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ABSTRACT

This thesis shows that structure prediction is well-suited for detecting and
parsing people in images (and videos) due to the advantage of learning lo-
cal part appearance models jointly with relationships between body parts.
In detecting people, this method can deal with hard cases, for example, a
person mounting a bicycle, that are uncommon in the training data and can
cause current person detectors to fail. This thesis demonstrates a pedestrian
finder which first finds the most likely human pose in the window using a
discriminative procedure trained with structure learning on a small dataset,
then presents features based on that configuration to an SVM classifier. This
thesis shows, using the INRIA Person dataset, that estimates of configuration
significantly improve the accuracy of a discriminative pedestrian finder.
This thesis shows quantitative evidence that a full relational model of the
body performs better at upper body parsing than the standard tree model,
despite the need to adopt approximate inference and learning procedures.
The method uses an approximate search for inference, and an approximate
structure learning method to learn. This thesis compares this method to
state of the art methods on a dataset prepared at UIUC (which depicts a
wide range of poses), on the standard Buffy dataset, and on the reduced
PASCAL dataset published recently. Results suggest that the Buffy dataset
over emphasizes poses where the arms hang down, and that leads to gener-

alization problems.
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Despite the superior performance of a full relational model to a tree struc-
ture model, its practical use is still limited because it must deal with the high
complexity in inference. This thesis shows a method to boost a parser with
poselet pruners. The method first develops a cascade of hierarchical pose-
let pruners to prune the search space to a small set of part states and then
builds a hierarchical poselet parser to find part locations on the pruned set.
Experiments on the UTUC Sport dataset shows that the poselet pruners can
effectively prune away more than 99.6% of unlikely part states to about 500
states per part. This small set of part states allows the use of advanced
appearance models for better parsers. The method achieves performance
comparable to state-of-the-art methods’ while improves the speed of finding

part locations several times.
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tached. We conjecture that a configuration estimate can
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can use lower detection thresholds. . . . . . . . ... ... ..

2.2 This figure is best viewed in color. Qur model of human
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rows give the direction of conditional dependence. Given
a set of features, the extremal model can be identified by
dynamic programming on point locations. We compute seg-
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Histogram features are then computed for base points re-
ferred to the box coordinate frame; the histogram is shifted
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Left: a comparison of our method with the best detector
of Dalal and Triggs, on the basis of FPPW rate. This
comparison ignores the fact that we can look at fewer im-
age windows without loss of system sensitivity. We show
ROC’s for a configuration estimator trained on 10 (blue)
and 20 (red) rounds of structure learning. With 20 rounds
of structure learning, our detector easily outperforms that
of Dalal and Triggs. Right: a comparison of our method
with the best detector of Dalal and Triggs, on the basis of
FPPI rate. This comparison takes into account the fact
that we can look at fewer image windows (by a factor of
four).  However, scanning by larger steps might cause a
loss of sensitivity. We test this with a procedure of repli-
cating positive examples, described in the text, and show
the results of four runs. The low variance in the detect
rate under this procedure shows that our detector is highly
insensitive to the configuration of the pedestrian within a
window. If one evaluates on the basis of false positives per
mmage — which 1s likely the most important practical pa-
rameter — our system easily outperforms the state of the
art. (Originally, we also compared with [38]; however,
they later corrected their result due to an experiment setup
error which did not outperform Dalal and Triggs’ method.
Therefore, we do not show comparisons with theirs in this

plot) . . .

In color, original positive examples from the INRIA test
set; next to each, are three of the replicates we use to de-
termine the effect on our detection system of scanning rel-
atwely few windows, or, equivalently, the effect on our de-
tector of mot having a pedestrian centered in the window.

See section 2.5.1, and figure 2.5. . . . . .. ... ... ..
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4.4 This figure shows examples of part poselets and templates.
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4.6 A tree-based structure of hierarchical poselet pruning mod-
els of M=20 parts consists of both large parts and primitive
parts. Each part is a node in the tree where the root is at
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parts. The tree structure has an advantage of fast infer-
ence by dynamic programing. . . . . . . ... ...

4.7  These figures show the remaining states of left lower arm
and left lower leg after the tree-based pruners (4.7(a) and
4.7(b)) and after the enhanced tree-based pruners (4.7(c)
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than 95%) and leave a small number of 2D part states
(around 300-500 2D locations per part). However, when
adding one more dimension of the part poselet index to
the search spaces (8 to 15 poselets per part), the number
of states per part is still relatively large (2400-4000 actual
states per part). We perform enhanced tree-based pruners
to work on the full state representation to prune to about
500 states per part. This set of states is small enough to
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CHAPTER 1

INTRODUCTION

Detecting and parsing people are problems of very interest of vision com-
munity recently. In detecting people, we want to detect and localize areas,
bounding boxes, containing people in an image (or videos) or, say, there are
no persons in it. In human parsing, not only we want to localize a region
of interested (ROI) containing a person, but also we must produce an accu-
rate representation of the body configuration. These accurate human body
parts localization greatly benefits human activity recognition; for example,
the ROI might be produced by a detector, but we must know what the arms
are doing to label the activity.

For detecting people, template matching is one of the most successful
techniques, in which each hypothesis scanning window is tested if it has a
person or not. Different types of machineries and features were studied such
as a Support Vector Machine (SVM) applied to wavelet expansion ([1] and
[2]); a neural network applied to stereoscopic reconstructions [3]; chamfer
matching to a hierachy of contour templates [4] and [5]; a likelihood thresh-
old applied to a random field model [6]; an SVM applied to spatial wavelets
stacked over four frames to give dynamical cues [2]; a cascade architecture
applied to spatial averages of temporal differences [7]; and a very successful
HOG features by [8]. However, these methods process features in an un-
structrured manner which do not take into account semantic body parts and

their relations. They tend to work on common cases (appear most likely in



the dataset) and fail on uncommon cases (e.g. persons mounting on bikes).
We conjecture that parsing helps detection where reasoning about a person
layout of parts (even though it is not necessarily perfectly accurate) enriches
the signal near body parts and improves the accuracy of detecting people.
We do it by a two-step strategy: first, for each window, we estimate the
configuration of the best person available in that window by a structure pre-
diction method; we then extract features for that window conditioned on the
configuration estimate, and pass these features to a support vector machine
classifier to make the final decision on the window.

Now come to the demand of accurate human parsing, we must correctly
localize body segments. The representation produced is usually a stick figure,
or a box model, but may be image regions or joint locations. All represen-
tations encode the configuration of body segments. It is usual to represent
pairwise spatial relations between locations structured into a kinematic tree,
so that dynamic programming can be used for inference [9, 10]. The joint
relations encoded by the kinematic tree model are important, but there are
other important relations. Limbs on the left side of the body usually look
like those on the right. This cue should be important, because limbs are
genuinely difficult to detect, particularly in the absence of an appearance
model. Inference difficulties occur when one encodes relations between all
pairs of segments, because finding the best parse now becomes max-cut. Ap-
proximate inference on sets of extended image segments can produce good
parses for difficult images [11]. However, there is no evidence comparing
the benefits of a full model against the cost of approximate inference. In this
thesis, we explore the advantages of representing a full set of relations for hu-
man parsing. We apply structure prediction to jointly learn local appearance

and pairwise weights. We show strong quantitative evidence that the advan-



tages of representing a full set of relations between segments outweigh the
costs of approximate inference and approximate learning. We demonstrate
the method on upper body parsing, and show results on Buffy and Pascal
dataset [12], and on a new dataset where the prior on body configuration is
quite weak.

Being cast as a structured output problem, human parsing presents a
difficulty to find the best structures because the search spaces is huge. In
a typical example, there are about 10,000 states per part (a full body is
often represented by 10 parts as shown in Figure 4.2) which results in 10®
evaluations of a pairwise part relation. This issue also prevents the use
of sophisticated appearance models (which are known to be very useful for
better performance [13]) because evaluating pairwise appearance relations
between related parts leads to intractable searches as visualized in Figure
4.3. For this reason, people tend to choose models that leads to simple
searches, for example the tree-based models as in pictorial structures [14])
which take advantages of fast inference by dynamic programing. Complex
full relational models are carefully designed with approximate inference [15]
to make them tractable.

To promote practical uses of full relational models, we must make in-
ference faster. One approach is to develop good strategies to prune down
search spaces. A good pruner eliminates part states that are unlikely to be
in the correct structures leaving as few remaining states as possible with-
out wrongly removing the correct states. Some recent work has proposed
very good pruning strategies. Mori et al. [11] used over-segmentation to
generate limb hypotheses. Ferrari et al. [12] used upper-body detectors and
foreground /background segmentations to narrow down the possible areas of

limbs around the body candidates. Felzenszwalb et al. [16] proposed a cas-



cade model by using early stopping. Tran and Forsyth [15] pruned the search
space using local searches. Recently, Sapp et al. [17] developed a cascade of
pictorial structure-based pruners to progressively prune states from low reso-
lution to high resolution. In this thesis, we design a series of poselet pruners
in a cascaded fashion of three different types of pruner from simple single
part pruners to complex tree-based pruners. Our pruners work on the ac-
tual state space resolution. First, we use simple and very fast pruners to
quickly prune away more than half of the part states in early stages. Then
more accurate yet more complex pruners are used to get a small number of
remaining states. We show that our pruners can prune down up to 99% of
part states while retaining about 90% of correct parts (at PCPy5 ') in the
remaining search spaces. This set of states is small enough to allow approx-
imate inference of full relational models with complex appearance models to
parse highly accurate body parts.

The structure of the thesis is organized as follows: Chapter 1 presents an
introduction of the problems of detecting and parsing people and pruning the
search space that we attempt to solve. We then present in detail the tech-
nical and experiments we have done for each problem in the three following
chapters. In particular, chapter 2 presents the problem of detecting pedes-
trian where we show parsing helps to improve detection. Chapter 3 presents
the problem of parsing human parts using full relational models. Chapter 4
presents a method of building a cascade of poselet pruners to improve parsers
in both inference time and performance. Chapter 5 is about the conclusions

and the future directions.

'PCP - Percentage of Correctly estimated Parts: a criteria to evaluate part estimates
(see details in Section 4.8)



CHAPTER 2

DETECTING PEDESTRIAN WITH
STRUCTURE PREDICTION

This chapter presents a method to build a pedestrian detector using pars-
ing. Fair discriminative pedestrian finders are now available. In fact, these
pedestrian finders make most errors on pedestrians in configurations that
are uncommon in the training data, for example, mounting a bicycle. This
is undesirable. However, the human configuration can itself be estimated
discriminatively using structure learning. This chapter demonstrates that
parsing helps improve a pedestrian finder. The method first finds the most
likely human pose in the window using a discriminative procedure trained
with structure learning on a small dataset. The method then presents fea-
tures based on that configuration to an SVM classifier. Our results suggest,
using the INRTA Person dataset, that estimates of configuration significantly

improve the accuracy of a discriminative pedestrian finder.



2.1 Introduction

Very accurate pedestrian detectors are an important technical goal; approx-
imately half-a-million pedestrians are killed by cars each year (1997 figures,
n [18]). At relatively low resolution, pedestrians tend to have a character-
istic appearance. Generally, one must cope with lateral or frontal views of
a walk. In these cases, one will see either a “lollipop” shape — the torso
is wider than the legs, which are together in the stance phase of the walk
— or a “scissor” shape — where the legs are swinging in the walk. This
encourages the use of template matching. Early template matchers include:
support vector machines applied to a wavelet expansion ([1], and variants de-
scribed in [2]); a neural network applied to stereoscopic reconstructions [3];
chamfer matching to a hierachy of contour templates [4]; a likelihood thresh-
old applied to a random field model [6]; an SVM applied to spatial wavelets
stacked over four frames to give dynamical cues [2]; a cascade architecture
applied to spatial averages of temporal differences [7]; and a temporal version
of chamfer matching to a hierachy of contour templates [5].

