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Abstract

Damage to the brain, such as stroke, can lead to severe cognitive and motor disabilities in
the affected individuals. Neuroplasticity refers to the intrinsic capacities of the brain to
reorganize cortical networks at different spatial and temporal scales, potentially resulting
in spontaneous recovery of function after such damage. A better understanding about the
measurement and the support of those neuroplastic processes is an important prerequisite
to improve therapeutic interventions and ultimately the outcome of the recovery process.
This thesis comprises the results of two studies that investigated the ability to induce
neuroplasticity using repetitive transcranial magnetic stimulation (TMS) and the ability to
measure neuroplasticity using a combination of TMS and electroencephalography (EEG)
or resting state (RS)-EEG measurements in cohorts of young and healthy individuals.

The first study utilized continuous theta burst stimulation (cTBS) to induce neuroplasticity
targeting the primary motor cortex. After-effects on cortical and corticospinal excitability
were quantified in terms of TMS-evoked potentials (TEP) and motor-evoked potentials.
The study demonstrated that cTBS-induced neuroplasticity leads to significant local and
remote changes in cortical excitability that were measurable with TMS-EEG. The mod-
ulation of the N45 peak of the TEP suggests that the neuroplastic effects of cTBS are
mediated by changes in gamma-aminobutyric acid (GABA)A-mediated cortical inhibi-
tion.

The second study investigated the suitability of RS-EEG for individualized longitudinal
tracking of neuroplastic processes. In this scenario, it is important to distinguish whether
observed changes in activity between measurements are attributable to incidental vari-
ations in cognitive state or truly related to processes of neuroplastic reorganization. A
classification algorithm was adopted to extract individual-specific signatures from EEG
oscillations at rest. These signatures were very robust across multiple days and detectable
across different cognitive states, indicating a close relationship to the underlying neuro-
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physiology. Using these individual activity pattern, it was possible to distinguish inter-day
variations in cognitive state from simulated changes in the neurophysiological organiza-
tion of the brain with very high accuracy.

The current thesis therefore provides important support for the usability of TMS-EEG
and RS-EEG as methodological approaches to measure neuroplasticity within healthy
and young individuals. Furthermore, cTBS may be used as a strategy to interact with
abnormally elevated or reduced levels of GABAA-mediated cortical inhibition. Further
studies are required to validate the significance of the current findings and to test whether
they can be translated into clinical practice, especially into the realms of stroke recovery.
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Nomenclature

cTBS . . . . . . . . . . continuous theta burst stimulation

DLPFC. . . . . . . . . dorsolateral prefrontal cortex

EEG . . . . . . . . . . . electroencephalography

EMG. . . . . . . . . . . electromyography

FDI . . . . . . . . . . . . first dorsal interosseus

FFT . . . . . . . . . . . . fast fourier transform

fMRI . . . . . . . . . . . functional magnetic resonance imaging

FTT. . . . . . . . . . . . finger tapping task

GABA . . . . . . . . . gamma-aminobutyric acid

ICA . . . . . . . . . . . . independent component analysis

iTBS . . . . . . . . . . . intermittent theta burst stimulation

MEP . . . . . . . . . . . motor-evoked potential

MSO . . . . . . . . . . . maximum stimulator output

MSO . . . . . . . . . . . maximum stimulator output

M1. . . . . . . . . . . . . primary motor cortex

RMT . . . . . . . . . . . resting motor threshold

rTMS . . . . . . . . . . reptitive transcranial magnetic stimulation

TBS . . . . . . . . . . . theta burst stimulation

TEP . . . . . . . . . . . . TMS-evoked potential

TMS . . . . . . . . . . . transcranial magnetic stimulation
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1 Introduction

The brain corresponds to the central part of the human nervous system and represents the

neural basis of our cognitive abilities. It acts as an important control hub for a wide range

of body functions that are remotely monitored and regulated, even in the complete absence

of our awareness. The realization of these complicated demands require a fast integration

and processing of large amounts of information in parallel, which is implemented through

a complex and densely connected network of nerve cells. It is estimated that the brain

contains approximately 86 billion neurons and as many non-neuronal cells (Herculano-

Houzel, 2012). The communication of neurons within these networks is achieved through

a combination of chemical as well as electrical signal transmission (Lovinger, 2008).

Neuroplasticity refers to the capacities of these neural networks to grow and change in a

process of adaptation, either by forming completely new connections or by recalibrating

the transmission efficacy within already existing connections of the networks (Dayan &

Cohen, 2011). Structural and functional changes in network properties are one of the core

mechanisms by which humans can learn new behaviors and adapt to changing environ-

ments (Galván, 2010). Such reorganization can take place in various spatial scales within

the peripheral and central nervous system, affecting efficiency of synaptic transmission in

circuits with only a small number of neurons, up to larger scale reorganization of brain

networks, e.g. in the process of cortical remapping (Kolb & Whishaw, 1998; Münte et al.,

2002; Pascual-Leone et al., 1996; Pascual-Leone et al., 2005).
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The interplay of these different neuroplastic processes is especially relevant for the recov-

ery of function following severe lesions of the brain. For example, a stroke can damage

or completely destroy existing pathways within the brain, leaving the affected individuals

with severe impairment or even a complete loss of certain cognitive or motor functions

(Noble & Schenk, 2014). This is furthermore often associated with significant reductions

in quality of life (Carod-Artal & Egido, 2009; King, 1996) and concomitant neuropsy-

chiatric disorders (Robinson, 1997). Motor impairments are among the most frequent

consequences of stroke and around 80% of patients suffer from such deficits (Langhorne

et al., 2009). Usually, the largest improvements in functional recovery are observed within

the first weeks up to a three month post stroke (Cramer, 2008; Verheyden et al., 2008).

Neuroplastic reorganization of cortical networks represents an intrinsic mechanism of the

brain to compensate dysfunctional activity within a damaged region or network, thereby

mediating spontaneous recovery of function after such lesions (H. Chen et al., 2010; Hosp

& Luft, 2011; Murphy & Corbett, 2009). However, the exact patterns of cortical reor-

ganization that ultimately lead to recovery of function are complex and depend on the

interplay of many different factors (Cramer, 2008; Hallett, 2001). For example, recovery

can result from repair of damage in the affected networks, usage of alternative but already

existing pathways or the development of new neuronal connections (Talelli et al. 2006).

Importantly, depending on the time and location of occurrence as well as interaction with

other ongoing recovery processes, neuroplastic changes can even be maladaptive and ex-

ert detrimental effects on the process of recovery (Quartarone et al., 2006; Takeuchi &

Izumi, 2012).

Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation

(NIBS) technique that can initiate and induce neuroplastic processes in the human cere-

bral cortex, transiently altering excitability within a targeted region (R. Chen et al., 1997;

Pascual-Leone et al., 1994). In particular, rTMS can inhibit or increase cortical excitabil-

ity depending on the exact stimulation parameters. This can provide a way to externally

“guide” the induction of neuroplastic processes, promoting changes that contribute pos-
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itively to recovery of function while inhibiting adaptions that might be harmful. There

are already some promising studies targeting the human motor system with rTMS, sug-

gesting that this strategy can improve recovery of motor function after stroke (Dafotakis

et al., 2008; Du et al., 2019; Lefaucheur, 2006; Mansur et al., 2005; Talelli et al., 2007).

However, there is often still a considerable variability in study outcomes and a reliable

improvement of recovery processes by inducing plasticity using rTMS is still challenging

(Sebastianelli et al. 2017). In part, this variability is likely caused by the high interindi-

vidual variability in induced plasticity that has also been observed when applying rTMS

protocols within healthy individuals (Hamada et al., 2013; Maeda et al., 2000; Nettekoven

et al., 2015). While some individuals show modulations of cortical activity in the expected

manner, others might show an opposite change in cortical excitability. Such paradox re-

sponses are of course highly problematic, as e.g. a further reduction of activity within the

affected hemisphere might potentially worsen the functional recovery after stroke rather

than improving it.

Another contributor to variability in stroke are the complex temporal and individual dy-

namics of cortical reorganization after stroke itself. Studies in mice have shown that after

stroke, there is a critical period of increased neuroplasticity. For instance, intrinsic neuro-

plastic mechanisms are upregulated within hours after stroke, increasing within the first

one or two weeks and disappear again after approximately four weeks (Coleman et al.,

2017). In humans, this critical period is usually longer, as spontaneous functional recov-

ery can usually appear within weeks to month post stroke (Cortes et al., 2017; Duncan &

Sue Min Lai, 1997; Heller et al., 1987; Kwakkel et al., 2006). The potential benefits of

rTMS-induced cortical plasticity therefore dependent on the temporal dynamics and pat-

tern of cortical reorganization within a particular individual. Thus, timing, targeted region

and direction of induced plasticity (i.e. excitation or inhibition) are crucial parameters to

determine if rTMS can actually aid in reorganization of cortical networks and support the

recovery of function rather than worsen it.
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Cross-sectional and longitudinal neuroimaging studies using functional magnetic res-

onance imaging (fMRI) have provided important insights into how the brain activity

changes during the critical period of cortical reorganization at different temporal stages

after stroke (Golestani et al., 2013; Park et al., 2011; Rehme et al., 2011; Ward et al.,

2003). Longitudinal tracking of cortical plasticity on an individual basis would allow

to optimize timing and type of therapeutic intervention to specifically support ongoing

beneficial neuroplastic processes and inhibit those that potentially have negative effects

on functional recovery. However, precise temporal tracking would require repeated mea-

surements of brain activity at very short time scales, potentially within hours or days.

This is unfeasible when fMRI is used to perform frequent measurements, due to the high

maintenance cost of the brain scanners and their lack of availability. In contrast, the mea-

surement of resting state (RS) activity using electroencephalography (EEG) has many

desirable properties for the realization of longitudinal and frequent tracking of brain ac-

tivity. The method itself is comparably easy to perform, there are no exclusion criteria, it

is suitable for bedside testing, it does not require active participation of the subject, and

the purchase and maintenance costs are relatively low compared to other neuroimaging

modalities. In addition, there are many studies demonstrating that various properties of

the oscillatory dynamics during rest can be used as indicators of brain network integrity

and organization in different clinical populations and age groups (Hata et al., 2016; Scally

et al., 2018; Stam et al., 2005). Thus, RS-EEG provides a promising experimental envi-

ronment for potential tracking of individual trajectories of cortical plasticity following

stroke.

In summary, there are currently two major difficulties that significantly weaken the impact

of rTMS to support functional recovery after stroke. First, there is a lack of understanding

about how exactly rTMS induces plasticity and modulates brain activity within the target

region and the other nodes of the network. A better understanding of this could facilitate

targeted induction of cortical plasticity and potentially help to reduce undesired response

characteristics. Second, it is necessary to establish strategies to measure and characterize
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the ongoing neuroplastic processes that drive the dynamics of cortical reorganization in

the early stages after stroke on an individual basis. This is an important prerequisite to

ensure, e.g. that rTMS is applied over the correct region of a network, or that rTMS

and rehabilitative physiotherapy will be delivered at an appropriate time to support and

not interfere with the ongoing intrinsic processes of neuroplastic reorganization. Due to

these important challenges in clinical practice, there is considerable interest in further

investigating methodological approaches that could help to address these problems, by

providing additional insights into their mode of action or by testing their suitability to

fulfill these demands.

This thesis comprises the results of a study combining rTMS and TMS-EEG and a RS-

EEG study that were performed within cohorts of young and healthy individuals. Even

though the studies were not conducted with stroke patients, their design was inspired by

the challenges that emerge in the clinical practice after stroke, including the induction of

neuroplasticity via rTMS and the tracking of neuroplastic processes within individuals.

The goal of this thesis is therefore to improve the understanding about the modulation

and measurement of intrinsic and induced neuroplastic processes based on these different

methodological approaches (rTMS, TMS-EEG, RS-EEG).

The first study was entitled "Modulation of cortical excitability by continuous theta burst

stimulation over the primary motor cortex: a TMS-EEG study" and will be referred to

as "Study 1" throughout this thesis. Study 1 was designed to investigate the effects of a

modulation of cortical excitability caused by rTMS-induced neuroplasticity and whether

those effects can be measured and quantified using TMS-EEG. For that purpose, 29 young

and healthy individuals received three doses of rTMS over the primary motor cortex

(M1) to induce neuroplasticity (in a dose dependent manner). The excitability of M1

was measured repeatedly throughout the experiment, using the TMS-evoked potential

(TEP) as an index to measure local and remote changes in cortical excitability. Corti-

cal responses were furthermore investigated with respect to the direction of the induced

plasticity within individuals, which was inferred based on changes in amplitude of the
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motor-evoked potential (MEP).

The second study was entitled "Robustness of individualized inferences from longitudi-

nal resting state dynamics" (referred to as "Study 2") and was designed to investigate the

suitability of RS-EEG for longitudinal tracking of neuroplastic changes within individu-

als. Longitudinal tracking of RS activity can be confounded by involuntary variations of

the person’s cognitive state between the measurements. Being able to distinguish whether

differences in RS activity between two measurements are caused by an incidental change

in cognitive state rather than a real change in the person’s neurophysiological organization

is an important prerequisite for the suitability of RS-EEG to track individual trajectories

of neuroplastic reorganization. In order to test if RS-EEG can fulfill these demands, EEG

was acquired longitudinally on five subsequent days from 27 young and healthy individ-

uals. A classification approach was adopted to extract individual-specific brain activation

pattern from RS activity. Using interindividual differences as proxy for changes in neu-

rophysiological organization, it was specifically tested if those changes would actually be

distinguishable from changes in cognitive state as they might appear in the framework of

repeated measurements.

In this way, the current thesis can hopefully contribute to a better understanding of the

possibility to accurately induce and measure neuroplastic processes in the human brain,

ultimately promoting the usability of these methodological approaches in the clinical set-

ting, e.g. when trying to improve functional recovery after stroke. In short, Study 1 aims

to improve the understanding of rTMS to induce local and remote neuroplastic changes

and the ability to measure those changes at the cortical level using TMS-EEG. Study

2 investigates the usage of a novel RS-EEG framework for the longitudinal tracking of

individual trajectories of cortical plasticity. The following sections will provide some ad-

ditional basic information about the methods and concepts that were used in the studies

of this thesis.
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1.1 Electroencephalography (EEG)

EEG is a non-invasive neuroimaging technique which can measure the electrical activity

generated by the brain through electrodes that are placed on a person’s scalp. Depending

on the EEG system that is used, up to 256 electrodes are placed on the scalp to measure

the activity of the underlying brain regions. However, most conventional systems use

fewer electrodes (16 to 64) as this already provides a sufficient spatial resolution for most

applications. The electrodes are often placed according to the 10-20 system introduced

by Jasper (1958), which uses anatomical landmarks (nasion and inion) to arrange the

electrodes in a standardized grid above the different cortical lobes.

The measured electrical activity of the EEG arises primarily as consequence of the firing

of large pyramidal neurons, spatially organized in columns across the different layers of

the cerebral cortex (Kirschstein & Köhling, 2009). Activity of single neurons cannot

be detected using EEG, but if large neuronal populations are firing in synchrony, their

activity can sum up and become large enough to produce measurable voltage changes

at the scalp’s surface (Jackson & Bolger, 2014; Kirschstein & Köhling, 2009). EEG

captures these potential changes at a macroscopic scale, representing the activity of nerve

cells within several square centimeters of cortical tissue below the recording electrode

(Buzsáki et al., 2012).

These large-scale voltage fluctuations usually appear with a certain rhythmicity at the

cortical surface, revealing dynamic oscillatory activity that varies in frequency and am-

plitude. These brain waves constitute one of the core component of the EEG activity and

are partly visible with the naked eye when inspecting the recorded signals. The properties

of these oscillations depend in part on the cortical region from which they are recorded

(Buzsáki, 2006; Srinivasan et al., 2006), but they are also specifically modulated in many

different scenarios, e.g. as the brain processes sensory information (Ergenoglu et al.,

2004), when performing cognitive tasks (Fitzgibbon et al., 2004; Ward et al., 2003), dur-

ing memory retrieval (Jacobs et al., 2006), during movement execution (Pfurtscheller &
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Lopes da Silva, 1999), during processes involving selective attention (Foxe & Snyder,

2011) or in relation to vigilance and fatigue (Aeschbach & Borbély, 1993; Kubicki et al.,

1979).

Quantifying the spatiotemporal dynamics of these oscillations can therefore reveal im-

portant information about the prevalent brain state and even the integrity of the cerebral

cortex (Rabiller et al., 2015; Stpień et al., 2011; Van Putten & Tavy, 2004). It is common

practice to subdivide these different oscillations into five frequency bands, namely the

d -band (1–4 Hz), the q -band (4–7 Hz), a-band (8–13 Hz), b -band (14–30 Hz) and the

g-band (>30 Hz). However, there is also no uniform definition for the exact range of these

frequency bands and they will often show slight variations regarding their boundaries be-

tween studies.

The modulation of these bands has been linked to the execution of specific cognitive or

motor processes, or the presence of a particular brain state. For example, the power of the

d -band is heavily increased during deep sleep (Davis et al., 2011) and the q -band is often

associated with cognitive and memory processing or processes of attention (Klimesch,

1999; Schacter, 1977). The a-waves appear predominantly around the occipital cortex

and have been initially described by Hans Berger, in the earliest days of EEG research

(Berger, 1929). They are heavily suppressed during visual processing and increase in size

when eyes are closed and visual input is absent (Barry et al., 2007). The b -band is of-

ten associated with sensorimotor processing and its modulation by voluntary movements

(Engel & Fries, 2010; Pfurtscheller & Lopes da Silva, 1999). The g-band is probably the

least well studied EEG frequency band, but it has been suggested that it plays a role in

higher cognitive processing, such as feature binding (Başar-Eroglu et al., 1996).

A lion’s share about the functional relevance of these frequency bands and the brain re-

gions that generate them was derived from experiments in which participants were in-

structed to perform specific tasks. For example, if participants are instructed to move

their right hand or arm, the power in the b -band will be reduced around the contralateral

sensorimotor cortex. If participants are instructed to open and close their eyes every few
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seconds, power in a-band will be reduced and increased around the visual cortex in the

same period. In order to investigate and probe the function of multiple brain networks

in this way, a battery of sometimes complex experimental tasks would be required. This

might be challenging for some clinical populations, such as children, the elderly or pa-

tients with brain damage who may be unable to perform complex tasks conveniently to

probe the underlying network function.

RS measurements refer to the acquisition of brain activity during a state of rest, in the

absence of any particular task. In a famous study by Biswal et al. (1995), they observed

that the fMRI signal intensity of blood oxygenation showed high temporal correlations in

the very low frequency range between several motor-related brain regions, even though

participants were not instructed to perform a motor tasks. This discovery of RS functional

connectivity in fMRI indicated that even during such a state of rest, brain activity is highly

structured and carries rich information about the function and integrity of large-scale brain

networks, such as the default mode network (Raichle, 2015) or the motor network (Pool

et al., 2015). Importantly, those RS networks have been shown to appear consistently

across individuals (Damoiseaux et al., 2006) and seem to contain noticeable predictive

value about individual behavioral and cognitive functions (Lin et al., 2018; Pool et al.,

2015; Reineberg et al., 2015) or may serve as indicator for the presence of diseases (de

Vos et al., 2018). In addition, RS measurements can usually be obtained within a few

minutes and do not require active participation of the subject.

Although RS networks are less well characterized in EEG compared to their fMRI coun-

terparts, it is evident that EEG measurements at rest can enable similar inferences about

individual behavior and cognition based on the integrity and functionality of brain net-

works (Erickson et al., 2018; Sugata et al., 2020; Wu et al., 2014). This predictive poten-

tial is not limited to EEG-based measures of connectivity but also encompasses general

properties of the oscillatory dynamics, i.e. modulation of amplitude and frequency of os-

cillations across the whole brain. The capacities for individual predictions of oscillatory

power at rest are also supported by many studies that show a very high individual speci-
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ficity of these oscillations (Di et al., 2019; La Rocca et al., 2012; Näpflin et al., 2007;

Pathania et al., 2021). This close connection to the individual neurophysiological orga-

nization of the brain contains a large potential to identify biomarkers related to onset or

presence of disease based on RS-EEG measurements.

1.2 Transcranial magnetic stimulation (TMS)

Transcranial magnetic stimulation is a NIBS technique that was developed and first ap-

plied by Barker et al. (1985). TMS utilizes the principle of electromagnetic induction to

deliver small electrical currents to the brain. It enables a relatively well-tolerated and safe

stimulation of cortical neurons through the intact skull Rossi et al. (2009). A TMS system

consists of a large capacitor or a series of capacitors that can discharge a high-current,

high-voltage pulse through a wire coil. This electrical pulse leads to the generation of a

very strong but brief magnetic field (up to 2.5T and lasting around 30µs up to 1000µs)

generated perpendicular to the current flow in the stimulation coil (Groppa et al., 2012;

Hallett, 2007; Hannah et al., 2016; Siebner et al., 2009). This rapidly changing magnetic

field then induces a secondary intracranial current, in parallel to the current flow in the

wire coil, but in opposite direction.

The focality and strength of the induced electrical field will finally determine the spatial

extend to which the underlying cortical tissue will be activated by the pulse. This depends

on many different parameters, including coil orientation (Laakso et al., 2013), coil geom-

etry (Deng et al., 2013), stimulation intensity, pulse configuration (Pisoni et al., 2018) and

individual anatomy (e.g. head shape and gyral folding (Bijsterbosch et al., 2012)). How-

ever, when using commercially available coils and stimulation intensities that are within

the TMS safety guidelines, it is unlikely that the stimulation depth exceeds 2–3 cm (Deng

et al., 2014). Depending on the stimulation intensity, pyramidal neurons in cortical lam-

ina V are either activated directly, or indirectly through a complex interplay of excitatory

and inhibitory circuits in lamina II that have lower thresholds and will activate the lamina
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V pyramidal neurons transynaptically (Di Lazzaro & Ziemann, 2013; Diana et al., 2017;

Klomjai et al., 2015).

Single or paired pulse paradigms are frequently used in research and clinical practice

to investigate and assess the integrity, excitability and connectivity of central as well

as peripheral components of the human motor system (Daskalakis et al., 2002; Ferbert

et al., 1992; Hummel et al., 2009; Klomjai et al., 2015; Rothwell, 1997). One of the

most prominent examples is the assessment of corticospinal excitability, in which a single

magnetic pulse is applied to the primary motor cortex region that controls a specific hand

muscle (often the first dorsal interosseous (FDI) or abductor pollicis brevis (Rossi et al.,

2009)). If the induced electrical field is strong enough to activate cortical motor neurons

(suprathreshold pulse), a descending volley will travel down the corticospinal tract to the

periphery. This will produce a compound muscle action potential in the corresponding

hand muscle (Bestmann & Krakauer, 2015), which is usually referred to as MEP.

The latency and amplitude of this MEP can be quantified using surface electromyography

(EMG) electrodes. The MEP represents a sum of cortical, subcortical and spinal contri-

butions to the measured amplitude in the target muscle (Duque et al., 2017) and is used to

index corticospinal excitability. Other parameters of important clinical value that can be

inferred from MEP measurements include the stimulation threshold or central conduction

time (Magistris et al., 1998). A voluntary pre-activation of the cortical region correspond-

ing to the target muscle, either by imagination of movements (Kasai et al., 1997) or actual

contractions will lead to an increased excitability and result in larger amplitudes of the

MEPs. In contrast, during periods of cortical inhibition, e.g. if a movement has to be

stopped abruptly, participants are instructed to resist a movement or a movement of the

contralateral hand has to be suppressed, corticospinal excitability will be largely reduced

when probed with TMS (Bonnard et al., 2009; Bonnard et al., 2003; Duque et al., 2017).

RTMS refers to a collection of specific TMS stimulation protocols that have been demon-

strated to induce cortical plasticity. During rTMS, a large number of pulses (up to several
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thousands), are applied with a specific frequency and within a fixed timeframe to a cor-

tical region. This can lead to temporary changes of cortical excitability that can outlast

the actual stimulation period. If pulses are applied to the cortex with a low frequency

(< 1 Hz), the effects resemble long-term depression (LTD)-like effects, reducing corti-

cospinal excitability (R. Chen et al., 1997). In contrast, frequencies above 5 Hz produce

long-term potentiation (LTP)-like effects and increase corticospinal excitability (Jennum

et al., 1995). As consequence, rTMS has been established as therapeutic intervention in

the clinical environment, in the attempt to normalize dysfunctional cortical activity in pa-

tients suffering from a variety of neurological and psychiatric conditions (George et al.,

2013; Kleinjung et al., 2005; Nowak et al., 2009; Ridding & Rothwell, 2007).

Theta burst stimulation (TBS) corresponds to a modified rTMS protocol that utilizes high

frequency bursts of pulses to induce cortical plasticity (Huang et al., 2005). TBS was de-

scribed as a faster, more robust and reliable stimulation protocol to modulate corticospinal

excitability. In contrast to high and low frequency rTMS, TBS consists of high frequency

bursts of pulses (three pulses at 50Hz) that are applied repeatedly at a frequency of 5

Hz, corresponding to the frequency of human theta rhythm. Continuous TBS (cTBS) is

usually applied as a series of 300 or 600 pulses in 20s or 40s, respectively. During inter-

mittent TBS (iTBS), the same total number of pulses are applied to the brain but after 2s

of stimulation, there is a break of 8s. Due to the high frequency of pulse application, TBS

only requires a fraction of time to complete compared to conventional rTMS protocols.

