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ABSTRACT 

 

 

This thesis consists of two parts. The first part aims to explore the application of 

the popular method of the finite element method (FEM) in the electronic structure 

theory. The finite element method is a very general numerical technique in mathematics 

for solving partial differential equations (PDEs) and it has been widely applied in 

computational mechanics and engineering in general, but it has not been extensively 

used in science for electronic structure calculations. Currently most electronic structure 

calculations rely on well-established and fast basis-set alternatives. However, there are 

serious shortcomings with the standard global basis-set methods such as basis saturation 

and ill-conditioning of the matrices as the basis-set size is increased. In this dissertation 

we exploit new strategies that rely on the divide-and-conquer (DC) as well as the 

enriched/generalized FEM (GFEM) and face-based smoothed FEM (FS-FEM) methods 

to solve the electronic structure problems. The linear-scaling DC partitioning scheme 

has been used to scale up the method for larger systems with facile parallelization 

among many processors utilizing locality assumptions. GFEM and FS-FEM techniques 

have been proposed to deal with the inner core singularity and to improve the quality of 

the solutions without considerable added computational cost. While these results are 

highly encouraging, still more research needs to be conducted in order to be able to 

decisively determine the best method of tackling the numerical solution of the electronic 
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structure of atoms and molecules. Based on these preliminary results, it is anticipated 

that yet more elegant hybrid techniques may exist. 

In the second part of the thesis, special attention has been paid to carbon nanotubes 

(CNTs) and their thermo-electro-mechanical properties. Application of CNTs and other 

carbon-based materials such as graphene in science and technology has been constantly 

on the rise in the past two decades for example as wires, switches, transistors or other 

nano-electro-mechanical systems (NEMS) and nanostructures. Here, several of the more 

fundamental mechanical, chemical, heat transport and thermal properties of the CNTs 

for these applications and for microscopy purposes (in particular, atomic force 

microscopy or AFM) have been computationally as well as experimentally studied. 

Properties such as stability and collapse propagation in CNTs, dispersibility and thermal 

coupling to the substrate have been the focus of attention. The origins of the difficulty of 

the dispersion of CNT solutions have been explained and quantitative suggestions have 

been made to solve this problem. The thermal footprint of CNTs on SiO2 substrate has 

been extracted to predict the thermal conductance from CNT to SiO2. AFM tip-CNT 

interactions have been thoroughly investigated and recommendations for the correct 

interpretation of AFM images of individual CNTs have been given. Energetics of 

collapse and inflation of CNTs on SiO2 have been studied and upper-bound estimates for 

the collapse/inflation propagation speeds have been obtained. These studies provide 

some computational tools and rather in-depth theoretical insight into the mechanisms at 

play at the nano-scale and should lead to a better understanding for the design and 

analysis of future carbon-based nanodevices and nanostructures. 
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CHAPTER 1: INTRODUCTION 

 

 

 

In 1929, British physicist Paul A. M. Dirac stated that "The underlying physical 

laws necessary for the mathematical theory of a large part of physics and the whole of 

chemistry are thus completely known…" [1]. Even though now we know that this 

statement is an over simplification of the laws of physics, it fairly accurately applies to 

that part of the laws of physics that explain the day-to-day physical and chemical 

phenomena. Thus, according to this statement, it only remains to find methods to enable 

us to apply these physical laws to basically every aspect of the physical world, from 

atoms and molecules to wires and transistors and even the living cells. Many new 

discoveries in science were made possible because of advances in technologies. Physics 

and chemistry are no exception. Recently, new understandings in physics and chemistry, 

and the mathematical theories or models of these discoveries are aided by, among others, 

the availability of advanced computational tools. The developments in simulation and 

computational tools have had tremendous impact on the advances of science. Electronic 

structure calculations with the advent of efficient techniques and powerful computers is 

one example of such impact. 
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Electronic structure calculations have been one the most computationally intensive 

computations ever carried out by researchers. Millions of lines of code have been written 

by different research groups around the world in different quantum chemistry and 

physics software packages and hundreds of millions of CPU hours have been spent 

solving them. However, finding methods that meet both the challenge of reliable physics 

vs. reasonable computation time is an open question. There are three basic ab initio 

methods to calculate electronic structures: the plane wave (PW) and grid methods, 

localized atomic(-like) orbitals method, and atomic sphere method [2]. The finite-

element method (FEM) belongs to the first category. In the FEM, the shape functions are 

strictly local piecewise polynomials in real-space. The method is completely general and 

its convergence is guaranteed by variational principles, and thus can be controlled 

systematically. The FEM method in theory can achieve a highly variable resolution in 

real-space via p-adaptivity (i.e. using higher-order shape functions where needed) and h-

adaptivity (i.e. locally using finer elements), and it is well-suited for parallel computing 

implementations. The method thus combines all the major advantages of both the grid-

based and basis-oriented approaches and is particularly promising for large-scale, 

accurate ab initio calculations [3]. These methods can be implemented with either k-

space formulation [3-7] or the real-space-grid formulation. The real-space viewpoint to 

calculating the electronic properties is more suited for the cases which are not regular 

lattices, such as in the case of deformed carbon nanotubes (CNTs) and perhaps 

biological macromolecules. 
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There is a myriad of electronic structure techniques available in the literature 

which each one has its respective advantages and disadvantages, power points and weak 

points. The following list is not a comprehensive list of the different electronic structure 

methods by any means: 

� Tight-Binding method (TB or LCAO) 

� Hückel/Extended Hückel 

� Hartree-Fock method (HF) 

� Configuration Interaction method (CI) 

� Coupled-Cluster method (CC) 

� Møller-Plesset perturbation theory (MP)  

� Density Functional Theory (DFT) 

o Local Density Approximation (LDA) 

o Generalized Gradient Approximation (GGA) 

o Orbital-Free Density-Functional Theory (OFDFT) 

� Quantum Monte Carlo (QMC) 

� Multireference Configuration Interaction method (MR-CI) 

� Etc. 

The semi-empirical tight-binding (TB) approach which is probably the simplest of 

these methods, is also referred to as the linear combination of atomic orbitals method 

(LCAO). It is considered semi-empirical because a number of free parameters for a 

given material are fit to either experimental data or first principles calculations in order 

to obtain a realistic model. It is based on the assumption that the total cohesive energy of 
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a crystalline material can be written as the sum of two contributions: one due to the 

bonding valence electrons associated with each atom, and the other due to repulsive 

sources including ion-ion interactions. The total cohesive energy per atom for an 

arrangement of N atoms is given by: [8] 











+= ∑∑∑

= ==

N

i

N

k

ik

rep
N

j

elec

jtot rE
N

E
1 11

)(
2
11

φ , (1.1) 

where the first term is the electronic part of the energy, and the second term is the 

repulsive part of the energy. The repulsive energy is usually written as a simple pair 

potential term accounting for interactions between all atoms in the arrangement as a 

function of their separation distance. The tight-binding method uses the bonding electron 

orbitals associated with each of the atoms for example in a semiconductor material to 

represent the energetics of the structure. The eigenstates of the Hamiltonian of the 

material are written in an atomic-like basis-set (Figure 1.1) and the exact many-body 

Hamiltonian operator is replaced with a parameterized Hamiltonian matrix. For 

molecular structures, TB provides the energy states corresponding to different bonding 

and anti-bonding electron orbital states. These energy states can be used to determine the 

electrical properties of the structure. When combined with a repulsive empirical pair-

wise potential, the electronic states can sometimes be used to compute the mechanical 

properties of the structure as well. 

The tight-binding method of modeling materials lies between the very accurate, 

very expensive ab initio methods and the fast but limited empirical methods such as the 
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Terssoff-Brenner potential. [9-11] When compared with other ab initio methods, tight-

binding is typically two to three orders of magnitude faster, but suffers from a reduction 

in transferability due to the approximations made, and when compared with empirical 

methods, TB is two to three orders of magnitude slower, but the quantum mechanical 

nature of bonding is retained, ensuring that the true nature of bonding may correctly be 

described for example in non-equilibrium structures. 

The density functional theory (DFT) [12] is another frequently used method 

especially in the solid-state physics community to calculate the electronic structure of 

molecules because of its relatively low computational cost. However, DFT methods fail 

to describe non-covalent interaction energies and reaction barriers because they suffer 

from self-interaction problems and do not incorporate long-range correlation effects. 

Second-order Møller–Plesset perturbation (MP2) theory [13] is the simplest method to 

account for electron correlation at an ab initio level. However, the computational cost of 

MP2 calculations is considerably higher and its practical applications are limited to 

molecules of moderate size and therefore it is not very popular. The most accurate 

quantum chemistry techniques available today are the full configuration-interaction and 

quantum Monte-Carlo which are prohibitively expensive and their application is limited 

to a few atoms at the present time. 

Among all electronic structure calculation methods, the quantum chemistry 

Hartree-Fock (HF) ab initio method is very widely studied and mature. It has been 

successfully used to study the chemical and physical properties of a wide range of 

atoms, molecules, and compounds. HF directly works with the electronic wavefunctions 
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of the different orbitals whereas DFT works with electronic charge density as the basic 

variable. In DFT method, while the Hohenberg-Kohn theorem guarantees the existence 

of a universal functional of the ground state electron charge density distribution, )(0 rn , 

that defines the total energy of the electronic system and all the other properties of the 

ground state, it doesn’t tell anything specific about this universal functional form [14-

15]. Although there are exact solutions for the free electrons case, in general these 

unique functional relations are not known and therefore for general classes of problems 

they should be developed by laborious empirical or heuristic methods. On the other 

hand, HF is essentially free from any assumptions on the form of the density functional 

and, although it may be computationally more demanding for being an orbital-based 

method, it includes an exact expression for the electron exchange which is usually the 

most important portion of the exchange-correlation (XC) energy. There has been efforts 

to incorporate this unique feature of the Hartree-Fock theory to DFT by using hybrid 

functionals [16-18]. Hybrid functionals such as PBE0 [19] have proven to be superior to 

GGAs in DFT. The accuracy of HF technique is between the crude Hückel model [20] 

which neglects electron repulsions and the very accurate but very expensive quantum 

chemistry methods such as quantum Monte Carlo (QMC). The HF technique can be 

viewed as the first level variational expansion of the fermionic many-body Schrödinger 

equation into an anti-symmetrized product of one-electron wavefunctions using Slater 

determinants [21]. There are many post-HF methods that systematically build upon the 

accuracy of the HF technique, among them configuration interaction (CI) method [22], 
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the coupled-cluster (CC) method [23-24] and Møller-Plesset perturbation theory (MP) 

[13] can be mentioned. Figure 1.2 compares the accuracy vs. the typical size of the 

problems that these different methods can currently solve. 

In this thesis the HF has been chosen for the quantum chemical calculations for the 

reasons mentioned above. An effort has been made to explore the application of the 

popular method of the Finite Element Method (FEM) in the electronic structure theory 

(Chapter 2). The Finite Element Method is a very general numerical technique in 

mathematics for solving partial differential equations (PDEs) and it has had a 

tremendous amount of success in computational mechanics and engineering in general, 

but its application in electronic structure calculations has been rather limited.  One of the 

reasons for this low popularity rate in quantum science is the availability of well-

established and fast basis-set alternatives that make competition very tough in this field.  

Also, there are certain challenges with regard to the treatment of nuclear singularity in 

FEM methods which make their use rather time-consuming and inefficient. However, 

there are serious shortcomings with the standard global basis set methods such as basis 

saturation and ill-conditioning of the matrices as the basis set size is increased.  These 

challenges must be resolved before electronic structure calculations can be reliably and 

prevalently used for the accurate solution of arbitrarily large systems. Therefore, many 

researchers around the world are still trying to address these outstanding issues and 

come up with methods that alleviate some of these problems. The divide-and-conquer 

(DC) as well as the enriched FEM and face-based smoothed FEM (FS-FEM) methods 

developed and discussed in detail in this work (Chapter 3) are steps in that direction. 
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Chapter 4 focuses on a FEM-based implementation of the non-equilibrium Green’s 

function (NEGF) method that in theory could be used for accurate modeling of quantum 

transport phenomena in molecular systems. However, due to a very high computational 

demand, its applicability is rather limited. 

In the second part of this thesis (i.e. Chapters 5-8) an especial attention has been 

paid to carbon nanotubes (CNTs) as the original motivation of this work was a project 

on the conductivity and electro-mechanical couplings in carbon nanotubes which later 

on led to a detailed study of the electronic structure of other molecular systems. Carbon 

nanotubes are currently used in industry only in nano-composites and some other limited 

applications, but due to their extraordinary mechanical and electrical properties, they are 

highly regarded as one of the prospective building-blocks of future nano-electro-

mechanical systems (NEMS) and devices. As an evidence, the research on CNTs and 

other carbon based materials such as graphene in science and technology has been 

constantly on the rise in the past two decades for example as wires, switches, transistors 

or other nano-electronic devices and structures. Here, several of the more fundamental 

mechanical, chemical, transport and thermal properties of the CNTs for these 

applications, as well as for microscopy purposes have been computationally as well as 

experimentally studied. Properties of CNTs such as dispersibility (Chapter 5), thermal 

coupling to the substrate (Chapter 6), atomic force microscopy (AFM) characterization 

(Chapter 7) and stability and collapse propagation (Chapter 8) have been the focus of 

attention. The origins of the difficulty of the dispersion of CNT solutions have been 

explained and quantitative suggestions have been made to solve this problem. The 
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thermal footprint of CNTs on SiO2 substrate has been extracted to predict the thermal 

conductance from the CNT to SiO2. AFM tip-CNT interactions have been thoroughly 

studied and recommendations for the correct interpretation of AFM images of individual 

CNTs (both for single-walled and double-walled CNTs) have been given. Energetics of 

collapse and inflation of CNTs on SiO2 substrate have been studied and upper-bound 

estimates for the collapse/inflation propagation speeds have been obtained. These studies 

provide some computational tools and rather in-depth theoretical insight into the 

mechanisms at play at the nano-scale and should lead to a better understanding for the 

design and analysis of future carbon-based nanodevices and nanostructures. These 

distinct studies are presented as separate chapters in this thesis as mentioned above. 
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1.1. Figures and tables 

 
 

Figure 1.1. Schematic of the atomic orbitals used in the tight-binding approach. 

 
Figure 1.2. Comparison of the accuracy of the different typical electronic structure 

calculations. 
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 CHAPTER 2: ELECTRONIC STRUCTURE CALCULATIONS 

USING THE FEM-HF METHOD 

 

 

 

2.1. Introduction 

Much computational effort has been devoted to the solution of the electronic 

Schrödinger equation for molecular systems, as this yields the potential energy surfaces 

that form the basis for further dynamical and/or statistical mechanical calculations. Most 

common methods for solving the electronic Schrödinger equation start from a one-

electron basis set composed of smooth nonorthogonal functions, generally atom-

centered Gaussians. This choice has the advantage of allowing one to encapsulate much 

of the important physics of the solutions in the basis set. For example, the cusp at the 

nuclei is approximated by contraction of many Gaussian functions and the basis 

functions are chosen to provide a good representation of the solutions for free atoms. 

The primary disadvantage of this approach is that it is awkward to carry these 

calculations to convergence since the nonorthogonal nature of the basis functions leads 

to ill-conditioned matrices as the basis set size is increased. Grid-based methods provide 

an alternative approach wherein convergence can be achieved more systematically. 

Examples include wavelet, finite element (FE), and finite difference (FD) methods [25]. 
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The basic formulation of the finite element method (FEM) and its advantages are 

summarized by Pask, et al. [3] which can be used to obtain solution with prescribed 

resolution in real-space. These real-space methods can be implemented either with 

Bloch-periodic boundary conditions in k-space [3-7] or with nonperiodic wavefunctions. 

The latter viewpoint to calculating the electronic properties is best suited for nonperiodic 

cases such as bent or squashed carbon nanotubes or isolated molecules.  

The Hartree-Fock (HF) method forms the starting point for most ab initio 

wavefunction-based approaches to solve the electronic Schrödinger equation. It also 

encompasses most of the computational steps involved in density functional theory 

(DFT) approaches, since the Kohn-Sham (KS) equations differ from the HF equations 

only in the presence of an additional one-electron potential derived from the exchange-

correlation functional Kxc. Within the local density (LDA) and generalized gradient 

(GGA) approximations, the KS equations do not require the calculation of the exact 

exchange that is an important component of HF. However, most modern functionals are 

hybrids that do include some admixture of exact exchange. [16-17] The computational 

effort for solving the KS equations with hybrid functionals is nearly the same as that for 

the HF equations, with the added need for numerical integration of the exchange-

correlation contribution. In this paper, we focus on the HF method, but emphasize that 

extension to KS approaches is conceptually straightforward.  

There have been a number of previous efforts aimed at using FEM in conjunction 

with HF or DFT methods. Flores and coworkers [26-27] used higher order polynomials 

as the basis functions in the solution of the two dimensional atomic HF equations and 
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called it the p-version of the finite-element method (p-FEM). They showed that the 

method works well for some representative atoms. Heinemann, et al. reported highly 

accurate calculations for light atoms and diatomic molecules with up to 6th order 

Lagrange polynomials. [28-30]  Taking advantage of the axial symmetry of these atoms 

and molecules, they used prolate spheroidal coordinates that dramatically reduced the 

computational cost. However, this technique severely limited the range of the problems 

one could solve. In separate work, [31]  they studied the effect of spin-polarization using 

the Hartree-Fock-Slater method. Lavor, et al. [32]  proposed a global optimization 

method with nonconvex polynomials which could be considered as a variant of the 

finite-element approach. In a series of papers [33-39] Sundholm, et al. studied the 

application of the finite-element multiconfiguration Hartree-Fock calculations to 

different atoms and chemical compounds. Ackermann and Roitzsch [40-41] used a 

multigrid adaptive finite element method in cylindrical coordinates for the solution of 

some symmetric single-electron systems. Quiney, et al. [42]  studied the relativistic 

Dirac equation in the algebraic approximation and compared the finite basis set and 

finite element molecular Dirac-Hartree-Fock calculations. White and coworkers [43] 

studied the application of second-order orthonormal shape functions with a uniform grid 

to some one and two-electron systems. Tsuchida and coworkers in a series of 

publications [44-47] reported adaptive higher-continuity elements within the 

pseudopotential DFT-LDA framework and applied their method to simulate periodic 

systems up to 512 atoms. It is noted that they used transformation in curvilinear 

coordinates rather than Cartesian coordinates as used by others.  Pask and coworkers [3-
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6] provided a nice and up-to-date survey of FEM methods for electronic structure of 

periodic systems. They used C0–continuity cubic serendipity elements on a uniform grid 

within the pseudopotential DFT-GGA framework. 

In this chapter, we describe a real-space finite element implementation of the HF 

method for polyatomic molecules. We introduce a new, accelerated calculation method 

of the exact exchange by an auxiliary local exchange fitting related to the X-α 

approximation. Standard C0–continuity eight-node hexahedral and four-node tetrahedral 

elements have been used in a fully adaptive meshing scheme without symmetry 

assumptions. Using locality concepts, we apply a divide-and-conquer method which 

enables facile parallelization and should lead to reduced scaling for the electronic 

structure of more complex systems such as carbon nanotubes (CNTs). In section 2 we 

present the finite element formulation of the Hartree-Fock self-consistent field method 

along with the details of the implementation of the boundary conditions (BCs). In 

section 3 we present some representative results and discussion. Section 4 contains 

summary and conclusions. 

 

2.2. The self-consistent field (SCF) method 

In the Hartree-Fock self-consistent field theory, the Hamiltonian matrix, H, is 

formally replaced by the Fock matrix, F, which is the effective one-electron 

Hamiltonian. Here a brief derivation of this method is included for the sake of 

completeness. We start from the time-independent Schrödinger equation: 
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ΦΦH E= , (2.1) 

where Φ  are the wavefunctions, E is the energy and 
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In this equation, N is the total number of electrons, M is the number of atoms, Z are 

atomic numbers and r are distance between two particles. The first sigma refers to the 

kinetic energy of the electrons, the second sigma refers to the kinetic energy of the 

nuclei, the third term refers to the nuclear-electronic attraction, the fourth term refers to 

the electron-electron repulsion and the last term refers to the nuclear-nuclear repulsion. 

The wavefunction is a collection of spin-orbitals which are orthonormal and incorporate 

the spin state as well as the spatial state and obey the Pauli Exclusion Principle which 

states that the total wavefunction for two identical fermions (particles with half-integer 

spin) is anti-symmetric. One way to make sure that the wavefunctions satisfy the Pauli 

Exclusion Principle is to write the overall wavefunction as a Slater determinant: 
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=Ψ , (2.3) 

where N is again the total number of electrons. The single-particle spin-orbitals are 

orthonormal and incorporate the spin states as well as the spatial states. The spin-orbitals 

with overbars correspond to the β  spin state and the ones without overbars correspond 
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to the α  spin state. The procedure usually followed is the restricted Hartree-Fock (RHF) 

approach although restricted open-shell Hartree-Fock (ROHF) and unrestricted Hartree-

Fock (UHF) approaches could be implemented in a similar fashion [48]. In the RHF 

approach, the molecular orbitals (MOs) occur in pairs in which the same given spatial 

orbital appears twice in the determinant with different spin factors, whereas in UHF 

approach different spatial orbitals are assigned to different spins. For large systems, 

there are always more electrons in pairs with opposite spin compared to the partially 

occupied orbitals. Here we assume that the Aufbau principle [22] holds valid, i.e. we 

have implicitly made the assumption that the ground state single-determinant 

wavefunction is the one obtained by occupying the lowest-energy solutions of the 

Hartree-Fock equations. Of course for more complex systems with multiply degenerate 

highest occupied molecular orbitals (HOMOs), this assumption loses its plausibility. An 

orbital obtained as a solution from SCF calculations whose energies are higher than 

those of HOMO is called a virtual orbital. The first one of such orbitals is the lowest 

unoccupied molecular orbital (LUMO). These orbitals are not variationally correct 

approximations to the excited state orbitals. 

