology in order to 

uncover answers that could serve to improve the dairy industry.  

 

Summary 

The transition period is considered the most important phase during the lactation cycle 

(Drackley, 1999). The increase in nutrients demand, the drastic changes in endocrine status and 

the decrease in DMI during late gestation influence metabolism rendering dairy cows to a state 

of immunosuppression that leads to increased susceptibility to mammary infections (Mallard et 

al., 1998) and metabolic disorders (Drackley, 1999). Energy consumption may be a determinant 

factor for the success of the transition period; regardless of the diet adjustments during the dry-

off and close-up, there is evidence that dairy cows can easily consume more energy than required 

during these periods (Dann et al., 2006). During NEB the cow relies on adipose tissue 

mobilization leading to greater incidence of metabolic disorders like ketosis and fatty liver 

(Drackley, 1999). The incorporation of low energy ingredients (straw or low quality grass hay) is 

key in the formulation of dry period rations since it allows the cows to consume ad libitum 

without exceeding their daily energy requirements. Controlling energy with high fiber rations 

seems to improve DMI after parturition avoiding excessive adipose tissue mobilization. Milk 

production appears to be similar to the yield obtained with higher energy close-up programs 

(Janovick and Drackley, 2010). It also simplifies the dry cow management avoiding social stress 

due to group changes (Cook and Nordlund, 2009).   
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The transition period also represents an enormous opportunity to study the acute phase 

response and the mechanisms of defense of the immune system. The LPS model has been used 

extensively to study the immune system response. Recognition of LPS is fundamental to the MG 

immune response. LPS is recognized by the toll-like receptor 4 and the plasma membrane CD14 

receptors that work in concert with acute proteins synthesized in the liver (LPS-binding protein) 

in order to activate monocytes, macrophages, and neutrophils (Rietschel et al., 1998). However 

our group is particularly interested in finding relationships between the intensity of lipid 

mobilization, plasma NEFA, and bovine immune cell function through the use of microarrays 

developed at the University of Illinois. This resource has been used in different studies of liver 

(Loor et al., 2005, Loor et al., 2006, Loor et al., 2007) and mammary (Moyes et al., 2010, 

Piantoni et al., 2010). Data have been linked with typical blood metabolite, performance and 

liver composition to better understand the fundamental changes occurring in the animal.   
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Table 1. Annotation of the bovine microarray using Tera-BLAST.  Blast searches were non-
redundant.  Annotation was based on E < e-5 and/or an extension threshold of 40 (Loor et al., 
2007) 

Database search No. of hits No. of unique hits 
Human RefSeq, March 2007 9,655 9,332 
Mouse RefSeq, March 2007        286 285 
Bovine RefSeq, March 2007 725 703 
Human UniGene 201   656 641 
Mouse UniGene 162        32 31 
bovine UniGene 83   1,460 1,411 
bovine TIGR 12      166 165 
Bovine genome 3.1 223 223 
No hit (putative novels)1     54 54 
Total no. of sequences 13,257 12,845 

1Includes 5 control sequences (soybean MSG, CAB, RBS, and scrambled 
control oligos 1 and 2). 
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INTRODUCTION 

Peripartal cows experience some degree of negative energy balance (NEB) and 

immunosuppression (Goff, 2006). The latter is characterized by an impairment of neutrophil 

trafficking, phagocytosis, and killing capacity (Kehrli et al., 1989).  Lymphocyte numbers 

decrease around parturition as a function of reduced proliferation (Kehrli et al., 1989). In 

addition, the cytokine and hormonal changes around parturition are closely related to neutrophil 

development and immunity-related activities, although these changes are poorly understood 

(Burton et al., 2005). It is not entirely clear why most cows experience immunosuppression 

around the time of calving, but it is apparent that metabolic challenges associated with the onset 

of lactation are factors capable of affecting immune function (Goff, 2006).   

The NEB associated with parturition leads to extensive mobilization of fatty acids stored 

in adipose tissue, thus, causing marked elevations in blood NEFA and BHBA concentrations 

(Drackley et al., 2001).  Prepartal dietary energy intake can potentially affect adipose tissue 

deposition and, thus, the amount of NEFA released into blood and available for metabolism in 

liver (Drackley et al., 2005).  Elevated blood NEFA and BHBA as well as reduced 

concentrations of antigen-binding antibodies (van Knegsel et al., 2007) during peripartal NEB all 

can contribute to immunosuppression (Goff, 2006). Ketone body concentrations similar to those 

observed around parturition impair the phagocytic and bactericidal capacity of 

polymorphonuclear leukocytes or neutrophils (PMN) in vitro (Suriyasathaporn et al., 1999). 

Similarly, high concentrations of NEFA negatively affect bovine PMN in vitro (Scalia et al., 

2006). High ketone bodies or NEFA might reduce udder defense mechanisms against mastitis 

pathogens. 
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The efficacy of current NRC (NRC, 2001) feeding practices for pregnant non-lactating 

cows has been called into question because increasing amounts of moderate- to high-energy diets 

(i.e., those more similar to lactation diets in the content of energy) during the last 3 wk 

postpartum have largely failed to overcome peripartal health problems, excessive body condition 

loss after calving, or declining fertility (Beever, 2006).  Current prepartal feeding practices can 

lead to elevated intakes of energy, which can increase fat deposition in the viscera and upon 

parturition lead to compromised liver metabolism (Beever, 2006, Drackley et al., 2005). In 

addition, prepartal feeding practices can affect indices of metabolism and inflammation which 

can potentially influence immature immune cells in the peripheral circulation (Lacetera et al., 

2005). 

During the first wk of lactation there is a significant risk for development of new mastitis 

infections in the udder and new cases of clinical mastitis (Hogan et al., 1989). Our general 

hypothesis is that overfeeding dietary energy during the dry period, accompanied by the 

metabolic challenges associated with the onset of lactation, would render immune function less 

responsive early postpartum. The main objective of this study was to evaluate the effect of level 

of dietary energy prepartum on peripartal PMN phagocytosis, chemotaxis, and blood indices of 

metabolism and inflammation during the first wk after parturition. 

 

MATERIALS AND METHODS 

Animals and Diets 

All procedures were conducted under protocols approved by the University of Illinois 

Institutional Animal Care and Use Committee (protocol # 06145). Twenty Holstein cows 

entering their second or greater lactation were enrolled in the study. The average composite SCC 
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was ~128,000 ± 108,000 during the previous lactation. Cows were assigned randomly (n = 

10/diet) to a control diet (controlled energy, high fiber), which was fed for ad libitum intake to 

provide approximately 100% of calculated NEL (1.34 Mcal/kg diet DM, Control group), or were 

fed a diet to provide at least 150% of calculated NEL requirements (Overfed group, 1.62 Mcal/kg 

DM) during the entire 45-d dry period (NRC, 2001). Ingredient composition of the diets is 

reported in Table 2. Samples of feed ingredients and TMR were obtained weekly and analyzed 

for DM content to maintain desired ingredient ratios.  Weekly samples of individual ingredients 

were frozen at −20°C and were composited monthly. Composite samples were sent to a 

commercial laboratory (Dairy One, Ithaca, NY, USA) for analysis of DM, CP, NDF, ADF, Ca, 

P, Mg, and K (Table 2).  Diets were fed as TMR once daily (0600 h) using an individual gate 

feeding system (American Calan, Northwood, NH, USA).  

Cows were housed in a ventilated enclosed barn during the dry period (Photoperiod 8 h 

light:16 h dark) and had access to sand-bedded free stalls until 5 d before expected calving date, 

when they were moved to an individual maternity pen bedded with straw. After parturition, cows 

were moved to a tie-stall barn and were fed a common lactation diet (NEL = 1.69 Mcal/kg DM) 

as TMR once daily (0600 h). Cows were milked twice daily (0400 and 1600 h).  Diets were 

mixed in a Keenan Klassik 140 mixer wagon (Richard Keenan & Co., Ltd., Borris, County 

Carlow, Ireland) equipped with knives and serrated paddles; straw in large square bales was 

chopped directly by the mixer without preprocessing. 

Body weight was measured for each cow wkly. Milk weights were recorded daily and 

samples were obtained from consecutive a.m. and p.m. milkings. Milk samples were composited 

in proportion to milk yield at each sampling and preserved (800 Broad Spectrum Mirotabs II; 

D&F Control Systems, Inc., San Ramon, CA, USA). Composite samples were analyzed for fat, 
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protein, lactose, urea N, and SCC using midinfrared procedures (AOAC., 1995) at a commercial 

laboratory (Dairy One, Ithaca, NY, USA).  

 

Energy Balance Calculations and Estimates 

Energy balance was calculated individually for each cow using equations described 

previously (NRC, 2001). Briefly, net energy intake (NEI; Mcal/d) was determined by 

multiplying DMI by the calculated mean NEL density of the diet. The NEL value of each 

individual feed, provided by Dairy One was used to calculate the mean NEL content of the diet. 

The net energy required for maintenance (NEM ) was calculated as BW0.75 × 0.08. Net energy 

requirement for pregnancy (NEP; Mcal/d) was calculated as [(0.00318 × day of gestation − 

0.0352) × (calf birth weight/45)]/0.218. Milk net energy requirement (NEMILK; Mcal/kg) was 

calculated as (0.0929 × fat% + 0.0563 × protein% + 0.0395 × lactose %) × milk yield. The 

equation used to calculate prepartum energy balance (EBPRE; Mcal/kg) was EBPRE = NEI − 

(NEM + NEP). The equation used to calculate postpartal energy balance (EBPOST; Mcal/d) was 

EBPOST = NEI − (NEM + NEMILK).  

 

Blood Metabolites 

 Blood was sampled from the coccygeal vein or artery at -14 (± 3 d) and 7 d relative to 

parturition. Samples were collected at 1200 h into evacuated tubes (Becton Dickinson Vacutainer 

Systems, Franklin Lakes, NJ, USA) containing either ethylenediaminetetra acetic acid (EDTA) 

or lithium heparin for plasma and a clot activator for serum. After blood collection, tubes with 

EDTA and lithium heparin were placed on ice while tubes with clot activator were kept at room 

temperature until centrifugation (~30 min). Serum and plasma were obtained by centrifugation at 
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1,900 × g for 15 min. Aliquots of serum and plasma were frozen (-20°C) until further analysis. 

Measurements of NEFA and BHBA were performed using commercial kits in an auto-analyzer 

at the University of Illinois Veterinary Diagnostic Laboratory (Urbana, IL, USA). Other 

parameters were measured in lithium heparin samples at the Istituto di Zootecnica at the 

Università Cattolica del Sacro Cuore in Piacenza (Italy). Glucose, albumin, cholesterol, bilirubin, 

creatinine, urea, and glutamic-oxalacetic transaminase (GOT) were determined using kits 

purchased from Instrumentation Laboratory (IL Test) following the procedures previously 

described by Bionaz et al. (Bionaz et al., 2007) in a clinical auto-analyzer (ILAB 600, 

Instrumentation Laboratory, Lexington, MA, USA) . Triacylglycerol (TAG) was measured using 

a commercial kit (LabAssayTM Triglyceride, Wako Chemicals Inc., USA).  Haptoglobin and 

ceruloplasmin were analyzed using methods described by Bertoni et al. (Bertoni et al., 2008) 

adapted to the ILAB 600 conditions. Plasma vitamin A, vitamin E, and β-carotene were 

extracted with hexane and analyzed by reverse-phase HPLC using Allsphere ODS-2 3µm in a 

150 × 4.6 mm column (Grace Davison Discovery Science, Deerfield, IL, USA), a UV detector 

set at 325 nm (for vitamin A), 290 nm (for vitamin E), or 460 nm (for β-carotene), and 80:20 

methanol:tetrahydrofurane as the mobile phase. Total plasma reactive oxygen metabolites 

(ROM) were measured using the analytical method patented by Diacron International s.r.l. 

(Grosseto, Italy). Plasma insulin concentrations were measured by a double antibody 

radioimmunoassay, using a kit for human insulin following the procedures from the vendor 

(Diagnostic Systems Laboratories, Inc., Webster, TX, USA). The detection limit of the assay was 

1.3 mU/ml; the coefficients of variation averaged 7.5% within assay and 9.5 % between assays. 
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Liver Tissue Composition 

Liver was sampled via puncture biopsy (Dann et al., 2006) from cows under local 

anesthesia at approximately 0730 h on d −14 (± 3) and 7 relative to parturition. Liver was frozen 

immediately in liquid nitrogen and stored until further analysis for contents of total lipids and 

TAG (Dann et al., 2006). 

 

Polymorphonuclear Leukocyte Isolation  

Samples of blood (20 mL/tube) were collected at ~0700 h from the coccygeal vein or 

artery in evacuated tubes containing EDTA for chemotaxis and sodium heparin for phagocytosis 

at -14 (± 3 d) and 7 d relative to parturition.  After blood collection, tubes were placed on ice 

(~30 min) until isolation (Auchtung et al., 2004, Moyes et al., 2009, Salak et al., 1993). Samples 

were centrifuged at 600 × g for 15 min at 4 °C. The buffy coat and approximately one-fourth of 

red blood cells were removed and discarded. The remaining sample was poured into a 50-mL 

tube. Twenty milliliters of deionized water at 4 °C were added to lyse red blood cells followed 

by addition of 5 mL 5X PBS at 4 °C to restore an iso-osmotic environment.  Samples were 

centrifuged at 200 × g for 10 min at 4°C. Three subsequent washings using 1X PBS at 4 °C were 

performed with samples centrifuged at 500 × g for 3 min at 4 °C. Isolated PMN were 

resuspended in 1 mL 1X PBS at 4 °C and kept on ice. Cells were counted using a Beckman 

Coulter Counter after addition of Zap-OGlobin II Lytic Reagent (cat. #13020, Beckman Coulter) 

to lyse any remaining red blood cells. A total of 3 x 106 cells/mL of Roswell Park Memorial 

Institute (RPMI) 1640 media with 5% FBS were used for chemotaxis and 2 x 106 cells/mL for 

phagocytosis. 
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Chemotaxis 

Chemotaxis was assessed using a method previously described (Auchtung et al., 2004, 

Salak et al., 1993) with modifications (Moyes et al., 2009). The assay was conducted in a 48-

well Micro AP48 Chemotaxis Chamber (P48AP30, Neuro Probe, USA). Thirty microliters of 

100 ng/mL RPMI 1640 (without FBS) containing human interleukin-8 (I1645, Sigma, USA), 

10−8 M of human complement C5a (C5788, Sigma, USA) in RPMI 1640 (without FBS), or 

RPMI 1640 (without FBS, control) were added to each of 4 wells per sample (quadruplicate). A 

PVP-free filter (5 µm pore size, 25 × 88 mm; cat# 416306, Neuro Probe, USA) was mounted in 

each chamber. The chamber was incubated in 5% CO2: 95% humidity at 37 °C for 10 min for 

equilibration. Fifty microliters of 3 × 106 cells/mL were added in each chamber and incubated in 

quadruplicate in 5% CO2: 95% humidity at 37°C for 1 h. The membrane was then removed 

using forceps. To remove not migrated cells the side of the membrane in contact with the 

original cell suspension was carefully dipped in PBS solution (i.e., the other surface was not 

allow to get in contact with the PBS) and the cells removed by scraping against a sharp plastic 

surface. The removal of non-migrating cells was repeated 3 times. After cleaning, the membrane 

was allowed to dry and then was fixed with Hema 3 Hematology Staining Solution II (122-952, 

Fisher Scientific, USA). The number of cells in each well was counted using an inverted 

microscope. Cell counts were corrected based on viability (see below) and background (i.e., 

control or cell migrated with only RPMI).  

 

Phagocytosis 

 Phagocytosis was conducted in quadruplicate in 1 mL RPMI 1640 media following 

addition of a 1:10 ratio of Fluoresbrite latex Carboxy Yellow-Green 1.75 μm Microspheres 
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(2.5%, #17687, Polysciences, Inc., USA).  Samples were then incubated for 2 h in 5% CO2: 95% 

humidity at 37 °C.  A control sample was incubated for 2 h at 4 °C. After incubation, cells were 

rinsed twice with 1X PBS (via centrifugation at 1000 × g for 5 min at 4 °C), fixed with 150 μL 

4% paraformaldehyde (P6148, Sigma, USA), and preserved at 4 °C until reading using flow 

cytometry. 

 

Cell Viability and Differential Counts 

 Aliquots (20 μL) of the cell suspension from each sample for chemotaxis and 

phagocytosis assays was used to determine viability using a Burke chamber after 2 min 

incubation with a solution of Trypan blue. The average percentage of viable PMN was 71.7 ± 

7.8; viability data were used to correct data on chemotaxis and phagocytosis. Aliquots (50 μL) of 

cell suspension from the samples used for the chemotaxis assay were fixed in a microscope slide 

to determine cell differentials; overall, the average percentage of PMN in the differential was 

56.0 ± 5.5. 

 

Statistical Analysis 

 Each variable of interest was evaluated for normal distribution using the Shapiro-Wilk 

test (SAS Inst. Inc.) and normalized by logarithmic transformation when necessary prior to 

statistical analysis. After analysis log-transformed data were back-transformed to be included in 

the tables. The MIXED procedure of SAS (SAS Institute, Inc., Cary, NC, USA) was used for 

statistical analysis. The fixed effects included diet (control or overfed energy), time (-14 and 7 d 

relative to parturition), and the interaction of diet × time.  The random effect was cow within 
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diet. A repeated measures analysis using an AR(1) structure was used. All means were compared 

using the PDIFF statement of SAS (SAS Institute, Inc., Cary, NC, USA).    

 

RESULTS AND DISCUSSION 
 

The immune status of dairy cows during the first wk of lactation is of importance during 

the transition period because there is a significant risk for development of new mastitis infections 

in the udder and new cases of clinical mastitis (Hogan et al., 1989). Dairy cows during the 

transition period normally experience a marked decrease in DMI some days before parturition, 

which in turn limits the consumption of dietary energy and has a negative impact on the energy 

balance equilibrium (Bertics et al., 1992). At the same time, nutrient demands for initiation of 

milk synthesis are increased, which aggravates the energy balance status (Grummer, 1995). After 

parturition, as milk production increases the energy needed for milk production also increases 

resulting in a state of NEB.  

Table 3 reports the DMI, milk yield and milk composition. We observed higher (diet P = 

0.07) DMI from d -14 to the day of parturition in overfed compared to control cows. As 

designed, DMI in the overfed group exceeded energy requirements during the prepartal period (-

4 to -1 wk relative to parturition) resulting in significantly higher (diet P < 0.01) energy balance 

when compared to the control group (Table 3). However, both groups were in NEB during wk 1 

after calving with a larger drop (expressed a percentage of calculated requirements) observed in 

the overfed group (from ~159% prepartum to ~83% postpartum, Table 3).  These data confirmed 

a previous study from our group (Janovick et al., 2010) where cows fed to meet or exceed (100% 

or 150% of NEL) prepartal energy requirements experienced a drastic decrease in energy balance 

from 160% of requirements at wk −3 relative to parturition to less than 72% during the first wk 
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of lactation. That study also observed similar DMI and milk yield during wk 1 to 3 postpartum 

between overfed and control cows. 

Previous data from our laboratory suggested that over-consumption of energy during the 

dry period can result in poorer transitions, including lower post-partum DMI and slower starts in 

milk production (Dann et al., 2005, 2006). Cows fed diets to meet ca. 80% of NEL requirements 

throughout the dry period were able to adapt better after parturition and were in more positive 

energy balance than cows fed to exceed ca. 150% of NEL requirements (Dann et al., 2006).  Milk 

yield and DMI during the first wk postpartum also were greater in prepartal energy-restricted 

cows. Another study comparing diets to meet 80%, 100%, or 150% NEL requirements during the 

dry period revealed that cows fed 80% or 100% of NEL requirements during the first 30 d of the 

dry period had greater DMI and improved energy balance coupled with lower serum NEFA and 

BHBA during the first 10 d postpartum compared with overfed cows (Dann et al., 2005).  

Our data, although limited to the first wk after parturition, partly support previous 

observations suggesting that cows overfed during the dry period are more likely to be in greater 

NEB postpartum. To meet the energy requirements during the period of NEB, dairy cattle rely on 

mobilization of adipose TAG and muscle tissue (Drackley, 1999). Concentrations of NEFA in 

the blood are a consequence of hydrolyzed adipose tissue TAG and can be taken up by liver and 

oxidized to produce ketone bodies (e.g. BHBA) (Zammit, 1984). In our study, despite 

differences in energy balance but consistent with the comparable milk production and similar 

DMI (Table 3), there were no statistical differences in NEFA and BHBA concentrations between 

diets (Table 4). Furthermore, the observed concentrations of NEFA were within a non-

pathological range (Bertoni et al., 2008). The blood NEFA pattern around parturition is dynamic 

and it is likely, based on previous data with similar dietary treatments (Dann et al., 2006; 
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Janovick et al., 2011), that treatment differences would have been more apparent if additional 

times would have been sampled. The numerically greater NEFA postpartum in overfed cows 

agrees with the more severe NEB in those cows; nevertheless the absolute values of NEFA and 

BHBA do not suggest a ketotic state. 

Although NEFA concentrations prepartum were not different due to diet, blood insulin 

concentration was markedly greater (diet × time P < 0.01) prepartum in cows overfed energy but 

decreased sharply by wk 1 postpartum in this group (Table 4). In addition, blood glucose pre- 

and postpartum was greater (P < 0.04) in the overfed cows (Table 4). Together, the prepartal data 

are consistent with a greater potential for insulin-driven adipose lipid deposition. Our group has 

recently shown that overfeeding dry non-pregnant cows with a similar energy density as in the 

present study (i.e., NEL 1.61 Mcal/kg DM) for 8 wk increased the deposition of visceral fat by 

ca. 70% compared with cows fed a controlled-energy/high-fiber diet similar to the present study 

(Nikkhah et al., 2008).   

Urea concentration was significantly lower (diet × time P < 0.01) in overfed cows before 

parturition (Table 4). Considering that overfed cows ate more and received a diet with a higher 

protein content (Table 3), that means a more crude protein intake than control cows, it is possible 

to explain the different plasma urea concentration between groups with a difference in the diet 

fermentability. Thus, the difference in plasma urea concentration is likely not indicative of 

decreased hepatic functionality, as also confirmed by the low level of TAG in the liver (Table 4).  

The level of creatinine prepartum was lower (diet × time P < 0.01) in overfed compared to 

control cows, but the postpartum pattern was opposite between the two groups, i.e. increased in 

overfed and decreased in control cows (Table 4). (Reynolds and Kristensen, 2008). The very 

high insulin concentrations  observed in overfed cows before calving might have affected 
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skeletal muscle protein turnover (Bolster et al., 2004) with a consequent reduction of protein 

catabolism. Therefore, the increase in serum creatinine postpartum, an index of muscle mass, 

indicates enhanced muscle synthesis in overfed cows occurring before calving (Baxmann et al., 

2008). 

As for urea and creatinine, overfed cows had lower plasma TAG prepartum, but in 

control cows there was a decrease in TAG postpartum while in overfed cows there was a 

numerical increase (Table 4). Although speculative given that we have data at a single time 

point, the lower blood TAG prepartum in overfed cows might have been a consequence of the 

high insulin levels causing chylomicron-TAG hydrolysis and NEFA uptake by the adipose tissue 

or may have been a consequence of  lower rates of very low density lipoproteins (VLDL) export 

from liver. Interestingly, serum glucose concentration, which is the main source of energy for 

lymphocytes (Pithon-Curi et al., 2004) was higher in overfed cows during the whole study.  

Parameters of liver function (i.e. serum bilirubin, albumin and cholesterol), acute-phase 

proteins (i.e., ceruloplasmin, haptoglobin), oxidative stress (i.e. ROM), and GOT were not 

different between groups. Furthermore, all those parameters indicated “normal” and satisfactory 

liver activity during the peripartal period (Bertoni et al., 2008). Among measured vitamins, 

vitamin A was significantly higher (diet × time P = 0.02) prepartum in overfed vs. control cows 

(Table 4). The greater concentration of vitamin A together with other indices of liver activity 

(see above) indicated that overfeeding cows did not result in significant impairment of liver 

function prepartum and at least through the first wk postpartum. Vitamin  E is an important 

antioxidant that binds free radicals and prevents lipid peroxidation, which may have importance 

to the immune response (Bendich, 1993). In our study we observed that vitamin E concentration 

was greater (diet P = 0.09) in the overfed cows both pre- and post-calving. Higher vitamin E 
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concentration in blood has been associated with lower incidence of clinical mastitis during the 

first wk of lactation (Weiss et al., 1997), and lower concentrations seem to hamper immune 

function (Grasso et al., 1990). However, neutrophil phagocytosis capacity appears independent 

of blood vitamin E concentration (Hogan et al., 1990), which seems to agree with results from 

our study.  

The transition period is accompanied by reduced immunological capacity from 2 to 3 wk 

before parturition (Goff, 2006, Mallard et al., 1998). After parturition, dramatic changes in 

patterns of leukocyte trafficking occur including increased cell counts and an increased number 

of immature cells; at the same time chemotaxis and the oxidative burst are impaired (Burvenich 

et al., 2003). These changes lead to impairment of a number of immunological parameters 

around parturition (Waller, 2000).  In our study no significant differences in chemotaxis were 

observed between prepartal treatments. However, a significant decrease (time P = 0.02) in 

chemotaxis was observed after parturition regardless of diet (Table 5).  

Phagocytosis capacity of PMN was greater (diet × time, P < 0.01) prepartum in the 

control group than in the overfed group; after parturition phagocytosis capacity in the control 

group remained constant while in the overfed group phagocytosis increased to levels similar to 

the control. In “healthy” cows PMN function (e.g., phagocytosis, superoxide anion generation, 

chemotaxis) declines gradually as parturition approaches. Lowest function is often reached soon 

after parturition and continues through 15 d postpartum (Gilbert et al., 1993, Kimura et al., 

2002), after which PMN function increases through at least 6 wk postpartum (Gilbert et al., 

1993, Moya et al., 2008). The increase in phagocytosis capacity in the overfed group from -14 to 

7 d might be explained by the higher overall glucose concentration. Glucose rather than amino 

acids, ketone bodies, or fatty acids has been shown to be the preferred metabolic fuel for immune 
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cells (Pithon-Curi et al., 2004). However, at -14 d the concentrations of glucose and insulin were 

greater in the overfed group but the phagocytosis capacity was lower compared to control cows. 

Based on human experiments we speculate that the high insulin concentration prepartum coupled 

with higher glucose in overfed cows were indicative of insulin insensitivity, thus reducing the 

ability of immune cells to fully utilize glucose in order to execute the immune response 

(Saiepour et al., 2006). 

 

CONCLUSION 

Overall, our data indicated that the more positive energy status prepartum and the ensuing 

surge of insulin had a transient but significant effect on metabolism. We obtained evidence that 

the greater insulin concentration decreased muscle protein turnover and perhaps increased the 

circulating TAG uptake by adipose tissue prior to parturition. However, elevated insulin 

concentration also could have impaired phagocytic capacity of the PMN prior to calving. The 

underlying mechanisms for insulin’s impairment of PMN function is not evident and warrants 

further studies. At least through the first wk postpartum, our blood data showed some indications 

of negative carry over effects of overfeeding energy to the point of calving, i.e. concentrations of 

haptoglobin, bilirubin, and ROM were increased. In that context, the more severe NEB observed 

during the first wk postpartum could potentially render cows more susceptible to 

immunosuppression and infectious diseases as well as metabolic disorders (Goff, 2006).  The 

effect of overfeeding dietary energy prepartum might be more noticeable in the long-term as the 

demands for milk production and reliance on adipose mobilization continue to increase.   
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Table 2. Ingredients and chemical composition of experimental diets. 
  Prepartum    

     Overfed      Control    Lactation 
Ingredients, % of DM     

Wheat straw - 41.9  - 
Corn silage 50.3 29.3  29.9 
Alfalfa silage 18.0 10.0  14.8 
Soybean meal 3.54 9.64  2.39 
Ground shelled corn 13.9 3.59  - 
Alfalfa hay 6.06 3.35  5.55 
Magnesium sulfate 0.63 0.64  - 
Magnesium oxide 0.43 0.42  0.13 
Vitamin E 0.24 0.27  - 
Mineral and vitamin mix1 0.18 0.18  0.22 
Magnesium chloride 0.35 0.17  0.00 
Urea - 0.17  0.13 
Salt 0.24 0.15  0.13 
Sodium phosphate - 0.13  - 
Vitamin A 0.01 0.01  - 
Vitamin D 0.01 0.01  - 
Whole cottonseed 5.03 -  5.55 
Calcium carbonate 0.9 -  0.56 
Corn ground - -  20.3 
Wet brewer’s grain  - -  12.9 
Soybean hulls - -  5.55 
Sodium bicarbonate - -  0.83 
Dicalcium phosphate - -  0.54 
Vitamin H - -  0.28 

Chemical composition     
DM,  % 50.0 51.9  60.5 
NEL, Mcal/kg DM 1.62 1.34  1.69 
CP, % DM 15.0 12.0  17.4 
AP, % DM 14.3 11.2  11.9 
ADICP, % DM 0.73 0.70  5.53 
NDF, % DM 36.6 53.4  34.1 
ADF, % DM 25.7 36.6  21.8 
Ca, % DM 0.73 0.67  0.80 
P, % DM 0.31 0.24  0.43 
Mg, % DM 0.57 0.50  0.33 
K, % DM 1.28 1.45  1.16 
S %DM 0.25 0.21  0.21 
Na % DM 0.09 0.07  0.29 
Fe, ppm 339 305  203 
Zn , ppm 80.0 66.6  65.8 
Cu, ppm 14.6 13.0  10.9 
Mn, ppm 70.3 72.0  67.0 

1Mineral and vitamin mix: zinc = 60 ppm, copper = 15 ppm, manganese = 60 
ppm, selenium 0.3 ppm, iodine = 0.6 ppm, iron = 50 ppm, and cobalt = 0.2 

ppm. Rumensin:360mg/day in the lactation diet. 
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Table 3. Intake of DM and energy balance prepartum (-28 d to calving) and early 
postpartum (7 d) and milk production and composition postpartum in cows fed a control 
diet (n = 10; 1.34 Mcal/kg DM) or overfed diet (n = 9; 1.62 Mcal/kg DM) during the 
entire dry period. 