When following safety guidelines and using subthreshold stimulation intensities, TBS im-

poses low risk of severe side effects and is generally considered very safe (Oberman et al.,

2011).
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1.3 TMS-evoked potential (TEP)

The combination of TMS and EEG (TMS-EEG) allows the measurement of cortical re-

sponses to the application of TMS pulses. TMS-evoked potential (TEP) refers to the spa-

tiotemporal profile of electrical activity that can be measured across the whole scalp using

EEG, after a single pulse of TMS is applied to a certain cortical region (Ilmoniemi et al.,

1997). The TEP belongs to a larger group of electrophysiological responses called evoked

potentials. These potentials are usually defined by a series of characteristic peaks which

are quantified in terms of latency and amplitude. The peaks reflect a distinct sequence of

activations within a particular pathway of the nervous system and can therefore provide

information about the functional integrity of this pathway. As consequence, evoked po-

tentials are of high relevance in clinical practice (Tandon, 1998; Walsh et al., 2005). For

example, if a person is presented with a flash of light, a visually evoked potential (VEP)

is elicited and can be recorded from electrodes placed on the occipital region around the

visual system. The peaks and throughs of the VEP can then inform about the electrical

transmission of the stimulus along the visual pathway, including the retina, optic nerves,

the lateral geniculate nucleus, the optic radiation and the primary visual cortex (Creel,

2019). In case of neuronal damage along the pathway, the potential will be altered in

terms of latency and amplitude, depending on where the damage is localized (Walsh et

al., 2005).

In case of the TEP, the potentials are not evoked by the presentation of a sensory stimulus,

but directly caused through electrical stimulation of the neural pathways with TMS. The

induced activity spreads within milliseconds from the stimulated region through cortico-

cortical connections to adjacent and distant brain regions. The recorded potential is usu-

ally largest below the site of stimulation and decreases in amplitude as it spreads to other

cortical regions (Ilmoniemi & Kičić, 2010). For a single pulse stimulation of M1, several

positive and negative peaks occur within the following 300-400 ms after the pulse. The

exact latencies and amplitudes of the TEP peaks can vary, depending on the coil type, coil
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orientation, stimulation intensity, stimulated region and due to interindividual differences

(Casarotto et al., 2010; Ilmoniemi & Kičić, 2010; Roos et al., 2021). Nevertheless, the

propagation of the activity relies on the functional integrity of connections from the stim-

ulation site to other regions. Thus, an investigation of the distinct TEP peaks can provide

important insights into the different stages of signal transduction as the pulse propagates

from the stimulation site to the connected regions of the cerebral cortex.

Pharmacological studies have furthermore demonstrated that some of the TEP peaks

reflect the recruitment of specific excitatory (e.g. glutamatergic) and inhibitory (e.g.

gamma-aminobutyric acid (GABA)) circuits within the brain (Belardinelli et al., 2021;

Premoli et al., 2014). Thus, the TEP can provide valuable information about the in-

tegrity, excitability and connectivity of the cerebral cortex (Komssi et al., 2002; Rogasch

& Fitzgerald, 2013) and it has a high potential to serve as biomarker for cortical integrity

and connectivity in healthy and diseased populations (Hordacre et al., 2019; Tscherpel

et al., 2020).

In addition, assessing neural pathways by means of the TEP opens the possibilities to

probe connectivity of different cortical regions that would be inaccessible through simple

sensory stimulation with conventional evoked potentials.
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Abstract:

Continuous theta burst stimulation (cTBS) is a transcranial magnetic stimulation (TMS) pro-

tocol that can induce neuroplasticity and transiently alter excitability when applied over the

primary motor cortex (M1). The TMS-evoked potential (TEP) provides a way to measure ex-

citability of M1 and connected regions directly from the scalp, using a combination of TMS

and electroencephalography (EEG). In this sham-controlled study, three doses of cTBS were

applied over M1 of young and healthy individuals. Motor-evoked potentials (MEP) and TEPs

were measured prior and after application of each dose of cTBS. The goal of this study was to

characterize the cTBS-induced plasticity directly on the level of the cortex, using the TEP as
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index for cortical excitability. Application of cTBS revealed prominent modulations of the N45

component of the TEP, a marker of GABAA-mediated inhibition, after each dose. Changes in

cortical excitability were not restricted to M1 but also appeared in connected regions, especially

around the parietal cortex and the contralateral hemisphere. Investigation of cTBS responder

subgroups revealed that MEPs, but not the N100 component of the TEP, are modulated by

cTBS in a dose-dependent manner. MEPs and TEPs might reflect separate but not necessarily

independent measures of cTBS-induced cortical plasticity. The current results demonstrate that

TMS-EEG is a suitable approach to measure cTBS-induced cortical plasticity in healthy indi-

viduals and may complement the conventional measurement of corticospinal excitability based

on MEP amplitude. Moreover, cTBS may be a suitable tool to regulate GABAA-mediated cor-

tical inhibition.

Keywords: EEG; Continuous theta burst stimulation; Transcranial magnetic stimulation; Mo-

tor cortex; TMS-evoked potential; Motor-evoked potential; Neuroplasticity
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1 Introduction

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation (NIBS) technique

that allows to directly stimulate the superficial layers of the brain tissue in proximity to the

scalp’s surface through the intact skull (Hallett, 2007). Theta burst stimulation (TBS) corre-

sponds to a specific repetitive TMS (rTMS) protocol, in which hundreds of TMS pulses are

applied in quick succession, usually within several minutes or less. Such repeated and extrin-

sic activation of cortical circuits can mimic the brain’s intrinsic neural firing pattern, and has

been shown to induce transient neuroplasticity in the human motor cortex, potentially exhibiting

long-lasting after-effects on corticospinal excitability (Huang et al., 2005). These neuroplastic

effects are likely mediated by changes in synaptic transmission and resemble the long-term po-

tentiation (LTP) and long-term depression (LTD) - like effects that were observed in in vitro

experiments using rat hippocampal slices (Larson et al., 1986; Larson & Lynch, 1989). Early

studies suggested that the effects of such rTMS protocols are bidirectional and the direction of

after-effects primarily depends on the stimulation pattern and frequency that is used to apply the

pulses (Pascual-Leone et al., 1994; Jennum et al., 1995; Chen et al., 1997; Chen & Seitz, 2001).

In the case of TBS, Huang et al. (2005) reported a dichotomous result, namely that continuous

TBS (cTBS) has inhibitory after-effects on corticospinal excitability, whereas intermittent TBS

(iTBS) was described to facilitate corticospinal excitability. These after-effects have been de-

scribed in numerous studies targeting different cortical regions, revealing that the stimulation

could lead to meaningful increases and decreases in electrophysiological or behavioral perfor-

mance measures (Cazzoli et al., 2009; Cho et al., 2010; Verbruggen et al., 2010; Meehan et al.,

2011; Teo et al., 2011; Hoy et al., 2016).

However, this simple relationship between stimulation pattern and directional induction of plas-

ticity has been questioned by diverging results. Several studies observed a substantial degree

of interindividual variability regarding the direction and strength of induced plasticity, resulting

in inconclusive or even contradictory results on the group-level (Martin et al., 2006; Hamada
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et al., 2013; Lakhani et al., 2014; López-Alonso et al., 2014; Hordacre et al., 2021). There

is a growing body of evidence indicating that a multitude of factors may play an important

role in how TBS can modify cortical plasticity beyond the pattern of the stimulation. This in-

cludes age, attention, certain genetic variants, interactions with (pharmacologically) elevated or

reduced neurotransmitter levels as well as synaptic history, i.e. alterations in neural plasticity

following priming stimulation or physical exercise (Martin et al., 2006; Ridding & Ziemann,

2010; Hamada et al., 2013; Katagiri et al., 2020). Nevertheless, it is poorly understood how

all of these factors interact and providing accurate predictions about an individual’s response

to TBS is still challenging. However, understanding the mechanisms behind individual cortical

responses to neuromodulatory protocols and TBS after-effects are absolutely crucial for clini-

cal applications, as unexpected or opposite after-effects might have a detrimental impact on the

outcome of a therapy.

A majority of evidence about TBS after-effects is derived from studies targeting the primary

motor cortex (M1) (see Chung et al. (2016) for a review). This is attributable to the fact that

motor-evoked potentials (MEP) currently represent the most convenient method to assess size

and direction of TBS after-effects. However, this peripheral readout of corticospinal excitabil-

ity has several limitations. First, MEPs can only be acquired from M1 and cannot be used

to study excitability in non-motor regions, as they are unable to evoke muscle activity in the

periphery. Second, MEPs represent a combined measure of the cortical excitability as well as

excitability of the spinal pathways (Di Lazzaro et al., 2008; Groppa et al., 2012), making it

difficult to isolte the cortical contributions to the potential after-effects. Last, TMS pulses also

propagate through intracortical pathways, indirectly activating distant but interconnected brain

regions from the stimulation site (Daskalakis et al., 2002). Thus, TBS after-effects might lead

to excitability changes in remote regions, where excitability cannot be probed through MEPs.
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The combination of TMS and EEG (TMS-EEG) provides an alternative physiological read-

out to assess changes in cortical excitability and connectivity (Rogasch & Fitzgerald, 2013).

The TMS-evoked potential (TEP) corresponds to the cortical response that can be recorded

from the scalp using EEG after a single TMS pulse is applied to a target region (Ilmoniemi

et al., 1997; Komssi et al., 2002). TEPs are characterized by a series of positive and negative

deflections, which are usually labeled regarding their polarity (P = positive, N = negative) and

time of appearance (in ms after the pulse). These peaks are thought to reflect activity of specific

excitatory and inhibitory circuits, as the TMS pulse propagates through intracortical pathways

from the stimulation site to connected brain regions (Komssi et al., 2002; Nikulin et al., 2003;

Premoli, Castellanos, et al., 2014).

The TEP bypasses some of the inherent problems associated with the indirect measurement of

cortical excitability using MEPs. First, the TEP can be recorded from any region of the cerebral

cortex, as the EEG can measure the spread of activity from the target site to neighboring and

distant regions. Second, it represents changes in cortical excitability without additional modu-

lations of spinal motor neurons and peripheral nerves. Third, several studies have investigated

the reliability and reproducibility of TEPs within individuals, suggesting that the cortical re-

sponses are highly stable within individuals within days (ter Braack et al., 2019) or between

days (Lioumis et al., 2009; Casarotto et al., 2010; Kerwin et al., 2018). Thus, the TEP has

many desirable features as a potential marker to track changes of TBS-induced neuroplasticity.

One potential marker for this tracking might be the N100 component of the TEP, which appears

as pronounced negativity bilateral around the central electrodes following around 100 ms after

a pulse is applied to M1. Early TMS-EEG studies already suggested that the N100 component

reflects inhibitory processing mediated by the activity of inhibitory interneurons (Nikulin et al.,

2003; Bender et al., 2005). For example Paus et al. (2001) reported a significant correlation

between the amplitude of the MEPs and the amplitude of the N100 component. Nikulin et al.

(2003) observed that MEP amplitude and N100 component had an inverse relationship in a pre-
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movement period and an increases in MEP amplitude were associated with decreases in size

of the N100 component. In addition, Bonnard et al. (2009) investigated the relationship of the

N100 component at different stages of a movement process. They found that in periods of high

cortical excitability, i.e. during the preparation of movement, the N100 amplitude was reduced,

whereas the intention to resist a movement was associated with a higher N100 amplitude around

the central motor areas. The inhibitory character of the component is also supported by phar-

macological studies, which were able to provide direct evidence that the N100 component is

linked to late GABAB-mediated inhibitory neurotransmission within the primary motor cortex

(Premoli, Castellanos, et al., 2014).

There are only few studies who investigated TBS after-effects directly on the level of the cor-

tex, using TEPs and MEPs as variables of interest (Vernet et al., 2013; Gedankien et al., 2017;

Ozdemir et al., 2021). As a consequence, it is not well understood how cTBS modulates cortical

excitability beyond the area of M1. It is also unclear whether TEPs and MEPs represent TBS-

induced modulation of cortical excitability in a similar fashion, or whether they index separate

mechanisms of cortical plasticity. Last, it is unknown how the TEP is modulated within respon-

der subgroups, i.e. individuals that show either an inhibitory or facilitatory cTBS response at

the corticospinal level.

The current study utilized a single-blinded sham controlled design in which three doses of

cTBS were applied over the M1 and the resulting after effects were subsequently tracked by

repeated measurements of MEPs and TEPs. This experimental design is inspired by a study

from Nettekoven et al. (2014), who used a similar multi-dose approach to investigate iTBS in-

duced cortical plasticity and the associated changes in functional magnetic resonance imaging

(fMRI)-based motor-network connectivity. Based on this repeated modulation and measure-

ment approach, the current study aims to explore the (dose-dependent) cTBS after-effects on

cortical and corticospinal excitability indexed through the TEP and MEP, respectively.
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2 Material and Methods

2.1 Participants

The study was conducted with 29 healthy volunteers (15 female, age (mean ± SD): 26.2 ±

3.0 years, range: 20-32 years) recruited from the campus of the Juelich Research Centre. All

participants gave their information consent prior to participation and received a monetary com-

pensation of 15 C per hour. Participants had no self-reported history of neurological conditions

and had no metallic implants. Participants were right handed, which was assessed through the

Edinburgh Handedness Inventory (Oldfield, 1971). The study received approval by the ethics

committee of the Faculty of Medicine, University of Cologne (Zeichen: 17-244). The results

of this study are based on 21 out of 29 participants that could be included in the final analysis

after preprocessing.

2.2 Data acquisition

2.2.1 Electromyography (EMG)

MEPs were recorded from the first dorsal interosseous (FDI) muscle of the right hand using ad-

hesive Ag/AgCl surface electrodes (H124SG, Covidien, Dublin, Ireland). The electrodes were

placed in a belly-tendon montage with the active electrode placed on the belly of the muscle,

the reference electrode placed on the metacarpophalangeal joint of the index finger and the

ground electrode was placed proximally over the tendons to the muscle. The EMG signals were

digitized with a 10 kHz using a PowerLab 26T and the LabChart 8 software package, epoched

from -5 ms to 75 ms around the TMS pulse and stored for later analysis (ADInstruments, New

Zealand). Participants were instructed to relax their hand during the experiment if visual in-

spection of the EMG activity suggested a pre-activation of the FDI.
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2.2.2 Electroencephalography (EEG)

TEPs were recorded with a TMS-compatible EEG system (Easy Cap, Brain Products, Ger-

many), consisting of 61 Ag/AgCl C-slit electrodes positioned according to the standard 10-20

System on the subject’s scalp. Two additional electrodes (FT9, FT10) were used to record

electrooculographic activity evoked by vertical and horizontal eye movements by placing them

below the left eye and another close the lateral canthi of the right eye, respectively. The ground

electrode was placed on the AFz position and the reference electrode was placed on position

FCz. Electrode wires on the EEG cap were arranged perpendicular to the current flow in-

duced by the TMS coil in order to minimize the impact of TMS-induced measurement artifacts

(Sekiguchi et al., 2011) prior to the experimental session.

After the cap was positioned on the participant’s head, the skin below the electrodes was cleaned

and disinfected with alcohol using a cotton swap and then scraped and filled with Abralyt HiCl

Electrolyte Gel (EASYCAP GmBH, Germany). Skin-electrode impedance was checked to be

below 5 kW before start of the measurement. A thin plastic layer was wrapped around the

EEG cap to avoid a direct contact of the TMS coil with EEG electrodes. The EEG signals were

recorded and amplified by a BrainAmp DC MR+ amplifier (BrainProducts GmbH, Germany) at

a sampling rate of 5 kHz and stored on a computer for further analysis. Earplugs were provided

to the subjects to reduce the contamination of TEPs with auditory evoked potentials caused

by clicking noise from discharging the TMS coil (Ilmoniemi & Kičić, 2010; ter Braack et al.,

2015).

2.2.3 Transcranial magnetic stimulation (TMS)

The application of single magnetic pulses was performed with a figure-of-eight Double 70mm

Alpha Coil (Magstim Company Ltd., UK), connected to a monophasic Magstim Bistim2 stimu-

lator (Magstim Company Ltd., UK). The hotspot of the FDI muscle was determined by localiz-

ing the point on the scalp above left M1 that produced the strongest and most reliable peripheral

EMG response in the right hand. The center of the stimulation coil was placed tangentially to
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the skull, with the coil handle pointing posterior and tilted approximately 45 degrees away from

the sagittal plane. In this orientation, the induced current in the brain flows in posterior-anterior

direction, and recruits the corticospinal pathways primarily transsynaptically through excitatory

interneurons (Kaneko et al., 1996; Hallett, 2007; Klomjai et al., 2015).

This FDI hotspot was registered within a BrainSight neuronavigation system (Rogue Research

Inc, Canada) on a MNI template brain and used as a reference point to monitor accurate coil

positioning throughout and between experimental session. The resting motor threshold (RMT)

is defined as the intensity that generates a MEP with at least 50 µV peak-to-peak amplitude in at

least 5 out of 10 consecutive trials (Rossini et al., 1994). In this study, the RMT was determined

using a maximum-likelihood estimation as implemented in the TMS Motor Threshold Assess-

ment Tool (MTAT; http://www.clinicalresearcher.org/software.htm), which has shown to be an

efficient method to determine RMTs (Ah Sen et al., 2017). The RMTs were always defined

based on the maximum stimulator output (MSO). The stimulation intensities for the different

experimental blocks were then always selected relative to the RMT of the particular individual

and are therefore reported as percentage of the individual RMT. For example, if the RMT of

an individual is 36% of the MSO, 90% of the individual RMT will correspond to a stimulation

intensity of ((36 * 90%) / 100) = 32.4% MSO. Localization of the FDI hotspot and the deter-

mination of the RMT were performed after the EEG cap was placed on the subject’s head, as

the EEG cap increases the distance between the TMS coil and the brain and therefore requires

higher stimulation intensities.

Three different stimulation intensities were used when probing corticospinal and cortical ex-

citability. Single-pulses were applied with 90% or 110% RMT during the measurement of

MEPs and with 80% RMT during measurement of TEPs (Figure 1A). Importantly, stimulation

intensities always refer to the intensity of the single pulses that were used to measure cortical

or corticospinal excitability and not the stimulation intensity of the cTBS. The low intensity
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during measurement of the TEP was specifically chosen to avoid peripheral activation of the

target muscle, as recurrent somatosensory feedback might affect the resulting TEP response

(Petrichella et al., 2017; Conde et al., 2019). Furthermore, lower stimulation intensities reduce

the size of TMS-induced artifacts in the EEG recording (Mutanen et al., 2013).

Application of cTBS was performed with a figure of eight 70mm Double Air Film Coil (Magstim

Company Ltd., UK) connected to a biphasic Magstim Rapid2 stimulator (Magstim Company

Ltd., UK). The RMT was determined for this stimulator and stimulation coil independently

from the setup used for single pulse stimulation. The application of cTBS was performed as

originally described by Huang et al. (2005) and applied over FDI hotspot of M1. Each applica-

tion consisted of 600 pulses, applied in bursts of three pulses at a frequency of 50 Hz, repeated

each 200 ms for a total duration of 40 s in total. The stimulation was performed with an inten-

sity of 70% of the individual RMT.

In the sham session, a parieto-occipital vertex sham stimulation was performed, comparable to

the sham stimulation performed by Nettekoven et al. (2014). The stimulation coil was placed

around the POz electrode along the vertex, with the coil handle pointing downwards towards

the ground. The coil handle was then tilted away in posterior direction so that the center of coil

was at least a few centimeters away from the head and not tangential to the surface of the skull

or the underlying cortex. In this position, participants can still perceive the vibration of the

coil during stimulation and hear the clicking noise, but the induced electric field cannot excite

cortical neurons.

2.3 Experimental Design

The study was conducted as a single-blinded cross-over study designed to investigate the dose

dependent effects of cTBS on corticospinal excitability (assessed through MEPs) and cortical

excitability (assessed through the TEP). The experiment was performed in two separate ses-
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sions that either included three repetitions of a real cTBS or a sham stimulation instead. The

order of sessions was pseudo-randomized and sessions were performed at least 1 week apart

(mean ± SD: 15.9 ± 13.6 days) to avoid possible carry-over effects from the cTBS to the sham

sessions. If possible, sessions were always performed at the same time of the day, to minimize

intra-individual variability and avoid possible confounds (ter Braack et al., 2019). Each session

took approximately three hours to complete (90 minutes of preparation and 90 minutes of mea-

surement time). In the following sections, the procedures will be described in detail using a

cTBS session as example, since both sessions (cTBS and sham) were performed exactly in the

fashion anyway.

2.3.1 Motor tasks

The motor performance of the participants was assessed with two different tasks that were

performed before and after the TMS-EEG recordings (see next section). First, participants

performed the Purdue Pegboard Test (PPT) (Tiffin & Asher, 1948), which tests manipulative

dexterity and requires the participants to insert small metal pegs into a series of holes as quickly

as possible. Due its resemblance to actions performed real life situations, improvements in PPT

performance are more likely to indicate clinically relevant changes in behavior than improve-

ments in simple reaction time tasks. Participants performed three repetitions of the PPT with

each hand (alternating) and each run took 30 s to complete. The PPT performance for each

hand was evaluated based on the average number of pegs correctly placed across the three runs.

Afterwards, participants performed a simple bimanual finger tapping task (FTT), which is a

common method to index basal properties of motor performance, such as tapping frequency,

reaction time or amplitude of the finger movement in ageing or in clinical populations (Shammi

et al., 1998; Sommervoll et al., 2011). The task was implemented using the Presentation soft-

ware (Neurobehehavioral Systems, Inc.). Left and right CTRL key on the keyboard were used

as response keys. During the task, participants were presented with a pseudo-random sequence

of arrows pointing to the left or to the right (20 trials in total). Arrows were always presented
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for 2 s on the screen and the inter-trial interval between presentation of arrows was 1.5 s with an

additional jitter of 0-2 s. Subjects were instructed to repeatedly tap the left or the right CTRL

key on the keyboard with their left or right index finger respectively, depending on the direction

of the arrow direction was displayed on the screen. They were instructed to press the keys as

quickly as possible without causing discomfort and stop immediately when the arrow disap-

peared again. The frequency of key presses as well as reaction times (i.e. time of first button

press after presentation of the arrow) were used as index for possible behavioral effects induced

by cTBS.

2.3.2 TMS-EEG protocol

Participants were seated in a comfortable Brainsight TMS chair with their elbows supported by

the chair’s armrest and their forearms relaxing on a pillow to minimize muscle activity from

involuntary movements. Participants were also specifically instructed to avoid any unnecessary

movements for the duration of electrophysiological measurements as this might potentially alter

the after-effects of cTBS (Iezzi et al., 2008). The heads of the participants were fixed with a

chinrest and an additional articulated arm was used support the head on the right hemisphere

(opposite to the stimulation coil) against potential lateral movements of the head. Once the FDI

hotspot was located and the RMT determined, the coil was fixed to the coil holder of the TMS

chair to avoid unnecessary movement of the coil during the experiment. If the coil position

deviated due to subject movement (indicated by the neuronavigation), the coil was readjusted

by the experimenter during an inter stimulus interval (ISI). Participants were also instructed to

keep their eyes open and focus on a white dot displayed on the computer screen in front of them.

Each of two experimental sessions consisted of four blocks of electrophysiological recordings

(Figure 1B). Block 0 represented a pre-interventional assessment and was performed to acquire

a baseline of corticospinal excitability (MEP) and cortical excitability (TEP) prior to any mod-

ulation through cTBS. At the beginning of the other three blocks, cTBS was applied over left
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M1 to modulate excitability. Afterwards, changes in excitability were quantified by measuring

MEPs, TEPs and MEPs again. MEPs were measured by applying 15 single pulses with 90%

RMT and 15 single pulses with 110% RMT to the FDI hotspot of the left hemisphere (Figure

1A), using an ISI of 6.5s. For the measurement of TEPs, 100 single pulses were applied with

an intensity of 80% RMT and an ISI of 6.5 - 9s (plus a random jitter of 0 - 0.5 s).

Figure 1: Visual summary of the experimental protocol. (A) Summary of stimulation pa-
rameters and approximate duration of the intervention, acquisition of motor-evoked potentials
(MEP) and TMS-evoked potentials (TEP). (B) Sequence of stimulation blocks within the ex-
periment. Block 0 represents a baseline measurement of MEPs and TEPs. Remaining blocks
start by inducing neuroplasticity via cTBS and measure the dose-dependent changes in MEPs
and TEPs afterwards.

After the baseline assessment of MEPs and TEPs, the first dose of cTBS (600 pulses) was ap-

plied to the left M1 (FDI hotspot) at the beginning of block 1. A waiting period of three minutes

was included after the application of cTBS, as earlier studies suggested that the neuroplastic ef-

fects of TBS require some time to develop (Huang et al., 2005; Hamada et al., 2013). Following

this waiting period, MEPs were measured (MEP 1 in Figure 1B) to quantify the early impact of

13

28



cTBS on corticospinal excitability approximately 5 minutes after the modulation. Then, TEPs

were acquired (TEP 1 in Figure 1B) over a period of around 12 minutes. Approximately 18

minutes after the application of the cTBS, MEPs were measured a second time to quantify the

late effect of cTBS on corticospinal excitability (MEP 2 in Figure 1B). This procedure of modu-

lating M1 excitability with cTBS (600 pulses), measuring MEPs shortly after cTBS, measuring

TEPs and measuring MEPs again was performed two additional times (block 2 and 3), until

three doses of cTBS (a total of 1800 pulses) were applied to the subject’s FDI hotspot. After

the last acquisition of MEPs (MEP 6), the RMT was determined and the subjects completed the

PPT and the FTT again.