One of the most successful static template matcher is due to Dalal and
Triggs [8]. Their method is based on a comprehensive study of features
and their effects on performance for the pedestrian detection problem. The
method that performs best involves a histogram of oriented gradient re-
sponses (a HOG descriptor). This is a variant of Lowe’s SIFT feature [19].
Each window is decomposed into overlapping blocks (large spatial domains)
of cells (smaller spatial domains).In each block, a histogram of gradient di-
rections (or edge orientations) is computed for each cell with a measure of
histogram “energy”. These cell histograms are concatenated into block his-

tograms followed by normalization which obtains a modicum of illumination



invariance. The detection window is tiled with an overlapping grid. Within
each block HOG descriptors are computed, and the resulting feature vector is
presented to an SVM. Dalal and Triggs show this method produces no errors
on the 709 image MIT dataset of [1]; they describe an expanded dataset of
1805 images. Furthermore, they compare HOG descriptors with the original
method of Papageorgiou and Poggio [1]; with an extended version of the Haar
wavelets of Mohan et al. [20]; with the PCA-Sift of Ke and Sukthankar ([21];
see also [22]); and with the shape contexts of Belongie et al. [23]. The HOG
descriptors outperform all other methods.

A key difficulty with pedestrian detection is that detectors must work on
human configurations not often seen in datasets. For systems to be useful,
they cannot fail even on configurations that are very uncommon — it is not
acceptable to run people over when they stand on their hands. There is some
evidence (figure 2.1) that less common configurations present real difficulties
for very good current pedestrian detectors (our reimplementation of Dalal

and Triggs’ work [§]).

Figure 2.1. Configuration estimates result in our method producing fewer false negatives
than our implementation of Dalal and Triggs does. The figure shows typical images which are
incorrectly classified by our implementation of Dalal and Triggs, but correctly classified when
a configuration estimate is attached. We conjecture that a configuration estimate can avoid
problems with occlusion or contrast failure because the configuration estimate reduces noise
and the detector can use lower detection thresholds.



2.2 Configuration and Parts

Detecting pedestrians with templates most likely works because pedestrians
appear in a relatively limited range of configurations and views (e.g. “Our
HOG detectors cue mainly on silhouette contours (especially the head, shoul-
ders and feet)” [8], p.893). It appears certain that using the architecture of
constructing features for whole image windows and then throwing the result
into a classifier could be used to build a person-finder for arbitrary con-
figurations and arbitrary views only with a major engineering effort. The
set of examples required would be spectacularly large, for example. This is
unattractive, because this set of examples implicitly encodes a set of facts
that are relatively easy to make explicit. In particular, people are made of
body segments which individually have a quite simple structure, and these
segments are connected into a kinematic structure which is quite well under-
stood.

All this suggests finding people by finding the parts and then reasoning
about their layout — essentially, building templates with complex internal
kinematics. The core idea is very old (see the review in [24]) but the details
are hard to get right and important novel formulations are a regular feature
of the current research literature.

Simply identifying the body parts can be hard. Discriminative ap-
proaches use classifiers to detect parts, then reason about configuration [20].
Generative approaches compare predictions of part appearance with the
image; one can use a tree structured configuration model [14], or an arbi-
trary graph [25]. If one has a video sequence, part appearance can itself be
learned [26, 27]; more recently, Ramanan has shown knowledge of articula-

tion properties gives an appearance model in a single image [28]. Mixed



approaches use a discriminative model to identify parts, then a genera-
tive model to construct and evaluate assemblies [29, 30, 31]. Codebook
approaches avoid explicitly modelling body segments, and instead use un-
supervised methods to find part decompositions that are good for recognition
(rather than disarticulation) [32].

Our pedestrian detection strategy consists of two steps: first, for each
window, we estimate the configuration of the best person available in that
window; second, we extract features for that window conditioned on the
configuration estimate, and pass these features to a support vector machine

classifier, which makes the final decision on the window.

Figure 2.2. This figure is best viewed in color. Our model of human layout is parametrized
by seven vertices, shown on an example on the far left. The root is at the hip; the arrows
give the direction of conditional dependence. Given a set of features, the extremal model can
be identified by dynamic programming on point locations. We compute segment features by
placing a box around some vertices (as in the head), or pairs of vertices (as in the torso and
leg). Histogram features are then computed for base points referred to the box coordinate
frame; the histogram is shifted by the orientation of the box axis (section 3.2.4) within the
rectified box. On the far right, a window showing the color key for our structure learning
points; dark green is a foot, green a knee, dark purple the other foot, purple the other knee,
etc. Note that structure learning is capable of finding distinction of left legs (green points)
and right legs (pink points). On the center right, examples of configurations estimated by
our configuration estimator after 20 rounds of structure learning to estimate W.



2.3 Configuration Estimation and Structure Learning

We are presented with a window within which may lie a pedestrian. We
would like to be able to estimate the most likely configuration for any pedes-
trian present. Our research hypothesis is that this estimate will improve
pedestrian detector perfomance by reducing the amount of noise the final
detector must cope with — essentially, the segmentation of the pedestrian
is improved from a window to a (rectified) figure. We follow convention (es-
tablished by [10]) and model the configuration of a person as a tree model of
segments (figure 2.2), with a score of segment quality and a score of segment-
segment configuration. We ignore arms because they are small and difficult
to localize. Our configuration estimation procedure will use dynamic pro-
gramming to extract the best configuration estimate from a set of scores
depending on the location of vertices on the body model.

However, we do not know which features are most effective at estimating
segment location; this is a well established difficulty in the literature [24].
Structure learning is a method that uses a series of correct examples to
estimate appropriate weightings of features relative to one another to produce
a score that is effective at estimating configuration [33, 34]. We will write the
image as 7Z; coordinates in the image as x; the coordinates of an estimated
configuration as y (which is a stack of 7 point coordinates); the score for this
configuration as WTf(Z, x;y) (which is a linear combination of a collection
of scores, each of which depends on the configuration and the image).

For a given image Z; and known W and f, the best configuration estimate
is

arg max W f(Zy, x; y)
yey(Zo)

and this can be found with dynamic programming for appropriate choice of
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f and y(Zy). There is a variety of sensible choices of features for identifying
body segments, but there is little evidence that a particular choice of features
is best; different choices of W may lead to quite different behaviours. In
particular, we will collect a wide range of features likely to identify segments
well in f, and wish to learn a choice of W that will give good configuration
estimates.

We choose a loss function L(y:,y,) that gives the cost of predicting y,
when the correct answer is y,. Write the set of n examples as £, and y,; as
the prediction for the ¢’th example. Structure learning must now estimate a
W to minimize the hinge loss as in [35]

iwierel oy s

n.
i€examples

subject to the constraints

Vie &, WH(L,xy1:) +& > , rré%')(WT(L, X; ¥pi) + L(Yeis ¥pi))

At the minimum, the slack variables & happen at the equality of the
constraints. Therefore, we can move the constraints to the objective function,
which is:

1 2, 1 T T
S W "+ > B max (W(T, %550+ L(yes, Ypi)) —W (T, X5 y14)

. Yp,iGY(Ii)
i€examples

Notice that this function is convex, but not differentiable. We follow Ratliff et
al. [35], and use the subgradient method (see [36]) to minimize. In this case,
the derivative of the cost function at an extremal y,; is a subgradient (but

not a gradient, because the cost function is not differentiable everywhere).

11



2.4  Features

There are two sets of features: first, those used for estimating configuration
of a person from a window; and second, those used to determine whether a

person is present conditioned on the best estimate of configuration.

2.4.1 Features for Estimating Configuration

We use a tree structured model, given in figure 2.2. The tree is given by
the position of seven points, and encodes the head, torso and legs; arms are
excluded because they are small and difficult to identify, and pedestrians
can be identified without localizing arms. The tree is rooted at hips, and
the arrows give the direction of conditional dependence. We assume that
torso,leftleg, rightleg are conditionally independent given the root (at the
hip).

The feature vector £(Z,x;y) contains two types of feature: appearance
features encode the appearance of putative segments; and geometric features
encode relative and absolute configuration of the body segments.

Each geometric feature depends on at most three point positions. We
use three types of feature. First, the length of a segment, represented as a
15-dimensional binary vector whose elements encode whether the segment
is longer than each of a set of test segments. Second, the cosine of the
angle between a segment and the vertical axis. Third, the cosine of the angle
between pairs of adjoining segments (except at the lower torso, for complexity
reasons); this allows the structure learning method to prefer straight backs,
and reasonable knees.

Appearance features are computed for rectangles constructed from

pairs of points adjacent in the tree. For each rectangle, we compute His-
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togram of Oriented Gradient (HOG) features, after [8]. These features have a
strong record in pedestrian detection, because they can detect the patterns of
orientation associated with characteristic segment outlines (typically, strong
vertical orientations in the frame of the segment for torso and legs; strong
horizontal orientations at the shoulders and head). However, histograms in-
volve spatial pooling; this means that one can have many strong vertical
orientations that do not join up to form a segment boundary. This effect
means that HOG features alone are not particularly effective at estimating
configuration.

To counter this effect, we use the local gradient features described by Ke
and Sukthankar [21]. To form these features, we concatenate the horizontal
and vertical gradients of the patches in the segment coordinate frame, then
normalize and apply PCA to reduce the number of dimensions. Since we
want to model the appearance, we do not align the orientation to a canonical
orientation as in PCA-SIFT. This feature reveals whether the pattern of a
body part appears at that location. The PCA space for each body part is

constructed from 500 annotated positive examples.

2.4.2 Features for Detection

Once the best configuration has been obtained for a window, we must deter-
mine whether a person is present or not. We do this with a support vector
machine. Generally, the features that determine configuration should also
be good for determining whether a person is present or not. However, a set
of HOG features for the whole image window has been shown to be good
at pedestrian detection [8]. The support vector machine should be able to

distinguish between good and bad features, so it is natural to concatenate
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the configuration features described above with a set of HOG features. We
find it helpful to reduce the dimension of the set of HOG features to 500,
using principal components. We find that these whole window features help
recover from incorrect structure predictions. These combined features are

used in training the SVM classifier and in detection as well.

2.5  Results

Dataset: We use INRIA Person, consisting of 2416 pedestrian images (1208
images with their left-right reflections) and 1218 background images for train-
ing. For testing, there are 1126 pedestrian images (563 images with their
left-right reflections) and 453 background images.

Training structure learning: we manually annotate 500 selected pedes-
trian images in the training set examples. We use all 500 annotated examples
to build the PCA spaces for each body segment. In training, each example
is learned to update the weight vector. The order of selecting examples in
each round is randomly drawn based on the differences of their scores on the
predictions and their scores on the true targets. For each round, we choose
300 examples drawn (since structure learning is expensive). We have trained
the structure learning on 10 rounds and 20 rounds for comparisons.

Quality of configuration estimates: Configuration estimates look
good (figure 2.2). A persistent nuisance associated with pictorial structure
models of people is the tendency of such models to place legs on top of one
another. This occurs if one uses only appearance and relative geometric
features. However, our results suggest that if one uses absolute configura-
tion features as well as different appearance features for left and right legs

(implicit in the structure learning procedure), the left and right legs are iden-
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tified correctly. The conditional independence assumption (which means we
cannot use the angle between the legs as a feature) does not appear to cause
problems, perhaps because absolute configuration features are sufficient.

Bootstrapping the SVM: The final SVM is bootstrapped, as in [8]. We
use 2146 pedestrian images with 2756 window images extracted from 1218
background images. We apply the learned structure model to generate on
these 2416 positive examples and 2756 negative examples to train the initial
SVM classifier. We then use this classifier to scan over 1218 background
images with step side of 32 pixels and find hard examples (including false
positives and true negatives of low confidence by using LibSVM [37] with
probability option). These negatives yield a bootstrap training set for the
final SVM classifier. This bootstrap learning helps to reduce the false alarm
significantly.

Testing: We test on 1126 positive images and scan 64x128 image win-
dows over 453 negative test images, stepping by 16 pixels, a total of 182, 934
negative windows.