 
 Prepartal energy  P-value 
 Overfed  Control SEM1 Diet Time Diet × time 
DMI        

% BW        
-28 to -14  DIM2 1.82  1.70 0.18 0.59 0.93 0.68 
-14 to 0 DIM 2.03  1.66 0.22 0.21 0.40 0.98 
-7 to 0 DIM 2.10  1.72 0.22 0.21 0.40 0.98 
1 to 7 DIM 2.01  2.07 0.16 0.78 0.01 0.84 

kg/d        
-28 to -14  DIM2 14.2  12.1 1.3 1.00 0.91 0.73 
-14 to 0 DIM 15.3  11.7 1.5 0.07 0.98 0.90 
-7 to 0 DIM 15.4  11.9 1.4 0.07 0.79 0.76 
1 to 7  DIM2 14.0  13.1 0.8 0.41 0.01 0.31 

Milk yield, kg 1 to 7 d2 27.3  25.3 3.2 0.61 0.01 0.97 
Fat, % wk 1 3.60  3.95 0.25 0.32 - - 
Protein, % wk 1 3.58  2.98 0.34 0.23 - - 
Lactose, % wk 1 4.82  4.91 0.08 0.45 - - 

Energy balance        
Prepartum, -4 to -1 wk        

Mcal/d 8.85  0.06 2.21 0.01 0.29 0.40 
% requirements 159  102 14 0.01 0.31 0.46 

Postpartum, wk 1        
Mcal/d -7.04  -3.89 1.44 0.10 - - 
% requirements 83.3  89.8 3.4 0.15 - - 

1Largest SEM is shown. 
2Data were log-transformed prior to statistics and back-transformed for inclusion in tables. 
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Table 4. Prepartum (-14 d) and early postpartum (7 d) blood and liver parameters in cows fed a 
control diet (1.34 Mcal/kg DM) or overfed energy diet (1.62 Mcal/kg DM) during the entire dry 
period 

 Prepartal energy   
 Overfed  Control  P-value 

Item -14 7  -14 7 SEM1 Diet Time 
Diet × 
time 

n = 10 10  9 9     
Metabolism          

NEFA, mEq/L2 0.140 0.521  0.136 0.320 0.111 0.25 0.01 0.30 
BHBA, mmol/L2 0.514 0.631  0.554 0.528 0.066 0.61 0.45 0.23 
Glucose, mmol/L2 4.24 3.49  4.00 3.30 0.12 0.04 0.01 0.95 
Insulin, µIU/mL2 16.7a 3.70c  3.94b 2.31d 2.61 0.01 0.01 0.01 
Glucose:insulin2 0.25c 0.94b  1.02b 1.43a 0.22 0.01 0.01 0.01 
Urea, mmol/L 4.63b 5.53a  6.38a 5.49a 0.49 0.15 0.98 0.01 
Creatinine, µmol/L2 100.5b 105.7b  117.9a 101.8b 3.6 0.09 0.04 0.01 
Triacylglycerol, mg/dL2 4.00b 4.64b  8.57a 3.86b 1.02 0.03 0.01 0.01 

Liver function          
Bilirubin, µmol/L 0.76b 4.67a  1.71b 3.61a 0.50 0.94 0.01 0.02 
Albumin, g/L 36.6 36.2  37.0 37.2 0.60 0.31 0.74 0.51 
Cholesterol, mmol/L2 3.02 2.54  2.83 2.52 0.13 0.46 0.01 0.51 

Acute-phase proteins          
Ceruloplasmin, µmol/L 2.44 3.16  2.24 2.94 0.13 0.20 0.01 0.81 
Haptoglobin, g/L2 0.33 0.64  0.24 0.49 0.12 0.14 0.01 0.91 

Oxidative stress          
ROM3, mg H2O2/100 mL 11.3 14.1  10.5 13.3 0.6 0.25 0.01 0.90 

Liver injury          
GOT4, U/L2 73.8 119.0  82.8 125.4 10.9 0.29 0.01 0.66 

Antioxidants-antiinflammation         
Vitamin A, µg/100 mL 47.3a 27.5b  36.4b 32.4b 4.1 0.53 0.01 0.02 
Vitamin E, µg/mL2 4.78 2.75  3.88 2.41 0.42 0.09 0.01 0.57 
β-carotene, mg/100 mL 0.20 0.12  0.17 0.12 0.01 0.31 0.01 0.14 

Liver tissue, % wet weight          
Lipid 4.52 5.98  4.21 5.21 0.42 0.23 0.01 0.55 
Triacylglycerol2 0.49 1.80  0.48 0.87 0.93 0.35 0.03 0.40 

a-dMeans within a row with different superscripts differ (Diet × Time P < 0.05).  
1Largest SEM is shown.  
2Data were log-transformed prior to statistics and back-transformed for inclusion in tables.  
3Reactive oxygen metabolites.  
4Glutamic-oxalacetic transaminase.  
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Table 5. Prepartum (-14 d) and early postpartum (7 d) polymorphonuclear leukocytes (PMN) 
chemotaxis and phagocytosis in cows fed a control diet (1.34 Mcal/kg DM) or overfed energy 
diet (1.62 Mcal/kg DM) during the entire dry period 

 Prepartal energy   
 Overfed  Control  P-value 

Item -14 7  -14 7 SEM1 Diet Time Diet × time 
n = 9 9  10 8     
Chemotaxis, cells/cm²          

Complement C5a 23.9 65.4  27.6 71.4 36.4 0.89 0.22 0.97 
Interleukin-8 144.0 80.8  149.0 40.3 37.0 0.60 0.02 0.50 

Phagocytosis, % 32.7b 48.4a   46.5a 50.0a 4.66 0.20 0.01 0.01 
a-bMeans within a row with different superscripts differ (Diet × Time P < 0.05).  
1Largest SEM is shown. 
2Data were log-transformed prior to statistics and back-transformed for inclusion in tables. 
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INTRODUCTION 

The transition period is considered the most important phase during the lactation cycle 

since a success transition, can effectively determine a profitable lactation (Drackley, 1999). 

However, immunosuppression during the this period  leads to increased susceptibility (Mallard et 

al., 1998) and the incidence of health problems during this time is significantly elevated relative 

to the rest of the lactation cycle (Drackley, 1999). Is the major risk period for mammary 

infections (Shaver, 1997, Smith et al., 1985). A high proportion of the intra-mammary infections 

occur during first mo of lactation (Oviedo-Boyso et al., 2007) and in many cases results from an 

infection established during the dry period or during early lactation (Goff and Horst, 1997). Once 

a pathogen is detected by the receptors in the epithelial cells of the mammary gland the acute 

phase response begins, the immune system is activated to eliminate the pathogen. 

Lipopolysaccharide (LPS) is a major component in the outer membrane of gram-negative 

bacteria; it acts as an endotoxin eliciting a strong acute phase immune response in mammals 

(Small et al., 2000). The LPS is recognized by Toll like receptor-4 (TLR4), which is located on 

the intracellular membranes (Rosenberger and Finlay, 2003). Several studies have used LPS to 

evaluate the effect of the acute phase response in production variables as well on immune 

response (e.g. leukocyte function). There is evidence that the LPS model generates a local and 

systemic action involving immune cells and the liver (Mehrzad et al., 2001). In addition the 

effect of LPS challenge has been investigated during early and late lactation. Data indicates that 

the LPS challenge generate a more severe response during early lactation; immune cells function 

seems to be decreased and impaired during early lactation compared the late lactation LPS 

challenge (Lehtolainen et al., 2003). Using and LPS challenge during early lactation represents a 

common situation dairy cows undergo when mastitis occur. This model allows us to study in 
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controlled manner the effect of the acute phase response on the performance of dairy cows that 

are already under the immunosuppression state due to transition.   

 

OBJECTIVE 

The main objective of this study was to evaluate the effect of an early-lactation E. coli 

lipopolysaccharide intra-mammary challenge on performance, metabolic and inflammation 

indices and immune function of dairy cattle. 

 

MATERIALS AND METHODS 

Animals and Diets  

 All procedures were conducted under protocols approved by the University of Illinois 

Institutional Animal Care and Use Committee (protocol # 06145). Twenty Holstein cows 

entering their second or greater lactation were enrolled in the study. Cows averaged composite 

somatic cell count (SCC) of ~128,000 ± 108,000 during the previous lactation.  Cows were fed a 

diet providing ~159% calculated NEL requirements (Overfed diet, 1.62 Mcal/kg DM) during the 

entire 45-d dry period. The diet was fed as TMR once daily (0600 h) using an individual gate 

feeding system (American Calan, Northwood, NH, USA).  Cows were housed in a ventilated 

enclosed barn during the dry period and had access to sand-bedded free stalls until 5 d before 

expected calving date, when they were moved to an individual maternity pen bedded with straw. 

After parturition, cows were moved to a tie-stall barn and were fed a lactation diet (NEL = 1.69 

Mcal/kg DM) as TMR once daily (0600 h) and milked twice daily (0400 and 1600 h). The diet 

was mixed in a Keenan Klassik 140 mixer wagon (Richard Keenan & Co., Ltd., Borris, County 

Carlow, Ireland) equipped with knives and serrated paddles.   
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 Samples of feed ingredients and TMR were obtained weekly and analyzed for DM 

content to maintain desired ingredient ratios.  Weekly samples of individual ingredients were 

frozen at -20°C and were composited monthly. Composite samples were analyzed for contents of 

DM, CP, NDF, ADF, Ca, P, Mg, and K using wet chemistry methods (Dairy One, Ithaca, NY, 

USA). Body weight was measured for each cow weekly. Milk weights were recorded daily and 

samples were obtained from consecutive a.m. and p.m. milkings. Milk samples were composited 

in proportion to milk yield at each sampling and preserved (800 Broad Spectrum Mirotabs II; 

D&F Control Systems, Inc., San Ramon, CA, USA). Composite samples were analyzed for fat, 

protein, lactose, urea-N, and SCC using midinfrared procedures (AOAC International., 1995) at 

a commercial laboratory (Dairy One, Ithaca, NY, USA).  

 

Energy Balance Calculations and Estimates 

 Energy balance was calculated individually for each cow using equations described 

previously (NRC, 2001). Net energy intake (NEI; Mcal/d) was determined by multiplying DMI 

by the calculated mean NEL density of the diet. The NEL value of each individual feed (Dairy 

One, Ithaca, NY, USA) was used to calculate the mean NEL content of the diet. The NEM was 

calculated as BW0.75 × 0.08. Milk net energy requirement (NEMILK; Mcal/kg) was calculated as 

(0.0929 × fat% + 0.0563 × protein% + 0.0395 × lactose %) × milk yield. The equation used to 

calculate postpartal energy balance (EBPOST; Mcal/d) was EBPOST = NEI − (NEM + NEMILK). 

 

Lipopolysaccharide Challenge 

At ~7 DIM, cows (10/treatment) were assigned to receive an intra-mammary E. coli 

lipopolysaccharide (LPS) challenge (200 μg, strain 0111:B4, cat. # L2630, Sigma Aldrich, St. 
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Louis, MO) or to serve as controls (Non-LPS, these cows did not receive any control infusion). 

Prior to LPS challenge (~2 days), foremilk samples from all quarters of each cow were cultured 

and confirmed to be bacteriologically negative. LPS was dissolved in 20 mL of 0.09% sterile 

physiological saline (Hospira, Lake Forest, IL). Immediately after milking (0530 h), one rear 

mammary quarter was disinfected with cotton wool pre-soaked in 70% ethanol and the LPS was 

infused via a sterile disposable syringe fitted with a sterile teat cannula using the full insertion 

infusion method. The quarter was thoroughly massaged. 

 

Blood Metabolites 

Blood was sampled from the coccygeal vein or artery at 2, 7, 10, 14, and 21 d relative to 

parturition. Samples were collected at 1200 h, except during d 7 when samples were collected 

before receiving the LPS challenge. Blood was collected into evacuated tubes (Becton Dickinson 

Vacutainer Systems, Franklin Lakes, NJ, USA) containing either EDTA or lithium heparin for 

plasma and a clot activator for serum. After blood collection, tubes with EDTA and lithium 

heparin were placed on ice while tubes with clot activator were kept at room temperature until 

centrifugation (~30 min). Serum and plasma were obtained by centrifugation at 1,900 × g for 15 

min. Aliquots of serum and plasma were frozen (-20°C) until further analysis. Measurements of 

NEFA and BHBA were performed using commercial kits in an auto-analyzer at the University of 

Illinois Veterinary Diagnostic Laboratory (Urbana, IL, USA). Other parameters were measured 

at the Istituto di Zootecnica at the Università Cattolica del Sacro Cuore in Piacenza (Italy). 

Glucose, albumin, β-carotene, cholesterol, bilirubin, creatinine, urea, and glutamic-oxalacetic 

transaminase (GOT) were determined using kits purchased from Instrumentation Laboratory (IL 

Test) following the procedures previously described by Bionaz et al. (Bionaz et al., 2007) in a 
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clinical auto-analyzer (ILAB 600, Instrumentation Laboratory, Lexington, MA, USA) . 

Triacylglycerol (TAG) was measured using a commercial kit (LabAssayTM Triglyceride, Wako 

Chemicals Inc.). Haptoglobin and ceruloplasmin were analyzed using methods described by 

Bertoni et al. (Bertoni et al., 2008) adapted to the ILAB 600 conditions. Plasma vitamin A, 

vitamin E and β-carotene were extracted with hexane and analyzed by reverse-phase HPLC 

using Allsphere ODS-2 3µm in a 150 × 4.6 mm column (Grace Davison Discovery Science, 

Deerfield, IL, USA); a UV detector set at 325 nm (for vitamin A) or 290 nm (for vitamin E) or 

460 nm (for β-carotene); and 80:20 methanol:tetrahydrofurane as the mobile phase. Total plasma 

reactive oxygen metabolites (ROM) were measured using the analytical method patented by 

Diacron International s.r.l. (Grosseto, Italy). Plasma insulin concentrations were measured by a 

double antibody radioimmunoassay, using a kit for human insulin (Diagnostic Systems 

Laboratories, Inc., Webster, TX, USA). The detection limit of the assay was 1.3 mU/ml; the 

coefficients of variation averaged 7.5% within assay and 9.5 % between assay; parallelism 

between standard curve and scalar dilution of bovine plasma did not show significant 

differences. 

 

Liver Tissue Composition 

Liver was sampled via puncture biopsy (Dann et al., 2006) from cows under local 

anesthesia at approximately 0730 h on d −14 (± 3), 7, 14 and 30 relative to parturition. During d 

7 the liver sample was collected ~2.5 h after LPS challenge. Liver was frozen immediately in 

liquid nitrogen and stored until further analysis for contents of total lipids and TAG (Dann et al., 

2006). 
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Neutrophil Isolation  

 Samples of of blood (20 mL/tube) were collected from the coccygeal vein or artery in 

vacutainer tubes containing EDTA for chemotaxis and sodium heparin for phagocytosis at -14 (± 

3), 7, 14, 30, 60 and 120 d relative to parturition. Samples were collected at ~0700 h, except 

during d 7 when samples were collected before receiving the LPS challenge. After blood 

collection, tubes were placed on ice (~30 min) until isolation (Auchtung et al., 2004, Moyes et 

al., 2009, Salak et al., 1993). Samples were centrifuged at 600 × g for 15 min at 4 °C. The buffy 

coat and approximately one-fourth of red blood cells were removed and discarded. The 

remaining sample was poured into a 50 mL tube. Twenty milliliters of deionized water at 4 °C 

were added to lyse red blood cells followed by addition of 5 mL 5X PBS at 4 °C to restore an 

iso-osmotic environment.  Samples were centrifuged at 200 × g for 10 min at 4°C. Three 

subsequent washings using 1X PBS at 4 °C were performed with samples centrifuged at 500 × g 

for 3 min at 4 °C. Isolated neutrophils were resuspended in 1 mL 1X PBS at 4 °C and kept on 

ice. Cells were counted using a Beckman Coulter Counter after addition of Zap-OGlobin II Lytic 

Reagent (cat. #13020, Beckman Coulter) to lyse any remaining red blood cells. A total of 3 x 106 

cells/mL of RPMI 1640 media with 5% FBS were used for chemotaxis and 2 x 106 cells/mL for 

phagocytosis. 

 

Chemotaxis 

 Chemotaxis was assessed using a method previously described (Auchtung et al., 2004, 

Salak et al., 1993) with modifications (Moyes et al., 2009). The assay was conducted in a 48-

well Micro AP48 Chemotaxis Chamber (P48AP30, Neuro Probe, USA). Thirty microliters of 

100 ng/mL RPMI 1640 (without FBS) containing human interleukin-8 (I1645, Sigma, USA), 10-
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8 M of human complement C5a (C5788, Sigma, USA) in RPMI 1640 (without FBS), or RPMI 

1640 (without FBS, control) were added to each of 4 wells per sample (quadruplicate). A PVP-

free filter (5 µm pore size, 25 × 88 mm; cat# 416306, Neuro Probe, USA) was mounted in each 

chamber. The chamber was incubated in 5% CO2: 95% humidity at 37 °C for 10 min for 

equilibration. Fifty microliters of 3 × 106 cells/mL from each incubated in quadruplicate in 5% 

CO2: 95% humidity at 37°C for 1 h. The membrane was then removed using forceps. To remove 

not migrated cells the side of the membrane in contact with the original cell suspension was 

carefully dipped in PBS solution (i.e., the other surface was not allow to get in contact with the 

PBS) and the cell removed by scrapping against a sharp plastic surface. The removal of non-

migrating cells was repeated 3 times. After cleaning, the membrane was let dry and fixed with 

Hema 3 Hematology Staining Solution II (122-952, Fisher Scientific, USA). The number of cells 

in each well was counted using an inverted microscope. Cell counts were corrected based on 

viability and background (i.e., control or cell migrated with only RPMI).  

 

Phagocytosis 

 Phagocytosis was conducted in quadruplicate in 1 mL RPMI 1640 media following 

addition of a 1:10 ratio of Fluoresbrite latex Carboxy Yellow-Green 1.75 μm Microspheres 

(2.5%, #17687, Polysciences, Inc., USA).  Samples were then incubated for 2 h in 55% CO2: 

95% humidity at 37 °C.  A control sample was incubated for 2 h at 4 °C. After incubation, cells 

were rinsed twice with 1X PBS (via centrifugation at 1000 × g for 5 min at 4 °C), fixed with 150 

μL 4% paraformaldehyde (P6148, Sigma, USA), and preserved at 4 °C until reading using flow 

cytometry. 
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Cell Viability and Differential Counts 

 Aliquots (20 μL) of the cell suspension from each sample for chemotaxis and 

phagocytosis assays was used to determine viability using a Burke chamber after 2 min 

incubation with a solution of Trypan blue. The average percentage of viable neutrophils was 71.7 

± 7.8; viability data were used to correct data on chemotaxis and phagocytosis. Aliquots (50 μL) 

of cell suspension from the samples used for the chemotaxis assay were fixed in a microscope 

slide to determine cell differentials; overall, the average percentage of neutrophils in the 

differential was 56.0 ± 5.5. 

 

Statistical Analysis 

Each variable of interest was evaluated for normal distribution using the Shapiro-Wilk 

test (SAS Inst. Inc.) and normalized by logarithmic transformation when necessary prior to 

statistical analysis. The MIXED procedure of SAS (SAS Institute, Inc., Cary, NC, USA) was 

used for statistical analysis. The fixed effects included treatment (LPS or non-LPS), time, and 

interaction treatment × time.  The random effect was cow within treatment. A repeated measures 

analysis using an AR(1) structure was used. All means were compared using the PDIFF 

statement of SAS (SAS Institute, Inc.).      

 

RESULTS AND DISCUSSION 

It has been well-known that peripartal cows are immunosuppressed and it appears that the 

metabolic changes associated with the beginning of lactation are capable of affecting immune 

function (Goff, 2006).  During an intra-mammary infection, the host defense mechanism in 

themammary gland immune system is activated to eliminate the pathogen or toxin (Oviedo-
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Boyso et al., 2007).  This defense mechanisms include anatomical, cellular, and soluble factors 

that act in coordination and are crucial to the modulation of mammary gland resistance and 

susceptibility to infection (Chaneton et al., 2008). The peak in systemic signs, including elevated 

rectal temperature and heart rate, loss of appetite, and discomfort during an induced LPS 

challenge occurs between 4 and 8 h postchallenge regardless of whether the animal is challenged 

soon after parturition (Waldron et al., 2006)  or at early- or mid-lactation (Waldron et al., 2006); 

systemic signs start to decrease and are almost at baseline levels by 24 h after the LPS challenge 

(Lehtolainen et al., 2003). We performed an intra-mammary bacterial LPS challenge with a 

higher dose (200 vs. 100 µg) than used previously (Waldron et al., 2006)  in order to better 

understand the systemic response that animals might experience due to environmental or 

pathogenic microorganisms in the mammary gland.   

Table 7 shows the effect of LPS challenge (i.e. LPS or Non-LPS) at 7 DIM on DMI, milk 

production, and energy balance in cows fed a moderate energy diet (1.62 Mcal/kg DM) during 

the entire dry period. Regardless of LPS challenge, DMI increased (time P < 0.05; % BW and 

kg/d) between the time of challenge through 41 DIM.  However, average DMI as % BW from 7 

to 41 DIM was greater (diet P < 0.05) for the Non-LPS cows than LPS cows. Milk yield 

increased (time P < 0.05) from 7 to 41 DIM with no differences observed between treatments.  

Milk composition was not markedly affected by LPS challenge.  Estimated EBAL before (week 

1) as well as during the first 6 weeks postpartum was not different due to treatment or treatment 

× time.  It is noteworthy, however, that cows challenged with LPS appeared to be in more severe 

NEB during the 5 weeks after challenge.  Over time, both groups of cows were able to improve 

EBAL. We present evidence that LPS challenge early postpartum had long-term carry over 

effects on DMI and potentially energy balance, i.e., LPS-challenged cows consumed less DM as 
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a proportion of their body weight and appeared to be in more negative EBAL for the first 6 

weeks postpartum (Table 7).   

Figure 1shows liver lipid and TAG concentration in the liver. In both parameters greater 

concentrations were observed in the LPS challenged group at d 7 (treatment × time P < 0.08 and 

P < 0.05 for lipid and TAG respectively). At 14 d greater concentrations of TAG were observed 

in the LPS challenged group (treatment × time P < 0.05). 

Figure 2 shows concentrations of blood NEFA, BHBA, glucose and insulin. After LPS 

challenge day NEFA concentrations were lower (treatment × time P < 0.05) in the Non-LPS 

group (10 and 14 d) when compared to the LPS group that maintained the concentration similar 

to the challenge day. In contrast to NEFA, blood BHBA and glucose did not differ due to LPS 

challenge. However Insulin concentration was higher (P = 0.06) in the control group at 10 and 21 

DIM when compared to challenged cows.  Other studies showed that during the very early stages 

(2 to 4 h) of an intra-mammary LPS-challenge in peripartal cows, estimated glucose production, 

plasma glucose concentration, and plasma insulin concentration were increased but plasma 

NEFA and BHBA were unchanged despite minimal DMI during this period (Waldron et al., 

2006).  Except for plasma insulin, values returned to pre-challenge levels by 6-8 h post-LPS 

challenge, which may explain why we observed no changes in glucose concentration during the 

14 d after LPS challenge (Figure 2). Contrary to results from Waldron et al. (2006), we observed 

differences in blood NEFA during the days following the LPS challenge.  

Figure 3 shows concentrations of haptoglobin, bilirubin, urea, ceruloplasmin, albumin 

and GOT. The concentration of bilirubin decreased (time P < 0.05) consistently through from 2 

to 21 DIM. An overall treatment difference was observed in plasma urea concentration 

(treatment P = 0.07), however the difference was observed before LPS treatment. Regardless of 
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LPS challenge, the concentration of urea decreased by 10 DIM and then was stable through 21 

DIM. An interaction of treatment × time (P < 0.05) was observed for albumin concentration due 

to greater concentration at 14 DIM in cows challenged with LPS, a response brought about by a 

decrease in albumin between 7 and 14 DIM in Non-LPS cows. Ceruloplasmin increased over 

time regardless of the LPS challenge from 2 to 21 d (P < 0.05). However, the concentrations of 

haptoglobin and GOT increased from 2 through 7 (GOT) and 10 d (haptoglobin) DIM then 

decreased consistently through 21 DIM regardless of treatment. In a recent study, oral dosing 

with interferon (IFN)-α to induce a pro-inflammatory response during the peripartal period 

resulted in similar concentrations of NEFA but greater BHBA soon after parturition (Trevisi et 

al., 2009). We observed that NEFA remained higher by 10 and 14 DIM in cows challenged with 

LPS at 7 DIM and experienced a numerical decrease (diet × time P = 0.17) in blood BHBA over 

time (Figure 1).  In another study where cows were challenged with LPS during early and late 

lactation, blood urea concentration was lower in the challenged cows in early lactation 

(Lehtolainen et al., 2003). In our study, the group challenged with LPS had lower urea 

concentration during the first 21 DIM, thus, confirming previous relationships.  In two studies 

(Trevisi et al., 2009) where cows were treated with low doses (i.e., 0.5 or 10 IU /kg  body 

weight) of IFN-α from the last 2 weeks prepartum through parturition or 5 DIM, it was reported 

that blood haptoglobin and ceruloplasmin increased more markedly but albumin, cholesterol, and 

vitamin A concentrations (i.e., negative acute-phase proteins) increased less rapidly in LPS 

challenged vs. Non-LPS cows. However, treated cows maintained numerically higher ROM in 

blood through 21 DIM when values were greater (ca. 15 vs. 12 mg H2O2/100 mL) compared 

with Non-LPS.   
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Figure 4 shows temporal concentrations of ROM, cholesterol, vitamin A, vitamin E, β-

carotene and creatinine. An interaction treatment × time (P < 0.05) was observed for vitamin A 

concentration due to greater concentration in cows receiving the LPS challenge at 21 DIM.  

Concentration of ROM increased (time P < 0.05) through 10 DIM, and then it remained 

relatively stable through 21 DIM.  This indicated that prepartal energy overfeeding per se 

rendered these cows more susceptible to oxidative stress.  Cholesterol concentration was 

constant from 2 to 7 DIM; thereafter, a gradual increase (time P < 0.05) was observed through 21 

DIM. Concentration of vitamin E was constant from 2 to 7 DIM, subsequently an increase over 

time (P < 0.05) was observed until 10 DIM and was followed by another increase from 14 

through 21 DIM. β-carotene concentration was constant from 2 to 14 DIM, after which 

concentration increased (P < 0.05) by 21 DIM. Creatinine concentration decreased gradually 

over time from 2 to 21 DIM (time P < 0.05). These temporal responses and the actual 

concentrations resembled more those observed in cows receiving the inflammatory challenge 

with IFN-α, i.e., in our study other factors besides LPS probably were responsible for the 

sustained oxidative stress. As suggested by others (Trevisi et al., 2009), the concomitant increase 

in ROM and haptoglobin, regardless of LPS, might be the consequence of inflammatory auto-

amplification through nuclear factor kappa B activation induced potentially by ROM released 

during inflammation itself. Although the above inflammation indices did not entirely reflect the 

profiles of positive and negative acute-phase proteins, a global comparison with data from 

Trevisi et al. (2009) suggest that cows fed moderate energy were under a sustained inflammatory 

state during the first 10 DIM regardless of LPS.  We speculate that excessive adipose tissue 

deposition during early lactation probably induced a mild but chronic inflammatory state as 

commonly observed in overweighed/obese human subjects.  Together with DMI and energy 
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balance data, the blood NEFA data from cows challenged with LPS are suggestive of longer-

term metabolic adaptations caused by the inflammatory challenge soon after parturition. 

 

Chemotaxis was not affected by LPS challenge in cows fed moderate energy prepartum 

(Figures 5A and 5B). Overall, a significant (treatment × time P < 0.05) difference was observed 

for total neutrophil phagocytosis due to greater responses at 14 DIM in control vs. LPS-

challenged cows (Figure 5C). The neutrophils play an important role in the intra-mammary 

defense against an invading pathogen (Burvenich et al., 1994).  High neutrophils counts and 

function in blood (Dosogne et al., 1997) as well as high somatic cell count (SCC) in milk 

(Shuster et al., 1996) and lower levels of lymphocytes in blood (Mehrzad et al., 2008) correlate 

positively with the severity of infection.  Phagocytic capability of blood neutrophils and 

monocytes typically increase between early postpartum and peak lactation to values that are 

greater than prepartum (Moya et al., 2008).  In a previous study, basal amounts of blood 

neutrophils and lymphocytes in blood were not different in cows during early (3.53 × 106/mL; 6 

to 15 DIM) or mid-lactation (3.05 × 106/mL; 137 to 77 d before next parturition) (Lehtolainen et 

al., 2003).  However, following an LPS challenge it was reported that blood neutrophil counts 

increased to a greater extent in early lactation compared with late lactation (Lehtolainen et al., 

2003).  They also reported numerically-greater PMN phagocytosis and respiratory burst activity 

(by 8-h post LPS challenge) and lower numbers of lymphocytes (12 through 24 h post LPS 

challenge) in late-lactation vs. early-lactation cows.  Those parameters returned to pre-LPS 

challenge levels by 32 (phagocytosis) to 72 h (blood neutophils) post-LPS regardless of stage of 

lactation (Lehtolainen et al., 2003).  Similar results were observed in cows that were challenged 

with LPS at 20-35 DIM (Mehrzad et al., 2001). Unlike cows at 20 to 35 DIM (Mehrzad et al., 
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2001), the decrease in total neutrophil phagocytosis between 7 and 14 DIM in our study might 

have been associated with the hormonal and metabolic environment characteristic of this period, 

e.g., blood NEFA, BHBA, cortisol, pro-inflammatory cytokines, and glucose all of which could 

affect immune function in some fashion (Burvenich et al., 2007).  In fact, blood NEFA increased 

nearly two-fold after LPS challenge in early lactation (Lehtolainen et al., 2003) and in our study 

NEFA remained higher through 14 DIM in LPS-challenged cows (Figure 2).  Judging from work 

with non-ruminant lymphocytes, the energy needs of immune cells seem to rely almost 

exclusively on glucose availability (Fox et al., 2005) suggesting that any shortfalls in glucose 

availability between 7 to 14 DIM might have compromised neutrophil function.  Blood glucose 

was not affected by LPS challenge but it remains to be determined if insulin sensitivity is 

affected by inflammatory conditions after parturition. The contrasting temporal patterns for the 

total percentage of neutrophils phagocytosing (Figure 5A) particularly in LPS-challenged cows 

was indicative of a substantial recovery of phagocytic capacity as cows moved from the 

peripartal period through peak and mid-lactation.  This type of response also is suggestive of a 

more precarious and stressful situation for cows undergoing a pro-inflammatory challenge early 

postpartum (Bertoni et al., 2008) in terms of their ability to fight invading pathogens.  It also was 

evident that neutrophils from cows undergoing the LPS challenge might not have been able to 

recover their full biological activity for several weeks, underscoring the need for adequate 

management during the recovery phase.     