2.4 Data preprocessing

2.4.1 EMG signals

Raw EMG signals were detrended, demeaned and MEP amplitudes were extracted by measur-

ing the peak-to-peak voltage in a time window of 15–50 ms after the TMS pulse using custom

made scripts written in MATLAB (R2016b, Mathworks, Inc., Natick, MA). All trials were vi-

sually inspected to exclude MEPs contaminated by a pre-activation of the target muscle or high

levels background activity or noise in the EMG signals. MEP amplitudes were averaged within

each measurement block and normalized to the baseline measurement (MEP 0) of each session

(mean amplitude at block X / mean amplitude at baseline) * 100). Thus, changes in MEP am-

plitude are reported as percentage of the baseline measurement if not explicitly stated otherwise.

Since differences in motor cortical excitability prior to the intervention might potentially in-

fluence the susceptibility to the cTBS-induced plasticity, absolute MEP amplitudes at baseline

were statistically compared between both sessions using a two sample t-test. Participants show-

ing significant differences in MEP amplitude at baseline between the two sessions (p < 0.01)

were excluded from the analysis, as this suggested that either the RMT was not appropriately

measured, the stimulation hotspot was not well defined, or the participant did not relax their
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muscles appropriately during the baseline measurement. This criterion was only applied to

MEPs acquired with 110% RMT, as the MEP amplitude evoked by subthreshold intensities

(90% RMT) are not as consistent as suprathreshold intensities and might have led to an erro-

neous rejection of participants based on differences in EMG noise levels between the sessions.

There were significant differences (p < 0.01) in MEP amplitudes at baseline in 6 out of 29 par-

ticipants, which were excluded from further analysis. An average of 14.2 ± 1.5 (mean ± SD)

MEPs were included in the calculation of the MEP block average. The minimum number of

MEPs within a block were 8 out of 15, which is still in the range of number of MEPs required

to allow an appropriate estimation of the corticospinal excitability (Groppa et al., 2012).

2.4.2 EEG Signals

The preprocessing of EEG data was performed using MATLAB and a combination of the

EEGLAB toolbox (version 14.1.1) (Delorme & Makeig, 2004), the TMS-EEG signal anal-

yser (TESA) extension (Rogasch et al., 2017) and additional custom made scripts. Due to the

complex interaction of TMS-induced artifacts, appropriate preprocessing of TMS-EEG signals

is a crucial step to obtain valid measurements of cortical excitability. EEG preprocessing steps

were performed independently for each subject, session and measurement block.

First, the four blocks TMS-EEG blocks, containing 100 TEPs each, were extracted from the

continuous EEG recording. High amplitude TMS pulse artifacts were removed between -2 to

10 ms relative to the trigger of the associated pulse and interpolated using a smoothed segment

directly preceding the removed interval (-14 to -2 ms). Afterwards, a DC detrend was applied

to the recording. An initial rejection of corrupted channels was performed, primarily to re-

move channels that were unambiguously disconnected or otherwise defective and not recording

EEG activity. Channels that showed high levels of background noise (e.g. due to power-line

interferences or high impedances) were still maintained in the recording at this stage. A 60 Hz

low-pass filter was applied, followed by 1 Hz high-pass filter and a notch-filter between 49–51
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Hz. Last, EEG signals were epoched from -1000 to 1000 ms around the TMS pulses and down-

sampled from 5 kHZ to a sampling frequency of 625 Hz. A first visual inspection of epochs was

performed to remove epochs that were contaminated by high amplitude artifacts or flat lining

thereby corrupting the whole epoch (due to bad connection of ground or reference electrode, or

bursts of EMG activity caused by head movements or facial muscles).

A second round of channel rejections was performed to remove remaining channels contain-

ing high levels of noise or unsystematic high amplitude artifacts, as they might otherwise in-

terfere with the independent component analysis (ICA). Missing channels were then interpo-

lated using the superfast spherical spline interpolation implemented in the eeg_interp() function

of EEGLAB. A baseline correction was applied, using the whole pre-stimulus period from

-1000 ms to -2 ms as baseline. EEG channels were then re-referenced to the common average

reference. The ICA was then performed on this pre-cleaned dataset, using the logistic info-

max algorithm (Bell & Sejnowski, 1997), implemented in the binica() function of EEGLAB.

Afterwards, a second round of epoch rejection was performed in the component space. This

step was required to exclude epochs that were contaminated by high amplitude artifacts in the

component space that might have remained unnoticed in the channel space. If epochs were

removed during the inspection of the component space, the ICA was repeated again without

these epochs. These ICs were then visually inspected to remove the remains of the TMS pulse

artifacts, electrooculographic activity caused by eye movements and eye blinks, TMS-evoked

muscle activity and electrode noise, using the component classifications from TESA to make

informed decisions about the origin of the components (i.e. either neural or artificial).

2 out of 29 subjects had to be excluded from analysis as insufficient EEG data quality did not

permit a systematic removal of TMS-induced artifacts. In the final dataset (N = 21, after EMG

and EEG preprocessing), an average of 93.4 ± 4.0 (mean ± SD) trials were included for the gen-

eration of the TEPs in each block. The minimum number of TEPs across all these measurements

were 78, which is still above the minimum number of trials required to obtain a reliable TEP,
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according to a study from (Kerwin et al., 2018). An average of 2.8 ± 1.9 (mean ± SD) chan-

nels were removed per measurement block, but not more than 6. Following ICA, 18.2 ± 4.6

(mean ± SD) components were removed on average, but not more than 31.

2.5 Data analysis

2.5.1 Analysis of motor tasks

Differences in motor task performance between cTBS and sham session was assessed based on

three variables of interest. This includes the number of pins placed during PPT, as well as the

tapping frequency and reaction time in the FTT. These variables were analyzed separately for

both hands (and not as a compound measure), as there are indications that cTBS modulation

can lead to opposite after-effects on cortical excitability in the contralateral hemisphere (Suppa

et al., 2008).

2.5.2 Analysis of motor-evoked potentials (MEP)

Differences in MEP amplitude between cTBS and sham were analyzed in several different ways

and separately for MEPs acquired with 90% RMT and 110% RMT. The main focus was on

MEPs acquired with 110% RMT, as intensities below 100% RMT are considered sub-threshold

and only elicit MEPs sporadically. Furthermore, it has been shown that the strongest cTBS-

induced MEP suppressions can be observed when MEPs are probed with higher stimulation

intensities (Vallence et al., 2015; Goldsworthy et al., 2016). The general effect of interventions

on MEP amplitude was established by testing whether cTBS or sham produced significant de-

viations from baseline at any measurement point. The general relationship between time (MEP

1, . . . MEP 6) and interventions (cTBS, sham) and their influence on MEP amplitude were also

assessed. A direct comparison of normalized MEP amplitudes between cTBS and sham was

performed to test if cTBS resulted in significant changes in corticospinal excitability between

interventions.
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2.5.3 Definition of responder subgroups

Prior studies have demonstrated a large inter-individual variability regarding the strength and

direction of TBS after-effects on cortical excitability (Hamada et al., 2013). Hence, individuals

were categorized into responder subgroups based on their change in MEP amplitude in the cTBS

session. Subgroups were defined based on the average change in normalized MEP amplitude

(110% RMT) averaged across all timepoints after the first application of cTBS (MEP 1 to MEP

6). Subjects were categorized as cTBS faciliatory if the averaged MEP amplitude showed a net

decrease and as cTBS inhibitory if their MEP amplitude showed an overall increase. Differences

between responder subgroups were always investigated based on the average TEP at baseline

from both sessions.

2.5.4 Analysis of TMS-evoked potentials (TEP)

Analysis of EEG activity was focused around the TEP, which was used as a measure of cor-

tical excitability (Rogasch & Fitzgerald, 2013). Differences between TEPs were investigated

by directly comparing the cortical responses between cTBS and sham session, either within

the whole group of 21 individuals or within the responder subgroups. An additional analysis

directly compared the cortical responses between the two responder subgroups. TEPs were

investigated with a particular focus on three channels of interest, covering ipsilateral (C3) and

contralateral M1 (C4) as well as the region in between, over the vertex (Cz). Channel C3 was

located directly below the stimulation site and therefore captures the cortical response immedi-

ately after the TMS pulse activates M1. Differences in cortical excitability between cTBS and

sham session were assessed through a direct comparison of the TEPs in the temporal domain,

using a cluster based permutation test for statistical analysis (see section 2.6.2). An equivalent

analysis was also performed for the global mean field power (GMFP). The GMFP corresponds

to the standard deviation of all EEG channels across time and represents a general measure of

cortical activity (Lehmann & Skrandies, 1980).
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The latency of TEP peaks can exhibit considerable interindividual variability (ter Braack et al.,

2019). In order to account for these interindividual differences, peak amplitudes were extracted

at individual latencies for each subject, session and measurement block. Peak amplitudes were

obtained from predefined time windows corresponding to the temporal extent of the commonly

observed TEP peaks, i.e. P30 (20–40 ms), N45 (40–55 ms), P60 (55–85 ms), N100 (85–135

ms) and P200 (160–240 ms). Comparable time windows were also utilized in previous TMS-

EEG studies (Casula et al., 2014; Premoli, Castellanos, et al., 2014; Opie et al., 2017; Chung

et al., 2018).

Channel C3 was used as a reference channel to determine the peak latencies of the TEP peaks for

all other channels. This means that the scalp topography of e.g. peak N45 shows the voltage of

all channels at the same latency, i.e. the time in the interval of 40–55 ms at which the activity of

channel C3 showed the most negative amplitude. In addition, peak components were computed

by averaging the EEG signal ±5 ms centered around the peak latency to reduce the variability of

the estimated peak amplitude. Reductions or increases of peak amplitudes are always described

with respect to the polarity of the component. For example, an amplitude increase of the N45

component (N = negative) will indicate that the negative peak became more negative, whereas

an increase in amplitude of the P30 component (P = positive) will mean that the voltage of the

peak increased.

2.5.5 Dose effect of cTBS on MEP amplitude and N100 component of the TEP

One hypothesis of the current study was that a repeated application of cTBS may lead to accu-

mulating facilitatory or inhibitory effects on corticospinal and cortical excitability as the exper-

iment progresses. These dose effects of cTBS were investigated using MEP amplitude as well

as the N100 component of the TEP as variable of interest. In order to test whether time within

the session allowed a general prediction about the size of the MEP amplitude as more doses of

cTBS were applied, a linear regression was performed on the individual trajectories of normal-

ized MEP changes (using the MEP amplitude from MEP 0 to MEP 6 to fit the regression line
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within each individual). If cTBS leads to a dose-dependent increase or decrease of corticospinal

excitability, the slopes should be significantly greater or smaller than zero on a group-level (i.e.

within whole group and subgroups). In contrast, slopes obtained from the sham session should

not be significant from zero at group-level, as no dose-dependent modulation was expected in

this case. Based on this assumption, it was tested whether the collections of individuals slopes

were significantly different from zero for any of the groups or interventions. The same pro-

cedure was also utilized to investigate dose-dependent effects at the cortical level, using the

normalized N100 peak of the TEP (i.e. each peak is represented as percentage of baseline)

as variable of interest. In this case, only four data points were used to fit the regression line

within individuals, since the TEP was only acquired four times throughout the experiment. The

analysis was repeated for the three channels of interest (C3, Cz, and C4).

2.5.6 Correlation between MEP and TEP

Another goal of this study was to investigate whether cTBS-induced changes in cortical ex-

citability (TEP) are related to the changes in corticospinal excitability (MEP). For this purpose,

the change in N100 amplitude was correlated with the early and late MEP responses (110%

RMT) that were acquired before and after the TEP within in the same block. Both measures

were represented as voltage difference from baseline, i.e. D MEP and D TEP. Correlations were

calculated between early MEPs and the TEPs, as well as late MEPs and the TEPs for all 61

EEG channels.

2.6 Statistical Analysis

2.6.1 General statistics

Statistical analyses were performed in Python (version 3.6.10) using the pingouin package (ver-

sion 0.3.2), the scipy package (version 1.3.1) and the mne-python package (0.21.0). General

relationships between time and interventions for behavioral performance variables, RMT and

MEPs were assessed through a two-way repeated measures analysis of variance (rmANOVA)
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using the rm_anova() function of the pingouin package. T-tests were performed using the imple-

mentation of the pingouin package. Differences from baseline were assessed using one-sample

t-tests for normalized MEPs. Differences in MEPs between experimental conditions were as-

sessed with paired t-tests. Dose-effects were assessed through linear regressions, implemented

in the scipy package. Correlation between MEPs and TEPs were based on the Spearman’s

rank correlation coefficient, also implemented in the scipy package. For cluster based permu-

tation testing (section 2.6.2), the permutation_cluster_test() implementation of the mne-python

package (version 0.21.0) was utilized. Error bars or shaded regions in the figures indicate the

standard deviation (SD), the standard error of the mean (SEM) or the within-subject standard

error (SE) (O’Brien & Cousineau, 2014). The exact meaning will be specifically declared in the

figure caption. Thresholds for statistical significance were set to p < 0.05 if not stated otherwise.

Correction for multiple comparisons was performed using the Bonferroni method. In case of

MEPs, correction for multiple comparisons was performed at the level of MEP blocks (N = 6,

excluding baseline). Statistical results will always be reported using the uncorrected p-values.

However, the null hypothesis was only rejected if the p-value was smaller than the Bonferroni-

adjusted a = 0.00833 (0.05/6). Regarding the relationship between MEPs and TEPs (section

2.5.5), a sequential approach was used for correction of multiple comparisons. Channel C3, Cz

and C4 were assessed first, only correcting for three channels and the two MEP blocks using a

Bonferroni-adjusted -level of 0.0833 (0.05/6). Correlations of the remaining 58 EEG channels

were considered explorative, and therefore corrected using a Bonferroni-adjusted a = 0.0008

(0.05/58).

2.6.2 Cluster based permutation tests

Differences in the TEP between the two experimental conditions (cTBS vs. sham) or responder

subgroups (inhibitory vs. faciliatory group) were statistically assessed using a non-parametric

cluster based permutation test. These statistics belong to the family of non parametric permu-
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tation tests. They are particularly useful if the variables of interest are spatially or temporally

correlated, as they do not require an explicit adjustment to deal with the problem of multiple

comparisons. Therefore, they are highly recommended for statistical comparisons in EEG or

MEG data (Maris & Oostenveld, 2007).

In cluster based permutation testing, a test statistic (e.g. t-test or F-test) is computed for all

samples of interest (e.g. channels, time points, frequencies or a combination of those) between

two groups or experimental conditions. The obtained test statistics are then compared to a pre-

defined threshold corresponding to a desired a-level to establish significance of samples (e.g.

a p-value < 0.05). Samples below the critical threshold are then clustered based on their adja-

cency to neighboring or directly connected samples by aggregating their test statistics together

(through a sum). Here, clusters are either formed on a series of consecutive timepoints or on

electrodes localized next to each other on the scalp (e.g. during analysis of TEP peaks).

The size of the aggregated test statistic of a particular cluster in the real dataset is then compared

against the largest cluster of a reference distribution of random clusters that were obtained from

permuting the original data n times (Monte Carlo permutation tests). The count of random clus-

ters that are smaller than the cluster obtained from the real measurement then corresponds to

the p-value of that cluster. For example, if n = 100 permutations were performed and the real

cluster is larger than the test statistic of 95% of the permutations, the cluster would be consid-

ered significant if the threshold for significance was set to p < 0.05 at the level of clusters.

A paired t-test was used as a test statistic whenever cTBS and sham were directly compared

within the whole or within subgroups. An independent t-test was used as test statistic if re-

sponder subgroups (faciliatory and inhibitory) were statistically compared against each other.

During the formation of clusters, the minimum size of a cluster was defined as n 2, only in-

cluding directly neighboring samples. The reference distribution of test statistics was always

obtained from n = 5000 permutations. Direct comparison of the TEPs in the temporal domain

were also realized using cluster based permutation statistics. Tests were performed separately
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for each channel of interest (C3, Cz, C4, and the GMFP) and each block. Clustering was per-

formed within each channel along the temporal dimension. TEPs from 0-500 ms post stimulus

were compared. For the formation of clusters, only samples with a p < 0.05 were considered.

The corrected threshold for significance at the level of clusters was set to p < 0.01.

Differences in TEP peak amplitude between cTBS and sham were assessed for each peak (P30,

N45, P60, N100, P200) and measurement (TEP 0 - 3) using a spatial cluster based permutation

test. Similar approaches have been used before in other studies to investigate differences in

the TEP between two experimental conditions or between groups (Premoli, Castellanos, et al.,

2014; Chung et al., 2018). Clusters were formed using adjacent channels on the scalp topogra-

phy using a cluster-forming threshold of p < 0.025. This slightly lower threshold was selected

to improve the spatial sensitivity of the formed clusters, as the initial analysis with a less strict

threshold resulted in spatially diffuse clusters. The threshold for significance at the level of

clusters was set to p < 0.05.

3 Results

3.1 Effects of cTBS on RMT

A comparison of RMTs revealed a significant main effect of Intervention, but no interaction

of Time and Intervention [rmANOVA, Intervention {cTBS, sham} x Time {pre, post}, Inter-

vention*Time: F1, 20 = 0.878, p = 0.360; Intervention: F1, 20 = 9.252, p = 0.006; Time: F1, 20

= 0.547, p = 0.468]. The RMT between cTBS and sham prior to the intervention revealed

no significant difference (pre-cTBS: 40.9 ± 4.2%, pre-sham: 40.2 ± 3.9%; t20 = 1.404, p =

0.17559). However, this difference was significant at the second assessment of the RMT after

the completion of the experimental protocol between post-cTBS (41.4 ± 4.3%) and post-sham

(40.2 ± 4.0%, t20 = 3.477, p = 0.00238).
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3.2 Effects of cTBS on motor taks performance

Group-level performance during the PPT for the left and right hand is summarized in Figure 2

before and after application of three doses of cTBS or sham. There was no significant interaction

between the factors Intervention and Time, as well as no significant main effect of Intervention

or Time on PPT performance in the left hand [rmANOVA, Intervention {cTBS, Sham} x Time

{pre, post}, Intervention*Time: F1, 20 = 0.659, p = 0.427; Intervention: F1, 20 = 0.206, p =

0.655; Time: F1, 20 = 1.454, p = 0.242]. For the right hand, the rmANOVA revealed again no

significant interaction between the factors Intervention and Time (F1, 20 = 0.069, p = 0.796) and

no significant effect of the factor Intervention (F1, 20 = 0.149, p = 0.704). However, there was a

significant effect of factor Time (F1, 20 = 11.635, p = 0.003) on the subjects’ performance in the

test.

Regarding the tapping frequency in the FTT, the rmANOVA did not indicate a significance for

the interaction between the factors Intervention and Time (F, = 0.856, p = 0.366) or the factor

Intervention (F1, 20 = 1.029, p = 0.322) for the left hand. However, there was a significant main

effect of factor Time on the subjects’ tapping frequency (F1, 20 = 34.853, p < 0.00001). This was

also the case for the right hand, revealing only a significant main effect of Time [Intervention

{cTBS, Sham} x Time {pre, post}, Intervention*Time: F1, 20 = 0.548, p = 0.468; Condition:

F1, 20 = 0.809, p = 0.379; Time: F1, 20 = 73.864, p < 0.00001].

The analysis of reaction times during the FTT did not reveal a significant interaction or signif-

icant main effects of any of the two factors for the left hand [rmANOVA, Intervention {cTBS,

sham} x Time {pre, post}, Intervention *Time: F1, 20 = 0.671, p = 0.422; Condition: F1, 20 =

0.207, p = 0.654; Time: F1, 20 = 2.681, p = 0.117]. For the right hand, only the main effect for

the factor Time was statistically significant [rmANOVA , Intervention {cTBS, sham} x Time

{pre, post}, Intervention*Time: F1, 20 = 1.925, p = 0.181; Condition: F1, 20 = 0.392, p = 0.539;

Time: F1, 20 = 8.015, p = 0.010].
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Figure 2: Changes in behavioral performance at the group-level. Performance during the
PPT and FTT at pre- and post-interventional time points for the left and right hand. Each graph
represents the change in motor task performance following three doses of cTBS or three doses
of sham. Errorbars indicate the SE.

3.3 Effects of cTBS on MEPs

In this sample of 21 individuals, cTBS was associated with an overall increase MEP amplitudes

for both stimulation intensities (Figure 3). For MEPs acquired with 90% RMT, none of the

normalized MEP amplitudes were significantly different from baseline after correction for mul-

tiple comparisons (adjusted a = 0.00833 (0.05/6)). Prior to Bonferroni correction, normalized

MEP amplitudes were significantly different at MEP 2 (t20 = 2.636, p = 0.01584), MEP 4 (t20
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= 2.902, p = 0.00881), MEP 5 (t20 = 2.314, p = 0.03140) and MEP 6 (t = 2.376, p = 0.02759)

following cTBS. In contrast, MEP amplitudes were only different from baseline at MEP 2 (t20

= 2.758, p = 0.01213) after sham intervention. There were also no significant differences in

normalized MEP amplitude from baseline when probed with 110% RMT. However, prior to

Bonferroni correction, MEP amplitudes at MEP 2 (t20 = 2.555, p = 0.01887) and MEP 4 (t20 =

2.422, p = 0.02506) were indicating an increase in corticospinal excitability following cTBS.

When measured with 90% RMT, MEP amplitudes steadily increased after the first dose (Figure

3A). In contrast, MEP amplitudes were reduced immediately after the second and the third dose

(MEP 3, MEP 5), but increased again when measured later in time (MEP 4, MEP 6). Statistical

analysis revealed that there was no significant main effect of Intervention at 90% RMT but only

for the factor of Time [rmANOVA, Time {MEP 1, . . . , MEP 6} x Intervention {cTBS, Sham},

Time*Intervention: F5,100 = 1.074, p = 0.379; Time: F5,100 = 4.827, p = 0.001; Intervention:

F1,20 = 2.990, p = 0.099].

For MEPs assessed with 110% RMT, statistical analysis revealed no significant main effects of

Time or Intervention [rmANOVA, Time {MEP 1, . . . , MEP 6} x Intervention {cTBS, Sham},

Time* Intervention: F5,100 = 1.438, p = 0.217; Time: F5,100 = 1.623, p = 0.161; Condition: F1,20

= 3.804, p = 0.065]. Even though the main effect of Intervention was not significant in any

of the two stimulation intensities, both stimulation intensities indicated a trend (p < 0.1), sug-

gesting the existence of an effect of cTBS-induced plasticity on MEP amplitudes. Furthermore,

MEP amplitudes at 110% RMT increased after the first and second dose of cTBS, but decreased

after the third application. A visual comparison of normalized MEP amplitudes measured with

90% and 110% RMT revealed a qualitatively dissimilar pattern. While MEPs acquired with

110% RMT showed a trend of increasing corticospinal excitability until MEP 4 and a decrease

afterwards, MEPs acquired with 90% RMT revealed a more variable pattern, characterized by

a high corticospinal excitability at MEP 2 and MEP 6.
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Figure 3: Modulation of corticospinal excitability at the group-level. MEP amplitude at
the different MEP blocks throughout the experiment, normalized to the baseline measurement
(MEP 0) and probed with (A) 90% RMT or (B) 110% RMT. Approximate timing of each of
the intervention (cTBS or sham) is indicated by the TMS coils. Asterisks directly above and
below errorbars indicate statistical differences from baseline. Errorbars indicate the SEM (* =
p < 0.05, uncorrected; ** = p < 0.05/6, Bonferroni correction).

Since both stimulation intensities indicated a trend for the main effect of Intervention, a direct

comparison between cTBS and sham (paired t-test) was performed at the different MEP blocks

to find out at what time after the intervention the differences in corticospinal excitability were

most distinct. However, there were no significant differences between cTBS and sham at any
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of the six MEP blocks for MEPs acquired with 90% RMT or 110% RMT after Bonferroni

correction (a = 0.00833). Prior to correction, the statistical analysis indicated a difference in

MEP amplitude between cTBS and sham at MEP 5 (t20 = 2.097, p = 0.04892) at a stimulation

intensity of 90% of RMT. Differences at MEP 4 (t20 = 1.745, p = 0.09630) and MEP 6 (t20 =

1.846, p = 0.07969) indicated a statistical trend. For MEPs acquired with 110% RMT, MEP 4

(t20 = 1.843, p = 0.08019) and MEP 5 (t20 = 2.050, p = 0.05373) indicated a trend.

3.4 Effects of cTBS on MEPs within responder subgroups

The cTBS-induced effects on corticospinal excitability revealed a high degree of interindivid-

ual and intraindividual variability across the session (Figure 4A). 12 out of 21 individuals were

categorized as cTBS facilitatory, as they showed a net increase in MEP amplitude across the

post-interventional MEP blocks (1-6). In contrast, 9 out of 21 individuals were characterized

by an average decrease in MEP amplitude and were categorized as cTBS inhibitory accord-

ingly. Whole group will always refer to the complete study sample consisting of 21 individuals,

whereas the inhibitory subgroup refers to the 9 individuals with an overall inhibitory response

and facilitatory subgroup refers to the 12 individuals with an overall faciliatory response to

cTBS.