Scanning rate and comparison: Pedestrian detection systems work by
scanning image windows, and presenting each window to a detector. Dalal
and Triggs established a methodology for evaluating pedestrian detectors,
which is now quite widely used. Their dataset offers a set of positive win-
dows (where pedestrians are centered), and a set of negative images. The
negative images produce a pool of negative windows, and the detector is
evaluated on detect rate on the positive windows and the false positive per
window (FPPW) rate on the negative windows. This strategy — which eval-
uates the detector, rather than the combination of detection and scanning
— is appropriate for comparing systems that scan image windows at approx-

imately the same high rate. Current systems do so, because the detectors
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require nearly centered pedestrians. However, the important practical pa-
rameter for evaluating a system is the false positive per image (FPPI) rate.
If one has a detector that does not require a pedestrian to be centered in
the image window, then one can obtain the same detect rate while scanning
fewer image windows. In turn, the FPPI rate will go down even if the FPPW
rate is fixed. To date, this issue has not arisen, because pedestrian detectors

have required pedestrians to be centered.
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Figure 2.3. Left: a comparison of our method with the best detector of Dalal and Triggs,
on the basis of FPPW rate. This comparison ignores the fact that we can look at fewer image
windows without loss of system sensitivity. We show ROC's for a configuration estimator
trained on 10 (blue) and 20 (red) rounds of structure learning. With 20 rounds of structure
learning, our detector easily outperforms that of Dalal and Triggs. Right: a comparison
of our method with the best detector of Dalal and Triggs, on the basis of FPPI rate. This
comparison takes into account the fact that we can look at fewer image windows (by a factor
of four). However, scanning by larger steps might cause a loss of sensitivity. We test this with
a procedure of replicating positive examples, described in the text, and show the results of
four runs. The low variance in the detect rate under this procedure shows that our detector is
highly insensitive to the configuration of the pedestrian within a window. If one evaluates on
the basis of false positives per image — which is likely the most important practical parameter
— our system easily outperforms the state of the art. (Originally, we also compared with
[38]; however, they later corrected their result due to an experiment setup error which did not
outperform Dalal and Triggs' method. Therefore, we do not show comparisons with theirs in
this plot)

2.5.1 The Effect of Configuration Estimates

Figure 2.3 compares our detector with that of Dalal and Triggs on the basis
of detect and FPPW rates. It shows that our detector outperforms Dalal

and Triggs’s detector. Moreover, we scan images at steps of 16 pixels (rather
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Figure 2.4. In color, original positive examples from the INRIA test set; next to each, are
three of the replicates we use to determine the effect on our detection system of scanning
relatively few windows, or, equivalently, the effect on our detector of not having a pedestrian
centered in the window. See section 2.5.1, and figure 2.3.

than 8 pixels for Dalal and Triggs). This means that we scan four times
fewer windows than they do. If we can establish that the detect rate is not
significantly affected by big offsets in pedestrian position, then we expect a
large advantage in FPPI rate.

We evaluate the effect on the detect rate of scanning by large steps by
a process of sampling. Each positive example is replaced by a total of 256
replicates, obtained by offsetting the image window by steps in the range -7
to 8 in x and y (figure 2.4). We now conduct multiple evaluation runs. For
each, we select one replicate of each positive example uniformly at random.
For each run, we evaluate the detect rate. A tendency of the detector to
require centered pedestrians would appear as variance in the reported detect
rate. The FPPI rate of the detector is not affected by this procedure, which
evaluates only the spatial tuning of the detector.

Figure 2.3 compares system performance, combining detect and scanning
rates, by plotting detect rate against FPPI rate. We show four evaluation
runs for our system; there is no evidence of substantial variance in detect
rate. Our system shows a very substantial increase in detect rate at fixed

FPPI rate.
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2.6 Discussion

There is a difficulty with the evaluation methodology for pedestrian detection
established by Dalal and Triggs (and widely followed). A pedestrian detec-
tor that tests windows cannot find more pedestrians than there are windows.
This does not usually affect the interpretation of precision and recall statistics
because the windows are closely packed. However, in our method, because a
pedestrian need not be centered in the window to be detected, the windows
need not be closely packed, and there is a possibility of undercounting pedes-
trians who stand too close together. We believe that this does not occur in
our current method, because our window spacing is narrow relative to the
width of a pedestrian.

Part representations appear to be a natural approach to identifying peo-
ple. However, to our knowledge, there is no clear evidence to date that shows
compelling advantages to using such an approach (e.g. the review in [24]).
We believe our method does so. Configuration estimates appear to have two
important advantages. First, they result in a detector that is relatively insen-
sitive to the placement of a pedestrian in an image window, meaning one can
look at fewer image windows to obtain the same detect rate, with consequent
advantages to the rate at which the system produces false positives. This is
probably the dominant advantage. Second, configuration estimates appear to
be a significant help at high specificity settings (notice that our method beats
all others on the FPPW criterion at very low FPPW rates). This is most
likely because the process of estimating configurations focuses the detector on
important image features (rather than pooling information over space). The
result would be that, when there is low contrast or a strange body configura-

tion, the detector can use a somewhat lower detection threshold for the same
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FPPW rate. Figure 2.1 shows human configurations detected by our method
but not by our implementation of Dalal and Triggs; notice the predominance
of either strange body configurations or low contrast. Structure learning is an
attractive method to determine which features are discriminative in configu-
ration estimation, and it produces good configuration estimates in complex

images.
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CHAPTER 3

PARSING HUMAN FIGURES WITH
RELATIONAL MODELS

In chapter 2, we show that parsing helps improve detection. This chapter
presents how to make parsing better with a full relational model. The method
shows quantitative evidence that a full relational model of the body performs
better at upper body parsing than the standard tree model, despite the need
to adopt approximate inference and learning procedures. The method uses
an approximate search for inference, and an approximate structure learning
method to learn. We compare our method to state of the art methods on the
UIUC people dataset (which depicts a wide range of poses), on the standard
Buffy dataset, and on the reduced PASCAL dataset published recently. Our
results suggest that the Buffy dataset over emphasizes poses where the arms

hang down, and that leads to generaliza- tion problems.
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3.1 Introduction

In human parsing, we have a region of interest (ROI) containing a person,
perhaps produced by a detector, and we must produce an accurate repre-
sentation of the body configuration. This problem is an important part of
activity recognition; for example, the ROI might be produced by a detector,
but we must know what the arms are doing to label the activity. The rep-
resentation produced is usually a stick figure, or a box model, but may be
image regions or joint locations. All representations encode the configuration
of body segments.

It is usual to represent pairwise spatial relations between locations struc-
tured into a kinematic tree, so that dynamic programming can be used for
inference [9, 10]. The joint relations encoded by the kinematic tree model
are important, but there are other important relations. Limbs on the left
side of the body usually look like those on the right. This cue should be
important, because limbs are genuinely difficult to detect, particularly in the
absence of an appearance model. Even the strongest recent methods have
difficulty detecting forearms (e.g. [39], 32%, p8). Inference difficulties occur
when one encodes relations between all pairs of segments, because finding the
best parse now becomes max-cut. Approximate inference on sets of extended
image segments can produce good parses for difficult images [11]. However,
there is no evidence comparing the benefits of a full model against the cost
of approximate inference.

In this chapter we explore the advantages of representing a full set of
relations for human parsing. We show strong quantitative evidence that the
advantages of representing a full set of relations between segments outweigh

the costs of approximate inference and approximate learning. We concentrate
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Tree Model Full Model

Figure 3.1. A tree model of the upper body represents only relations that can be organized
as a tree (always the kinematic relations in the natural tree, top left). By doing so, it omits
relations that are important; for example, the left arm typically looks like the right arm. A
full model (bottom left — we have indicated only some of the relations omitted by the tree
model) encodes these relations, at the cost of approximate inference and approximate training.
There is qualitative evidence in the literature that full models can yield good parses [40]; in
this chapter, we show quantitative evidence on two datasets that a full model offers strong
advantages over a tree model. On the right, we show parses derived from a tree model (top)
and a full model (bottom); note that the appearance constraints in the full model often help
arms to be in the right place. This is confirmed by our quantitative data.
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on upper body parsing, and show results on Buffy and Pascal dataset [12],

and on a new dataset where the prior on body configuration is quite weak.

3.1.1 Related Work

For segments with known appearance, inference is by dynamic programming
(the “pictorial structure model” [14]). A similar approach can be applied
to informative local patches [41], or to joint locations using velocities at the
joints, assuming known activity [42]. If segment appearance is unknown, it
can be recovered from motion sequences [43], or by an iterative procedure of
estimating appearance, then configuration, etc. [28]. The iterative procedure
can produce good parses, but can fail if the search starts poorly. These
methods can be costly, because the search space is a discretization of all
possible segment configurations. Improvements result from estimating head
location, then pruning the search space [12]; and from tuning the initial
appearance model with spatial priors on segment locations and respecting
likely interactions between segment appearance models (the upper arm is
often the same color as the upper body) [13]. Alternatively, local segment
scores can be computed by appearance independent segment detectors; edge
based limb detectors give limited performance [44], but a combination of
HOG and color segmentation features beats the original iterative process [45].

There has been considerable experimental tuning of various tree models.
A ten-body segment model (head, upper body, two for each arm and two for
each leg) is now universal. The standard scoring procedure regards a predic-
tion correct if its endpoints lie within 50% of the ground truth segment length
from the true positions; this score is fairly generous, because body segments

are long. Nonetheless, high scores are difficult to get. Ramanan [28] has
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published a widely used dataset for full body localization, on which the best
method (Andriluka et al., 2009 [39]) gets 55.2%. Ferrari et al. [12] published
another for upper body localization, on which the best method (Eichner et
al., 2009 [13]) gets 80.3% in its best configuration on Buffy dataset. On a
selected subset of PASCAL challenge images, this method gets 72.3%. The
strongest methods all use carefully constructed and tuned segment detectors,
with search space pruning.

The tree model presents real difficulties: limb occlusions seem to be cor-
related; tree models tend to prefer parses that superimpose both arms or
both legs on one promising set of image segments; and a tree model cannot
encode the tendency of the left arm (resp. leg) to look like the right arm
(resp. leg). Correlated limb occlusions can be dealt with using a mixture of
trees without complicating inference [46]. Doubled limbs can be controlled
with “repulsive” edges [13, 47], or by converting the energy function into
a posterior probability, drawing samples, and using some process to decide
which is best (for example, rejecting parses where arms overlap) [14]. An al-
ternative, which requires approximate inference, is to require that the model
covers more of the image pixels [48].

Another important difficulty is determining which poses to work with.
In our opinion, the performance of a parser should be as close to pose-
independent as possible. That is, the parser should be tested (if not trained)
on a dataset with a rich selection of poses at approximately even frequencies.
This is complicated, because natural data sources often have strong biases
— as we shall see, TV actors in stills tend to have their arms by their sides.
The result is very strong effects due to the prior, which can cause general-
ization problems. For these reasons, we have collected a further dataset that

emphasizes rich upper body configurations.
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3.2  Method

Our approach defines a search space in the image using a set of tuned body
segment detectors. We then build an energy model that is regressed against
actual loss for a set of parses of each training image. Our model scores
appearance and spatial relations between all pairs of segments in the image.
We then find the best parse by an approximate maximization procedure.
We have detectors for upper body, head and arm segments. Our detectors
do not distinguish between upper and lower arms. We must choose a label
(head, upper body, left/right upper/lower arm, null) for each response. For
image Z, we build a scoring function C'(L;Z) which evaluates a labelling L of
the responses. We consider only labellings that are consistent, in the sense
that we do not attempt to label head detector responses as upper bodys, etc.
Write S; for the i-th body segment in the model, D; for the j-th detector
response in the image, and L(S;) for the image segment labelled S; by L.
Our energy is a linear combination of unary and binary features, which we

write as

CL;T)= >  wt(LiI)=W'O(LT)
icfeatures

where each feature ¢; is either a unary feature (yielding ¢; = ¢;(S;, L(5;); 7))
or a binary feature (yielding ¢; = ¢;(S;, Sk, L(S;), L(Sk);Z)). We do not
require that the set of binary features form a tree, but represent all pairs.
Our features measure both spatial and appearance relations (section 3.2.4).
The scoring function can be converted to an energy by E(L) = —C(L); a

probability model follows, though we do not use it.
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3.2.1 Searching a full energy model

Finding the best labelling involves solving a general zero-one quadratic form
subject to linear constraints, and there is no exact algorithm. While approx-
imate algorithms for MRF’s could be applied, most labels are null and there
is only one instance of each non-null label, meaning that expansion moves
are unlikely to be successful. We use an approximate search procedure that
relies on the proven competence of tree models.