 

The presence of an intra-mammary E. coli LPS challenge during early lactation represent 

rapid changes in metabolic indices that can affect the dairy cow and might represent adaptations 

in a longer term that can negatively affect performance. In our study the changes caused by the 
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LPS challenge seemed to happen fast however causing important changes in immune function 

during the days following.      
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Table 6. Ingredients and chemical composition of experimental diets. 
       Overfed   Lactation 
Ingredients    

Corn silage 50.3  29.9 
Alfalfa silage 18.0  14.8 
Soybean meal 3.54  2.39 
Ground shelled corn 13.9  - 
Alfalfa hay 6.06  5.55 
Magnesium sulfate 0.63  - 
Magnesium oxide 0.43  0.13 
Vitamin E 0.24  - 
Mineral and vitamin mix1 0.18  0.22 
Magnesium chloride 0.35  0.00 
Urea -  0.13 
Salt 0.24  0.13 
Vitamin A 0.01  - 
Vitamin D 0.01  - 
Whole cottonseed 5.03  5.55 
Calcium carbonate 0.9  0.56 
Corn ground -  20.3 
Wet brewer’s grain  -  12.9 
Soybean hulls -  5.55 
Sodium bicarbonate -  0.83 
Dicalcium phosphate -  0.54 
Vitamin H -  0.28 

Chemical composition    
DM,  % 50.0  60.5 
NEL, Mcal/kg DM 1.62  1.69 
CP, % DM 15.0  17.4 
AP, % DM 14.3  11.9 
ADICP, % DM 0.73  5.53 
NDF, % DM 36.6  34.1 
ADF, % DM 25.7  21.8 
Ca, % DM 0.73  0.80 
P, % DM 0.31  0.43 
Mg, % DM 0.57  0.33 
K, % DM 1.28  1.16 
S %DM 0.25  0.21 
Na % DM 0.09  0.29 
Fe, ppm 339  203 
Zn , ppm 80.0  65.8 
Cu, ppm 14.6  10.9 
Mn, ppm 70.3  67.0 

1Mineral and vitamin mix: zinc = 60 ppm, copper = 15 ppm, manganese = 60 ppm, selenium 0.3 ppm, iodine 
= 0.6 ppm, iron = 50 ppm, and cobalt = 0.2 ppm.  
Rumensin: 360mg/day in lactation diet.  
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Table 7. The effect of intra-mammary LPS challenge at 7 d postpartum on DMI, milk 
production, and energy balance in cows fed a moderate-energy diet (1.62 Mcal/kg DM) during 
the entire dry period. 

 Treatment    P value  
Item Non-LPS  LPS SEM1  Trt Time Trt × time 
DMI2         

% BW         
7 to 14 2.67  2.20 0.26  0.16 0.001 0.61 
7 to 41 3.38  2.89 0.18  0.04 0.001 0.81 

kg/d         
7 to 14 18.5  15.9 1.5  0.18 0.001 0.47 
7 to 41 21.4  20.0 1.2  0.34 0.001 0.92 

Milk2         
kg/d         

7 to 14 36.4  35.1 3.5  0.77 0.55 0.77 
7 to 41 43.9  41.9 3.5  0.63 0.001 0.69 

Fat, %         
wk 1 3.55  3.35 0.33  0.65 -- -- 
wk 1 to 6 3.81  3.77 0.34  0.94 0.27 0.86 

Protein, %         
wk 1 4.02  3.06 0.53  0.18 -- -- 
wk 1 to 6 3.31  2.99 0.13  0.06 0.16 0.29 

Lactose, %         
wk 1 4.80  4.75 0.11  0.70 -- -- 
wk 1 to 6 4.86  4.79 0.05  0.25 0.66 0.22 

Energy balance2         
Postpartum         
wk 1         

Mcal/d -7.8  -11.3 2.7  0.35 -- -- 
% requirements 78.6  66.3 7.2  0.22 -- -- 

wk 1 and 2         
Mcal/d -6.5  -9.1 2.6  0.46 0.02 0.48 
% requirements 82.3  74.4 6.7  0.37 0.001 0.19 

wk 1 to 6         
Mcal/d -5.9  -8.3 1.3  0.16 0.21 0.80 
% requirements 85.3  80.3 3.0  0.22 0.01 0.89 

1Largest SEM is shown. 
2Day or wk relative to parturition. 
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Figure 1. Liver lipid and liver triglyceride (TAG) in cows fed a moderate-energy diet (1.62 
Mcal/kg DM) during the entire dry period with (LPS) or without (Non-LPS) an intra-mammary 
LPS challenge at 7 d postpartum. Superscript letters (a, b) denote significant (Treatment × time P 
< 0.05) differences between treatment at a specific time point. 
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Figure 2. Blood concentrations of NEFA, BHBA, glucose and insulin in cows fed a moderate-
energy diet (1.62 Mcal/kg DM) during the entire dry period with (LPS) or without (Non-LPS) an 
intra-mammary LPS challenge at 7 d postpartum. Superscript letters (a, b) denote significant 
(Treatment × time P < 0.05) differences between treatment at a specific time point. 
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 Figure 3. Blood concentrations of haptoglobin, bilirubin, urea, ceruloplasmin, albumin and 
GOT in cows fed a moderate-energy diet (1.62 Mcal/kg DM) during the entire dry period with 
(LPS) or without (Non-LPS) an intra-mammary LPS challenge at 7 d postpartum. Superscript 
letters (a, b) denote significant (Treatment × time P < 0.05) differences between treatment at a 
specific time point. 
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Figure 4. Blood concentrations of ROM, cholesterol, vitamin A, vitamin E, β-carotene and 
creatinine in cows fed a moderate-energy diet (1.62 Mcal/kg DM) during the entire dry period 
with (LPS) or without (Non-LPS) an intra-mammary LPS challenge at 7 d postpartum. 
Superscript letters (a, b) denote significant (Treatment × time P < 0.05) differences between 
treatment at a specific time point. 
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Figure 5. Blood neutrophils chemotaxis assessed with C5a (A) and human IL-8 (B) and total 
phagocytosis (C) in cows with (LPS) or without (non-LPS) an intra-mammary LPS-challenge at 
7 d postpartum. Asterisks denote significant (Treatment × time P < 0.05) differences between 
treatments at a specific time point.  
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INTRODUCTION 

Most high-producing dairy cows experience a significant number of production (e.g., 

fatty liver and ketosis) and infectious diseases that may impair reproductive performance, 

consequently resulting in financial losses to farmers and reduced welfare (Mulligan and Doherty, 

2008).  The majority of these diseases are caused by factors including a level of production 

inconsistent with nutrient intake, provision of an inadequate diet pre- and post-partum, an 

unsuitable environment or various combinations of these factors (Mulligan and Doherty, 2008).  

Health problems experienced by cows during the peripartal period can hamper production in the 

long-term and lead to early culling from the herd (Mulligan and Doherty, 2008). 

The negative energy balance (NEB) experienced by cows soon after calving has been 

associated with impaired neutrophil trafficking, phagocytosis, and killing capacity (Goff, 2006; 

Sordillo et al., 2009). The NEB associated with parturition leads to extensive mobilization of 

fatty acids stored in adipose tissue, thus, causing marked elevations in blood non-esterified fatty 

acids and hydroxybutyrate (BHBA) concentrations.  Prepartal level of dietary energy can 

potentially affect adipose tissue deposition and, thus, the amount of NEFA released into blood 

and available for metabolism in liver (Drackley et al., 2005).  Elevated blood NEFA and BHBA 

as well as reduced concentrations of antigen-binding antibodies (van Knegsel et al., 2007) during 

peripartal NEB all can contribute to immunosuppression. Ketone body concentrations similar to 

those observed around parturition impair the phagocytic and bactericidal capacity of neutrophils 

or polymorphonuclear leukocytes (PMN) in vitro, an effect that may lead to reduced udder 

defense mechanisms against mastitis pathogens (Sordillo and Aitken, 2009). 

Current prepartal feeding practices can lead to elevated intakes of energy and have 

largely failed to overcome peripartal health problems or declining fertility (Beever, 2006). 
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Uncontrolled intake of diets with energy content resembling lactation diets can increase fat 

deposition in the viscera (Nikkhah et al., 2008) and upon parturition lead to compromised liver 

metabolism (Beever, 2006; Drackley et al., 2005).  Although different studies have evaluated 

effects of prepartal manipulation of body condition score (BCS), overfeeding or underfeeding 

energy, and lipid supplementation on measures of metabolism and performance in peripartal 

dairy cows (Dann et al., 2006; Dann et al., 2005; Douglas et al., 2006), the present study sought 

to expand on the available body of knowledge accumulated regarding the concept of “feed-to-

fill” (Dann et al., 2006; Janovick and Drackley, 2010), which has clearly shown that overfeeding 

moderate-energy diets prepartum results in greater metabolic stress and incidence of disorders 

postpartum (Janovick et al., 2011).  

Our general hypothesis was that overfeeding a moderate-energy diet during the dry 

period would render the cow’s immune function less responsive to an intramammary 

inflammatory challenge early postpartum. The main objectives of this study were to evaluate the 

effect of prepartal energy overfeeding on peripartal PMN function, metabolic and inflammation 

indices in blood, liver tissue lipid composition, and liver gene expression after an intramammary 

challenge with Escherichia coli (E. coli) lipopolysacharide (LPS) during the first wk postpartum. 

 
MATERIALS AND METHODS 

Animals and Diets 

All procedures were conducted under protocols approved by the University of Illinois 

Institutional Animal Care and Use Committee # 06145. Twenty Holstein cows entering their 

second or greater lactation were used. Cows averaged composite SCC of ~128,000 ± 108,000 

during the previous lactation and were assigned (n = 10/diet) to a control diet (high-wheat straw 

diet); which was fed ad libitum intake to provide at least 100% of calculated net energy for 
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lactation (NEL) = 1.34 Mcal/kg or an overfed diet to provide 150% of calculated NEL = 1.62 

Mcal/kg during the entire dry period (~45 d) (Table 8). During the dry period, cows were fed 

diets as a total mixed ration (TMR) once daily (0600 h) using an individual Calan (American 

Calan, Northwood, NH) gate feeding system and were housed in a ventilated enclosed barn. 

Cows had access to sand-bedded free stalls until 5 d before expected calving date, when they 

were moved to an individual maternity pen bedded with straw. After parturition, cows were 

moved to a tie-stall barn and were fed a common lactation diet post-partum (NEL = 1.69 Mcal/kg 

DM) and milked twice daily (0400 and 1600 h).  Diets were mixed in a Keenan Klassik 140 

mixer wagon (Richard Keenan & Co., Ltd., Borris, County Carlow, Ireland) equipped with 

knives and serrated paddles; straw in large square bales was chopped directly by the mixer 

without preprocessing.   

Samples of feed ingredients and TMR were obtained weekly and analyzed for DM 

content to adjust the ration. Weekly samples of individual ingredients were frozen at -20°C and 

were composited monthly. Composite samples were analyzed for contents of DM, crude protein 

(CP), neutral detergent fiber, acid detergent fiber, Ca, P, Mg, and K using wet chemistry 

methods (Dairy One, Ithaca, NY, USA). Body weight was measured for each cow weekly. Milk 

weights were recorded daily and samples were obtained from consecutive a.m. and p.m. 

milkings. Consecutive a.m. and p.m. samples were composited in proportion to milk yield at 

each sampling and preserved (800 Broad Spectrum Mirotabs II; D&F Control Systems, Inc., San 

Ramon, CA). Composite samples were analyzed for fat, protein, lactose, urea-N, and SCC using 

midinfrared procedures at a commercial laboratory (Dairy One, Ithaca, NY, USA).  
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Energy Balance Calculations and Estimates 

Energy balance was calculated individually for each cow using equations described 

previously (NRC, 2001). Net energy intake (NEI; Mcal/d) was determined by multiplying DM 

intake (Kedmi and Peer) by the calculated mean NEL density of the diet. The NEL value of each 

individual feed (Dairy One, Ithaca, NY, USA) was used to calculate the mean NEL content of the 

diet. Net energy required for maintenance (NEM) was calculated as BW(kg)0.75 × 0.08 (Mcal/kg). 

Net energy requirement for pregnancy (NEP; Mcal/d) was calculated as [(0.00318 × day of 

gestation − 0.0352) × (calf birth weight/45)]/0.218. Milk net energy requirement (NELAC; 

Mcal/kg) was calculated as (0.0929 × fat% + 0.0563 × protein% + 0.0395 × lactose%) × milk 

yield. The equation used to calculate prepartal energy balance (EBPRE; Mcal/kg was EBPRE = 

NEI − (NEM + NEP). The equation used to calculate postpartal energy balance (EBPOST; Mcal/d) 

was EBPOST = NEI − (NEM + NELAC). 

Lipopolysaccharide Challenge 

At ~7 d in milk (DIM), all the cows received an intramammary E. coli LPS challenge 

(200 μg, strain 0111:B4, cat. # L2630, Sigma Aldrich, St. Louis, MO). Prior to LPS challenge 

(~2 days), foremilk samples from all quarters of each cow were cultured and confirmed to be 

bacteriologically negative. LPS was dissolved in 20 mL of 0.09% sterile physiological saline 

(Hospira, Lake Forest, IL). Immediately after milking (0530 h), one rear mammary quarter was 

disinfected with cotton wool pre-soaked in 70% ethanol and the LPS was infused via a sterile 

disposable syringe fitted with a sterile teat cannula using the full insertion infusion method. The 

quarter was thoroughly massaged. 
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Liver Biopsy and Chemical Composition 

 Liver was sampled via puncture biopsy (Dann et al., 2006) from cows under local 

anesthesia at approximately 0800 h on d -14, 7, 14 and 30 relative to parturition. Liver was 

frozen immediately in liquid N, and later analyzed for contents of total lipids, TAG and RNA 

extraction. Lipids and TAG were analyzed following protocols described before (Dann et al., 

2006). 

Chemotaxis 
  

Twenty mL of blood for neutrophil isolation were collected at ~0700 h from the 

coccygeal vein or artery in vacutainer tubes containing EDTA at -14 (± 3 d) , 7 (prior to LPS), 

14, 30, 60 and 120 DIM.  After blood collection, tubes were placed on ice (~30 min) until 

isolation (Auchtung et al., 2004, Moyes et al., 2009, Salak et al., 1993). Samples were 

centrifuged at 600 × g for 15 min at 4 °C. The buffy coat and approximately one quarter of red 

blood cells were removed and discarded. The remaining sample was poured into a 50 mL tube 

prior to chemotaxis assay. Twenty mL deionized water at 4 °C were added to lyse red blood cells 

followed by addition of 5 mL 5X PBS at 4 °C to repristinate an iso-osmotic environment.  

Samples were centrifuged at 200 × g for 10 min at 4°C. Three subsequent washings using 1X 

PBS at 4 °C were performed (centrifuge was set at 500 × g for 3 min at 4 °C). Isolated 

neutrophils were resuspended in 1 mL 1X PBS at 4 °C and kept on ice. Cells were counted using 

a Beckman Coulter Counter after addition of Zap-OGlobin II Lytic Reagent (cat. #13020, 

Beckman Coulter) to further lyse any remaining red blood cells.  

Chemotaxis was assessed using a method previously described (Auchtung et al., 2004, 

Salak et al., 1993) with modifications (Moyes et al., 2009). A total of 3 × 106 cells/mL were 

resuspended in 1 mL of RPMI 1640 media (R0883, Sigma) with 5% FBS. The assay was 
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conducted in a 48-well Micro AP48 Chemotaxis Chamber (P48AP30, Neuro Probe). Thirty μL 

of 10 ng/mL RPMI 1640 (without FBS) of human interleukin-8 (I1645, Sigma), 1 ng/mL RPMI 

1640 (without FBS) of human complement C5a (C5788, Sigma), and RPMI 1640 (without FBS, 

control) were added to each of 4 wells per sample (quadruplicate). A PVP-free filter (5 µm pore 

size, 25 × 88 mm; cat# 416306, Neuro Probe) was mounted in each chamber. The chamber was 

incubated in 5% CO2 at 37 °C for 10 min for equilibration. Fifty μL of 3 × 106 cells/mL from 

each incubated in quadruplicate in 5% CO2 at 37°C for 1 h. The membrane was then removed 

and fixed with Hema 3 Hematology Staining Methanol Fixative (122-929, Fisher Scientific).  

Cell membranes were stained with Hema 3 Hematology Staining Solution I (122-937, Fisher 

Scientific) and then cell nuclei were stained with Hema 3 Hematology Staining Solution II (122-

952, Fisher Scientific). The number of cells in each well was counted using an inverted 

microscope. Lastly, cell counts were corrected based on viability and background (RPMI values 

were subtracted).  

Phagocytosis 

Twenty mL of blood for neutrophils isolation were collected at ~0700 h by coccygeal 

vein or artery in vacutainer tubes containing sodium heparin at -14 (± 3 d), 7 (prior to LPS), 14, 

30, 60 and 120 DIM. After blood collection, tubes were placed on ice (~30 min) until isolation 

(Moyes et al., 2009). Samples were centrifuged at 600 × g for 15 min at 4 °C. The buffy coat and 

approximately one quarter of red blood cells were removed and discarded. The remaining sample 

was poured into a 50 mL tube prior to phagocytosis assay. Twenty mL deionized water at 4 °C 

were added to lyse red blood cells followed by addition of 5 mL 5X PBS at 4 °C to repristinate 

an iso-osmotic environment.  Samples were centrifuged at 200 × g for 10 min at 4°C. Three 

subsequent washings using 1X PBS at 4 °C were performed (centrifuge was set at 500 × g for 3 
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min at 4 °C). Isolated neutrophils were resuspended in 1 mL 1X PBS at 4 °C and kept on ice. 

Cells were counted using a Beckman Coulter Counter after addition of Zap-OGlobin II Lytic 

Reagent (cat. #13020, Beckman Coulter) to further lyse any remaining red blood cells. 

Phagocytosis (2 × 106 cells/mL) was conducted in quadruplicate in 1 mL RPMI 1640 

media following addition of a 1:10 ratio of Fluoresbrite latex Carboxy Yellow-Green 1.75 μm 

Microspheres (2.5%, #17687, Polysciences, Inc.).  Samples were then incubated for 2 h in 5% 

CO2 at 37 °C.  A control sample was incubated for 2 h at 4 °C. After incubation, cells were 

rinsed twice with 1X PBS (via centrifugation at 1000 × g for 5 min at 4 °C), fixed with 150 μL 

4% paraformaldehyde (P6148, Sigma), and preserved at 4 °C until reading using flow cytometry. 

Cell Viability and Differential 

Twenty μL of the cell suspension from each sample for chemotaxis and phagocytosis 

assays was used to determine viability using a Burke chamber after 2 min incubation with a 

solution of Trypan blue. The average of viable neutrophils was 71.69 ± 7.87; data for chemotaxis 

and phagocytosis was corrected with the observed viability. Fifty μL of cell suspension from the 

samples used for the chemotaxis assay were fixed in a microscope slide to determine cell 

differentials; overall the average of neutrophils in the differential was 55.98 ± 5.49. 

Blood Metabolites 

For the immediate time post-LPS challenge, blood was sampled from the coccygeal vein 

or artery at 1200 h during d 2, 10, 14, and 21 relative to parturition. During d 7 (LPS challenge 

day) the blood samples were collected before the LPS challenge (at 530 = 0 h), 2, 6 and 12 h 

after LPS. For data at 2, 7, 10, 14, and 21 d relative to parturition blood was collected at 1200 h. 

In both cases samples were collected into evacuated tubes (Becton Dickinson Vacutainer 

Systems, Franklin Lakes, NJ, USA) containing either ethylenediaminetetra acetic acid (EDTA) 
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or lithium heparin for plasma and a clot activator for serum. After blood collection, tubes with 

EDTA and lithium heparin were placed on ice while tubes with clot activator were kept at room 

temperature until centrifugation (~30 min). Serum and plasma were obtained by centrifugation at 

1,900 × g for 15 min. Aliquots of serum and plasma were frozen (-20°C) until further analysis. 

Measurements of serum NEFA and BHBA were performed using commercial kits in an auto-

analyzer at the University of Illinois Veterinary Diagnostic Laboratory (Urbana, IL, USA). Other 

parameters were measured in lithium heparin samples at the Istituto di Zootecnica at the 

Università Cattolica del Sacro Cuore in Piacenza (Italy). Glucose, albumin, cholesterol, bilirubin, 

creatinine, urea, and glutamic-oxalacetic transaminase (GOT) were determined using kits 

purchased from Instrumentation Laboratory (IL Test) following the procedures previously 

described (Bionaz et al., 2007) in a clinical auto-analyzer (ILAB 600, Instrumentation 

Laboratory, Lexington, MA, USA) . Triacylglycerol (TAG) was measured using a commercial 

kit (LabAssayTM Triglyceride, Wako Chemicals Inc., USA).  Haptoglobin and ceruloplasmin 

were analyzed using methods previously described (Bertoni et al., 2008) adapted to the ILAB 

600 conditions. Plasma vitamin A, vitamin E, and β-carotene were extracted with hexane and 

analyzed by reverse-phase HPLC using Allsphere ODS-2 3µm in a 150 × 4.6 mm column (Grace 

Davison Discovery Science, Deerfield, IL, USA), a UV detector set at 325 nm (for vitamin A), 

290 nm (for vitamin E), or 460 nm (for β-carotene), and 80:20 methanol:tetrahydrofurane as the 

mobile phase. Total plasma reactive oxygen metabolites (ROM) were measured using the 

analytical method patented by Diacron International s.r.l. (Grosseto, Italy) (Bertoni et al., 2008). 

Plasma insulin concentrations were measured by a double antibody radioimmunoassay, using a 

kit for human insulin following the procedures from the vendor (Diagnostic Systems 
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Laboratories, Inc., Webster, TX, USA). The detection limit of the assay was 1.3 mU/ml; the 

coefficients of variation averaged 7.5% within assay and 9.5 % between assays. 

There is no commercially available bovine-specific Angptl4 ELISA kit.  Therefore, we 

validated a human Angptl4 Elisa kit (RayBiotech Inc., Norcross, GA) for use with bovine 

samples. The specificity of the anti-human Angptl4 detection antibody from RayBio kit was 

evaluated by Western blot analysis of bovine serum protein and recombinant bovine Angptl4. 

Recombinant bovine Angptl4 was produced by GenScript Corporation (Piscataway, NJ). The 

ArcticExpress (DE3) RP E. coli strain was transformed a pET-15b vector construct encoding an 

N-His tag and the mature bovine Angptl4 protein (NCBI accession NP_001039508.1, region 24 - 

410). Purity and immunoreactivity of the isolated recombinant bAngptl4 were verified by a 

previously-validated Western blot assay (Mamedova et al., 2010). Serum or standard samples (1 

µL) were diluted with 19 µL Laemmli sample buffer (Bio-Rad, Richmond, CA). Recombinant 

bovine and human Angptl4 standards were used at 200 pg and 20 pg concentrations. Samples 

were heated at 90°C for 5 min, cooled, vortexed, and loaded onto a 4-20% Tris-HCl gel for 

electrophoresis. Samples were separated by SDS-PAGE and dry-transferred onto nitrocellulose 

membranes (iBlot, Invitrogen, Carlsbad, CA). Membranes were blocked for 2 h in blocking 

buffer (5% dry milk in Tris-HCl buffer, pH 7.5, with 0.05 % Tween 20). After incubation with 

blocking buffer, the membranes were washed 3 times for 5 min each with washing buffer 

(phosphate-buffered saline, pH 7.5, containing 0.05% Tween 20), then incubated for overnight 

with biotinylated anti-human Angptl4 (RayBiotech Inc) diluted 20,000-fold in blocking buffer. 

After incubation, membranes were rinsed 3 times with washing buffer and then incubated for 1 h 

with horseradish peroxidase-labeled streptavidin diluted 50,000-fold in blocking buffer. 

Immunodetection was performed by chemiluminescence (West-Dura; Thermo Scientific, 
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Waltham, MA). Western blot showed that the detection antibody used in the Angptl4 ELISA 

detected a single band in serum with the expected molecular weight of hAngptl4 (~55 kDa). 

RNA extraction, quantitative PCR (qPCR), and design and evaluation of primers 

RNA samples were extracted from frozen tissue using established protocols in our 

laboratories (e.g. Loor et al., 2007). Briefly, liver tissue sample was weighed (~0.3-0.5 g) and 

straightway was put inside a 15 ml centrifuge tube (Corning Inc. ®, Cat. No. 430052) with 1 µl 

of Linear Acrylamine (Ambion® Cat. No. 9520) as a co-precipitant, and 5 ml of ice-cold Trizol 

reagent (Invitrogen Corp.) to proceed with RNA extraction according to the manufacturer. This 

extraction procedure also utilizes acid-phenol chloroform (Ambion® Cat. No. 9720, Austin, TX, 

USA), which removes residual DNA. Any remaining genomic DNA was removed from RNA 

with DNase using RNeasy Mini Kit columns (Qiagen, Germany). RNA concentration was 

measured using a Nano-Drop ND-1000 spectrophotometer (Nano-Drop Technologies). The 

purity of RNA (A260/A280) for all samples was above 1.81. The quality of RNA was evaluated 

using the Agilent Bioanalyzer system (Agilent 2100 Bioanalyzer, Agilent Technologies, Santa 

Clara, CA). The average RNA integrity number (RIN) value for samples was 8.0 ± 0.4. 

For qPCR, cDNA was synthesized using 100 ng RNA, 1 µg dT18 (Operon 

Biotechnologies, Huntsville, AL, USA), 1 µL 10 mmol/L dNTP mix (Invitrogen Corp., CA, 

USA), 1 µL random primer p(dN)6 (Roche® Cat. No. 11 034 731 001, Roche Diagnostics 

GmbH, Mannheim, Germany), and 10 µL DNase/RNase free water. The mixture was incubated 

at 65 °C for 5 min and kept on ice for 3 min. A total of 6 µL of master mix composed of 4.5 µL 

5X First-Strand Buffer, 1 µL 0.1 M dithiothreitol, 0.25 µL (50 U) of SuperScriptTM III RT 

(Invitrogen Corp.CA, USA), and 0.25 µL of RNase Inhibitor (10 U; Promega, Madison, WI, 

USA) was added. The reaction was performed in an Eppendorf Mastercycler® Gradient using the 
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following temperature program: 25 °C for 5 min, 50 °C for 60 min and 70 °C for 15 min.  cDNA 

was then diluted 1:4 (v:v) with DNase/RNase free water.  

Quantitative PCR (qPCR) was performed using 4 µL diluted cDNA (dilution 1:4) 

combined with 6 µL of a mixture composed of 5 µL 1 × SYBR Green master mix (Applied 

Biosystems, CA, USA), 0.4 µL each of 10 µM forward and reverse primers, and 0.2 µL 

DNase/RNase free water in a MicroAmp™ Optical 384-Well Reaction Plate (Applied 

Biosystems, CA, USA). Each sample was run in triplicate and a 6 point relative standard curve 

plus the non-template control (NTC) were used (User Bulletin #2, Applied Biosystems, CA, 

USA). The reactions were performed in an ABI Prism 7900 HT SDS instrument (Applied 

Biosystems, CA, USA) using the following conditions: 2 min at 50 °C, 10 min at 95 °C, 40 

cycles of 15 s at 95 °C (denaturation) and 1 min at 60 °C (annealing and extension). The 

presence of a single PCR product was verified by the dissociation protocol using incremental 

temperatures to 95 °C for 15 s plus 65 °C for 15 s.  Data were calculated with the 7900 HT 

Sequence Detection Systems Software (version 2.2.1, Applied Biosystems, CA, USA). The final 

data were normalized using the geometric mean of ubiquitously-expressed transcript (UXT), 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and ribosomal protein S9 (RPS9). 

Sequence and primer information of GAPDH and RPS9 were published by Janovick et al. 

(2007).   

Genes selected for transcript profiling in this study are listed in Table 10. Primers were 

designed using Primer Express 2.0 or 3.0 with minimum amplicon size of 80 bp (when possible 

amplicons of 100-150 bp were chosen) and limited 3’ G+C (Applied Biosystems, CA). When 

possible, primers were designed to fall across exon–exon junctions. Primers were aligned against 

publicly available databases using BLASTN at NCBI and UCSC’s Cow (Bos taurus) Genome 
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Browser Gateway. Prior to qPCR, primers were tested in a 20 μL PCR reaction using the same 

protocol described for qPCR except for the final dissociation protocol. For primer testing we 

used a universal reference cDNA (RNA mixture from 5 different bovine tissues) to ensure 

identification of desired genes. Five μL of the PCR product were run in a 2% agarose gel stained 

with ethidium bromide (2 μL). The remaining 15 μL were cleaned using QIAquick® PCR 

Purification Kit (QIAGEN) and sequenced at the Core DNA Sequencing Facility of the Roy J. 

Carver Biotechnology Center at the University of Illinois, Urbana-Champaign. Only those 

primers that did not present primer-dimer, a single band at the expected size in the gel, and had 

the right amplification product (verified by sequencing) were used for qPCR (Tables 11-13). The 

accuracy of a primer pair also was evaluated by the presence of a unique peak during the 

dissociation step at the end of qPCR.  

 Efficiency of PCR amplification for each gene was calculated using the standard curve 

method [E = 10(-1/slope)] (Table 14). Relative mRNA abundance among measured genes was 

calculated as previously reported (Bionaz and Loor 2008), using the inverse of PCR efficiency 

raised to ΔCt (gene abundance = 1/EΔCt, where ΔCt = Ct sample - geometric mean Ct of 3 

internal control genes; Table 14). Overall mRNA abundance for each gene among all samples 

measured was calculated using the median ΔCt. Use of this technique for estimating relative 

mRNA abundance among genes was necessary because relative mRNA quantification was 

performed using a standard curve (made from a mixture of RNA) which precluded a direct 

comparison among genes. Together, use of Ct values corrected for the efficiency of amplification 

plus internal control genes as baseline overcome this limitation. 

Statistical Analysis 



 

92 
 

A total of 10 cows from each prepartal dietary group (from 20/group that started the 

study) with the most complete data set including production, blood indices, and PMN function 

were used for the present report.  Eleven of the original 40 cows were removed from statistical 

analysis due to lameness and/or bacteriologically-positive quarters after parturition. The MIXED 

procedure of SAS (SAS Institute, Inc., Cary, NC, USA) was used for statistical analysis. The 

fixed effects included prepartal diet (control or overfed), time (7, 14, 30, 60, and/or 120 d 

relative to parturition; or 0, 2, 6, and 12 h post-LPS), and interaction diet × time.  The random 

effect was cow within diet. A repeated measures analysis using an AR(1) structure was used. 

Each variable of interest was evaluated for normal distribution using the Shapiro-Wilk test (SAS 

Inst. Inc.) and normalized by logarithmic transformation when necessary prior to statistical 

analysis. Normalized gene expression data were log-2 transformed prior to statistical analysis. 

All means were compared using the PDIFF statement of SAS (SAS Institute, Inc., Cary, NC, 

USA).    

RESULTS 

Performance 

Average DMI (% or kg/d) over the last 4 wk prepartum did not differ (P > 0.10) due to 

diet (Table 9). We observed greater DMI as % of BW during the first 41 d postpartum in the 

control group (Table 9). The overall consumption of DM was similar for both groups when 

expressed in kg/day, thus, differences in DMI as % of BW were due to lower BW in control 

cows when compared to overfed (Table 9).  Both groups increased DMI (kg/d or as % of BW) 

gradually over time (Time P < 0.05; Figure 6). Milk yield also increased (Time P < 0.05; Figure 

6) for both groups from 7 to 41 DIM with no differences among diets; there were no differences 
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among diets in milk fat percentage resulting in similar fat-corrected milk (FCM) yield and 

apparent energetic efficiency.  