Having this form, the ground state energy functional is obtained by: 

000][ ΨΨ=Ψ HE . (2.4) 

Taking the variation of this functional, 



   17 

L

L

++Ψ=

+ΨΨ+ΨΨ+Ψ=

Ψ+ΨΨ+Ψ=Ψ+Ψ

EE

E

E

δ

δδ

δδδ

][                  

][                  

][

0

000

000

HH

H

 (2.5) 

where Eδ  is called the first variation in E. In order for E to be a stationary point with 

respect to variations in 0Ψ , it’s necessary and sufficient to have .0=Eδ  There is also a 

normalization requirement on 0Ψ  that originates from charge conservation and is 

described as: 

100 =ΨΨ . (2.6) 

In basis-set techniques, each orbital is represented as a linear combination of basis 

functions with unknown coefficients. The problem of calculating the wavefunctions is 

hence equivalent to computing these coefficients. Thus, each orbital is expanded in the 

form 

∑
=

=
M

kk
C

1µ
µµ φψ , (2.7) 

where µφ  are the basis functions, kCµ  are the unknown coefficients and M is the total 

number of such functions. Two options for basis sets are atom-centered Slater type 

orbitals (STO) and Gaussian type orbitals (GTO). STOs are in the general form below 

)exp(),(),,( 1
, rrAYr n

ml

STO αϕθϕθφ −= − , (2.8) 
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where A is a normalization constant and ),(, ϕθmlY  is spherical harmonics in the azimuth 

and elevation spherical coordinates and l, m and n are the quantum numbers of the 

orbital. GTOs are in the following form 

)exp(),(),,( 2
, rrAYr l

ml

GTO αϕθϕθφ −= . (2.9) 

Although STOs have the advantage of representing the nuclear-electron cusp correctly, 

they are no longer used extensively (a notable exception is the ADF program package 

[49] based on numerical integration) because of the difficulty of evaluating the required 

two-electron repulsion integrals. The alternative GTO basis leads to integrations which 

can be carried out analytically, but with undesirable behavior for the small and large 

values of r. This is compensated by using many GTOs, which in turn leads to a large 

number of integrals that must be evaluated. [20] Unfortunately, the GTOs are 

nonorthogonal and the use of many basis functions can lead to linear dependence and ill-

conditioning problems which make systematic convergence difficult. It can be shown 

that for the RHF procedure, the condition 0=Eδ  together with the normalization 

condition enforced through the Lagrange Multipliers method leads to: 

)()(ˆ rr
kkk

f ψεψ = , (2.10) 

where 
k

ε  are the eigenvalues and 
k

ψ  are the eigenfunctions, f̂  is the Fock differential 

operator defined by, 

)()()(ˆ
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2
2
1 rrr

xd
VVVf +++∇−= , (2.11) 
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where 0V  contains the effect of all interactions in the electron potential except those 

arising from the other electrons, and 
d

V  is the Hartree potential which is the electrostatic 

potential generated by the charge distribution due to the wavefunction, and 
x

V  is the 

exchange potential. More detail on these terms will be given in the next section. A 

subtlety is that the eigenvalues 
k

ε  of the Fock operator are not the energies of single 

electron orbitals. They are identified as Lagrange multipliers in the derivation of the HF 

equations as mentioned above. Therefore the sum of the state energies is not the total 

energy of the atom or molecule, although they are related by: 
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where Etot is the total energy of the system, ĥ  is the sum of the first two terms in the 

Fock operator expression and ZI and ZJ are the atomic numbers of atoms I and J at 

positions RI and RJ, respectively. The operator <…> represents the expectation values in 

the Dirac bra-and-ket notation. Of course one can still use the Koopman’s theorem [22] 

to calculate approximate ionization potentials and electron affinities. Koopman’s 

theorem simply states that the difference between the sums of the eigenvalues of the HF 

equation for the ground state and the excited state configuration is equal to the real 

energy difference between those two states.  
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2.2.1 The HF-based finite element formulation 

In the subsequent sections we delineate the real space FEM approach for the HF 

equations which promises to make systematic convergence much easier. Several real-

space approaches have been used to solve electronic-structure problems such as finite 

difference [50-61], finite element [3-6, 44-47, 62-63], meshfree [7] and wavelet [64-66] 

approaches. The finite difference method uses numerical stencils for the individual terms 

of the differential equation of interest projected on a real-space grid. The accuracy of the 

solution depends on the grid density. Additionally, there is no associated variational 

principle in FD methods. Despite these deficiencies, the FD methods [54-59] have been 

the preferred tool for real-space calculations and, at least with generalized finite 

differences, allow for variable spatial resolution to handle singular functions such as 

Coulombic potentials. [3-6] The finite-element method has several advantages over the 

FD methods by utilizing localized bases called shape functions. The shape functions are 

polynomials that have compact support, i.e., they vanish identically outside some region. 

Variable spatial resolution in FEM is facilitated by both p-adaptivity (using higher-order 

shape functions) and h-adaptivity (using finer elements) with a standard recipe. There 

have been extensive investigations on the generation of the FEM mesh structure. [67] 

Software packages are readily available for automatic mesh generation for any domain 

with high quality and performance. [68-69] 
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An excellent reference on the general FE method exists. [70]  Thus, we only 

briefly outline the FEM in the context of HF here. Our objective is to solve the 

normalized single-electron equation for spin-orbitals  

kkkk
V ψεψψ =+∇− 2

2
1   in Ω , (2.13) 

where 
k

ψ  and 
k

ε  are the kth molecular orbital and its energy, Ω  is the computational 

domain, and 
xd

VVVV ++= 0  is the potential where 0V  contains electron-nuclear 

attraction and any external potential, 
d

V  is the Hartree potential generated by the charge 

distribution due to the wavefunction, and Vx is the non-local exchange potential. We 

adopt atomic units throughout: the unit of distance is the Bohr radius a0, masses are 

expressed in the electron mass me and the charge is measured in unit charges, e. The 

Hartree potential 
d

V  can be obtained by solving Poisson’s equation: 

∇2V
d
(r) = −4πn(r) , (2.14) 

where the density of electrons n(r) is given by 

n(r) = ψ j (r)
2

j =1

N

∑ , (2.15) 

and where N is the total number of electrons. The exchange potential )(r
x

V  can be 

computed using the following relation 

Vx (r)ψ k (r) = − Vx( )
jk

ψ j (r)
j ≠ k

∑ , 
(2.16a) 

where 
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V
x( )
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= ψ

j

*( ′r )ψ
k
( ′r )

1

′r − r
d 3 ′r∫

. 
(2.16b) 

This is an integrable singularity and can be treated by direct numerical integration 

as long as the points of singularity are excluded. However, the non-local nature of the 

exchange operator makes its evaluation very time-consuming and thus we seek an 

alternative. A statistically averaged exchange potential can be introduced as an 

approximation to the exact exchange potential:  

V
x
(r) = − 3 2α 3n(r) / π[ ]1/ 3

, (2.17) 

where α  is a fitting parameter chosen in such a way to match the exchange energy when 

calculated from Eqs. (2.16). This approximation, often referred to as the X-α method, 

was originally envisioned by Slater [71] to reduce the computational demand, and would 

be used for a fixed value of α, which Slater hoped to be universal. The X-α method was 

an early form of DFT, but was found not to be sufficiently accurate for a fixed α. In 

contrast to Slater’s original idea, we use this method as a device to minimize 

computational effort. Specifically, we calculate the exact exchange from Eqs. (2.16) 

once every 10-15 iterations. An optimal value of α is then determined from such 

calculations and used for the following 10-15 iterations, when the exact exchange is 

evaluated once more and a new optimal value for α is determined. Since the calculation 

of exchange is the most time consuming computational step in our FEM implementation 

of HF, this leads to considerable savings of computing time. Once the iterative 
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procedure nears convergence, we compute the exchange contribution without 

approximation to ensure that the correct solution is obtained. 

Taking the inner product of the differential equation in Eq. (2.13) with an arbitrary 

test function ψ ′  to form an equivalent integral equation, we have 

0][ 2
2
1 =Ω−+∇−′∫

Ω

dV
kkkk

ψεψψψ , 
(2.18) 

and integrating by parts we get 

0)(ˆ 02
1

2
1 =Ω−++′+Γ⋅∇′−Ω∇⋅′∇ ∫∫∫

ΩΓΩ

dVVVdd
kkxdkk

ψεψψψψψ n , 
(2.19) 

where Γ  is the boundary and n̂  is the outward unit normal at each point. Assuming 

natural, Neumann or free boundary conditions (i.e. no external flux) the second term 

drops out on the surface. We cast this into the weak formulation and perform the 

standard discretization procedure of the finite elements, i.e. introduce the ansatz: 

∑=≈
i

ii

T aN )(raNψ , 
(2.20) 

where the ket vector ψ  is the quantum state of interest, N are the shape functions and a 

are the nodal degrees of freedom (DOFs), corresponding to the coefficients C in the 

standard basis set expansion of Eq. (2.7). In this paper, we use standard C0–continuity 

linear isoparametric brick (eight-node hexahedral) and four-node tetrahedral elements 

for the shape functions. Isoparametric means that the same shape functions are used to 

specify the relation between the global and local coordinate systems and to describe the 

variation of the field variables. The shape functions for these elements are shown in 
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Figure 2.1, which also gives the defining equations for these elements. Although our 

choice of elements does not yield a high accuracy per degree of freedom, it does give us 

considerable flexibility in using adaptive meshing strategies. Substituting the 

wavefunction ansatz into Eq. (2.19), we obtain the following matrix equation for 

determining the orbitals: 

kkk vaH = ,   (k=1,…,N/2), (2.21) 

where 

{ }∫
Ω

Ω−++∇∇= dVV T

kd

T

k
 )()( 02

1 NNNNH ε , and 
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≠ Ω 


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
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Ω=
kj

j

T

jkxk dV aNNv  )( . 

(2.22) 

Eq. (2.21) can be solved iteratively as a sequence of linear equations with updated 

estimate of the eigenvalue εk in each iteration [72]. We use a bi-conjugate gradient 

stabilized iterative solver [73] for the linear equations along with the reverse Cuthill-

McKee node numbering algorithm, [74] to solve Eq. (2.21) for each orbital k in every 

iteration. The orbital energies kε  in Eq. (2.22) are obtained from the Rayleigh-Ritz 

expression for >kψ|  from the previous iteration, i.e. ><>=< kkkkk F ψψψψε |/|ˆ|  

where F̂  is the Fock operator. The standard Gram-Schmidt procedure is used to ensure 

orthonormality of all the orbitals. The Coulomb potential is obtained with the following 

matrix equation for the Poisson equation (2.14).  
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fLc = , (2.23) 

where 

∫Ω Ω∇∇= d
T)( NNL , and 

∫Ω Ω⋅= ndNf π4 . 

(2.24) 

As mentioned earlier, the natural boundary conditions are already incorporated in 

this derivation. It remains to show how to apply the essential, Dirichlet or value 

boundary conditions for prescribed values at the boundaries. This, for instance, will be 

used in the development of the divide-and-conquer technique. First, we rewrite Eq. 

(2.21) in the partitioned form: 
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, (2.25) 

where the subscripts f and p in the sub-matrices mean free and prescribed, respectively. 

By straightforward algebraic manipulations it can be shown that this is equivalent to 

solving the following equations 

H ff a f = v f − H fpa p , and 

ppppfpf vaHaH =+ . 
(2.26) 

By the proper choice of trial space satisfying the required inhomogeneous 

Dirichlet boundary conditions and test space satisfying homogeneous boundary 

conditions in the construction of the weak formulation, the second condition was not 
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imposed. In the case of homogeneous boundary conditions (i.e. 0a =p ) the first 

condition simplifies to ffff vaH = . 

As is well-known, the Fock operator depends on the orbitals kψ . Thus, solution 

of the Hartree-Fock equation requires a self-consistent iterative approach. The 

computational procedure used in the current paper is depicted in the flowchart in Figure 

2.2. As the first step, a reasonable initial guess is provided. Based on this initial guess, 

one can calculate the electronic density and solve the Poisson equation, and then 

calculate the Fock operator and solve for a new set of orbitals and their eigenvalues. The 

energies can then be calculated. This process is repeated until the values of the 

calculated energies become stationary. The criterion for convergence has been chosen 

such that the absolute change in the total energy of the system in the successive 

iterations to be less than a small tolerance. The direct inversion of iterative subspace 

(DIIS) method is used to accelerate convergence of this self-consistent field procedure. 

[75] As mentioned above, we use the statistically-averaged exchange potential for most 

iterations, updating α every 10-15 iterations, and switching to exact exchange towards 

the end of the iterative procedure.  

2.2.2. The divide-and-conquer method 

One way of solving the electronic structure problem for large domains is the local 

approximation, i.e., assuming that the charge density is not affected by the potential 

changes far away from the site considered. A number of linear scaling approaches based 
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on these ideas have been introduced in electronic structure theory. [76]  The remaining 

problem with such approaches is the size of the prefactor associated with the reduced 

scaling. In many cases, linear scaling is not observed until the system size is very large. 

The very localized nature of the elements in FEM promises to reduce this prefactor 

significantly, and we present such an approach here. 

In the divide-and-conquer method [77] the domain is partitioned into sub-domains 

β  via partition functions )(rβp  that have the following property: 

1)( =∑
β

β rp . 
(2.27) 

For instance, in the Hirshfeld-type partitioning [78] of the electronic density in a 

molecule, each subsystem contains precisely one atom. Then the total density of the 

system is written as 

∑=
β

βρρ )()( rr , 
(2.28) 

where 

∑ −=
m

mmFD Tfp
2

)(),()(2)( rrr
βββ ψµερ . (2.29) 

βψ m  is the portion of mψ  that falls within the subdomain β . FDf  is the usual Fermi-

Dirac distribution function given by 

TkmFD
Bme

Tf
/)(1

1
),(

µε
µε

−+
=− . (2.30) 
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T is the temperature and µ  is the chemical potential of the system. 
B

k  is the 

Boltzmann’s constant. Charge conservation dictates that 

∫
Ω

= rr dN )(ρ , 
(2.31) 

where as before N is the total number of the electrons. 

In this scheme, each sub-domain iβ  interacts only with its physically near-by sub-

domains or in other words, its immediate neighbors, }{ jβ . Rewriting Equation (2.21) in 

the form 

∑−=
j

j

k

ij

k

i

k

i

k

ii

k aHvaH , 
(2.32) 

for the sub-domain iβ , the global orbitals can be obtained simply by the assembly of the 

orbitals in each sub-domain. Figure 2.3 shows the general structure of the global 

Hamiltonian matrix after this partitioning step. The dark gray block in this figure refers 

to the local Hamiltonian matrix of the corresponding sub-domain, ii

kH . ∑
j

j

k

ij

kaH  can be 

viewed as the correction to the local Hamiltonian matrix of the sub-domain iβ  from its 

interaction with its neighboring sub-domains. ij

kH  is the interaction matrix between the 

sub-domains iβ  and jβ  and is determined in the assembly process of the global 

Hamiltonian matrix. Each sub-domain can be pertinently handled by one processor using 

efficient symmetric sparse solvers. These local sub-matrices are then used to get the 

global response. In other words, we take advantage of the local characteristics of the 
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global Hamiltonian. In order to construct the Hamiltonian matrix in each sub-domain, it 

is required to take into account the values of the field variables in the adjacent sub-

domains. For instance, one can consider a radius of influence around each sub-domain 

and incorporate everything within that cut-off range in the assembly process. There is 

good reason to believe that in many cases only the first or second neighbors will suffice 

for reaching a monolithic solution. This technique of eliminating the long-range 

interactions is by nature linear with respect to the total number of DOFs, although in 

practice, long-range effects still indirectly exist via the neighbor-to-neighbor interactions 

and therefore the efficiency is not necessarily linear. More discussion on the 

performance of this method is given in section 3. It should be noted that for an infinitely 

large molecule, both the Hartree potential and the nuclear potential blow up at every 

point due to the slow-decaying nature of these potentials. However, for a neutral 

molecule, the sum of these two potentials is bounded. This can be used for example in a 

modified Poisson equation as:  

( ) ∑ −+−=+∇
I

IId ZnVV )(4)(4)()(0
2 rRrrr δππ , 

(2.33) 

where, again, n(r) is the density of electrons at each point r in space, ZI is the atomic 

number of atom I at position RI, and δ  is the Dirac’s delta function. The solution to this 

term can be easily treated by the corresponding Green's function. Once the combined 

value of dVV +0  at each step is determined, it can be used in Eq. (2.22) as before. 
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2.3. Results and discussion 

In order to demonstrate our FEM-HF approach, we have computed the total energy 

of selected light atoms and small molecules (namely H, He+, He, Be, Ne, +
2H , BH and 

HF) as shown in Table 2.1. These energy values are compared with the Hartree-Fock 

limit or the corresponding theoretical/experimental values. A typical FEM mesh for an 

atom, with small cubic elements near the nucleus and concentric mesh geometrically 

expanding towards the domain boundary, as shown in Figure 2.4, has been used to 

capture the higher gradients of the electron density near the nuclei. For the diatomic 

molecules, in the axial direction there is a transition region that smoothly connects the 

two regions with finer elements around each nucleus. Both the domain size and the mesh 

density can be adjusted by changing the number of elements and the ratio of the lengths 

of neighboring elements. Linear isoparametric brick elements have been used in the 

current computations. Homogeneous boundary conditions have been assumed in all 

calculations. 

The choice of mesh configuration in the calculations of all atoms and light 

molecules is determined by the convergence of the computations. We have used an 

adaptive meshing strategy [79] that ensures higher accuracy in places where more rapid 

variation in the field variables is expected. In this approach, the representative element 

dimension d is inversely proportional to the second gradient of the electron density via 

the following criterion: 



   31 

0

1

2

2

2

2

2

2

      ,,,max dd
zyx

d <























∂

∂

∂

∂

∂

∂
∝

−

ρρρ
. (2.34) 

We start this adaptive meshing procedure by using an approximate electron 

density distribution from a simple tight binding analysis. After that, the mesh can be 

constructed from the most recent electron density distribution. We do at most one 

remeshing beyond this step as the meshing process is expensive and usually the quality 

of the first mesh is quite good. Figure 2.5 shows the electronic configuration of the 

krypton atom as an example of the results obtained with this scheme. 

The size of the core region shown in Figure 2.4 is typically chosen to be ~10% of 

the total computation domain.  For a hydrogen atom, this choice of FEM mesh gives 

almost a perfect fit to the analytical solution of the ground state, as shown in Figure 2.6. 

The resulting charge density distribution for hydrogen fluoride is shown as an example 

in Figure 2.7. The total energies calculated from our method have less accuracy than one 

might desire. This is a common problem with FEM approaches in electronic structure 

theory and arises because of the singular nature of the Coulomb potential. Although we 

do have a finer mesh in the regions near the nuclei, this is not sufficient to achieve 

chemical accuracy (typically considered to be on the order of a millihartree error). The 

results do improve as we increase the density of the mesh, as shown in Table 2.1. 

However, the important quantities in chemistry are energy differences and not 

necessarily absolute energies. Thus, it is important to investigate the degree to which the 

error incurred by our FEM approach is systematic. In order to answer this question, we 
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have calculated the potential energy curve for HF using both our FEM approach and the 

conventional atom-centered Gaussian basis set method (using the aug-cc-pv5z basis set). 

The results are shown in Figure 2.8. Importantly, our FEM approach yields a smooth 

potential energy curve and furthermore is in good agreement with the finite basis set 

results (we have shifted the FEM potential curve by a constant ~20eV representing the 

systematic error incurred by integration of the core region). The use of pseudopotentials 

would alleviate much of the difficulties with respect to the mesh density needed in the 

core region, since pseudopotentials remove the Coulomb singularity near the nuclei. 

The same approach could be used to study the electronic structure of the multi-

atom molecules. As an example, the internal rigid rotation of the ethylene molecule 

(C2H4) was considered. In this case a tetrahedral mesh is more convenient. The 

unstructured mesh used for solving this problem is shown in Figure 2.9a. Their 

corresponding FEM energy values are shown in Figure 2.9b and compared to the 

Gaussian basis-set results. These results generally agree very well with each other, 

although some nonsmoothness arising from the nonsystematic error associated with 

integration of the core region is now visible. For comparison purposes, the FEM 

energies have been shifted ~180kcal/mol such that the FEM and aug-cc-pVTZ energies 

are matched at the planar ethylene geometry.  

Enhanced convergence is a major benefit of the FEM approach. We have 

investigated two aspects of convergence for the FEM-HF approach. First, we consider 

the convergence with decreasing element size, i.e. increasing number of elements. We 

define a convergence norm as the error in the total energy as a function of the number of 
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divisions on each side of the computation domain. Results for helium atom are shown in 

both Table 2.1 and Figure 2.10a. Figure 2.10a clearly shows that the convergence norm 

follows a power law with the number of divisions (the number of elements increases as 

the third power of the number of divisions in each direction). Secondly, we consider the 

effect of the finite computational domain. The true orbitals are expected to extend to 

infinity in space, but they are forced to be identically zero on the boundaries of the 

chosen computational domain in our FEM-HF approach. Since the magnitude of 

electron density decreases exponentially far from the center of an atom or molecule, one 

expects the domain truncation error resulting from this forced truncation to be quite 

small as long as the computational domain is sufficiently large. Indeed, we found 

domain truncation errors to be negligible for a computational domain whose boundaries 

are farther than 20a0 away from each nucleus in every direction. In order to demonstrate 

this size dependence, the convergence of the total energy as a function of the total 

domain size is shown in Figure 2.10b for the helium atom from which exponential 

convergent behavior is evident.  

Another important practical issue is the scaling of the required computer time with 

the number of DOFs. Scaling up the calculations to larger, more complex systems 

requires a high computational efficiency (a task which is quite formidable with the 

original non-local approach). The computational efficiency of the current method is very 

good. All the calculations in Table 2.1 have been carried out on a single processor 

personal computer using an implementation of our method within Matlab version 

7.4.0.287. We have performed FEM-HF simulations on graphene sheets with over 1000 
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electrons with a full account of all the electrons in the system on a cluster of 16 

processors in less than 48 hours. [80]  The wall clock time required as a function of the 

number of DOFs for beryllium atom is shown in Figure 2.11. We have used the DC 

formalism described above with four domains. The systems studied are too small to 

expect significant computational advantage from decreased scaling, but we do benefit 

from parallelization across the domains as mentioned above. Although the FEM method 

as described above formally has computational effort that scales linearly with the 

number of degrees of freedom for a given problem, Figure 2.11 shows that our 

implementation exhibits nearly quadratic scaling. As discussed in the supporting 

information (Appendix A), we have determined that this is due to the increased Matlab 

internal communications overhead of handling large sparse matrices. Implementation of 

the method in Fortran or C should lead to the expected linear scaling behavior.  

Several features of the current computations are noted. First, no pseudopotentials 

have been used in the current formulation, i.e. all electrons are included explicitly, 

enabling the explicit calculation of the exact exchange potential. Implementation of 

pseudopotentials is expected to improve the accuracy of the calculations significantly, 

since the Coulomb singularity at the nuclei is then removed or softened. Second, we 

have not used symmetry in any of the cases shown. Therefore this approach, in principle, 

can be used for a truly ab initio analysis of any arbitrary three-dimensional molecular 

system with a reasonable quantum resolution.  

One of our future goals is to use this technique to reliably study phenomena such 

as electro-mechanical coupling of systems such as carbon nanotubes. In a separate 
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article it will be shown that the current method can be used to study the transport 

properties of the quantum systems of interest with facile convergence. We can then use 

the reduced scaling local approximation to study the effects of defects and mechanical 

deformation on the properties of individual graphene sheets and carbon nanotubes under 

tension, torsion, bending and general deformation conditions at finite temperatures. [80-

81] 

 

2.4. Conclusions 

 We have developed a method of using the finite-element method (FEM) to 

calculate the Hartree-Fock (HF) ab initio electronic-structures in three dimensions. 