The upper body detector is quite reliable, so there are relatively few
false positives. This means we can search for a configuration at each upper
body, then take the overall best configuration. Because tree models are quite
reliable, we can use specialised tree models to produce arm candidates on
each side of each given upper body, then evaluate all triples of right arm-
torso-left arm. Finally, we use a local search to improve segments.

Obtaining arm candidates: We need to obtain candidates for left
(resp. right) arm that have a good chance of being in the final configuration.
We can do so by simplifying the cost function, removing all terms apart from
those referring to upper body, left (resp. right) upper arm and left (resp.
right) lower arm. The resulting simplified cost function is easily maximised
with dynamic programming. We keep the top 300 candidates found this way
for each side.

Building good triples: We now have 300 candidates each for left (resp.
right arm), and a set of head candidates. We obtain the top five triples by
exhaustive evaluation of the whole cost function.

Polishing with local search: Limb detectors chatter, because they
must respond to contrast at limb edges and limbs are narrow; it is usual to

see more than one response near a segment. To counteract this effect, we
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polish each of the top five triples. We repeatedly fix five segments and search
for the best candidate for the sixth, stopping when all segments have been
visited without change. We now report the best of the polished five triples
for each upper body.

Detection: We report the parse associated with the best upper body de-
tector response. In principle, one could parse multiple people in an image by
keeping all such parses, applying a threshold to the cost function, and using
non-maximum suppression (to control chatter at the upper body detector);
since most images in evaluation datasets contain single people, and since our
focus is on “hard parses”, we have not investigated doing so.

Complexity: With 6 human parts in the model, the exact solution will
cost O(T « H« LUA x LLAx RUA x RLA) where T, H are torso and head
detections, LUA, LLA and RUA, RLA are left upper, lower arms (resp.
right upper and lower arms) detections. While 7" and H are small (less
than 10 each), LUA, LLA, RUA, RLA are quite large (normally more than
100 each after pruning by the closeness to the torso), this complexity is
practically intractable. However, our approximate solution has complexity
O(T* H* LA* RA) — —LA, RA: numbers of full left (resp. right arms) that
we keep top 300 for each). This complexity is tractable, and though it is an
approximation, it still proves its benefit of improving the performance. In
fact, Our implementation in C just takes around 5 seconds for one parsing

on a computer of Xeon 2.27THGz.

3.2.2 Training a full energy model

We wish to train the energy model so that detections using that model are

as good as possible. Structure learning is a method that use a series of
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correct examples to estimate appropriate weightings of features relative to
one another to produce a score that is effective at estimating configuration
(in general [33, 34]; applied to parsing [49]). For a given image Z and known
W the best labelling is

arg max
& WTe(L; T)
L e L(T)

though we cannot necessarily identify it. We choose a loss function £(L,, IA/)
that gives the cost of predicting L, when the correct answer is L. Write
the set of n examples as £, and L,; as the prediction for the i'th example.
Structure learning must now estimate a W to minimize the hinge loss as in
[35, 50, 33]
AW Y e
min A= i
2

n.
i€examples

subject to the constraints

Vie &, WIO(L;T,) + & >
max T ~
(W O(Lyy ;3 Li) + L(Lyp,i, Li))
L,i € L(T))
& >0

At the minimum, we can choose the slack variables & to make the con-
straints equal. Therefore, we can move the constraints to the objective func-

tion, which is:

1
A= [W |2
5 WP+
1 Z max WTe(L,;; T)+
n

i€examples Lp7i S L(IZ) ,C(Lpﬂ‘, ﬁz) — WTq)(ﬁ;Ii)
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Notice that this function is convex, but not differentiable. We use the cutting-
plane method of [50], as implemented in SVM-Struct package!. Our approach
is:

Start: we initialize W, and prepare a pool of candidate labellings CZ-(O) for
each example image using the search of section 3.2.1. Then, iterate multiple

rounds of

1. for each example, compute the best (most violated constraint) labelling

L,; = arg max, . WTo(L; T;) + L(L,;, lAll)

2. pass these labellings to SVM-Struct to form cutting planes to update
W.

This procedure will stop until there are no violated labelling found (in this
case, the ground truth labelling is the highest score) or no significant change
in the objective value when updating W. We observe that the learning

converges after 50-60 iterations.

3.2.3 Part detectors

We have detectors for upper body, head and arm segments, but do not distin-
guish between upper and lower arms for a total of three part detectors. The
detectors are oriented, and we use a total of 25 orientations of (—180°..180°)
for arm detectors and 13 orientations of (—90°..90°) for head detector and
upper body detector. We use code from Felzenszwalb 2 to compute HOG
features [51] for upper body and head detectors. Arm segment detectors use
HOG features and self-similarity features (from [52], using the implementa-

tion of V. Gulshan). This detector does not distinguish between upper and

Lhttp : //sumlight.joachims.org/svmgtruct.html
2http : //people.cs.uchicago.edu/ pf f /latent/
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’ Detector ‘ Size ‘ Features ‘ EER ‘
Upper body | 80x80 HOG 0.096 +/-0.005
Head 56x56 HOG 0.123+/0.012
Lower arm | 30x30 | HOG, SSIM | 0.249+/-0.068

Table 3.1. Summary of part detectors. Equal error rates (EER) are computed with 5-fold
cross validation. The lower arm detector is not comparable to others as it tends to be dataset
dependent. We operate the detectors at 92% recall and given a upper body candidate we keep
the 300 best lower arm responses.

lower arms, because locally they are similar in appearance. Upper arms can
be difficult to detect, because there may be little contrast between the seg-
ment and the body. To overcome this difficulty, we also use a virtual upper
arm detector, obtained by joining points nearby the top of the upper body
segment to the elbows of nearby lower arm segments.

Lower arms can be strongly oriented (i.e. long and thin), and our arm
detector may respond more than once to a lower arm in a lateral view. Ex-
tending the support of the detector does not help, unless one searches an
impractical number of orientations. We deal with this by expanding the
search space: we add new lower arms to the pool of detector responses, made
by fusing nearby arm detections at the same orientation.

All part detectors are linear SVM trained on cropped parts from our
dataset and from some of Buffy_sbe3d dataset. We bootstrap upper body
and head detectors on a subset of background images, and lower arm detec-
tor on subset training images (regions outside the subject box). Table 3.1

summarizes part detector parameters.

3.2.4 Features

We use a binning scheme, after [28]. Binning takes a feature such as distance

and quantizes the range to a set of discrete bins, then sets the bin into which
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a value falls to be one and all others zero. We find it helpful to antialias by
splitting the vote among nearby bins.

Unary features are the detector score at the detection labelled with
a part label (converted to a probability using the method of [53]), and a
binned vector representing the part length. For virtual upper arms, we have
no detector score and instead use the value of the detector response at the
lower arm used to create the virtual upper arm.

Binary features are different for different pairs of parts. We use six
parts: upper body (from chest to navel), head (from top forehead to chin),
left upper arm (LUA), left lower arm (LLA), right upper arm (RUA), and
right lower arm (LLA). For each pair, we compute features from distance,
appearance, angle, or overlap, according to the scheme of table 3.2.

Distance features for a pair of segments consist of a binned vector rep-
resenting distance between endpoints, concatenated with the actual distance.
The comparative appearance feature is formed from a set of appearance
vectors. The appearance vectors consist of normalized color histograms, nor-
malized Gabor filter histograms [54], and a histogram of textons [55]. For
each type of appearance vector, we compute the y? distance between the
vectors corresponding to the two segments to be compared. For speed, inte-
gral images of appearance features are precomputed over reoriented images.
Angle features are given by a binned angle vector representing signed angle
from segment 1 to segment 2 in the range (—90°..90°) for the head-torso pair,
and (—180°..180°) for all others. Overlap features give the ratio of end-
point distances to segment length, with the ratio computed for each segment.

There are a total of 707 features.
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’ Parts ‘ Upper body ‘ Head ‘ LUA ‘ LLA ‘ RUA ‘

Upper body - - - - -
Head D,A,N,O - - - -
LUA D,A,N,O A0 - - -
LLA D,AN,0 A0 | D,AO - -
RUA D,AN,O AO | AO | AO -
RLA D,AN,O AO | AO | AO|DAO

Table 3.2. This table shows pairwise features to be computed. [D]: distance binning, [A]:
appearance difference, [N]: angle, [O]: overlap

3.3 Experimental results

We compare a full model to a tree model on three datasets, described below.
The full model is trained as above. The tree model is trained in the same
way, but with the weights of features representing relations not in the tree
clamped at zero. Inference (and so training) of the tree does not require a
polishing step, because dynamic programming is exact. The tree is the usual

kinematic tree (figure 3.1).

3.3.1 Dataset

We describe results on three datasets. The first is the Buffy dataset of [12], in
various partitions. This dataset has little variation in layout (figure 3.2). The
second is the subset of Pascal images marked up and released by [13]. Human
parsing results are usually intended to drive activity recognition, which is at
its most interesting when the body takes unusual postures. Methods that
work well on a dataset with a strong spatial bias may do so because (say)
they are particularly good at some common poses; such methods may not
be useful in practice. For this reason, we have created a third dataset of
593 images (346 training, 247 test), marked up with stick figures by hand.

This dataset is built to have aggressive spatial variation in configuration
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Buffy, 3+4 Buffy, 5 Our dataset

Head (red), Lower Arms

torso upperarms ) lower arms head
L Eichner et al’s
' L ) ’ priors on Bufty

Figure 3.2. In the Buffy dataset, upper arms hang by the sides of the body, and lower arms
mostly do so as well. This very strong spatial prior can overcome contributions by other parts
of a model, but impedes generalization. Above: Scatter plots of head and upper arm (top
row) or lower arm (bottom row) sticks with respect to fixed upper body position for the
Buffy 3 and 4 ground truth, Buffy 5 ground truth, and our ground truth. Notice how compact
the prior configuration is for the Buffy datasets. Our dataset emphasizes a wide range of body
configurations. Below: Part of figure 1, from [13], for reference, showing the location priors
derived in that work for the Buffy dataset; again, note the highly compact prior.

(figure 3.2).

3.3.2 Results

We follow convention and measure performance with PCP (Percentage of
Correctly estimated body Parts). In this method, a segment is correct if
its endpoints lie within 50% of the length of the ground truth from the
annotated location [12]. Since our method produces one parse for each upper
body detector response, we apply non-maximum suppression to the score, to
prevent effects from multiple nearby upper body detector responses. As in
Eichner et al. [13], we evaluate PCP only for stickmen whose upper body
response overlaps the correct upper body.

On Buffy and Pascal, our method obtains 62.3% and 62.7%, respectively
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(compare 80.3% and 72.3%, Eichner et al. [13]). However, there are two
difficulties with these dataset (especially for Buffy), both potentially quite
serious. First, there is little variation in pose. Figure 3.2 shows a scatter plot
of ground truth head and arm segments for overlaid upper body segments.
Head, upper arm and lower arm segments all have relatively little scatter
— most figures are upright. Second, the contrast for many frames is rela-
tively low. Both issues suggest that careful detector engineering will produce
improvements in performance by overcoming contrast difficulties. Detector
engineering is a valuable contribution which is responsible for all advances
on the buffy dataset, but it will not identify better or worse modelling tech-
niques. Because the spatial configuration varies so little in the Buffy dataset,
comparisons of modelling techniques on this dataset should be approached
with caution.