Average BW and BCS during the last 4 wk prepartum were greater (P < 0.05) in overfed 

than control cows (Table 9). In terms of postpartal BCS there was no overall difference (P > 

0.10) due to diet. However, we observed an expected decrease (P < 0.05) in BCS between wk 1 

to 6 after parturition. As expected, energy balance (Mcal/d or % of requirements) during the last 

4 wk prepartum was greater (P < 0.05) in cows overfed the moderate-energy diet.  We also 

observed clear differences in energy balance status during the first wk after parturition due to 

diet, i.e. cows in the control group were in more positive energy balance status (i.e. before LPS; 

P < 0.05). There was an overall increase (Time P < 0.05) in energy balance between wk 2 to 6 

regardless of diet. Calf birth weight was not affected (P > 0.10) by prepartal dietary energy level. 

Acute Response to Lipopolysaccharide  

Figure 15 shows the temporal changes in rectal temperature and blood concentration of 

NEFA, BHBA, TAG and bilirubin before (0 h) and during the first 12 h post-LPS challenge. 

There were no temperature differences among dietary prepartum treatments; however, there was 

an obvious and expected temperature increase (Time P < 0.05) that peaked at 6 h post LPS 

challenge. Intramammary LPS challenge regardless of diet increased (P < 0.05) circulating 

NEFA and TAG by 2 h post-challenge after which concentrations returned to pre-challenge 

values. Opposite to NEFA and TAG, there was a gradual decrease (Time P < 0.05) in blood 

BHBA concentration regardless of prepartal diet. Bilirubin increased (Time P < 0.05) 2 h after 

the infusion of LPS regardless of prepartal diet and was maintained until the last sampling time 

at 12 h post challenge. 
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Lipid and TAG Accumulation in Liver  

 Figure 7 shows the concentrations of liver lipid and TAG before and after parturition. 

After parturition, i.e. in the biopsy harvested ~2-3 h post-LPS challenge on d 7, we observed a 

greater (Diet × Time P < 0.05) concentration of lipid and TAG in the overfed group and this 

difference persisted until 14 d  for total lipid and until 30 d for TAG concentration. 

Metabolic and Oxidative Stress Indices in Blood  

 Figure 8 shows blood serum concentration of the metabolic indicators NEFA, BHBA, 

glucose, insulin, creatinine, ROM, TAG, and urea during the early postpartal period. After LPS 

challenge, concentration of NEFA decreased (P < 0.05) in the control group but it increased 

slightly or remained unchanged in overfed cows resulting in a Diet × Time response (P < 0.05) 

during d 10 to 21 post-partum. Concentration of BHBA decreased (Time P < 0.05) after LPS 

challenge through d 14 regardless of diet, and then increased to pre-challenge concentrations by 

d 21. 

 Glucose concentration remained constant from 2 to 7 DIM after which a significant 

(Time P < 0.05) increase regardless of diet was observed by 10 through 21 DIM (Figure 8). In 

contrast, overfed cows had greater (Diet × Time P = 0.09) blood insulin due to differences at d 2 

postpartum. Temporal blood insulin concentration seemed to reflect changes in blood glucose 

with a marked increase (Time P < 0.05) from 7 to 10 DIM.  

Overall concentration of ROM was greater for cows in the overfed group (Diet P < 0.06) 

than the control due primarily to greater values at 10 and 21 DIM. Although control cows had 

greater (Diet × Time P < 0.05) creatinine concentration at 2 d postpartum, regardless of diet 

creatinine decreased over time (P < 0.05) in both groups to a nadir at 10 DIM.  
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The concentration of TAG decreased (Time P < 0.05) gradually from 2 to 21 d after 

parturition in both groups. In addition, cows in the control group tended (P = 0.11) to have 

overall higher concentrations of urea. Its concentration decreased (Time P < 0.05) in both groups 

from 7 to 14 d followed by a return to basal concentrations by d 21. 

Liver Function and Inflammation Indices in Blood 

 Figure 10 shows concentrations of cholesterol, albumin, ceruloplasmin, haptoglobin, 

glutamic oxaloacetic transaminase (Gottipati et al.), and bilirubin. Cholesterol concentration was 

greater (Diet × Time P < 0.05) in the overfed group at 10 and 14 DIM when compared to 

controls but the trend for both groups was for a gradual increase through 21 DIM. Albumin 

concentration was greater at 2 and 21 DIM in the control group resulting in a significant 

interaction (P < 0.05). Regardless of dry period diet, ceruloplasmin concentration increased 

gradually (Time P < 0.05) from 2 to 10 DIM; subsequently, the concentration was constant until 

21 DIM. Furthermore, the overfed group had greater (Diet P = 0.08) ceruloplasmin 

concentrations during the 21 d period. Concentration of haptoglobin increased (Time P < 0.05) 

sharply between 7 and 10 DIM then decreased by d 14 to 21 to values below those observed at 2 

and 7 DIM. Concentration of angiopoietin-like 4 (ANGPTL4), which has been recently 

identified as an acute-phase protein in rodents (Lu et al., 2010), was greater overall (diet P = 

0.06) in cows fed controlled-energy. Concentrations of both GOT and bilirubin decreased (Time 

P < 0.05) gradually by 10 to 21 DIM regardless of diet. Regardless of dry period diet, vitamin A, 

E and β-carotene concentration increased (Time P < 0.05) over time (Figure 11) and overall 

vitamin E concentration was  greater (P = 0.09) in the overfed group  due mainly to differences 

at 10, 14 and 21 DIM. 
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Growth Hormone (GH) and Insulin-like Growth Factor-1 (IGF-1) 

 Figure 13 shows the concentrations of GH and IGF-1 along with mRNA expression of 

two genes associated with GH signaling in liver. There was an interaction effect (Diet × Time P 

= 0.07) for GH due primarily to greater blood concentrations at 0, 2, and 30 d relative to calving. 

In contrast, we observed a significant interaction (Diet × Time P < 0.05) for the concentration of 

IGF-1 due to the response prepartum in overfed cows which had greater concentrations through 

calving. The temporal changes (Time P < 0.05) in concentration of GH and IGF-1 were typical 

of this physiological stage, i.e. gradual increase in GH from late prepartum through early 

lactation coupled with a gradual decrease in IGF-1.   

Neutrophil Chemotaxis and Phagocytosis 

 Neutrophil chemotaxis evaluated with human C5a or IL-8 did not differ between 

treatments (Figure 12). However, there was an overall time effect (P < 0.05) for chemotaxis 

assessed with IL-8. This temporal response was characterized by a gradual increase in 

chemotaxis from 7 through 120 DIM.  Total neutrophil phagocytosis capacity (Figure 12) was 

lower (Diet × Time P < 0.06) at 14 and 120 DIM in the overfed group versus the control. Despite 

a rebound in phagocytosis capacity between 14 to 60 DIM in overfed cows (Diet × Time P < 

0.05), phagocytosis again decreased markedly between 60 and 120 DIM. Overall, the temporal 

response observed in overfed cows compared with the steady increase in phagocytosis capacity 

in control cows led to lower overall phagocytosis due to prepartal energy overfeeding. 

Hepatic Gene Expression  

 Table 15 and Figure 14 and 15 show relative mRNA expression of genes related with 

metabolism, stress and inflammation, and control of gene transcription. We observed 

upregulation over time (P < 0.01; Table 15) in DGAT1 and FAAH both of which are involved in 
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metabolism of lipids. Among the stress and inflammation-related genes, PERK expression 

increased over time (P < 0.01; Table 15) with no differences among prepartal diet. Another gene 

associated with cellular stress is XBP1 and was downregulated over time (P < 0.01; Table 15) 

with no differences among prepartal diet. Among transcription regulators evaluated, NFKB1, 

CREB3L3 and PPARD behaved in a similar fashion with a decrease in mRNA expression after d 

7 (Time P < 0.01) with no differences observed due to diet. 

 Figure 14 shows relative mRNA expression of key genes related with fatty acid 

oxidation, ketogenesis, and growth hormone (GH) signaling in liver. Our data revealed 

significant upregulation (Diet × Time P < 0.05) between 7 and 14 DIM in the expression of 

ACOX1, HMGCS2, and PPARA due to feeding control with a corresponding decrease in CPT1A, 

HMGCS2, STAT5B, and SOCS2 in overfed cows. In addition, the increase in PPARA by 14 DIM 

with controls resulted in greater expression (Diet × Time P < 0.05) than overfed cows; whereas, 

the decrease in STAT5B and SOCS2 by 14 DIM in overfed cows resulted in lower expression 

(Diet × Time P < 0.05) than controls. 

 The only genes affected by prepartal diet were SOD2 and MYD88, with overfed cows 

having greater expression (P < 0.05; Figure 15). Postpartum, the expression pattern of SOD2, 

TNF, MYD88, TLR4, and NFKB1 was similar (P > 0.10) between treatments; downregulation 

was observed after LPS infusion from d 7 to d 14 after which the expression level was 

maintained relatively stable through d 30 (P < 0.01). In the case of NR3C1 expression was 

downregulated (Diet × Time P < 0.10) between 7 and 14 d in both overfed and control cows but 

expression decreased further by 30 DIM in overfed cows; whereas, cows fed control had stable 

expression through 30 DIM.  
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DISCUSSION 

Short-term Adaptations to LPS 

The 12-h blood metabolite analysis provided some evidence of acute effects of LPS on 

adipose lipolysis, ketogenesis, and liver function (i.e., bilirubin clearance).  Similar results for 

NEFA and BHBA were observed in cows infused i.v. with LPS during mid-lactation (Waldron et 

al., 2003); however, in non-lactating heifers there was an actual increase in NEFA and glycerol 

coupled with decreased BHBA (Steiger et al., 1999). In non-ruminants and ruminants (Steiger et 

al., 1999) bacterial LPS elicits inflammation (e.g. increased blood TNF) leading to elevated 

circulating levels of NEFA resulting from enhanced adipose lipolysis (Zu et al., 2009). These 

data (Steiger et al., 1999; Waldron et al., 2003) seem to suggest that ketogenesis (at least in the 

short-term) may have been impaired by LPS-induced inflammation, an effect that has been 

clearly demonstrated in non-ruminants (Khovidhunkit et al., 2004). Systemic 

hypertriglyceridemia also is a consequence of an inflammatory response caused by LPS in non-

lactating animals (Feingold et al., 1992). This effect has been attributed to  impairment in 

clearance of triglyceride-rich lipoproteins from the circulation, enhanced hepatic VLDL 

production, and/or reduced activity of tissue (e.g. adipose, heart, muscle) lipoprotein lipase 

(Kaufmann et al., 1976). In our study, mammary utilization of TAG fatty acids and NEFA may 

have played a role in the rapid return to basal concentrations of both metabolites.   

At least in non-ruminants, the increase in bilirubin concentration (an index of liver 

function; Bionaz et al., 2007) as a consequence of inflammation appears to be caused by the 

proinflammatory cytokine IL-1β, which inhibits the nuclear activator NFKB that regulates the 

mRNA expression of key hepatic enzymes involved in bilirubin clearance (Assenat et al., 2004). 

The results from our study are somewhat comparable with those reported by Bionaz et al. (2007) 
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where plasma bilirubin was highest (10.1 vs. 6.2 ± 0.6 μmol/L) in cows classified retrospectively 

as having low liver function. The discussion below will focus on longer-term adaptations to LPS 

challenge as it relates to prepartal consumption of dietary energy.  

Performance Effects due to Prepartal Energy and LPS  

Our performance data (Table 9, Figure 6) are similar to those reported in previous 

experiments (Douglas et al., 2006; Janovick and Drackley, 2010) in cows fed to meet or exceed 

prepartal energy requirements (ca. 100 to 150% of NRC requirements). Although data reported 

by Janovick and Drackley (2010) showed that overfed cows tended (P = 0.10) to produce more 

milk over the first 8 wk of lactation, the tendency was negated when yields were adjusted for 

previous mature equivalent yield. Together, our performance data during the first ~6 wk 

postpartum showed that there was no benefit of prepartal overconsumption of energy and 

demonstrated evidence of more severe NEB early postpartum.  

 Liver Lipid Composition  

The observed concentration of total lipid in liver we observed post-LPS challenge in 

overfed cows was similar to cows classified as having fatty liver (~8% to ~11% total lipid) 

during the first ~3 wk postpartum (Ametaj et al., 2005). Control LPS-challenged cows had 

similar total liver lipid as healthy/controls in the study of Ametaj et al. (2005). There are several 

mechanisms that can be proposed to explain the differences to LPS between diets.  First, 

overfeeding during the dry period leads to overconditioning (i.e. excessive adipose tissue 

deposition) and greater BCS prior to calving and a more marked reduction in appetite around 

calving (Hayirli et al., 2002). As a consequence, prepartal overconditioned high-producing dairy 

cows often go into a more severe NEB than cows that have a normal appetite (Hayirli et al., 

2002; Rukkwamsuk et al., 1999), which is in line with what we observed (Table 9). Under such 
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conditions, it is likely that the capacity of the liver to maintain the balance between export of the 

TAG in VLDL with hepatic TAG synthesis is inadequate, thus, resulting in TAG accumulation 

(Drackley et al., 2005).  Our observations that overfeeding energy prepartum led to greater 

accumulation of TAG in liver soon after LPS challenge (and in the longer-term) is in line with 

blood metabolic indicators of liver lipid metabolism, i.e. overfed cows had greater blood NEFA 

between 10 and 21 DIM, numerically-greater TAG between 10 and 14 DIM, but had a similar 

decrease in blood BHBA between 7 and 14 DIM (Figure 10). Together, those data are suggestive 

of greater impairment of liver lipid metabolism due to LPS.  

Although previous studies have examined blood markers of inflammation in response to 

endotoxin or E. coli mastitis early postpartum (Hoeben et al., 2000), we are unaware of studies 

with early postpartal cows that have examined any link between liver lipid composition in 

response to LPS or endotoxin challenge and prepartal feeding management. However, there is 

evidence of increased plasma NEFA concentrations following LPS infusion (Steiger et al., 1999; 

Waldron et al., 2003) or TNF (Kushibiki et al., 2003), and of liver TAG accumulation following 

s.c. TNF in mid-lactation cows (Bradford et al., 2009). Our data revealed that prepartal energy 

overfeeding coupled with an inflammatory challenge early postpartum elicited a sustained 

lipolytic response, hence, favoring higher levels of NEFA in the circulation and resulting in 

persistent TAG accumulation during early lactation.    

Markers of Inflammation and Oxidative Stress in Blood 

Overall, the blood data on inflammatory and oxidative stress markers were suggestive of 

a chronic alteration in liver fatty acid oxidation and ketogenesis in the prepartal energy-overfed 

cows when exposed to an inflammatory challenge.  The dramatic increase in hepatic mRNA 

expression of TNF at 7 vs. -14 DIM with both diets (Figure 15) likely reflected an acute response 
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to LPS, and agrees with previous data showing greater liver TNF mRNA expression in response 

to s.c. injection of bovine TNF (Bradford et al., 2009). Although there were no differences in 

blood NEFA, s.c. injection of TNF in mid-lactation cows for 7 d resulted in greater liver TAG 

concentration (Bradford et al., 2009). The TNF response in the overfed cows vs. controls might 

have remained elevated during the subsequent d post-LPS challenge, thus, favoring adipose 

tissue lipolysis (Kushibiki et al., 2003) and partly explaining the higher NEFA concentrations at 

10 and 14 d (Figure 10).   

Inflammatory responses to LPS in our cows seemed to differ from those observed by 

Trevisi et al. (2009) after sustained IFNα challenge around parturition where, despite a difference 

in BHBA concentrations, the increase in NEFA in treated and control cows was similar.  

Together the data seem to indicate that the nature of the inflammatory challenge (e.g., LPS, IFN-

α, or pathogen challenge) in peripartal cows could dictate the type of physiological response by 

the animal leading to impaired ketogenesis in cows managed to overconsume energy prepartum, 

i.e. diets promoting overconditioning.   

Excess accumulation of ROM can cause cell and tissue injury and lead to oxidative stress 

(Sordillo and Aitken, 2009).  Cows with higher prepartal BCS, an indirect measure of body 

fatness, and elevated levels of NEFA at calving are in more precarious oxidative status [e.g., 

lower superoxide dismutase (SOD) activity in blood] rendering them more sensitive to 

oxidative stress (Bernabucci et al., 2005). A more recent study also showed that cows in more 

severe NEB during early lactation had higher blood ROM levels and inadequate availability of 

biological antioxidants, thus, were under increased oxidative stress (Pedernera et al., 2009). Our 

data appeared consistent with the above studies in the sense that overfed cows were in more 

positive energy balance prepartum, more NEB before the LPS challenge (Table 9), but ROM 
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concentrations between treatments did not differ until after LPS challenge when overfed cows 

also had a greater increase in concentration of NEFA.  

Liver Function and Inflammation 

Because of the direct link between liver synthesis of cholesterol, haptoglobin, and 

ceruloplasmin and their correlation with inflammation, the concentrations of these molecules in 

blood have been routinely used as indicators of liver function (Bertoni et al., 2008; Bionaz et al., 

2007; Trevisi et al., 2009).  Trevisi et al (2009) reported lower blood cholesterol in peripartal 

cows receiving IFN-α than controls. After LPS challenge, the greater temporal concentration of 

cholesterol and ceruloplasmin in overfed cows was suggestive of a more vigorous and sustained 

acute-phase response to LPS potentially as a counter regulatory mechanism to reach a normal 

set-point. This idea is supported by other data (e.g, ROM, NEFA, liver TAG, ceruloplasmin) 

showing that overfeeding energy prepartum clearly placed a bigger toll on metabolism which 

was exacerbated once the animal was faced with an inflammatory challenge. It is noteworthy that 

the temporal profile of ROM resembled that of ceruloplasmin (Figure 11), a response not 

observed in the inflammatory challenge study of Trevisi et al. (2009), which also could be taken 

as indication of some degree of impairment of liver function. 

In the above context, it is well-established that inflammation protects animals against 

infection and tissue injury, but also can have deleterious consequences if it becomes deregulated 

(Sordillo et al., 2009). Our blood concentrations of cholesterol, ceruloplasmin, and albumin 

regardless of diet were within a non-pathological range (Bertoni et al., 2008). It was noteworthy, 

however, that albumin concentration was greater in control vs. overfed cows prior to LPS and 

also at 21 DIM which would be suggestive of higher liver function in those cows (Ametaj et al., 

2005; Bertoni et al., 2008; Cavestany et al., 2005). Overall, the sustained increased in blood 
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cholesterol over time is a typical response (Bionaz et al., 2007; Cavestany et al., 2005) and has 

been previously related with an improvement in energy balance status (Bertoni et al., 2008). 

Despite the apparent signs of normal liver function regardless of diet, the actual 

concentration of haptoglobin at 2 to 10 d in both groups was similar to those observed in 

postpartal cows with signs of inflammation and low liver function at 7 DIM (Trevisi et al., 

2009). However, our data on liver TAG, cholesterol, and haptoglobin do not support a 

correlation between these parameters as reported by Ametaj et al. (2005) using early postpartal 

cows classified as healthy or with fatty liver, i.e. negative correlations between total liver lipid 

and cholesterol but positive correlations between total liver lipid and haptoglobin. Our data on 

liver TAG and NEFA post-LPS with overfed cows do support a positive relationship between 

both parameters as observed by Ametaj et al. (2005). Clearly, additional mechanisms at the level 

of liver or whole-animal likely play a role in the overall adaptations of the postpartal cow to an 

inflammatory challenge. Some of those are discussed in the gene expression section.  

A previous study found lower temporal vitamin A concentration in response to 

inflammatory challenge with IFN-α around calving (Trevisi et al., 2009), which supported data 

demonstrating a negative relationship between inflammation and liver function around calving 

(Bertoni et al., 2008). The concentrations  we observed (assessed as retinol) regardless of diet 

during the first 14 DIM were below the range associated with optimal liver function in early 

postpartal cows (Sordillo and Aitken, 2009) but they were within the range reported in the study 

of Trevisi et al. (2009). The overall increase in vitamin A concentration between 7 and 14 DIM 

suggested that LPS challenge did not impair the hepatic response despite the fact that overfed 

cows (as noted above) were under a more apparent stressful state.  



 

104 
 

Sordillo and Aitken (2009) provided a detailed review of the role of vitamin E during 

inflammation and immune response. There is evidence that both vitamin E and Selenium status 

of cows could affect the extent of oxidative stress experienced by the cow, hence, have an impact 

on the functional capability of peripartal blood neutrophils (Hogan et al., 1992; Sordillo et al., 

2009). Neutrophil phagocytosis, bacterial killing, and oxidative metabolism are enhanced when 

cows have adequate levels of both vitamin E and Selenium (Sordillo and Aitken, 2009).  

Concentrations of vitamin E observed in this study between 2 and 7 DIM were above those 

reported by Bionaz et al. (2007) in cows grouped according to baseline paraoxonase activity. In 

fact, overall concentrations observed in our study by 21 DIM were nearly doubled those reported 

by Bionaz et al. (2007), suggesting that cows in our study likely were in adequate vitamin E 

status.  

The temporal increase in vitamin E in overfed cows likely was related with the increase 

in ROM as a counter regulatory mechanism to stop or control their production (Sklan, 1983) 

induced by LPS. Furthermore, the temporal pattern of vitamin E post-LPS in overfed cows also 

resembled that of cholesterol and seemed to be in agreement with data showing a positive 

relationship between vitamin E and serum cholesterol concentration in chickens (Sklan, 1983). 

The rate of incorporation of acetate into hepatic cholesterol is >2-fold in chicken than cow 

(Emmanuel and Robblee, 1984), and both supplemental vitamin E and A increased bovine 

hepatic cholesterol and TAG synthesis (Pullen et al., 1990). Lower rates of cholesterogenesis 

partly explain the reduced capacity for VLDL export in ruminant liver (Pullen et al., 1990) but 

more importantly our data on liver TAG coupled with blood cholesterol and vitamin E after LPS 

in overfed cows appeared to highlight a mechanistic link, i.e. a potential adaptation by liver to 

handle excess NEFA and accumulation of TAG. Thus, despite the greater metabolic load facing 



 

105 
 

overfed cows there were counter regulatory mechanisms in place to respond to inflammation. 

Whether such responses would occur in all cows may depend on the overall health status of the 

animal, i.e. whether cows are free from metritis, mastitis, or other diseases typical of the 

postpartal period.   

Neutrophil Function 

Commonly, neutrophil function (e.g., phagocytosis, superoxide anion generation, 

chemotaxis) declines gradually as parturition approaches and lowest levels are often reached 

soon after parturition through 15 d postpartum (Gilbert et al., 1993; Kimura et al., 2002; Moya et 

al., 2008). Subsequently, neutrophil function increases through at least 6 wk postpartum (Sordillo 

et al., 2009). Contrary to previous studies mentioned above we found that feeding controlled-

energy prepartum resulted in a stable response in total neutrophil phagocytosis postpartum 

through the first 30 DIM. Furthermore, in control cows the stable response remained through the 

LPS challenge; whereas, a clear decrease in phagocytic capacity was observed in the overfed 

cows (Figure 13). Despite the greater concentration of vitamin E post-LPS (Figure 12), the lower 

phagocytosis in overfed cows could have been related with greater blood NEFA and ROM (not 

BHBA), in particular, because of the well-established  negative effects of such molecules on 

immune cell response during the peripartal period (Sordillo et al., 2009). These findings offer 

further support for controlling energy intake during the dry period, i.e. it could be more 

advantageous to the cow in terms of maintaining a more active immune environment during the 

first 30 DIM when they likely are most susceptible to mastitis pathogens.   

Metabolic Hepatic Gene Expression  

  In non-ruminants, the nuclear receptor PPARA is considered the master regulator of 

hepatic lipid metabolism during fasting or undernutrition (Kersten et al., 1999). Activation of 
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PPARA promotes uptake, utilization, and catabolism of fatty acids via coordinated upregulation 

of CPT1A, ACOX1, and HMGCS2 among other genes (Loor et al., 2005; Selberg et al., 2005). 

There also is evidence that PPARA activation can regulate inflammation partly by neutralizing 

and promoting the degradation of Leukotriene B4 in both PMN and macrophages (Pyper et al., 

2010). Initial data with transition dairy cows  provided indirect evidence  that circulating NEFA 

might be ligands for PPARA potentially resulting in the upregulation and downstream activation 

of genes with key functions in fatty acid oxidation, ketogenesis, and gluconeogenesis (Loor et 

al., 2005; Selberg et al., 2005). Although a recent study with dairy calves reported no change in 

expression of PPARA when injected with the PPAR ligand clofibrate (Litherland et al., 2010), 

this ligand increased or tended to increase expression of the PPARA target genes ACADVL, 

ACOX1, and CPT1A.  Furthermore, work with bovine kidney cells recently showed that LCFA, 

e.g. palmitate, stearate, and eicosapentanoate, also might activate PPARA-regulated pathways 

(Bionaz et al., 2011). Therefore, the relative change in expression of PPAR target genes could be 

taken as indicators of treatment effects on the activity of this nuclear receptor. 

 The lack of increase in expression of PPARA between 7 and 14 DIM (i.e. post-LPS; 

Figure 12) in overfed vs. control cows might be explained in part by a derangement in the 

mechanisms that needed to be in place for the PPARA response to take place, e.g. 

downregulation of RXR or other co-activators (Pyper et al., 2010). Furthermore, it could be 

possible that GH signaling in liver is mechanistically linked with PPARA as in rodents 

(Ljungberg et al., 2007). The fact that both STAT5B and SOCS2 decreased markedly after LPS 

only in overfed cows was suggestive of an exacerbated uncoupling of the GH/IGF-1 axis (Lucy, 

2008) in response to inflammation. The NEFA and ROM response between 7 and 14 DIM in 

overfed cows clearly suggested an altered cellular state induced by LPS in energy-overfed cows. 
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The decrease in HMGCS2 after LPS in overfed cows also suggested that inflammation in bovine 

could lead to impaired ketogenesis as in rodents (Khovidhunkit et al., 2004; Prieur et al., 2009).  

Despite the inflammatory challenge, control cows clearly responded in a way that might 

have been expected under normal physiological conditions. The response in PPARA, ACOX1, 

and HMGCS2 after the LPS-challenge in control cows followed the same trend (Figure 14) and 

appeared to be inversely associated (at least through d 14) with concentrations of liver TAG and 

blood NEFA and BHBA (Figure 8 and 10). Such response may have been associated with greater 

rates of LCFA oxidation as shown in dairy calves dosed with clofibrate (Litherland et al., 2010). 

In dairy cows grouped retrospectively based on concentrations of BHBA, correlations between 

BHBA and HMGCS2 were significant regardless of grouping at 4 wk in lactation (van Dorland 

et al., 2009). Interestingly, in that study the group with higher BHBA concentration also had a 

positive correlation between HMGCS2 and CPT1A as our data with control cows seemed to 

confirm. 

 Taken together, these data seem to suggest that energy-overfeeding despite increasing 

availability of NEFA to liver resulted in other alterations (e.g. inflammation) that dampened 

PPAR signaling. In fact, the decrease in CPT1A after LPS in overfed cows is similar to previous 

data from mid-lactation cows injected with TNF (Bradford et al., 2009), providing evidence that 

inflammation has the potential to inhibit fatty acid oxidation and indirectly result in TAG 

accumulation partly through increases in CD36 and AGPAT mRNA expression (Khovidhunkit et 

al., 2004). There was no evidence of long-term effect of diet or inflammation on MTTP 

expression (Table 15) but the decrease in expression of DGAT1 between 7 and 14 DIM 

regardless of diet could be taken as an indication of a reduction in VLDL synthesis. The ER-

bound DGAT1 enzyme, rather than the cytosolic DGAT2, is thought to be associated with 
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channeling of fatty acids towards the ER lumen for TAG synthesis and assembly of mature 

VLDL (Lavoie and Gauthier, 2006). The decrease in blood TAG between 7 and 14 DIM (Figure 

10), particularly in control cows, seems to support this idea.  

Our contrasting responses between groups in regards to BHBA, NEFA, CPT1A, 

HMGCS2, PPARA, and liver TAG point at additional mechanisms in control cows that prevented 

hepatic accumulation of TAG despite the apparent decrease in ketogenesis, i.e. lower BHBA 

from 7 through 14 DIM. In that regard, it should be noted that an important effect of PPARA on 

systemic lipid metabolism is the positive effect it has on peripheral VLDL utilization, a process 

driven via upregulation of hepatic APOA5 and its activation of lipoprotein lipase in peripheral 

tissues (Kraja et al., 2010). Although we did not measure APOA5, a positive effect of PPARA 

upregulation on this apoprotein may have been associated with the gradual decrease in NEFA 

and TAG that was observed in control cows. Whether the LPL effect was at the level of 

mammary or adipose is difficult to determine; however, the fact that insulin increased after LPS 

regardless of diet may have been associated with a response in adipose and/or skeletal muscle.    

 Hepatic Expression of Inflammation- and Stress-related Genes 

 Although there was no control data to compare with, the striking upregulation of TNF, 

NFKB1, and SOD2when comparing data at -14 vs. 7 DIM, i.e. 2.5-3 h post-LPS challenge, 

probably reflected the acute response to inflammation. The same could be envisaged for 

ANGPTL4 which has recently been shown to respond as a positive acute-phase protein in mice 

challenged with LPS (Lu et al., 2010). TNF is a well-known pro-inflammatory cytokine and its 

hepatic expression was upregulated at ~3 h post infusion of LPS in mid-lactation dairy cows 

(Vels et al., 2009). Previous work with peripartal cows showed that activity of SOD in 

erythrocytes was higher prepartum than postpartum but blood indices of oxidative stress [e.g. 
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ROM, thiobarbituric acid-reactive substances (TBARS)] were greater postpartum than 

prepartum, i.e. oxidative stress is a characteristic of the peripartal period (Bernabucci et al., 

2005). 

The relatively similar pattern of expression we observed for NFKB1 and MYD88 (along 

with TNF, TLR4, and IRAK1) was suggestive of the existence of TLR4-mediated signaling likely 

due to direct binding of LPS, i.e. this molecule seems to be a hepatic TLR4 agonists as it was 

proposed in bovine macrophages (Ibeagha-Awemu et al., 2008). IRAK1 is a key mediator of 

TLR/MYD88 signaling during bacterial infections, which leads to robust inflammatory target 

gene expression in part via NFKB1 activation (Taraktsoglou et al., 2011). We previously found 

an upregulation of IRAK1 in mammary tissue and blood neutrophils from dairy cows receiving 

an intramammary challenge with S. uberis (Moyes et al., 2010a; Moyes et al., 2010b). The 

greater TLR4 expression at 30 DIM in cows fed control is puzzling but may underscore the 

importance of the TLR/MYD88 pathway in liver for establishing a successful immune response. 