Traditional basis set approaches to the HF method were discussed and compared to this 

FEM implementation. Although the absolute accuracy of the method is hampered by the 

singularities in the Coulomb potential at nuclear positions, the method was nevertheless 

shown to produce smooth potential curves due to our adaptive meshing scheme. Higher 

absolute accuracy could be obtained by using pseudopotentials to alleviate the 

singularities at the nuclei. We introduced a new acceleration scheme for the exchange 

contribution which uses an approximate X-α formulation to rapidly compute an 

approximate exchange for many of the self-consistent field iterations. We also 

formulated the method in the context of a divide-and-conquer approach to improve the 

scaling of the implementation. Larger systems need to be investigated to demonstrate 

reduced scaling from this approach, but the method lends itself easily to parallelization 
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even for small systems and the implementation we described here has already been 

parallelized (with each divide-and-conquer domain apportioned to a separate processor). 

The Hartree-Fock method forms the basis for many methods including electron 

correlation effects and the extension of this work to calculations of electronic structure 

of more complex molecules using post-HF methods seems feasible. Implementation in 

the context of density functional theory, including hybrid functionals which require 

exact exchange, can also be implemented.  
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2.5 Figures and tables 

 

Table 2.1. Total energy (a.u.) of the selected chemical species as a function of the 

number of elements in each direction compared to the reference values. For selection of 

the computation domain, please refer to the discussion on the effect of domain size on 

convergence in the text.  

 

Number of elements in each direction 
(Number of DOFs) Species 

16 (2299) 20 (5850) 24 (11913) 

Reference values 

H -0.481766 -0.487039 -0.490062 -0.5* 

He+ -1.949650 -1.965756 -1.975213 -2.0* 

He -2.739113 -2.802768 -2.839044 -2.8616800 [21] 

Be -13.76410 -14.09187 -14.27383 -14.573023 [21] 

Ne -112.8331 -118.7391 -122.3812 -128.54710 [21] 

H2
+  -0.586220 -0.592524 -0.595744 -0.6029** 

BH -21.62545 -23.24638 -24.18116 -24.8088515 [29] 

HF -90.32122 -93.75640 -95.26689 -100.071 [22] 

* Exact theory 
** Experimental 
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Figure 2.1. The linear isoparametric quadrilateral shape functions in ),( ηξ  natural 

coordinates are: 

a) 4/)1)(1(1 ηξ −−=N , b) 4/)1)(1(2 ηξ −+=N , c) 4/)1)(1(3 ηξ +−=N , d) 

4/)1)(1(4 ηξ ++=N . 
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Choose an initial 0
kψ  

Form the Fock operator  
(Compute V0, Vd and Vx) 

Calculate charge density, n 

Solve Poisson’s equation 

Solve for new i

kψ  and i

kε  

Check for charge conservation 
(normalization) and orthogonality 

Calculate energies 

Convergence? 

Done 

No 

Yes 

Figure 2.2. The flowchart of the self-consistent field (SCF) iterative approach. 
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Figure 2.3. Schematic of the Hamiltonian matrix structure after partitioning. The gray 

shaded area shows the sub-matrices corresponding to the sub-domain iβ . 
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(a)        (b)  

 

(c)     (d)  

 

Figure 2.4. Schematic of the typical concentric-cubes mesh configurations used at the 

location of each nucleus; (a) the 3D mesh and (b) the corresponding slice for atoms, (c) 

the 3D mesh and (d) the corresponding slice for diatomic molecules. 

 



   42 

 

 

 

 

Figure 2.5. Computed atomic orbitals using FEM for the krypton atom with the atomic 

number of 36 and the atomic configuration of: [Kr] 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 

From left to right and from top to bottom the boxes correspond to the iso-surfaces of the 

following orbitals: 1s, 2s, 2px, 3s, 3px, 3dxy, 3dzz, 4s and 4px. All the orbitals are drawn 

to the same scale. Therefore, their true size could be compared to each other from this 

figure. Different elements have different size and shape s, p, d, and f atomic orbitals.
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Figure 2.6. Radial charge density distribution for hydrogen atom from the finite-element 

solution with 24 divisions on each side (the dots). The curve represents the exact 

theoretical solution. 

 

Figure 2.7. Axisymmetric charge density distribution for hydrofluoric acid using 24 

divisions in the axial direction. The density contours clearly show the H+F− polarity of 

the molecule. 
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Figure 2.8. Bond dissociation curve for hydrofluoric acid from the Gaussian basis set 

and the FEM. The FEM results have been uniformly shifted to agree with the Gaussian 

basis set results at the equilibrium distance. 
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a)  

b)  

Figure 2.9. a) Typical mesh configuration and b) total energy profile for rigid internal 

rotation of ethylene (see inset). The FEM results have been uniformly shifted to agree 

with the Gaussian basis set results at the planar ethylene geometry. 

θ 
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(a)      

(b)  

Figure 2.10. Convergence behavior of the finite-element solution for the helium atom; 

the error in the total energy as a function of (a) the average number of divisions in each 

direction and (b) the total domain size. 
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Figure 2.11. Computer time as a function of the number of degrees of freedom for the 

Be atom. 
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CHAPTER 3: APPLICATION OF FACE-BASED SMOOTHED 

FINITE-ELEMENT AND ENRICHMENT FUNCTIONS IN 

ELECTRONIC STRUCTURE CALCULATIONS 

 
 
 
 

 

3.1. Introduction 

Much computational effort has been devoted to the solution of the electronic 

Schrödinger equation for molecular systems, as this yields the potential energy surfaces 

that form the basis for further dynamical and/or statistical mechanical calculations. Since 

the seminal contribution of Roothaan, quantum chemistry methods are traditionally 

expressed using finite basis sets comprised of smooth and continuous functions (atom-

centered Gaussians) to describe the electronic degrees of freedom. Although this 

approach has proven quite powerful, it is not well-suited for large basis sets because of 

linear dependence problems and ill-conditioning of the required matrices. Most common 

methods for solving the electronic Schrödinger equation start from a one-electron basis 

set composed of smooth nonorthogonal functions, generally atom-centered Gaussians. 

This choice has the advantage of allowing one to encapsulate much of the important 

physics of the solutions in the basis set. For example, the cusp at the nuclei is 

approximated by contraction of many Gaussian functions and the basis functions are 



   49 

chosen to provide a good representation of the solutions for free atoms. The primary 

disadvantage of this approach is that it is awkward to carry these calculations to 

convergence since the nonorthogonal nature of the basis functions leads to ill-

conditioned matrices as the basis set size is increased. Accurately representing the 

rapidly varying and complicated orbitals and reconstructing them from many Gaussian 

functions is also not very efficient. The major reason that these methods have been so 

successful up to now is the availability of analytical integration formulas that procure 

ultra-fast evaluation of these two-center integrals. Grid-based methods provide an 

alternative approach wherein convergence can be achieved more systematically. 

Examples include wavelet, finite element (FE), and finite difference (FD) methods [25]. 

In Ref. [80], a divide-and-conquer real-space finite element implementation of the 

restricted HF (RHF) method for polyatomic molecules was described. There, standard 

C
0–continuity eight-node hexahedral and four-node tetrahedral elements have been used 

in a fully adaptive meshing scheme without symmetry assumptions. Even though this 

local-basis approach to electronic structure theory was shown to have a linear time 

scaling which allows for systematic convergence and facile parallelization and promises 

to provide a rigorous and accurate way towards the full ab initio analysis of materials at 

larger scales, the computational burden of the assembly and integration of the 

exceedingly small elements near the core region has proven to be a great detriment to the 

computational efficiency of the FEM methods compared to the global basis set methods 

and it’s clear that a successful treatment of this problem is a key issue in any future 

application of the FEM methods in the field of computational quantum chemistry. In 
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order to demonstrate the origins of the challenge facing the numerical treatment of this 

problem, the ground state of the 1D infinite square well potential with a point charge Z 

at the origin, i.e. the solution to the following equation 

)()(2

2

2
1 xEx

Ax

Z

x
ψψ =









+
−

∂

∂
−   in BxB ≤≤−  (3.1) 

with A=1e-10, B=1 and Z=0-4 is shown in Figure 3.1. As it can be seen, the ground state 

wavefunction is sharply peaked at the core, and this is where the nuclear charge is still 

moderately low and the addition of higher occupied orbitals can only push the core 

orbitals further in and make the situation even worse. 

For treatment of the nuclear singularity, several options were considered at the 

early stages of carrying out this research including: the pseudopotential approach, the 

Model-Potential approach [82], the perturbation solution, the variational matching 

approach [83], the enriched finite element method [84] and the faced-based smoothed 

finite element method [85]. Each of these methods have their own advantages and 

disadvantages which a detailed discussion of them goes beyond the scope of this 

dissertation. 

In this chapter, we use the concept of generalized/extended finite element method 

(GFEM/XFEM) within the partition of unity framework [86-89] to remedy this problem. 

The idea in generalized/extended finite element method is to use a priori knowledge 

about the solution of a problem to obtain an improved numerical approximation. This 

knowledge is, for example, in the form of known analytical solutions at the limit of very 
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close to the crack tip (in fracture mechanics) or very close to the nuclei (in quantum 

chemistry). From the other hand, it’s known that FEM gives higher energy values than 

the true energies. In structural mechanics nomenclature, it’s sometimes said that FEM 

stiffness matrices are “too stiff”. This property makes the convergence slow and 

occasionally introduces spurious modes in modal analyses. To remedy these problems, 

several solutions have been proposed such as the strain smoothing technique for 

meshfree methods [90], the smoothed finite element method (SFEM) [91-92], the node-

based smoothed finite element method (NS-FEM) [93] and the face-based smoothed 

finite element method (FS-FEM) [85]. The FS-FEM has been reported to be numerically 

very efficient with superior convergence characteristics for modal analyses [94]. In this 

article, an effort has been made to take advantage of these good characteristics of FS-

FEM enriched with exponential enrichment functions at the points of singularity and 

explore the accuracy and efficiency of this approach for some selected test atoms and 

molecules compared to our previous results using standard FEM. Here, for comparison 

reasons, we focus on the Hartree-Fock (HF) method which avoids the problem of self-

interaction via the inclusion of all the electrons explicitly, enabling the explicit 

calculation of the exact exchange potential. Moreover, HF does not entail any fitting 

parameters or empirical functionals which makes it ideal for benchmark numerical 

studies. However, we’d like to emphasize that extension to Møller–Plesset perturbation 

theory (MP), coupled cluster (CC) or the Kohn-Sham (KS) approaches such as the 

density functional theory (DFT) approaches including the local density (LDA) and 
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generalized gradient (GGA) approximations with hybrid functionals [16-17] is 

conceptually straightforward. 

There have been numerous efforts aimed at using FEM in conjunction with HF or 

DFT methods. For a detailed literature review of these methods, we refer the interested 

reader to [80] and the references therein. In section 2 we present the generalized finite 

element formulation of the self-consistent field method. In section 3 we present some 

representative results and discussion. Section 4 contains summary and conclusions. 

 

3.2. The generalized and face-based smoothed finite element formulation of the self-

consistent field 

The derivation of the FEM within the context of RHF is given elsewhere. [80] 

Thus, we only mention the major resulting equations here. The normalized single-

electron equation for spin-orbitals is  

kkkk V ψεψψ =+∇− 2
2
1   in Ω , (3.2) 

where kψ  and kε  are the k-th molecular orbital and its energy, Ω  is the computational 

domain, and xd VVVV ++= 0  is the potential where 0V  contains electron-nuclear 

attraction and any external potential, dV  is the Hartree potential generated by the 

electron-electron repulsion, and Vx is the non-local exchange potential due to the 

exchange symmetry of the wavefunctions of indistinguishable particles. The Hartree 

potential dV  can be obtained by solving Poisson’s equation: 
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∑
=
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jjd nV
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2 )(4)( rr π , (3.3) 

where njk(r) is defined by 

)()()( * rrr kjjkn ψψ= , (3.4) 

and where N is the total number of the electrons. The exchange potential )(rxV  can be 

computed using the following relation 

( )∑
=

−=
2/

1

)()()(
N

j

jjkxkx VV rrr ψψ , (3.5a) 

where 

( ) )(42
rjkjkx nV π−=∇ . (3.5b) 

We adopt atomic units throughout. The corresponding weak form of Eq. (3.2) is 

0)(ˆ 02
1

2
1 =Ω−++′+Γ⋅∇′−Ω∇⋅′∇ ∫∫∫

ΩΓΩ

dVVVdd kkxdkk ψεψψψψψ n , 
(3.6) 

where Γ  is the boundary and n̂  is the outward unit normal at each point. Assuming 

natural, Neumann or free boundary conditions (i.e. no external flux) the second term 

drops out on the surface. After performing the standard discretization procedure of the 

finite elements, we introduce the ansatz: 

∑∑∑ +=+=≈
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pp
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ii

TTT
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~~~~~~~

rraNaNaNψ , (3.7) 
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where the ket vector ψ  is the quantum state of interest, >=< TTT NNN
~~

,
~

 are the shape 

functions and >=< TTT aaa
~~,~  are the nodal degrees of freedom (DOFs). N

~
 and a~  

correspond to the regular shape functions and DOFs, and N
~~

 and a
~~  correspond to the 

enriched shape functions and DOFs, respectively. This expansion ensures the 

completeness of the solution via inclusion of the linear shape functions explicitly in the 

basis. In this paper, we use standard C
0–continuity linear isoparametric four-node 

tetrahedral elements for the regular shape functions. Isoparametric means that the same 

shape functions are used to specify the relation between the global and local coordinate 

systems and to describe the variation of the field variables. This choice of elements 

caters considerable flexibility in using adaptive meshing strategies. For the choice of 

enriched shape functions, we used the following relations: 









×−×= ∑

i

ipip

p

i NSN )()(
~

)()()(
~~

rrrrr φφ ,  (for p=1,…,P), (3.8) 

where pφ  are the Slater type atom-centered basis functions, P is the total number of such 

functions and ir  is the position of the node corresponding to )(
~

riN . S is a blending 

function which is zero far from the point of singularity and is 1 close to the points of 

singularity so that the compatibility of elemental solutions is guarantied among the 

enriched and non-enriched elements. The linear form of this function is: 
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where 
cut

r  is the radius around the points of singularity below which all elements are 

enriched and t is the thickness of the blending region, typically on the order of the 

element size. Substituting the wavefunction ansatz into Eq. (3.3), we obtain the 

following matrix equation for determining the orbitals: 

kkk
vaH = ,   (k=1,…,N/2), (3.10) 

where 
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(3.11) 

In FS-FEM the calculation of the face-based smoothed gradients, FSN∇ , is 

different from that of the conventional FEM. For a detailed discussion of this topic the 

interested reader should consult reference [85], but a short version is given below for the 

sake of completeness: 
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In this equation, )(, ii eVolN∇  and )(, jj eVolN∇  are respectively the regular gradient 

matrices and volumes of two adjacent elements ie  and je  (Figure 3.2). The symbol ⊕  



   56 

in this notation is the assembly operator which simply means that the values 

corresponding to the same DOFs add up together. Eq. (3.10) can be solved iteratively as 

a sequence of linear equations with updated estimate of the eigenvalue εk in each 

iteration. As the first step in the computational procedure, a reasonable initial guess is 

provided. Based on this initial guess, one can calculate the electronic density and solve 

the Poisson equations, and then calculate the Fock operator and solve for a new set of 

orbitals and their eigen-energies. This process is repeated until the values of the 

calculated energies become stationary. The criterion for convergence has been chosen 

such that the absolute change in the total energy of the system in the successive 

iterations to be less than a small tolerance. Homogeneous boundary conditions have 

been assumed in all calculations. The iterative subspace (DIIS) method is used to 

accelerate the convergence of this self-consistent field procedure. [75, 95] Also, it is 

found out that it’s usually best to first obtain a solution with a relatively coarse mesh and 

then map that solution on a finer mesh and iterate to convergence. This way, many of the 

iterations far away from the stationary solution are quickly marched through. Sometimes 

for degenerate systems, a case of pseudo-instability occurs in which wavefunctions do 

not become stationary. One way to handle this situation is to use a dummy charge to 

split the degeneracy and then gradually remove the dummy charge. 
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3.3. Results and discussion 

Structured meshes are typically more accurate than the unstructured meshes with 

the same order of interpolation due to their symmetric error cancellation. In this paper, 

we have used tetrahedral elements with an adaptive structured meshing strategy that 

ensures higher accuracy in places where more rapid variation in the field variables is 

expected. In this approach, the representative element dimension, d, should satisfy the 

following simple criterion based on electron density: 

maxmin      ,/ dddd <<< ρκ , (3.13) 

where κ  is a constant. If d is too large, the element size is halved until this condition is 

met. We start this adaptive meshing procedure by using an approximate electron density 

distribution from a simple tight binding analysis. After that, the mesh can be constructed 

from the most recent electron density distribution. This procedure results in a mesh 

similar to the typical mesh shown in Figure 3.3 due to the exponential type nature of the 

electron density distribution. We do at most one remeshing beyond this step as the 

meshing process is expensive and usually the quality of the first mesh is quite good. In 

the case of the enriched simulations, a dmin is imposed so that the element density at the 

cores does not get unnecessarily too high since the inverse density criterion tends to 

result in a proliferation of very small elements at the core which can cause numerical 

issues. Nonetheless, linear elements with the size of a fraction of a thousandths of a Bohr 

radius, a0, are commonly required. 



   58 

In order to demonstrate the different computational methods discussed above, we 

have computed the total energy of the He atom with these different methods and the 

results are shown in Figure 3.4. With the same number of Gauss integration points per 

element used, all these methods have a computational time that scales linearly with the 

total number of DOFs, however, enriched simulations are more accurate than their 

regular counterparts and FS-FEM is significantly more accurate than standard FEM. 

Impressively, FS-FEM is even more accurate than the enriched FEM. We have 

calculated the potential energy curve for hydrogen fluoride (HF) using the different 

FEM approaches and the conventional atom-centered Gaussian basis set method (using 

the aug-cc-pv5z basis set). To speed up these simulations, we implemented a resume 

functionality that linearly maps the last electronic configuration to the initial 

configuration of a higher density mesh, thus avoiding many of the initial iteration steps. 

The results are shown in Figure 3.5. FEM approaches are in good agreement with the 

finite basis set results. Our previous results with linear hexahedral elements indicate that 

these elements generally perform better than their tetrahedral counterparts, although as 

mentioned above, meshing is not as flexible with hexahedral elements for multi-atom 

molecules with arbitrary geometry. It’s also worthwhile to mention that we have not 

assumed any symmetries here and therefore this approach, in principle, can be used for a 

truly ab initio analysis of any arbitrary three-dimensional molecular system with a 

reasonable and adjustable quantum resolution. 

   



   59 

3.4. Summary and Conclusions 

We have applied an enrichment method to the standard and face-based smoothed 

finite-element method (FS-FEM) to calculate the Hartree-Fock (HF) ab initio electronic-

structures in three dimensions. Our results suggest that FS-FEM is significantly more 

accurate than the standard FEM in dealing with modal analyses even without using 

enrichment. The proposed inclusion of Slater-type enrichment functions drastically 

improves the quality of the solutions both in regular FEM and FS-FEM without any 

substantial adverse effect on the computational efficiency of the corresponding methods. 

However, still a relatively large number of elements is needed at the core in order to 

capture the correct cusp behavior of the Coulomb potential. Further research is needed to 

be able to conclusively determine which approach will be the most efficient and versatile 

one in dealing with the problem of the core singularity in the FEM approaches. It might 

well be possible in the future to devise a more elegant global basis set/FEM hybrid 

method which eliminates much of the current difficulties. Such a method would indeed 

be the holy grail of quantum chemistry and physics calculations. The Hartree-Fock 

method forms the basis for many other electronic structure methods including electron 

correlation effects and the extension of this work to calculations of electronic structure 

of more complex molecules using post-HF methods seems feasible. There’s no 

conceptual or practical obstacle with the implementation of the method in the context of 

density functional theory, including hybrid functionals which require the calculation of 

exact exchange. 
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3.5. Figures and tables 

 

 

 

 

Figure 3.1. Ground state of the 1D infinite square well potential with a point charge Z in 

the middle for some different values of Z. 
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Figure 3.2. The definition of elements ei and ej and the smoothed domain in FS-FEM. 
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Figure 3.3. An example of the adaptive structured mesh. Element sizes are halved at 

regular intervals. 
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Figure 3.4. Convergence behavior of the FEM, enriched FEM, FS-FEM and enriched 

FS-FEM solutions for the helium atom; the error in the total energy as a function of total 

number of DOF. 
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Figure 3.5. Bond dissociation curve for hydrofluoric acid from the Gaussian basis set 

and the different FEM approaches. 

 



   65 

 

CHAPTER 4: ELECTRONIC STRUCTURE SIMULATIONS OF 

ELECTRO-MECHANICAL COUPLING PROBLEMS USING THE 

FINITE ELEMENT METHOD 

 

 

 
4.1. Introduction 

As electronic devices continue to shrink from micron size to submicron and 

nanoscales, new approaches are required to precisely take into account the associated 

quantum transport phenomena. Developments of future nano and molecular electronics 

systems (nanowires, nanotransistors and nano-electro-mechanical systems - NEMS) 

demand reliable predictions of the behavior of these systems at the quantum level. This 

requires a thorough knowledge of the electronic structure of these systems. This is a 

major challenge to physics and computational science community. Electronic structure 

calculations have been one the most computationally intensive simulations ever carried 

out by researchers. Millions of lines of code have been written by different research 

groups around the world in different quantum chemistry and physics software packages 

and hundreds of millions of CPU hours have been spent solving them. However, finding 

methods that meet both the challenge of reliable physics yet reasonable computation 

time is an open question. Furthermore, existing techniques do not always work well, e.g. 
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in the cases of adsorption/desorption of H2 molecule on Si(001) or of simulations of 

experimentally observed quantum corrals shown in Figure 4.1 [96].  

Another major challenge in electronic structure simulations is the electro-

mechanical coupling phenomena. In some nano materials/structures, as the material 

deforms mechanically, its electronic properties change dramatically. An example of such 

phenomena was observed in carbon nanotubes (CNT) by Tombler et al. [97] Using 

tapping-mode atomic force microscopy (AFM) technique to bend and stretch a single 

walled CNT (Figure 4.2a), Tombler, et al. found that the electrical conductance of the 

nanotube could change by two orders of magnitude (Figure 4.2b), i.e., a metallic 

nanotube will become a semiconducting one after deformation.  Moreover, this change 

of electric conductance is completely recoverable once the large mechanical deformation 

is removed.  This unique electromechanical characteristics makes carbon nanotubes a 

good candidate for nano-electro-mechanical systems (NEMS).  But being able to 

simulate and predict such coupling phenomena remains elusive to the scientific research 

community. 

There are three basic ab initio methods to calculate electronic structures: the plane 

wave (PW) and grid methods, localized atomic(-like) orbitals method, and atomic sphere 

method [2]. The finite-element-based methods (FEM) belong to the first category. In the 

FEM, the shape functions are strictly local piecewise polynomials in real-space. The 

method is completely general and its convergence is guaranteed by variational 

principles, and thus achieved systematically. FEM method is the overwhelmingly 

preferred method for mechanical deformation simulations of materials, and is well suited 
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for parallel computing. The method thus combines all the major advantages of both the 

grid-based and basis-oriented approaches and is particularly promising for large-scale, 

accurate ab initio calculations of electro-mechanical coupling problems [3-6, 80]. 