On all three datasets, the full model significantly outperforms the tree
model (table 3.3). This is most likely because appearance consistency con-
straints between upper arms help overcome relatively low contrast at the
boundary. Typical results suggest that improvements occur because consis-
tency in appearance (the left arm must look like the right) is a cue that
helps parse, and possibly because the model is spatially more rigid than a
tree model (figure 3.5). The value of these cues outweighs the cost of ap-
proximate inference and approximate learning. Our parser can be configured
as a detector by applying non-maximum suppression to the parse score and

thresholding.
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’ Model H Test set \ \ ‘

our_test | Buffy_sbe256 | Pascal
Train set
Full model our_train 0.663 0.623 0.627
Buffy_s5e256_sub 0.583 0.676 0.625
Buffy_sbe3&Pascal_sub | 0.613 0.628
Tree model our_train 0.608 0.552 0.565
Bufty_s5e256_sub 0.545 0.629 0.599
Buffy_s3&Pascal _sub 0.565 0.596
Eichner [13] Buffy_s5e2to6 0.557 0.675
Buffy_sbe34&Pascal 0.559 0.801

Table 3.3. Average PCP over body segments for a full model; for a tree model; and for
Eichner and Ferrari [13], who use a tree model with a location prior to recover appearance.
Performance of the full model is much better than performance of tree models, except for
the model of Eichner and Ferrari applied to Pascal or to buffy_s256. However, for all models,
training on Buffy_256 leads to strong generalization problems (performance on Buffy_256 is
much better than performance on other test sets), most likely because of the quite strong
bias in arm location. We believe that the very strong performance of Eichner and Ferrari
on Buffy_s256 should be ascribed to the effects of that bias. Buffy_s5e3&Pascal appears to
contain a similar, but smaller, bias (compare training on this and testing on Buffy_s256 with
training on this and testing on our_test). We do not have figures for Eichner and Ferrari’s
method trained on Buffy_s2to6 and tested on Buffy_s256. Note that: Buffy_s5e256_sub and
Buffy_sbe3& Pascal_sub are subsets of 150 examples randomly chosen for each dataset.
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Figure 3.3. Examples of stick-figure, upper body parses of figures in our dataset produced
by the full model trained on our dataset top row, our tree model top-center and the code
of Eichner et al.bottom center (trained on buffy_2to6) and bottom (trained on buffy_34:4
and pascal), all applied to our dataset. Red: upper body; Green: head; Blue-Purple: left
upper/lower arm; Green-Yellow: right upper-lower arm. Note doubled arms produced by the
tree model and a tendency for Eichner et al.to produce hanging arms, most likely a result of
the strong geometric prior in their training datasets.

3.4 Discussion

We have shown quantitative evidence that a full relational model of the
body performs better at upper body parsing than the standard tree model,
despite the need to adopt approximate inference and learning procedures.
We have obtained our results on a new dataset where there is extensive
spatial variation in body configuration. Our results suggest that appearance

consistency constraints help localize upper arms better.
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Figure 3.4. Examples of stick-figure, upper body parses of figures in the buffy produced by
the full model trained on ours top row, and our tree model trained on ours bottom. Red:
upper body; Green: head; Blue-Purple: left upper/lower arm; Green-Yellow: right upper-lower
arm. Note doubled arms produced by the tree model, and the strong tendency for poses to
have hanging arms.

Figure 3.5. Examples of stick-figure, upper body parses of figures in our dataset produced
by the full model trained on our dataset top row, our tree model top-center and the code
of Eichner et al.bottom center (trained on buffy_2to6) and bottom (trained on buffy_34:4
and pascal), all applied to our dataset. Red: upper body,; Green: head; Blue-Purple: left
upper/lower arm; Green-Yellow: right upper-lower arm. Note doubled arms produced by the
tree model and a tendency for Eichner et al.to produce hanging arms, most likely a result of
the strong geometric prior in their training datasets.
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CHAPTER 4

BOOSTING HUMAN PARSERS WITH
POSELET PRUNERS

Full relational models prove to be better than tree structure models for hu-
man parsing problems, but these models must deal with high complexity
in inference, especially if one wants to take advantages of complex appear-
ance models. Huge search spaces mostly prevent practical uses of full re-
lational models. This chapter demonstrates that full relational models can
be tractable once we have a good pruning strategy. We propose a series of
pruning models from simple part pruners to complex pruners with tree mod-
els which are able to prune down 99.6% states per part to about 500 states
per part without loosing performance. Using complex appearance models in
full relational models makes significantly improvements on the localization
of most parts. We compare our method to state-of-the-art methods on the

challenging datasets UTUC Sport.
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4.1 Introduction

Human body parsing problems, where one wants to localize torso, head, up-
per arms, lower arms, upper legs and lower legs, have increasingly interested
the computer vision community in recent years. Parsing has proven impor-
tant in many other computer vision tasks such as person detection, action
recognition. There have been substantial advances in performance on human
parsing problems recently [56, 57, 15, 13, 17, 39], yet very accurate and fast
human parsing is still a challenging problem.

Human parsing is usually cast as a structured output problem, where
the search spaces is huge, making it difficult to find the best structures.
In a typical example, there are about 100 % 100 * Nposeret (Nposerer 1S the
number of orientations for primitive parts) states per part (a full body is often
represented by 10 parts as shown in Figure 4.2). This results in N2 ., *
10® evaluations of a pairwise part relation. This high computation issue
prevents the use of sophisticated appearance models (which are known to
be very useful for better performance [13, 17]) because evaluating pairwise
appearance relations between related parts leads to intractable searches as
visualized in Figure 4.3. For this reason, people tend to choose models that
lead to low computation in search. A well-known tree-based model as in
pictorial structures [14] is widely used for the benefit of fast inference by
dynamic programing. Complex full relational models are carefully designed
with approximate inference [15] to make them tractable. Despite the use of
approximation methods, Tran & Forsyth [15] have shown evidence that full
relational models are better than tree-based models.

A crucial step to promote the practical use of full relational models is to

make inference faster. One approach is to develop good strategies to prune
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down search spaces. A good pruner eliminates part states that are unlikely
to be in the correct structures leaving as few remaining states as possible
without wrongly removing the correct states. Some recent work has pro-
posed very good pruning strategies. Mori et al. [11] used over-segmentation
to generate limb hypotheses. Ferrari et al. [12] used upper-body detectors
and foreground /background segmentations to narrow down the possible ar-
eas of limbs around the body candidates. Felzenszwalb et al. [16] proposed
a cascade model by using early stopping. Tran and Forsyth [15] pruned the
search space using local searches. Recently, Sapp et al. [17] developed a cas-
cade of pictorial structure-based pruners to progressively prune states from
low resolution to high resolution. We also design a series of pruners in a cas-
caded fashion but use three different types of pruner from simple part pruners
to complex tree-based pruners. Our pruners work on the actual state space
resolution. First, we use simple and very fast pruners to quickly prune away
more than 75% of the part states. Then more accurate yet more complex
pruners are used to get a small number of remaining states. We show that
our pruners can prune down up to 99.6% to leave about 400-500 states per
part in the final pruned space. This set of states is small enough to allow
approximate inference of highly relational models with complex appearance
models to parse highly accurate body parts.

While other methods that use only primitive parts in designing pruners as
well as parsers, our methods use context from large parts to support pruning
decisions. Bourdev et al. [58] introduced a new concept poselets localizing
objects such as pedestrians. They marked up object 3D configurations and
clustered part examples of similar 3D configurations into groups to define
poselets. We then developed a hierarchical poselet model to apply to human

body parsing (Wang et al. [57]). In that work, we define human parts as
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either primitive parts or large chunks of body (full arms, torso-arms, torso-
head, whole legs, etc., see Figure 4.2). Parts having similar 2D configuration
are clustered into groups called poselets. Examples of two poselets of the part
legs are shown in Figure 4.1. Large parts provide contextual information to
guide pruning small parts (e.g. the upper left arm gets support from the
left arm). [57] has shown the usefulness of large parts in the later case for
building a parser. We also show that our pruners are more effective when

augmented by large parts.

Figure 4.1. Examples of two poselets of the part legs. Each row are patches of the same
poselet. The last column is the HOG templates of the poselets. This figure is from Wang et
al. [57].

Our pruner cascade has three pruner types. The first pruner type is part
pruners. We call them part pruners because they use simple structure models
of only parts without relations. In this model, there are no relations between
parts. This makes the inference extremely fast because finding the best
structure now becomes searching the best state for each part independently.
These pruners filter out unlikely 2D location states (mid-points) of that part
in the image. Traditionally, it is usual to use part detectors as part pruners
with a corresponding global pruning threshold. This has been shown to be
inefficient for small parts such as half limbs ([17]). Instead, we augment our

part pruners with their related large parts. For each part, we train a linear
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function of its poselet responses and the poselet responses from its related
large part (approximate at the same location) to score high on correct states
and low otherwise. Using this support from large parts, our part pruners are
very efficient compared to those using traditional part detectors. An intuitive
explanation is that large parts have stable evidence (shape and appearance)
to help disambiguate small parts. For example, a lower arm pruner can easily
confuse any rectangular shape with a good part and so will most likely keep
it in the search space. In the context of a full arm, a pruner can safely reject
these false lower arms if there is no evidence of a full arm nearby.

The second pruner type has a more complex structure: a tree-based struc-
ture of both primitive parts and large parts (see Figure 4.6). These pruners
also work to prune unlikely 2D location states. We call them 2D-tree-based
pruners. While part pruners get only appearance support from their related
large parts, 2D-tree-based pruners get both appearance and spatial support
from other parts. The pruning score of a part at a particular 2D state is com-
puted by a weighted combination of appearance (unary) scores and spatial
(binary) scores with the best states of other parts in a joint configuration.
These are maz-marginal scores, of Sapp et al. [17]. These joint configura-
tion scores help to recover part states having weak part evidence if they
have strong spatial relation evidence. Computing max-marginal scores can
be done quickly by dynamic programing on the tree structure of the mod-
els. Moreover, it also take the advantage of reduced state spaces after part
pruners.

The third pruner type is enhanced tree-based pruners. We use the same
tree structures as used in tree-based pruners for this type of pruner, except it
works on the full representation of part states. A part state is now represented

by a 2D location of its midpoint and a poselet index. This full representation

42



is also the actual representation of part states for the search. For the primitive
parts, poselet indexes are the actual part orientations. After the first two
pruner types, the remaining states are 2D locations of part midpoints. We
then enumerate each 2D part state by all part poselet indexes to construct
full representation of part states. The enhanced tree-based pruners keep
pruning this set of states until they leave a small number of states for each
part for the search. These pruners tend to focus on eliminating unlikely part
poselets having lower scores in joint configurations with other parts. Also,
we add the prior of part poselets and pairwise poselet co-occurrences to the
pruning scores. This prior has shown to be useful in [56] in which their
notion of parts are small patches of body joints. In our case, these priors are
even stronger because large parts are distinctive (from background clutters)
to define a small set of dependent small parts. For example, a particular
full arm poselet tends to co-occur with a few poselets of upper arms and
lower arms. We build a cascade of pruners from these three pruner types.
This turns out to be very effective in ruling out unlikely part states. In the
challenging dataset UIUC Sport !, our cascade can prune more than 99.6%
of part states while still achieving 54.9% of PC Py, of lower arm part states
and 76.5% of PC P, of torso part states.

We finally demonstrate the effectiveness of our pruning strategy by build-
ing a highly relational model of human parser on the remaining set of states.
Our human parser uses both primitive parts and large parts as in the models
of Wang et al.[57]. However, Wang’s model is not capable of using appear-
ance models because it searches on unpruned part state spaces. Our pruned
part state spaces are small enough to do it. We show significant improve-

ments compared to Wang’s method on the UIUC Sport dataset even though

ntroduced by Wang et al. in [57]
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Figure 4.2. A typical 10-part representation of human body parts (left-most), where each
part is represented by either in a stick format of two endpoints or a mid-point format of a part
mid-point location and orientation. Right figures are large parts which are big chunks of body.
In total, there are 20 parts including both primitive parts and large parts. Also, the whole body
part is considered as a large part in the model ([57]).

we only use color consistency models for left/right limbs (see Table 4.4 for

the comparisons to other methods).

4.2  Related Work

Our work is closely related to a line of research on using part-based models
for human pose estimation. These methods model the configuration of a
human figure as an assembly of parts connected in some fashion. Some
early representative work includes the “cardboard people” [59] and pictorial
structures [14].