For the inhibitory subgroup, MEP 3 (t8 = -4.305, p = 0.00260), MEP 5 (t8 = -7.157, p = 0.00010)

and MEP 6 (t8 = -8.356, p = 0.00003) were significantly different from baseline following cTBS

(one-sample t-tests). In the facilitatory subgroup, only MEP 2 was significantly increased com-

pared to baseline (t11 = 3.384, p = 0.00610). However, amplitudes at MEP 1 (t11 = 2.483, p =

0.03042), MEP 3 (t11 = 2.267, p = 0.04451), MEP 4 (t11 = 3.126, p = 0.00964), MEP 5 (t11 =

3.207, p = 0.00836) and MEP 6 (t11 = 3.076, p = 0.01055) were all statistically different prior to

the Bonferroni correction. However, it should be noted that the p-values of MEP 4 and MEP 5

were only marginally above the threshold for statistical significance and therefore still indicate

a statistical trend after the correction (Bonferroni-adjusted a = 0.00833).
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Figure 4: Modulation of corticospinal excitability within responder subgroups. (A) In-
dividual changes in MEP amplitude (depicted as voltage difference from baseline) measured
in the cTBS session with 110% RMT. (B) Group-level changes in MEP amplitude within in-
hibitory subgroup. (C) Group-level changes in MEP amplitude within the facilitatory subgroup.
Asterisks directly above and below errorbars indicate statistical differences from baseline. Error
bars indicate the SEM (* = p < 0.05, uncorrected; ** = p < 0.05/6, Bonferroni correction).

In the sham condition, none of the post-interventional MEPs were significantly different from

baseline in both of the subgroups.

The analysis of normalized MEP amplitudes within the two subgroups (Figure 4B & C) re-

vealed that cTBS-induced changes in corticospinal excitability were not significantly decreased

compared to sham within the inhibitory subgroup [rmANOVA, Time {MEP 1, ... , MEP 6} x
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Intervention {cTBS, sham}, Time* Intervention: F5, 40 = 1.775, p = 0.14; Time: F5, 40 = 1.324,

p = 0.274; Intervention: F1, 8 = 2.683, p = 0.14]. This was different for the facilitatory sub-

group (Figure 4C), where corticospinal excitability was significantly increased following cTBS

compared to sham as indicated by a significant main effect of Intervention [rmANOVA, Time

{MEP 1, ... , MEP 6} x Intervention {cTBS, sham}, Time*Intervention: F5, 55 = 1.860, p =

0.116; Time: F5, 55 = 1.557, p = 0.188; Intervention: F, = 8.554, p = 0.014]. A post-hoc com-

parison of MEP amplitudes between cTBS and sham at the different MEP blocks revealed a

significant difference between MEP 6 in the facilitatory subgroup (t11 = 3.292, p = 0.00718).

The differences at MEP 2 (t11 = 2.222, p = 0.04819), MEP 4 (t = 2.408, p = 0.03474) and MEP

5 (t11 = 2.944, p = 0.01335) were only significant prior to correction for multiple comparisons.

The post-hoc comparisons within the inhibitory subgroup revealed a difference between cTBS

and sham at MEP 6 that was not statistically significant following Bonferroni correction (t8 =

-2.562, p = 0.03353).

A direct comparison of cTBS-induced plasticity (average of normalized change from baseline

across all post-interventional MEP blocks) within both subgroups revealed a significant larger

variance in the facilitatory compared to the inhibitory subgroup (Levene’s Test, F1, 19 = 11.12,

p = 0.00349), as well as a significantly larger induced cortical plasticity (Welch’s t-test, t16

= -4.30, p = 0.00119). These differences in size of cTBS-induced plasticity, as well as the

larger number of individuals showing a facilitatory response explain why the overall effect of

intervention was not statistically significant at the whole group for any of the post-interventional

MEP blocks after the Bonferroni correction.

3.5 Effects of cTBS on TEPs

The TEP was characterized by a several peaks (P30, N45, P60, N100, P200) that were clearly

identifiable on a group-level (Figure 5). The N100 component was associated with a character-

istic negativity spatially located in the central regions between the left and right primary motor
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cortices around the channel Cz. It should be noted that for visual representation, peaks were

detected on the grand average TEP and not within each subject in Figure 5. As consequence,

the topographical maps in Figure 5 are not consistent with the topographical maps in Figure 8,

where peak amplitudes were first extracted from each individual and then averaged.

A direct comparison of the TEPs in the time domain around the motor related channels (Fig-

ure 6) revealed that the cortical response was most differentiated below the stimulation site at

the ipsilateral cortex (C3) and became less complex with increasing distance (Cz and C4). Es-

pecially the early components (< 100 ms) were only weakly present around the contralateral

hemisphere. The TEP around the vertex (Cz) still recorded some of the earlier TEP compo-

nents (P30, N45 and P60), but was mainly characterized by a large positive peak around 200

ms (P200). Statistical analysis revealed that the TEP was significantly decreased after the third

dose of cTBS (TEP 3) approximately 120 to 190ms after the TMS pulse (p = 0.0056) around

left M1 (C3). In contrast there were no significant differences between the measured controls

following cTBS and sham in any of the four blocks in channel Cz, C4 or the GMFP (all clusters

with p > 0.01).
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Figure 5: Grand average of the TMS-evoked potential. Butterfly plots and topographical
scalp maps of the TEP recorded from 61 EEG channels and averaged across 21 subjects. Dotted
line at t = 0 indicates the application of the TMS pulse. The channel above the stimulation site
(C3) is shown in red. Topographical maps show the electrical potential across the scalp at
characteristic time points that correspond to the peak components of the TEP at channel C3.
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The comparison of TEP responses in the temporal domain between cTBS and sham within the

inhibitory and facilitatory subgroups (Figure 7) revealed very comparable cortical responses

compared to the whole group (Figure 6). Again, the TEP was most pronounced around the

stimulation site becoming weaker with increasing distance from the stimulation site. Early TEP

components showed a similar reduction in the contralateral hemisphere within both subgroups

and conditions as observed in the whole group. This was also the case for the response around

200ms over the vertex, showing large interindividual variability within both of the subgroups.

Figure 6: Comparison of the TEP within the whole group (N=21) Dotted line at t = 0 indi-
cates the application of the TMS pulse. Shaded areas around the potentials indicate the SD. Red
shaded rectangles indicate clusters that were significantly different between both interventions
(p > 0.01).
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Figure 7: Comparison of the TEP within the two responder subgroups. The dotted line
at t = 0 indicates the application of the TMS pulse. (A) TEP responses and GMFP within the
cTBS inhibitory subgroup and (B) within the cTBS facilitatory subgroup. Shaded areas around
the potentials indicate the SD. Red shaded rectangles indicate clusters that were significantly
different between both interventions (p > 0.01).
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There were no significant differences between cTBS and sham within the inhibitory subgroup

(all clusters with p > 0.01). Within the facilitatory subgroup, there was a significant cluster

of differences after the third dose of cTBS (TEP 3) around C3 (p = 0.0016). This cluster

was characterized by a reduction of cortical response following cTBS, similar to the difference

observed at the group-level, but appearing slightly delayed and with a larger temporal extent.

There were no significant differences between the GMFP in any of the four blocks between the

two sessions for the whole group or within the two subgroups (all clusters with p > 0.01).

3.6 Effects of cTBS on TEP peaks

Scalp topographies revealed a general concordance between TEP peaks in cTBS and sham ses-

sion across all four acquisition time points (Figure 8). The P30 component was characterized

by a focal increase in amplitude around the stimulation site (C3) and a weak negativity around

the frontal and occipital regions. The topography of the N45 component consisted of a spa-

tially distributed negativity around the stimulation site with a spread towards centro-parietal

regions and the vertex. The P60 component was characterized by only weak and sporadic po-

tential differences across the scalp, including an increase in amplitude around the stimulation

site as well as a decrease in amplitude at occipital regions. The N100 component showed a

commonly observed bilateral negativity around the central somatosensory regions, with a dom-

inance around the ipsilateral hemisphere, which became more pronounced at the later stages of

the experiment following cTBS. The P200 component was characterized by a large positivity

over fronto-central channels, as well as a large negativity around the occipital regions.

Regarding the baseline measurement (TEP 0), cluster based permutation tests did not detect any

clusters of activity that were significantly different between the two interventions. At TEP 1, a

significant reduction of amplitude was detected at the N45 component (p = 0.032) in the cTBS

session. These differences were spatially localized around central and centro-parietal channels

(C3, CP1, CP3, CPz, P1, P2, P3, Pz, PO3), with a dominance of channels around the left hemi-
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sphere. Another significant cluster with a comparable spatial configuration and reduction of

N45 component in the cTBS session was also present in TEP 2 (p = 0.0344), with a slightly

weaker involvement of channels above the midline, but a stronger lateralization within the left

hemisphere (C3, CP1, CP3, CP5, P1, P3, P5, Pz, PO3, POz). There was also a significant

increase in the P30 component at TEP 3 following cTBS, primarily involving bilateral parietal

and occipital channels (P1, P2, P3, P4, P5, Pz, PO3, PO4, POz, p = 0.025).

Statistical comparison of the N100 component at TEP 2 revealed two distinct significant clus-

ters. The first cluster was characterized by an increase of the N100 amplitude following cTBS,

comprising channels in the temporal and lateralized central regions with some involvement of

frontal channels within the left hemisphere (p = 0.022, F5, F7, FC5, FT7, C3, C5, CP3, T7, TP7,

TP9). The second cluster consisted of channels localized around the contralateral motor cortex

and adjacent centro-parietal and parietal channels (p = 0.0204; C4, CP2, CP4, CP6, CPz, P2,

P4, P6, Pz, PO4). In this cluster, the amplitude of the N100 component was decreased following

cTBS. A visual comparison of the scalp maps also revealed that these clusters were driven by

a more focal negativity of the N100 component during the cTBS and a reduced spread towards

the contralateral hemisphere, which was still observed after the first dose. This reduction of

the N100 component at the contralateral hemisphere was also still visible after the third dose of

cTBS, even though cluster based permutation testing did not reveal any significant differences.

After the third dose of cTBS at TEP 3, two significant clusters were detected at the N45 com-

ponent. One cluster involved a spatially distributed set of bilateral centro-parietal and parietal

channels (p = 0.0106; C1, CP1, CP2, CP3, CP4, CPz, P1, P2, P3, P4, P5, Pz, PO3), reveal-

ing a reduction in peak amplitude of the N45 component (i.e. becomes more positive during

cTBS). The second cluster indicated an increase of the N45 amplitude following cTBS, involv-

ing fronto-lateral channels of the left hemisphere (p = 0.031; Fp1, FPz, AF3, AF7, F3, F5, F7,

FT7).
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Figure 8: Group-level differences of TEP peaks between cTBS and sham. Topographical
maps showing the five TEP peaks for cTBS and sham session averaged across 21 individuals.
Third row within each cell depicts the t-values obtained from a spatial cluster based permuta-
tion test comparing the amplitudes of all 61 channels between cTBS and sham. White circles
indicate channels belonging to clusters that were significantly different between the two inter-
ventions (p < 0.05).
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The comparison of scalp topographies between cTBS and sham within the two responder sub-

groups revealed a considerable resemblance to the activity pattern observed in the whole group

(Figure 9). The characteristic features of the different TEP peaks were also in part replicated

within both of the subgroups. For example, the positive peak around the stimulation site asso-

ciated with the P30 component appeared a comparable fashion with both subgroups. Likewise,

the N45 component revealed a similar negativity around the stimulation site with a spread to-

wards centro-parietal region of the ipsilateral hemisphere and the vertex. The N100 component

also shared large similarities with the group-level observations, showing a bilateral coverage

of the central motor regions with a reduced spread towards the contralateral hemisphere at

the later stages of the experiment following cTBS. This reduction of spread towards the con-

tralateral hemisphere was especially evident after the second and third dose of cTBS, but more

pronounced within in the facilitatory compared to the inhibitory subgroup. The spatial activity

pattern of the P200 component did also not reveal any major differences to the pattern observed

at the group-level.

The statistical comparison of peak amplitudes within subgroups revealed three clusters of differ-

ences within the inhibitory subgroup and two clusters within the facilitatory subgroup (Figure

9). The three clusters within the inhibitory subgroup were characterized by a similar spatial con-

figuration and time of appearance as the significant clusters observed at the group-level (N =

21), even though group-level changes in corticospinal excitability were dominated by the effects

of the facilitatory subgroup. One cluster indicated a significant increase in N100 amplitude fol-

lowing the second dose of cTBS (p = 0.0478), extending from fronto-central to parietal regions

in the contralateral hemisphere (FC6, C6, CP4, CP6, PO4, P2, P4, P6). The other two clusters

significant clusters appeared after the third dose of cTBS at the N45 component. Specifically,

N45 amplitude was significantly decreased in bilateral centro-parietal to parietal regions (CP1,

CP2, CP3, CPz, PO4, P1, P2, P3, P4, P6, Pz; p = 0.0142) and increased in ipsilateral frontal

regions following the third dose of cTBS (Fp1, AF3, AF7, F3, F5, F7, Fz; p = 0.0492).
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Figure 9: Differences of TEP peak components between cTBS and sham in responder sub-

groups. Topographical maps displaying the five TEP peaks for cTBS and sham session within
the two responder subgroups. Third row within each cell depicts the t-values obtained from
a spatial cluster based permutation test comparing the amplitudes of all 61 channels between
cTBS and sham. White circles indicate channels belonging to clusters that were significantly
different between the two interventions (p < 0.05).
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In contrast, the statistical differences between interventions within the facilitatory group did

not resemble any of the differences that were observed at the level of the whole group. Instead,

there was a significant increase in the N45 component in the temporal region of the contralateral

hemisphere after a single dose of cTBS (F6, F8, FT8, T8, TP8, TP10; p = 0.0478). The other

significant cluster appeared in a similar spatial configuration and revealed a significant increase

of the N100 component after three doses of cTBS (AF8, FC6, F8, C6, CP6, FT8, T8, TP8; p =

0.0318).

3.7 Dose effects of cTBS

Regarding MEPs, the group-level analysis of slopes from individual regression lines were not

significantly different from zero within the sham condition for the whole group (t20 = 0.60, p

= 0.55485), the inhibitory subgroup (t8 = 0.39, p = 0.70935) or the facilitatory subgroup (t11 =

0.44, p = 0.6686). In contrast, the slopes were significantly different from zero for the inhibitory

subgroup (t8 = -6.62, p = 0.00017) and the facilitatory subgroup (t11 = 2.79, p = 0.01743) but

not the whole group (t20 = -1.63, p = 0.11971) in the cTBS session. Thus, cTBS significantly

increased corticospinal excitability over time within the facilitatory subgroup whereas it de-

creased corticospinal excitability within the inhibitory subgroup as more doses were applied.

These relationships could not be replicated on the cortical level, using the N100 component of

the TEP from the motor related channel as variable of interest (Table 1). The N100 component

did not reveal any dose-related increases or decreases within any of the three channels within

the whole group (all p > 0.05). This was also the case within the inhibitory and facilitatory

subgroup. Interestingly, slopes on a group-level were frequently characterized by a distinct in-

terindividual differences, as the SD was often considerably larger than the mean. This suggests

that a dose-dependent effect might have been present within some individuals, even though

cTBS did not lead to a dose dependent increase or cortical excitability in any of the investigated

TEP-related variables on the group-level.
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Table 1: Summary of linear relationships between cTBS dose and N100 amplitude
W

h
o
le

g
r
o
u

p
(N

=
2
1
)

Session Channel Slope (mean ± SD) t-value p-value

cTBS

C3 -2.61 ± 48.45 -0.241 0.812

Cz -33.11 ± 116.96 -1.266 0.220

C4 26.80 ± 196.73 0.609 0.549

sham

C3 -5.15 ± 20.80 1.108 0.281

Cz -3.45 ± 102.65 -0.150 0.882

C4 -2.85 ± 50.08 -0.255 0.802

I
n

h
ib

it
o
r
y

(N
=

9
)

cTBS

C3 7.97± 53.19 0.424 0.683

Cz -64.7 ± 104.19 -1.756 0.117

C4 -1.28 ± 84.1 -0.043 0.967

sham

C3 -11.0 ± 18.05 -1.725 0.123

Cz 24.28 ± 143.04 0.480 0.644

C4 -4.99 ± 27.32 -0.516 0.62

F
a
c
il

ta
to

r
y

(N
=

1
2
)

cTBS

C3 -10.55 ± 42.92 -0.816 0.432

Cz -9.41 ± 120.36 -0.259 0.8

C4 47.85 ± 247.77 0.640 0.535

sham

C3 -0.76 ± 21.63 -0.117 0.909

Cz -24.25 ± 45.68 -1.761 0.106

C4 -1.25 ± 61.80 -0.067 0.948

3.8 Direct comparison of TEPs between responder subgroups

The direct comparison of TEPs in the temporal domain revealed no significant differences be-

tween the two responder subgroups at baseline (TEP 0, Figure 10A). A qualitative comparison

suggested that the amplitude of the TEP around 200 ms post stimulus was considerably larger

and more variable in the inhibitory subgroup compared to the facilitatory subgroup. This ob-
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servation was also evident when comparing the topographical representations at the P200 com-

ponent (Figure 10B), even though this difference did not reach statistical significance. Higher

variability was also observed in the GMFP of the inhibitory subgroup, even though this effect

was not statistically significant from the facilitatory subgroup.

The TEP peaks revealed only minor differences regarding the scalp topographies between sub-

groups (Figure 10B, row 1 and 2). Both subgroups showed the characteristic bilateral negativity

of the N100 component, as well as the predominantly ipsilateral negativity of the N45 compo-

nent. Statistical comparison of these topographical maps only resulted in a single significant

cluster of differences at the P60 component. This difference was characterized by a reduced

P60 amplitude in the inhibitory subgroup, spatially organized at parietal, parieto-occipital and

occipital channels with a tendency towards the contralateral hemisphere (P2, P4, P6, Pz, PO3,

PO4, POz, O1, O2, Oz, p = 0.0044). For all other peak components, none of the clusters reached

the cluster threshold for statistical significance (p < 0.05).
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Figure 10: Comparison of TEP between the two responder subgroups. (A) Direct compari-
son of the TEPs between the two responder subgroups in the temporal domain, as average of the
pre-interventional TEPs of both sessions (TEP 0). Shaded areas around the voltages indicate
the SD. (B) Topographical scalp maps of the five TEP peaks for both subgroups, as well as the
statistical comparison using a cluster based permutation test. White circles indicate channels
belonging to clusters that were significantly different between the two groups (p < 0.05).

3.9 Relationship between MEP and TEP

Regarding the motor related channels (C3, Cz and C4), none of the correlations between MEPs

and TEPs were statistically significant within the whole group after correcting for multiple

comparisons (adjusted a = 0.00833). However, prior to correction, there was a statistically

significant relationship between D TEP 1 and D MEP 2 in channel C3 (r = 0.518, p = 0.0161)

and channel C4 (r = -0.479, p = 0.0279) after the first dose of cTBS. A similar negative correla-

tion between D TEP 1 and D MEP 2 around channel C4 was also present within the facilitatory
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subgroup (r = -0.685, p = 0.0139). Another correlation appeared after the second dose of cTBS

between D TEP 2 and D MEP 3 in channel C3 (r = -0.650, p = 0.02203). In contrast, none of the

correlations within the motor related EEG channels reached the threshold for statistical signif-

icance prior to Bonferroni correction within the inhibitory subgroup. Regarding the remaining

58 EEG channels, none of the correlations remained significant after the Bonferroni correction

(adjusted a = 0.00086 (0.05/58)).

Figure 11: Correlation between MEPs and TEPs. Scalp maps depicting the Spearman’s
rank correlation coefficient between the N100 component of the TEP (indicated as D TEP) and
the D MEP amplitude for the whole group and the two responder subgroups within the cTBS
session. White circles indicate channels showing a statistically significant correlation between
the D N100 and D MEP amplitude prior to Bonferroni correction (p < 0.05).
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4 Discussion

4.1 Summary of results

In this single-blinded sham-controlled study, three doses of cTBS were applied over the left

primary motor cortex of young and healthy individuals to investigate the neuromodulatory ef-

fects of cTBS on cortical (TEP) and corticospinal (MEP) excitability. Replicating previous

findings, cTBS-induced neuroplastic effects were characterized by high degree of interindivid-

ual variability when measuring MEPs, resulting in the absence of significant after-effects on the

group-level. Despite this lack of group-level effects, cTBS significantly modulated indices of

excitability at the cortical level immediately after application of the first dose, showing the most

differentiated cortical response at times when modulations of corticospinal excitability were

most pronounced (after second dose). Furthermore, changes appeared not only around the ipsi-

lateral M1 but also involved changes in the parietal regions and contralateral hemisphere. One

novelty of the current study was the description and comparison of cortical responses within

the responder subgroups, which were defined based on their overall change in corticospinal ex-

citability following cTBS. This analysis provided additional insights into how cTBS-induced

plasticity is represented in terms of the TEP, suggesting that inhibitory and facilitatory response

characteristics are associated with different modulations of the TEP. Interestingly, there was a

divergence between measures of excitability within the whole group and within subgroups, as

cortical responses within the whole group seemed to be dominated by pattern occurring within

the cTBS inhibitory subgroup, whereas whole group measures of corticospinal excitability were

clearly driven by the responses of the cTBS facilitatory group. These findings will be discussed

in more detail in the following sections of the discussion.

4.2 Effects of cTBS on RMT

Several studies have applied rTMS protocols and investigated the changes in the RMT after-

wards, yielding mixed results. For example, low-frequency rTMS (LF-rTMS) has been shown
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to effectively reduce corticospinal excitability when applied over the primary motor cortex

(Chen et al., 1997; Maeda et al., 2000) in similar fashion as cTBS. In a review of Fitzger-

ald et al. (2006), the authors identified that out of 10 studies, only three observed an increase

in RMT, whereas seven studies did not observe any changes following LF- rTMS. Regarding

TBS, Klírová et al. (2020) observed a reduction in RMT after prolonged cTBS and prolonged

iTBS (two doses applied consecutively without break). In the current study, RMT was not

affected differently by the interventions over time (indicated by a non-significant interaction).

Nevertheless, there was a significant difference in RMT between the two sessions of approxi-

mately 0.9% MSO at the end of the experimental protocol. However, the size of this difference

is very likely negligible, since the calculation of individual stimulation intensities already in-

volved some rounding inaccuracies, as the stimulator output could only be adjusted to integers

but not decimals. As consequence, a difference of up to 0.5% MSO is implicitly included

simply through technical restrictions and does not necessarily imply meaningful physiological

differences in the threshold for cortical excitation.

4.3 Effects of cTBS on motor task performance

The performance in the PPT and the FTT was evaluated to investigate if cTBS-induced changes

in corticospinal excitability were accompanied by meaningful behavioral changes that are of

particular interest for TBS applications in the clinical environment. However, neither the PPT

nor the FTT revealed any significant differences in performance between the cTBS and the

sham session (Figure 2). Instead, there was a reappearing pattern, i.e. a main effect of the factor

Time, showing that the execution of the experimental protocol itself was linked to a decrease

in performance, irrespectively of whether participants received the cTBS or sham stimulation.

This was in part unexpected, as a repetition of the tasks may have initiated motor learning pro-

cesses, effectively leading to an increased performance (Karni et al., 1998).

This reduction in performance over time appeared in all three behavioral measurements when

participants where using their right hand and could potentially be explained in two ways. First,
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several hundred TMS pulses were applied over M1, ignoring the pulses delivered through cTBS.

Even though single pulses with sufficient ISI are not supposed to interact with cortical excitabil-

ity, they might still have affected cortical excitability to some degree. On the other hand, such

changes were at least not evident when investigating corticospinal excitability directly. Sec-

ond, there might have been differences in physical activity between the two hands during the

experiment. While movements of the right hand were monitored by the observer (e.g. through

spurious activity in the EMG signal), this was not the case for the left hand. Thus, subjects

might have moved their left hand more frequently during the experiment (against the experi-

menter’s instructions), thereby leading to less difficulties in reperforming the task with the left

hand after the long period in which movements had to be actively suppressed.

There are again mixed results in the literature regarding changes in motor task performance

and their relationship to changes in corticospinal excitability following application of rTMS.

For example, Iezzi et al. (2008), observed reductions in MEP amplitude following cTBS, ac-

companied by reductions in peak velocity and peak acceleration during tests of motor retention.

Furthermore, Bashir et al. (2011) applied LF-rTMS over the right motor cortex and observed an

improvement in tapping frequency as well as reaction time of the hand ipsilateral to the rTMS-

receiving hemisphere. Interestingly, these improvements in performance were associated with

increases in corticospinal excitability over the left hemisphere, providing additional evidence

for a relationship between corticospinal excitability and motor task performance. For example,

Jelić et al. (2015) reported a significant slowing in PPT learning following cTBS in the hand

contralateral to the stimulation site, showing that a reduction of cortical excitability following

TBS protocols is associated with a reduction in PPT performance.

Overall, the current findings suggest that fatigue effects had a stronger impact on performance

than potential learning effects. The absence of cTBS-related effects on task performance could

also be explained by the timing at which the motor tasks were conducted. While group-level

changes in corticospinal excitability were most pronounced around 20 minutes after the sec-
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ond dose of cTBS, changes were comparably small at the last measurement of MEPs (MEP 6).

Thus, performance of the motor tasks was reassessed at a point in time in which corticospinal

excitability was already strongly declining. However, this can be contrasted by findings from

Jäncke et al. (2004), who observed an effect on tapping frequency following LF-rTMS applied

to M1 without any significant changes in MEP amplitude. Interestingly, the effect was only

visible if individuals performed finger tapping at their maximum possible speed, as it was per-

formed in the current study.

4.4 Effects of cTBS on MEPs

The current study replicates the high interindividual variability in corticospinal excitability fol-

lowing TBS that has been described by other researchers (Hamada et al., 2013; López-Alonso

et al., 2014). As consequence, the comparison of corticospinal excitability between cTBS and

sham did not reveal any significant differences when investigating the after-effects on a group-

level, although cTBS showed an overall strong tendency to increase MEP amplitudes (Figure

3B). While this directional effect was opposite to the expected modulation of corticospinal ex-

citability described by Huang et al. (2005) following cTBS, such deviations from the canonical

response are possible, and rather indicating that the study sample consists more individuals

showing cTBS facilitatory response rather than an inhibitory response. Indeed, the analysis

of responder subgroups revealed a distribution of individuals that was highly comparable to

the distributions of previous studies investigating the response characteristics following TBS-

induced cortical plasticity (Hamada et al., 2013; Heidegger et al., 2017; Jannati et al., 2017).