Recently we have developed a reduced scaling local density three-dimensional 

FEM Hartree-Fock (HF) method to calculate electronic structures [80]. The Hartree-

Fock (HF) theory is one of the cornerstones of electronic structure calculations. 

Significant portion of current qualitative as well as quantitative knowledge in theoretical 

chemistry has been gained by this technique. There are many post-HF methods that 

systematically build upon the accuracy of the HF technique, among them the 

configuration interaction (CI) method [22], the coupled-cluster (CC) method [23-24] and 

Møller-Plesset perturbation theory (MP) [13]. HF is essentially free from any 

assumptions on the forms of the density functional and includes an exact expression for 

the electron exchange which is the most important portion of the exchange-correlation 

(XC) energy. There have been efforts to incorporate this unique feature of the Hartree-

Fock theory into the density functional theory (DFT) by using hybrid functionals [16-

17]. Hybrid functionals (such as PBE0) have proven to be superior to the generalized 

gradient approximations (GGAs) in DFT. 

 

4.2. Electronic structure calculations using FEM-HF method 

The original HF theory was first introduced by D. R. Hartree [98] and is known as 

the self-consistent field (SCF) method.  This method was later improved by V. A. Fock 

[99] to include the effects of electron exchange. In the Hartree-Fock self-consistent field 
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theory, the Hamiltonian matrix is formally replaced by the Fock matrix, which is the 

effective one-electron Hamiltonian. Writing the wavefunction as a product of spin-

orbitals (which depend on the spatial and spin coordinates of one electron), the 

following equation for these spin-orbitals similar to the Schrödinger equation is 

obtained: 

)()(ˆ rr kkkf ψεψ = , (4.1) 

where kε  are the eigenvalues and kψ  are the eigenfunctions, f̂  is the Fock differential 

operator defined by, 

)()()(ˆ
0

2
2
1 rrr xd VVVf +++∇−= , (4.2) 

where 0V  contains the effect of all interactions in the electron potential except those 

arising from the other electrons, and dV  is the Hartree potential which is the electrostatic 

potential generated by the charge distribution due to the wavefunction, 

∑∫
≠

′
−′

′′=
kj

jjd rdV 3* 1
)()()(

rr
rrr ψψ . (4.3) 

Rather than calculating this integral directly, dV  is usually obtained by solving 

Poisson’s equation invoking the Green’s functions theory: 

)(4)(2 rr nVd π−=∇ , (4.4) 

where the density of electrons n(r) is given by 
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∑
=

=
N

j

jn
1

2
)()( rr ψ , (4.5) 

where N is the total number of electrons. The )(rxV  term in Equation (4.2) is the 

exchange potential and can be computed using the following relation 

( )∑
≠

−=
kj

jjkxkx VV )()()( rrr ψψ , 
(4.6a) 

where 

( ) ∫ ′
−′

′′= rdV kjjkx

3* 1
)()(

rr
rr ψψ . (4.6b) 

It is noted that, when the Schrödinger equation is solved for a system, the result is 

a set of eigenvalues and their corresponding eigenvectors that are the quantum 

mechanical descriptions of all the allowed states of that system. The Hamiltonian 

operator is independent of the eigenfunctions kψ  whereas the Fock operator depends on 

kψ  via electron repulsion and correlations.  Therefore, unlike in solving the Schrödinger 

equation, the solution of the Hartree-Fock equation requires a self-consistent iterative 

approach. The computational procedure is as follows. As the first step, a reasonable 

initial guess has to be provided. This initial guess can simply be the linear combination 

of the atomic orbitals (LCAO) of the system [100]. Based on this initial guess, one can 

calculate the electronic density and solve the Poisson’s equation and thence, calculate 

the Fock operator and solve for a new set of eigenstates and eigenvalues. Then the 



   70 

energies can be calculated and this process is repeated until the energies become 

stationary. 

The FEM procedure to solve electronic structure problems is briefly outlined here. 

The goal is to solve the normalized single-electron equation in Ω  which is the 

computation domain. Taking the inner product of the differential Equation (4.1) with an 

arbitrary test function ψ ′  to form an equivalent integral equation and integrating by 

parts (assuming natural boundary conditions), and performing the standard discretization 

procedure of the finite elements, we arrive at the following matrix equation for 

determining the wavefunctions: 

kkk vaH = ,   (k=1,…,N/2), (4.7) 

where 

{ }∫
Ω

Ω−++∇∇= dVV T

kd

T

k  )()( 02
1 NNNNH ε , and 

∑ ∫
≠ Ω 








Ω=
kj

j

T

jkxk dV aNNv  )( , 

(4.8) 

where N are the shape functions and a are the nodal degrees of freedom (DOFs). The 

standard Gram-Schmidt orthogonalization process is used to orthogonalize all the 

wavefunctions. We also require that the obtained wavefunctions to be normalized, i.e. 

kkkk ′′ >=< δψψ |  where kk ′δ  is the Kronecker delta function. The quantity represented 

by the angled parentheses is the inner product of the sates k and k' in the Dirac bra-and-
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ket notation. We found out that the bi-conjugate gradient stabilized iterative solver is 

particularly suitable for solving this equation. 

 

4.3. The non-equilibrium Green’s function (NEGF) methodology 

The non-equilibrium Green’s function (NEGF) formalism is widely used in 

nanodevice analyses. This technique can be applied to study the effect of mechanical 

deformation/defects on the conductivity of molecules and small carbon nanotubes 

(CNTs) to be used in NEMS and nanoelectronics products. Since their identification in 

1991, CNTs have been the focus of extensive research. CNTs unique mechanical and 

electrical properties suggest potential applications in broad areas of science and 

technology. Since certain electrical properties of CNTs are of great prospective 

technological importance, they have been studied from many different viewpoints by 

different researchers. We would like to model and simulate the electronic and transport 

properties of carbon nanotubes with the finite element ab initio technique described in 

the previous section and compare the results with the other theoretical results and 

eventually with the experimental results. In particular, we are interested in taking into 

account the effects of mechanical deformations, defects and higher temperatures. 

Potential results of these simulations can be used in designing CNT-based electronic 

components and smart composite materials with electro-mechanical coupling to be used 

in sensors. 

We employ the Born-Oppenheimer approximation which states that the electronic 

wavefunction depends only on the positions of the nuclei and not on their momenta. One 
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critical step in the atomistic studies of the electrical property change due to mechanical 

deformation or defects is the determination of the atomic positions. A real-space tight-

binding (TB) energy minimization scheme based on the Xu et al. parameterization for 

carbon [101] and Polak-Ribiere conjugate gradient method (CGPR) were used for this 

purpose in this study. The semi-empirical tight-binding approximation or LCAO (linear 

combination of atomic orbitals) is quite good for the inner electrons of atoms, but it is 

not a good description of the conduction electrons themselves. Especially that the 

conventional TB fails for charged systems, systems with defects and dangling bonds and 

therefore cannot be directly used for this purpose. Although there has been some 

progress in tackling these kinds of systems with TB in the recent years, for example see 

Ref. [102]. 

The typical system considered here is shown schematically in Figure 4.3, which 

consists of two contacts as source and drain (boxes 1 and 2) and a molecule attached in 

between. The electric current of such a system in the coherent transport regime is given 

by [103] 

∫
+∞

∞−

= )(
~

)2/( EIdEeI hπ , (4.9) 

where 1

~
I  is the inflow minus outflow for the first terminal: 

]Tr[]Tr[
~ n

1
in
11 GΓAΣ −=I  . (4.10) 

In this equation: 
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2,1 fΓΣ = , 

][ 2,12,12,1
H
ΣΣΓ −= i , 

][ HGGA −= i , 

Hinn GGΣG = . 

(4.11) 

G  is the retarded electronic Green’s function of the molecule which is given by 

IΣHSG =−−+ + ])0[( iE , (4.12) 

and the advanced Green’s function HG  is the Hermitian adjoint of the retarded Green’s 

function. H and S are the Hamiltonian matrix and the overlap matrix of the conductor 

(channel), respectively. 2,1Γ  are called the broadening matrices, A  the spectral function 

and nG  the correlation function. E is the energy of the external excitation (i.e. the 

incident electrons) and 0+ is an infinitesimal positive number whose precise value is 

unimportant. 2,1Σ  are the self-energies for the contacts and in
2,1Σ  are the inscattering 

functions, where the subscripts 1, 2 refer to the left and right contacts. It should be noted 

that in the coherent transport regime the inelastic phase-breaking processes within the 
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molecule are assumed to be negligible. The matrices 2,1τ  describe the coupling between 

the contacts and the molecule. 2,1f  are the usual Fermi functions of the contacts: 

1

1
/)(2,1 2,1 +

=
− TkE Be

f
µ

. (4.13) 

Finally, the applied bias can be computed via .12 µµ −=eV  

 

4.4. The current state of the project 

In Reference [80] it has been shown that this three-dimensional HF-FEM method 

is accurate and robust for the selected test atoms and molecules. These results also show 

how reduced scaling could be achieved through locality arguments, as well as the 

enforcement of the boundary conditions. An example of the calculations of large, 

complex molecules, namely a graphene sheet and a carbon nanotube is given in Figure 

4.4 to illustrate the capability of the method. In order to take advantage of the facile 

convergence characteristics of the FEM, it was originally intended to extend this 

methodology to determine the electrical conductivity of CNT systems such as the one 

shown in Figure 4.5 and then study the electro-mechanical coupling properties discussed 

above at the Hartree-Fock level of theory [104-108]. The aforementioned Green’s 

function methodology requires the inversion of very large complex sparse matrices 

given by Equation (4.12) many times. We have implemented this method in a Matlab 

script. Unfortunately this FEM code was computationally too demanding and slow and 

limited to the amount of the memory available on one computer as it’s not been 
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parallelized. Therefore we were not able to solve any realistic systems with it as we 

intended. However, while continuing working on this project and trying to improve its 

efficiency, another group was able to solve this problem from a very similar approach 

with DFT [109]. 

Studying the phenomena of electro-mechanical coupling requires interdisciplinary 

approaches involving ideas and concepts drawn from physics, chemistry, mechanical 

engineering, electrical engineering, materials science, and computer science. To 

accelerate progress in this area, cyber-tools and cyber-infrastructure play an extremely 

critical role. Pursuing research in exciting and interdisciplinary areas requires truly 

outstanding facilities and active researchers to collaborate with that can promote 

research and development in these emerging technologies such as the calculations of 

electro-mechanical coupling phenomena in nanoscale materials and structures. Therefore 

the availability of powerful computational resources plays a decisive role in the chances 

of success of these types of projects in the future.  
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4.5. Figures and tables 

 

 

Figure 4.1. 48-atom Fe ring constructed on the Cu(111) surface. Average diameter of 

ring (atom center to atom center) is 142.6 Å. (Ref. [96]) 



   77 

 

a)  

b)  

Figure 4.2. (a) An atomic force microscope pushing a suspended single-wall carbon 

nanotube attached to two metal electrodes. (b) Electrical conductance versus mechanical 

deformation for a single-wall carbon nanotube. (Ref. [97]) 

 

 

Figure 4.3.  Schematic of the source, conductor and drain. 

1 2 Molecules 
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Figure 4.4. The electronic structure of a graphene sheet (left box) and a (6,6) armchair 

carbon nanotube (right box). 

 

 

Figure 4.5. Definition of source (green), conductor (blue) and drain (purple) in a typical 

(6,6) armchair CNT. 
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CHAPTER 5: THE EFFECT OF DIFFERENT PHYSICAL 

PARAMETERS ON THE DISPERSIBILITY OF CARBON 

NANOTUBE BUNDLES 

 
 
 
  
 

5.1. Introduction 

Dispersion of carbon nanotubes is a very important step in all the diverse 

prospective applications of individual carbon nanotubes (CNTs) such as nanowires, the 

“smoothest bearing” and “gigahertz oscillators” and thus, has been a focus of extensive 

research. [110-117] Dispersion of single-wall carbon nanotubes (SWCNTs) is an 

important first step toward many potential applications that harness the unique 

electronic, thermal, optical, and mechanical properties of the individual tube. 

Furthermore, conventional applications such as the use of SWCNTs as conductive fillers 

in composites will benefit from a well-dispersed system that will exhibit the same 

conductivity with a smaller percentage of filler. Well-dispersed SWCNTs in a suitable 

solvent is also the preferred state for chemical modification of SWCNTs. Dispersibility 

of CNT bundles has an intimate relationship with tribological behavior of the CNTs. 

Tribology is concerned with the adhesion and friction behavior when two material 

surfaces are brought into close contact with each other. The classical relation between 

the frictional force and the normal pressure was described by the Amonton’s law which 
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dates back to some 300 years ago. The Amonton’s law simply stated that the frictional 

force increases monotonically (or more restrictively, linearly) with the normal pressure. 

The mechanistic explanation of the Amonton’s law can be offered by a mechanism of 

interlocking asperities that leads to a contact area which increases with the normal 

pressure. That is basically due to the substantial increase in the area of intimate contact 

as the pressure increases with an increase in the stored elastic energy. Even if the surface 

pairs in contact appear to be perfectly smooth, such as between two clean crystal 

surfaces, small hydrocarbon or biological molecules would be absorbed on any surface 

exposed to air. These molecules can arrange to lock two contacting surfaces, and 

consequently induce static friction similar to the prediction of the Amonton’s law. 

The discovery of carbon nanotubes in 1991 by Iijima [118] presents new 

possibilities of extraordinary technological usages. With a supreme mechanical behavior 

such as 1/6 of the weight of the steel but an extension elastic modulus around 1TPa and 

an effective radial modulus in the range of 0.3 to 4 GPa (namely a factor of one 

thousand less than axial Young’s modulus) the carbon nanotubes exhibit excellent 

strength, toughness and a formidable failure strain. [119] The diameter of a single wall 

carbon nanotube (denoted by D hereafter) ranges from 0.4 nanometer to several 

nanometers, and that for a multiwalled nanotube could be from 2nm to 100nm. Two 

aligned carbon nanotubes adhere to each other when brought into a pressureless contact. 

The aligned nanotube bundles however, exhibit a detachment work that declines with the 

contacting pressure. In other words, in contrast to the Amonton’s law, the frictional 

force between carbon nanotubes has a zero slope and a downward curvature with respect 
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to the normal pressure and would decline as the normal pressure increases. This 

phenomenon falls into the general domain of contact and adhesion problems and can be 

viewed in that context. [120-123] 

 

5.2. Methodology and Results 

In this section we present the effect of various geometric parameters on the 

equilibrium configuration of the SWCNTs and eventually on dispersion properties of 

CNT bundles. For each parameter a computational setup has been constructed that is 

explained in its corresponding part. For simplicity, the attention herein is focused on the 

contact, adhesion and friction of identical single-wall carbon nanotubes (SWCNT) 

bundles. All nanotubes share the same uniform diameter D, and their centers are 

separated by the same distance L. For the case of non-cylindrical (i.e. deformed) CNTs, 

L represents the distance of the center of mass of the adjacent tubes. 

5.2.1. The effect of distance 

To study the effect of the centerline-to-centerline distance of CNTs on their 

dispersion behavior, we consider only infinitely long parallel single-wall carbon 

nanotubes as shown in Figure 5.1. Based on the Lennard-Jones potential one can obtain 

an ideal equilibrium distance for aligned carbon nanotubes without respect to local 

deformations as follows. The Lennard-Jones (LJ) 6-12 potential is given by the equation 

below 
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12 6

4V
r r

σ σ
ε
    

= −    
     

. (5.1) 

In this well-known equation, ε is an energy parameter, σ is a length parameter and 

r is the interatomic distance. For long parallel cylindrical single-wall carbon nanotubes 

the collective van der Waals interaction per unit length of two tubes with diameters D1 

and D2 can be approximated by the triple integral 

12 6
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1 2
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     
∫ ∫ ∫ , (5.2) 

in which C Ca −  is the C-C bond length of carbon nanotubes; roughly equal to 1.44 Å and  

r is given by 
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1 1
cos cos sin sin

2 2
r L D D D D zθ θ θ θ

   
= + − + − +   

   
. (5.3) 

This integral can be readily evaluated numerically. (In fact the z part integration can be 

carried out analytically as has been done by Benedict, et al. [124]). For numerical 

purposes a finite value for the infinite integration bound (for instance 5-10 angstroms) 

suffices. This integral has been evaluated for a (10,10) armchair CNT with a diameter of 

13.728 Å and the result is shown in Figure 5.2. It should be mentioned that this integral 

generally tends to give lower estimates of the total interaction potential due to ignoring 

the effect of local spikes of closely positioned atoms, but this difference is reduced by 

assuming a relaxed configuration of the neighboring nanotubes and also as L is increased 

so that it can safely be used to represent the collective van der Waals (vdW) interaction 
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between two aligned CNTs. To demonstrate this point, the same problem has been 

solved by direct calculation of the contributions of individual atoms and as it can be 

observed in the same figure, the results generally agree with that of the theoretical 

analysis, though the former is obtained with a much higher computational effort. Based 

on this mathematical model a binding energy can be calculated for the typical parameter 

values given in the Table 5.1. It should be noted that these values are for an ideal 

cylindrical geometry which will be shown in the next section that do not necessarily 

agree well with the other more sophisticated computational and experimental results. 

For a unit-long strip of infinitesimal width w over - and parallel to - an infinite 

sheet of graphene (xz-plane) at a height y the collective van der Waals (vdW) interaction 

per unit length of the tubes can be approximated in the similar manner by 

12 6

40 0

256
27vdw

C C

w
V dxdz

a r r

ε σ σ∞ ∞

−

    
= −    

     
∫ ∫ , (5.4) 

in which C Ca − =1.44 Å and 
2 2 2

r x y z= + + . This can easily be carried out to get 

2 10 4 432 2( / ) 5( / ) 135vdw C CV w y y aε σ π σ σ −
 = −  , (5.5) 

which has a similar form as the original LJ potential – except with different exponents 

and pre-factors. If a nanotube is modeled as a membrane with curvature modulus k and 

arbitrary cross-section shape defined parametrically by ( ) ( ) ( )f t x t i y t j= +
r r

 where 

1 2t t t≤ ≤ , then the curvature energy is 
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where ρ(t) is the radius of curvature and the total energy is just the sum of these two 

potential energies (i.e. vdW energy and curvature energy). In this equation, primes 

represent differentiation with respect to t. Thus using the standard techniques of 

variational calculus, we have to minimize the following functional 
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subject to 
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1 2( ) ( )x t x t= , 1 2( ) ( )y t y t= , 1 2( ) ( )x t x t′ ′= , 1 2( ) ( )y t y t′ ′= , etc. 

(5.7) 

The first equation is for preserving the total perimeter length of the tube and the rest are 

for ensuring closedness and smoothness of the resulting curve. Applying the Euler’s 

theorem in the parametric form to this problem yields 

x x

d
F F C

dt
′ ′′− = , (5.8) 

where C is an arbitrary constant that has to satisfy the inextensibility constraint as well 

as the closedness and smoothness requirements along with the other constants. 
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Substituting F and simplifying and finally numerically solving the resulting sixth order 

nonlinear differential equation with shooting method (taking t1=0 and t2=1 for 

convenience and k = 1.4 eV from Ref. [125]) we find the family of solutions plotted for 

a few typical values of D i.e. with different radii in Figure 5.3(a). These curves at least 

qualitatively are the same as those shown in Refs. [126-127]. It should be mentioned that 

an alternative way to accomplish this task is to consider the different deformation paths 

and use shape optimization techniques, but here variational approach deemed to be more 

appropriate. Since in this simplified analysis the intra-molecular interactions are 

neglected, no bifurcation type behavior such as collapse could be captured. This 

phenomenon will be discussed more fully in the ensuing chapters. Adhesion forces and 

energies can be calculated in the same fashion as was done in Eq. (5.2) and the fact that 

yVyF ∂−∂= /)( . For example, the force between two parallel, infinitely long 

infinitesimal axial strips of width w can be shown to be  
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    
= − +    

     
. (5.9) 

From this equation, the vertical and horizontal components of the theoretical 

adhesion forces are calculated and shown for a typical CNT in Figure 5.3(b). From this 

figure it can vividly be inferred that almost all the vdW interaction is localized at the 

ridges of the tube and almost no interaction occurs in between. Binding energies are also 

calculated and listed in Table 5.3. 
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5.2.2. The effect of local deformation 

Brenner’s (1990) empirical multi-body interatomic potential for carbon [10] has 

been widely used in the study of CNTs, and is summarized below. 

( )  ( )  ( )
ij R ij ij A ij

V r V r B V r= − , (5.10) 

where rij is the length between two atoms i and j, VR and VA are the repulsive and 

attractive pair terms given by 
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where D(e) =6.000 eV, S =1.22, β=21 nm−1, and R(e)=0.1390 nm. The function fc in the 

preceding equation is a smooth cut-off function given by 
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where the effective range of the cut-off function is defined by R(1) = 0.17 nm and R(2) = 

0.20 nm. The term Bij in Eq. (5.10) represents a multi-body coupling effect (i.e., the 

contribution from atoms other than i and j), and is given by 

1/ 2

,

 1 ( ) ( )
ij ijk c ik

k i j

B G f rθ

−

≠

 
= + 
 
∑ , (5.13) 
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where k(≠ i, j) denotes the other carbon atoms, fc is given in Eq. (5.12), θijk is the angle 

between i − j and i − k bonds in Figure 5.4, and the function G is given by 

2 2
0 0

0 2 2 2
0 0

( ) 1 ,
(1 cos )

c c
G a

d d
θ

θ

 
= + − 

+ + 
 (5.14) 

with a0 = 0.00020813, c0 = 330 and d0 = 3.5. 

Based on this potential we can also obtain the strain energy versus distance from 

quasi-static molecular mechanics (MM) calculations by an energy minimization 

technique called Polak-Ribiere Conjugate Gradient method (CGPR) since it is not 

possible to obtain any analytical or semi-analytical form for the deformed configuration 

of the nanotubes as was done in the previous section. In Figure 5.5 the total internal 

deformation potential energy per unit length of the tubes (which in turn is composed of 

many-body interaction and pair potential parts) for the same CNT is shown as a function 

of centerline-centerline distance. In order to exclude any finite length effects in the 

computations, a plane strain boundary condition on the outer rings of the nanotubes in 

the cell ranging from a few angstroms long to several times the diameter with frequent 

pair table updates has been enforced. Based on this model a binding energy can also be 

calculated for the typical parameter values given in the Table 5.2 for a few armchair 

nanotubes (more extensive tables can be found e.g. in Refs. [121, 128]). As it is apparent 

from this figure, the variation in deformation potential is small for relatively long ranges 

of L and thus it can be safely neglected compared to the van der Waals potential 

contribution i.e. the effect of local deformation is insignificant for large values of L, but 
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for closer ranges of contact it becomes more important as is also expected intuitively and 

it must be taken into account. It should be noted that generally the behavior of the 

potential function with deformation vs. distance is quite different from that of the 

simplified circular geometry; the tubes tend to flatten out locally at the contact surface 

with a local equilibrium distance close to the graphite inter-layer spacing (0.335 nm) 

with a much higher van der Waals interaction which in turn is responsible for the 

difficulty associated with the dispersion of carbon nanotube bundles. In fact we did 

similar calculations taking into account full van der Waals interactions between the 

individual atoms for a (30,30) armchair nanotube with a diameter D~4nm and found a 

binding energy on the order of γ =0.42 nN at an equilibrium distance of L=42.6 Å which 

is slightly higher than the experimental result of 0.36 nN given in Ref. [129] and roughly 

twice lower than the projected analytical value of 0.81 nN given in Ref. [128]. A typical 

relaxed deformed configuration of these nanotubes in shown in Figure 5.6. 