Furthermore, it also could imply that cows in more negative energy balance due to overfeeding 

energy that undergo an immune challenge would have a compromised TLR response.  

In regard to immune response, the marked downregulation of STAT5B and its regulator 

SOCS2 (Nicholson and Hilton, 1998) between 7 and 14 DIM in overfed cows supports the idea 

of a compromised response to inflammation, e.g. SOCS2  negatively regulates cytokine signaling 

(Udy et al., 1997). More importantly, downregulation of STAT5B may have had direct negative 

effects on metabolism by dampening GH signaling (Lin et al., 1996) and IGF-1 production. The 

fact that STAT5B also is activated by cytokines and growth factors in dairy cows leading to 

CD4+T cell differentiation during inflammation (He et al., 2011) suggests that overfeeding 
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energy prepartum has wide-ranging negative effects on liver metabolism and immune response 

after calving.    

 



 

111 
 

REFERENCES 

Ametaj, B. N., B. J. Bradford, G. Bobe, R. A. Nafikov, Y. Lu, J. W. Young, and D. C. Beitz. 
2005. Strong relationships between mediators of the acute phase response and fatty liver in dairy 
cows. Can J Anim Sci 85:165-175. 

Assenat, E., S. Gerbal-Chaloin, D. Larrey, J. Saric, J. M. Fabre, P. Maurel, M. J. Vilarem, and J. 
M. Pascussi. 2004. Interleukin 1beta inhibits CAR-induced expression of hepatic genes involved 
in drug and bilirubin clearance. Hepatology 40:951-960. 

Auchtung, T. L., J. L. Salak-Johnson, D. E. Morin, C. C. Mallard, and G. E. Dahl. 2004. Effects 
of photoperiod during the dry period on cellular immune function of dairy cows. J Dairy Sci 
87:3683-3689. 

Beever, D. E. 2006. The impact of controlled nutrition during the dry period on dairy cow health, 
fertility and performance. Anim Reprod Sci 96:212-226. 

Bernabucci, U., B. Ronchi, N. Lacetera, and A. Nardone. 2005. Influence of body condition 
score on relationships between metabolic status and oxidative stress in periparturient dairy cows. 
Journal of Dairy Science 88:2017-2026. 

Bertoni, G., E. Trevisi, X. Han, and M. Bionaz. 2008. Effects of inflammatory conditions on 
liver activity in puerperium period and consequences for performance in dairy cows. J. Dairy 
Sci. 91:3300-3310. 

Bionaz, M., B. J. Thering, and J. J. Loor. 2011. Fine metabolic regulation in ruminants via 
nutrient-gene interactions: saturated long-chain fatty acids increase expression of genes involved 
in lipid metabolism and immune response partly through PPAR-alpha activation. Br J Nutr 1-13. 

Bionaz, M., E. Trevisi, L. Calamari, F. Librandi, A. Ferrari, and G. Bertoni. 2007. Plasma 
paraoxonase, health, inflammatory conditions, and liver function in transition dairy cows. J. 
Dairy Sci. 90:1740-1750. 

Bradford, B. J., L. K. Mamedova, J. E. Minton, J. S. Drouillard, and B. J. Johnson. 2009. Daily 
injection of tumor necrosis factor-{alpha} increases hepatic triglycerides and alters transcript 
abundance of metabolic genes in lactating dairy cattle. J Nutr 139:1451-1456. 

Cavestany, D., J. E. Blanc, M. Kulcsar, G. Uriarte, P. Chilibroste, A. Meikle, H. Febel, A. 
Ferraris, and E. Krall. 2005. Studies of the transition cow under a pasture-based milk production 
system: metabolic profiles. J Vet Med A Physiol Pathol Clin Med 52:1-7. 



 

112 
 

Dann, H. M., N. B. Litherland, J. P. Underwood, M. Bionaz, A. D'Angelo, J. W. McFadden, and 
J. K. Drackley. 2006. Diets during far-off and close-up dry periods affect periparturient 
metabolism and lactation in multiparous cows. J. Dairy Sci. 89:3563-3577. 

Dann, H. M., D. E. Morin, G. A. Bollero, M. R. Murphy, and J. K. Drackley. 2005. Prepartum 
intake, postpartum induction of ketosis, and periparturient disorders affect the metabolic status of 
dairy cows. J. Dairy Sci. 88:3249-3264. 

Douglas, G. N., T. R. Overton, H. G. Bateman, 2nd, H. M. Dann, and J. K. Drackley. 2006. 
Prepartal plane of nutrition, regardless of dietary energy source, affects periparturient 
metabolism and dry matter intake in Holstein cows. J Dairy Sci 89:2141-2157. 

Drackley, J. K., H. M. Dann, G. N. Douglas, N. A. J. Guretzky, N. B. Litherland, J. P. 
Underwood, and J. J. Loor. 2005. Physiological and pathological adaptations in dairy cows that 
may increase susceptibility to periparturient diseases and disorders. Ital. J. Anim. Sci. 4:323-344. 

Emmanuel, B. and A. R. Robblee. 1984. Cholesterogenesis from propionate: facts and 
speculations. Int J Biochem 16:907-911. 

Feingold, K. R., I. Staprans, R. A. Memon, A. H. Moser, J. K. Shigenaga, W. Doerrler, C. A. 
Dinarello, and C. Grunfeld. 1992. Endotoxin rapidly induces changes in lipid metabolism that 
produce hypertriglyceridemia: low doses stimulate hepatic triglyceride production while high 
doses inhibit clearance. J Lipid Res 33:1765-1776. 

Gilbert, R. O., Y. T. Grohn, P. M. Miller, and D. J. Hoffman. 1993. Effect of parity on 
periparturient neutrophil function in dairy cows. Vet Immunol Immunopathol 36:75-82. 

Goff, J. P. 2006. Major advances in our understanding of nutritional influences on bovine health. 
J Dairy Sci 89:1292-1301. 

Gottipati, S., N. L. Rao, and W. P. Fung-Leung. 2008. IRAK1: a critical signaling mediator of 
innate immunity. Cell Signal 20:269-276. 

Hayirli, A., R. R. Grummer, E. V. Nordheim, and P. M. Crump. 2002. Animal and dietary 
factors affecting feed intake during the prefresh transition period in Holsteins. J Dairy Sci 
85:3430-3443. 

He, Y., Q. Chu, P. Ma, Y. Wang, Q. Zhang, D. Sun, Y. Zhang, and Y. Yu. 2011. Association of 
bovine CD4 and STAT5b single nucleotide polymorphisms with somatic cell scores and milk 
production traits in Chinese Holsteins. J Dairy Res 25:1-8. 



 

113 
 

Hoeben, D., C. Burvenich, E. Trevisi, G. Bertoni, J. Hamann, R. M. Bruckmaier, and J. W. 
Blum. 2000. Role of endotoxin and TNF-alpha in the pathogenesis of experimentally induced 
coliform mastitis in periparturient cows. J Dairy Res 67:503-514. 

Hogan, J. S., W. P. Weiss, D. A. Todhunter, K. L. Smith, and P. S. Schoenberger. 1992. Bovine 
neutrophil responses to parenteral vitamin E. J Dairy Sci 75:399-405. 

Ibeagha-Awemu, E. M., J. W. Lee, A. E. Ibeagha, D. D. Bannerman, M. J. Paape, and X. Zhao. 
2008. Bacterial lipopolysaccharide induces increased expression of toll-like receptor (TLR) 4 
and downstream TLR signaling molecules in bovine mammary epithelial cells. Vet Res 39:11-
23. 

Janovick, N. A. and J. K. Drackley. 2010. Prepartum dietary management of energy intake 
affects postpartum intake and lactation performance by primiparous and multiparous Holstein 
cows. J Dairy Sci 93:3086-3102. 

Janovick, N. A., Y. R. Boisclair, and J. K. Drackley. 2011. Prepartum dietary energy intake 
affects metabolism and health during the periparturient period in primiparous and multiparous 
Holstein cows. J Dairy Sci 94:1385-1400. 

Kaufmann, R. L., C. F. Matson, A. H. Rowberg, and W. R. Beisel. 1976. Defective lipid disposal 
mechanisms during bacterial infection in rhesus monkeys. Metabolism 25:615-624. 

Kersten, S., J. Seydoux, J. M. Peters, F. J. Gonzalez, B. Desvergne, and W. Wahli. 1999. 
Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin 
Invest 103:1489-1498. 

Khovidhunkit, W., M. S. Kim, R. A. Memon, J. K. Shigenaga, A. H. Moser, K. R. Feingold, and 
C. Grunfeld. 2004. Effects of infection and inflammation on lipid and lipoprotein metabolism: 
mechanisms and consequences to the host. J Lipid Res 45:1169-1196. 

Kimura, K., J. P. Goff, M. E. Kehrli, Jr., and T. A. Reinhardt. 2002. Decreased neutrophil 
function as a cause of retained placenta in dairy cattle. J. Dairy Sci. 85:544-550. 

Kraja, A. T., M. A. Province, R. J. Straka, J. M. Ordovas, I. B. Borecki, and D. K. Arnett. 2010. 
Fenofibrate and metabolic syndrome. Endocr Metab Immune Disord Drug Targets 10:138-148. 

Kushibiki, S., K. Hodate, H. Shingu, Y. Obara, E. Touno, M. Shinoda, and Y. Yokomizo. 2003. 
Metabolic and lactational responses during recombinant bovine tumor necrosis factor-alpha 
treatment in lactating cows. J Dairy Sci 86:819-827. 

Lavoie, J. M. and M. S. Gauthier. 2006. Regulation of fat metabolism in the liver: link to non-
alcoholic hepatic steatosis and impact of physical exercise. Cell Mol Life Sci 63:1393-1409. 



 

114 
 

Lin, J. X., J. Mietz, W. S. Modi, S. John, and W. J. Leonard. 1996. Cloning of human Stat5B. 
Reconstitution of interleukin-2-induced Stat5A and Stat5B DNA binding activity in COS-7 cells. 
J Biol Chem 271:10738-10744. 

Litherland, N. B., M. Bionaz, R. L. Wallace, J. J. Loor, and J. K. Drackley. 2010. Effects of the 
peroxisome proliferator-activated receptor-alpha agonists clofibrate and fish oil on hepatic fatty 
acid metabolism in weaned dairy calves. J Dairy Sci 93:2404-2418. 

Ljungberg, A., D. Linden, C. Ameen, G. Bergstrom, and J. Oscarsson. 2007. Importance of 
PPAR alpha for the effects of growth hormone on hepatic lipid and lipoprotein metabolism. 
Growth Horm IGF Res 17:154-164. 

Loor, J. J., H. M. Dann, R. E. Everts, R. Oliveira, C. A. Green, N. A. Guretzky, S. L. Rodriguez-
Zas, H. A. Lewin, and J. K. Drackley. 2005. Temporal gene expression profiling of liver from 
periparturient dairy cows reveals complex adaptive mechanisms in hepatic function. Physiol 
Genomics 23:217-226. 

Lu, B., A. Moser, J. K. Shigenaga, C. Grunfeld, and K. R. Feingold. 2010. The acute phase 
response stimulates the expression of angiopoietin like protein 4. Biochem Biophys Res 
Commun 391:1737-1741. 

Lucy, M. C. 2008. Functional differences in the growth hormone and insulin-like growth factor 
axis in cattle and pigs: implications for post-partum nutrition and reproduction. Reprod Domest 
Anim 43 Suppl 2:31-39. 

Moya, S. L., M. A. Gomez, L. A. Boyle, J. F. Mee, B. O'Brien, and S. Arkins. 2008. Effects of 
milking frequency on phagocytosis and oxidative burst activity of phagocytes from primiparous 
and multiparous dairy cows during early lactation. J Dairy Sci 91:587-595. 

Moyes, K. M., J. K. Drackley, D. E. Morin, and J. J. Loor. 2010a. Greater expression of TLR2, 
TLR4, and IL6 due to negative energy balance is associated with lower expression of HLA-DRA 
and HLA-A in bovine blood neutrophils after intramammary mastitis challenge with 
Streptococcus uberis. Funct Integr Genomics 10:53-61. 

Moyes, K. M., J. K. Drackley, D. E. Morin, S. L. Rodriguez-Zas, R. E. Everts, H. A. Lewin, and 
J. J. Loor. 2010b. Mammary gene expression profiles during an intramammary challenge reveal 
potential mechanisms linking negative energy balance with impaired immune response. Physiol 
Genomics. 

Moyes, K. M., J. K. Drackley, J. L. Salak-Johnson, D. E. Morin, J. C. Hope, and J. J. Loor. 2009. 
Dietary-induced negative energy balance has minimal effects on innate immunity during a 
Streptococcus uberis mastitis challenge in dairy cows during midlactation. J Dairy Sci 92:4301-
4316. 



 

115 
 

Mulligan, F. J. and M. L. Doherty. 2008. Production diseases of the transition cow. Vet J 176:3-
9. 

Nicholson, S. E. and D. J. Hilton. 1998. The SOCS proteins: a new family of negative regulators 
of signal transduction. J Leukoc Biol 63:665-668. 

Nikkhah, A., J. J. Loor, R. J. Wallace, D. E. Graugnard, J. Vasquez, B. Richards, and J. K. 
Drackley. 2008. Moderate excesses of dietary energy markedly increase visceral adipose tissue 
mass in non-lactating dairy cows. J. Dairy Sci. 91:LB4. 

NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Sci., Washington, 
DC. 

Pedernera, M., P. Celi, S. C. Garcia, H. E. Salvin, I. Barchia, and W. J. Fulkerson. 2009. Effect 
of diet, energy balance and milk production on oxidative stress in early-lactating dairy cows 
grazing pasture. Vet J. 

Prieur, X., P. Lesnik, M. Moreau, J. C. Rodriguez, C. Doucet, M. J. Chapman, and T. Huby. 
2009. Differential regulation of the human versus the mouse apolipoprotein AV gene by 
PPARalpha. Implications for the study of pharmaceutical modifiers of hypertriglyceridemia in 
mice. Biochim Biophys Acta 1791:764-771. 

Pullen, D. L., J. S. Liesman, and R. S. Emery. 1990. A species comparison of liver slice 
synthesis and secretion of triacylglycerol from nonesterified fatty acids in media. J Anim Sci 
68:1395-1399. 

Pyper, S. R., N. Viswakarma, S. Yu, and J. K. Reddy. 2010. PPARalpha: energy combustion, 
hypolipidemia, inflammation and cancer. Nucl Recept Signal 8:e002. 

Rukkwamsuk, T., T. A. Kruip, and T. Wensing. 1999. Relationship between overfeeding and 
overconditioning in the dry period and the problems of high producing dairy cows during the 
postparturient period. Vet Q 21:71-77. 

Salak, J. L., J. J. McGlone, and M. Lyte. 1993. Effects of in vitro adrenocorticotrophic hormone, 
cortisol and human recombinant interleukin-2 on porcine neutrophil migration and luminol-
dependent chemiluminescence. Vet Immunol Immunopathol 39:327-337. 

Selberg, K. T., C. R. Staples, N. D. Luchini, and L. Badinga. 2005. Dietary trans octadecenoic 
acids upregulate the liver gene encoding peroxisome proliferator-activated receptor-alpha in 
transition dairy cows. J Dairy Res 72:107-114. 

Sklan, D. 1983. Effect of high vitamin A or tocopherol intake on hepatic lipid metabolism and 
intestinal absorption and secretion of lipids and bile acids in the chick. Br J Nutr 50:409-416. 



 

116 
 

Sordillo, L. M. and S. L. Aitken. 2009. Impact of oxidative stress on the health and immune 
function of dairy cattle. Vet Immunol Immunopathol 128:104-109. 

Sordillo, L. M., G. A. Contreras, and S. L. Aitken. 2009. Metabolic factors affecting the 
inflammatory response of periparturient dairy cows. Anim Health Res Rev 10:53-63. 

Steiger, M., M. Senn, G. Altreuther, D. Werling, F. Sutter, M. Kreuzer, and W. Langhans. 1999. 
Effect of a prolonged low-dose lipopolysaccharide infusion on feed intake and metabolism in 
heifers. J Anim Sci 77:2523-2532. 

Taraktsoglou, M., U. Szalabska, D. A. Magee, J. A. Browne, T. Sweeney, E. Gormley, and D. E. 
MacHugh. 2011. Transcriptional profiling of immune genes in bovine monocyte-derived 
macrophages exposed to bacterial antigens. Vet Immunol Immunopathol 140:130-139. 

Trevisi, E., M. Amadori, A. M. Bakudila, and G. Bertoni. 2009. Metabolic changes in dairy cows 
induced by oral, low-dose interferon-alpha treatment. J Anim Sci 87:3020-3029. 

Udy, G. B., R. P. Towers, R. G. Snell, R. J. Wilkins, S. H. Park, P. A. Ram, D. J. Waxman, and 
H. W. Davey. 1997. Requirement of STAT5b for sexual dimorphism of body growth rates and 
liver gene expression. Proc Natl Acad Sci U S A 94:7239-7244. 

van Dorland, H. A., S. Richter, I. Morel, M. G. Doherr, N. Castro, and R. M. Bruckmaier. 2009. 
Variation in hepatic regulation of metabolism during the dry period and in early lactation in dairy 
cows. J Dairy Sci 92:1924-1940. 

van Knegsel, A. T., G. de Vries Reilingh, S. Meulenberg, H. van den Brand, J. Dijkstra, B. 
Kemp, and H. K. Parmentier. 2007. Natural antibodies related to energy balance in early 
lactation dairy cows. J Dairy Sci 90:5490-5498. 

Vels, L., C. M. Rontved, M. Bjerring, and K. L. Ingvartsen. 2009. Cytokine and acute phase 
protein gene expression in repeated liver biopsies of dairy cows with a lipopolysaccharide-
induced mastitis. J Dairy Sci 92:922-934. 

Waldron, M. R., T. Nishida, B. J. Nonnecke, and T. R. Overton. 2003. Effect of 
lipopolysaccharide on indices of peripheral and hepatic metabolism in lactating cows. J Dairy Sci 
86:3447-3459. 

Zu, L., J. He, H. Jiang, C. Xu, S. Pu, and G. Xu. 2009. Bacterial endotoxin stimulates adipose 
lipolysis via toll-like receptor 4 and extracellular signal-regulated kinase pathway. J Biol Chem 
284:5915-5926. 
 



 

117 
 

Table 8. Ingredients and chemical composition of experimental diets. 
 Prepartal energy level   
  Control Overfed  Lactation 
Ingredients     

Wheat straw 41.9 -  - 
Corn silage 29.3 50.3  29.9 
Alfalfa silage 10.0 18.0  14.8 
Soybean meal 9.64 3.54  2.39 
Ground shelled corn 3.59 13.9  - 
Alfalfa hay 3.35 6.06  5.55 
Magnesium sulfate 0.64 0.63  - 
Magnesium oxide 0.42 0.43  0.13 
Vitamin E 0.27 0.24  - 
Mineral and vitamin mix1 0.18 0.18  0.22 
Magnesium chloride 0.17 0.35  0.00 
Urea 0.17 -  0.13 
Salt 0.15 0.24  0.13 
Sodium phosphate 0.13 -  - 
Vitamin A 0.01 0.01  - 
Vitamin D 0.01 0.01  - 
Whole cottonseed - 5.03  5.55 
Calcium carbonate - 0.9  0.56 
Corn ground - -  20.3 
Wet brewer’s grain  - -  12.9 
Soybean hulls - -  5.55 
Sodium bicarbonate - -  0.83 
Dicalcium phosphate - -  0.54 
Vitamin H - -  0.28 

Chemical composition     
DM,  % 51.9 50.0  60.5 
NEL, Mcal/kg DM 1.34 1.62  1.69 
CP, % DM 12.0 15.0  17.4 
AP, % DM 11.2 14.3  11.9 
ADICP, % DM 0.70 0.73  5.53 
NDF, % DM 53.4 36.6  34.1 
ADF, % DM 36.6 25.7  21.8 
Ca, % DM 0.67 0.73  0.80 
P, % DM 0.24 0.31  0.43 
Mg, % DM 0.50 0.57  0.33 
K, % DM 1.45 1.28  1.16 
S %DM 0.21 0.25  0.21 
Na % DM 0.07 0.09  0.29 
Fe, ppm 305 339  203 
Zn , ppm 66.6 80.0  65.8 
Cu, ppm 13.0 14.6  10.9 
Mn, ppm 72.0 70.3  67.0 

1Mineral and vitamin mix: zinc = 60 ppm, copper = 15 ppm, manganese = 60 ppm, selenium 0.3 ppm, 
iodine = 0.6 ppm, iron = 50 ppm, and cobalt = 0.2 ppm. Rumensin: 360mg/day in the lactation diet. 
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Table 9. The effect of intramammary LPS challenge at 7 d postpartum on dry matter intake, milk 
production, body weight (BW), body condition score (BCS) and energy balance in cows (n = 
9/treatment) fed a control diet (1.34 Mcal/kg DM) or a moderate-energy diet (overfed; 1.62 
Mcal/kg DM) during the entire dry period. 

 Prepartum diet    P value  
 Overfed  Control SEM1  Diet Time Diet × time 
DMI         

-4 to -1 wk, % BW 1.68  1.59 0.16  0.72 -- -- 
7 to 14, % BW 2.20  2.74 0.19  0.05 0.001 0.89 
7 to 41, % BW 2.90  3.45 0.17  0.02 0.001 0.34 
-4 to -1 wk, kg/d 13.8  11.7 1.1  0.17 -- -- 
7 to 14, kg/d 16.1  17.5 1.2  0.40 0.001 0.62 
7 to 41, kg/d 20.0  20.8 1.0  0.60 0.001 0.13 

Milk yield         
7 to 14, kg/d 35.1  34.2 2.4  0.79 0.03 0.24 
7 to 41, kg/d 41.9  40.7 2.3  0.71 0.001 0.54 
wk 1, % Fat 3.35  3.73 0.18  0.16 -- -- 
wk 2 to 6, % Fat 3.80  3.80 0.13  0.98 0.13 0.82 
wk 1, % Protein 3.06  2.97 0.05  0.23 -- -- 
wk 2 to 6, % Protein 2.98  3.03 0.07  0.58 0.21 0.24 
wk 1, % Lactose 4.75  4.90 0.08  0.22 -- -- 
wk 2 to 6, % Lactose 4.80  4.94 0.04  0.01 0.19 0.15 

3.5% FCM yield2         
7 to 41, kg/d 42.6  42.3 3.1  0.92 0.001 0.35 

Apparent efficiency4         
7 to 41, kg/d 2.2  2.1 0.2  0.43 0.04 0.92 

Body Weight         
wk -4 to -1, kg 834  749 28  0.04 -- -- 
wk 1, kg 747  666 24  0.03 -- -- 
wk 1 and 2, kg 723  646 23  0.02 0.001 0.68 
wk 1 to 6, kg 683  625 20  0.03 0.001 0.32 

Body Condition Score         
wk -4 to -1 3.47  3.12 0.10  0.03 -- -- 
wk 1 2.98  2.74 0.16  0.30 -- -- 
wk 1 and 2 2.87  2.73 0.13  0.45 0.27 0.38 
wk 1 to 6 2.73  2.63 0.13  0.57 0.002 0.69 

Calf birth weight, kg 49.3  47.5 1.8  0.47 -- -- 
Energy balance         

wk -4 to -1, Mcal/d 5.8  0.2 1.8  0.03 -- -- 
wk -4 to -1, % req3 136  102 11  0.05 -- -- 
wk 1, Mcal/d -11.8  -6.8 1.3  0.04 -- -- 
wk 1, % req 65.3  77.7 3.9  0.04 -- -- 
wk 2, Mcal/d -6.5  -2.9 1.9  0.21 -- -- 
wk 2,% req 82.8  91.5 5.0  0.24 -- -- 
wk 2 to 6, Mcal/d -7.1  -4.2 1.8  0.28 0.04 0.99 
wk 2 to 6, % req 84.2  90.8 4.2  0.28 0.10 0.95 

1Largest SEM is shown. 
2 3.5 % FCM, kg = Milk yield, kg × [(0.4324) + (16.218 × fat % × 0.01)]. 
3% of requirements 
4Defined as 3.5% FCM (kg) divided by DMI (kg). 
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Table 10. Description of genes selected for qPCR. 

 
 

Symbol Description GenBank accession 
MYD88 myeloid differentiation primary response gene (88) NM_001014382.2 

 CREB3L3 cAMP responsive element binding protein 3-like 3 NM_001034432.1 
NR3C1 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) XM_612999.4 

 TLR4 toll-like receptor 4 NM_174198.6 
TNF tumor necrosis factor NM_173966.2 
FAAH fatty acid amide hydrolase NM_001099102.1 

 HMGCS2 3-hydroxy-3-methylglutaryl-CoA synthase 2 (mitochondrial)  NM_001045883.1 
ACOX1 acyl-CoA oxidase 1, palmitoyl  NM_001035289.2 

 CPT1A carnitine palmitoyltransferase 1A (liver) FJ415874.1 
ANGPTL4 angiopoietin-like 4 NM_001046043.2 
FGF21 fibroblast growth factor 21 XM_002695200.1 
PPARA peroxisome proliferator-activated receptor alpha NM_001034036.1 
PPARD peroxisome proliferator-activated receptor delta NM_001083636.1 
XBP1 X-box binding protein pseudogene 1 XM_001255847.2 

 DGAT1 diacylglycerol O-acyltransferase homolog 1 NM_174693.2 
 PERK eukaryotic translation initiation factor 2-alpha kinase 3 NM_001098086.1 
 NFKB1 nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 NM_001076409.1 
 SOD2 superoxide dismutase 2, mitochondrial NM_201527.2 
 IRAK1 interleukin-1 receptor-associated kinase 1 NM_001040555.1 

MTTP microsomal triglyceride transfer protein NM_001101834.1 
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Table 11. Gene ID, GenBank accession number, hybridization position, sequence and amplicon 
size of primers for Bos taurus used to analyze gene expression by qPCR. Similar information for 
remaining genes was reported previously (2, 3). 

1 Primer direction (F – forward; R – reverse) and hybridization position on the sequence. 
2 Exon-exon junctions are underlined. 
3 Amplicon size in base pair (bp). 

Gene 
ID 

Accession # Gene Primers1 Primers (5’-3’)2 bp3 

444881 NM_001014382.2 MYD88 F.367 
R. 471 

GGAGGACTGCCAAAAGTATATTCTG 
GCCATGTCATTTATCCGAGTTATG 

105 

513010 NM_001034432.1 CREB3L3 F.1606 
R.1705 

TGGAGATGCACAGATACACAGCTA 
AGATTTCTCAGACTTTGTGGCCTTA 

100 

281946 XM_612999.4 
 

NR3C1 F.395 
R.494 

AAGCACCCCCAGTAGAGAAGAA 
CACAGTAGCTCCTCCCCTTAGG 

100 

281536 NM_174198.6 TLR4 F.103 
R.201 

GCTGTTTGACCAGTCTGATTGC 
GGGCTGAAGTAACAACAAGAGGAA 

99 

280943 NM_173966.2 TNF F.174 
R.287 

CCAGAGGGAAGAGCAGTCCC 
TCGGCTACAACGTGGGCTAC 

114 

540007 NM_001099102.1 
 

FAAH F.1332 
R.1436 

TTCCTGCCAAGCAACATACCT 
CACGAAATCACCTTTGAAGTTCTG 

105 

503684 NM_001045883.1 HMGCS2 F.837 
R.936 

TTACGGGCCCTGGACAAAT 
GCACATCATCGAGAGTGAAAGG 

100 

513996 NM_001035289.2 
 

ACOX1 F.180 
R.279 

ACCCAGACTTCCAGCATGAGA 
TTCCTCATCTTCTGCACCATGA 

100 

506812 FJ415874.1 CPT1A F.141 
R.240 

TCGCGATGGACTTGCTGTATA 
CGGTCCAGTTTGCGTCTGTA 

100 

509963 NM_001046043.2 ANGPTL4 F.28 
R.136 

AGGAAGAGGCTGCCCAAGAT 
CCCTCTCTCCCTCTTCAAACAG 

109 

281992 NM_001034036.1 PPARA F.729 
R.830 

CATAACGCGATTCGTTTTGGA 
CGCGGTTTCGGAATCTTCT 

102 

353106 NM_001083636.1 PPARD F.460 
R.559 

TGTGGCAGCCTCAATATGGA 
GACGGAAGAAGCCCTTGCA 

100 

541236 XM_001255847.2 
 

XBP1 F.618 
R.697 

GAGAGCGAAGCCAATGTGGTA 
ACTGTGAATTCAGGGTGATCTTTCT 

80 

282609 NM_174693.2 
 

DGAT1 F.210 
R.314 

ACCGCCTGCAGGATTCC 
ATAACCGTGCGTTGCTTAAGATC 

105 

535820 NM_001098086.1 
 

PERK F.3160 
R.3262 

ATATGAGCCCGGAACAGATTCAT 
AGTGCCGAACGGGTATAGTAATTC 

101 

282609 NM_001076409.1 
 

NFKB1 F.172 
R.266 

TTCAACCGGAGATGCCACTAC 
ACACACGTAACGGAAACGAAATC 

95 

281496 NM_201527.2 
 

SOD2 F.620 
R.714 

TGTGGGAGCATGCTTATTACCTT 
TGCAGTTACATTCTCCCAGTTGA 

101 

533953 NM_001040555.1 IRAK1 F.950 
R.1052 

CCTCAGCGACTGGACATCCT 
GGACGTTGGAACTCTTGACATCT 

103 

280868 NM_001101834.1 
 

MTTP F.617 
R.716 

ACCAGGCTCATCAAGACAAAGTG 
GTGACACCCAAGACCTGATGTG 

100 

      

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=75832100&dopt=GenBank&RID=ZK6TJXAN01S&log$=nucltop&blast_rank=3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=77735810&dopt=GenBank&RID=ZK5SN858016&log$=nucltop&blast_rank=1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=194668997&dopt=GenBank&RID=ZK5ETRP2016&log$=nucltop&blast_rank=1
http://www.ncbi.nlm.nih.gov/nucleotide/126723186?report=genbank&log$=nucltop&blast_rank=4&RID=DGDVEV2T01N
http://www.ncbi.nlm.nih.gov/nucleotide/145279648?report=genbank&log$=nucltop&blast_rank=3&RID=CEBG2XRY01S
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=149642688&dopt=GenBank&RID=S8U27BKH01N&log$=nucltop&blast_rank=1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=114052694&dopt=GenBank&RID=UA3B1UF6014&log$=nucltop&blast_rank=2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=114326186&dopt=GenBank&RID=TXA5GMP501S&log$=nucltop&blast_rank=1
http://www.ncbi.nlm.nih.gov/nucleotide/212675313?report=genbank&log$=nucltop&blast_rank=2&RID=E83NR90001S
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=114326295&dopt=GenBank&RID=ZUSZNNTW012&log$=nucltop&blast_rank=2
http://www.ncbi.nlm.nih.gov/nucleotide/77404270?report=genbank&log$=nucltop&blast_rank=2&RID=DUZ8T2SE01N
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=139948624&dopt=GenBank&RID=TXBV4JXH01S&log$=nucltop&blast_rank=1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=194674388&dopt=GenBank&RID=P482745701N&log$=nucltop&blast_rank=1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=110350684&dopt=GenBank&RID=TX9S0XBC01S&log$=nucltop&blast_rank=8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=147904592&dopt=GenBank&RID=P67E6T7U01S&log$=nucltop&blast_rank=1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=115497301&dopt=GenBank&RID=UA2TT7Z301S&log$=nucltop&blast_rank=2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=88853815&dopt=GenBank&RID=UA1PNVDH01S&log$=nucltop&blast_rank=6
http://www.ncbi.nlm.nih.gov/nucleotide/95006986?report=genbank&log$=nucltop&blast_rank=6&RID=E32BUS3901N
http://www.ncbi.nlm.nih.gov/nucleotide/156120316?report=genbank&log$=nucltop&blast_rank=7&RID=60WF34HN01N
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Table 12. Sequencing results of PCR products from primers of genes designed for this 
experiment. Best hits using BLASTN (http://www.ncbi.nlm.nih.gov) are shown.   