In the current study, 57% (12/21) of individuals showed a facilitatory response following cTBS

whereas the remaining 43% (9/21) exhibited an inhibitory response. According to Hamada et

al. (2013), who investigated a sample of 56 healthy volunteers, around 58% of all individuals

responded with a facilitation in MEP amplitude to cTBS, whereas 42% responded with inhibi-

tion. Even though the number of participants was significantly smaller in this study, the actual
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relationship between individuals responding with facilitation (12/21, 57%) and inhibition (9/21,

43%) was surprisingly similarly. A study from Jannati et al. (2017) administered a single dose

of cTBS and found 12 individuals with a facilitatory response and 9 with an inhibitory response,

i.e. an equal distribution of response characteristics as in this study. Heidegger et al. (2017) re-

ported 7 facilitatory responders, 6 inhibitory responders after a single dose of cTBS, however

they used a different approach to categorize responders, involving a gaussian mixture model.

Furthermore, Rocchi et al. (2018) did not find a significant group-level effect of cTBS on corti-

cospinal excitability when MEPs were acquired with an intensity that usually evokes MEPs of

around 1mV, but observed an increase if MEPs were acquired with weaker stimulation intensi-

ties. It should be noted that there is also a considerable number of studies that observed very

different ratios of response characteristics, which might be explained in part by how responder

subgroups were defined (see Pellegrini et al. (2018)), but also very likely reflect true differences

in response characteristics within the investigated population. Thus, the predominantly facilita-

tory after-effects observed in the current study therefore likely reflect some genuine responder

characteristics that were present with a certain proportion in the study sample, leading to the

observed ratio of facilitatory and inhibitory responses.

This is also particularly evident when comparing the effects of cTBS within the responder

subgroups. A large portion of the group-level after-effects were driven by the larger induced

plasticity within the facilitatory subgroup, observed especially after the second dose of cTBS

(section 3.4). This peak of excitability changes after the second dose was followed by a reduc-

tion of corticospinal excitability after the third dose, which was also visible in the facilitatory

responder subgroup. A qualitative comparison of the dose dependent effects between the two

subgroups suggested that cTBS leads to an immediate reduction of corticospinal excitability

within the inhibitory subgroup, which then recovers slowly towards the pre-interventional level

within the next 20 minutes (Figure 4B), except after the third dose. In contrast, corticospinal ex-

citability nearly increased monotonically within the facilitatory subgroups up to the third dose,

49

64



after which a reversal of the effect was observed (Figure 4C). At the last assessment (MEP

6), corticospinal excitability was also significantly different between cTBS and sham within

the cTBS facilitatory group, even though the overall difference between the interventions was

smaller. This suggests a reduction of variability in corticospinal excitability after the third dose

of cTBS at group-level.

A sudden reversal of response direction or an abolishment of response characteristics after

repeated applications of TBS has also been observed in other studies, revealing a complex re-

lationship of repeated TBS applications to individual response characteristics (Gamboa et al.,

2011; Murakami et al., 2012). Importantly, such reversal can occur if motor cortical excitabil-

ity is altered intrinsically through voluntary motor activation Gentner et al. (2008), but also

through extrinsically induced-changes in cortical excitability, e.g. through a priming stimu-

lation. It has been suggested that these dose-dependent reversals in corticospinal excitability

are likely mediated by processes of homeostatic metaplasticity in the cortical and corticospinal

pathway (Gentner et al., 2008; Gamboa et al., 2011; Murakami et al., 2012). For example

Gamboa et al. (2011) reported that two doses of cTBS, applied with a break of 2 or 5 minutes,

resulted in a reversal of cTBS after-effects. However, this was not the case if the doses were

applied with a break of 20 minutes, comparable to the break within this study. Nevertheless,

the results of the current study may suggest that similar mechanisms of homeostatic plasticity

were at play, as the cTBS-induced plasticity was reversed on the group-level as well as in the

facilitatory subgroup, after the second dose of cTBS.

Regulatory homeostatic processes are extremely important in maintaining a balance between

excitatory and inhibitory synaptic transmission in cortical circuits, effectively stabilizing the

neuronal system (Turrigiano & Nelson, 2004; Yger & Gilson, 2015). In absence of such home-

ostatic plasticity, excitatory or inhibitory synaptic activity could be increased or decreased un-

controllably, potentially resulting in a loss of function of the neuronal networks involved (Tur-
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rigiano & Nelson, 2004; Abraham, 2008; Cassidy et al., 2014). The absence of a reversal

of induced plasticity in the inhibitory subgroup could be explained by the significantly lower

induced plasticity in the inhibitory compared to the facilitatory subgroup (Figure 4 & section

3.4). Even after the third dose of cTBS, induced plasticity was smaller in the inhibitory sub-

group (MEP 5 and 6) than the induced plasticity in the facilitatory subgroup (MEP 4 and 5) after

the second dose of cTBS. Thus, assuming that the compensatory homeostatic mechanisms in

the human motor system function similarly, irrespectively of the direction of effect, the induced

plasticity in the inhibitory subgroup might have been too weak to initiate the compensatory

mechanisms. Overall, the current results fit into the theoretical framework of homeostatic plas-

ticity following repeated application of plasticity-inducing protocols. However, it is important

to emphasize that the dose-dependent changes were not statistically different from sham after

correction for multiple corrections. Thus, the interpretations can therefore not be considered

as direct evidence, but rather serve as a possible explanation for the mechanism behind the ob-

served changes in corticospinal excitability.

Interestingly, group-level changes in corticospinal excitability showed qualitatively dissimilar

pattern when tested with 90% RMT and 110% RMT in the current study (Figure 3). For ex-

ample, after the third dose of cTBS, group-level MEP amplitudes decreased (MEP 5) and then

increased (MEP6) when tested with 90% RMT but showed a monotic decrease when probed

with 110% RMT. While this might seem counterintuitive at first, it likely indicates intensity-

related differences in the recruitment of neuronal populations by the TMS pulses. Epidural

recordings have shown that the current direction, as well as the stimulation intensity have sig-

nificant impact on the generation of corticospinal volleys, suggesting that different neuronal

populations are depolarized depending on the interaction of these parameters (Burke et al.,

1993; Werhahn et al., 1994; Nakamura et al., 1996; Di Lazzaro et al., 2004). In particular,

near-threshold intensities are likely recruiting pyramidal tract neurons (PTN) transsynaptically

through the activation of interneurons (indirect activation, I-waves), whereas higher stimula-
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tion intensities additionally activate the pyramidal PTNs directly (D-waves) (Di Lazzaro et al.,

2004). Importantly, the D-waves, resulting from direct stimulation of PTNs, were unaffected

by cTBS whereas the early I-waves were suppressed, indicating that cTBS specifically acts on

the excitatory circuits that activate the PTN transsynaptically (Di Lazzaro et al. 2005). These

differences in neural recruitment provide a plausible mechanism behind the observed differ-

ences in response pattern of cTBS-induced after-effects following the probing at subthreshold

and suprathreshold stimulation intensities. Additional support is provided by studies showing

that the strongest cTBS-induced MEP suppressions can be observed when MEPs are probed

with high stimulation intensities (150% RMT and higher) (Vallence et al., 2015; Goldsworthy

et al., 2016). Especially when pulses with lower intensity where used to probe corticospinal

excitability, cTBS after-effects were small or even absent. Due to these factors, the analysis

and interpretation of MEPs was primarily based on the cTBS after-effects observed at MEPs

acquired with 110% RMT.

Last, the present results also highlight the importance for appropriate sham conditions when

investigating the effects of NIBS-induced changes in corticospinal or cortical excitability. The

subgroup analysis contains several examples where MEP amplitudes were significantly dif-

ferent from the baseline of the session (Figure 3, MEP 1) but not significantly different from

the sham session. In the absence of a sham condition, these differences would be interpreted

as true modulation of cortical excitability, even though the effects represent a mixture of true

modulation as well as natural variability of corticospinal excitability over time.

4.5 Effects of cTBS on TEPs

The results of the current study provide evidence for local and remote changes in cortical ex-

citability following cTBS over M1. A direct comparison to sham revealed a differentiated

pattern of changes in amplitude of the TEP peaks, with a prominent reduction of the N45 com-

ponent primarily localized around the centro-parietal region of the ipsilateral hemisphere. This
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reduction was present after each of the cTBS doses, even though the spatial arrangement was

shifted towards a more bilateral centro-parietal pattern after the third dose. The amplitude of

the N100 was only modulated after the second dose, characterized by significant increases in

the ipsilateral motor and temporal regions and significant reductions around the centro-parietal

region of the contralateral hemisphere, distant from the stimulation site. Importantly, all of

these modulation of the TEP were statistically significant on a group-level, even though the

changes in corticospinal excitability were not. Furthermore, the most differentiated modula-

tions of the TEP, involving the P30, N45 and N100 component, were observed after the second

dose of cTBS, which also corresponded to the time at which the most pronounced cTBS effects

on corticospinal excitability were observed. Modulations of the P200 component were absent

throughout all analyses. A direct comparison of TEPs in the temporal domain only revealed

minor differences between cTBS and sham, whereas differences in the GMFP were absent.

Furthermore, there was no evidence for a relationship between cTBS dose and the amplitude of

the N100 component.

In the current study, decreases in N45 amplitude were spatially localized around the centro-

parietal regions of the ipsilateral hemisphere adjacent to the stimulation site, but extended later

also towards the contralateral hemisphere (Figure 8). This was especially evident after the third

dose of cTBS, where the reductions showed a nearly equal involvement of the contralateral

parietal regions. A similar observation has been made by Van Der Werf and Paus (2006), who

reported a significant reduction of the N45 component around the vertex (Cz) following LF-

rTMS over M1, even though group-level reductions in MEP amplitude were absent. Although

they used a different stimulation protocol to modulate M1 excitability, the general direction of

excitability modulation was replicable on the cortical level. In contrast, Vernet et al. (2013)

investigated the influence of cTBS on MEP amplitude and TEP peaks after a single dose of

cTBS. They observed an increase in N45 amplitude approximately 10 minutes after the appli-

cation of cTBS, but a decrease at all other measurement times (5, 20, 30 and 40 min). Here,
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TEPs were always acquired within a time window of approximately 7-22 min after cTBS in the

current study and are therefore not necessarily incompatible with the observation from Vernet

et al. (2013). Furthermore, the authors did not perform a statistical evaluation for this amplitude

change over time, making it difficult to estimate the actual significance of their finding.

The predominance of excitability changes around the parietal region, posterior to the stimula-

tion site, possibly indicates remote effects of cTBS around the posterior parietal cortex (PPC)

mediated through cortico-cortical connections. Indeed, the PPC is closely interconnected to the

primary motor and sensory regions of the cortex, acting as an important hub for sensorimotor

integrations used in the planning and the realization of movements (Culham & Valyear, 2006;

Lindner et al., 2010). The importance of this structural and functional relationship between

PPC and motor regions has been exposed in numerous studies investigating monkeys (Brem-

mer et al., 2001; Mulliken et al., 2008; Gharbawie et al., 2011) and humans (Koch et al., 2010;

Vesia & Crawford, 2012; Goldenkoff et al., 2021). In line with this, Koch et al. (2007) demon-

strated that a conditioning pulse over the right PPC facilitated MEPs recorded from M1 of the

contralateral hemisphere, providing plausible neurophysiological mechanisms behind remote

changes in PPC excitability following cTBS over M1. Other remote excitability changes were

also observed at the N100 within the inhibitory subgroup and the facilitatory subgroup (Figure

9, TEP 2 & 3), even though it is unclear through which cortical pathways these were mediated.

In line with previous studies, the N100 component appeared predominantly as spatially con-

fined negativity, peaking over the central motor regions (Paus et al., 2001; Bonato et al., 2006;

Premoli, Castellanos, et al., 2014) (Figure 8). After the second dose of cTBS, the N100 com-

ponent was significantly increased around the stimulation site with additional involvement of

fronto-lateral and temporal regions. In contrast, a significant reduction of the N100 component

was observed in the contralateral hemisphere, with primary involvement of centro-parietal and

parietal regions. In a study of Casula et al. (2014), a single dose of LF-rTMS was associated
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with group-level reductions in MEP amplitude as well as increases of the P60 and the N100 am-

plitude. However, the authors did not find significant differences in amplitude between the two

motor regions of the two hemispheres (around C3 and C4). While this was not explicitly tested,

the two significant clusters with opposite polarity strongly suggest that such differences exist

here after the second dose. Vernet et al. (2013) applied cTBS over M1 and observed an overall

reduction in MEP amplitudes as well as an overall reduction in N100 amplitude. Although the

direction of effects were opposite in the aforementioned study, the results are in consistence

with the current study, where corticospinal excitability was increased on a group-level and the

N100 component was also increased around the ipsilateral hemisphere.

The P30 component was characterized by a focal positivity around the ipsilateral hemisphere

and centered around the stimulation site. There is some inconsistency regarding the localization

of the component in previous studies. For example, Paus et al. (2001) described the appearance

of the P30 more centrally, peaking over the vertex. Bonato et al. (2006) observed the component

centrally and in the frontal region of the unstimulated hemisphere. However, several other stud-

ies observed a more lateralized occurrence of the P30 component (Mäki & Ilmoniemi, 2010;

Opie et al., 2017). It has been demonstrated in five individuals that the peak to peak amplitude

of the N15-P30 complex is correlated to the size of the MEP at the single trial level (Mäki

& Ilmoniemi, 2010), suggesting an involvement of the components in the generation of corti-

cospinal output. Vernet et al. (2013) investigated the relationship between TEP peaks and the

MEP amplitude following cTBS and suggested that a reduction of the P30 component might

be associated with a reduction in MEP amplitude. Gedankien et al. (2017) applied iTBS over

M1 and found that the N15-P30 complex of the TEP was correlated to the MEP amplitudes.

In the present study, P30 amplitude was significantly increased after the second dose of cTBS.

These changes were primarily occurring around the bilateral parietal to occipital regions, with

a slight predominance over the ipsilateral hemisphere, rather than the stimulation site. These

changes show large spatial overlap with the changes observed around the N45 component, even
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though the N45 component was characterized by a reduction in amplitude and not an increase.

It could be speculated that this overlap is in part related to the adjacent temporal windows that

were used for peak extraction.

Pharmacological studies have provided some insights into the mechanisms of neurotransmis-

sion related to the cortical propagation of TMS pulses (Premoli, Castellanos, et al., 2014; Pre-

moli, Rivolta, et al., 2014; Premoli et al., 2017; Belardinelli et al., 2021). The N45 component

is thought to reflect early GABAA-mediated inhibitory neurotransmission within the human

motor cortex (Premoli, Castellanos, et al., 2014; Darmani et al., 2016). Furthermore, it has

been shown that several GABAA-receptor agonists lead to a reduction of MEP amplitude, also

pointing towards an increase in cortical inhibition (Paulus et al., 2008). In contrast, the N100

component is thought to reflect late GABAB-mediated inhibitory neurotransmission within the

human motor cortex (Premoli, Castellanos, et al., 2014).

Therefore, the observed reduction in amplitude of the N45 component suggests a reduction

of inhibitory neurotransmission within the ipsilateral hemisphere. Indeed, this interpretation

would be in accordance with the observed group-level facilitation in corticospinal excitabil-

ity (Figure 3B). However, it is not necessarily supported by the observed modulation of TEPs

within the responder subgroups. In particular, subgroup analysis suggested that reductions in

N45 amplitude were primarily driven by the cTBS inhibitory subgroup, as statistical differences

after the third dose appeared with nearly the same spatial configuration within the inhibitory

subgroup and the whole group, but not the facilitatory subgroup (Figure 8 and Figure 9, TEP

3). This divergence could potentially suggest that the observed changes in excitability around

the parietal region are caused by a remote after-effect, but are not necessarily themselves in-

fluencing the corticospinal output when probed with single pulses. Alternatively, the lack of

effects of cTBS on the TEPs within responder subgroups could also result from a considerable

amount interindividual variability in TEP responses. As consequence, more individuals might
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be required to properly identify the significant changes on a group-level. In future, changes

could be potentially investigated within individuals and not on a group-level, but this would

likely require an even larger number of TEPs to be measured to obtain proper estimates of cor-

tical excitability.

A similar divergence between cortical and corticospinal measures was also observed within the

N100 component, where increases in inhibition on the cortical level (Figure 8, TEP 2) where

contrasted by a pronounced facilitation of corticospinal excitability around the same time (Fig-

ure 3, MEP 3 and MEP 4). However, these increases in inhibitory neurotransmission were ac-

companied by a reduction of inhibitory neurotransmission around the motor and centro-parietal

regions of the contralateral hemisphere. Such a modified balance in excitability between the

two hemispheres might have an important impact on the generation of corticospinal outputs. It

is known that the balance of inhibitory and excitatory function is crucial for the maintenance

of physiological interhemispheric interactions, especially within the motor system (Grefkes &

Fink, 2011; Takeuchi et al., 2012). Thus, the largely reduced inhibition of the contralateral

hemisphere might indicate reduced maintenance of interhemispheric inhibition, thereby result-

ing in a net positive effect on corticospinal excitability within the ipsilateral hemisphere. As

consequence, corticospinal output could to be facilitated whereas the N100 component sug-

gested an increase in ipsilateral cortical inhibition. Again, this notion is somewhat contradicted

by the analysis of responder subgroups, as the N100 component showed a similar significant

reduction around the contralateral hemisphere within the inhibitory subgroup (Figure 8 and Fig-

ure 9, TEP 2). Interestingly, this reduction was also present in the faciliatory subgroup, but not

statistically significant. Within the inhibitory subgroup, a net increase in inhibition around the

contralateral hemisphere should have also resulted in an increased corticospinal output of the

ipsilateral hemisphere, which was not the case.
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It seems possible that TEP components (e.g. N45, N100) not necessarily reflect only inhibi-

tion or excitation, but are potentially indicating an interaction or balance between these two

complementary mechanisms of cortical regulation (Du et al., 2018; Belardinelli et al., 2021).

In addition, some of these inconsistency in neuroplastic effects on TEP peaks might be again

attributable to differences in recruitment of neuronal populations in relation to different stimula-

tion intensities used in the experiment. While cTBS might have primarily modulated interneu-

rons that generate inputs to the PTNs, the higher stimulation intensities used during measure-

ment of MEPs might have activated the PTNs directly, thereby superimposing the reduction of

cortical excitability that is indicated by the increase of N100 component. Overall, the current

results suggest that neither the N45 nor the N100 component are indexing the same properties

of cortical excitability as the MEPs but instead represent different indices of excitability that

may be in part independent. Thus, a reduction in N45 component might be general property

of cTBS-induced cortical plasticity, irrespective of the observed changes in corticospinal ex-

citability.

The direct comparison of TEP peaks between the two subgroups only revealed a significantly

lower P60 amplitude within the inhibitory subgroup around the parietal and occipital region. It

has been suggested recently that P60 component is linked to glutamate-mediated neurotransmis-

sion (Belardinelli et al., 2021). Thus, the reduction in amplitude could suggest reduced levels of

glutamatergic neurotransmission in the occipital cortex. The existence of such difference seems

possible, given the evidence for interactions between motor and visual cortex, which has also

been demonstrated using TMS (Strigaro et al., 2015). Admittedly, it remains unclear whether

this is truly a meaningful difference regarding the individuals susceptibility to modulations of

M1 excitability or the generation of corticospinal outputs.

Overall, the current findings demonstrate that the combination of TEPs are able to detect a wide

range of changes in cortical excitability following cTBS. This emphasizes the importance of
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combining the conventional assessment of corticospinal excitability through measurement of

MEP amplitudes with functional neuroimaging approaches, such as TMS-EEG. Otherwise, it

will be difficult to identify the potentially remote after-effects in cortical excitability that ap-

peared distant from the stimulation site (e.g. P30, N45, N100). Indeed, remote changes could

still detected without TMS-EEG if they appear in connected regions within the motor network,

e.g. through paired-pulse paradigms (Fiori et al., 2017). For instance, it has been demon-

strated that that M1 excitability can be modulated via the cerebellothalamocortical pathways

by applying TBS to the cerebellum (Harrington & Hammond-Tooke, 2015). However, such

an investigation of remote after effects always requires a clear hypothesis about which distant

regions are affected. If TBS is applied to regions without efferent connections to the motor

system, it becomes impossible to measure such changes in cortical excitability without the help

of neuroimaging.

4.6 Relationship between MEPs and TEPs

Even though many studies have recorded MEPs and TEPs in a variety of experimental settings,

the relationship between those measures is still not fully understood and represented by a rather

heterogenous body of results. In the current study, correlations were assessed between the peak

of the N100 component and the corresponding MEPs, acquired before or after the measure-

ment of the TEP. There is some evidence that the early components of the TEP, in particular the

N15-P30 complex, are correlated to the amplitude of the MEP when both electrophysiological

responses are acquired simultaneously (Mäki & Ilmoniemi, 2010). This relationship was also

replicable to some degree by Gedankien et al. (2017), even if the averaged MEPs and TEPs

were correlated on a group-level, rather than on a single-trials basis. On the other hand, Bonato

et al. (2006) did not observe comparable significant relationships when correlating the mean

MEP amplitude with the N15 (referred to as N18 in the original manuscript) or the P30 peak of

the TEP.
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In the current study, the relationship between D MEP amplitude and the D N100 peak was not

assessed under the assumption of a direct temporal relationship on a single-trial basis. Here, the

results from the correlations do not provide very strong evidence for or against the existence of

a relationship between the N100 amplitude and the MEP amplitude within the whole group or

any of the subgroups. Even though a positive relationship appeared between the ipsilateral M1

(C3) and a negative relationship between the contralateral M1 (C4) and D MEP 2 after the first

dose of cTBS, neither of these relationships remained significant after correction for multiple

comparisons. Three channels around the contralateral M1 also revealed a similar negative re-

lationship with MEP 2 within the facilitatory subgroup but again, relationships did not remain

significant after Bonferroni correction. This tendency towards an absence of a relationship is

supported by other studies which investigated the relationship between the MEP amplitude and

the N100 component of the TEP (Paus et al., 2001; Bender et al., 2005; Roos et al., 2021).

There are many reasons why such relationship might be absent. First, MEPs were acquired

within a short interval of approximately 3 minutes but the TEP itself was acquired over a period

of around at least 12 minutes. This period is already long enough for considerable changes in

corticospinal excitability. As consequence, it might be difficult to establish a meaningful cor-

relation between both measures as they probe cortical excitability at different points in time.

Potential relationships might be easier to detect if TEPs are split in half, correlating the first

half of TEPs with the early assessment of the MEPs and the second half with MEPs acquired

at the later stage. Another issue might arise from the different stimulation intensities that were

used to probe cortical excitability (80% RMT) and corticospinal excitability (90% RMT and

110% RMT). The neuronal substrates that are activated by the TMS pulse have different activa-

tion thresholds, and lower stimulation intensities have been shown to activate the corticospinal

tract neurons indirectly through synaptic input from excitatory and inhibitory interneurons (Di

Lazzaro et al., 2004; Di Lazzaro & Ziemann, 2013). Furthermore, cTBS likely alters cortical
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plasticity by reducing the the excitatory inputs to the pyramidal tract neurons (Di Lazzaro et al.,

2005). Thus, cTBS-induced changes of MEPs and TEPs might simply represent the activity of

different cortical circuits. In addition, it has to be considered that the TEP represents cortical ac-

tivity after several and complex modifications in the preprocessing, involving crucial steps like

a (semi-automatic) separation of artificial signal distortions from components representing gen-

uine TMS-induced cortical activity. In contrast, MEPs are derived from a single signal, require

few steps of preprocessing and have a standardized way of quantification. Hence, a discrepancy

between the assessment of cortical excitability using MEPs and TEPs might be attributable to

signal distortions that appear during preprocessing, potentially altering or potentially break-

ing the relationships in an unpredictable manner. Overall, the current results suggest that MEPs

and TEPs index in part different properties of cortical excitability and as consequence, no strong

correlations may be expected.

In summary, the current findings demonstrate that repeated applications of cTBS alter cor-

ticospinal excitability in a complex manner, possibly involving mechanisms of homeostatic

metaplasticity. The cortical response, measured through the TEP, revealed a statistically signif-

icant and differentiated pattern of changes following cTBS, even though group-level changes

in corticospinal excitability were not significantly different from sham. This highlights the in-

creased sensitivity of TMS-EEG to probe cTBS-induced changes in cortical plasticity, including

network effects that appear distant from the stimulation site. The significant modulation of N45

component suggests that cTBS affects GABAA-mediated inhibition within the centro-parietal

regions of the cortex. However, it was not possible to establish any convincing relationship

between the TEP and MEP amplitude. The present findings support the interpretation that

TEPs and MEPs probe activity of different neuronal substrates that are not necessarily affected

similarly by neuromodulatory protocols. The absence of a relationship is not completely unex-

pected, as findings already suggested that MEP and TEP are related in a rather complex manner

(Vernet et al., 2013).
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4.7 Limitations

The current study contains several limitations that need to be addressed in order to properly

evaluate the findings with regards to their significance. First, the study contained a relatively

small sample size of 21 individuals, as 8 of the subjects had to be excluded due to insufficient

data quality. This is especially relevant for the analysis of responder subgroups, where only 9

cTBS inhibitory and 12 cTBS facilitatory subjects were included as consequence. Given the

large interindividual variability of TEPs, this sample size might have been too small to detect

meaningful changes in cortical responses between the two subgroups.