For computational efficiency reasons, most work [14, 39, 28] on part-based
models assumes a tree-structured model, e.g. the kinematic tree. How-
ever, the computational advantage of tree-structured model comes with a
cost — they do not adequately model the full set of relationships between
body parts. Certain important relationships (e.g. color symmetry between
left /right limbs) are ignored in the tree models. There has been some effort
to build models beyond trees, e.g. loopy graphs [60, 40, 61] , mixtures of

trees [46, 62]. Most recently, we have demonstrated the effectiveness of using
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Figure 4.3. State space of a half limb part. For a typical image of 400 x 400 and grid size
of 4 pixels, there are 100 * 100 x N,, states (N,, is the number of part poselets, ranging from
8 to 15). For each binary potential between two related parts, we must do about Ng % 108
evaluations. There are more evaluations if we use complex appearance models in the binary
potentials. This computation is intractable for the search of the best structures.

a fully connected graph representing the complete set of relationships among
body parts (Tran and Forsyth [15]). The advantage of using a full relational
model is that we can incorporate more sophisticated appearnce features (e.g.
to encourage color symmetry between left /right limbs) that have been proved
to be useful.

The key challenge of using full relational models is how to peform learn-
ing and inference efficiently. One viable solution is to reduce the search
space. For example, Mori et al. [11] used over-segmentation to generate
limb hypotheses. Ferrari et al. [12] used upper-body detectors and fore-
ground /background segmentations to narrow down the possible areas of limbs
around upper body candidates. Felzenszwalb et al. [16] proposed a cascade

model by using early stopping. Tran and Forsyth [15] pruned the search space
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using local searches. The limitation of these pruning approaches is that the
pruning strategy is disconnected from the human pose estimation algorithm.
Recently, Sapp et al. [17] proposed a cascaded coarse-to-fine pruning method
which integrates learns how to prune efficiently. However, at coarse reso-
lutions in early stages, part evidence is not strong due to low resolution
and therefore pruners will be more likely to miss correct part states in early
stages. Our pruners work on actual state space resolutions to ensure that we
always use actual part evidences which are important factors of the pruning
models. Moreover, our pruners use large parts as contextual information to
help resolving ambiguities of small parts.

Previous approaches (e.g. [17, 15]) try to directly prune the search space
of body segments (e.g. torso, head, half-limbs). In this thesis, we would like
to argue that pruning at this level of details is inherently difficult, since there
are many things (e.g. rectangular shape such as windows, buildings) in an
image that look like body segments. Instead, we want to prune the search
space by exploiting information from larger body parts. Our work is inspired
by the hierarchical poselet approach for human parsing by Wang et al. [57].
In their work, they use large body parts (e.g. one part can be torso+legs) as
contextual information to guide the search of small parts (e.g upper left leg).
The advantage of using large parts is that they typically distinctive from the
background clutters. In this work, we use the same intuitation and try to do
pruning using large body parts.

The cascade classifier model by Viola and Jones [63] has been a powerful
device for object detection problems. Its advantage is to build a strong classi-
fier from a series of fast and low-cost classifiers. Each classifier in the cascade
can quickly reject easy negative examples in early stages. Weiss and Taskar

[64] proposed a similar cascade approach for pruning search state spaces. In
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their work, they developed structured prediction cascades of structure models
to progressively filter unlike states in the search space using max marginals.
Sapp et al. [17] then employed this model to human parsing problems. They
built a sequence of tree structured models to prune unlikely part states from
coarse to fine resolutions of the search space. The final tree structured parser
is capable of exploiting rich appearance models for the pairwise part relations
because the pruned search space is small enough. We also follow the same
spirit of structured prediction cascades. Our pruners in the cascade have
three main differences to those of Sapp’s. First, Sapp’s models use only tree
structures while our pruners have two main types of structure models: sim-
ple structures (only one part) in early stages and increasingly complex tree
structure models later on. Simple structures are easy to built yet effectively
filter out more than half of the states. Second, our pruners work on actual
state resolutions while Sapp’s work on coarse-to-fine resolutions. We argue
that missing a state at early stages in coarse resolution would cause miss-
ing many states in later stages. Third, our pruners get support from large
parts as contextual information. Experiments show that our remaining state
spaces contain relatively good part states close to ground truth states (Table

1.2).

4.3 Hierarchical Poslets

Bourdev et al. [65] first introduced poselets. In their work, they marked up
3D body joints and clustered part examples based on the similarity of their
3D configurations. FEach cluster defined a poselet. They trained a HOG-
SVM clasifier for each poselet. Outputs from posetlet classifiers are used to

vote for object candidates (e.g. pedestrian) in the image by a Hough voting
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scheme. However, this voting scheme does well on localizing objects (such
as detecting pedestrian) but not enough for human parsing because human
parsing problems are highly structured outputs.

Recently, we developed a hierarchical poselet model for parsing human
body parts (Wang et al. [57]). Our notions of parts are not only primitive
parts (head, torso, half limbs) but also large parts - large chunk of areas of
human body (whole body, torso-head, left /right arms, etc., see Figure 4.1 for
all large parts). We also cluster part examples of similar shape into poselets
and train an HOG — template for each poselet (see Figure 4.4). A relational
model of 20 parts (both primitive parts and large parts, see Figure 4.8)
is built for body part estimation. Our argument is that large parts provide
contextual information that is helpful for detecting and localizing small parts.
This should extend to pruning. For example, upper left arm states will be

filtered out if there is no evidence of the left arm poselets nearby.

'

whole body large parts rigid parts

Figure 4.4. This figure shows examples of part poselets and templates. The left figure is for
one poselet of the whole body part and its template (bottom). Each row in the middle figure
is a poselet of a large part and its template (right column). The right figures are poselets of
rigid parts (one for each row) and the templates (right column) with respect to the poselets.
This figure is from Wang et al. [57].

Large parts as contextual information for pruners: We use large
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parts in pruning models. We build pruners that prune both large parts and
primitive parts, except large parts do not require high accuracy. By relaxing
the pruning criteria (see Section 4.8), reasonably good large part segments in
the remaining states help to produce good pruning results of primitive parts.

There are two ways that we use the support from large parts. For part
pruners (no spatial relations with other parts), we add the poselet responses
of the related large parts at the same 2D locations as augmenting unary
features. For tree-based pruners, large parts will be nodes in the relational
models. Primitive parts now get spatial support from large parts. Because
large parts are distinctive (strong local evidence), they help remove more
unlikely primitive part states and recover likely primitive part states having
weak evidence.

Structured hierarchical models for parsers: We organize parts in a
hierarchical fashion and build a relational model with each part as a node in
the graph (Figure 4.8). At the top level is the whole body part. Further down
are smaller parts and primitive parts. There are links among related parts
to express their spatial/appearance relations. At first, we built the parser
on the full (unpruned) set of part states [57] and on the small (pruned)
set of part states. On the full set of states, we are not capable of using
pairwise appearance relations because the number of states per part is too
big. After reducing the search space, we can use the pairwise appearance
models. Our experiments show their usefulness in localizing parts with the
superior performance.

Why we need pruners: We want to build a good parser using a full
relational model. Finding the optimal pose configuration involves solving
the equation L* = argmaxy, C(L;Z;W). This is a standard MAP inference

problem in undirected graphical models. Since the graph in Figure 4.8 is
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not a tree, we use loopy belief propagation (LBP). Suppose each [; can take
K different values, the computational complexity of LBP is O(K?). If we
naively apply LBP, K is approximately 10,000 for each part. This is obviously
too slow. In order to speedup the process, various algorithmic tricks (e.g.
distance transform [14]) have been developed. However, these algorithmic
tricks usually only handle specific forms of pairwise potential functions. In
particular, they require that the pairwise potentials do not depend on the
image.

In our work, we would like to exploit richer forms of pairwise poten-
tials, including the ones that depend on the image. The color symmetry
of left/right limbs is a representative example of such pairwise potentials.
Luckily, after running the pruners in section 4.5, each part typically only
has about 500 states, i.e. K = 500. This allows us to run LBP in a brute
force way with O(K?) complexity. In our experiment, finding L* in typical

examples takes very fast with color symmetry pairwise potentials.

4.4 Problem settings

We summarize the concepts and the notations used in later formulations in
Table 4.1. We model the pruners and parsers by relational models G = (V, £),
where V is the set of nodes (e.q. body parts) and £ is the set of edges (each
edge says two connected nodes (parts) having some relations (spatial and/or
appearance). The relational structures might be different depending on types
of pruners and parsers. In practice, we use three structures. For parsers, we
use a hierarchical loopy graph of M=20 nodes (Figure 4.8). For tree-based
pruners, we use the same hierarchical structure as in parsers, but we drop

loopy edges to make it a tree (Figure 4.6), because tree structures allow fast

50



inference while being powerful enough to build pruners. For part pruners, G

has no spatial/appearance relations between parts.

4.4.1 Generalized model formulation

Our main approach is to learn compatibility functions for pruners and parsers
by max-margin approaches. The parameters of these compatibility functions
are learned by the appropriate loss functions depending on whether they are
pruners or parsers. For pruners, we require the compatibility scores at the
ground truth part configurations are not smaller than some pruning thresh-
olds while they should be the highest scores compared to other part config-
urations for pruners. We learn the parameters by minimizing the empirical
loss functions on a set of N labeled examples {Z"},n = 1,.., N. Each exam-
ple is an image containing a person being marked up with each end points for
10 body parts. The examples of large parts are automatically extracted by
the bounding boxes containing all parts involved. Given an example Z and a
configuration of parts L = [;,7 = 1..M, a generalized compatibility function

is a summation of unary and pairwise potentials as follows:

CLTW) =Y w] ol T) + Y widy(li, 1; 1) (4.1)
=% 1,jEE

where V and & represents the vertices and edges in the graph structure respect
to the each pruners and parsers. W = [w; w;;| are the parameters of the
function to be learned. ®;(l;;Z) is the local evidence of part i. ®;;(l;,(;;7) is
the spatial relations and/or appearance relations between part ¢ and part j.
The compatibility functions have the same scoring characteristics for all
models. They should score high on correct part states and low on unlikely

part states. Moreover, the compatibility functions can reduce to a single
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Concepts and Notations

primitive parts - rigid parts as in traditional definition. They are torso,
head, left/right upper arms, left/right lower arms, left/right upper legs,
left /right lower legs.

large parts - large chunk area of human body. They are whole body, torso-
head, torso-larm (left arm), toro-rarm (right arm), torso-leg, larm (left
arm), rarm (right arm), lleg (left leg), rleg (right leg).

M = 20 - number of body parts (both large parts and primitive parts).

p; - body part i, where ¢+ = 1, .., M.

pi,; - poselet index j of part ¢, where j =1, .., M;.

G = (V,€&) - relational graph model where V - the set of nodes (each body
part is a node in the graph) and £ - the set of edges (each edge links two
related nodes).

L - the current set of part states.

L; - the current set of states of part 1.

I = {l;}M, - a configuration of body parts.

W - learned paramters of a corresponding pruning model.

Table 4.1. The table of definitions and notations used in the formulations of pruning and
parsing models.

unary terms in some cases as for part pruners because there are no pairwise
relations in that models. Inference on the models usually involves finding the

best structure (aka MAP assignment) in the search state space as follows:

L* = argmax C(L; Z; W) (4.2)
Lec

For the tree structures, the exact solution can be found efficiently by dynamic
programing while non-tree structures require an approximation such as loopy

belief propagation.

52



4.5 Pruners

4.5.1 A cascade of structured pruners

Instead of building a single fine pruner that might suffer similar issues of high
inference complexity as building a parser, we build a cascade of structured
pruners inspired by Weiss et al. [64] and Sapp et al. [17]. Each level in the
cascade, called a structured pruner, is a reasonably good and fast pruner to
progressively filter unlikely part states using max-marginal scores and data-
specific thresholds. The max-marginal score of a part at a given state is the
max joint score with the best states of other parts. This joint score is more
accurate in evaluating a part state because it considers the joint configuration
of all body parts. Moreover, the threshold to prune states of a part in an
example is computed based on a linear combination of the max-marginal
score and the mean of marginal scores on that example [64]. This data-
specific thresholds contrast with a single global threshold (one for each part)
which is hard to tune.