5.2.3. The effect of diameter and finite length 

Carbon nanotubes have exceptionally high length to diameter aspect ratios 

sometimes on the order of 107. This point plus their lateral flexibility makes them 

particularly susceptible to clotting. In order to quantify this phenomenon we may 

proceed as follows: using the same analytical expression for the total potential energy as 

in the previous section, first we can investigate the effect of having CNTs with different 

radii. It should be mentioned that D in that expression itself is a function of the chiral 

numbers (n,m) as given by 
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2 2aD n m nmπ= + + , (5.15) 

where a=2.49 Å is the lattice constant for carbon nanotubes. The total potential energy 

per unit length of the CNT as a function of D is calculated and shown in Figure 5.7. It is 

clear from this figure that as the diameter of the nanotubes increase, the total potential 

energy – which may be thought of as representing a measure of binding energy – 

decreases which means that dispersion becomes more difficult. This is somewhat in 

contrast to the experimental observations where bigger SWCNTs and MWCNTs are 

much easier to disperse than smaller diameter SWCNTs. Micron-long MWNT 

composites have been made successfully with the MWCNTs completely dispersed, 

whereas to best of our knowledge, the only group that has been able to completely 

disperse small SWCNTs is Prof. Strano's group who used to be at the Chemical 

Engineering Department at the University of Illinois. We believe the reason for this 

inconsistency is that for bigger nanotubes, even though the binding energy is higher, due 

to a larger surface to binding energy ratio, they are more exposed to dispersants and 

other chemical agents and thus more prone to being dispersed. Another reason that could 

be mentioned specifically in the case of MWCNTs is their higher bending stiffness due 

to a generally greater cross sectional moment of inertia which mechanically prevents 

them from easily tying up together and thus forming clots and clusters. Obviously 

shorter CNTs are less likely to wrap around each other and form knots. 
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5.2.4. The effect of orientation 

For studying the effect of orientation of the nanotubes on dispersion, only 

computational approach is viable since no straight-forward analytical solution is possible 

as in the previous cases. The geometrical configuration used here is shown in Figure 

5.8(a) at the equilibrium distance. The CNTs are rotated relative to each other while 

maintaining the ability to adjust their equilibrium distance. The angular dependence of 

the overall van der Walls interaction for a typical (10,10) SWCNT is shown in Figure 

5.8(b). In this figure, θ is the alignment angle. For other types of CNTs, similar curves 

exist. It can be observed in this curve that there is a plateau of high negative overall vdW 

interaction for the small values of rotation angle and also, this potential is a 

monotonously increasing function of the alignment angle, therefore θ=0o corresponds to 

the minimum potential energy and θ=90o corresponds to the maximum potential energy. 

For sufficiently small θ (say less than 10o for this particular arrangement) the tubes tend 

to snap back to a parallel configuration and realign themselves with each other, and 

above this critical angle of rotation, the interaction rapidly fades out; i.e. the returning 

force diminishes and cannot overcome the local frictional resistance. 

5.2.5. The effect of intra-tubular van der Waals interaction 

As Brenner pointed out, [10] the set of parameters in the interatomic potential was 

determined by fitting the binding energy and lattice constants of graphite, diamond and 

other possible atomic structures of pure carbon. The binding energy is directly related to 

the interatomic potential, while the lattice constants are the bond lengths at equilibrium, 
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which are directly linked to the first-order derivatives of the interatomic potential. Little 

or essentially no attention was paid to the second-order derivatives of the interatomic 

potential, but these second-order derivatives are crucial in the force-type behaviors of 

graphite and diamond such as their elastic moduli. In fact, for instance, the force-

distance behavior of the Tersoff-Brenner potential [9-10] under equi-biaxial strain state 

is not smooth at the first cutoff radius as can be seen in Figure 5.9(b), even though the 

direct potential itself is smooth as shown in Figure 5.9(a). This issue can lead to 

unpredictable and/or erroneous results for stiffness-dependant properties of CNTs. Any 

way, one can also incorporate this elastic deformation with an intra-tubular vdW 

interaction to come up with improved force-deformation characteristics. However, this 

has little to do with the dispersibility characteristics of CNTs, and therefore this issue is 

no further pursued at this section. We just would like to mention here that these 

potentials are used in other chapters to study the collapse and stability characteristics of 

CNTs on SiO2 substrates. 

5.2.6. The effect of chirality 

The effect of chirality on the dispersibility of nanotube bundles is minimal. We 

repeated some of the calculations for (n,0) zigzag and (2n,n) chiral CNTs as well as (n,n) 

armchair ones and did not observe any meaningful difference in the obtained results. 

Meanwhile it is worth mentioning that recently some registry-dependent interlayer 

potentials have been proposed that can more accurately take into account the effects of 

different chiralities and stacking orders. [115] 
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5.3. Discussion 

Dispersing carbon nanotubes has proven to be quite challenging experimentally. 

For example, one way to do that is to use dispersive surfactants such as sodium dodecyl 

sulphate (SDS) which is an anionic detergent that denatures CNTs by wrapping around 

them. In so doing, SDS confers a negative charge to the CNT in proportion to its length 

which eventually may be able to exfoliate clots and clusters. Usually these chemicals are 

used together with some kind of physical dispersing process as a catalyst such as 

sonication and centrifuge. Sonication is the act of applying ultrasound energy to agitate 

particles in a sample to achieve a more uniform distribution and homogeneity. Based on 

our binding energy calculations, these dispersants in order to be able to successfully 

disperse carbon nanotubes, have to be able to confer charges on the order of and greater 

than 0.5 nC/m to overcome van der Waals forces between the parallel tubes. These 

forces can be calculated from summing up all the individual force components between 

the adjacent tubes – which of course the maximum attractive force happens at a distance 

larger than the equilibrium distance of the tubes where by definition the overall force 

goes to zero. Additionally, such a procedure gives maximum forces on the order of 1 

N/m. 

 

5.4. Conclusions 

In this chapter, an attempt has been made (via analytical as well as computational 

simulations) to study the effect of different physical parameters on the dispersibility of 
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carbon nanotube bundles and to investigate some aspects of the dispersion process of the 

carbon nanotubes and the roots of the difficulty of achieving this goal. We found out that 

comparatively very strong long-range structural van der Waals interactions exist among 

carbon nanotubes in bundles as has also been reported both experimentally and 

theoretically by other researchers which clearly explains the natural propensity of the 

carbon nanotubes to agglomerate in the form of clots and clusters. We have come up 

with some quantitative suggestions to be able to resolve the dispersion problem of the 

CNT solutions. 
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5.5. Figures and tables 

 

 

 

Figure 5.1. Geometric configuration of the carbon nanotubes studied in the perfect 

cylinder and deformed cases. The distance units of the figure are in angstroms. 
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Figure 5.2. Van der Walls interaction of two infinitely long (10,10) armchair tubes in 

the perfect cylinder case from the analytical analysis (dashed line) and  

from the numerical analysis (solid line.) 
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a)   

b)  

Figure 5.3. (a) The equilibrium shapes of CNTs on an infinite graphene sheet with 

varying diameters from (10,10) to (50,50) superimposed on each other. 

(b) The horizontal and vertical components of the force that a (30,30) CNT exerts on a 

graphene sheet beneath it. 
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Figure 5.4. The definition of atoms i, j and k in the Brenner potential. 
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Figure 5.5. The strain energy as a function of distance between two (30,30) CNTs. 
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Figure 5.6. The equilibrium configuration of two parallel (50,50) CNTs. The circles 

denote the undeformed shape of each CNT before contact. 

 

Figure 5.7. The total potential energy per atom of CNTs on a graphene sheet at the 

equilibrium distance as a function of the diameter of CNTs. 
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a)  

b)
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Figure 5.8. (a) Different views of the rotation of two CNTs w.r.t. each other. (b) The 

variation of vdW potential with the angle of rotation for a ~13nm long (10,10) SWCNT.  



   100 

 

a)  

b)  

Figure 5.9. (a) Dependence of the popular Tersoff-Brenner (TB) potential for carbon on 

interatomic distance. (b) While the potential curve is smooth for this potential, its force 

curve suffers from a slope discontinuity at some cutoff distance. 
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γ (nN) @ L(Å) 
σ (nm) ε (meV) 

(10,10) (15,15) (20,20) (25,25) 

0.339 3.02 0.171 @ 16.9 0.216 @ 23.8 0.253 @ 30.6 0.286 @ 37.5 

0.341 2.39 0.138 @ 17.0 0.174 @ 23.8 0.203 @ 30.7 0.229 @ 37.5 

 

Table 5.1. The binding energy and the equilibrium distance in the infinitely-long 

cylindrical tubes model for typical armchair CNTs (compare with Table 5.2) 

 
 
 

 

γ (nN) @ L(Å) 
σ (nm) ε (meV) 

(10,10) (15,15) (20,20) (25,25) 

0.339 3.02 0.195 @ 16.5 0.271 @ 22.8 0.358 @ 29.5 0.440 @ 36.4 

0.341 2.39 0.153 @ 16.6 0.208 @ 23.0 0.269 @ 29.7 0.331 @ 36.6 

 

Table 5.2. The binding energy and the equilibrium distance in the infinitely-long 

deformed tubes model for typical armchair CNTs (compare with Table 5.1) 
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γ (nN) @ L(Å) 
σ (nm) ε (meV) 

(10,10) (20,20) (30,30) (40,40) 

0.339 3.02 0.326 @ 9.4 0.642 @ 14.6 0.913 @ 20.8 0.979 @ 28.8 

0.341 2.39 0.138 @ 17.0 0.174 @ 23.8 0.203 @ 30.7 0.229 @ 37.5 

 

γ (nN) @ L(Å) 
σ (nm) ε (meV) 

(50,50) 

0.339 3.02 1.120 @ 35.9 

0.341 2.39 0.255 @ 44.0 

 

Table 5.3. The binding energy and the equilibrium distance of infinitely-long deformed 

tubes on an infinite sheet of graphite for typical armchair CNTs  
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CHAPTER 6: THERMAL DISSIPATION AND VARIABILITY IN 

ELECTRICAL BREAKDOWN OF CARBON NANOTUBE DEVICES 

 
 

 

 

6.1. Introduction
*
 

Carbon nanotubes (CNTs) have excellent intrinsic electrical and thermal 

properties, and thus are being considered potential candidates for nanoscale circuits, 

[131] heat sinks [132] or thermal composites. [133] However, their physical properties 

depend on temperature, and thus are directly affected by power dissipation during 

electrical operation. [134-136] Joule heating in CNTs goes beyond degrading electrical 

performance, posing reliability concerns as in other electronics. Electrical Joule 

breakdown has also been used to remove metallic CNTs in integrated circuits; [137-139] 

however the technique is not precise, owing to the lack of fine control over CNT heat 

dissipation. It is presently understood that the thermal boundary conductance (TBC) at 

CNT interfaces with the environment, substrate, or contacts plays the limiting role in 

thermal dissipation. [140-142] In addition, the interaction of CNTs with the environment 

may also change their effective thermal conductivity. [143-144] However, little is 

currently known about the details of the thermal interaction between CNTs and common 

                                                
* This chapter is based on Ref. [130]. The second author (R. A.) has had no contribution in the acquisition 
of the experimental results nor in the derivation of the DMM model. 
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dielectrics, including the roles of dielectric surface roughness or of CNT diameter and 

chirality (e.g. metallic vs. semiconducting). 

In this study, we examine electrical breakdown and thermal dissipation of CNT 

devices with the most common interface used in integrated circuit experiments, that of 

SiO2 as shown in Figure 6.1(a). We employ electrical breakdown thermometry [141, 

145] to extract the TBC between CNTs and SiO2 for metallic (m-CNT) and 

semiconducting nanotubes (s-CNT) of diameters 1 < D < 4 nm. We find the TBC per 

unit length scales proportionally with CNT diameter, confirming recent simulation work. 

[146] We also find that m-CNTs appear to have better and more consistent thermal 

coupling with SiO2 than s-CNTs, indicating a fundamental challenge for complete m-

CNT removal in circuits via electrical breakdowns. We compare our results to both a 

diffuse mismatch model (DMM) and to molecular dynamics (MD) simulations. The 

latter reveal the role played by the thermal “footprint” of a deformable CNT on such 

dielectric substrates. Finally, we uncover the significant role of variability in threshold 

voltage (for s-CNTs) and of SiO2 surface roughness (for both m- and s-CNTs) in heat 

dissipation and electrical breakdown. 

 

6.2. Experiments and data extraction 

We fabricated and conducted experiments on carbon nanotube devices in the same 

back-gated configuration as our previous work, using semi-circular electrodes for better 

CNT length control [147-149] (here, 2 ≤ L ≤ 5.6 µm) as shown in Figures 6.1 and 6.2. 

The SiO2 is thermally grown dry oxide, approximately 90 nm thick. We focused on 
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nanotubes that showed high-bias current near ~25 µA [150] and had diameters D < 4 nm 

as measured by atomic force microscopy (AFM), to ensure devices were single-walled. 

In addition, only electrical breakdowns with a single, clean drop to zero current were 

selected, which are typical of single-wall single-connection devices, as shown in Figure 

6.1(b); by contrast, multi-wall CNTs and CNT bundles exhibit higher currents and break 

down with multiple current steps. [137] Joule heating was achieved by increasing the 

source-drain voltage (VSD > 0) while maintaining a negative gate bias (VGD ≈ -15 V). In 

semiconducting CNTs this leads to hole-only conduction, [147] deliberately avoiding 

ambipolar behavior [151] which would complicate the analysis. Metallic CNTs show no 

gate voltage dependence in room temperature, ambient conditions. Increasing VSD leads 

to increasing the power input, which causes the CNT temperature to rise through Joule 

heating and leads to physical breakdown. We note that in this work the drain is always 

grounded and the source is the positive terminal, referring to the source of carriers and 

current flow. 

The breakdown voltage, VSD = VBD is taken to be the voltage at which the drain 

current (ID) irreversibly drops to zero, as shown in Figure 6.1(b). We assume that during 

the breakdown process that the CNT stays on the surface and that no buckling or 

delamination from the surface occurs as a result of the small thermal expansion 

coefficient of CNTs. [152] Typical broken devices under AFM imaging are shown in 

Figures 1(c) and 2(a). The power dissipated within the CNT at breakdown is PBD = 

ID(VBD–IDRC). The combined resistance of the source and drain contacts, RC, is estimated 

from the inverse slope of the low-bias ID-VDS plot, [141, 153] RC ≈ (dID/dVDS)
-1, which 
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includes the quantum contact resistance (R0 = 6.5 kΩ). The experiments in this study 

were performed in air where nanotubes are known to break from self-heating and 

oxidation at a relatively well-known temperature, [154] TBD ≈ 600°C. By comparison, 

device breakdowns performed in ~10-5 Torr vacuum showed CNTs of similar lengths 

and diameters breaking at higher power and thus higher temperatures, as in Figure 

6.1(b). This suggests that CNT device breakdowns in vacuum occur by a mechanism 

other than oxidation, e.g. at nanotube defects [155] or by failure of the underlying SiO2. 

The latter is supported by the observation of damage to the SiO2 substrate in some 

samples, as seen in Figure 6.1(c), which is never seen for breakdowns in air. 

We now return to discuss the temperature profile of CNTs during Joule heating, 

and restrict ourselves to in-air breakdowns for the rest of the manuscript. Figure 6.2(a) 

displays the breakdown location (LBD) along a CNT, as extracted from scanning electron 

microscope (SEM) imaging. Figure 6.2(b) shows a histogram of the normalized 

breakdown locations for ~40 CNTs in this study, distinguishing between m-CNT and s-

CNTs. The majority of m-CNTs break at their hottest point near the middle while most 

s-CNTs break closer to the grounded drain, where the field is higher and the carrier 

density is lower. Both of these observations are indicative of diffusive heat [141] and 

charge [156] transport, and of relatively negligible contact resistance. At high field the 

electron or hole scattering mean free path (MFP) with optical phonons (OP) approaches 

the minimum value λOP,ems ~15D where D is the diameter in nm. [147, 153] This MFP is 

significantly shorter than the CNT lengths used in this work (several microns).  
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To understand the temperature profiles of m-CNTs and s-CNTs, and to extract the 

interfacial thermal conductance per unit length (g) between CNT and SiO2 from the 

breakdown data, we solve the heat diffusion equation along the CNT. [141] The heat 

generation per unit length can be captured both as uniform (for m-CNTs) and 

asymmetric (for s-CNTs), by expressing it as: 

2
0 1( )

C x
p x p C

L

 
= + 

 
, (6.1) 

where –L/2 ≤ x ≤ L/2, L is the length of the CNT, C1 and C2 are unitless parameters and 

p0 is a constant term. We note that to a good approximation the heat generation in CNTs 

is independent of temperature, as the optical phonon emission length (the strongest 

inelastic scattering mechanism responsible for Joule heating) has very weak temperature 

dependence. [141, 147] 

For m-CNTs the heat generation is uniform due to constant electric field and 

charge density (barring significant and asymmetric contact resistance [157-158]) we 

simply set C1 = 1 and C2 = 0. This implies p0 = PBD/L at breakdown in m-CNTs. For s-

CNTs, a linear heat generation profile captures the asymmetry caused by non-uniform 

electric field and charge density. [159] The general expression for the temperature along 

the CNT at breakdown is: 
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(6.2) 
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where LH = (kA/g)1/2 is the thermal healing length (of the order ~0.2 µm), [141, 160] k is 

the thermal conductivity of the CNT, [156] gtot is the thermal conductance per unit 

length from CNT to ambient (see Section III below), and A = πaD is the cross-sectional 

area assuming a CNT wall thickness a = 0.34 nm. 

The typical “inverted U” shape of the temperature profile under uniform heat 

generation in m-CNTs is shown in Figure 6.2(c) with C2 = 0. This has previously been 

observed experimentally in nanotubes under high bias operation, both by scanning 

thermal microscopy (SThM) [161] and by coating the CNTs with a phase-change 

material which changes volume as it heats up. [160] 

On the other hand, s-CNTs have non-uniform electric field and charge density 

along their length, leading to off-center heat dissipation. [159] This is captured by 

changing the value of the parameter C2 > 0 above, as shown in Figure 6.2(c). We take 

this simple approach because uncertainties in threshold voltage, contact resistance, and 

contributions made by infrequent defects make it difficult to provide a more exact 

solution of the temperature profile in every s-CNT measured. (by contrast, m-CNTs are 

immune to threshold voltage variations). More specifically, in our analysis below we 

choose C1 = 1 and C2 = 0.65 for s-CNTs, such that the hot spot location corresponds to 

LBD/L ~ 0.7 as noted in the breakdown histogram, Figure 6.2(b). 

 

6.3. Modeling 

To understand the dependence of thermal coupling g on CNT diameter and 

substrate properties we use a diffuse mismatch model (DMM) [162] in a similar manner 
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previously applied to multiwall carbon nanotubes [163] and graphene. [164] The DMM 

is used to establish an upper bound for heat transport across an interface, as limited by 

the phonon density of states (PDOS). This approach also presents an advantage of speed 

and flexibility over full MD methods. [146] The model calculates the transmission 

probability, τ, for heat transfer across an interface while assuming all phonons scatter 

diffusely at the interface. By equating the phonon energy flux from the CNT to the SiO2 

with that from the SiO2 to the CNT and using a detailed balance argument for all 

frequencies, [164-165] τ is given as: 

1
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(6.3) 

where N refers to the atomic density (in atoms/cm3 for SiO2 and atoms/cm for 

nanotubes), v is the phonon velocity, ω is the phonon frequency, f is the Bose-Einstein 

(BE) distribution, and G is the PDOS per atom as calculated by MD simulations. [146] 

We use the realistic PDOS rather than a Debye approximation because the latter has 

been previously found to cause large discrepancies with experimental data at high 

temperature. [166] In addition, the linear Debye approximation would not account for 

the quadratic CNT flexure modes. [167] The PDOS for a (10,10) nanotube with 1.37 nm 

diameter is calculated and shown in Figure 6.3. Using the PDOS from CNTs of other 

diameters did not change our results significantly (presumably because the proportion of 
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phonon modes remains approximately the same [146]), hence we used the PDOS shown 

in Figure 6.3 as the phonon weighing function throughout the remainder of this work. 

The phonon velocity in the amorphous SiO2 is assumed to be isotropic and fitted 

with a single value, [168] as shown in Table 6.1. However, the CNT phonon velocity 

includes contributions from both the transverse and longitudinal polarizations along the 

c-axis (out-of-plane direction) of graphite. [164, 169] Not included are the a-axis (in-

plane) modes which contribute minimally to thermal coupling in the geometry of 

interest, and are more relevant to vertical CNTs on a surface. [144] We note, however, 

that even for vertical CNTs some degree of tip bending must always exist, thus the 

geometry examined here and in Ref. [146] is likely to be most relevant.  Furthermore, to 

treat the nanotube as a hollow cylinder rather than a bulk material, we use the average 

value of the velocity components in the direction perpendicular to the plane of the 

substrate. In this context, the atoms at the top and bottom of the CNT (see Figure 6.1(a) 

or Figure 6.5(b) inset) have the maximum phonon velocity as they oscillate in the 

direction perpendicular to the substrate plane. The atoms on the left and right sides of 

the CNT oscillate parallel to the plane of the substrate. We take the average velocity of 

all CNT atoms in the direction perpendicular to the substrate, and the list of parameters 

is shown in Table 6.1.  

Knowing the transmission probability, we can now calculate the flux of phonons 

through the interface. This gives the thermal conductance per unit length from the CNT 

to SiO2 as: 
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where bt is the effective thermal contact width or footprint between the CNT and the 

substrate, to be determined by MD simulations (Figure 6.1 and Figure 6.5). This 

footprint is the effective width between CNT and the substrate over which heat is being 

transferred. Finally, to calculate a thermal boundary conductance that is comparable to 

experimental data, we must also include the effect of heat spreading into the oxide, 

given as: [170] 
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where κox ≈ 1.4 Wm-1K-1 is the SiO2 thermal conductivity and tox ≈ 90 nm is the SiO2 

layer thickness. This simple expression is appropriate when tox ≫ bt as in our work, and 

the thermal spreading resistance contribution of the SiO2 accounts for approximately 10-

30% of the total thermal resistance. The total thermal conductance per unit length from 

CNT to ambient, as used in Eq. (6.2), is given by the simple thermal series network 

shown in Figure 6.1:  
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(6.6) 

We note that any additional thermal spreading resistance into the Si wafer is 

negligible, and thus the Si wafer is assumed to be isothermal at TSi = 293 K. Similarly, 

heat loss to ambient air can be neglected, where gair ~ 4×10-4 WK-1m-1 has been 
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previously estimated as an upper limit at one atmosphere, [171] three orders of 

magnitude lower than the heat loss to substrate. 