Second, the actual experimental paradigm was comparably long and took up to three hours to

complete, depending on how fast a sufficiently low impedance was reached during application

of the EEG electrodes. This long duration of the experimental protocol and the absence of any

meaningful task for the participants lead to considerable problems in staying awake. Many par-

ticipants had to be instructed repeatedly to keep their eyes open in order to stay awake. There

is evidence that properties of TMS-evoked activity can be severely altered during sleep (Massi-

mini et al., 2005). While the sham session can in part help to account for these vigilance-related

changes in cortical activity, this nevertheless constitutes a serious confounding for the current

investigation.

Third, the data analysis in the current study was only performed a single time with one particular

preprocessing pipeline. A recent investigation by (Bertazzoli et al., 2021) suggested that even

the several TMS-EEG preprocessing tools and pipelines available (Atluri et al., 2016; Mutanen

et al., 2016; Rogasch et al., 2017), only recover in part the same neural activity. Especially the

early components of the TEP (< 100 ms) were only correlated weakly when compared between

the different preprocessing pipelines. Thus, the results reported here might rely heavily on the

choices made during preprocessing.
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Fourth, the TMS pulse can create various types of peripheral co-stimulations, including the ac-

tivation of facial motor and sensory nerve fibers or auditory responses that in turn appear as

evoked responses, superimposed onto the measured TEP response (Conde et al., 2019). Espe-

cially the loud clicking noise of the TMS coil during application of pulse has been shown to

trigger auditory evoked potentials (AEP), which show similar spatiotemporal patterns, match-

ing especially with the later components of the TEP (e.g. N100, P180/P200). While earplugs

were used to reduce these contributions of AEPs, the state of the art technique utilizes white

noise masking to further eliminate possible contribution of the AEP to the TEP (ter Braack et

al., 2015).

Last, it is unclear to which extent the current findings are reproducible as cTBS was only ap-

plied in one session to each individual. For instance, a recent investigation of Ozdemir et al.

(2021) found that the cTBS-induced changes in cortical responses were not reproducible on a

second visit.

5 Conclusion

The current study largely replicated previous findings of high interindividual variability in re-

sponse characteristics following TBS. The combination of TMS-EEG made it possible to mea-

sure cTBS after effects directly at the level of the cortex without contributions of the corti-

cospinal pathways. The modulation of TEP peaks provided direct evidence for local and remote

changes in cortical excitability. This existence of excitability changes distant from M1 corrob-

orate the significance of combined TMS-EEG to measure TBS after-effects in remote regions

interconnected to the stimulation site. The prominent reduction of the N45 component suggests

that cTBS might be a suitable approach to alter GABAA-mediated inhibition within the motor

system. However, the relationship between changes in cortical and corticospinal excitability

remains less clear. A divergence between the measures was especially noticeable when investi-
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gating responder subgroups, where TEP peaks partly indicated opposite effects on excitability

from what was actually deduced from the MEPs. Overall, the present findings suggest that

MEPs and TEPs reflect separate, but not necessarily completely independent indices of cor-

tical excitability. As consequence, it might be necessary to combine both measures to fully

understand the extent of cTBS-induced plasticity on an individual level.
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ABSTRACT 1 

Tracking how individual human brains change over extended timescales is crucial in scenarios 2 

ranging from healthy aging to stroke recovery. Tracking these neuroplastic changes with resting 3 

state (RS) activity is a promising but poorly understood possibility. It remains unresolved whether a 4 

person’s RS activity over time can be reliably decoded to distinguish neurophysiological changes 5 

from confounding differences in cognitive state during rest. Here, we assessed whether this 6 

confounding can be minimized by tracking the configuration of an individual’s RS activity that is 7 

shaped by their distinctive neurophysiology rather than cognitive state. Using EEG, individual RS 8 

activity was acquired over five consecutive days along with activity in tasks that were devised to 9 

simulate the confounding effects of inter-day cognitive variation. As inter-individual differences are 10 

shaped by neurophysiological differences, the inter-individual differences in RS activity on one day 11 

were analyzed (using machine learning) to identify a distinctive configuration in each individual’s 12 

RS activity. Using this configuration as a classifier-rule, an individual could be re-identified with 13 

high accuracy from 2-second samples of the instantaneous oscillatory power acquired on a different 14 

day both from RS and confounded-RS. Importantly, the high accuracy of cross-day classification 15 

was achieved only with classifiers that combined information from multiple frequency bands at 16 

channels across the scalp (with a concentration at characteristic fronto-central and occipital zones). 17 

These findings support the suitability of longitudinal RS to support robust individualized inferences 18 

about neurophysiological change in health and disease. 19 

 20 

KEYWORDS 21 

Neural plasticity, Individual differences, Individual identification, Electroencephalography 22 

(EEG), Power Spectrum, Frequency analysis, Machine learning, Multiclass classification 23 

  24 

99
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1. INTRODUCTION 1 

Tracking how individual human brains change over extended time-scales (e.g., days to 2 

years) is crucial to monitor and modify neural plasticity processes in scenarios ranging from healthy 3 

aging (Boersma et al. 2011; Cabeza et al. 2018; Cassani et al. 2018) to stroke recovery (Giaquinto et 4 

al. 1994; Rehme et al. 2011; Wu et al. 2016; Bonkhoff et al. 2020; Saes et al. 2020; van der Vliet et 5 

al. 2020). A promising strategy to track an individual’s changing neurophysiology is with repeated 6 

measurements of resting state (RS) activity, i.e., the ongoing neural oscillatory dynamics over a few 7 

minutes of wakeful rest (Vecchio et al. 2013; Carino-Escobar et al. 2019; Newbold et al. 2020; 8 

Pritschet et al. 2020; Saes et al. 2020). RS-activity has been shown to provide reliable indicators of 9 

neurobiological organization and integrity (Biswal et al. 1995; Damoiseaux and Greicius 2009; Van 10 

Den Heuvel et al. 2009; Hermundstad et al. 2013; Miŝic et al. 2016; Hoenig et al. 2018; Buckner 11 

and DiNicola 2019). The apparent informativeness of RS-activity as well as its convenient 12 

acquisition at relatively low cost (for example, with electroencephalography (EEG)) supports its 13 

relevance for long-term tracking. However, the relationship between RS changes over repeated 14 

measurements to neurophysiological change is poorly understood. Decoding this relationship is 15 

crucial to draw inferences about a person’s changing brain using longitudinal RS. 16 

A basic inference required from longitudinal RS is about the origin of inter-day RS 17 

differences. Suppose a person’s RS-activity patterns Ap and Aq (on days p and q) are different. Is 18 

this difference attributable to (i) a possible neurophysiological change (abbreviated as NP+), or (ii) 19 

an incidental difference in inter-day activity (i.e., NP-)? Although an NP+/NP- decision involves 20 

many considerations, a key question is whether this decision is decodable from the relationship 21 

between Ap and Aq.  22 

A major difficulty in decoding an NP+/NP- decision from RS-activity is the unconstrained 23 

format of the rest task. The rest task is defined by: (i) a behavioral state specified by instructions to 24 

stay still and keep eyes open (or closed) (Barry et al. 2007); and (ii) a cognitive state typically 25 

specified by instructions to relax and avoiding thinking of anything specific. Unlike the behavioral 26 
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4 

state, the criteria to objectively verify the cognitive state are ill defined (Benjamin et al. 2010; 1 

Duncan and Northoff 2013; Kawagoe et al. 2018). Due to this ambiguity, inter-day RS changes do 2 

not have a simple correspondence to neuroplastic change. For instance, a person’s incidental 3 

cognitive state during the rest-task could vary between days (e.g., session 1: free mind-wandering, 4 

session 2: struggling to stay awake, session 3: replaying emotional memories) (Diaz et al. 2013; 5 

Gonzalez-Castillo et al. 2021). The neural processing related to these differing cognitive states 6 

could in turn modify RS-activity without any changes to underlying neurophysiology. Therefore, 7 

large inter-day changes in RS-activity might not imply NP+ and small changes might not imply 8 

NP-. Given this confounding potential built into the rest task, in the current study, we investigated 9 

whether RS-activity has other properties to support NP+/NP- classification. 10 

Although inter-day RS differences are vulnerable to confounding by variable cognitive 11 

states, this might not be so for inter-day RS commonalities. We pursued this possibility by adopting 12 

a simple model of how inter-day RS commonalities might be structured. An individual’s 13 

neurophysiology on a particular day is assumed to impose constraints on how RS-activity is 14 

configured irrespective of cognitive state. This constraint-defined configuration would be shared by 15 

RS-activity across days only if these unique constraints are also shared. Such a configuration, if it 16 

indeed exists, provides a decision-rule for NP+/NP- classification as follows.  17 

Suppose Cp denotes the constraint-defined configuration in the activity pattern Ap. If activity 18 

Aq on a different day is consistent with Cp then it supports an NP- classification, as inter-day 19 

consistency is assumed to require shared neurophysiological constraints. Conversely, if Aq is not 20 

consistent with Cp then it suggests a change in these constraints and supports an NP+ classification. 21 

As this constraint-defined configuration is assumed to be independent of cognitive state, the 22 

NP+/NP- decisions with such a decision-rule should presumably escape confounding by inter-day 23 

cognitive variability. Thus, according to this model, NP+ and NP- are hypothesized to have 24 

distinctive, decodable signatures in RS-activity. Here, we sought to empirically test this predicted 25 

decodability of longitudinal RS.  26 
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5 

Using EEG, longitudinal RS-activity was acquired on five consecutive days from a group of 1 

healthy, young participants. For these data, we sought to obtain decision-rules capable of NP+/NP- 2 

classification from the power spectrum of brief two-second samples of oscillatory activity at 3 

channels across the scalp. Testing the decision-rule’s robustness to confounding needed suitable 4 

samples known to be (i) free of neurophysiological change (NP-) and (ii) samples containing such 5 

changes (NP+).  6 

Testing NP- decisions posed an experimental challenge. Our participants were assumed to 7 

be neurophysiologically stable across the five-day measurement period. However, the variation in 8 

their inter-day cognitive states during the rest-task was unverifiable. Therefore, the measurement 9 

protocol included two additional tasks to produce pseudo-rest states that were matched to rest in 10 

behavior but not in cognitive state (Figure 1A). These pseudo-rest states served to simulate 11 

confounding RS differences of varying sizes and complexity and allowed a rigorous test of the 12 

robustness of NP- decisions. 13 

Testing NP+ decisions presented a methodological conundrum. Over long time-scales, an 14 

individual’s neurobiology could change in variety of possible ways (Cabeza et al. 2018; Grefkes 15 

and Fink 2020), with very different associated consequences for RS-activity (Figure 1B). These 16 

hypothetically possible RS-activity patterns were, by definition, experimentally inaccessible and 17 

limited the options for an individual-specific test of NP+ classification. As a pragmatic alternative, 18 

we used a cross-sectional approach where RS-activity from other individuals served as simulated 19 

examples of RS-activity requiring an NP+ classification. We assume that an individual S’s 20 

neurophysiology differed from other individuals in the tested population to variable extents. 21 

Therefore, relative to each individual S, the RS-activity of others provided a diverse range of 22 

examples of RS-activity with an origin in true neurophysiological differences.  23 
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6 

Figure 1: Experiment rationale (A) Four tasks (RS1, Tap, RS2, Sequence) were performed in the same fixed order 1 
daily on five consecutive days. Task details for one day are schematically illustrated. A white fixation point was 2 
continuously displayed during the RS1 and RS2 task periods, and during “waiting” periods in the Tap and Sequence 3 
tasks (highlighted in blue). In the Tap task, a blank screen cued a 2s movement interval requiring left index-finger 4 
movements to repeatedly press a button (shown as red dots). In the Sequence task, the movement cue was an image 5 
depicting four numbers between two arrows (not drawn to scale) indicating the sequence of buttons to be pressed in a 6 
continuous cyclical manner, e.g., 3-1-2-4-4-2-1-3-3-1-2-4, etc. Number-to-finger mapping is shown on cartoon hand. 7 
(B) Schematic of longitudinal changes to a single hypothetical neurophysiological variable for one selected individual 8 
(orange). The current value of this variable (yellow area; NP-) can change in a variety of possible ways over long time-9 
scales (gray area; NP+). The values of this variable in other individuals in a population cross-section (colored icons) 10 
provide proxies for these unknown individual-specific change trajectories.   11 
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By adopting the above strategy to obtain suitable NP- and NP+ examples, the demands for 1 

NP+/NP- classification shared similarities to the demands for person identification, namely, 2 

obtaining a decision-rule to distinguish S from other individuals based on RS-activity (Figure 1B). 3 

Numerous prior studies demonstrate that RS-activity can serve as a “fingerprint” for person 4 

identification (Huang et al. 2012; Campisi and Rocca 2014; Finn et al. 2015; Valizadeh et al. 2019; 5 

Pani et al. 2020). Although our focus was not on the neural basis of individual differences and trait-6 

identification (Smit et al. 2005, 2006; Demuru et al. 2017; Finn et al. 2017; Gratton et al. 2018), this 7 

person identification approach provided a convenient technical platform for our test of individual-8 

specific longitudinal inference. Therefore, we mapped our test of robust cross-day NP+/NP- 9 

classification into the terminology of a person identification problem and adopted a machine-10 

learning approach to address this problem. 11 

Decision-rules (i.e., classifiers) were trained to distinguish a person S from all others in the 12 

tested population using samples from a single day. The samples from S putatively share a 13 

constraint-defined configuration that is not shared by samples from other individuals. Therefore, the 14 

outcome of training should be a decision-rule that represents information about individual S’s 15 

unique configuration. If this is indeed true, S’s decision-rule from one day should enable S to be re-16 

identified from samples acquired on a different day as well as from samples of pseudo-RS activity 17 

despite cognitive state variability (NP-). Conversely, S’s decision-rule should classify samples from 18 

other individuals as not-S, consistent with a difference in neurophysiology co-mingled with 19 

cognitive state differences (NP+). 20 

 21 

2. MATERIALS & METHODS  22 

2.1. Participants 23 

Twenty seven healthy volunteers (11 female, age (mean ± sd): 27.9 years ± 3.4, range: 22-34 24 

years) participated in the study and received monetary compensation. Participants had normal or 25 

corrected-to-normal vision; no history of neurological or psychiatric disease; were not under 26 
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8 

medication at that time; and had no cranial metallic implants (including cochlear implants). 1 

Handedness was not an inclusion criterion. Based on the Edinburgh Handedness Inventory 2 

(Oldfield 1971), 22 participants were right handed (score > 50), 2 were left handed (score < -50) 3 

and 3 had intermediate scores. The study was approved by the Ethics Commission of the Faculty of 4 

Medicine, University of Cologne (Zeichen: 14-006). All participants provided their written 5 

informed consent before the start of the experiment. 6 

Datasets from 24 (of the 27) participants were used for statistical analyses (see section 2.6). 7 

 8 

2.2. Apparatus and EEG data acquisition 9 

Stimuli were displayed using the software Presentation (v. 20.2 Build 07.25.18, 10 

Neurobehehavioral Systems, Inc.) on an LCD screen (Hanns-G HS233H3B, 23-inch, resolution: 11 

1920 x 1080 pixels). Behavioral responses were recorded with the fMRI Button Pad (1-Hand) 12 

System (LXPAD-1x5-10M, NAtA Technologies, Canada). 13 

Scalp-EEG was acquired with a 64-channel active Ag/AgCl electrode system (actiCap, 14 

Brain Products, Germany) having a standard 10-20 spherical array layout (ground electrode at AFz, 15 

reference electrode on the left mastoid). Three electrodes (FT9, FT10, TP10) were used to record 16 

electrooculographic (EOG) activity: one below the left eye to record vertical movements and the 17 

other two near the left and right lateral canthi to record horizontal movements. During acquisition, 18 

measured voltages (0.1µV resolution) were amplified by a BrainAmp DC amplifier (BrainProducts 19 

GmbH, Germany) at a sampling rate of 2.5 kHz and filtered (low cutoff: DC, high cutoff: 250 Hz). 20 

To ensure reliable positioning of the EEG cap across sessions, a stereotactic neuronavigation 21 

system (Brainsight v. 2.3, Rogue Research Inc, Canada) was used on each session to co-register the 22 

spatial coordinates of five selected electrodes (AFz, Cz, POz, C5, C6) to their coordinates on the 23 

first session (see section 2.4 for details). 24 

 25 

 26 
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2.3. Experiment protocol and paradigm 1 

Participant completed five sessions of approximately 40 minutes each (Figure 1A, upper 2 

panel) scheduled at the same time on consecutive days (Monday to Friday). Sessions took place at 3 

three possible times: morning (6 x 9AM), noon (9 x 12PM) and afternoon (12 x 3PM). Due to 4 

technical problems during the scheduled recording, for one participant, the fifth session was re-5 

acquired after a gap of three days. For all participants, every session consisted of two resting state 6 

recordings (RS1 and RS2) interleaved with two non-rest tasks (referred to as Tap and Sequence) in 7 

the same order (namely, RS1, Tap, RS2, Sequence).  8 

The Tap and Sequence tasks (Figure 1A, lower panel) involved some special design 9 

considerations. Both tasks required participants to press buttons in response to visual cues. 10 

However, these tasks had relatively long and variable inter-stimulus-intervals (10-14s) where 11 

participants fixated on the screen as they “waited” for the visual cue that required the instructed 12 

response. The cognitive states during these waiting periods (referred to as TapWait and SeqWait) 13 

were the primary focus of these tasks. The behavioral demands of the Tap and Sequence tasks were 14 

designed to modulate the cognitive states during these pre-movement wait periods, for example, 15 

covert movement preparation during TapWait and covert rehearsal of a movement sequence during 16 

SeqWait. With this covert modulation, the TapWait and SeqWait could be considered pseudo-rest 17 

states as they were matched to RS1 and RS2 in behavioral state but not in cognitive state. 18 

Furthermore, the Tap task was intended to produce cognitive states that were similar within and 19 

between days while the Sequence task was designed to elicit cognitive states that could 20 

systematically change across days. This was implemented by inducing participants to learn a 21 

difficult motor sequence where performance could improve with increasing practice across days. 22 

We now describe the different task periods in detail.  23 

Each task period began with an instruction screen describing the task to be performed and 24 

ended with another instruction screen that instructed participants to take a short break and press a 25 

button to initiate the next part when they were ready.  26 
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10 

1: Resting State (RS1). During this period lasting ~5minutes, a small white dot was continuously 1 

displayed at the center of the screen. Participants were instructed to keep their eyes open, fixate on 2 

the displayed white dot, relax and avoid movements (also see section: Procedure).  3 

 4 

2: Tap task. In this task-period, a small white dot was centrally displayed on the screen (as in RS1). 5 

However, after variable intervals of 10-14 seconds, this dot disappeared for a 2 second period 6 

before reappearing. The offset of the dot was the cue for participants to repeatedly and rapidly press 7 

a button with their left index finger until the dot reappeared on the screen. The total task (duration 8 

~14 minutes) consisted of 60 movement periods (dot absent) interleaved with 60 waiting periods 9 

(dot present). These waiting periods are referred to as TapWait and the response execution periods 10 

are referred to as TapMov. 11 

 12 

3: Resting State (RS2). A second resting state recording was acquired with all task parameters being 13 

identical to RS1. This recording is referred to as RS2. 14 

 15 

4: Sequence task. As with the Tap task, the sequence task consisted of 60 waiting periods of 10-14s 16 

each (i.e., SeqWait) where a small white dot was centrally displayed on the screen interleaved with 17 

60 movement periods of 2s duration (i.e., SeqMov). Unlike the Tap task, each movement period was 18 

cued by a centrally displayed visual stimulus consisting of four vertically displayed digits (3-1-2-4) 19 

between two vertical arrows. Each number was mapped to a different button on the response pad. 20 

The vertical ordering of the numbers indicated the sequence in which the indicated buttons had to 21 

be pressed using fingers of the left hand. The arrows indicated that this sequence had to be executed 22 

rapidly and repeatedly in a cyclical manner starting from top to bottom and back. For example, 23 

following stimulus onset, the required sequence of button-presses was 3-1-2-4-4-2-1-3-3-1-2-4-… 24 

and so on. This continuing sequence had to be executed until the offset of the stimulus. No 25 

performance feedback was provided during the task. This particular sequence of digits was selected 26 
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as it was challenging to execute rapidly. To promote learning of this sequence across trials and 1 

days, the same sequence of numbers and number-to-finger-mapping was used on all sessions. The 2 

same sequence and number-to-finger mapping was also used for all participants.  3 

Handedness was not an inclusion criterion in our experiment. However, for uniformity in 4 

task-related neural activity, all participants used fingers of their left hand to execute the button-press 5 

responses in the Tap and Sequence tasks.  6 

 7 

2.4. Procedure  8 

Prior to the start of the recordings on each of the five days, participants completed the 9 

Positive and Negative Affect Schedule (PANAS) (Watson et al. 1988) and completed brief 10 

questionnaires to report the caffeine consumption on that day and the amount and quality of sleep 11 

on the previous night.  12 

On the first day, participants received detailed instructions about the experiment. For the 13 

resting state periods, participants were instructed to keep their eyes open, fixate on the displayed 14 

white dot and to avoid movements. Additionally, they were also asked to relax, stay awake and not 15 

think of anything in particular. For the Tap task, participants were instructed to press the buttons as 16 

rapidly as possible without causing discomfort. For the Sequence task, participants were 17 

familiarized with the task and the mapping of the number to finger. They practiced performing the 18 

task using a different digit sequence from the one used in the main experiment. Furthermore, they 19 

were explicitly instructed on each session to try to improve their performance particularly the 20 

number of buttons pressed during each response period. Finally, on all sessions, we repeatedly 21 

emphasized the importance of minimizing eye-blinks, maintaining fixation at all times during the 22 

recording, and the avoidance of all unnecessary movements of the fingers, head and body.  23 

As the study’s objective was to relate the spatio-temporal organization of neural activity 24 

across days, minimizing inter-day variation in the EEG cap’s position was an important priority. We 25 

therefore implemented an additional spatial registration procedure on each day after the EEG cap 26 
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was secured to the participant’s head. Using a stereotactic neuronavigation system, the participant’s 1 

head was registered to the Montreal Neurological Institute (MNI) space using standard cranial 2 

landmarks. The positions of five selected electrodes along the midline and lateral axis (AFz, Cz, 3 

POz, C5, C6) were then localized using the neuronavigation software. The electrode locations 4 

obtained on the first day were used as the reference for the remaining sessions. On each subsequent 5 

session, the positioning of the cap was interactively adjusted so that each electrode’s coordinates 6 

closely matched its reference location. Due to scheduling constraints, this spatial registration 7 

procedure was not performed for 7 participants. 8 

The application of electrode gel followed after cap positioning. Skin-electrode impedance 9 

was brought below 10kΩ before starting the recording. Recordings were acquired in a light-dimmed 10 

and acoustically shielded EEG chamber. Participants were seated in a comfortable chair with their 11 

heads stabilized with a chinrest in front of the computer screen at a viewing distance of ~65cm. The 12 

response pad was placed in a recess under the table so that participants could not see their hands 13 

during the task-periods especially while pressing the buttons. During the recording, participants 14 

were monitored via a video camera to ensure that they maintained fixation, minimized eye-blinks, 15 

and stayed awake.  16 

 17 

2.5. EEG preprocessing 18 

The EEG data were preprocessed using the EEGLAB software (Delorme and Makeig 2004) 19 

and custom scripts in a MATLAB environment (R2016b, MathWorks, Inc., Natick, MA). 20 

The continuous recordings were down-sampled to 128Hz, and then band-pass filtered to the 21 

range 1Hz-40Hz with a Hamming windowed sinc FIR filter (high pass followed by low pass). The 22 

continuous recordings then underwent an artifact correction process to remove oculomotor activity 23 

related to eye-blinks and saccades.  24 

Eye blink removal was performed separately for each day’s dataset (including all task 25 

periods) using the procedure described by Winkler et al. (2015). Following this procedure, a copy of 26 
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a dataset was first created which was then filtered with a high-pass 2 Hz filter. This duplicate 1 

dataset was visually inspected to remove data segments and EEG channels with artifacts related to 2 

repeated paroxysmal amplitudes changes (> 50µV), electromyographic contamination, electrical 3 

noise and signal loss. Next, the artifact-free data from all task-periods were segmented into 2s 4 

epochs. These epochs were then submitted to an Independent Components Analysis (ICA) 5 

decomposition using the infomax-ICA algorithm (implemented as runica in EEGLAB). To 6 

minimize inter-condition biases, ICA was performed on a balanced mixture of epochs from RS1, 7 

TapWait, RS2 and SeqWait. Epochs from the TapMov and SeqMov periods were excluded from this 8 

step to avoid movement-specific biases. The ICA weights obtained with the duplicate dataset were 9 

then transferred and applied to the original, non-filtered dataset. ICA components related to eye-10 

blinks and saccades were then identified and removed using an automatic detection algorithm 11 

ADJUST (Mognon et al. 2011). 12 

Following eye-blink correction, the original dataset was then again visually inspected to 13 

remove time periods and channels with artifacts. The signals in rejected channels were replaced 14 

with signals interpolated from other channels using spherical spline interpolation. All channels were 15 

then re-referenced to the Common Average Reference. Finally, the visually inspected continuous 16 

data were segmented into 2s epochs according to the six different experimental states: RS1, RS2, 17 