Assume a structured pruner is represented by a relational model G =
(V,€) and uses the same compatibility function as in Equation 4.1. Given
an image Z and a configuration of parts [ = {l;}}/, the max-marginal score

of part 7 at the state [; is defined as follows:
ClaTsW) = max {CULTW) - 1 =11} (4.3)
‘e

where L is the current state space. This max-marginal score corresponds to
fixing part ¢ at state [; and searching for the best states of other parts. The
joint score helps to recover state I; when it has weak local evidence but good

overall configuration arrangement. We also define the best MAP assignment
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CH(Z; W) = max {C(LZ; W)} (4.4)

The max-marginal scores are used to decide to prune part states if they
are below a threshold ¢(Z) = t(Z,W,«). State [; of part ¢ is pruned if
C(li; Z; W) < t(Z). As defined in [64], t(Z) is the convex linear combination

of the MAP assignment and the mean max-marginal score:

M

KT, W, a) = aC*(T: W) + (1 — a)% 3 ﬁ S e Lo;T)  (45)

i=1 ""ier;

where « € [0,1] is the parameter to control the pruning behavior which is
the trade-off between the pruning efficiency and performance accuracy. The
higher value « is, the more states will be pruned but we might loose more
correct part states and vice versa. This convex formulation allows us to
optimize the parameters YV at a given a and then tune a to handle the
balance between remaining states and pruned states. In practice, we fix o at
zero during the training to learn the parameter WW. The « for the testing are
chosen on the validation set. The training set and the validation set exchange
their roles to train each level of pruner in the cascade. This procedure has

been described in Sapp et al. [17] to avoid overfitting.

4.5.2 Learning structured pruners

We learn the parameter VW by using a max-margin approach. To do so, we

try to minimize the hinge loss of the incorrectly pruned part states over the

o4



example set X = {(Z",1")}_, as follows:

: 1 2 1 n n.
min s WP+ 3 T W) (4.6)

n€examples

where &,(I",Z™ W) = max{0,1 + t"(Z", W, a) — C(I";Z"; W)} is the hinge
loss to measure the margin between the scores of the MAP assignment and
the ground truth. This essentially learns WV to ensure the ground truth scores
are above the thresholds at least a margin of 1. We apply the gradient descent
method to update W from violated examples of having &,(I",Z"; W) > 0.

The update of W at iteration t + 1 will be:

W W+ (=AW + Vi) (4.7)

Ve = (1, Z) — ad(I*;T) — (1 —a)%2%| > @(l;7) (4.8)
i el

where 7 is the learning rate, ®(I;Z) is the feature vector at the ground truth
configuration [ of the example Z, ®(I*;Z) is the feature vector of the MAP
assignment found with respect to We.

Sapp et al. [17] built their cascade of structured pruners by a coarse-to-
fine resolutions of the search state. The initial resolution is 10x10x12 (the
first two dimensions are 2D location and the third is the part orientation).
They double the resolution after each level until they reach the actual search
state resolution of 80x80x24. In contrast, we build structured pruners in
the cascade at the actual search state resolution. Note that, while we use
the same 2D location for the first two dimensions, our third dimension is
the poselet index where it is also the part orientation for the primitive parts

(see details in Section 4.7.1). Our cascade has three types of pruners. First,
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part pruners have no edges in the relational structure model. Hence, the
compatibility function has no pairwise potentials which makes the finding
of MAP assignments extremely fast. For the unary potentials, the feature
vector ®(1;,Z) of part i and state location [; is augmented by the poselet
responses of its related large part at location [; (e.g. the upper arms get
support from the full arms). Though [; is not the right location for the
related part, its poselet responses are strong enough. These simple pruners
apply to the early stages of large search spaces to prune down more than
75% states per part with little effort. The remaining set of states after this
type of pruners are 2D part locations (z;,y;).

The second type of pruner is a tree-based structure model, called a tree-
based pruner. The structure models now are hierarchical tree structures
where we add edges between related parts (see Figure 4.6). Now, we can
use the full formulation of the compatibility function of 4.1 with pairwise
potentials. However, inference can be done fast by dynamic programing
because this is a tree structure. After this type of pruner, the remaining set
of states are still 2D part locations.

Finally, we build the third type of pruners of tree-based structure models,
called enhanced tree-based pruners. These pruners work on pruning on the
full state representation of (x;,y;, z;), where (z;,y;) is a part mid-point and
z; is a part poselet index. For the primitive parts, the poselet indexes are the
actual orientations. After these stages, the set of remaining states are small

enough to run a human body parser to localize body parts.
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4.5.3 Part pruners

For these pruners, the part state representation is 2D locations, which is the
mid-point locations of parts. Given an example Z, a configuration of parts
I =A{l; = (x;, yi)}?il, the compatibility function of Equation 4.1 will reduce
to the summation of unary potentials because there are no edges between

parts:

CUL W) =Y w/ ®(1; T) (4.9)
i€V
where ®;(l;; Z) is now the feature vector at location [; consisting of the poselet
responses of part ¢ and the support part of part 7. E.g, the left arm is the
support part of the left upper arm.
Because there are no pairwise relations, finding the MAP assignments
according to Equation 4.9 can be done quickly by searching the best state

for each part.

ST TN — TdH.(1.-
CH(L;Z; W) = nla&x;wl (1 T) = Zrlnea}fw D;(1;; T) (4.10)
where L; is the current state space of part i.

The max-marginal score of part ¢ at a state [; now become as follows:
Cil; T, W) = w,] ®;(15;T) + Z max w; T0,(15;7) (4.11)

eL
JEV\i L€k

Learning the parameters of this compatibility function can be done as
in Section 4.5.2. However, we can do the update of parameters in Equation
4.8 in a batch scheme by the average of the gradients of all examples. This

is feasible because solving the MAP score (Equation 4.10) and the max-

57



marginal score (Equation 4.11) requires just linear time in the part state
space. The batch update scheme guarantees to find the optimal solution for

the problem in Equation 4.6.

WL W+ (= AW' + Vi) (4.12)

Vit = %; <c1>(1";1“) —a®(I"I") - (1 - oz)% > |£1i| >, <I>(li;I"))

i=1 LEL;

We build three levels of this type of part pruner. Our observation is that
more levels are not very helpful because this model has simple structure.
Therefore, if we use these pruners to prune too many states, we will wrongly
remove good states (see table 4.2 for details of the reduction rates). After
these three levels, more than 75% states are filtered (the reduction rate of
large parts are even higher). The next tree-based pruning models are more

complex and are capable of pruning more unlikely part states.

4.5.4 'Tree-based pruners

We model this type of pruner using hierarchical tree structures. The model
has M = 20 parts (Figure 4.6) where the root is at torso-head and the edges
are links between related parts. This is a simplified structure of the loopy
relational model used in parsers (Figure 4.8) by dropping edges in the loops to
make it a tree structure. The tree models still have the efficiency of inference
and the strength for a good pruner.

Given an example Z and a configuration [ = {l;}}4, of parts in the current
state space, we now can use the full formulation of the compatibility function

of Equation 4.1. Note that a state of part 7 is still represented by l; = (z;,v;),
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Figure 4.5. An example of remaining states+heatmap by part pruners with support from large
parts (top) vs. part pruners without support from big parts (bottom). Each figure shows the
remaining states (left) and the heatmap of part state confidence (state confidence scores are
visualized by colors. Red, yellow, cyan, blue are respect to high, medium and low confidence
scores). Figures (a)+(c) are for right lower arm and figures (b)+(d) are for the right lower
leg. Part pruners are able to prune away at least 75% unlikely states. The remaining states
concentrate around the correct location while remaining states produced by pruners without
support from large parts scattered all over the example. This evidence indicates that large
parts are helpful in resolving ambiguity of small parts. Note that, the right lower arm pruner
is augmented by the whole right arm part and the right lower leg pruner is augmented by the
whole right leg part (best viewed in color).

a 2D-location in the example.

We apply the procedure in Section 4.5.2 to learn the parameters of the
tree-based pruners. We build four levels of tree-based pruners. The remain-
ing states are 2D-state representation of part mid-points. As shown in the
experiments (Section 4.8, there are about 300-500 remaining states for each
part after these levels. We could stop at these levels and apply a human
parser to find parsing configuration. However, finding a parse will involve
searching over all part poselets (ranging from 8 poselets for the torso to 15
poselets for the half limbs). These are still large state spaces (approximately
2500-4000 states per part). Therefore, we extend tree-based pruners to work

on the full representation of part states (2D locations and poselet indexes).
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Figure 4.6. A tree-based structure of hierarchical poselet pruning models of M=20 parts
consists of both large parts and primitive parts. Each part is a node in the tree where the root
is at the torso-head part. Blue edges are links between related parts. The tree structure has
an advantage of fast inference by dynamic programing.

4.5.5 Enhanced tree-based pruners

We now take the poselet index into the part state to make a full representa-
tion. Each state part i is a triple of (x;, y;, 2;), (z;, y;) is the mid-point part
location and z; is the poselet index. For primitive parts (half limbs, torso,
head) poselet indexes are the actual part orientations. They will be used to
infer the endpoints of the final parsing result. Basically, we use the same tree
structures for this type of pruners as in Figure 4.6.

We add part poselet priors and poselet co-occurence priors to the com-
patibility function of 4.1. Yang et al. [56] have demonstrated the usefulness
of these priors for human parsing problems though their notion of parts are
small parts (a patch around body joints). In our case, these priors are more
important because our parts are large (e.g. an up-right poselet torso-head
normally matches up with an upright torso).

Let b;(z;) be the posetlet prior of poselet z; of part 4, and b;;(2;, z;) be the
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Figure 4.7. These figures show the remaining states of left lower arm and left lower leg after
the tree-based pruners (4.7(a) and 4.7(b)) and after the enhanced tree-based pruners (4.7(c)
and 4.7(d)). Once part pruners have done, tree-based pruners are applied to keep takeing
away unlikely part states (more than 95%) and leave a small number of 2D part states (around
300-500 2D locations per part). However, when adding one more dimension of the part poselet
index to the search spaces (8 to 15 poselets per part), the number of states per part is still
relatively large (2400-4000 actual states per part). We perform enhanced tree-based pruners
to work on the full state representation to prune to about 500 states per part. This set of
states is small enough to execute a parser.

co-occurence prior of poselet z;, z; of part ¢« and part j. Now, the compatibility

function of Equation 4.1 is become as follow:

Co(l;T; Wr) = BU) + > _w/ ®(1: 1)+ Y wi®i(li,1;7)  (4.13)

i€V i,j€E

i€V 1,j€E
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Leve torso | head | upper arm | lower arm | upper leg | lower leg
Part 1 55.0 | 51.8 54.8 52.6 55.7 54.2
Part 2 79.8 | 76.4 72.1 71.0 70.7 69.2
Part 3 88.8 | 79.0 75.6 75.0 76.5 77.9
Tree 1 91.4 | 92.8 89.7 88.1 90.5 91.3
Tree 2 95.8 | 94.5 92.9 91.8 93.4 94.1
Tree 3 97.1 | 95.6 94.7 94.2 95.1 95.3
Tree 4 97.5 | 95.8 95.1 95.0 95.3 95.4

E. tree 1l || 994 | 99.4 99.3 99.4 99.4 99.3

E. tree 2 || 99.6 | 99.6 99.6 99.6 99.6 99.6

Table 4.2. This table shows reduction rates for primitive part after each level of the cascade
of pruners. Part levels are part pruners and Tree levels are tree-based pruners and Enhanced
tree levels (E. tree) are advanced tree-based pruners. Pruners are sequentially applied to prune
on the current set of states. Each row shows the percentage of part states are reduced up to
that pruner level. For advanced tree pruners we tune the thresholds such that about 99.6% of
part states are removed after all these levels. This ensures the number of part states are small
enough for the parser. Note that, the initial state resolution is 100 * 100 * Nposelets-

where V and & represents the vertices and edges in the graph shown in
Figure 4.6, respectively, | = {l; = (v, y:, %)}, is a configuration of parts.
We also apply the procedure in Section 4.5.2 to learn the parameters for
these pruners, except we use the compatibility function of Equation 4.13.
We build three levels of this enhanced tree-based pruners. After these levels,
we have only a small set of states (about 500 states per part). This set is
small enough to build a parser using appearance models. Table 4.2 and 4.3
show the reduction rates after each level of the cascade and accuracy of the

remaining set of states.