 

6.4. Derivation of CNT shape and footprint 

6.4.1. Equilibrium shape of a CNT 

Nanotubes interact with the SiO2 substrate through van der Waals (vdW) forces. In 

addition, our previous MD simulations [146] have shown that such CNTs do not remain 

rigid cylinders, but instead deform to minimize their overall vdW and curvature energy. 

Beyond a certain diameter CNTs relax to a compressed shape, [127, 172] which changes 

both their geometrical and equivalent thermal footprint on the substrate. To accurately 

calculate the shape and thermal footprint of the CNT we employ MD simulations with a 

simplified Lennard-Jones (LJ) 6-12 potential: 
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(6.7) 

Here, we simplify the SiO2 substrate as a continuum plane. Therefore the 

collective vdW interaction per carbon atom situated at a height h above an infinite half-

space of SiO2 can be approximated by the triple integral 
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in which 
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The values here are based on the Universal Force Field (UFF) model by Rappe et 

al. [173] and were used in our previous MD simulations as well. [146] The integral in 

Eq. (6.7) can be evaluated analytically. It should be noted that this integral tends to give 

a lower bound estimate of the total interaction potential because it ignores the effects of 

local spikes of closely positioned atoms. The estimation error is reduced by assuming a 

relaxed configuration for the nearby silica molecules. Such an analysis gives 
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which has a similar form as the original LJ potential – except with different exponents 

and pre-factors. This effectively alludes to an h
-3 dependence of the vdW interaction 

potential. A plot of both the calculated potential and its second derivative (which is 

proportional to the interaction spring constant) is shown in Figure 6.4. 

For the covalent C-C interaction we used the empirical bond order Tersoff-

Brenner potential. [10] In addition to this potential, we used an intra-molecular LJ vdW 

potential with the following parameters for graphite: [129] 

Å 3.39,meV 3.02 ==
CC

σε . (6.12) 
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All MD simulations were carried out until the transient motions died off and a 

final steady-state solution was reached. 

6.4.2. Thermal footprint of a CNT 

To determine the thermal footprint of the CNT on SiO2 we consider the square 

root of the second derivative of the vdW potential with respect to h as heat transfer 

depends on this effective “spring constant” between the substrate and CNT. For 

example, the phonon velocities are expected to be proportional to the square root of this 

spring constant. Thus, to find the effective thermal footprint we used the square root of 

the spring constant to weigh the horizontal change in position, ∆x. 

The thermal footprint (bt) should not to be confused with the geometric footprint, 

bg, the physical contact region between the CNT and substrate. In the case of small 

diameter CNTs, the effective thermal footprint can even be greater than the lateral width 

of the CNTs, i.e. their diameter. This occurs because in addition to the bottom half of the 

CNT conducting heat to the substrate, there is also thermal coupling from the top half of 

the CNT. The results of these simulations are shown in Figure 6.5. Because MD 

simulations can be carried out for only one CNT of a particular diameter at a time, 

several were conducted for CNTs over a range of diameters 5–49 Å. We found the 

following quadratic function fit the simulation results of the thermal footprint for any 

diameter within the simulated range (Figure 6.5(a)): 

DDb
t

1.10037.0 2 += , (6.13) 

where both bt and D are in units of Ångstroms. 
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Our simulations further suggest that there are two different regimes represented by 

different equilibrium shapes of CNTs, as shown in Figure 6.5. In the first regime 

(labeled “I”), the diameter of the CNT is D < 2.1 nm and the curvature energy of the 

CNT is stronger than the vdW energy with the substrate. Thus in the first regime the 

cross-section of the nanotube more closely resembles a perfect circle, as shown in the 

left inset of Figure 5(b) for a (7,7) CNT. In addition, the geometrical footprint 

(calculated by finding the furthest distance between the lowest points on the CNT) in 

this regime remains nearly constant at ~1.4 Å, the chemical bond length, as can be seen 

in Figure 6.5(a). 

In the second regime (labeled “II”) the diameter D > 2.1 nm, and the vdW energy 

with the substrate is stronger than the curvature energy of the CNT. Hence the final 

minimum energy shape for the CNT will be that of a deformed circle, as shown for a 

(22,22) CNT in the right inset of Figure 6.5(b). It is in this regime where the geometrical 

footprint starts to increase approximately linearly with diameter, as shown in Figure 

6.5(a). Another interesting observation is noted due to the repulsive nature of the vdW 

forces at very close distances, whose relative magnitudes are illustrated with arrows in 

Figure 6.5(b). In this case, the bottom of the CNT is not perfectly flat. Instead the middle 

of the bottom region buckles up slightly, such that the force at the center is nearly zero. 

All these effects are captured in the thermal footprint calculation (bt) fitted by Eq. (6.12) 

above, and used in the DMM thermal coupling simulations. 
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6.5. Discussion 

Figure 6.6(a) shows the directly measured power at breakdown (PBD), and Figure 

6.6(b) displays the extracted TBC (g) vs. diameter D for 29 metallic and semiconducting 

CNT devices. Fig 6.6(b) also includes modeling using the DMM described above (solid 

line) and the dashed lines fitted to MD simulations with vdW coupling strengths χ = 1 

and χ = 2, as described in Ref. [146]. Both data and modeling trends in Figure 6.6(b) 

suggest that the TBC increases with diameter. The range of extracted g corresponds to 

approximately the same order of magnitude previously extracted from thermal 

breakdowns. [141, 174] A representative set of vertical error bars on one of the m-

CNT’s corresponds to a ±50 °C uncertainty in breakdown temperature. Horizontal error 

bars represent ±0.4 nm uncertainty in diameter from AFM measurements. Vertical error 

bars on the s-CNTs are derived as follows. The upper limit is set by assuming 

LBD/L = 0.75 and the lower limit is set in the limit of uniform heat generation. It is 

interesting to note that that non-uniform heat generation plays a larger role in large 

diameter s-CNTs than in small diameter s-CNTs.  

6.5.1. Dependence of thermal coupling on diameter 

We observe that g increases with diameter up to ~0.6 WK-1m-1 per unit length for 

the largest single-wall CNTs considered (D ~ 4 nm). The diameter dependence of g is 

primarily a result of the increase in thermal footprint, as shown in Fig 6.5(a). Also 

plotted in Figure 6.6(b) are our previous MD simulations results. [146] The results from 

the MD simulations do give lower values of g because the DMM assumes, by definition, 
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that all phonons are scattered diffusely at the interface [162] whereas this does not 

necessarily happen in MD simulations. 

We also obtain the thermal contact conductance per unit area, h = g/bt, as plotted 

in Figure 6.6(c) and showing almost no dependence on diameter. From the breakdown 

experiments this value is in the range h ≈ 20–200 MWK-1m-2 which is slightly larger 

than that recently obtained for graphene on SiO2. [175] The DMM simulation predicts 

an upper limit for h ≈ 220 MWK-1m-2 with almost no diameter dependence. This appears 

to suggest the upper range of the h values obtained experimentally. We note that the 

extracted and simulated TBCs in this study thus far are at an elevated temperature, given 

approximately by the CNT breakdown condition (~873 K). To understand the effects of 

temperature on TBC, we plot our DMM model in Figure 6.6(d) vs. temperature. This 

shows an expected increase in TBC with temperature, consistent both with graphene-

SiO2 experiments [175] and with CNT-SiO2 MD simulations. [146] The thermal 

coupling per unit area at room temperature is ~130 MWK-1m-2, or approximately 40 

percent lower than the thermal coupling near the CNT breakdown temperature. 

6.5.2. Dependence of TBC on phonon DOS and velocity 

In addition to the thermal footprint, the PDOS of the SiO2 as well as the 

distribution function (fBE) also play a role in heat transport across the interface. We recall 

that the inset of Figure 6.3 showed the calculated PDOS for both a (10,10) CNT and the 

SiO2 substrate. While the nanotube contains a large PDOS peak at 53 THz, this does not 

come into play because there are no equivalent high-frequency modes in the SiO2. 
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Figure 6.3 also shows the Bose-Einstein distribution function at the CNT breakdown 

temperature (TBD ~ 600 °C). The distribution suggests very low occupation for all high 

frequency CNT modes. Since the Debye temperature for CNTs is very high, we expect 

that most substrates will serve as a low-pass filter for CNT phonons.  

 Aside from changing the thermal footprint, the deformed shape of the CNT also 

affects the average phonon velocity. This is a more subtle effect than that of diameter or 

surface roughness, but it is included here for completeness. For instance, in the second 

regime (D > 2.1 nm) the CNT becomes flattened, leading to more atoms vibrating 

perpendicular to the substrate interface. After numerical MD calculations of the CNT 

shape (Figure 6.5(a)) we fit analytic expressions to the angle-averaged phonon velocity: 

0.71

2.926 574          for  < 2.1 nm

2541 932      for  > 2.1 nm

CNT
v D D

D D
−

= +

= − + , 
(6.14) 

and these are used in the calculation of the thermal boundary conductance in Eq. (6.4). 

The units of the equation above are given for D in Angstroms, yielding average velocity 

in m/s. 

6.5.3. Dependence of TBC on surface roughness 

There are several variables contributing to the spread of the experimental data 

shown in Figures 6.6 and 6.7. The primary contributor is surface roughness. Since the 

value of g is directly related to the contact area at the interface, an imperfect surface is 

roughly equivalent to a decreased thermal contact area. Figure 6.7(a) replots the 

calculated TBC vs. diameter for a perfectly smooth surface (100%), for 75% of the 
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maximum contact area, and for 50% of the maximum contact area. To analyze how 

surface roughness affects the spread directly, we experimentally find the average surface 

step height, ∆ adjacent to the nanotube via AFM. However, intuitively we except the 

ratio of diameter to roughness (D/∆) to be more important. Thus, we expect larger 

diameter CNTs to be less affected by surface roughness than smaller diameter CNTs. 

Plotting g versus D/∆ in Figure 6.7(b), we see that the spread is smaller in these plots 

than in Figure 6.6(a) and 6.7(a), confirming our hypothesis. 

6.5.4. Role of s-CNT vs. m-CNTs 

We note that the spread in m-CNTs breakdown data is smaller than in s-CNTs in 

Figures 6.6 and 6.7. We believe this is due to threshold voltage (VTH) shifting in s-CNTs 

during the high-field measurement process, which m-CNTs are essentially immune to. 

As the devices are swept to high drain bias for breakdown, along with the applied gate 

bias (-15 V) this can lead to dynamic charge injection into the oxide, as studied in depth 

by Ref. [148]. To understand the effect of threshold voltage on breakdowns, we plot the 

extracted PBD vs. initial VTH in Figure 6.7(c), and find a slight but positive relationship. 

This suggests that in s-CNTs the variation in electronic behavior leads to the larger data 

spread, in addition to the variation due to surface roughness. Moreover, this also 

indicates a root cause which renders precisely selective breakdown of m-CNTs (e.g. in 

CNT networks) as a challenging and imperfect approach: on one hand, the change in 

threshold voltage of s-CNTs can turn them “on” allowing them to break down, on the 
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other hand the variation in surface roughness itself cannot guarantee that all m-CNTs 

will break down at the same input power, or voltage. 

6.5.5. Comments on the modeling approach 

It is important to note that both the DMM and MD simulations employed in this 

work only capture the lattice vibration (phonon) contribution to thermal coupling. 

Nevertheless, the DMM in general appears to represent an upper limit to the spread of 

the experimental data which is otherwise lowered by effects like surface roughness. 

However, recent theoretical work has also suggested a possible electronic contribution to 

heat transport through coupling with surface phonon polaritons (SPPs) from the oxide. 

[176-177] The SPP interaction drops off exponentially with the CNT-substrate distance, 

perhaps leading to a larger electronic contribution to heat transport in regime II of the 

CNT shape (D > 2.1 nm), where more CNT atoms are closer to the SiO2 surface. 

However, since the SPP potential is strongly dependent on the interaction distance, it 

will also be affected by substrate surface roughness. Given these circumstances it is 

difficult to rule out energy relaxation through SPP scattering in practice, although this 

appears to be significantly lower than the phonon coupling and any SPP contribution 

(however small) may become more significant in larger diameter CNTs (D > 2.1 nm). 

Another mechanism for CNT-SiO2 energy dissipation is inelastic phonon 

scattering at the interface, which is not captured by the DMM. Previously Chen et al. 

[175] had compared an elastic DMM calculated by Duda et al. [164] to the TBC 

between graphene and SiO2 and found that the elastic DMM under-predicted the TBC by 
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approximately an order magnitude. Hopkins [165] made a similar argument for inelastic 

scattering between acoustically mismatched materials. However our simulations do not 

differ from the data significantly, thus our calculations suggest that the contribution of 

inelastic scattering here is small (perhaps a result of the 1-D nature of CNTs).  

 

6.6. Conclusions 

In summary, we have examined electrical breakdown and thermal dissipation 

between CNT devices and their SiO2 substrate, the most common configuration found in 

CNT electronics. The breakdown location is invariably found in the middle of the CNT, 

consistent with the CNT temperature profile. In this context, thermal dissipation from 

CNT to SiO2 dominates over dissipation at the CNT contacts. We found evidence of a 

direct relationship between the CNT-SiO2 thermal boundary conductance (TBC) and the 

CNT diameter, in accord with previous MD simulations. To provide a more flexible 

means of analysis we developed a diffuse mismatch model (DMM) of the TBC using the 

full phonon density of states (PDOS). This approach appears to predict the upper limit of 

thermal transmission at the CNT-SiO2 interface, and could be similarly applied to 

calculate the TBC of other dimensionally mismatched systems. Our experiments and 

modeling suggests a maximum TBC of ~0.6 WK-1m-1 per unit length for the largest 

diameter CNTs considered (D = 3–4 nm). The maximum thermal conductance per unit 

area corresponds to approximately 130 MWK-1m-2 at room temperature and 220 MWK-

1m-2 at 600 oC. 



   122 

We have also studied the thermal footprint of a CNT through MD simulations 

which find the atomic configuration of lowest energy. These reveal two interaction 

regimes, the first one at smaller diameters (D < 2.1 nm) where the CNT shape is 

dominated by its curvature energy, the other at larger diameters (D > 2.1 nm) where the 

CNT shape is dominated by van der Waals (vdW) coupling with the substrate. Finally, 

we found that SiO2 surface roughness strongly affects the TBC of such nanometer-sized 

interfaces. To improve CNT heat sinking applications, our results suggest the need to 

engineer ultra-flat surfaces, use large diameter CNTs, and find substrates with larger 

vdW coupling. To improve selective electrical breakdown of CNTs (e.g. metallic vs. 

semiconducting) it will also be essential to control the surface roughness of the 

substrate, as well as the threshold voltage of the semiconducting CNTs. 

 



   123 

 
6.7. Figures and tables 
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Figure 6.1. (a) Schematic cross-section of typical CNT device with diameter D and 

thermal footprint bt (also see Figure 5) on SiO2 substrate with thickness tox and surface 

roughness ∆. The p+ silicon is used as a back-gate. The device layout with source and 

drain terminals is shown in Figure 2(a). As current (ID) passes in the CNT, the generated 

Joule heat dissipates through the substrate. The equivalent thermal circuit includes CNT-

SiO2 interface thermal resistance (1/g) and spreading resistance in the SiO2 (1/gox). (b) 

Typical electrical breakdown of similar CNTs shows higher breakdown power in 

vacuum (~10-5 torr) than in ambient air. This illustrates the role of oxygen for CNT 

breakdown in air. (c) Atomic force microscopy (AFM) images of CNTs broken in air 

(top) and vacuum (bottom). Breakdowns in vacuum can lead to SiO2 surface damage, 

which is not observed for air breakdowns. 
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Figure 6.2. (a) Scanning electron microscope (SEM) image of CNT device showing 

breakdown location (LBD). (b) Histogram of breakdown location normalized by CNT 

length (LBD/L) indicating the majority of m-CNTs break near the middle and s-CNTs 

break closer to the drain. Break point is always observed along the CNT, suggesting 

good contacts with negligible heating. (c) Computed temperature distribution along a 

2 µm long CNT (typical in our study) with Eq. (6.1) using C1 = 1 and varying C2. The 

maximum temperature is shown at the breakdown condition (TBD). C2 = 0 corresponds to 

m-CNTs (uniform heat dissipation) and C2 > 0 corresponds to s-CNTs. For s-CNTs 

biased under hole conduction the heat generation and temperature profile are skewed 

towards the ground (drain) terminal. Block arrows in (b) and (c) show direction of hole 

flow.
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Figure 6.3. The phonon density of states (PDOS) for a (10,10) nanotube from MD 

simulations. The Bose-Einstein occupation (fBE) at room temperature is plotted in red 

against the right axis. Shaded in gray is the product of the PDOS with fBE, showing 

diminished contribution from higher frequency phonon modes. The inset shows the 

PDOS of the CNT and that of SiO2, the latter displaying a lower cutoff near 40 THz. 
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Figure 6.4. Van der Waals potential (blue solid line) interaction between CNT and SiO2, 

as used in calculations to derive the thermal footprint (Figure 6.5). The second derivative 

of the potential (red dashed line) with respect to distance from the surface (z) is used to 

weigh the contribution of each atom to the effective thermal footprint (bt) of the CNT. 
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Figure 6.5. (a) Nanotube height (■), geometrical footprint (∆), and thermal footprint 

(▲) on the SiO2 substrate as a function of CNT diameter, obtained from MD 

simulations. A fit to the thermal footprint is shown as a solid line from Eq. (6.12).  

(b) Average CNT phonon velocity in the direction perpendicular to the surface. 

Calculations reveal two distinct regimes: in regime I (left inset, D < 2.1 nm) the CNT 

shape is nearly circular, dominated by the curvature energy; in regime II (right inset, D > 

2.1 nm) the CNT shape becomes flattened, with a stronger influence of the surface vdW 

interaction. Small vertical arrows indicate the relative magnitude of vdW forces with the 

substrate at each atomic position. 
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Figure 6.6. (a) Electrical breakdown power (in air) of CNTs vs. diameter D, showing 

proportional scaling. (b) Extracted CNT-SiO2 thermal coupling g vs. D (see text) for 

both metallic (m) and semiconducting (s) CNTs. Solid line is the DMM calculation and 

dash-dotted lines are fitted to MD simulations with different vdW coupling strengths 

(χ=1 and χ=2 respectively). (c) CNT-SiO2 thermal coupling per unit area h vs. D, 

showing the DMM represents an upper-limit scenario of heat dissipation. The spread in 

the data and lower apparent thermal coupling in practice is attributed to SiO2 surface 

(cont. on next page) 



   129 

roughness, and charge trapping near semiconducting CNTs (see text). (d) Calculated 

temperature dependence of the upper limit thermal coupling per unit area. Thermal 

coupling at room temperature (~130 MWK-1m-2) is ~40% lower than at the breakdown 

temperature (~220 MWK-1m-2). 
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Figure 6.7. (a) CNT-SiO2 thermal coupling g vs. diameter D (symbols = data) and 

DMM simulations (lines) for perfect substrate contact (100%), and for 75% and 50% 

effective contact area due to SiO2 surface roughness (also see Figure 6.1). (b) Replot of 

same experimental data vs. diameter scaled by RMS surface roughness (D/∆) measured 

by AFM near each CNT. This indicates the role of SiO2 surface roughness for thermal 

dissipation from CNTs. Dashed lines are added to guide the eye. (c) Breakdown power 

PBD for semiconducting CNTs (s-CNTs) alone plotted with respect to threshold voltage 

(VTH). The variance in VTH is also a contributing factor to the spread in extracted thermal 

coupling data for s-CNTs. 
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Parameter Value 

vCNT 932 m/s 

vox 4.1 km/s 

NCNT 16.3 atoms/Å 

Nox 0.0227 molecules/Å3 

TBD 873 K 

 

Table 6.1. Parameters used in the DMM model. 
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CHAPTER 7: INTERPRETATION OF TOPOGRAPHICAL 

INFORMATION FROM ATOMIC FORCE MICROSCOPE (AFM) 

IMAGES ON INDIVIDUAL CARBON NANOTUBES  

 

 

 

7.1. Introduction 

Carbon nanotubes (CNTs) have generated much interest over the past two decades 

due to their extraordinary mechanical and electrical properties. Numerous efforts have 

used CNTs as building blocks of nanoelectronic devices such as transistors, switches and 

wires. Unlike semiconductor nanowires, CNTs do not have sharp edges or dangling 

bonds, thus presenting much higher high carrier mobility and thermal conductivity. 

[178-180] Carbon nanotubes could also be used as building blocks in nanosensors, 

nanocomposites and other nano-electro-mechanical (NEMS) devices and nanostructures. 

[131-132, 181] Among these applications, the CNT diameter strongly affects many CNT 

properties such as band gap, [182] carrier mobility, [153] contact resistance, [183] and 

stiffness [121]. The most common method of measuring the diameter of a CNT on a 

substrate is by atomic force microscopy (AFM), and the most common substrate used in 

practice is amorphous silicon dioxide, thermally grown on Si wafers. [80, 184-188]  
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The AFM measurement determines the CNT diameter by sampling the “height” of 

the CNT on the substrate; however when placed on silica or other solid substrates, the 

CNT cross-section can deform due to van der Waals (vdW) interactions between the 

carbon atoms and the substrate. [127, 130, 180, 184, 189] Thus, a central question in 

such measurements is how to interpret the AFM topography [190-193] of individual 

CNTs, while taking into account the deformation of CNTs induced by vdW interactions 

both with the substrate and with the AFM tip. This paper focuses on answering this 

important issue through detailed molecular dynamics simulations and comparison with 

experimental measurements. The results obtained herein should be helpful in 

interpreting AFM measurements of CNTs and in designing and properly evaluating 

future CNT-based devices. 

 

7.2. Simulation method 

 To study the deformation of CNTs due to various interactions we first conducted 

molecular dynamics (MD) simulations. Several different types of interactions were 

considered: the covalent bonding between the carbon atoms in CNTs, the vdW 

interactions between the CNT and the substrate, and the vdW interactions between the 

CNT and the AFM tip. 

The neighboring carbon atoms within CNTs form covalent sp2 C-C bonds, 

modeled with the empirical bond order Tersoff-Brenner potential [10] which has been 

well characterized and extensively used by previous researchers [81, 116, 172, 194]. The 



   133 

C-C interactions occur only when the atoms are within the cut-off radius of each other, 

taken as rc ~ 2.5 Å in our simulations. 