TapWait, TapMov, SeqWait and SeqMov. The epoch duration of 2s was heuristically selected to 18 

meet the tradeoff of (i) being short enough to obtain a sufficient number of samples for the 19 

machine-learning analysis (see section 2.6) while (ii) being long enough to obtain a suitable 20 

estimate of the power spectrum. Furthermore, this allowed epochs from the non-movement periods 21 

to match the 2s duration of the task-defined movement period. 22 

For the two movement-related states (TapMov and SeqMov), epochs were defined from 23 

+0.25s to +2.25s following the visual cue to exclude initial transients and response-time delays 24 

following cue onset and to include residual movements in the period immediately following the cue 25 

offset. To avoid any carry-over effects from movement into the TapWait and SeqWait epochs, a 26 
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time interval of 500ms immediately prior to cue onset and 1000ms immediately following cue 1 

offset were excluded before segmenting the TapWait and SeqWait epochs. Furthermore, all TapWait 2 

and SeqWait epochs that contained button presses were excluded. 3 

To establish face-validity of the task states based on their time-courses, we created a 4 

separate set of epochs from -1 to +3s relative to the onset of the visual cue. The signals were band-5 

pass filtered in the β frequency band (14-30Hz) and the signal amplitude was extracted using the 6 

Hilbert transform. After removing edge artifacts, the signal was normalized by calculating the 7 

percentage change in the signal relative to the mean amplitude in the pre-stimulus period [-898ms, 8 

0ms]. After normalization, the signals were averaged across epochs, days and individuals.  9 

 10 

2.6. Data quality assessment 11 

Preprocessing resulted in 135 datasets (27 participants x 5 days). To be included in our 12 

analysis, each subject had to have completed the first three of the four tasks on all sessions and have 13 

at least 4 (out of 5) session-datasets that met the following data-quality criteria for analysis. We 14 

required a preprocessed dataset to have (i) less than seven rejected channels, (ii) ≥ 90 artifact-free 15 

epochs from both resting state periods (i.e., RS1 and RS2), and (iii) ≥ 90 artifact-free epochs from 16 

the available resting-matched conditions (i.e., TapWait, SeqWait). Note that the number of epochs 17 

for TapMov and SeqMov were necessarily ≤ 60 as each task only had 60 response periods of 2s 18 

duration.  19 

Datasets from 24 out of 27 participants met these data-quality criteria: 18 (of 24) had 20 

completed all 4 task-periods on each session and the remaining 6 (of the 24) participants had 21 

completed only the first 3 (of the 4 parts). To maintain uniformity in the statistical analyses, final 22 

analyses were performed only on the best 4 of the 5 session-datasets. For participants where all 5 23 

datasets were of high quality, we excluded the first day’s dataset as it might involve effects of initial 24 

familiarization. To maximize the use of the available data after these exclusions, analyses involving 25 

only RS1 and RS2 included data from 24 participants, while analyses involving any of the non-rest 26 
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tasks used data from 18 participants. For these 18 participants, the mean number of epochs per day 1 

in TapMov was 52.7 (min: 45.3, max: 57.7; SD = 2.9; minimum/day = 36) and in SeqMov was 53.4 2 

(min: 49.2, max: 57.7; SD = 2.5; minimum/day = 42). 3 

 4 

2.7. Feature specification: Oscillatory power spectrum 5 

All classification analyses were based on a description of the oscillatory power spectrum on 6 

each 2-second epoch. Each epoch’s power spectrum was described using 305 features that specified 7 

the power in five canonical frequency bands (δ: 1-3.5 Hz; θ: 4-7.5 Hz; α: 8-13.5 Hz; β1 (low β): 14-8 

22.5; β2 (high β): 23-30 Hz) at each of the 61 channels. 9 

These features were extracted with the procedure schematically displayed in Figure 2A. For 10 

each 2s epoch of EEG activity, the oscillatory power spectrum at each channel over the range of 1 11 

to 30 Hz (0.5Hz resolution) was computed using the Fast Fourier Transform (FFT). The power at all 12 

frequencies within each band’s frequency range was averaged to obtain the mean power per 13 

frequency band. The mean power per band was then logarithmically transformed (base 10) so that 14 

the resulting distribution across epochs had an approximate normal distribution. These five features 15 

(one per band) provided a minimal description of each channel’s power spectrum. Finally, these 16 

five features from each channel were concatenated to obtain a single vector with 305 feature values 17 

(5 frequency bands x 61 channels). This extended feature set describing an epoch’s power spectrum 18 

across the scalp was used for the classification analyses. 19 

For detailed analyses, we defined subsets of the full feature set referred to here as the (i) 20 

mono-band and (ii) mono-location feature sets. Each mono-band feature set (Bf) consisted of 21 

features belonging to only one frequency band f. The five mono-band feature sets (each with 61 22 

features) were Bδ, Bθ, Bα, Bβ1 and Bβ2. Each mono-location feature set (Lz) (Figure 2A, top panel) 23 

consisted of features from 10 bilaterally symmetric channels in the spatial zone z on the scalp along 24 

the anterior-posterior axis. The four mono-location sets were defined at the frontal (LF); fronto-25 

central (LFC), centro-parietal (LCP) and parieto-occipital (LPO) zones respectively.   26 
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Figure 2: Classification procedure. (A) Feature definition pipeline. Channels in each mono-location subset are 1 
identified by color (green: LF, yellow: LFC, blue: LCP, red: LPO). The continuous signal from each channel was segmented 2 
into 2s epochs followed by an estimation of the frequency spectrum with the Fast Fourier Transform (FFT). The mean 3 
power within each of the five bands was log transformed (base 10) and concatenated with corresponding values from all 4 
other channels to obtain a feature vector. (B) Schematic of a multiclass decision with an ensemble of individual-specific 5 
binary classifiers. Each classifier evaluates the sample (Sx or not-Sx) to output a decision-value (red bars > 0, black bars 6 
< 0) and the classifier with the maximum decision value was the predicted label (here, S2). (C) Classification schemes 7 
AIDx → AIDy (rows) were defined by the configuration of training (left column) and test sets (right column) (where Di 8 
denotes samples from day i). The sample distribution (IDx) had samples from all individuals (multi-colored boxes). 9 
Percentages indicate the proportion of each day’s samples used for training/testing. Same-day identification was 10 
estimated with 5-fold cross-validation (CV). The training set for cross-day aggregation had an equal proportion of 11 
samples from each day and the total number of training samples was the same across aggregation levels.  12 
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2.8. Multi-class classification  1 

2.8.1. Definition 2 

All classification models were numerically estimated using a soft-margin linear Support 3 

Vector Machine (SVM, with L2 regularization) algorithm as implemented by the LinearSVC 4 

package in the scikit-learn library (Pedregosa et al. 2011) implemented in Python 3.6. SVM 5 

learning was initialized with parameters (tolerance = 10-5, max iterations =104, hinge loss, balanced 6 

class weighting). The hyper-parameter C had a value of 1, which has been shown to be a reasonable 7 

default for M/EEG classification (Varoquaux et al. 2017). For our data, tuning C’s value seemed to 8 

produce only marginal changes to the classification accuracies (results not shown).  9 

As defined above, each epoch was a 2-second sample of the ongoing oscillatory activity 10 

from one person (of 24) on one specific day (of 4) engaged in a particular task state (of 6 possible 11 

states: true rest {RS1, RS2}, pseudo-rest {TapWait, SeqWait}, non-rest {TapMov, SeqMov}). The 12 

classification analyses involved predicting an epoch’s origin either by (i) a person’s identity or (ii) 13 

task-state. Multi-class classifiers (using an ensemble of binary classifiers) were used for person 14 

identification as described below. Standalone binary classifiers were used to distinguish alternative 15 

task-states within the same person. 16 

The input to a multi-class classifier (see Figure 2B) was a single sample (i.e., epoch) from an 17 

unspecified person Sx in the studied group and the required output was the predicted identity of that 18 

person (e.g., S2). The multi-class classifiers used here employed a one-vs-all scheme (as 19 

implemented by scikit-learn). Specifically, an N-class classifier (N ≥ 2) consisted of an ensemble of 20 

N binary-classifiers. Each of these binary classifiers was independently trained to distinguish 21 

whether a sample was from one specific person (e.g., S2) or from any of the other N-1 persons (i.e., 22 

not S2). Therefore, each individual was associated with a unique classifier in the ensemble. To 23 

obtain a classification with such an ensemble, each sample was separately evaluated by each of the 24 

N binary-classifiers to obtain a decision value from each classifier (i.e., the signed distance to the 25 

separation hyperplane (Rifkin and Klautau 2004)). These decision values were compared and the 26 
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final classification was assigned to the binary classifier with the maximum decision value. 1 

 2 

2.8.2. Accuracy scoring 3 

Even though an ensemble was used for multi-class classification, our interest was in the 4 

accuracy of each individual-specific binary classifier in the ensemble. To obtain a measure of 5 

classification accuracy of each individual classifier from the ensemble classification accuracy, we 6 

defined the accuracy ai of the classifier for person Si as 7 

𝑎𝑖 =  
1
2 (𝐻𝑖 +  𝐶𝑅𝑖) 8 

where Hi denotes the hit rate (i.e., positive identification rate) of the classifier and CRi denotes the 9 

correct rejection rate. The hit rate Hi was the proportion of instances where samples from Si were 10 

correctly predicted as being from Si by the ensemble (i.e., a true positive where the classifier Si had 11 

a larger decision value than the competing classifiers). Correct rejection was defined based on the 12 

pair-wise relationship of Si to each of the other classifiers Sj. If the ensemble (incorrectly) predicts Si 13 

for a sample from a different person Sj then it implies that the classifier Si (incorrectly) had a larger 14 

decision value than the competing classifiers, i.e., a false positive. The false positive rate FPi,j 15 

denotes the proportion of instances where samples from Sj were incorrectly predicted as being from 16 

Si by the ensemble. The correct rejection CRi,j was defined as CRi,j  = 1 - FPi,j. Based on this 17 

rationale, the overall correct rejection CRi for Si was defined as the mean of the pair-wise correct 18 

rejection  rates 19 

𝐶𝑅𝑖 =
1

𝑁 − 1
∑ 𝐶𝑅𝑖,𝑗

𝑁

𝑗=1

 where j ≠ 𝑖  20 

With this formulation, random chance for each classifier was 50% even though random 21 

chance for the entire ensemble was (100/N)%.  22 

To identify individuals who were frequently misclassified (i.e., confused) with each other, 23 

we report confusion matrices for cross-day classification. In this confusion matrix, the rows 24 
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represent the true label of a sample and the columns indicate the predicted label for that sample by 1 

the ensemble. The value for the row corresponding to individual Si and column corresponding to 2 

individual Sj indicated the proportion of samples from Si that were classified as Sj. The 3 

rows/columns of the matrices were re-organized to cluster together individuals who were confused 4 

with each other. This was implemented with the so-called Louvain method to maximize modularity 5 

(Blondel et al. 2008), implemented in the Community Detection Toolbox (Kehagias 2021). 6 

The accuracy score can have different contributions from the hit-rate (e.g., high false 7 

negatives) and the correct rejection rate (e.g., high false positives). To disentangle these 8 

contributions, we estimated the recall and precision scores from the confusion matrix (Davis and 9 

Goadrich 2006). The recall score for individual Si is the ratio (True Positives)/(True Positives + 10 

False negatives). The recall score for Si would be low if samples from Si are misclassified as 11 

belonging to another individual (i.e., false negatives). The precision score for individual Si is the 12 

ratio (True Positives)/(True positives + False positives). The precision score for Si would be low if 13 

samples from other individuals are misclassified as belonging to Si (i.e., false positives). 14 

 15 

2.8.3. Training and testing schemes 16 

Classification was defined by the samples used for training and testing. Irrespective of 17 

classifier type (multi-class or standalone binary classifier), the training data were always balanced, 18 

(i.e., having an equal number of samples per class) to avoid biases arising from imbalanced classes 19 

(Abraham and Elrahman 2013).  20 

Person (multi-class) identification was organized into two schemes based on whether the 21 

training and test samples belonged to the (i) same day (namely, same-day vs cross-day 22 

identification) and the (ii) same task (namely, same-task vs cross-task identification). A schematic 23 

of the same-day/cross-day schemes are shown in (Figure 2C). For convenience, we use the 24 

following notational convention to describe these classification schemes. As multi-class 25 

classification involves an ensemble decision, it involves the conjoint influence of the sample 26 
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distributions from multiple persons. This combined distribution on a particular state (e.g., RS1) on 1 

day d is denoted as RS1Id. A classification scheme where a decision-rule is trained on samples from 2 

AIp (i.e., from task state A on day p) and tested on samples from BIq (i.e., from state B on day q) is 3 

denoted as AIp → BIq. Similarly, a classification scheme where a decision-rule was trained on 4 

samples aggregated from different days (e.g., AIp and AIq) and tested on BIr. is denoted as  AIp ∘ AIq  5 

→ BIr. (see below). 6 

Same-day/same-task identification: The accuracy of same-day person identification in task 7 

state A (AIp → AIp) was estimated using a 5-fold cross-validation (CV) procedure (Blum et al. 8 

1999). Specifically, the set of samples from state A on one day (for example, day D1 in Figure 2C, 9 

upper row), were partitioned into 5 equal folds. Training was performed on four folds (80% of the 10 

sample set) and tested on the left-out fifth fold (the remaining 20%). This training-testing procedure 11 

was repeated so that each fold was used as a test-set once. The mean classification accuracy across 12 

folds was defined as the same-day identification accuracy for that day. In this manner, the CV 13 

accuracy was estimated separately for each of the four days and the mean CV accuracy across days 14 

was denoted as the same-day accuracy for task state A.  15 

Cross-day/same-task identification: For cross-day identification in task state A (AIp → AIq), 16 

samples in the test set were from a different day than the samples in the training set. We modulated 17 

the training set’s day-specificity by aggregating samples from different days in a stratified manner. 18 

In an n-day training set, the k training samples per person consisted of k/n samples from each of n 19 

different days. Here, n could take three possible values, namely, 1, 2 or 3 (see Figure 2C, first 20 

column). The number of samples per person, k, was held constant to enable comparison of 21 

classification accuracy across all values of n. Irrespective of the extent of aggregation in the training 22 

set, samples in the test-set were never aggregated from different days. Mean identification accuracy 23 

for a particular n-day aggregation scheme (e.g., AId1 ∘ AId2 … AIdn → AIr.) was obtained by (i) 24 

independently estimating the accuracy for each possible training/test-set combination that satisfied 25 

the day constraints (e.g., day p ≠ day q ≠ day r) and then (ii) averaging these accuracy values.  26 
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Cross-task identification: This was treated as a special instance of cross-day identification. 1 

For example, the accuracy for the configuration AIp → BIq was estimated by replacing the test set 2 

with samples from state B while retaining all other day-related constraints as in cross-day/same-task 3 

identification. Unless specified otherwise, cross-task identification was always tested across days, 4 

that is, the training and test sets were always from different days. This was done to exclude 5 

potential inter-state similarities that might be present due to the joint preprocessing of data from all 6 

states within the same day (see section 2.5). 7 

 8 

2.8.4. Classification schemes: Interpretation of accuracy relationships 9 

The same-day accuracy for a particular state was treated as a pre-condition to estimate the 10 

cross-day identification accuracy for that state. If same-day accuracy were greater than random 11 

chance, it would confirm that the distribution from which the training set was drawn contained 12 

sufficient information to allow identification in the absence of potential inter-day changes. Cross-13 

day accuracy is reported and interpreted here only if this pre-condition was satisfied.  14 

Based on this pre-condition, a reduction in cross-day (1-day) accuracy (e.g., AIp → AIq) 15 

relative to same-day accuracy (e.g., AIp → AIp) can be attributed to a systematic difference in the 16 

distributions AIp and AIq between days (red arrow, Figure 3A). Aggregation was used to evaluate the 17 

source of this cross-day accuracy reduction by varying the statistical properties of the training set 18 

(i.e., by aggregating samples across days) while holding the properties of the test set constant. 19 

Specifically, we assumed aggregation would lead to decision-rules that discount day-specific 20 

properties in favor of day-general properties. Therefore, depending on the relative roles of day-21 

specific/general properties in the classification decision, the cross-day accuracy might stay constant, 22 

increase or decrease with increasing aggregation (Figure 3A).   23 
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Figure 3: Effect of aggregation. (A) Schematic of relationship between same-day and cross-day identification 1 
accuracy. Cross-day (1-day) accuracy can be lower than same-day accuracy (red-arrow) due to day-specificity of the 2 
decision-rule. Training decision-rules on aggregated samples (y-axis) can change cross-day accuracy, which could 3 
increase (blue, see panel B), or stay constant (dark green), or even decrease (light green, see panel C). (B) Idealized 4 
example of how cross-day accuracy (column 1) can increase with aggregation (column 2) due to day-general 5 
information. Samples from two classes (stars, circles) are shown along two features (day-general: X, day-specific: Y) 6 
with each day’s samples shown in different colors (p: blue, q: orange, r: purple). The 1-day decision-rule (Ip) (top left 7 
panel) is depicted with thick black line and shaded areas. This decision-rule can successfully classify samples from days 8 
q and r but with some errors. However, a decision-rule trained on data from days p and q (Ip ∘ Iq) (thick red line, red 9 
shaded area) reduces cross-day classification errors (lower right). (C) Idealized example of high day-specificity. Even 10 
though the classes are separable within each day, the 1-day decision-rule (Ip) has a poor cross-day accuracy  (column 1). 11 
2-day training (column 2) produces a decision-rule with worse classification both on the training set itself (dotted red 12 
line) as well as across days (lower right).  13 
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Figures 3B and 3C show idealized examples of how aggregation could both increase as well 1 

as decrease cross-day accuracy. In the example shown in Figure 3B, the two classes systematically 2 

differ on feature X (x-axis) but with an inconsistent role for feature Y (y-axis). Due to incidental 3 

day-specific variation, feature Y has a role in distinguishing the classes on day p but not on other 4 

days. Consequently, a decision-rule trained on day p does not effectively separate the classes on 5 

other days (column 1). However, training on aggregation samples from day p and q (column 2) 6 

reduces Y’s role in the aggregated decision-rule leading to an improved separation of the classes 7 

across days. Figure 3C illustrates an extreme example of day-specificity where the two features 8 

have a conjoint relationship allowing classification within each day but with low generality across 9 

days. Therefore, training on samples aggregated from day p and q leads to an overall reduction in 10 

accuracy on the training set itself as well across days. 11 

 12 

2.8.5. Weights and normalized weights 13 

The characteristic weights for a particular classification scheme (e.g., AIp → AIq) were 14 

obtained by averaging the weights across all training sets. In a multiclass classifier, the decision-15 

rules are organized in a winner-take-all competition to label each sample (Figure 2B). Therefore, for 16 

each sample to be uniquely assigned to only one person, the person-specific classifiers in the 17 

ensemble necessarily require different decision-rules. This difference in decision-rules might only 18 

be in the sign (positive/negative) assigned to the weights. Therefore, for all weight-related analyses, 19 

the absolute values of the weights were used in order to allow inter-individual comparisons.  20 

To identify the high-consistency weights, the absolute weights were z-scored across all 21 

features for each subject to retain information about inter-feature weight differences in the statistical 22 

tests. However, this “raw” weight measure does not account for power differences. For features i 23 

and j, the weight |wi| might be greater than |wj| while the power |Pi| might be less than |Pj.|. 24 

Consequently, neither the relationship between the weights nor the power are reliable indicators of 25 

the relative influence of i and j on the eventual classification decision. Therefore, we defined a 26 
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feature i’s unit weight �̅�𝑖  as the idealized weight value such that �̅�𝑖𝑃𝑖 = 1. The normalized weight 1 

was thus defined as the ratio 𝑤𝑖/�̅�𝑖, which was effectively equal to wiPi. Due to the characteristic 2 

differences in power between bands, for statistical comparisons, the absolute normalized weights 3 

(i.e., |w*P|) were z-scored within each band for each subject. 4 

 5 

2.9. Statistical Analysis  6 

The relative differences in the accuracy of different classification schemes were assessed by 7 

performing paired t-tests, repeated measures one-way or two-way analysis of variance (ANOVA) 8 

implemented by the pingouin python package (version 0.3.2) (Vallat 2018). 9 

The random chance accuracy for the multi-class and standalone binary classifier was 50% 10 

and accuracy deviations from random chance were evaluated with one-sample t-tests. The 11 

Bonferroni threshold was used to correct for multiple comparisons. Due to the sequential 12 

relationship between the different multiclass classification schemes, following Figure 3A, the tests 13 

for same-day accuracy (CV) and cross-day accuracy were planned tests that were considered 14 

significant at a threshold of p < 0.05. The tests for 2-day and 3-day aggregation were evaluated at a 15 

threshold of p < (0.05/2). For tests for the mono-band and mono-location sets, the thresholds were 16 

further corrected for the number of feature sets. Correlations between individual accuracy values 17 

were evaluated using Spearman’s rank correlation due to the focus on relative ordering rather than a 18 

strict cardinal relationship. 19 

Two kinds of error-bars are used in the plots. For plots depicting variable changes due to a 20 

single-factor, error bars indicate the standard deviation (SD). Plots depicting multi-factor changes 21 

use error bars displaying the within-subject standard error (s.e.m.) (O’Brien and Cousineau 2014). 22 

The type of error-bar used is explicitly noted in the figure caption.  23 
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 1 
Figure 4: Inter-individual and inter-day differences. (A) Matrix showing the oscillatory (full) power spectra in RS1 2 
at all channels (averaged across samples and days) for 8 selected individuals (Si, diagonal, thick black boundary) and 3 
their pair-wise differences. The difference in power spectra for each pair of individuals Si and Sj (i.e., Si – Sj) is shown at 4 
row i, column j of matrix. In each spectrogram, channels have a posterior-to-anterior ordering. Insets show magnified 5 
view of the power spectrum for S1 (left upper) and differences for S2 – S3 (right upper) and S2 – S5 (right lower), with 6 
frequency band boundaries marked with black lines. (B) Inter-sample dissimilarity matrix for RS1 (90 samples per 7 
individual per day, each sample was defined by 305 features = 61 channels x 5 bands). The dissimilarity of two samples 8 
was defined by their correlation distance (= 1 - r, where r is the Pearson’s correlation coefficient). Large black squares 9 
on diagonal contain values from the same individual, and the four smaller squares each contain same-day values.  10 
  11 
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3. RESULTS 1 

3.1. Face-validity of individual power spectra  2 

Our investigation assumed that an individual’s power spectrum at rest can systematically (i) 3 

differ between days, and also (ii) differ from the spectra of other individuals. We first confirmed the 4 

face-validity of these assumptions in our data. 5 

The structured inter-individual differences during RS1 were qualitatively evident from the 6 

mean (full) power spectrum at different channels (Figure 4A) before its reduction to the minimal 7 

description used for the classification analyses. As shown for one example individual S1, individual 8 

power spectra had a similar form across channels with a higher power in the δ and α bands and a 9 

higher overall power in the posterior and anterior channels relative to the central channels. These 10 

individual spectra also showed prominent pair-wise differences as illustrated for a few selected 11 

individuals. The diverse varieties of inter-individual differences highlight the difficulty of 12 

representing an individual’s unique properties as illustrated for individual S2. The combination of 13 

channels and frequencies (i.e., features) at which S2 and S3 showed prominent differences were not 14 

the same features at which S2 differed from S5. However, the required decision-rule to identify S2 15 

was a single feature configuration capable of distinguishing S2 from all others while allowing S2 to 16 

be re-identified across days, despite inter-day variations. 17 

The systematic inter-day differences were evident from the dissimilarity between samples 18 

from all participants and all days (90 samples per participant per day) (Figure 4B). The dissimilarity 19 

between any two samples was described by their correlation distance (= 1 - r, where r is the 20 

Pearson’s correlation coefficient)(Diedrichsen and Kriegeskorte 2017; Dimsdale-Zucker and 21 

Ranganath 2019; Pani et al. 2020). For all 24 participants, the mean dissimilarity between samples 22 

from the same day was lower than between samples from different days (cross-day) [t23 = -6.74, p < 23 

0.0001]. However, the dissimilarity between same-day and cross-day samples varied from person to 24 

person suggesting their possible confusability with samples from other individuals. This was the 25 
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critical issue to be resolved with an appropriate decision-rule, to be identified using machine-1 

learning. 2 

 3 

3.2. Identification of individuals from RS activity within and across days 4 

3.2.1. High same-day accuracy but reduced cross-day accuracy of individual decision-rules 5 

To identify a person from a 2s sample of RS activity with an ensemble classifier, a decision-6 

rule was numerically estimated to represent each person’s unique RS characteristics. The decision-7 

rules estimated for each day could identify each person (of 24) from a sample acquired on the same 8 

day (i.e., according to the scheme RS1Ip → RS1Ip) with a mean cross-validated (CV) accuracy of 9 

99.98 ± 0.04% (mean ± sd) that was significantly larger than the theoretically expected accuracy for 10 

random guessing [> 50%: t23 = 5596.13, p < 0.00001] (Figure 5A, Table A.1). However, for 11 

longitudinal tracking, a key demand is that decision-rules from one day should identify a person 12 

from samples acquired on a different day (i.e., RS1Ip → RS1Iq). The same-day decision-rules 13 

identified individuals across days with a mean accuracy of 92.10% ± 6.8% that was higher than 14 

random chance [t23 = 30.14, p < 0.00001] but less accurate than same-day identification by ~8% 15 

[paired t23 = 5.64, p = 0.00001].  16 

The confusion matrix (Figure 5B) of how individuals were misclassified during cross-day 17 

(1-day) identification revealed four clusters of individuals who were confused with each other. 18 