Gene Sequence 
MYD88 GACGCGGAGCATCGTAGAGGCCTTACGGTGGACTCTATAGACAGGC

AGCATAACTCGGATAAATGGACATGGGCAACAC 
CREB3L3 GCCAGGATCGGGTCCACGTAAACGGATTCTCAGACAAAGGACCATT

AAGGGCCACAAAGTCTGAGAAATTCTACA 
NR3C1 CCGTACGGTGTCTGTGTCAGAGAGGGAATGTGATGGACTTCTATAAA

ACCCCTAAGGGGGAGGGAGCTACTGTGGAGTGCCC 
TLR4 GCATCCCTCACCGTTATGGTCAGGTGAATTCCTGGGATAAGGCCAGG

CTTCCTCTTGTTGGTTACTTCAGCCAGAAA 
TNF TCACTCTCCGGGGCAGCTCCGGTGGTGGGACTCGTATGCCAATGCCC

TCATGGAA 
FAAH GCGGACGGGCAGGGGTGGCGTTTCAGTGACGGGTGCACGACCTTCCT

ACAGAACTTCAAAGGTGATTTCGTGGATTCAAA 
HMGCS2 CACTAGCCAGATCGAGAACAGGTGAAGCAAGCTGGCATCGAATCGG

CCTTTCACTCTCGATGAATGTGCAAAACCC 
ACOX1 ATCCTCGTATCCGCGTTCAGGGTGCGTTTAAGAAGAGTGCCATCATG

GTGCAGAAGATGAGGAAATCCCC 
CPT1A GGACTATGAAGGTAAACCAGGCCCGGGACGCCCTTCGTACAGGCCT

CTCGCTCCAGCTGGCTCATTACAAGGGACCA 
ANGPTL4 GCCCATCAGCATCCTCAACCGTGAAGCGGCCAGTATTTCCACTCCAT

TTCCAAGGGAAGA 
PPARA CGAGATCTGAAGCAAATTGAGGCAGAAATCCTTACGTGTGAGCATG

ACCTAGAAGATTCCGAAACCGCGA 
PPARD GCATGGGGACGGCGTCGGGCTCACTACGGCGTTCACGCTTGTGAGGG

ATGCAAGGGCTTCTTCCGTCCACAAA 
XBP1 GGGATGTAGGACACTTTTCAGCCCTCAGAGAAAGATCACCCTGAATT

CACAGGTAAG 
DGAT1 CTAGGCTTCCACTACCGGTGCATCCTGAATTGGTGTGTGGGTGGATG

CTGATCCTTAAGCAACGCACGGGTTATAATA 
PERK GATCAGCATCTCTCATAGTGACATCTTTTCTTTGGGCCTCATTCTGTT

TGAATTACTATACCCGTTCGGCACCTCGAA 
NFKB1 CGATATCTTCGTGTCAAGCAAAAGTATTCGCAACACTGGAAGCACGA

ATGACAGATGCCTGTATACGGGGCATCAGAAGGCCGTA 
SOD2 GCATGTTTGGCCGATTATCTGAGGCCATTTTGGAATGTGATCAACTG

GGAGAATGTAACTGCAATAC 

IRAK1 GCTAGCGGGCATCTAGTTCTTACATCAAGGAATAGCCCCAGCCCTCA
TCCATGGAGAATGTCAAGAAGTTCCAACGCTCCAAAAAGGG 

MTTP GCACTGCCCCCTCTATTTTTCAGTTAATCCAAAGCCCTTTAATTTTTG
GTCACTTTGTCTTGATGAGCCCTGAGGAATATCAAA 
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Table 13. Sequencing results of genes using BLASTN from NCBI against nucleotide collection 
(nr / nt) with total score. 
 

Gene Best hits  Score 
MYD88 Bos taurus myeloid differentiation primary response gene (88) (MYD88), mRNA  73.4 
CREB3L3 Bos taurus cAMP responsive element binding protein 3-like 3 (CREB3L3), mRNA  64.4 
NR3C1 PREDICTED: Bos taurus nuclear receptor subfamily 3, group C, member 1 

(glucocorticoid receptor) (NR3C1), mRNA 
69.8 

TLR4 Bos taurus toll-like receptor 4 (TLR4), mRNA 64.4 
TNF Bos taurus tumor necrosis factor (TNF), mRNA 93.3 
FAAH Bos taurus fatty acid amide hydrolase (FAAH), mRNA  105 
HMGCS2 Bos taurus 3-hydroxy-3-methylglutaryl-CoA synthase 2 (mitochondrial) (HMGCS2), 

nuclear gene encoding mitochondrial protein, mRNA  
80.6 

ACOX1 Bos taurus acyl-CoA oxidase 1, palmitoyl (ACOX1), mRNA 68 
CPT1A PREDICTED: Bos taurus carnitine palmitoyltransferase 1A liver-like (CPT1A), mRNA 71.6 
ANGPTL4 Bos taurus angiopoietin-like 4 (ANGPTL4), mRNA 48.2 
PPARA Bos taurus peroxisome proliferator-activated receptor alpha (PPARA), mRNA  98.7 
PPARD Bos taurus peroxisome proliferator-activated receptor delta, mRNA 98.7 
XBP1 Bos taurus X-box binding protein pseudogene 1 (XBPP1), mRNA  64.4 
DGAT1 Bos taurus diacylglycerol O-acyltransferase homolog 1 (mouse) (DGAT1), mRNA  75.2 
PERK Bos taurus eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3), mRNA  102 
NFKB1 Bos taurus nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 

(NFKB1), mRNA  
89.7 

SOD2 Bos taurus superoxide dismutase 2, mitochondrial (SOD2), nuclear gene encoding 
mitochondrial protein, mRNA   

82.4 

IRAK1 Bos taurus interleukin-1 receptor-associated kinase 1 (IRAK1), mRNA  77 
MTTP Bos taurus microsomal triglyceride transfer protein (MTTP), mRNA 75.2 
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Table 14.  qPCR performance among the genes measured in Liver Tissue 

 
Gene 

 
Median Ct 

 
Median ∆Ct 

 
Slope 

 
(R2) 

 
Efficiency 

%Relative mRNA 
Abundance 

MYD88 23.484 3.096 -3.025 0.999 2.141 0.876 
CREB3L3 21.131 0.855 -3.21 0.996 2.049 5.007 
NR3C1 22.230 1.839 -3.196 0.995 2.056 2.456 
TLR4 32.903 12.659 -2.698 0.925 2.348 0.0002 
TNF 27.493 7.156 -3.083 0.992 2.113 0.044 
FAAH 21.967 1.771 -3.232 0.992 2.039 2.618 
HMGCS2 18.215 -2.144 -3.05 0.995 2.127 46.633 
ACOX1 19.873 -0.507 -3.321 0.998 2.00 13.14 
CPT1A 21.255 0.998 -3.118 0.998 2.093 4.424 
ANGPTL4 23.605 3.228 -3.209 0.998 2.049 0.913 
PPARA 21.262 0.892 -3.063 0.998 2.121 4.728 
PPARD 25.626 5.249 -3.399 0.992 1.969 0.264 
XBP1 21.979 1.611 -2.882 0.992 2.223 2.553 
DGAT1 23.799 3.407 -3.036 0.996 2.135 0.698 
PERK 24.166 3.804 -3.125 0.994 2.089 0.561 
NFKB1 23.547 3.162 -3.233 0.992 2.039 0.972 
SOD2 20.389 0.034 -3.124 0.998 2.092 9.017 
IRAK1 24.095 3.726 -3.133 0.993 2.085 0.598 
MTTP 21.197 0.841 -2.561 0.998 2.457 4.3414 
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Table 15. The effect of intramammary LPS challenge at 7 d postpartum on hepatic relative 
mRNA expression (log-scale) in cows (n = 6/treatment) fed a control diet (1.34 Mcal/kg DM) or 
a moderate-energy diet (overfed; 1.62 Mcal/kg DM) during the entire dry period. 

  Day relative to parturition   P value 
Genes Diet -14 7 14 30 SEM1  Diet Time Diet × Time 
Metabolism           

DGAT1 Overfed -0.15b 0.14a 0.01b 0.03ab 0.20  0.94 0.01 0.38 
 Control -0.21b 0.27a -0.03b 0.07ab      
FAAH Overfed 0.39a -0.02b  0.07b 0.37a 0.09  0.44 0.01 0.43 
 Control 0.25a -0.11b 0.09b 0.24a      
MTTP Overfed 0.19a -0.11b -0.07b -0.12b 0.11  0.86 0.01 0.32 
 Control 0.12a 0.04b -0.03b -0.16b      

Stress and inflammation           
PERK Overfed 0.49b 0.32c 0.69a 0.73a 0.30  0.71 0.01 0.04 
 Control 0.75ab 0.55c 0.62bc 0.89a      
TLR4 Overfed 0.88ab 1.20a 0.58b 0.56*b 0.25  0.16 0.04 0.03 
 Control 0.93b 1.31ab 1.02b 1.60*a      
XBP1 Overfed -0.75c 0.10a -0.26b -0.41b 0.36  0.98 0.01 0.01 
 Control -0.46b 0.44a -0.62b -0.64b      

Inflammation and metabolic transcription regulators       
NFKB1 Overfed -0.39c 0.68a -0.56b -0.45bc 0.12  0.91 0.01 0.99 
 Control -0.39c 0.67a -0.61b -0.43bc      
CREB3L3 Overfed -0.16b 0.24a -0.10b 0.21a 0.15  0.43 0.01 0.06 
 Control -0.07bc 0.15a -0.44c -0.05ab      
PPARD Overfed -0.16b 0.24a -0.10b 0.21a 0.15  0.43 0.01 0.06 
 Control -0.07b 0.15a -0.44c -0.05ab      

1Largest SEM is shown. 
a-c Differences between days (time P < 0.05 or diet × time effects P < 0.10). 
*Denote significant interactions (diet × time effects P < 0.10) at a given day. 
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Figure 6. Daily DMI and milk production in cows (n = 9/treatment) fed a control diet (1.34 
Mcal/kg DM) or a moderate-energy diet (overfed; 1.62 Mcal/kg DM) during the entire dry 
period. 
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Figure 7. Liver lipid and triglyceride in cows (n = 9/treatment) fed a control diet (1.34 Mcal/kg 
DM) or a moderate-energy diet (overfed; 1.62 Mcal/kg DM) during the entire dry period. Sample 
at d 7 was collected 2.5 h after LPS Challenge. a-b Differences between days (time or within diet 
× time effects); *Diet × time at a given day. 
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 Figure 8.  Blood concentration of metabolic indicators in cows (n = 9/treatment) fed a control 
diet (1.34 Mcal/kg DM) or a moderate-energy diet (overfed; 1.62 Mcal/kg DM) during the entire 
dry period. Sample at d 7 was collected before LPS Challenge. a-c Differences between days 
(time or within diet × time effects); *Diet × time at a given day.   
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Figure 9. Blood concentration of indexes of inflammation and liver function in cows (n = 
9/treatment) fed a control diet (1.34 Mcal/kg DM) or a moderate-energy diet (overfed; 1.62 
Mcal/kg DM) during the entire dry period. Sample at d 7 was collected before LPS Challenge. a-d 

Differences between days (time or within diet × time effects); *Diet × time at a given day.     
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Figure 10. Blood concentration of selected vitamins in cows (n = 9/treatment) fed a control diet 
(1.34 Mcal/kg DM) or a moderate-energy diet (overfed; 1.62 Mcal/kg DM) during the entire dry 
period. Sample at d 7 was collected before LPS Challenge. a-c Differences between days (time or 
within diet × time effects); *Diet × time at a given day.  
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Figure 11. Neutrophil chemotaxis assessed with C5a (panel A) and human IL-8 (panel B), and 
phagocytosis in cows (n =9/treatment) fed a control diet (1.34 Mcal/kg DM) or a moderate-
energy diet (overfed; 1.62 Mcal/kg DM) during the entire dry period. Sample at d 7 was 
collected before LPS Challenge. a-c Differences between days (time or diet × time); *Diet × time 
at a given day.   
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Figure 12. Expression pattern of genes associated with lipid metabolism (CPT1A, ACOX1, 
HMGCS2, PPARA) and GH signaling (STAT5B, SOCS2) in liver from cows fed a control diet 
(1.34 Mcal/kg DM; N = 6) or a moderate-energy diet (overfed, n = 6; 1.62 Mcal/kg DM) during 
the entire dry period and receiving an intramammary LPS challenge at 7 d postpartum. a-c 

Differences between days (time or within diet × time effects); *denote significant interactions 
(diet × time effects) at a given day. 
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Figure 13. Blood serum concentration of growth hormone (GH) and insulin-like growth factor 1 
(IGF-1), and expression of GH signaling-related genes (STAT5B, SOCS2) in liver from cows fed 
a control diet (1.34 Mcal/kg DM; n = 6) or a moderate-energy diet (overfed, n = 6; 1.62 Mcal/kg 
DM) during the entire dry period and receiving an intramammary LPS challenge at 7 d 
postpartum. a-c Differences between days (time or within diet × time effects). *denote significant 
interactions (diet × time effects) at a given day. 
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Figure 14. Expression pattern of genes associated with stress (SOD2, NR3C1) and inflammation 
(TNF, ANGPTL4, IRAK1, MYD88) in liver from cows fed a control diet (1.34 Mcal/kg DM; n = 
6) or a moderate-energy diet (overfed, n = 6; 1.62 Mcal/kg DM) during the entire dry period and 
receiving an intramammary LPS challenge at 7 d postpartum. a-c Differences between days (time 
or within diet × time effects). *denote significant interactions (diet × time effects) at a given day. 
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Figure 15. Blood concentration of non-esterified fatty acids (NEFA), hydroxybutyric acid 
(BHBA), bilirubin and rectal temperature after intramammary LPS-challenge at 7 d postpartum 
in cows fed a control diet (1.34 Mcal/kg DM) or overfed energy (1.62 Mcal/kg DM) during the 
entire dry period. a-c Differences between days (time or diet × time effects); *denote significant 
interactions (diet × time effects) at a given day. 
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CHAPTER 4: 

Liver and Mammary Gland Transcript Profiles Affected by Prepartum Dietary Energy and Early-

Lactation E. coli Lipopolysaccharide Challenge in Dairy Cattle 

 

D.E. Graugnard*†, S.L. Rodriguez–Zas†, R.E. Everts†, H.A. Lewin†, and J.J. Loor*†§. 

 

*Mammalian NutriPhysioGenomics, †Department of Animal Sciences and §Division of 

Nutritional Sciences, University of Illinois, Urbana, IL 61801 
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INTRODUCTION 

Peripartal cows experience some degree of negative energy balance (NEB) and 

immunosuppression around parturition (Goff, 2006). Neutrophil trafficking, phagocytosis, and 

killing capacity are impaired at calving (Kehrli et al., 1989).  Lymphocyte numbers decrease 

around parturition as a function of reduced proliferation (Kehrli et al., 1989). The metabolic 

challenges associated with the onset of lactation are factors capable of affecting immune function  

not only in neutrophils but also liver and mammary (Goff, 2006).  The NEB associated with 

parturition leads to extensive mobilization of fatty acids stored in adipose tissue, thus, causing 

marked elevations in blood non-esterified fatty acids (NEFA) and hydroxybutyrate (BHBA) 

concentrations (Drackley et al., 2001).   

Prepartal level of dietary energy can potentially affect adipose tissue deposition and, thus, 

the amount of NEFA released into blood (Janovick and Drackley, 2010) and available for 

metabolism in liver and mammary gland (Drackley et al., 2005). From a health standpoint, 

clinical mastitis is most likely to occur during the first mo of lactation (Oviedo-Boyso et al., 

2007) and in many cases results from an infection established during the dry period or during 

early lactation (Goff and Horst, 1997). Once a pathogen is detected by the receptors in the 

epithelial cells of the mammary tissue the acute phase response begins and activates the immune 

system to eliminate the pathogen. This defense mechanism includes anatomical, cellular, and 

soluble factors that act in coordination and are crucial to the modulation of the mammary 

resistance and susceptibility to infection (Oviedo-Boyso et al., 2007).  

The liver is a central organ during an inflammatory response in the organism. It is 

responsible for determining the level of essential metabolites during the critical stages of stress. 

In addition, the liver synthesizes the necessary components for immediate defense at the site of 
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tissue damage (Baumann and Gauldie, 1994). Current dry period feeding practices can lead to 

elevated intakes of energy, which can increase fat deposition in the viscera and upon parturition 

lead to compromised liver metabolism (Beever, 2006, Drackley et al., 2005).  Our general 

hypothesis was that overfeeding dietary energy during the dry period, accompanied by the 

metabolic challenges associated with the onset of lactation would render the cow’s immune 

function less responsive early postpartum when the likelihood of a mammary infection is higher . 

Transcript profiling using microarrays is an excellent technique to decipher complex gene 

networks underlying differences in physiological state that can help understanding relationships 

with the liver and mammary gland with other tissues. In addition it has been demonstrated that 

many of these adaptations can be influenced by nutritional management strategies during the dry 

period (Loor et al., 2005, Loor et al., 2006, Loor et al., 2007).  

 

OBJECTIVES 

The main objectives of this study were to determine gene expression patterns in dairy 

cattle liver and mammary tissues: 

1) In response to an early-lactation E. coli lipopolysaccharide intra-mammary challenge (LPS vs. 

non-LPS) in cows overfed during the dry period. 

2) In response to different prepartal dietary energy levels (1.34 vs. 1.62 Mcal/kg DM) and  an 

early-lactation E. coli lipopolysaccharide intra-mammary challenge. 
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MATERIALS AND METHODS 

All procedures involving animals received approval from the University of Illinois 

Institutional Animal Care and Use Committee (protocol # 06145).  

 

Animals and Diets 

A detailed description of experimental design and data collection was previously 

described in Chapters 2 and 3. Briefly 28 Holstein cows entering their second or greater lactation 

were enrolled in the study. Cows were assigned to a control diet (n =14, controlled energy, high 

fiber), which was fed for ad libitum intake to provide at least 100% of calculated NEL (1.34 

Mcal/kg diet DM), or fed a diet providing ~159% calculated NEL requirements (n=14, overfed 

diet, 1.62 Mcal/kg DM) during the entire 45-d dry period. Diets were fed as TMR once daily 

(0600 h) using an individual gate feeding system (American Calan, Northwood, NH, USA).  

Cows were housed in a ventilated enclosed barn during the dry period and had access to sand-

bedded free stalls until 5 d before expected calving date, when they were moved to an individual 

maternity pen bedded with straw. After parturition, all cows were moved to a tie-stall barn and 

were fed a common lactation diet (NEL = 1.69 Mcal/kg DM) as TMR once daily (0600 h) and 

milked twice daily (0400 and 1600 h).  Diets were mixed in a Keenan Klassik 140 mixer wagon 

(Richard Keenan & Co., Ltd., Borris, County Carlow, Ireland) equipped with knives and serrated 

paddles; straw in large square bales was chopped directly by the mixer without preprocessing.   

 

Lipopolysacharide Challenge 

At ~7 DIM, 7 cows on each of the two experimental diets were assigned to receive an 

intra-mammary E. coli lipopolysacharide (LPS) challenge (200 μg, strain 0111:B4, cat. # L2630, 
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Sigma Aldrich, St. Louis, MO) and 7 cows in the overfed diet only, served as non-LPS controls. 

Prior to LPS challenge (~2 days), foremilk samples from all quarters of each cow were cultured 

and confirmed to be bacteriologically negative. LPS was dissolved in 20 mL of 0.09% sterile 

physiological saline (Hospira, Lake Forest, IL). Immediately after milking (0530 h), one rear 

mammary quarter was disinfected with cotton wool pre-soaked in 70% ethanol and the LPS was 

infused via a sterile disposable syringe fitted with a sterile teat cannula using the full insertion 

infusion method. The quarter was thoroughly massaged.  

 

Liver and Mammary Biopsies 

Biopsies of liver were sampled via puncture biopsy (Dann et al., 2006) from cows under 

local anesthesia. Samples were collected during d 7 relative to parturition. The procedure was 

performed at approximately 0730 h (2 h after LPS or non-LPS) to avoid excessive infiltration of 

PMN, i.e. as a means to avoid excessive confounding on tissue gene expression.Biopsies of 

mammary tissue were collected simultaneously with the liver biopsies from a rear quarter in all 

the cows (infused with LPS or selected randomly in the case of the non-LPS group). Cows were 

restrained in a squeeze chute to minimize movement and were sedated using an intravenous 

administration of xylazine HCl (35 µg/kg BW; Phoenix Pharmaceuticals, St. Joseph, MO). The 

hair around the tip of the tail was clipped and the tail was tied to prevent contamination of the 

surgical site.  The biopsy site was carefully selected to avoid subcutaneous blood vessels as well 

as the cisternal region.  An area of skin (10 cm2) on the rear quarter was clipped closely, washed, 

and sterilized with iodine surgical scrub.  For local anesthesia, lidocaine HCl (5 mL; Phoenix 

Pharmaceuticals, St. Joseph, MO) was administered subcutaneously.  The biopsy site was then 

washed an additional 3X as described above.  After washing, a 3 cm incision was made through 
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the skin and underlying fascia to the point where the mammary gland capsule was visible.  The 

biopsy trocar was attached to a high-speed (16 Volts) cordless drill.  The trocar consisted of a 

stainless steel cannula of 90 mm in length with a 6-mm diameter containing a retractable blade at 

the cutting edge of the cannula to sever the core of the tissue once it was cut.  Once the tissue 

was collected, pressure was applied to the incision area until bleeding ceased.  The skin incision 

was closed with Michel wound clips (11 mm; Down Surgical, Mississauga, ON, Canada) and a 

coating of Prodine (Phoenix Pharmaceutical, Inc., St. Joseph, MO) iodine ointment was applied 

to the surgical site. Liver and mammary tissues ( ~ 1g) were frozen immediately in liquid 

nitrogen and stored until isolation of RNA. Cows were monitored during two weeks after biopsy 

during the milking in order to evacuate blood clots and ensure proper healing of the incision 

(cleaning and iodine ointment applications were performed when necessary).   

   

RNA Isolation 

RNA was isolated from mammary tissue using TRIzol Reagent (Invitrogen, Carlsbad, 

CA).  Mammary tissue was thawed and immediately homogenized in TRIzol reagent with 1 µL 

of linear acrylamide (Ambion, Inc., Austin, TX) using a Polytron power homogenizer at 

maximum speed. Upon centrifugation, total RNA was separated with chloroform followed by 

acid phenol:chloroform (Ambion, Inc., Austin, TX).  Total RNA was then precipitated with 

isopropanol, and the RNA pellet was cleaned with 75% ethanol prior to reconstitution in RNA 

storage buffer (Ambion, Inc., Austin, TX) for storage at -80°C.  RNA integrity and quality was 

confirmed if OD260mm/OD280mm absorption ratio was > 1.7 (NanoDrop ND-1000, NanoDrop 

Technologies, Rockland, DE).   
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Microarrays  

 A bovine oligonucleotide (70-mers) microarray with >13,000 annotated sequences 

developed at the University of Illinois (Loor et al., 2007) was used for transcript profiling.  

Details on the development, annotation, and use of this microarray have been reported previously 

(Loor et al., 2007).  Methods for microarray hybridization and scanning were as reported by Loor 

et al. (2007).  Briefly, slides were hydrated, dried, and placed in a UV Stratalinker 1800 

(Stratagene, La Joya, CA) for ~5 min.  Slides were washed with 0.2% SDS solution, rinsed with 

MilliQ (Millipore) H2O, and placed in warm prehybridization soln for 45 min at 42 oC. The 

same amount of Cy3- or Cy5-labelled cDNA from mammary and a reference standard RNA pool 

(made of different bovine tissues) were co-hybridized using a dye-swap design (i.e., two 

microarrays per sample).  Slides were incubated for 48 h at 45 oC prior to scanning. Criteria for 

evaluation of slide quality included: identification of number of spots with a minimum median 

signal intensity of 3 SD above background; keeping slides with a minimum of 20,000 spots with 

minimum median signal intensity of 3 SD above background in both Cy3 and Cy5 channels; and 

keeping slides with a minimum mean intensity of 400 relative fluorescent units in both Cy3 and 

Cy5 channels across the entire slide. 

 

Data Analyses   

GeneSpring GX (Agilent Technologies) was used for data visualization and preliminary 

data mining.  Subsequently data from microarrays (84 slides) was normalized for dye and 

microarray effects (i.e., Lowess normalization and microarray centering) and used for statistical 

analysis. Data were analyzed using the Proc MIXED procedure of SAS (SAS Inst. Inc., Cary, 

NC).  Fixed effects were diets (control, overfed) treatment (LPS, non-LPS) and dye (Cy3, Cy5).  
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Random effects included cow and microarray. Raw P values were adjusted using Benjamini and 

Hochberg’s false discovery rate (FDR) (Reiner et al., 2003). Differences in relative expression 

due to diet or treatment were considered significant at an FDR-adjusted P ≤ 0.38 or at P ≤ 0.02 

(Table 16).   

 

Dynamic Impact Approach 

This novel bioinformatics approach has been described in part (Loor et al., 2011) and in 

more detail by Bionaz, Periasamy, Rodriguez-Zas, Everts, Lewin, Hurley, and Loor (currently 

under review at PLoS One). The Dynamic Impact Approach (DIA) is based on a calculated 

impact and the direction of the impact (i.e., induce/increase or inhibited/decrease) of DEG on the 

biological terms (e.g., pathways, functions, and other terms). The DIA was implemented using 

MS Excel and calculations run automatically the biological terms obtained from different data 

bases. In this analysis the entire microarray data set with associated statistical P-values and fold 

changes was imported into the Database for Annotation, Visualization and Integrated Discovery 

(DAVID v6.7) and Kyoto Encyclopedia of Genes and Genomes (KEGG) software in order to 

obtain significant biological processes, molecular functions and pathways that were further 

analyzed with the DIA approach.  

The rational of the method lies on the fact that in cells the transcriptome expression is 

non-random. From this assumption the change in flux of a metabolic or a signaling pathway is 

determined by the change in number and amount of proteins involved in the pathway. If a large 

number of proteins involved in a pathway are significantly affected by the treatment or 

physiological phase we can expect to have a large impact of such treatment on the pathway. 

However, the final flux is not just determined by the number of protein that change by the 
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treatment but also by the direction of the change (i.e., down-regulated or up-regulated). For 

instance a pathway where all proteins are significantly affected by a specific treatment can be 

highly impacted, but the direction of the flux will be determined (considering all the proteins 

having the same effect on the pathway) by the number of up-regulated vs. the number of down-

regulated proteins. When the ratio of up-regulated/down-regulated = 1, the flux can be 

considered overall unchanged, despite the fact that the treatment had a large impact on the 

pathway (Morandini, 2009). In addition, also the magnitude of change of proteins content 

determines the impact on metabolic or signaling flux. For instance, if two treatments affect 

expression of the same proteins with the same direction of change (e.g., up-regulated) but one 

treatment change the amount of proteins in average twice as much compared to the other 

treatment we will expect to have ca. twice as much flux in the former treatment compared to the 

latter. When considering the fact that we use few samples to infer the effect of treatments or 

physiological phases for the universal population we need to account also for the significance of 

the change of protein expression. For instance if on the previous example the number of proteins 

and the magnitude of change (and direction of change) of the proteins were equal between the 

two treatment but in the first treatment the average significance is 10-fold lower than the second 

treatment we will expect that in the universal population the flux of the pathway will be 10-fold 

more significantly affected in the second than in the first treatment. 

Considering all the above points we can summarize that a specific treatment impacts a 

pathway (or any biological term) in proportion of the number of proteins involved in such 

pathway significantly affected by the treatment, the average magnitude of the effect on proteins 

expression, and the average significance of the proteins affected. For the microarray analysis we 

measure only gene expression and not protein expression, but we assumed that the expression of 
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genes is proportional to expression of proteins. This is a gross, but unavoidable, assumption 

because the correlation between mRNA and protein is highly variable between types of mRNA 

and estimated to be less than 0.5 (Gygi et al., 1999, Schwanhausser et al., 2011).  Based on this 

rationale the impact and the direction of the impact are calculated as: 

 

Impact = [Proportion of DEG in the pathway (corrected by the number of genes in the pathway 

present in the array or background)] × [average log2 fold change of the DEG] × [average of –

log P-value of the DEG] 

 

Direction of the Impact = Impact of up-regulated DEG – Impact of down-regulated DEG 

 

RESULTS AND DISCUSSION 

 As explained in the materials and methods section in this study we did not use the non-

LPS group fed a control diet during the dry period due to removal of cows because of health 

problems. However, the effect of prepartal dietary energy supplementation was assessed in the 

group of cows that received LPS (Overfed energy diet vs. Control diet, all cows receiving LPS 

challenge) and the effect of LPS was evaluated solely in cows overfed energy during the dry 

period (LPS vs. Non-LPS. The analysis was performed in liver and mammary tissues resulting in 

4 comparisons. After the correction of P- value and FDR (Table 16) we uncovered 676 and 51 

DEG in liver and mammary tissue, respectively, due to prepartal diet. In addition, 758 and 859 

DEG in liver and mammary tissue, respectively, were found due to LPS in cows overfed energy 

prepartum.  
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Chromosome Evaluation 

The determination of impact of DEG on chromosomes can be useful to identify regions 

of chromosomes with larger groups of affected genes. This information can help in genetic 

selection and identification of genes in quantitative trait loci (QTL). The impact and the 

direction of the impact of the DEG on bovine chromosome are reported in Table 18. Overall, the 

most impacted chromosomes in this comparison were BTA12, BTA14, and BTA22. BTA12 has 

been associated with milk production and fertility traits (Olsen et al., 2011).  BTA14 has been 

associated with traits of economic importance and some of the genes (CRH,CYP11B1, DGAT1, 

FABP  and TG) responsible for those traits have also been identified (Wibowo et al., 2008). 