When CNTs are placed on a substrate, they deform due to the vdW interactions 

between the carbon atoms and the substrate material. As a result, their cross-sectional 

profile no longer remains circular, as found in several previous studies, [127, 130, 180, 

184, 189]. The CNT-substrate vdW potential used in our calculations is derived 

elsewhere [130] but repeated here for completeness: 
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Furthermore, the non-neighboring carbon atoms in the CNTs that are not directly 

connected by covalent bond may still interact with each other by vdW forces when the 

interatomic distance is sufficiently close. We model such interactions via a standard 

Lennard-Jones (LJ) potential with the following parameters: [128] 

-3Å 0.176  ,Å 415.3  ,meV 39.2 === CCC nσε . (7.3) 

 The equilibrium cross-section of several single-walled CNTs is shown in Figure 

1(a), where each ring represents the cross-section of a particular diameter. The inner 

(blue) rings represent the equilibrium shapes of CNTs with diameters D < 2.2 nm. In this 

regime, we find that the elastic energy due to relatively large intrinsic curvature of the 
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CNTs is dominant. The outer (red) rings represent the equilibrium shapes of CNTs with 

diameters D > 2.2 nm. In this regime, the CNTs deform more and their profile shows a 

non-circular cross-section. For such large diameters the maximum curvature (which 

occurs at the left and right ends of the nanotubes) is nearly constant, and the CNT shape 

is governed by the vdW interactions with the substrate.  

 The two distinct regions are also noted in Figure 7.1(b), which reveals a bilinear 

relationship between the maximum curvature in a deformed CNT and inverse of its 

diameter (1/D). For D > 2.2 nm (1/D < 0.45 nm-1) the maximum curvature of a CNT on 

SiO2 changes very slowly with the inverse diameter as shown by the red line. However, 

for CNTs with D < 2.2 nm the maximum curvature begins to vary directly proportional 

with the inverse diameter (blue line), indicating that CNTs on SiO2 maintain a nearly 

circular cross-section in this regime. This bilinear dependence in turn gives rise to 

bilinear relationship between the height (and to a lesser degree width) vs. diameter of the 

CNTs as shown in Figure 7.1(c). The width is defined here as the longest possible 

inscribed horizontal line within a CNT. The width changes almost linearly with the CNT 

diameter, whereas the height is distinctively bilinear with respect to D. Similar behaviors 

are predicted by our simulation results for double-walled CNTs on SiO2 substrates as 

shown in Figure 7.1(d), with the “deflection point” occurring at a larger CNT diameter. 

In order to compare the calculated CNT profiles with results measured by AFM, 

we then calculate the CNT cross-sections as an AFM tip of given radius is moved across 

the CNT. Since the radius of curvature of AFM tips (typical range RT ≈ 2–20 nm) is 

usually comparable to or larger than the CNT diameter (D ≈ 0.7–4 nm for single-wall 
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CNTs), the trace profile of the AFM tip will not conform to the shape of CNTs. Instead, 

the trace profile of the AFM tip would in general be of roughly the same height (H) as 

that of the CNT but much wider (WAFM). If one does not take into account the CNT-

AFM tip interaction and its resulting deformation of the CNT (i.e., for perfectly rigid 

CNTs), such AFM tip trace profiles can be obtained analytically based on geometrical 

considerations, [195] e.g. WAFM ≈ 2(2RTh)1/2. 

In experiments the AFM tip can interact with the CNT as it moves across it 

through vdW forces. Such interactions, in turn, cause deformation in the CNTs being 

imaged, in both contact and tapping modes [196]. To determine the relationship between 

the AFM tip trace profile and the true dimensions of a CNT, we conduct MD 

simulations by taking into account the full interactions of the AFM tip and the CNT. We 

model the tip-CNT interaction with a simplified vdW potential, i.e. the standard 

Lennard-Jones (LJ) 6-12 potential as: 

12 6

4V
r r

σ σ
ε
    

= −    
     

, (7.4) 

where ε is an energy parameter, σ is a length parameter (given in Eqs. (7.2) and (7.3)) 

and r is the interatomic distance. We consider parabolic-shaped diamond AFM tips, but 

similar conclusions can be reached for AFM tips of different shapes and materials. If the 

parabolic AFM tip is defined by [195] f (x,y) = (x2 + y
2)/2RT, the collective vdW 

interaction per C atom can be approximated as: 
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where 

222 )()( hzykxr +++−= , (7.6) 

and (k, h) are the horizontal distance and depth of C atoms under the AFM tip, 

respectively. (h and k are thus zero at the apex of the AFM tip.) We note that this 

integral tends to give lower estimates of the total interaction potential due to ignoring the 

effects of local spikes of closely positioned atoms. This integral cannot be evaluated 

analytically and should be treated numerically. However, if the lower bound of the z 

integral is changed to zero, i.e. a flat AFM tip, an analytical formula exists: [130] 

9 332
2 15

45vdW

n
V

h h

πεσ σ σ    
= −    

     
. (7.7) 

This result indicates that in general the potential is highly localized and non-zero only in 

the close vicinity of the surface. The integral in Eq. (7.5) may be evaluated numerically 

via partitioning the integration domain into volumetric elements and carrying out a 

standard Gauss integration as shown in the inset of Figure 7.2. This integral is non-zero 

only in a narrow band around the tip surface. This observation allows us to use the 

approximate localized potential between AFM tips and CNTs for the simulations in this 

work, with the form: 
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, (7.8) 

where A = 1.645 Å3, B = 14 Å3, α = 9 and β = 3.288 are fitting parameters chosen to 

match the numerical data, as shown by the fit in Figure 7.2 for diamond AFM tips. In 

this model, h is the closest perpendicular distance to the surface of the AFM tip from any 

point in space and n is the atomic density of diamond. If instead of diamond we consider 

silicon AFM tips, the parameters are: [197] 

-3Å 0.05  ,Å 621.3  ,meV 46.6 === SiSiSi nσε , (7.9) 

with the parameters of the approximation becoming A = 1.943 Å3, B = 16.49 Å3, α = 9 

and β = 3.174. These effective potentials for silicon and diamond tips are employed 

throughout this work, dramatically increasing the efficiency of the simulations. 

Just as in experiments, to ensure the stability of AFM scanning, we need to apply a 

small downward compressive force on the tip at all times. For AFM scanning of a solid 

surface the exact magnitude of this force is less important. However, for deformable 

surfaces such as CNTs, the magnitude of the compressive force will affect the degree of 

deformation, thus affecting the scanning results. In the current simulations, we apply a 

compressive force ranging from 0.1 nN (extremely small) to 10 nN. It is noted that, 

without the compressive force, we observe considerable jittering in our numerical 

results. Another parameter is the AFM tip scanning speed, which is 5 m/s in the 

numerical simulations. Experimental scan speeds are on the order of µm/s, too time 

consuming for the numerical simulation. However, we have verified that no significant 



   138 

spurious effects exist in our simulations with the current scanning speed. We also 

performed a few sensitivity analyses where we repeated some of our simulations with 

lower scanning speeds and we didn’t observe any meaningful systematic change in our 

results. Since our computational AFM tip has no mass and therefore it has an infinite 

gain, its measurements are not very sensitive to the speed of scan as it can 

instantaneously adjust itself with the various surface features. In this regard, our 

computational AFM tip behaves more similar to a contact mode actual AFM tip. 

 

7.3. Simulation results 

Figure 7.3 shows typical 3-dimensional (3D) simulations of single-walled CNT 

shapes at different stages as the AFM tip moves across their surface. Figure 7.3(a) shows 

a CNT on SiO2 when the AFM tip is sufficiently far away such that any interactions are 

negligible. Figures 7.3(b)-(d) depict the CNT shape as the AFM tip moves across it (also 

see figures in Appendix B). These pictures clearly show that, because of the vdW 

interactions between the AFM tip and CNT as well as deformability of the CNT, an 

indentation forms in the CNT near the location of the AFM tip. The degree of the 

indentation depends on the magnitude of the compressive force on the AFM tip and the 

diameter of the CNT. However, it is noted that, even with zero compressive force on the 

AFM tip, an indentation still forms if the CNT is sufficiently flexible (large enough 

diameter). This indentation occurs because the attractive vdW interaction between 

carbon atoms and the AFM tip can draw the tip into the CNT until the elastic resistance 

of the tube balances the attractive force.  
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Figure 7.4(a) shows the trace profiles of AFM tips of several different radii over a 

CNT of diameter D = 2.7 nm when the tip-CNT interaction is not accounted for (i.e., 

perfectly rigid CNT).  Here we assume that the AFM tip is in perfect contact with the 

CNT as well as with the substrate, i.e., the distance between them is zero. It is clear that 

the “measured” height by the AFM tip trace profile can accurately represent the true 

height of the CNT. However the “measured” width by the AFM tip trace profile WAFM is 

much larger than the true width of the CNT W. Although highly simplified, this result 

nevertheless serves to illustrate that the measured width of CNTs from AFM images 

cannot be used to characterize the dimension of CNTs.  

Figure 7.4(b) shows the trace profile of a diamond AFM tip with tip radius RT = 70 

Å as it moves across the same CNT of diameter D = 2.7 nm, perpendicular to its 

longitudinal axis with and without the vdW interactions. These simulation results 

indicate that the measured height of a CNT by AFM is slightly larger or smaller than its 

true height, and the measured width of a CNT is significantly larger than its true width. 

Using the results in Figures 7.4(b) and 1(c), we can in principle determine the true 

diameter of the CNT from the AFM measurement data, at least for the idealized case of 

a perfectly flat substrate and well-defined AFM tip shape. 

Figure 7.4(c) shows the effect of the compressive force on the magnitude of CNT 

deformation along with some of the deformed intermediate configurations of these 

nanotubes. Since CNTs are extremely compliant in the radial direction, small 

compressive forces on them can cause fairly large deformations in them and may even 
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cause them to fully collapse provided that the diameter of the CNTs is adequately large. 

More discussion on this phenomenon is in the forthcoming paragraphs. 

Using the numerical simulations, we can now quantitatively examine the 

relationship between the CNT height measured by AFM and the true CNT diameter. 

Figure 7.5(a) compares the simulated results for AFM measurements of single-walled 

CNTs (SWCNTs) heights on a perfectly flat silica substrate. In these simulations, the 

equilibrium distance between the AFM tip and the substrate is assumed to be 2.7 Å 

which is the contact distance of carbon atoms on silica substrate from our model. The 

actual height of a CNT on substrate is a monotonically increasing function of the 

nanotube diameter. However, when the CNT-AFM tip vdW interaction is taken into 

account, the apparent height of the CNT measured from the AFM tip trace is no longer 

the true CNT height. In particular, for CNTs with D < ~2.0 nm, the AFM measurements 

should be comparable to the actual CNT height; however for CNTs with D > ~2.0 nm, 

the measured height data could be notably lower than the true values. Furthermore, there 

does not seem to be a one-to-one relationship between these two values and one cannot 

conclusively predict the actual diameter of the CNT from AFM measurements alone, 

particularly for CNTs with diameter > 2 nm.  

Our simulations also indicate that the AFM tip material (i.e. using a different 

interatomic potential) and temperature do not play a major role in the behavior discussed 

above. (More detailed information on this issue is provided in Appendix B.) On the 

other hand, the number of walls of the CNT has an important role in the AFM height 

measurements. Figure 7.5(b) compares the true height of double-walled CNTs 
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(DWCNTs) that would be measured by diamond AFM tips. The diameter of a DWCNT 

is defined as the diameter of the outermost shell in the circular state. The inner shell is a 

CNT whose radius is ~3.4 Å (the graphite interlayer distance) smaller than the outer 

shell. As shown in Figure 7.5(b), DWCNTs are less compliant in the transverse direction 

than SWCNTs, and therefore their AFM height reading is expected to be closer to the 

true diameter of these nanotubes, for D < ~ 3.0 nm. Consequently, we expect the 

accuracy of diameter measurements from AFM “height” to be further improved for 

multi-walled CNTs (MWCNTs) with three or more shells, which suffer less deformation 

when placed on solid substrates. Indeed in a novel experiment, DeBorde, et al. devised a 

technique to identify individual SWCNTs and DWCNTs based on AFM measurements 

of height vs. downward compression force. [196]  

Figure 7.5(c) compares the results of AFM tip measurements of the width of 

different SWCNTs over a perfectly flat silica substrate. The true width of a CNT is 

almost a linear function of the nanotube diameter. The apparent width of the CNT is 

highly dependent on the radius and shape of the AFM tip, but in general, it is much 

larger than the true CNT width. However, because of the one-to-one relationship 

between these two quantities, such measurements may be used to estimate the CNT 

dimensions from the AFM width measurements. To obtain truly accurate information of 

CNTs from AFM measurements, it is necessary to have the height and width measured 

by AFM as well as knowledge of the AFM tip radius and the number of walls of the 

CNT. The number of walls of carbon nanotubes may be obtained, for instance, by the 

experimental nano-indentation method employed in Ref. [198]. However, in practice, 
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such complete a priori knowledge is generally unavailable, and thus the AFM 

measurements of CNTs must be carefully interpreted. 

Finally, Figure 7.5(d) illustrates the quantitative variation of the measured height 

of CNTs as a function of compressive force on the CNT. It is evident from these curves 

that compressive force has an important role on the height profile and it can further 

complicate the interpretation of AFM height measurements. The height vs. diameter 

relationship is highly non-linear in the presence of downward loads and therefore, the 

height profile cannot be effectively utilized for diameter characterizations under these 

conditions. According to our simulations, transverse forces as small as 5 nN can cause 

the CNTs to locally collapse under the AFM tip and if the CNT diameter is larger than a 

certain value, the collapse will propagate in the entire length of the nanotube. Even 

smaller forces can considerably change the height profile of the CNTs. It should be 

noted that the force that is referred to here is a direct load on the CNT. In AFM 

experiments, on the other hand, often downward loads as large as 60 nN are applied on 

the AFM tips. However, this downward load may not be fully exerted on the CNT alone. 

There are dynamical effects of the tapping mode as well as the effect of air, photoresist 

and substrate roughness that also need to be taken into account.  These effects are not 

readily accessible for theoretical quantification, but as discussed in the subsequent 

sections, they seem to play an important role in AFM experiments. 
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7.4. Comparison with experiments 

In order to validate our numerical results experimentally, we compared data from 

AFM measurements with resonant Raman spectroscopy, another method used to 

estimate CNT diameters in practice. [199-201] Single-wall CNTs were grown by 

chemical vapor deposition (CVD) from Fe catalyst on an SiO2(90 nm)/Si substrate and 

electrically connected with Ti/Pd contacts. [147] The CNTs measured in this study are 

considered to be single-walled CNTs because they exhibit current saturation of ~ 25 µm. 

[150] The height of the CNTs on the substrate was measured using an Asylum AFM 

with a silicon tip of radius ~10 nm. For good tracking, the tapping mode scan was 

performed with a scan speed of 2 µm/s and a scan size of 1 µm x 1 µm. [197] A typical 

resulting image for one CNT is shown in Figure 7.6(a). There is some error to this 

measurement coming from the surface roughness of the oxide substrate (∆ ~ 3 Å). The 

CNT height values were obtained by taking averages from seven readings at different 

regions of the CNT. 

For comparison, the actual diameters of several single-wall CNTs were also 

measured using resonant Raman spectroscopy with a He-Ne laser wavelength of 633 

nm. A typical scan setting is 16 accumulations of 5 min long scans using ~2 mW power. 

Using the radial breathing mode (RBM) peak (Figure 7.6(b)), the diameter is given by 

the relation ( ) 21227 DCD eRBM +=ω where Ce = 0.065 accounts for the environmental 

effect SiO2 has on ωRBM [200]. The G peak (discussed below) was also used as another 

rough measurement of the CNT diameter. The diameters measured by Raman are the un-
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collapsed diameters of the CNT. Comparing our AFM measured heights with the Raman 

extracted diameters in Table 7.1 along with values from literature, [202-203] we see that 

the AFM measurement tends to under-predict the actual diameter of the CNT, as 

suggested by the simulations in the previous sections. 

 

7.5. Discussion and recommendations 

 The results of this work suggest that, while AFM measurements remain the most 

convenient method for estimating the diameters of substrate-supported CNTs, the 

numerical data must be carefully interpreted. For single-wall CNTs supported by a 

smooth substrate the CNT diameter information obtained from AFM is generally 

expected to be reliable up to diameters D ~ 2 nm, whereas for double-wall CNTs (which 

are stiffer) this limit is extended up to D ~ 3 nm. An uncertainty of 0.3–0.8 nm exists 

around these ranges due to SiO2 roughness and surface contamination as described 

below. 

In practice, AFM measurements on CNTs are most commonly performed in air, 

where water, photoresist, and other surface contaminants can alter the measured results. 

Even if these were eliminated, the effect of substrate surface roughness (∆ ~ 3 Å for the 

amorphous SiO2 substrate tested above) lends some uncertainty to the measured 

diameters. For instance, Ishigami et. al. [204] found that graphene height variation on 

SiO2 as measured by AFM is ~8 Å before and ~3 Å after cleaning of photoresist residue 

in an argon/hydrogen atmosphere at 400 oC. Moreover, the imaged height of graphene 
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on SiO2 was ~9 Å in air and ~4.2 Å in vacuum, the latter more closely comparable to the 

interlayer spacing in graphite of 3.4 Å. 

While graphene tends to adhere [204] to the SiO2 substrate and follow its 

corrugations, CNTs can span between microscopic valleys and hills, causing them to 

become “more circular” than what has been calculated in this paper with a perfectly 

smooth substrate. There are also experimental reports [205] on the effect of a water 

meniscus on the behavior of AFMs and nanotubes which can affect the diameter 

measurements and interpretation. Such effects are difficult to model in a simple, 

generalized approach as that presented here, but ought to be kept in mind as additional 

challenges in the interpretation of experimental data. However, we believe the 

computational results of this work provide insight into the mechanisms at play in AFM 

microscopy of CNTs on solid substrates and should lead to a better understanding for the 

design and analysis of carbon-based nanodevices and nanostructures. 

 Before concluding, we wish to briefly comment on approaches that are 

alternative or complementary to AFM for obtaining the true diameter of CNT devices. 

Among these, transmission electron microscopy (TEM) has been used to measure the 

diameter and number of CNT walls beginning with the initial studies of Iijima. [118] 

The challenge of TEM is that CNTs must be placed on ultra-thin, electronically 

transparent membranes, and cannot be directly applied to typical CNT devices on 

common SiO2/Si substrates. Nevertheless, recent work has succeeded in combining in 

situ TEM and device studies [206] for some specialized test structures. Scanning 

tunneling microscopy (STM) [207] can also be used to obtain the diameter of individual 
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CNTs. However STM requires samples to be placed on a conducting substrate, thus 

preventing direct application to CNT devices which are typically on SiO2, sapphire or 

quartz. The STM measurements may also suffer from the same tip–sample interaction 

studied in this paper as well as additional geometrical effects on the tunneling 

probabilities. [208]  

Optical measurements offer another alternative, non-invasive approach for 

obtaining CNT diameters. These include three methods, photoluminescence (PL) [209-

210], Rayleigh scattering [211], and resonant Raman spectroscopy [200]. The restriction 

of PL is that it can only be used to measure semiconducting and not metallic CNTs. 

Rayleigh scattering and resonant Raman have the added benefit that they can be used to 

detect both metallic and semiconducting CNTs. The drawback of Rayleigh scattering is 

that for individual CNT detection, environmental perturbations significantly lower the 

signal to noise ratio. While removing the substrate is a solution to increasing the signal-

to-noise ratio, this is not a preferred option for device studies. Finally, Raman 

spectroscopy requires the CNT to be resonant with the laser excitation energy, but does 

not require the removal or special preparation of the substrate. In our studies described 

above, only approximately 1 in 10 CNTs displayed sufficient resonance with the laser 

energy to reveal a radial breathing mode (RBM). Such Raman measurements of RBMs 

are also limited by the cut-off filter present in Raman systems, allowing only detection 

of ωRBM > 100 cm-1 and thus restricting the measurable CNT diameter range to 

< 2.78 nm. In addition to the RBM, the G peak also exhibits diameter dependence. The 

G peak is split into the main G+ peak and the smaller G- peak and the diameter 



   147 

dependence is given by the relationship ωG = 1591-C/D
2. Here C is determined by the 

peak (G+ or G-) and the chirality (semiconducting or metallic) of the CNT. We used the 

following values from literature: 0=+G
C , 7.47=−

S

G
C cm-1, and 5.79=−

M

G
C cm-1. [201] 

However, it should be stated that while this relationship works well for semiconducting 

CNTs, it does not work that well for metallic CNTs because of increased sensitivity to 

doping, [212] as can be seen in Table 7.1. 
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7.6. Figures and tables 
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Figure 7.1. (cont. on next page) 
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Figure 7.1. CNTs on SiO2 substrate: a) Some of the typical equilibrium state single 

walled CNT geometries. The inner (blue) CNTs represent the nanotubes with diameters 

less than 2.2 nm. The outer (red) CNTs represent the nanotubes with diameters larger 

than 2.2 nm. b) Maximum curvature as a function of inverse of the tube diameter. 

Maximum curvature always happens at the side edges of the tubes. c) Variation of height 

and width of SWCNTs on SiO2 with the diameter of the nanotubes. d) A typical (45,45) 

armchair SWCNT at equilibrium state (red) compared to a double-walled CNT with the 

same outer shell CNT (green). 
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Figure 7.2. The van der Waals potential map around an AFM tip (inset). The light blue 

region is identically zero (after the incorporation of a cut-off radius, rc = 2.5σc) and the 

dark magenta region is the AFM tip. The comparison of the numerical van der Waals 

potential (Eq. 7.5, the blue dots) and the analytical fit to it (Eq. 7.8, the black curve.) 
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(a)                                                                        (b) 

 

 
(c)                                                                        (d) 

 
 

Figure 7.3. The different stages of the AFM scan. A relaxed armchair (45,45) CNT (a) 

snaps towards the tip (b), dips in (c), snaps away from the tip (d) during the motion of 

the AFM tip over it from left to right. 
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c) 

Figure 7.4. (cont. on next page) 
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Figure 7.4.  a) The non-interacting parabolic AFM tip path for some different tip radii 

(RT). The CNT is a typical (20,20) armchair nanotube with the actual diameter of ~2.7 

nm. b) The AFM tip path for the same nanotube with and without considering the vdW 

interaction. The tip radius is RT = 70 Å for both curves and the black dots show the 

relaxed position of the CNT. c) This figure compares the trajectory of a diamond AFM 

probe with a tip radius of RT = 70 Å over a (20,20) CNT with the various values of 

downward vertical force. 
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Figure 7.5. (cont. on next page) 
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Figure 7.5. a) The variation of the height of CNTs on atomically flat quartz with the 

nanotube diameter. b) The variation of the height of DWCNTs with the nanotube 

diameter. c) The variation of the width of CNTs with actual nanotube diameter. d) The 

effect of downward compressive force from AFM tip on the CNT. In all curves, the dark 

magenta squares show the real properties of the CNT. The blue diamonds show the 

apparent height or width with a non-interacting AFM tip. The black triangles depict 

what an interacting diamond tip would “see”. The tip radius is RT = 70 Å for all curves. 