4.6 Parser

Given small numbers of remaining part states after pruning, we now can
apply a body parser to localize parts. We use the hierarchical poselet models

by Wang et al. [57] in which we represent the configuration of the human pose
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Leve torso | head | upper arm | lower arm | upper leg | lower leg
Part 1 93.5 | 88.5 86.8 80.5 91.5 89.2
Part 2 91.8 | 82.7 82.5 76.8 87.0 86.1
Part 3 88.3 | 81.8 80.1 75.9 86.3 83.5
Tree 1 85.9 | 76.4 73.7 70.0 80.9 78.6
Tree 2 82.1 | 72.6 69.2 65.2 77.9 75.1
Tree 3 80.5 | 70.8 67.4 63.5 73.0 71.4
Tree 4 79.8 | 69.3 65.5 61.9 72.4 70.9

E. tree 1l | 77.2 | 62.5 58.3 55.6 68.4 65.8

E. tree 2 | 76.5 | 61.2 57.2 54.9 67.7 64.1

Table 4.3. This table shows PC P, o rates for oracle primitive part states after each level of
the cascade of pruners at PC'Py o (E. trees are Enhanced trees). There is more pruning as
you go down the table. Oracle states are best states chosen from the pools of the current
remaining part states (see details in section 4.8.1). After applying pruners, torso gets 75.6%
PCPy5 and lower arms get 54.9% PCP, > (Note that, Sapp’s pruner gets 54% PCP, o for
lower arm on Buffy dataset).

using a 20-part model shown in Figure 4.8. The black edges in Figure 4.8
represents constraints between pairs of parts. Give a new image Z, we need to
find the configuration [; for the i-th part (i = 1,2, ...,20). Here l; = (x;, y;, 2),
where (x;,y;) corresponds to the 2D location in the image, and z; indicates
the poselets index for the i-th part. We measure the compatibilty between
an image Z and a pose configuration L = (Iy, [, ..., [pr=20) as the summation

of unary and pairwise potentials:

CL;TW) =Y wl il D)+ > wioy(li,1)) (4.15)
i€y i,j€E
where V and & represents the vertices and edges in the graph shown in
Figure 4.8, respectively.
The remaining set of states left by the cascade of pruners are small about
500 states for each part. We now can exploit richer forms of pairwise poten-

tials that depend on the image. We use the representative color symmetry
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Figure 4.8. This is the relational graph model of the part-based representation of human
poses which is after the hierarchical poselet model of Wang et al. [57]. In total, there are 20
parts. Each part is a node in the graph. Blue edges are links between related parts in the
model. We do not consider full relational models in order to reduce inference complexity, but
the model is more sophisticated than the tree-structured kinematic part models (e.g. [28])
used in the literature.

of left and right limbs for the pairwise appearance relations. Precomputing
those pairwise potentials allows us to solve the MAP assignment of Equation

4.15 quickly.

4.7 Implementation

4.7.1 State space resolution

The 2D-location state space is on image grid of 100x100 (about 4 pixels for
each grid cell size). This 2D resolution is the same in all levels of pruners. For
enhanced poselet pruners, we expand to the full state resolution by adding
the part poselet index dimension. Poselet dimension sizes vary between 8 to
15 depending on parts. For the primitive parts, poselet indexes indicate the

actual part orientations. At the beginning there are 10,000 2D-states per part
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(w.r.t the grid size 100x100). Part pruners prune and tree-based pruners can
prune away more than 95% states leaving about 300-500 2D-states. We then
expand the current set of 2D states to full resolution states by enumberating
all poselet indexes. Then , the enhanced tree-based pruners are applied to
filter to about at most 500 states per part. The parser now searches for the

best structures in the remaining set of states.

4.7.2 Unary features

For all models (pruners and parsers), we use part poselet responses as unary
features. Poselet responses are precomputed for all examples from pre-trained
poselet templates (using SVM on HOG features). For part pruners, the
unary features at each part are augmented with the poselet responses from
supporting parts at the same part location. For examle, the augmenting
unary features of the left upper arm part are poselet responses of the left arm.
These additional unary features represent the context of left arm evidence to
support the left upper arm.

An alternative way is to use original HOG features as unary features and
directly learns weight parameters for unary features. This might improve the
disrimination of the models because poselet responses can be considered as
feature reduction which might loose some discrimination; however, we find

that using poselet responses are good enough for pruners and parsers.

4.7.3 Pairwise features

For tree-based pruners and enhanced tree-based pruners, there are no ap-
pearance pairwise relation features. We only use pairwise spatial features

between connect parts. We use binning scheme distances of between part
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mid-points for better capturing spatial relations among them (after [28]).
For enhanced tree-based pruners, we represent features for pairwise relations
of part poselets by a vector of size #poselet_part_i * #poselet_part_j. The cor-
responding index in the vector of a pair of poselets z;, z; will be 1, others are
zeros. For the parser, we use color appearance models for related primitive
parts to capture the similarity of symmetric parts (e.g. limbs on the left are
similar to limbs on the right). We precompute color histograms and use x?
distances between color histograms of related parts as appearance features.
We could use more extensive appearance features but there will be more
computational. Color symmetry relations are good enough for the purpose

to capture the appearance compatibility between left /right limbs.

4.8 Experiments

4.8.1 Evaluation methodology

Evaluation of parsers: We follow standard PCP criteria (Percentage of
Correctly estimated Part) of evaluation parsing accuracy [12]. An estimated
part is correct if its two endpoints to the ground truth endpoints lie within
50% of the ground truth length.

Evaluation of pruners: A good pruner removes most states, without
pruning the right answer. We evaluate our pruning by checking whether the
pruned state space still contains a part within PCP 0.2 of the right answer
(given by an oracle parser). The oracle parser will choose the best state for
each part in the current state space. This essentially gives an upper bound
performance of the parsing results on the pruned space. At each level of

pruners, we evaluate the reduction rate for primitive parts up to that level
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(Table 4.3) and the corresponding PC'F, 2 by an oracle parser (Tabel 4.2).

4.8.2 Datasets

We run experiments on a challenging UIUC Sports by [57] which have large
pose variations. This dataset is an extension of UIUC People ([15]) by col-
lecting more sport images from Internet. There are totally 1299 examples
of more than 20 sport categories including: badmintons, acrobatics, cycling,
American football, croquet, hockey, figure skating, soccer, golf, horseback
riding, rugby, etc. We randomly devide into halves for training (650 exam-
ples) and for testing (649 examples) as in [57]. Each example is annotated
with 14 body joints (then being converted into 10 body parts, each is marked
up by two end points). Table 4.9 shows some typical examples of the dataset.

We will show the benefits of pruning search space through the parsing
results. Our parsing models are in the same approach of [57], except that we

can use appearance models.

4.8.3 Experiments of our cascade of pruners

We demonstrate the effectiveness of our cascade of pruners on UIUC Sport
dataset. We can reduce 99.6% of part states (leaving about 300-500 states
per part) while still achieving high PC'P, 5 rate. At a given level, we compute
the PCF, 5 rate for the best states. In particular, table 4.2 after each level in
the cascade is applied, and table 4.3 shows the corresponding PC'F, 5 rate for
that level of pruner. For example, part pruners can prune away at least 75%
of 2D states and tree-based pruners then prune up to 95% states. Finally,
advanced tree-based pruners will perform to prune on full resolution states to

more than or equal to 99.6%. In the final pruned space, oracle lower arms
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Figure 4.9. Examples of the dataset UIUC Sport collected from the Internet by [57]. The
dataset contains examples of more than 20 sport categories which depict a wide range of
poses. Each example is annotated with 10 parts (two end points for each part). There are
1299 examples devided into halves for for training and for testing).
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Figure 4.10. Some typical parsing results on the dataset UIUC Sports by our parser. Note
that, the parser is trained and test on the pruned space of examples. This qualitative results
show that the pruners still retain good states for the parser to produce good outputs.

still achieve 54.9% and oracle torso achieves 76.5% at PCPy5. Torso can
perform much better than other parts because it is big and more stable to

localize than other parts.

4.8.4 Experiments of human parsing

We compare our parsing results with other state of the art methods on UTUC
Sport dataset. In table 4.4, we show that our results outperform [57] for all
body parts. This is an evidence of the benefit of using appearance models
on the pruned space. Our parser also performs better on most of body parts
comparing to [28] and [39]. Figure 4.10 shows some typical parsing examples

by our method.
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Torso | upper | lower | upper | lower | head

Method leg leg arm | arm
28] 28.7 7.3 19.2 7.5 20.6 | 12.9
[39] 71.5 | 43.7 | 30.9 | 28.8 | 16.3 | 63.3
[57] 75.3 | 49.2 | 395 | 252 | 11.2 | 475
Our method || 82.0 | 52.6 | 45.5 | 30.6 | 12.5 | 49.0

Table 4.4. The comparisons of parsing results of our method vs other methods on UIUC Sport
dataset. The percentage of correctly estimated parts (PCP) over primitive human body parts
(upper/lower legs, upper/lower arms are average of two values of left and right parts). Note
that the improvement of our method vs. [57] shows the benefits of using appearance models
on pruning spaces.

4.9 Conclusions

We have shown in this chapter that a good pruning strategy can make a
hierarchical poselet parser feasible to use complex appearance models. We
have built a cascade of poselet pruners using both large parts and primitive
parts. In the pruners, large parts prove to be useful context to support small
parts. There are 3 types of pruners in the cascade: simple part pruners,
tree-based pruners and enhanced tree-based pruners. The pruner cascade
effectively prunes away more than 99.6% part states to about 500 states
per part. We have demonstrated an improvement of the hierarchical poselet
parser on the pruned set using color appearance models compared to [57] and

two other state-of-the-art methods on a challenging UIUC Sport dataset.
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CHAPTER 5

CONCLUSIONS

We have demonstrated in this thesis that structure prediction is an attractive
method for the problems of people detection and people parsing in images
(and videos). For detection, we have shown that using structure prediction
to estimate body configuration helps to improve the accuracy of detecting
people in images. We have also demonstrated quantitatively that a full re-
lational model of the body performs better at upper body parsing than the
standard tree model, despite the need to adopt approximate inference and
learning procedures. We have presented a method of building a cascade of
pruners to reduce the search space of finding the best structures in parsing.
The method builds a pruner using hierarchical poselets of both large parts
and primitive parts. Finally, we have shown a significant improvement of the
hierarchical poselet parser on the pruned set of part states where we can use
complex appearance models.

Our contributions are as follows:

1. We have first developed a structure prediction method applying to the

problem of people detection.

2. We have first demonstrated quantitatively that full relational model of
the body performs better at upper body parsing than the standard tree
model, despite the need to adopt approximate inference and learning

procedures.
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3. We have first developed poselet pruners using both large parts and
primitive parts to build a cascade of pruners to prune the search space.
The recuded search space makes the hierarchical poselet parser feasible

to use complex appearance models.
Our future directions are as follows:

1. Improving appearance models: We believe better appearance models
should help better localize arms and legs. Though clothes and skin
textures vary significantly across different subjects, they tend to be
consistent within an image and differs from background. We are at-
tempting to better learn the consistency of body segments which takes
into account the surrounding background texture. These models should
be tractable for highly relational models where inference is expensively

computational.

2. Improving pruning performance: better pruning methods are very im-
portant where leaving as few states per part as possible while keeping
high quality of part states in the remaining set. This benefits inference
in a full relational model because inference will be fast in a small set
of part states. An alternative is to improve inference to be faster and

more accurate.

3. Extending to tracking people in videos: Jointly tracking and parsing
human subjects in videos are important for human activity recogni-
tion. In short-term tracking, people rarely change their appearance
(i.e. clothes), and good body part appearance models would help to
determine if subjects in different frames are the same person. We be-

lieve that our approach is applicable for this task.
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