BTA14 also has been associated with a trait related to ovulation rate (Gonda et al., 2004). 

BTA22 has been associated with traits related with mechanisms of defense and the immune 

system (Band et al., 2000). The direction of the flux of BTA12 and BTA14 in the liver dataset 

indicated inhibition during LPS challenge in the overfed group compared to the control. In an 

opposite direction, the flux in those chromosomes seemed to be increased or activated in LPS 

challenged cows compared to controls (in liver and mammary gland tissues). BTA22 flux 

direction was inhibited in the liver for both effects (Prepartal diet and LPS challenge) in the 

overfed group. BTA22 was activated in the mammary gland of LPS treated cows, as expected, 

compared to the controls. 

 

Prepartum Dietary Energy Effect in Liver 

 Table 17 shows the canonical KEGG pathways. Overall, the direction of the flux was 

inhibited in most of the pathways in the overfed group compared to the control. The most 

impacted pathway was “translation” with a consistent decrease in flux. Also lipid and energy 
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metabolism were among the impacted canonical pathways. Lipid metabolism had an increasing 

in flux in the overfed group. This last category is quite extensive, and comprises fatty acid 

oxidation. This finding is in agreement with higher rates of mobilization resulting from 

overfeeding during the dry period (Drackley, 1999, Drackley et al., 2005, Zammit, 1984) . Table 

19 shows the results of the top KEGG subcategories of pathways in liver in the overfed vs. 

control comparison. The direction of flux for the majority of the impacted functions was 

inhibition. 

Table 20 shows molecular functions provided by DAVID in the comparison of diet effect 

in liver. The results of this comparison revealed that the most impacted functions had a 

decreasein flux in the overfed group. The most impacted function was phospholipid-

hydroperoxide glutathione peroxidase activity. This enzyme provides significant protection 

against singlet oxygen generated lipid peroxidation via removal of lipid hydroperoxides and 

suggest that lipid hydroperoxides are major mediators in this cell injury process (Wang et al., 

2001). Other impacted functions were “RNA primary transcript binding” and CD4 receptor 

binding. Table 21 shows DAVID biological processes. The overall flux direction of the impacted 

biological processes was inhibition, which followed a similar pattern to the direction of the 

KEGG analysis. Among the processes relevant to the context of prepartal energy feeding, 

connective tissue replacement during inflammation response was highly impacted with a lower 

flux in the overfed group. Also in this comparison we observed positive regulation of centrosome 

duplication and positive regulation of tyrosine phosphorylation of STAT protein as two pathways 

that were activated in the overfed group. The STAT (Signal Transducer and Activator of 

Transcription) group of proteins regulates many aspects of growth, survival and differentiation of 

cells. (Khatib et al., 2009). STAT3 for instance is a transcription factor that regulates the 
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expression of a variety of genes in response to cell stimuli, and thus plays a key role in many 

cellular processes such as cell growth and apoptosis (Yuan et al., 2004). 

 

  Prepartum Dietary Energy Effect in the Mammary Gland 

A total of 51 DEG genes resulting from the prepartal diet effect in mammary gland 

satisfied the P-value restriction but did not meet the FDR established (0.38). Interestingly, in the 

context evaluated the response observed in the mammary gland suggested a state of self 

preservation. Performance and metabolic indices results related to energy balance affected by 

prepartal diet (Chapters 1and 3), clearly indicated that during the transition period dramatic 

changes are occurring in terms of energy mobilization. However these changes and adaptations 

impact the metabolically active tissues in different ways. For instance the adipose tissue 

hydrolyzes triglycerides in order to provide energy to meet the increasing requirements during 

the onset of lactation (Horst et al., 2005). The liver oxidizes and accumulates NEFA providing 

intermediate energy compounds for the mammary gland and other tissues. Finally the mammary 

gland initiates the synthesis of milk and this event instinctively becomes a priority (Drackley, 

1999). Physiologically, meeting the energy requirements for milk production becomes a priority 

as well. This behavior compels the adipose and liver tissues to make adaptations in terms of 

energy utilization that are reflected at the gene level explaining the greater amount of DEG in the 

liver (676 genes) compared to mammary gland (51). The mammary gland seems to be 

programmed to produce milk, regardless of the source of the necessary intermediate molecules, 

to warranty the survival of the newborn and in this way preserve the specie. This mechanism, 

could explain in part the few changes observed in the mammary gland as a consequence of the 

prepartal dietary treatment.   
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Lipopolysaccharide Effect in Liver  

Table 17 shows KEGG canonical pathway results. In the liver the comparison of LPS vs. 

Non LPS seemed to be overall activated. In this comparison we observed some pathways with 

relatively high impact that included metabolism of other amino acids and biosynthesis of other 

secondary metabolites. In the LPS challenged group the direction of flux of “metabolism of other 

amino acids” and “biosynthesis of other secondary metabolites” was inhibition. Table 22 showed 

the top KEGG pathways sub-categories based on relative impact. Among the most impacted sub-

categories were fatty acid elongation in mitochondria, p53 signaling pathway, pyruvate 

metabolism, apoptosis and PPAR signaling. In the LPS challenged group the direction of the flux 

in the p53 signaling pathway was activation. The p53 activation is induced by a number of stress 

signals, including oxidative stress. The p53 protein is employed as a transcriptional activator of 

p53-regulated genes. This results in three major outputs including cell cycle arrest, cellular 

senescence or apoptosis. In dairy cows this pathway has been related to be activated in response 

to negative energy balance (Morris et al., 2009). 

Table 23 shows the top molecular functions from DAVID based on relative impact. 

Among the molecular functions with high impact and relevance were calcium-dependent 

cysteine-type inhibitor activity and functions related with thyroid hormone activation. However, 

a priori, the top molecular functions observed in this comparison do not seem to have great 

relevance to the effect of LPS challenge in the liver. 

Table 24 shows the top biological processes from DAVID.  Among the most impacted 

biological processes was monocyte chemotaxis. This process is of great importance for immune 

cells during inflammation or immune response. In the LPS challenged group the flux direction of 

monocyte phagocytosis was activation, thus, providing evidence of the liver response to the LPS. 
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Other relevant biological process were positive regulation of tyrosine phosphorylation of STAT3 

protein with an activated flux in the LPS infused group. Phosphorylation of STAT3 has been 

related with immune cells and there is evidence of STAT3 upregulation in the presence of LPS 

(Chen et al., 2011) .  

 

Lipopolysaccharide Effect in the Mammary Gland 

 The most impacted KEGG pathway was immune system with a flux direction indicating 

activation in the LPS challenged group (Table 17). Table 25 shows the KEGG pathways sub-

categories; overall, most of the categories in this table had an activated flux direction due to the 

LPS challenge. Among the relevant pathways sub-categories that were highly impacted and also 

with an activated flux direction in the LPS treated group were apoptosis and chemokine signaling 

pathway (Table 25).   

Among the most impacted molecular functions from DAVID in the LPS challenged 

group were nuclear localization sequence binding, CXCR chemokine receptor binding, fibroblast 

growth factor 2 binding and fibrinogen binding (Table 26). Most of the molecular functions were 

activated in the mammary gland. Overall, most of the biological processes were with an 

increased flux in the LPS group as well (Table 27). The most relevant and impacted processes 

included negative regulation of NF-kappaB, negative regulation of antigen processing and 

presentation, monocyte chemotaxis and toll-like receptor 4 signaling pathway. 

Overall, the response observed in the mammary gland in the comparison assessing the 

effect of LPS revealed a great level of activation in the different analysis. The mammary gland 

during the transition period seemed to be extremely responsive to inflammation at the gene level. 
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CONCLUSION 

This analysis provided specific functions, processes and pathways that can facilitate the 

comprehension of the underlying mechanism between metabolic status during the transition 

period and the risk of mastitis during early lactation. Liver tissue analysis revealed an evident 

increase in lipid metabolism that was as a consequence of prepartal overfeeding. In response to 

LPS different pathways associated with immune cells signaling were impacted. Results from the 

mammary tissue revealed activation associated with inflammation and the immune system in 

cows challenged with LPS early postpartum.  
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Table 16. Overall microarray differentially expressed genes in liver and mammary tissues 
restricted by P-value and Benjamini and Hochberg’s false discovery rate. 
 

    Cutoffs 
Effect DEG1 P- value FDR2 
Overfed vs. Control 

   Liver 676 0.02 0.38 
Mammary 51 0.02 1.00 

LPS vs. Non-LPS  
   Liver 758 0.02 0.35 

Mammary 859 0.02 0.31 
1Differentially expressed genes 
2False discovery rate 
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Table 17. Impact of DEG during early lactation (7 d) in canonical pathways from KEGG. All the 
cows in the comparison Overfed vs. Control received an LPS challenge. All the cows on the LPS 
vs. Non-LPS comparison were fed 1.62 Mcal/kg DM of energy during the dry period (Overfed 
energy diet).    

Pathways 
1. Metabolism
1.1 Carbohydrate Metabolism
1.2 Energy Metabolism
1.3 Lipid Metabolism
1.4 Nucleotide Metabolism
1.5 Amino Acid Metabolism
1.6 Metabolism of Other Amino Acids
1.7 Glycan Biosynthesis and Metabolism
1.8 Metabolism of Cofactors and Vitamins
1.9 Metabolism of Terpenoids and Polyketides
1.10 Biosynthesis of Other Secondary Metabolites
1.11 Xenobiotics Biodegradation and Metabolism
2. Genetic Information Processing
2.1 Transcription
2.2 Translation
2.3 Folding, Sorting and Degradation
2.4 Replication and Repair
3. Environmental Information Processing
3.1 Membrane transport
3.2 Signal Transduction
3.3 Signaling Molecules and Interaction
4. Cellular Processes
4.1 Transport and Catabolism
4.2 Cell Motility
4.3 Cell Growth and Death
4.4 Cell Communication
5. Organismal Systems
5.1 Immune System
5.2 Endocrine System
5.3 Circulatory System
5.4 Digestive System
5.5 Excretory System
5.6 Nervous System
5.7 Sensory System
5.8 Development
5.9 Environmental Adaptation

Overfed vs. Control LPS vs. Non-LPS
Liver Liver Mammary

Impact 0 9 18 36
Flux -36 -18 0 18 36  
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Table 18. Impact of DEG during early lactation (7 d) in bovine chromosomes. All the cows in 
the comparison Overfed vs. Control received an LPS challenge. All the cows on the LPS vs. 
Non-LPS comparison were fed 1.62 Mcal/kg DM of energy during the dry period (Overfed 
energy diet).    

Chromosome
BTA1
BTA2
BTA3
BTA4
BTA5
BTA6
BTA7
BTA8
BTA9
BTA10
BTA11
BTA12
BTA13
BTA14
BTA15
BTA16
BTA17
BTA18
BTA19
BTA20
BTA21
BTA22
BTA23
BTA24
BTA25
BTA26
BTA27
BTA28
BTA29
BTAX

Overfed vs. Control LPS vs. Non-LPS
Liver Liver Mammary

 
Impact 0 1.75 3.5 7
Flux -4 -2 0 2 4  
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Table 19. Sub-categories from KEGG impact of DEG during early lactation (7 d) in liver. All 
the cows received an LPS challenge.  
 

Sub-category from KEGG
Ribosome
Valine, leucine and isoleucine biosynthesis
Hedgehog signaling pathway
Glyoxylate and dicarboxylate metabolism
Basal transcription factors
Mismatch repair
Pentose and glucuronate interconversions
Sulfur metabolism
Ubiquinone and other terpenoid-quinone biosynthesis
Aminoacyl-tRNA biosynthesis
Primary immunodeficiency
Long-term potentiation
Cytosolic DNA-sensing pathway
Sphingolipid metabolism
Glycosylphosphatidylinositol(GPI)-anchor biosynthesis
Glycosaminoglycan degradation
Parkinson's disease
Alzheimer's disease
Melanogenesis
Proteasome
Arrhythmogenic right ventricular cardiomyopathy (ARVC)
Calcium signaling pathway
Wnt signaling pathway
Oxidative phosphorylation
Gastric acid secretion
Fatty acid elongation in mitochondria
Endocytosis
Glioma
Glycerolipid metabolism
Basal cell carcinoma

Overfed vs. Control
Liver 

 
Impact 0 9 18 36
Flux -36 -18 0 18 36  
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Table 20. Molecular functions from DAVID impact of DEG during early lactation (7 d) in liver. 
All the cows received an LPS challenge. 
 

Molecular Functions from DAVID
Phospholipid-hydroperoxide glutathione peroxidase activity
ISG15 activating enzyme activity
Cerebroside-sulfatase activity
Prostaglandin-I synthase activity
5S rRNA binding
Peptide hormone receptor binding
Thyrotropin-releasing hormone receptor binding
tRNA adenylyltransferase activity
Vitamin D3 receptor activity
Mannose-1-phosphate guanylyltransferase activity
Arylsulfatase activity
20-alpha-hydroxysteroid dehydrogenase activity
Mannose-phosphate guanylyltransferase activity
CD4 receptor binding
Arachidonate 15-lipoxygenase activity
rRNA primary transcript binding
Hormone-sensitive lipase activity
Pre-mRNA 3'-splice site binding
Second spliceosomal transesterification activity
Complement receptor activity
Lanosterol synthase activity
Estrogen response element binding
Lysophospholipase activity
Neurotrophin receptor activity
RNA polymerase I transcription factor activity
Oxidosqualene cyclase activity
Hyaluronan synthase activity
Inhibin binding
Alpha-1,3-mannosyltransferase activity
Inhibin beta-A binding

Overfed vs. Control
Liver

 
Impact 0 50 100 200
Flux -200 -100 0 100 200  
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Table 21. Biological processes from DAVID impact of DEG during early lactation (7 d) in liver. 
All the cows received an LPS challenge. 
 

Biologica l  Processes  from DAVID
Detection of chemica l  s timulus  involved in sensory perception of taste
Detection of chemica l  s timulus  involved in sensory perception
Detection of chemica l  s timulus  involved in sensory perception of bi tter taste
Regulation of mitotic centrosome separation
Pos i tive regulation of mitotic centrosome separation
Transcriptional  preini tiation complex assembly
Regulation of vi tamin D 24-hydroxylase activi ty
Vi tamin D receptor s ignal ing pathway
Pos i tive regulation of vi tamin D 24-hydroxylase activi ty
Pos i tive regulation of hel icase activi ty
Regulation of hel icase activi ty
Nuclear mRNA 3'-spl ice s i te recognition
Pos i tive regulation of retinoic acid receptor s ignal ing pathway
Glutamate secretion
Radia l  pattern formation
Enkephal in process ing
Pos i tive regulation of centrosome dupl ication
Tyros ine phosphorylation of STAT protein
Regulation of centrosome cycle
Connective ti ssue replacement during inflammatory response
STAT protein nuclear trans location
Pos i tive regulation of centrosome cycle
Pos i tive regulation of tyros ine phosphorylation of Stat3 protein
Activation of Rho GTPase activi ty
Leukemia  inhibi tory factor s ignal ing pathway
Negative regulation of axon extens ion
rRNA transport
Activation of Ras  GTPase activi ty
rRNA export from nucleus
Negative regulation of developmenta l  growth

Overfed vs . Control
Liver

Impact 0 50 100 200
Flux -190 -95 0 95 190  
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Table 22. Sub-categories from KEGG impact of DEG during early lactation (7 d) in liver. All 
the cows were fed 1.62 Mcal/kg DM of energy during the dry period (Overfed energy diet).    
 

Sub-category from KEGG
Cyanoamino acid metabolism
Taurine and hypotaurine metabolism
Fatty acid elongation in mitochondria
O-Mannosyl glycan biosynthesis
Ubiquinone and other terpenoid-quinone biosynthesis
Butirosin and neomycin biosynthesis
Pentose and glucuronate interconversions
Thyroid cancer
Galactose metabolism
Selenoamino acid metabolism
NOD-like receptor signaling pathway
p53 signaling pathway
Small cell lung cancer
Glycosaminoglycan biosynthesis - keratan sulfate
Pyruvate metabolism
Aldosterone-regulated sodium reabsorption
Apoptosis
Phenylalanine metabolism
Valine, leucine and isoleucine degradation
PPAR signaling pathway
Fructose and mannose metabolism
Basal transcription factors
Glycerolipid metabolism
Cell cycle
Type II diabetes mellitus
One carbon pool by folate
Non-small cell lung cancer
Acute myeloid leukemia
MAPK signaling pathway
Amino sugar and nucleotide sugar metabolism

LPS vs. Non-LPS
Liver

 
Impact 0 15 30 60
Flux -60 -30 0 30 60  
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Table 23. Molecular functions from DAVID impact of DEG during early lactation (7 d) in liver. 
All the cows were fed 1.62 Mcal/kg DM of energy during the dry period (Overfed energy diet). 
 

Molecular Functions from DAVID
20-alpha-hydroxysteroid dehydrogenase activity
Calcium-dependent cysteine-type endopeptidase inhibitor activity
FATZ binding
Thyroid hormone receptor coactivator activity
Thyroid hormone receptor activator activity
ZASP binding
FATZ 1 binding
Catechol O-methyltransferase activity
Leukemia inhibitory factor receptor binding
Guanidinoacetate N-methyltransferase activity
CD27 receptor binding
Viral receptor activity
Acyl binding
Prostaglandin-endoperoxide synthase activity
Sterol esterase activity
Histone methyltransferase activity (H2A-R3 specific)
RNA-3'-phosphate cyclase activity
Argininosuccinate synthase activity
Complement binding
Histone methyltransferase activity (H3-R2 specific)
Triglyceride binding
Amide transporter activity
dTDP-glucose 4,6-dehydratase activity
Protein farnesyltransferase activity
Protein-arginine omega-N asymmetric methyltransferase activity
ErbB-3 class receptor binding
Lipoprotein lipase activity
Stem cell factor receptor activity
Aldehyde reductase activity
Inhibin binding

LPS vs. Non-LPS
Liver

 
Impact 0 52.5 105 210
Flux -210 -105 0 105 210  
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Table 24. Biological processes from DAVID impact of DEG during early lactation (7 d) in liver. 
All the cows were fed 1.62 Mcal/kg DM of energy during the dry period (Overfed energy diet). 
 

Biological Processes from DAVID

FasL biosynthetic process

Activation of pro-apoptotic gene products

Relaxation of cardiac muscle

Negative regulation of cardiac muscle contraction

Retrograde transport, vesicle recycling within Golgi

Positive regulation of establishment of protein localization to plasma membrane

Regulation of establishment of protein localization to plasma membrane

Golgi to plasma membrane protein transport

Protein targeting to Golgi

Lymph vessel development

Lymphangiogenesis

Leukemia inhibitory factor signaling pathway

Regulation of epithelial cell  migration

Regulation of acrosome reaction

Lung saccule development

Positive regulation of tyrosine phosphorylation of Stat3 protein

Monocyte chemotaxis

Lung cell  differentiation

Cellular chaperone-mediated protein complex assembly

Positive regulation of epithelial cell  proliferation involved in wound healing

Lung epithelial cell  differentiation

Elastin metabolic process

Lactate metabolic process

Clara cell  differentiation

Positive regulation of epithelial cell  migration

Type II pneumocyte differentiation

Response to muscle activity

Regulation of endothelial cell  differentiation

Folic acid and derivative catabolic process

Negative regulation of cyclic-nucleotide phosphodiesterase activity

LPS vs. Non-LPS

Liver

Impact 0 80 160 320
Flux -160 -80 0 80 160  
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Table 25. Sub-categories from KEGG impact of DEG during early lactation (7 d) in mammary 
gland. All the cows were fed 1.62 Mcal/kg DM of energy during the dry period (Overfed energy 
diet). 
 

Sub-category from KEGG
NOD-like receptor signaling pathway
Malaria
RIG-I-like receptor signaling pathway
Apoptosis
Cytosolic DNA-sensing pathway
Small cell lung cancer
Chemokine signaling pathway
Chagas disease
Toll-like receptor signaling pathway
Adipocytokine signaling pathway
Chronic myeloid leukemia
B cell receptor signaling pathway
Neurotrophin signaling pathway
Pathways in cancer (overview)
Prostate cancer
TGF-beta signaling pathway
Leishmaniasis
Bladder cancer
ECM-receptor interaction
Focal adhesion
Intestinal immune network for IgA production
Basal transcription factors
Phagosome
Drug metabolism - other enzymes
T cell receptor signaling pathway
Prion diseases
Protein export
Complement and coagulation cascades
Cell adhesion molecules (CAMs)
Type II diabetes mellitus

Lps vs. Non-LPS
Mammary 

 
Impact 0 80 160 320
Flux -160 -80 0 80 160  
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Table 26. Molecular functions from DAVID impact of DEG during early lactation (7 d) in 
mammary gland. All the cows were fed 1.62 Mcal/kg DM of energy during the dry period 
(Overfed energy diet). 
 

Molecular Functions from DAVID
Nuclear localization sequence binding
Fibrinogen binding
Fibroblast growth factor 2 binding
Fructose binding
CXCR chemokine receptor binding
Interleukin-8 receptor binding
Interleukin-6 receptor binding
Ribokinase activity
Collagen V binding
Leukemia inhibitory factor receptor binding
Interleukin-5 receptor binding
Superoxide dismutase activity
Oxidoreductase activity, acting on superoxide
Glutamate-cysteine ligase catalytic subunit binding
Fibroblast growth factor binding
Double-stranded RNA adenosine deaminase activity
Fructose-bisphosphate aldolase activity
Fibronectin binding
Isovaleryl-CoA dehydrogenase activity
NF-kappaB binding
DNA topoisomerase type I activity
Fibroblast growth factor receptor antagonist a
Nitric-oxide synthase regulator activity
RNA helicase activity
Interleukin-1 receptor antagonist activity
Aldehyde-lyase activity
Fibroblast growth factor receptor binding
Arginine binding
Chemokine activity
Chemokine receptor binding

LPS vs. Non-LPS
Mammary

 
Impact 0 150 300 600
Flux -600 -300 0 300 600  
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Table 27. Biological processes from DAVID impact of DEG during early lactation (7 d) in 
mammary gland. All the cows were fed 1.62 Mcal/kg DM of energy during the dry period 
(Overfed energy diet). 
 

Biological Processes from DAVID
Negative regulation of NF-kappaB import into nucleus
Cytoplasmic sequestering of NF-kappaB
Negative regulation of Notch signaling pathway
Cytoplasmic sequestering of transcription factor
Negative regulation of antigen processing and presentation
Cytoplasmic sequestering of protein
Negative regulation of antigen processing and presentation
Age-dependent response to reactive oxygen species
Monocyte chemotaxis
FasL biosynthetic process
Negative regulation of plasminogen activation
Negative regulation of dendritic cell antigen processing a
Regulation of dendritic cell antigen processing and presen
Negative regulation of plasma membrane long-chain fatty acids
Regulation of plasma membrane long-chain fatty acid transp
Regulation of plasminogen activation
Regulation of antigen processing and presentation of peptides
Engulfment of apoptotic cell
Regulation of nitric oxide mediated signal transduction
Regulation of fibroblast migration
Positive regulation of fibroblast migration
Response to magnesium ion
Negative regulation of nitric oxide mediated signal transd
Negative regulation of organic acid transport
Nucleotide-binding oligomerization domain containing signaling
Nucleotide-binding oligomerization domain containing 1 signaling
Regulation of cGMP-mediated signaling
Regulation of antigen processing and presentation
Toll-like receptor 4 signaling pathway
Nucleotide-binding oligomerization domain containing 2 signaling

LPS vs. Non-LPS
Mammary

 
Impact 0 150 300 600
Flux -600 -300 0 300 600   
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INTRODUCTION 

During the transition period the increase in nutrient demand, the drastic changes in 

endocrine status and the decrease in DMI during late gestation influence metabolism rendering 

dairy cows in a state of immunosuppression that leads to increased susceptibility to mammary 

infections (Mallard et al., 1998) and metabolic disorders (Drackley, 1999). Clinical mastitis is 

most likely to occur during the first mo of lactation. Once a pathogen is detected by the receptors 

in the epithelial cells of the mammary gland the acute phase response begins and the immune 

system is activated to eliminate the pathogen (Oviedo-Boyso et al., 2007).  

After initiation of the inflammatory response, blood neutrophils or polymorphonuclear 

leukocytes (PMN) become the predominant cell type observed during an infection. Neutrophils 

constitute up to 70% of the circulating white blood cells (Goldsby et al., 2000). During the 

transition period, the level of energy consumption prepartum may be a determinant factor in 

allowing cows to resolve an inflammatory situation. There is evidence that dairy cows can easily 

over consume energy during the dry period (Dann et al., 2006). However, during early lactation 

there is a period of negative energy balance where the cow relies on adipose tissue mobilization 

that can cause metabolic disorders like ketosis and fatty liver (Drackley, 1999). In addition, in 

vitro studies showed evidence of reduction in PMN viability due to high levels of NEFA  and 

that could impair the immune response to pathogens (Scalia et al., 2006). Our group is interested 

in the use gene expression technology on PMN cells to uncover relationships between the 

intensity of lipid mobilization, and bovine immune cell function. 
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OBJECTIVE 

The main objective of this study was to determine the gene expression patterns related to 

inflammation and lipid metabolism in blood PMN from peripartal dairy cows in response to 

different prepartum dietary energy level (1.34 vs. 1.62 Mcal/kg DM). 

 

MATERIALS AND METHODS 

All procedures involving animals received approval from the University of Illinois 

Institutional Animal Care and Use Committee (protocol # 06145).  

 

Animals and Diets 

Ten 10 Holstein cows entering their second or greater lactation were enrolled in the 

study. Cows were assigned (n=5/diet) to a control or overfed diet, which were fed ad libitum 

intake to provide at least 100% of calculated NEL (1.34 Mcal/kg diet DM) or ~159% calculated 

NEL requirements (1.62 Mcal/kg DM) respectively during the entire 45-d dry period. Diets were 

fed as TMR once daily (0600 h) using an individual gate feeding system (American Calan, 

Northwood, NH, USA).  Cows were housed in a ventilated enclosed barn during the dry period 

and had access to sand-bedded free stalls until 5 d before expected calving date, when they were 

moved to an individual maternity pen bedded with straw. After parturition, all cows were moved 

to a tie-stall barn and were fed a common lactation diet (NEL = 1.69 Mcal/kg DM) as TMR once 

daily (0600 h) and milked twice daily (0400 and 1600 h).  Diets were mixed in a Keenan Klassik 

140 mixer wagon (Richard Keenan & Co., Ltd., Borris, County Carlow, Ireland) equipped with 

knives and serrated paddles; straw in large square bales was chopped directly by the mixer 

without preprocessing.   
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Neutrophil Isolation  

Samples of of blood (~120 mL) were collected at ~0700 h from the coccygeal vein or 

artery in vacutainer tubes containing acid citrate dextrose (ACD Solution A; Fisher Scientific) at 

-14, 7 and 14 d relative to parturition.  After blood collection, tubes were placed on ice (~30 min) 

until isolation (Auchtung et al., 2004, Moyes et al., 2009, Salak et al., 1993). Samples were 

centrifuged at 600 × g for 15 min at 4 °C. The buffy coat and approximately one-fourth of red 

blood cells were removed and discarded. The remaining sample was poured into a 50 mL tube. 

Twenty milliliters of deionized water at 4 °C were added to lyse red blood cells followed by 

addition of 5 mL 5X PBS at 4 °C to restore an iso-osmotic environment.  Samples were 

centrifuged at 200 × g for 10 min at 4°C. Three subsequent washings using 1X PBS at 4 °C were 

performed with samples centrifuged at 500 × g for 3 min at 4 °C. Neutrophils were immediately 

homogenized in 2 mL of TRIzol reagent (Invitrogen, Carlsbad, CA)  with 1 µL of linear 

acrylamide (Ambion, Inc., Austin, TX) using a Polytron power homogenizer at maximum speed. 

The suspension was then transferred equally into two RNA-free microcentrifuge tubes (2mL; 

Fisher Scientific, Pittsburgh, PA) and stored at -80°C until further analysis.  

 

 RNA Isolation 

The suspension of RNA and TRIzol reagent was thawed and upon centrifugation, total 

RNA was separated with chloroform followed by acid phenol:chloroform (Ambion, Inc., Austin, 

TX).  Total RNA was then precipitated with isopropanol, and the RNA pellet was cleaned with 

75% ethanol prior to reconstitution in RNA storage buffer (Ambion, Inc., Austin, TX) for storage 

at -80°C.  RNA integrity and quality was confirmed by OD260mm/OD280mm absorption ratio 

(NanoDrop ND-1000, NanoDrop Technologies, Rockland, DE).   
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Quantitative Polymerase Chain Reaction Analysis (qPCR) 

RNA isolated from neutrophils was used for qPCR analysis. Complementary DNA was 

synthesized using 100 ng RNA, 1 µg dT18 (Operon Biotechnologies, AL), 1 µL 10 mmol/L 

dNTP mix (Invitrogen Corp., CA), 1 µL random primers (Invitrogen Corp., CA), and 10 µL 

DNase/RNase free water. The mixture was incubated at 65 °C for 5 min and kept on ice for 3 

min. A total of 6 µL of master mix composed of 5.5 µL 5X Recation Buffer, 0.25 µL (50 U) of 

RevertAidTM Reverse Transcriptase (Fermentas Inc., MD), and 0.25 µL of RNase Inhibitor (10 

U, Promega, WI) was added. The reaction was performed in an Eppendorf Mastercycler® 

Gradient using the following temperature program: 25 °C for 5 min, 42 °C for 120 min and 70 

°C for 15 min.  cDNA was then diluted 1:3 with DNase/RNase free water. 

Quantitative PCR was performed using 4 µL diluted cDNA combined with 6 µL of a 

mixture composed of 5 µL 1 × SYBR Green master mix (Applied Biosystems, CA), 0.4 µL each 

of 10 µM forward and reverse primers, and 0.2 µL DNase/RNase free water in a MicroAmp™ 

Optical 384-Well Reaction Plate (Applied Biosystems, CA). Each sample was run in triplicate 

and a 6 point relative standard curve plus the non-template control (Kozniewska et al.) were used 

(User Bulletin #2, Applied Biosystems, CA). The reactions were performed in an ABI Prism 

7900 HT SDS instrument (Applied Biosystems, CA) using the following conditions: 2 min at 50  

°C, 10 min at 95 °C, 40 cycles of 15 s at 95 °C (denaturation) and 1 min at 60 °C (annealing + 

extension). The presence of a single PCR product was verified by the dissociation protocol using 

incremental temperatures to 95 °C for 15 s plus 65 °C for 15 s.  Data were calculated with the 

7900 HT Sequence Detection Systems Software (version 2.2.1, Applied Biosystems, CA). The 

final data were normalized using the geometric mean of the three most stable genes (GAPDH, 



 

171 
 

UXT and RPS9)among the ones tested as internal controls, as reported previously (Bionaz and 

Loor, 2007). 