Lines are just drawn to guide the eyes. 
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Figure 7.6. a) Topographical image of a CNT generated by an atomic force microscope 

(AFM). The measured height is 1.6 ± 0.2 nm. The inset shows the height profile along 

the red line. b) The radial breathing mode (RBM) peak from a resonant Raman 

spectroscopy measurement of the same CNT. The RBM peak indicates the CNT is a 

2.27 nm CNT. 
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AFM 

Height 

(nm) 

RBM 

Diameter 

(nm) 

G- peak 

Diameter 

(nm) 

Simulated 

AFM 

Height 

(nm) 

Chirality / 

S or M 

1.2 ± 0.3 1.78 1.75 1.74 (19,5) S 

1.4 ± 0.3 1.78 1.85 1.74 (23,0) S 

1.7± 0.3 2.27 2.47 1.85 (18,18) M 

1.2± 0.2a 1.12a 2.38a 1.30 (11,5) Ma 

1.3± 0.2a 1.37a 1.31a 1.50 (13,7) Ma 

1.5b 1.33b 1.35b 1.47 (NA) Sb 

 

Table 7.1. Comparison between the AFM measured height, Raman measured diameter, 

and the simulated AFM height. (a) Data from Ref. [197] (b) Data from Ref. [202]. 
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CHAPTER 8: COLLAPSE AND INFLATION PROPAGATION OF 

SINGLE WALLED CARBON NANOTUBES ON SiO2 SUBSTRATE 

 

 

 

8.1. Introduction 

Carbon nanotubes are axially very strong and stiff due to the sp
2 covalent carbon 

bonds within the hexagonal network.  They are, however, extremely compliant in the 

out-of-plane direction and can undergo significant deformation, including kinks and 

bends, while remaining in the elastic regime [121, 213-218].  In 1995, Chopra et al. 

reported the observation of multi-walled nanotubes that were completely collapsed along 

their length [125] (see also [124, 219-221]). They also used a theoretical model to show 

that a collapsed nanotube may be energetically favored over one with a circular cross 

section, depending on the radius of the circular tube and the number of walls.  

Specifically, there exists a transition diameter D1 above which the collapsed tube is 

favored and below which the circular tube is favored. Furthermore, a nanotube with a 

diameter smaller than D1 may have a metastable collapsed state.  Thus, there is a second 

transition diameter D2.  A tube with diameter below D2 will not stay collapsed. With a 

diameter between D1 and D2, the tube will prefer the circular shape but will remain in a 
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metastable collapsed state.  For a tube with diameter greater than D1, the collapsed state 

will be energetically favored, and the circular state will be metastable. 

Gao, et al. performed molecular dynamics and molecular mechanics simulations to 

find the equilibrium states for collapsed and circular free-standing single-walled 

nanotubes (SWNTs) of varying radii. [222]  They also examined the effect of chirality 

(the orientation of the hexagonal structure of carbon bonds with respect to the centerline) 

by considering three chiral forms ((n,n) armchair, (n,0) zigzag, and (2n,n) chiral). For 

the armchair tubes, they found D1 to be between 5.92 nm and 6.06 nm, while D2 was 

found to be between 2.16 nm and 2.28 nm; the results for the other two chiral forms 

were similar. 

From these equilibrium and metastable states, the behavior of ideal tubes can be 

predicted.  A free standing SWCNT with a diameter greater than D1 in the metastable 

circular state would prefer the collapsed state.  If a section of the tube collapsed, the 

collapse would propagate through the length of the tube (Figure 8.1.) Likewise, a 

nanotube with a diameter between D1 and D2 in the metastable collapsed state prefers 

the circular shape.  If a portion of it were inflated to a circular cross section, this 

inflation would propagate through the entire tube.  In the current study, we examine the 

energetics of the CNT collapse (or inflation) process on SiO2 substrate. Presence of a 

substrate, changes the collapsed/uncollapsed equilibrium shapes [127] as well as the 

critical diameters. AFM experiments are performed to verify these findings. 
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8.2. Energetic analysis of nanotube collapse 

The CNT collapse process is controlled by the balance of strain energy and the 

intramolecular van der Waals (vdW) attraction. For a free standing carbon nanotube, the 

strain energy is obviously minimum for the undeformed (circular) tube. For CNTs on a 

surface, on the other hand, the uncollapsed state is not circular. Some of the typical in 

equilibrium uncollapsed shapes are shown in Figure 8.2(a). Maximum curvature has a 

linear relationship with the inverse of the tube diameter for circular tubes, but Figure 

8.2(b) reveals a bilinear relationship for the tubes on a substrate. The initial linear 

regime in this figure corresponds to CNTs with large diameters. In this regime, the 

maximum curvature (which occurs at the left and right edges of the nanotubes) is 

constant and the CNT shape is predominated by the surface vdW interactions. The 

trailing region in this figure corresponds to the smaller CNTs. In this regime, the elastic 

curvature energy is dominant and the nanotubes are roughly circular in shape. As a tube 

collapses, the increase in strain energy may be overcome by the vdW attraction of the 

opposing walls. The strain energy increases monotonically as the area decreases. The 

vdW energy, which is very close to zero until the opposing walls come within close 

proximity, creates a double well form for the total energy profile. (See Figure 8.3.) 

To illustrate the energetics governing the single-walled carbon nanotube 

(SWCNT) collapse, we examined the energy of nanotube cross sections as a function of 

degree of collapse. For a quantitative measure of the degree of collapse, we used the area 

A of the interior of the tube divided by the area Ao of the corresponding tube in its 

uncollapsed configuration.  Thus, A/Ao ranges from 0 to 1.  The total energy versus A/Ao 
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is dependent on the specific collapse path taken and is not universal (Figure 8.3.) The 

optimal collapse path is the one in which, for each value of A/Ao, the tube assumes the 

shape with the minimum energy. [172] Generally speaking, the uncollapsed state is 

always a minimum energy state (either global or local) and getting to the other minimum 

states from the uncollapsed state requires overcoming an energy barrier in the form of 

activation energy or force. 

Tersoff-Brenner’s empirical multi-body bond order interatomic potential for 

carbon [9-10] has been widely used in the study of CNTs and has also been utilized here 

for modeling the covalent C-C interactions. For modeling the interaction of CNT-silica, 

the analytical potential given in [130] has been used: 
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In addition to this potential, an intra-molecular Lennard-Jones (LJ) vdW potential 

has been used with the following parameters for carbon [129] 

Å 3.39,meV 3.02 == CC σε . (8.3) 

Based on these potentials, we obtained the total energy versus A/Ao from quasi-

static molecular mechanics (MM) calculations by an energy minimization technique 

called Polak-Ribiere Conjugate Gradient method (CGPR). In dynamical cases, the 
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equations of motion were integrated using a fifth-order predictor-corrector algorithm. 

These optimization computations yielded the results in Figure 8.4. In this figure, width is 

the longest possible inscribed horizontal line. For uncollapsed tubes, width changes 

approximately linearly with respect to D and height is bi-linear. For collapsed tubes, 

width is linear and height is constant. 

In Figure 8.5 the total internal potential energy per atom (which in turn is 

composed of many-body interaction and pair potential parts) for different diameter 

CNTs are shown. The critical diameter D1 occurs when the energy of the collapsed and 

uncollapsed states are equal. With our model, this occurred when D was approximately 

3.7 nm. For tubes with D > 3.7 nm, the energy in the collapsed state is lower than that of 

the uncollapsed state. The second critical diameter D2 occurs when the left well becomes 

flat, and the collapsed state is neutrally stable; for our model, this occurred when D = 2.1 

nm.  For tubes with diameters less than D2, the second well disappears, and only the 

uncollapsed state is stable. 

 

8.3. Speed of the collapse/inflation propagation 

The question of whether a collapse will propagate is governed by the change in 

energy from the uncollapsed to the collapsed state.  If ∆E is defined as the energy per 

atom of the inflated tube minus the energy per atom of the collapsed tube (see Figure 

8.5), then the collapse of a nanotube will propagate if ∆E > 0.  Conversely, an inflation 

will propagate if ∆E < 0.  
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The energy of the collapsed tube has both bending (curvature) and vdW 

components. The bending energy of the collapsed tube is not a function of D; the bulbs 

at the ends of the cross section are the same shape and size for tubes of various radii.  

Gao, et al. [222] found that the radius of these bulbs to be approximately 0.525 nm. The 

vdW energy of the collapsed tube increases approximately linearly with D. In order to 

obtain an estimate of the speed of collapse/inflation propagating we proceed as follows. 

The propagation is assumed to have reached a steady state (Figure 8.6). It is viewed 

from a coordinate system that follows the propagation, such that the shape of the 

transition region remains the same, and the atoms move from left to right.  The tube 

transitions from uncollapsed to collapsed over a length L. We call L the length of active 

collapse region and it is shown in Figure 8.6b.  To the left of cross section A-A, the tube 

is uncollapsed (metastable); to the right of B-B, the tube is collapsed (stable). If a row of 

atoms in the nanotube travels from A-A to B-B over a time ∆t, then the speed of the 

collapse propagation is 

 
t

L
vcp

∆
= . (8.4) 

 

In order to have a quantitative measure of L, here it’s defined as the distance 

between two cross sections in which the inscribed area is equal to 105% of the fully 

collapsed inscribed area and 95% of the inflated inscribed area.  Figure 8.7 shows the 

variation of L with the diameter of the CNT.  The average speed of a particular atom i 

over this interval of time is 
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t

l
v i

i
∆

= , (8.5) 

 

where li is the distance through which the ith atom travels (see Figure 8.8).  Each row of 

atoms undergoes a change in potential energy as the CNT collapses.  The gained kinetic 

energy for one row of atoms after completion of the collapse is: 
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where m is the mass of one atom, N is the number of atoms in one row, and iv  is the 

speed of atom i at the end of the collapse process. Assuming a linear profile for velocity, 

ii vv 2=  and assuming a perfect conversion of potential energy to kinetic nuclear energy, 

i.e. KEE =∆ , an upper bound for the speed of collapse propagation is obtained:   
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Figure 8.9 shows the form of this equation for the different CNT diameters.  As it 

can been seen from this graph, speed of propagation is a monotonically increasing 

function of D, but it saturates for large nanotubes, attaining a maximum value of ~2000 



   164 

m/s.  This can be compared to the speed of sound wave propagation in CNTs which is 

typically on the order of ~5000-10000 m/s. [223-225] 

In the case of chiral CNTs, sometimes Moiré patterns similar to the one shown in 

Figure 8.10 may form which feature a gradual and periodic change of the interlayer 

stacking pattern. In order to investigate the effect of this phenomenon on the collapse 

behavior of CNTs, we compared Kolmogorov, et al.’s registry dependent potential [115] 

with the conventional LJ potential. This registry-dependent graphitic potential has an r-6 

two-body vdW attraction, an exponential atomic-core repulsion, and a short-ranged term 

describing the energy gain due to interlayer delocalization of π  orbitals; this term 

dominates corrugation against interlayer sliding. We used this potential in some of our 

simulations of the collapse of varying radii CNTs and no meaningful change in the 

collapse behavior was observed and thus it is concluded that this phenomenon is of no 

significant effect in the collapse behavior of CNTs, although it has been reported to be 

of some importance in rolling and twist formation of carbon nanotubes. [116, 226-227]  

 

8.4. Effect of temperature 

A natural question which is of great practical importance particularly in device 

applications, is that can heat inflate a collapsed CNT? If so, approximately at what 

temperature does the inflation occur? It is a known fact that Joule heating can sometime 

generate a great amount of heat in nanowires or can even break them down. In order to 

answer these questions, we conducted some molecular dynamics simulations on 

collapsed CNTs on SiO2. The temperature was gradually raised from absolute zero and 
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the approximate temperature that the inflation occurred was recorded. This 

computational experiment was repeated several times for the same diameter CNTs and 

with different diameter CNTs and the results are shown in Figure 8.11. This figure does 

not imply that there is a linear relationship between the nanotube diameter and the 

inflation temperature. It only suggests that there’s a positive correlation between the 

inflation temperature and the CNT diameter, and the actual dependence may be more 

complicated. Since typically CNTs break down at a temperature about ~2000 oK, there’s 

no need to consider larger diameter CNTs, as they all burn out before they get re-inflated 

by heat which is by the way, not desirable in nanoelectronics applications. To further 

hamper this behavior, a dielectric layer which maintains compressive stress and prevents 

the CNT from “inflating” again could be utilized. (I.e. embedding the circuit.) 

 

8.5. Experimental observation of collapse/inflation 

In this section we basically intend to verify the reversibility of the metastable 

collapse, provide the experimental setup details with an estimate of the diameter of the 

tubes tested. Electronic, thermal and transport properties of the collapsed tubes vs. 

uncollapsed tubes is another objective here. Our preliminary experiments with ultra-

sharp diamond AFM tips confirmed the existence of a metastable collapse state which 

was reversible with furnace heating. (Figure 8.12.) However, silicon AFM tips were 

found incapable of repeating this result due to a more blunt/softer tip, wear-and-tear or 

other unknown factors and it was suggested to only use diamond AFM tips. 

Unfortunately, these tips did not become available to us during the course of the 
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completion of this thesis and therefore, no more experimental verification of this process 

was possible. 

 

8.6. Discussion and conclusions 

The propensity of a carbon nanotube on silica substrate to collapse or inflate 

depends on its diameter and the number of its walls. Collapsed carbon nanotubes have 

been predicted to exist theoretically and have been observed experimentally as well. We 

have specified the conditions for propagation of collapse and inflation of ideal SWCNTs 

over silica substrate.  If a section of an uncollapsed tube with D > 3.7 nm is collapsed, 

the collapse will propagate.  The theoretical limits on the speed of this propagation were 

established.  Conversely, if a section of a collapsed tube with 2.1 nm < D < 3.7 nm is 

inflated, the inflation will propagate. These critical diameters are generally smaller than 

those for the corresponding free-standing CNTs. These predictions have been confirmed 

by our AFM experiments. Similar results could be derived for double and multi-walled 

nanotubes; for an n-walled tube, the transition radii R1 and R2 are increasing functions of 

n [124]. The chirality of the nanotube was found inconsequential in this behavior. 

Carbon nanotubes hold a great promise to be used as sensors, nanowires, 

nanotransistors and as building blocks in other nano-electro-mechanical (NEMS) 

devices and nanostructures.  Thus such, an understanding of the stability of nanotubes is 

important for the study of both mechanical and electrical properties, since both of these 

are quite different for collapsed tubes versus uncollapsed tubes [179, 219, 228-232].  For 

example, according to Lammert, et al., collapsing a nanotube drastically alters the low-
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energy electronic properties and can reverse the metallic versus semiconducting 

behavior [233] and it can significantly enhance thermal coupling between CNTs and 

SiO2 substrates [130]. This information could be helpful in the design of future carbon-

based nanoelectronic devices. 
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8.7. Figures and tables 

 

 

 

 

Figure 8.1. When free-standing carbon nanotubes larger than ~6 nm in diameter are 

pinched or otherwise disturbed at one point, collapse propagates in them. This 

phenomenon has both experimentally and computationally been observed. The units of 

the figure are in angstroms. 
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Figure 8.2. (a) Some of the typical equilibrium state CNT geometries on SiO2 substrate. 

The inner (blue) CNTs represent the nanotubes with diameters less than 2.2 nm. In this 

regime, nanotubes are very close to circles. The outer (red) CNTS represent the 

nanotubes with diameters larger than 2.2 nm. (b) Maximum curvature always happens at 

the side edges of the tubes. For nanotubes larger than ~2.5 nm in diameter the maximum 

curvature is constant and for the smaller nanotubes, maximum curvature varies linearly 

with the inverse of the diameter of the tube. 
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Figure 8.3. The different stages of collapse of a SWCNT on a substrate. The total 

energy has to overcome a double well potential (the middle inset). 
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Figure 8.4. Variation of height and width of SWCNTs on SiO2 with diameter for a) 

uncollapsed and b) collapsed tubes. Width is defined as the longest possible inscribed 

horizontal line. For uncollapsed tubes, width changes linearly w.r.t D and height is bi-

linear. For collapsed tubes, width is linear and height is constant with D. 
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Figure 8.5. Variation of the total energy per carbon atom as a function of diameter for 

the uncollapsed and collapsed SWCNTs on SiO2 substrate. 
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a)  

b)  

 

Figure 8.6. (a) Region of active collapse. (b) Schematic variation of the cross sectional 

area along the axis of the tube. L is called the length of the active collapse region. 
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Figure 8.7. Variation of L with the diameter of the tube. The highly nonlinear region in 

the middle corresponds to the metastable nanotube diameter range (2.1 nm < D < 3.7 

nm) where an increase in the tube diameter doesn’t necessarily lead to an increase in the 

length of the active collapse region. 
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Figure 8.8. The uncollapsed and collapsed states of a (40,40) armchair carbon nanotube 

with an interplanar spacing of 0.335 nm. The lines designate the linear displacement of 

each carbon atom during the collapse process.  
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Figure 8.9. Upper bound of the speed of collapse (inflation) propagation as a function of 

diameter for the SWCNTs on SiO2 substrate. 
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Figure 8.10. Depending on the chirality of the CNTs, Moiré patterns similar to the one 

shown here may form for the collapsed nanotubes. 
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Figure 8.11. The relationship between inflation temperature of collapsed CNTs and their 

diameter. The dash-dot line is the linear fit to the numerical data and the error bars 

indicate the maximum scatter in the data for each CNT diameter calculated. 

 

Figure 8.12. Experimental evidence for nanotube collapse. [By Albert Liao & Feng 

Xiong.] 

After collapse Before collapse 
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APPENDIX A: THE ORIGINS OF THE QUADRATIC TIME 

SCALING OF HF-FEM WITH THE NUMBER OF DOFS  

 

 

As mentioned in Chapter 2, the matrix formation and solution in HF-FEM is hard-

coded using Matlab. As long as the Hamiltonian matrix is banded, the computational 

time for the matrix-vector product scales linearly with the number of degrees of 

freedom. Thus the effort for any iterative diagonalization technique should scale with Nn 

where N is the number of DOFs and n is the number of occupied orbitals, because one 

needs at least n matrix-vector products to get all the occupied orbitals. The 

orthogonalization step should also scale as Nn
2, because for each orbital, one needs to 

compute overlaps (N operations) with n other orbitals. Therefore, as noted by one of the 

reviewers, the reported quadratic time scaling is curious. To identify the sources of this 

quadratic dependence on number of DOF, we repeated the simulations of a helium atom 

with precise accounting for the computing time in the different parts of our code. The 

most time consuming part turned out to be the assembly process, i.e., the Gauss 

integration over the elements. The solution process of the matrix, on the other hand, 

requires comparatively little time and scales nearly linearly with the total DOF, as 

shown in Figure A.1. For a moderate system size (e.g., 50000 DOF), the time consumed 
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during the assembly process is in fact an order of magnitude higher than the solution 

time. 

Subsequently, we performed a thorough timing of the assembly process. Figure 

A.2 shows the time needed to integrate each element (in milliseconds). Each point in 

Figure A.2 represents the time needed for Gaussian integration of one particular 

element. As can be seen, other than for a few elements, it takes almost a constant amount 

of time (less than 1.5 ms) to complete the Gaussian integration in an element, regardless 

of its size or position. This should result in linear time dependence on the number of 

DOF.  

What is not scaled linearly with #DOF, however is the augmentation time in 

Matlab. Matlab’s internal implementation of sparse matrices requires a quick sort 

algorithm for the indices [234]. Thus, the increased Matlab internal communications 

overhead of handling larger matrices in the memory appears to be the explanation for the 

non-linear dependence. To verify this, we used a third-party software package [235] for 

accessing large sparse matrices and Figure A.3 shows the same simulation as that in 

Figure A.1 using the third-party software, repeated with significantly improved 

performance. These results indeed demonstrate a linear time scaling with the number of 

DOF, and show significantly reduced total computing time.  



   181 

 

A.1. Figures and tables 

 
 

 
Figure A.1. Time-scaling of the assembly and solution phases in the original Matlab 

code. While the solution time is almost linear, the assembly time appears to be quadratic. 
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Figure A.2. The assembly time of each individual element in the original Matlab code. 

This is essentially a constant smaller than 2 milliseconds which is approximately 

equivalent to 6 million CPU-clock cycles. 
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Figure A.3. Time-scaling of the assembly and solution phases in the optimized Matlab 

code. Linear time-scaling for both assembly and solution phases is attained. 
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APPENDIX B: THE DIFFERENT STAGES OF THE AFM SCAN 

AND THE MISCELLANEOUS EFFECTS 

 

 
In order to better demonstrate how Figure 7.2b and the curves in Figure 7.4 were 

obtained in Chapter 7, Figure B.1 below is included as supplemental materials. It shows 

more clearly how a relaxed armchair (20,20) CNT  snaps towards the AFM tip, dips in, 

snaps away from the tip and relaxes during the motion of the AFM tip over it from left 

to right. 

 

B.1. The less important effects on AFM microscopy 

The following effects were found to be less important than the number of walls of 

the CNT and the vertical force on AFM microscopy of individual CNTs. 

B.1.1. The effect of tip material 

The material dependence of AFM paths over CNTs is small. Figure B.2 compares 

the trajectory of diamond and silicon AFM probes with a tip radius of RT = 70 Å as they 

move over a typical (20,20) armchair CNT. These paths are less than 5% different at the 

point of maximum which is insignificant for most practical purposes. 

B.1.2. The effect of tip radius on height measurement 

Figure B.3 shows that even though the width profile is strongly dependent on the 

radius of the AFM tip, the height profile is not. 
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B.1.3. The effect of temperature 

The temperature dependence of AFM paths over CNTs is small. Figure B.4 

compares the trajectory of a diamond AFM probe with a tip radius of RT = 70 Å over a 

(20,20) armchair CNT at 10°K and at room temperature. Regardless of the small 

perturbations, these paths are effectively identical. 
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B.2. Figures and tables 
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Figure B.1. The different stages of the AFM scan. A relaxed armchair (20,20) CNT (a) 

snaps towards the tip (b), dips in (c), snaps away from the tip (d) and relaxes (e) during 

the motion of the AFM tip over it from left to right. 

a b 

d 

e 

c 
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Figure B.2. The material dependence of AFM paths over CNTs is small. This figure 

compares the trajectory of diamond and silicon AFM probes with a tip radius of RT = 70 

Å over a (20,20) CNT. 

 

 
Figure B.3. The radius of the AFM tip has small effect on height profile. This figure 

compares the trajectory of diamond AFM probes with a tip radius of RT = 70 Å and RT =  

150 Å over a (20,20) CNT. 
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Figure B.4. The temperature dependence of AFM paths over CNTs is small. This figure 

compares the trajectory of a diamond AFM probe with a tip radius of RT = 70 Å at 10°K 

and at room temperature over a (20,20) CNT. 
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