Primers were designed using Primer Express 2.0 with minimum amplicon size of 80 bp 

(when possible amplicons of 100-150 bp were chosen) and limited 3’ G+C (Applied Biosystems, 

CA). When possible, primer sets were designed to fall across exon–exon junctions. Primers were 

aligned against publicly available databases using BLASTN at NCBI (Nucleotide BLAST, 2008) 

and UCSC’s Cow (Bos taurus) Genome Browser Gateway. Prior to qPCR primers were tested in 

a 20 μL PCR reaction using the same protocol described for qPCR except for the final 

dissociation protocol. For primer testing we used a universal reference cDNA (RNA mixture 

from 5 different bovine tissues) to ensure identification of desired genes. Five μL of the PCR 

product were run in a 2% agarose gel stained with ethidium bromide (2 μL). Only those primers 

that did not present primer-dimers and a single band at the expected size in the gel, and had the 

right amplification product (verified by sequencing) were used for qPCR. The accuracy of a 

primer pairs also was evaluated by the presence of a unique peak during the dissociation step at 

the end of qPCR. 

 

Statistical Analysis 

Data were analyzed using the MIXED procedure in SAS (SAS Institute, Inc., Cary, NC, 

USA).  Fixed effects in the model included diet, time, and diet × time.  Random effect was cow 

within diet.  A repeated measures statement using an autoregressive covariate structure was 

implemented. Statistical differences were declared significant at P ≤ 0. 10.  
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RESULTS AND DISCUSSION  

It is well known that the immune status of dairy cows early after parturition is of 

importance during the transition period because there is a significant risk for development of new 

mastitis infections in the udder that may result in cases of clinical mastitis (Hogan et al., 1989). 

Dairy cows during the transition period normally experience a marked decrease in DMI some 

days before parturition, which in turn limits the consumption of dietary energy and has a 

negative impact on the energy balance equilibrium (Bertics et al., 1992). At the same time, 

nutrient demands for initiation of milk synthesis are increased, which aggravates the energy 

balance status (Grummer, 1995). After parturition, as milk production increases the energy 

needed for milk production also increases resulting in a state of negative energy balance. In 

results presented previously (Chapter 1) we observed a greater DMI prepartum in overfed cows 

and as designed, energy requirements were exceeded during the prepartal period resulting in 

significantly higher energy balance. However, both groups were in negative energy balance after 

calving with a larger drop observed in the overfed group causing dramatic changes in 

metabolism and potentially affecting the immune status. Negative energy balance has been 

associations with dramatic changes in metabolites around parturition, characterized by increased 

NEFA and BHBA but low glucose, and increased susceptibility to mastitis (Godden et al., 2003, 

Janosi et al., 2003, Nyman et al., 2008)      

The mechanisms by which changes in metabolism affect neutrophils are unclear; 

however, in vitro and in vivo studies have reported that higher concentrations of BHBA or 

NEFA representative of cows during NEB resulted in altered neutrophil activity including 

chemotaxis (Suriyasathaporn et al., 1999), viability (Scalia et al., 2006), respiratory burst 

(Hoeben et al., 1997), and phagocytosis (Grinberg et al., 2008) when compared to cells under 
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normal concentrations. In this study, we present PMN gene expression patterns that might help 

understanding how the changes in whole-cow metabolism affect the immune cells.       

 

Cytokines and Genes Associated with Inflammation 

 Cytokines are essential proteins secreted by the nervous and immune system that are used 

extensively during intracellular communication (Cannon, 2000). Figure 16 shows gene 

expression of the cytokines evaluated (IL6, IL1B and IL10) that revealed important patterns 

related to inflammation that can be associated with the dramatic metabolic changes occurring 

during the transition period. The marked increase from -14 through d 7 and 14 in cows fed 

control led to a diet × time (P < 0.05) effect for IL6 due to. Thus, expression of IL6 at 7 and 14 d 

was 2-fold greater in controls vs. overfed cows.  IL6 has anti-inflammatory capability through 

inhibition of IL1B and TNF-α production (Bannerman et al., 2008). Of these two, we found 

greater (diet × time P < 0.01) expression of IL1B at -14 d and 7 d in the overfed group followed 

by similar expression between groups at 14 d. IL1B is considered a cytokine that mediates the 

inflammatory response.  

Similar to IL1B, there was a diet × time (P < 0.01) effect for IL10 expression due to 

greater values in overfed cows at d -14 and 7; that was followed by similar expression between 

groups at 14 d. IL10 is known to carry multiple functions in immunoregulation and 

inflammation, especially related with anti-inflammation signaling (Eskdale et al., 1997). Thus, 

the mRNA expression data in neutrophils in this study suggested suggested a higher degree of 

inflammation in the days prior and around parturition in cows overfed energy during the dry 

period. Neutrophils represent a key target for IL10 and it has been demonstrated that this 
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cytokine is of extreme importance in controlling the degree and duration of the inflammatory 

reactions (Bazzoni et al., 2010).  

Other cytokines measured included TNF, CCL2 and CCL5 (Table 29). Expression of 

CCL2 was undetectable in most samples, thus, data were not analyzed statistically. TNF is 

known to be involved in neutrophil apoptosis which contributes to the resolution of an 

inflammatory response (Salamone et al., 2001). No overall changes were observed in this study 

due to time or diet, but the marked decrease in expression between 7 and 14 d in overfed cows 

led to a significant diet × time effect. It could be speculated that in PMN the expression of TNF 

around calving might not be as important as other cytokines.  

The chemokine CCL5 is involved in recruiting immune cells to the site of inflammation. 

Eexpression of CCL5 decreased over time (time P < 0.01) and was affected by the prepartal 

dietary treatment (diet P < 0.05). CCL5 was greater in the overfed group compared to the control 

a response that might be explained by the poorer immune status of those animals that would 

promote sustained chemokine signaling. Overall, the expression of the PMN cytokines revealed a 

more pronounced state of chronic inflammation in cows overfed energy during the dry period. 

Similar results have been observed in non-ruminats where excess of energy promotes cytokine 

production, proinflammatory signaling and oxidative stress (Peng et al., 2011)  

The PMN expresses important genes associated with the protection of the host organism 

and the termination of an inflammatory response. For instance, SELL plays an important role in 

slowing immune cell trafficking through the circulation by promoting adhesion and subsequent 

pathogen elimination (Mommsen et al., 2011). In humans, there is evidence of upregulation of 

SELL in neutrophils after surgical trauma, and TNF-α has been suggested to be the regulator 

(Mommsen et al., 2011). In this study, the expression of SELL was greater (diet × time P < 0.01) 
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at d -14 to 7 in the overfed group, after which expression was similar at 14 d. The pattern of 

SELL was similar to IL10 and also IL1B suggesting a more chronic state of inflammation during 

the transition period in the overfed group.  

The expression and activity of SOD2 is associated with defending cells against oxidative 

stress (Al-Gubory et al., 2010). Our results revealed greater expression (diet × time P < 0.01) at -

14 and 7 d in the overfed group followed by similar expression between groups at 14 d. This 

expression pattern goes along with the pattern observed for IL10 and IL1B and supporting the 

existence of a higher level of stress and inflammation as a consequence of a more pronounced 

negative energy balance state. Our data support previous findings of higher expression of SOD2  

during times of  high generation of hydrogen peroxide as those characterizing PMN phagocytosis 

(Olsson et al., 2011).  

In table 29 we present results of NR3C1, this gene encodes the glucocorticoid receptor 

that functions as a transcription factor upregulating the expression of anti-inflammatory proteins 

or repressing the expression of pro-inflammatory proteins (Lu et al., 2006). Expression of this 

gene did not change in overfed cows; however, in control cows expression decreased markedly 

between -14 and 7 d and then increased to peak expression by 14 d (diet × time P < 0.03). Those 

responses might partly explain the increase in expression of IL6, IL1B and IL10 between 7 and 

14 d in control cows.  

 

Transcription Factors and Nuclear Receptors 

Peroxisome proliferators activated receptors (PPAR’s) are well known ligand-activated 

transcription factors that belong to the nuclear hormone receptor superfamily. The three PPAR 

isoforms (α, γ and δ) have been found to affect multiple aspects of lipid metabolism  
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simultaneously(Li and Glass, 2004). PPAR’s are also known to act by altering the transcription 

of many target genes (Michalik et al., 2006); the majority of these genes are known to play a 

central role in energy metabolism including fatty acid oxidation (Heim et al., 2002, Wan et al., 

2010). The activating ligands for PPAR’s are determined by the ligand concentration and cell 

type (Crisafulli and Cuzzocrea, 2009). Non esterified fatty acids are known to be common 

endogenous ligands that bind all three PPAR’s (Bensinger and Tontonoz, 2008).  

Our results (Table 28 and Figure 17) showed that PPARA was the most abundant of the 

three isoforms. Figure 17 shows gene expression of the PPAR’s and co-regulators that revealed 

relevant differences to prepartum dietaryenergy. PPARA, PPARG and PPARD had similar 

expression patterns with both treatments.  While PPARD had a clear response to diet (diet P < 

0.01) due to greater overall expression in response to overfeeding energy, there was an 

interaction (diet × time P < 0.01) for PPARG expression due to greater expression in the overfed 

group primarily at -14 d. Interestingly, the postpartal responses were different with a decrease in 

PPARG expression between 7 and 14 d in overfed cows but an increase in control cows. Thus, 

despite the greater prepartal PPARG and PPARD in overfed cows, the response for both genes in 

control cows at 14 d seemed to suggest the existence of a different regulatory mechanism. 

Overfeeding during the dry period has been shown to result in a greater rates of adipose 

tissue mobilization compared to feeding diets that meet the energy requirements during the dry 

period (Dann et al., 2006, Drackley, 1999, Janovick and Drackley, 2010). However, in non-

ruminants the intermediate products of lipid mobilization seem to activate and cause a greater 

expression of PPAR’s (Mochizuki et al., 2006). In this case, neutrophils from overfed animals 

were exposed to greater concentrations of NEFA that could have served as activating ligands, 

thus, helping to explain the greater PPAR gene expression. Previous data revealed that 16:0 



 

177 
 

activates PPARγ bovine mammary cells (Kadegowda et al., 2009). More recently, it was shown 

that both 16:0 and 18:0 also uprgeulated expression of several PPARα in bovine kidney cells 

(Bionaz et al., 2001).  

Activated PPAR play a role during the inflammatory processes by inhibiting 

proinflammatory transcription factor signaling pathways in vascular and inflammatory cells and, 

consequently, curtail the activation of inflammatory genes (Moraes et al., 2006). PPAR 

activation also decreases immune cell recruitment by inhibiting the release of chemokines (Lee 

et al., 2000, Murao et al., 1999). Whether activation of PPAR in bovine PMN has an anti-

inflammatory role is unknown; however, recent data showed that PPARα activation (via 16:0 

and 18:0) in bovine kidney cells upregulated expression of IL6 and several acute-phase proteins 

(e.g. SAA3, ANGPTL4, SPP1) suggesting that these nuclear receptors may have an active role in 

the PMN during the inflammation that characterizes the transition period.    

  PPAR regulate gene expression by binding with RXR (Retinoid X Receptor) as a 

heterodimeric partner that attach to DNA promoter regions to induce transcription of target genes 

(Palmer et al., 1995). Figure 17 shows the pattern of RXRA which was similar to the PPAR’s, i.e. 

greater (diet × time P < 0.01) expression in the overfed group during all the time points. The 

PPAR: RXR heterodimer exists in both an active and inactive state. When inactive, it is bound to 

corepressors such as NCOR1 (Nuclear Receptor Corepressor 1) that is known to disrupt and 

restrict PPARA and PPARG binding and signaling (Battaglia et al., 2010). NCOR1 (Figure 17) 

had a greater (diet × time P < 0.05) expression in the neutrophils of the control group, which 

seemed to support the more inactive state of the PPAR in those cows as a result of a more 

favorable energy balance status compared to the overfed group. NCOR2 plays a similar function 

as NCOR1 and has been associated with different transcription target genes including the thyroid 
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hormone receptors (Jonas et al., 2007). However, in this study NCOR2 expression did not change 

over time or due to diet. 

Other transcription factors evaluated were STAT3, NFKB1 and MED1 (Table 29). These 

are involved in different functions such as inflammation, immunity, differentiation, cell growth, 

tumorigenesis and apoptosis (Escoubet-Lozach et al., 2002, Li and Nabel, 1997, Silva, 2004). 

MED1 had greater expression in cows fed control (diet P < 0.05). Both NFKB1 and STAT3 

expression increased from -14 and 7 d and was greater (diet × time P < 0.02) at d 7 in overfed 

cows than controls.  Those data support the notion of greater inflammatory response in PMN of 

cows overfed energy prepartum. 

 

Neutrophil Signaling Influenced by Lipid Metabolism  

Leukotrienes are signaling molecules resulting from the metabolism of lipids that have 

great influence in immune cell function (Granstrom, 1983, Ramos et al., 1991). Leukotrienes 

may also act upon PPAR signaling and their targets influencing the inflammatory response 

(Samuelsson, 1983, Woszczek et al., 2003). Different proteins are involved in leukotrienes 

biosynthesis. Figure 17 shows the expression pattern of the phospholipase enzyme PLA2G4A, 

which is capable of hydrolyzing membrane phospholipid fatty acids (Holinstat et al., 2011). 

ALOX5 and ALOX5AP encode enzymes involved in catalyzing different steps in leukotriene 

biosynthesis from fatty acids, thereby playing a role in the inflammatory processes (Stephensen 

et al., 2011). Both LTA4H and LTC4S participate in the formation of leukotrienes from 

arachidonic acid. These compounds play numerous roles in inflammation, immunological 

functions and maintaining biological homeostasis (Evans et al., 1986, Kasirga et al., 1999).  
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In our study, there was a diet × time (P < 0.05) interaction for PLA2G4A expression. 

Expression was greater at -14 in overfed cows and it increased markedly by 7 d with both diets 

but to a greater extent in cows overfed energy. Thereafter, expression increased in cows fed 

control but decreased in cows overfed energy to values lower than prepartum. These expression 

patterns were similar to those of most inflammatory and anti-inflammatory cytokines, SELL, 

PPAR, and SOD2 suggesting a mechanistic relationship between generation of eicosanoids after 

calving and inflammatory phenomena.  

Regardless of treatment, ALOX5 and LTA4H expression decreased from -14 to 7 d and 

expression was maintained until 14 d (time P < 0.01); whereas, ALOX5AP and  LTC4S 

expression increased from -14 to 7 d regardless of treatment and remained unchanged until 14 d 

(time P < 0.01). The peak observed for PLA2G4A at 7 d might have been caused by incoming 

NEFA triggering a response potentially mediated via PPAR and leading to activation of this 

enzyme to generate eicosanoids. That would have triggered the necessary pro-inflammatory 

response in PMN to adjust cellular metabolism to the change in energy balance. The increase in 

PLA2G4A, ALOX5AP, and LTC4S strongly suggest that eicosanoid and leukotriene synthesis 

increased in PMN after calving and to a greater extent in overfed cows. These data underscore an 

important role for leukotriene biosynthesis and function in the PMN adaptations to calving.   

 Another important factor in the metabolism of lipids involves insulin signaling. For 

instance INSR (Table 29), the receptor for insulin that mediates different metabolic functions 

related to this hormone was greater (diet P < 0.05) in the overfed group, and expression 

decreased after calving regardless of diet (time P < 0.06). Despite that response, expression of 

AKT1 (Figure 16) was lower (diet × time P < 0.01) preapartum in the overfed group and 

increased by d 7; whereas, no change during -14 and 7 d was observed with the control diet. The 
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protein encoded by this gene regulates multiple signaling pathways essential for cell functioning 

including glucose metabolism (Zaraza et al., 2010). The role of AKT1 during inflammation has 

been studied in AKT1-deficient mice and results showed markedly reduced edema. However, 

reduced inflammation has been associated with a dramatic decrease in neutrophil and monocyte 

infiltration (Di Lorenzo et al., 2009).  

 

CONCLUSION 

Overall, the gene expression data from neutrophils revealed that cows overfed during the 

dry period were more susceptible to stress and chronic inflammation during the transition period 

(SELL, IL10 and SOD2) and that cows fed to meet the energy requirements showed more 

favorable indices of inflammation during the transition period (AKT1 and IL6). Our data also 

showed evidence that overfed cows had greater expression of transcription factors involved in 

metabolism of lipids (PPARA, PPARD, PPAG and RXRA) indicating that immune cells might be 

predisposed to use endogenous ligands available in circulation (NEFA) for the nuclear receptors.    
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Figure 16. The effect of prepartum diet on neutrophil mRNA expression (log-scale) of indices of 
signaling and inflammation in cows fed a control diet (1.34 Mcal/kg DM) or overfed diet (1.62 
Mcal/kg DM) during the entire dry period. 
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Figure 17. The effect of prepartum diet on neutrophil mRNA expression (log-scale) of genes 
involved in lipid metabolism in cows fed a control diet (1.34 Mcal/kg DM) or overfed diet (1.62 
Mcal/kg DM) during the entire dry period. 
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Table 28. Gene symbol and description of genes evaluated from bovine PMN.  
Symbol Description 
AKT1 v-akt murine thymoma viral oncogene homolog 1 

 ALOX5 arachidonate 5-lipoxygenase 
 ALOX5AP arachidonate 5-lipoxygenase-activating protein 
 CCL5 chemokine (C-C motif) ligand 5 
 IL10 interleukin 10 
 IL1B interleukin 1, beta 
 IL6 interleukin 6 (interferon, beta 2) 
 INSR Insulin receptor 
 LTA4H leukotriene A4 hydrolase 
 LTC4S leukotriene C4 synthase 
 MED1 mediator complex subunit 1 
 NCOR1 nuclear receptor corepressor 1 
 NCOR2 nuclear receptor corepressor 2 
 NFKB1 nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 
 NR3C1 nuclear receptor subfamily 3, group C, member 1  
 PLA2G4A phospholipase A2, group IVA  
 PPARA peroxisome proliferator-activated receptor alpha 
 PPARD peroxisome proliferator-activated receptor delta 
 PPARG peroxisome proliferator-activated receptor gamma 
 RXRA retinoid X receptor, alpha 
 SELL selectin L 
 SOD2 superoxide dismutase 2 
 STAT3 signal transducer and activator of transcription 3 
 TNF tumor necrosis factor 
   



 

189 
 

Table 29. The effect of prepartum diet on neutrophil mRNA expression (log-scale) in cows fed a 
control diet (1.34 Mcal/kg DM) or overfed diet (1.62 Mcal/kg DM) during the entire dry period. 

  
Day relative to parturition 

 
P value 

Gene Diet -14 7 14 SEM1 Time Diet Diet × Time 
TNF Overfed 0.95a 0.86a 0.20b* 0.30 0.12 0.19 0.06 

 
Control 1.21 1.14 1.24* 

    MED1 Overfed -0.50 -0.23 -0.51 0.23 0.73 0.01 0.27 

 
Control 0.47 0.36 0.43 

    NFKB1 Overfed 0.35b 0.80a* 0.56ab 0.15 0.06 0.77 0.01 

 
Control 0.53ab 0.39b* 0.61a 

    NR3C1 Overfed 0.21 0.48 0.14 0.24 0.98 0.97 0.03 

 
Control 0.34ab 0.03b 0.43a 

    ALOX5 Overfed 1.12 -0.80 -0.76 0.45 0.01 0.66 0.43 

 
Control 0.35 -0.79 -0.68 

    ALOX5AP Overfed 0.81 1.61 1.53 0.25 0.01 0.14 0.13 

 
Control -0.04 1.15 1.40 

    STAT3 Overfed -0.19b 0.47a* -0.26b 0.16 0.04 0.08 0.01 

 
Control -0.45b -0.56b* 0.03a 

    CCL5 Overfed 0.83 -0.33 -0.30 0.43 0.01 0.02 0.87 

 
Control -0.65 -1.81 -1.62 

    INSR Overfed -1.06 -1.27 -1.05 0.14 0.01 0.06 0.15 

 
Control -1.31 -1.52 -1.56 

    NCOR2 Overfed -0.34 -0.05 -0.33 0.13 0.11 0.12 0.42 

 
Control -0.09 0.04 0.05 

    LTA4H Overfed -0.46 -1.21 -0.82 0.22 0.01 0.44 0.19 

 
Control -0.82 -1.44 -1.41 

    LTC4S Overfed -2.89 -1.87 -3.50 0.81 0.01 0.66 0.23 

 
Control -2.84 -1.80 -2.17 

    1Largest SEM is shown. 
a-e Differences between days (time P < 0.05 or diet × time effects P < 0.05). 
*Denote significant interactions (diet × time effects P < 0.05) at a given day. 
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Table 30. qPCR performance among the genes measured in PMN. 
 

1 % of mRNA abundance relative to an internal control gene (UXT). 
 

Gene Median Ct Median ∆Ct Slope (R2) Efficiency Abundance1 
AKT1 24.581 4.955 -3.82 0.97 1.827 1.944 
ALOX5 24.310 4.753 -2.64 0.98 2.392 1.865 
ALOX5AP 20.710 0.915 -3.38 0.98 1.976 0.359 
CCL2 30.846 10.903 -3.11 0.93 2.097 4.278 
CCL5 24.687 4.637 -3.48 0.96 1.938 1.820 
IL10 21.158 1.210 -3.18 0.91 2.063 0.475 
IL1B 26.438 6.569 -3.10 0.91 2.102 2.578 
IL6 31.999 11.923 -2.12 0.90 2.963 4.679 
INSR 24.215 4.518 -3.56 0.97 1.909 1.773 
LTA4H 24.098 4.483 -3.54 0.92 1.916 1.759 
LTC4S 30.357 10.507 -3.02 0.93 2.144 4.123 
MED1 22.883 3.328 -3.30 0.90 2.009 1.306 
NCOR1 20.924 1.264 -3.40 0.84 1.968 0.496 
NCOR2 24.340 4.649 -3.46 0.90 1.945 1.824 
NFKB1 22.932 3.253 -3.28 0.94 2.018 1.277 
NR3C1 24.036 4.315 -3.24 0.87 2.035 1.693 
PLA2G4A 22.762 3.128 -2.91 0.95 2.206 1.227 
PPARA 28.363 8.751 -3.37 0.91 1.980 3.434 
PPARD 24.821 4.888 -3.57 0.98 1.906 1.918 
PPARG 24.970 5.163 -3.16 0.85 2.072 2.026 
RXRA 19.685 0.439 -3.40 0.92 1.968 0.172 
SELL 20.482 0.815 -3.28 0.95 2.018 0.320 
SOD2 20.349 0.711 -3.41 0.92 1.965 0.279 
STAT3 21.319 1.590 -3.25 0.90 2.031 0.624 
TNF 27.059 7.433 -2.27 0.95 2.758 2.917 
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Table 31. GenBank accession number, hybridization position, sequence and amplicon size of 
new primers designed for Bos taurus used to analyze gene expression by qPCR. Similar 
information for remaining genes was reported previously. 

1 Primer direction (F – forward; R – reverse) and hybridization position on the sequence. 
2 Exon-exon junctions are underlined. 
3 Amplicon size in base pair (bp). 

Accession # Gene Primers1 Primers (5’-3’)2 bp3 
NM_001075864.1 
 

PLA2G4A 
 

F. 1134 
R.1238 
 

  

CTCCATGTCAAACCCGATGTC 
GTCAGGCGCCATAAAAGTACCA 

105 

NM_001034280.1 LTA4H 
 

F.1042 
R.1141 

ACATTTGTGGACGACTGTTTGGT 
TGGGTCTCCCCAAAAGTCTTT 

100 

NM_001046098.2 
 

LTC4S 
 

F.217 
R.316 

CATCTACCGAGCCCAAGTGAA 
CAGTGCTGCCGCACCTT 

100 
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Table 32. Sequencing results of PCR products from primers of genes designed for this 
experiment. Best hits using BLASTN (http://www.ncbi.nlm.nih.gov) are shown.   

Gene Sequence 
PLA2G4A GACACGTGAAGTTGTCAGATGTGGGTTGAATTAGTCCATTTGAGATTGGC

ATGGGCTAAATATGGTACTTTTTATGGCGCCCTGCACAAAAAAAA 
LTA4H GAAGAGTCATTTCCGGCTCGTGGGCGGAGTGGAGAACTCCAGAAT

TCGATAAAGACTTTTGGGGGAGACCCAACCCCTTT 
LTC4S CGACGAACTCCGCGTTTCCTCGCCATGCTCTGGGTGGCCGGGCATC

TTCTTTCACGAAGGTGCGGCAGCACATGGAACCCCC 
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Table 33. Sequencing results of genes using BLASTN from NCBI against nucleotide 
collection (nr / nt) with total score. 
 

Gene Best hits  Score 
PLA2G4A Bos taurus phospholipase A2, group IVA (cytosolic, calcium-dependent) 

(PLA2G4A)  RNA  
 

91.5 
LTA4H Bos taurus leukotriene A4 hydrolase (LTA4H), mRNA 78.8 
LTC4S Bos taurus leukotriene C4 synthase (LTC4S), mRNA 95.1 

 



 

194 
 

SUMMARY AND CONCLUSIONS 
 
 

The overall objective of this dissertation was to evaluate neutrophil function, 

metabolic and inflammation indices and gene expression affected by the plane of dietary 

energy prepartum and an early postpartum inflammatory challenge. Our general hypothesis 

was that overfeeding dietary energy during the dry period, accompanied by the metabolic 

challenges associated with the onset of lactation would render the cow’s immune function 

less responsive early postpartum. 

In chapters 1, 2 and 3 we evaluated we evaluated different aspects related with the 

transition period: Preparum diet effect on early lactation (Chapter 1), early lactation 

inflammation/challenge (LPS challenge; Chapter 2) and Prepartum diet effect in lactation 

with and early lactation LPS challenge (Chapter 3). The parameters evaluated at this point 

included performance, immune cell function (phagocytosis and chemotaxis of neutrophils).  

In chapter 1, our data indicated that the more positive energy status prepartum 

resulted in a surge of insulin with a temporary but significant effect on metabolism. We 

obtained evidence that the greater insulin concentration decreased muscle protein turnover 

and perhaps increased the circulating TAG uptake by adipose tissue prior to parturition. 

However, elevated insulin concentration also could have impaired phagocytic capacity of 

the PMN prior to calving. Our blood data showed some indications of negative carry over 

effects of overfeeding energy to the point of calving (haptoglobin, bilirubin, and ROM).  

In chapter 2, the presence of an intra-mammary E. coli LPS challenge represented 

rapid changes in metabolic indices that can affect the dairy cow during the days following 

days (immune function) and might represent adaptations in a longer term that can negatively 

affect performance (Liver TAG accumulation). 
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Chapter 3 revealed that controlling the level of dietary energy to meet the cow’s 

requirements during the dry period is an effective management strategy to improve 

neutrophil function. In the other hand overfeeding during the dry period does not represent 

any advantage to the dairy cow and when coupled with an early inflammatory event the 

immune status is fragile compared to cows that meet strictly the dietary requirements. In 

addition, in this chapter gene expression was evaluated showing evidence of a better 

immune and metabolic status in the animals fed to meet their energy requirements during 

the dry period. 

Based on the findings on chapters 1, 2 and 3; in chapter 4 we narrowed or 

investigation to the period of early lactation where most of the changes were occurring. The 

effect of LPS challenge and the effect of prepartum diet were evaluated in mammary and 

liver tissues. The use of microarray technology provided specific functions, processes and 

pathways that can facilitate the comprehension of the underlying mechanism between 

metabolic status during the transition period and the risk of mastitis during early lactation. 

These results may lead into more specific research that can turn into improved nutritional 

management strategies and better prevention and treatment of the disorders that occur 

during the transition period. However, there are still computational challenges that have to 

be improved. 

In chapter 5 gene expression of immune cells was evaluated. Once again our 

research was narrowed to the effect of prepartum diet based on performance and immune 

function results from previous chapters. Expression data supported results from previous 

chapters; overfed cows resulted in greater level expression of genes related with 
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inflammation associated with the onset of lactation (IL10, SELL, SOD2 and IL1B) and 

potentially lipid utilization/ mobilization (PPARA, PPARG, PPARD, RXRA and NCOR1). 

The diet effect in this experiment was transcendental during the transition period and 

potentially during the entire lactation. Changes in energy balance were observed and 

provided a good model to study the challenges associated with the onset of lactation. 

Overall the LPS model provided a consistent response representing an inflammation 

incident; however the changes in metabolic indices were sudden and hard to detect in most 

of the cases during the days following the challenge. In general overfeeding dietary energy 

during the dry period resulted in a less responsive immune function during the early 

postpartum. In other words, controlling the dietary energy prepartum has more benefits for 

the dairy cow during transition. 

Figure 18 shows an integrated model of the overall responses and benefirts of 

controlling the dietary energy during the dry period and considering an inflammatory 

incident during the first wk after parturition. In terms of performance the energetic balance 

observed was more favorable compared to overfed cows in the days after parturition. At this 

point energy balance is normally negative and implies mobilization from adipose tissue 

reserves. However the rate of mobilization was lower compared to the overfed group. The 

liver plays fundamental role uptaking the intermediates of adipose tissue mobilization; in 

our results less TAG accumulation was observed in the liver (Indirectly suggesting a better 

metabolic functioning and potentially greater rated of β oxidation). The metabolic profiling 

assessed confirmed an improved and more favorable metabolic status that supported the 

response of the liver. The metabolites results were directly related to immune function and 

contribute to explain a more favorable response in terms of phagocytosis. 



 

197 
 

The LPS challenge affected directly the mammary gland and indirectly affected the 

liver and immune cells. However is important to remember that the evaluation of prepartal 

energy feeding was assessed at all times in cows receiving LPS implying that cows fed to 

meet their energy requirements performed better with the stress of an inflammatory event. 

 At the gene expression level, the results reconcile most of the responses of 

performance and metabolic indicators. The liver revealed greater expression in genes related 

to metabolism of lipids. The immune cells evaluated showed an opposite response to the 

liver in terms of utilization of intermediates resulting from metabolism of lipids. Clearly the 

improved metabolic status of the control fed group (in part, attributed to the well 

functioning of the liver uptaking NEFA) did not obligate immune cells to dramatically adapt 

and change energy sources permitting a better immune function performance. Finally the 

mammary gland did not seem to be affected by the prepartal dietary energy effect. This 

response was expected since the cow instinctively prioritizes the mammary gland in the 

parturition of energy for self preservation. However the mammary gland was extremely 

responsive to the effect of LPS by activation of functions related to the immune function.        
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Figure 18. Responses of controlling the dietary energy to dairy cows during the dry period 
considering a challenge of LPS during the first week after parturition as a model for 
inflammation.   
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