Notably, the individuals with the lowest cross-day accuracies (namely, S2, S11, S15, S24) belonged to 19 

different clusters rather than being solely confused with each other. The clustering of misclassified 20 

individuals suggested that errors in identifying an individual SX were due to a combination of (i) 21 

changes to SX’s RS-activity between days (i.e., false negatives) and (ii) changes to other individuals 22 

who were then misclassified as SX (i.e., false positives). Nevertheless, the increased errors in 23 

individual identification illustrate the challenge of NP+/NP- decisions. Errors in identifying a 24 

person SX across days seemingly imply that SX’s unique identifying characteristics had changed 25 
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across days even though the individuals here were unlikely to have changed in their underlying 1 

neurophysiology over the 5-day testing period. 2 

 3 

3.2.2. Aggregated training increases cross-day accuracy 4 

In numerical terms, the cross-day loss in accuracy implies that certain properties of each 5 

day’s decision-rules were of predictive relevance to same-day samples but of limited generality to 6 

other days. To discount the role of these day-specific properties in favor of day-general properties, 7 

the decision-rules were trained using samples aggregated from multiple days (i.e., RS1Ip ∘ RS1Iq … → 8 

RS1Is) (Figure 5A). The mean cross-day accuracy increased from 92.10% ± 6.8% without 9 

aggregation (1-day) to 95.93 ± 3.63% with 2-day aggregation, with an additional increase to 10 

97.39% ± 2.65% with 3-day aggregation [one-way ANOVA, F2,46 = 28.83, p < 0.00001]. Following 11 

aggregation, the cross-day accuracy was a mere ~2% lower than the same-day accuracy. The effects 12 

of aggregated training on individual-specific identification errors are shown in Figure 5C. The 13 

decision-rules obtained with 3-day aggregation were associated with fewer false negatives (indexed 14 

by the higher recall score) especially for individuals with the lowest 1-day accuracies, i.e., S2, S11, 15 

S15 and S24. This was associated with interrelated changes in errors in individuals who belonged to 16 

the same cluster. For example, there was a prominent reduction in false positives (indexed by the 17 

higher precision score) for S17 who was in the same cluster S24 and S23 (highlighted in green). The 18 

increased accuracy with aggregation despite the true inter-day differences in RS-activity was 19 

consistent with the presence of day-general properties (section 2.8.4, Figure 3). 20 
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Figure 5: Identification accuracy at rest. (A) Mean identification accuracy with RS1 (blue) on same-day (CV), across 1 
days (1-day, 2-day, 3-day), and schemes relating RS1 and RS2 (orange). Light colored dots/lines depict individual 2 
accuracies (N=24). Horizontal dotted line depicts random chance accuracy (50%). Error bars: SD (** = 0.00001 ≤ p < 3 
0.001; *** = p < 0.00001). (B) Confusion matrix for cross-day (1-day) identification (only errors are shown). Dotted 4 
squares indicate clusters of individuals who are more confused with each other. Identities of individuals with the lowest 5 
cross-day accuracies are highlighted with red squares. (C) Changes to precision and recall scores with aggregation for 6 
the whole group (shown with boxplots) and for individuals (1-day: blue dots, 3-day: orange dots). Individuals with 7 
lowest 1-day accuracy are indicated with rings and thick gray lines. Green lines highlight S24, S23 and S17 who belong to 8 
the same cluster, shown in (B).   9 
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3.2.3. Cross-day versus cross-measurement identification are not equivalent 1 

We next assessed whether the above accuracy relationships across days (with and without 2 

aggregation) was related to a difference in days rather than simply a difference in measurements. 3 

In our experimental protocol (Figure 1A), RS2 was the second RS measurement on each 4 

day. The effects of aggregation on cross-day identification with RS1 were successfully replicated on 5 

RS2 without statistically detectable differences (Table A.1) [two-way ANOVA, Condition {RS1, 6 

RS2} x Type {1-day, 2-day, 3-day}, Type*Condition: F2, 46 = 0.56, p = 0.57; Type: F2, 46 = 31.31, p 7 

< 0.00001; Condition: F1, 23 = 0.38, p = 0.54]. Importantly, RS2 validated the day-specific properties 8 

of the decision-rules (Figure 5A). Same-day decision-rules from RS1 classified samples of RS2 9 

from the same day (RS1Ip → RS2Ip) with a mean accuracy of 99.55 ± 1.15% that was significantly 10 

greater than the accuracy in classifying RS1 across days (RS1Ip → RS1Iq) (92.10 ± 6.84%) [paired t23 11 

= 5.19, p = 0.00003]. Furthermore, RS2 validated the importance of aggregating samples from 12 

different days (rather than different measurements) to reduce day-specificity. Decision-rules trained 13 

on aggregated same-day samples from RS1 and RS2 (RS1Ip ∘ RS2Ip → RS1Ir) had a lower cross-day 14 

accuracy (92.38 ± 6.92%) than decision-rules trained on aggregated RS1 samples from two different 15 

days (RS1Ip ∘ RS1Iq → RS1Ir) (95.93 ± 3.63 %) [paired t23=-4.83, p = 0.00007].  16 

In summary, the reduction in cross-day accuracy without aggregation was indicative of 17 

inter-day (rather than inter-measurement) variations in RS activity. Despite this inter-day variation 18 

in RS activity, the cross-day accuracy increased with aggregation and further revealed the existence 19 

of day-general properties in RS-activity that were unchanged across days.  These properties were 20 

consistent with an activity configuration that was putatively defined by individual-specific 21 

neurophysiological constraints.   22 
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Figure 6: Identification at rest with mono-band/location feature subsets. (A) Mean identification accuracy for RS1 1 
with mono-band feature sets of increasing frequency (x-axis) on the same-day (blue, CV) and across-days (orange, 1-2 
day). Light-colored dots/lines depict individual accuracies (N=24). Error bars: SD. (B) Change in cross-day 3 
identification with increasing aggregation (x-axis) for different mono-band feature subsets (colored lines). Error bars: 4 
Within-subject s.e.m. (O’Brien and Cousineau 2014). (C) Mean identification accuracy for mono-location feature sets 5 
(x-axis, from anterior to posterior) with graphical representation and error bars as in panel A. (D) Change in cross-day 6 
identification with increasing aggregation (x-axis) for different mono-location feature subsets (colored lines). Error 7 
bars: Within-subject s.e.m.  Horizontal dotted lines depicts the random chance accuracy (50%) in all panels. 8 
   9 
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3.3. Information organization in resting activity enabling individual identification  1 

The hypothesized configuration in RS-activity was suggestive of a multivariate relationship 2 

between distributed features. However, the accuracy relationships described above do not indicate 3 

whether such a distributed configuration was necessary to enable individual identification. 4 

Therefore, we evaluated the information organization required for individual identification.  5 

 6 

3.3.1. Low cross-day identification with information from only one frequency or one location  7 

Each sample was a snapshot of RS activity described by 305 informational features (5 bands 8 

x 61 channels). To test the informational role of these different features, we evaluated whether 9 

identification comparable to the full feature-set was possible with subsets of features that were 10 

defined either by frequency band (i.e., mono-band sets) or spatial location (i.e., mono-location sets).  11 

Each mono-band feature set (Bf) consisted of features from one frequency band f at all 61 12 

channels. For all five mono-band sets (Figure 6A, Table A.2), same-day identification had a mean 13 

accuracy greater than 95%. However, the size of the cross-day loss in accuracy was band-dependent 14 

and ranged from ~14% for Bα to nearly ~32% for Bδ [ANOVA, Type {CV, 1-day} x Band {Bδ, Bθ, 15 

Bα, Bβ1, Bβ2}, Type*Band: F4,92 = 24.83, p < 0.00001; Type: F1,23 = 232.11, p < 0.00001; Band: F4, 92 16 

= 40.30, p < 0.00001]. The divergence in cross-day losses for Bα and Bδ was striking as these two 17 

bands have a characteristically higher power relative to the other bands (Figure 4). Training with 18 

multi-day aggregation (Figure 6B) increased cross-day accuracy by differing amounts for each band 19 

by, for example, +10% for Bβ2 but only +6% for Bδ [ANOVA, Band {Bδ, Bθ, Bα, Bβ1, Bβ2}x Type 20 

{1-day, 2-day, 3-day}, Type*Band: F8, 184 = 9.19, p < 0.00001; Type: F2, 46 = 146.02, p < 0.00001,; 21 

Band: F4, 92 = 43.13, p < 0.00001]. However, even with 3-day aggregation, the residual difference 22 

between cross-day and same-day accuracy (minimum: ~7% for Bα, maximum: ~26% for Bδ) was 23 

larger than the ~2% difference with the full feature-set. 24 

Each mono-location feature set (Lz) consisted of 50 features (5 bands x 10 channels) in the 25 

spatial zone z (Figure 2A). The mean same-day accuracy was greater than 95% for all mono-26 
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location feature sets (Figure 6C, Table A.2). However, the mean cross-day (1-day) accuracy showed 1 

reductions of ~12%-16% for all locations [ANOVA, Type {CV, 1-day} x Location {LF, LFC, LCP, 2 

LPO}, Type*Location: F3,69 = 3.77, p = 0.015; Type: F1,23 = 108.91, p < 0.00001,; Location: F3, 69 = 3 

5.45, p = 0.0020]. The mean cross-day accuracy for the fronto-central (LFC) and centro-parietal 4 

(LCP) sets were marginally higher than for the parieto-occipital (LPO) and frontal (LF) sets. This 5 

zonal accuracy difference was notable as the mean power for all bands was typically higher over the 6 

posterior and anterior channels than the centrally located channels (Figure 4A). Aggregation 7 

increased cross-day accuracy by ~6% for all four location sets (Figure 6D) [ANOVA, Location: 8 

{LF, LFC, LCP, LPO} x Type {1-day, 2-day, 3-day} [Type*Location: F6, 138 = 2.07, p = 0.06; Type: F2, 9 

46 = 115.38, p < 0.00001; Location: F3, 69 = 4.79, p = 0.0043]. Nevertheless, the residual ~7%-10% 10 

loss in cross-day accuracy was larger than with the full feature-set.  11 

In summary, all the mono-band and mono-location sets contained sufficient information to 12 

enable same-day identification with nearly error-free accuracy. However, this information had a low 13 

day-generality. Even with aggregation, these feature sets had a much lower cross-day accuracy than 14 

the full feature-set that combined these feature sets together. This is notable with regard to machine 15 

learning algorithms. Generalization accuracy can reduce with an increase in the number of features 16 

(the so called Hughes effect (Campenhout 1978; Sima and Dougherty 2008)). However, here, a 17 

feature set of 305 features showed greater cross-day generalization than small feature-sets of 50/60 18 

features that have comparable same-day cross-validated accuracy. This divergence suggests that the 19 

higher cross-day robustness with the full feature-set involves a role for multivariate relationships 20 

between different frequency bands (i.e., unlike the mono-band subsets) at spatially distributed 21 

channels (i.e., unlike the mono-location subsets). To assess how this multi-feature configuration 22 

was organized, we evaluated the pattern of weights associated with the different features of the full 23 

feature-set. 24 

  25 
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Figure 7: High-consistency features. Spatial distribution of high-consistency normalized weights for frequency bands 1 
of full feature set (z-scored per band) and their changes with aggregation (1-day, 3-day). Mean weights in each scalp 2 
map that were significantly greater than zero are indicated with a white asterisk (p < 0.05/61). Lower two rows show t-3 
values for the features corresponding to the upper rows. Channels have an anterior-to-posterior ordering (x-axis). Red 4 
stems indicate channels with t-values higher than the corrected threshold (p < 0.05/61, horizontal black line) while blue 5 
stems show channels that only pass uncorrected thresholds (p < 0.05, dotted horizontal line). Colored channel labels are 6 
grouped from top-to-bottom for visibility and correspond to stems from left to right.   7 
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3.3.2. Concentration of high-consistency features at fronto-central and occipital zones 1 

Each individual’s linear decision-rule was defined by the configuration of weights assigned 2 

to the different features, where weights with a larger magnitude (irrespective of sign) have a larger 3 

role in the classification decision even if in an indirect manner (Haufe et al. 2014; Schrouff and 4 

Mourao-Miranda 2018). However, individual-specific weight configurations might differ from each 5 

other in an idiosyncratic manner with little consistency between individuals since, for example, a 6 

high-weighted feature in SX’s decision-rule might be of limited relevance to individual SY’s 7 

decision-rule. 8 

Figure 7 shows the topographic distribution of high-consistency features in the full feature-9 

set after normalization for power differences (see Suppl. Figure 1 for high-consistency non-10 

normalized (raw) weights). At corrected thresholds (see t-values in Figure 7, lower panels), the 11 

features associated with all frequency bands except the δ band contained at least one high-12 

consistency feature. Rather than having an idiosyncratic organization, the high-consistency features 13 

were concentrated at distinctive zones in each frequency band.  14 

In Bθ, there was a concentration of high consistency features at CP1 and C3, with the 15 

addition of CP3 with aggregation. There was a similar, although weaker, concentration of consistent 16 

features at corresponding channels over the right hemisphere. Showing a similar spatial 17 

organization, the high-consistency features in Bβ1 showed a striking bilaterally symmetric 18 

configuration along the transverse midline at channels C3, Cz and C4 with an aggregation-19 

modulated role for CP6 and T7 (and possibly T8). This similarity in organization was notable since 20 

the frequency ranges of the θ band (4-7.5 Hz) and β1 (14-22.5 Hz) were not contiguous and were 21 

separated by the α band. 22 

Unlike this central concentration of features in Bβ1 and Bθ, the features in Bα contained a 23 

single, strongly consistent feature in the occipital zone at PO3. At uncorrected thresholds, there 24 

were other distributed features across the scalp that were weakly consistent for both 1-day and 3-25 

day identification, namely, at AF3, C3, P8 and O2.  Similarly, the features of the high-frequency β2 26 
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band (i.e., Bβ2) only had a single consistent feature at P1 with a diffuse distribution of consistent 1 

features at uncorrected thresholds. 2 

In general, the distribution of high-consistency features was by itself not a simple indicator 3 

of their contribution to cross-day accuracy. For example, the relative number of high-valued 4 

weights in the different bands and spatial locations had a low correspondence to relative accuracy of 5 

cross-day identification based solely on the mono-band/location subsets (see Supplementary Figure 6 

2). Nevertheless, the organized distribution of high-consistency features at channels over the 7 

sensorimotor cortex and the occipital cortex was prima facie support for an individual-specific 8 

configuration with a basis in neurophysiological constraints. The relevance of the high-consistency 9 

zones was of particular interest to the relationship of RS1 to the non-rest task states where the power 10 

over the sensorimotor and occipital zones was expected to differ from RS1.  11 

 12 

3.4. Relationship of rest to non-rest states 13 

The behavioral demands during TapMov and SeqMov were designed to modulate the 14 

cognitive states during the TapWait and SeqWait periods and produce neural activity deviations 15 

from RS1 in the absence of behavioral differences. Furthermore, the Tap and Sequence tasks were 16 

designed to elicit neural states that varied between days for Sequence (low cross-day similarity) but 17 

remained constant for Tap (high cross-day similarity). We sought to first explicitly verify that such 18 

deviations from RS1 were indeed present. Note that all analyses of Tap and Seq states were 19 

performed in a subgroup of N=18 participants (see section 2.6). 20 
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Figure 8: Difference between RS1 and task-states. (A) Change in behavior indexed by mean number of button-1 
presses across days (x-axis) during TapMov (blue) and SeqMov (orange). Error bars: Within-subject s.e.m. (B) 2 
Movement-related power dynamics in the β band (14-30 Hz) in TapMov (blue) and SeqMov (orange) at channels C4 3 
(upper right) and Oz (lower right) averaged across participants and days. Intervals marked in gray were discarded from 4 
the TapWait and SeqWait samples used for classification to avoid movement-related carry over effects into the waiting 5 
periods. Scalp plots (left panel) show the mean power distribution over the period [+1s, +1.5s] following onset of the 6 
movement cue. (C) Same-day/cross-day accuracy in distinguishing RS1 vs pseudo-rest states (green) and RS1 vs 7 
movement states (orange) using within-subject binary classifiers. Cross-day differences to RS1 were lowest for TapWait 8 
(far left) and highest for SeqMov (far right). Error bars: SD. (D) Person identification accuracy (multiclass) when the 9 
training/test sets were from the same task state (green: pseudo-rest states, orange: movement states). Error bars: SD.  10 
  11 
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3.4.1. Neural activity during Tap and Sequence verifiably deviate from RS1  1 

The inter-day changes in behavior during the TapMov and SeqMov periods were consistent 2 

with the experimental assumptions (Figure 8A). During TapMov, the mean number of button 3 

presses per trial (~12-13) remained effectively constant across days [one-way ANOVA, F4, 68 = 4 

0.55, p = 0.70]. In contrast, during SeqMov, the mean number of button-presses increased from ~8 5 

on the first day to ~13 on the fifth day [one-way ANOVA, F4, 68 = 21.36, p < 0.00001]. This inter-6 

day change in motor performance in SeqMov was systematically different from TapMov as 7 

confirmed by the statistically significant interaction in an ANOVA with factors Condition 8 

{TapMov, SeqMov} x Days {D1,..,D5} [Condition*Days: F4, 68 = 12.38, p < 0.00001; Condition: F1, 9 

17 = 3.13, p = 0.095; Days: F4, 68 = 10.71, p < 0.00001].  10 

The neural state during the movement-period (TapMov, SeqMov) showed typically expected 11 

dynamic states (Figure 8B). Changes in the mean β power at channel C4 (contralateral to the moved 12 

fingers) were in line with the Event-Related De-synchronization/Synchronization (ERD/ERS) 13 

phenomenon for repetitive movements (Pfurtscheller and Lopes da Silva 1999; Cassim et al. 2000; 14 

Alegre et al. 2004; Erbil and Ungan 2007), namely, a power reduction at the onset of movement 15 

execution (i.e., ERD) with an increase after the termination of all movements (i.e., ERS). 16 

Furthermore, the β power changes at Oz showed a task-dependent neural response consistent with 17 

differing visual stimulation, that is, an increase for TapMov (blank screen) but a decrease for 18 

SeqMov (image depicting the sequence). These movement-vs-wait differences were validated in the 19 

samples used for classification. A within-subject binary classification of TapWait vs TapMov had a 20 

mean cross-validated accuracy of 85.91 ± 7.23% [> 50%: t17 = 21.06, p < 0.00001]; and SeqWait vs 21 

SeqMov had a mean CV accuracy of 94.58 ± 3.20%  [> 50%: t17 = 59.02, p < 0.00001]. 22 

The critical verification for our study was the relationship between RS1 and the pseudo-rest 23 

states (TapWait, SeqWait). Samples from TapWait and SeqWait were distinguishable from RS1 on 24 

the same day with high cross-validated accuracy (RS1 vs TapWait: 88.28 ± 5.70%; RS1 vs SeqWait: 25 

95.12 ± 3.74%) (Figure 8C left panels, Table A.3). However, the cross-day accuracy (without 26 
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aggregation) for both RS1 vs TapWait  (62.91 ± 6.44% ) and RS1 vs SeqWait  (67.79 ± 8.53%) was 1 

substantially lower than the same-day accuracy by more than ~25%. Nevertheless, the cross-day 2 

accuracy for RS1 vs SeqWait was marginally higher than for RS1 vs TapWait with increasing 3 

aggregation [ANOVA: Condition {RS1 vs TapWait, RS1 vs SeqWait} x Type {1-day, 2-day, 3-4 

day}, Condition*Type: F2, 34 = 6.22, p = 0.005; Condition: F1, 17  = 8.37, p = 0.01009; Type: F2, 34 = 5 

38.89, p < 0.00001].  6 

TapMov and SeqMov were also distinguishable from RS1 on the same-day with high (cross-7 

validated) accuracy (RS1 vs TapMov: 93.56 ± 4.12%; RS1 vs SeqMov: 97.81 ± 1.76%) (Figure 8C, 8 

right panel, Table A.3). Similar to the wait periods, the cross-day accuracy for RS1 vs SeqMov was 9 

higher than for RS1 vs TapMov across aggregation levels [ANOVA: Condition {RS vs TapMov, 10 

RS1 vs SeqMov} x Type {1-day, 2-day, 3-day}, Condition*Type: F2, 34 = 0.61, p = 0.55; Condition: 11 

F1, 17  = 30.91, p = 0.00003; Type: F2, 34 = 69.47, p < 0.00001].  12 

The above findings verified the neural activity differences in the task-states in Tap and 13 

Sequence to each other and to RS1. Crucially, the structure of the same-day differences had a low 14 

cross-day generality. 15 

 16 

3.4.2. Robust identification of individuals from Tap and Sequence activity within and across days 17 

The above differences between task-states and RS1 raised the issue of whether the task-18 

related functional states also disrupt the information that enables individual identification with RS1. 19 

To assess this possibility, we evaluated whether the different Tap and Sequence task-states 20 

contained sufficient information for person identification in a same-task classification scheme (i.e., 21 

with the scheme XIp → XIq for task X) (Figure 8D). 22 

The same-day accuracy for both TapWait and SeqWait was ~99% (Figure 8D left panels, 23 

Table A.1). The mean cross-day accuracy (without aggregation) for TapWait (92.58 ± 6.39%) was 24 

lower than its corresponding same-day accuracy by only ~7%  [t17 = 4.92, p = 0.00013]. Similarly, 25 

for SeqWait, the mean cross-day (1-day) (93.67 ± 7.35%) accuracy was lower than the same-day 26 

136



 
 
 

40 

accuracy by ~6% [t17 = 3.65, p = 0.00197]. Furthermore, the effect of aggregation on mean cross-1 

day accuracy for TapWait and for SeqWait were statistically indistinguishable [ANOVA: Condition 2 

{TapWait, SeqWait} x Type {1-day, 2-day, 3-day} [Condition*Type: F2, 34 = 0.88, p = 0.42; 3 

Condition: F1,17 = 1.35, p = 0.26; Type: F2, 34 = 21.30, p < 0.00001]. 4 

Despite the deviations of TapMov and SeqMov along both the behavioral and cognitive 5 

dimensions of rest and their differences with each other, the accuracies of individual identification 6 

across days for TapMov and SeqMov were greater than 90% for all levels of aggregation and were 7 

not statistically distinguishable from each other (Table A.1, Figure 8D right panels) [ANOVA: 8 

Condition {TapMov, SeqMov} x Type {1-day, 2-day, 3-day} [Condition*Type: F2, 34 = 0.86, p = 9 

0.43; Condition: F1, 17  = 1.26, p = 0.28; Type: F2, 34 = 14.50, p = 0.00003]. 10 

Thus, individual identification was robustly possible in the task states despite their 11 

differences to RS1. Furthermore, the identification accuracy was similar between the Tap and Seq 12 

states despite their functional differences. Two further lines of evidence supported the possibility 13 

that these similarities were based on common task-independent properties. The spatial distribution 14 

of high-consistency features for these states (Figure 9A, Suppl. Figure 3) exhibited a striking 15 

qualitative similarity to each other as well as to the corresponding distribution for RS1 (Figure 7). 16 

Additionally, the individual cross-day (1-day) accuracy in these task states showed a striking 17 

correlation to the corresponding cross-day accuracy in RS1 (Figure 9B)[threshold: p < 0.05/4; 18 

TapWait: r(17)=0.882, p < 0.00001; SeqWait: r(17)=0.635, p = 0.00466; TapMov: r(17)=0.75, p = 19 

0.00034; SeqMov: r(17)=0.653, p = 0.00329]. Thus, the inter-individual relationships revealed by 20 

the errors in cross-day classification during RS1 (Figure 5B) seemingly extended to these non-rest 21 

states as well. We next turned to a formal assessment of this cross-task relationship. 22 
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Figure 9: Inter-task relationships. (A) Spatial distribution of high-consistency features in different task-states 1 
(absolute, z-scored) for 1-day decision-rules (without aggregation). Weights in each scalp map that were significantly 2 
greater than zero are indicated with a white asterisk (p < 0.05/61, see Supplementary Figure 3). Each frequency band 3 
(column) had a characteristic spatial distribution of high weighted channels that was qualitatively similar across task-4 
states and also to RS1 (Figure 7). (B) Scatter plots of cross-day (1-day) identification accuracy in RS1 to the 5 
corresponding same-task accuracy in the pseudo-rest states (upper row) and movement states (lower row). Each dot 6 
represents one individual. Correlations were assessed with Spearman’s rank order correlation (threshold: p < 0.05/4).  7 
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3.5. Generalization of rest-based decision to cross-task individual identification 1 

If person identification with RS1 was based on a neural configuration related to an 2 

individual’s neurophysiological state then identification should be possible despite cognitive state 3 

variations. Therefore, decision-rules trained on RS1 should be capable of accurate person 4 

identification with samples acquired from the pseudo-rest states (TapWait and SeqWait) and the 5 

movement states (TapMov and SeqMov).  6 

 7 

3.5.1. Robust cross-task identification with RS1 with full feature-set 8 

We used the cross-task scheme RS1Ip → XIq to test the invariance of RS1-based identification 9 

to inter-day cognitive state variations (i.e., task states X) (Figure 10A, Table A.4). Increasing 10 

deviations from RS1 solely due to cognitive state differences (X = {RS1, TapWait, SeqWait}) did 11 

not produce comparable, statistically distinguishable reductions in mean identification accuracy 12 

(RS1: 92.79 ± 6.76%, TapWait: 91.90 ± 6.46%; SeqWait: 90.81 ± 7.09%) [one-way ANOVA, F2, 34 13 

= 2.06, p = 0.14]. However, increasing deviations from RS1 due to cognitive and behavioral state 14 

differences (X = {RS1, TapMov, SeqMov}) produced significant reductions in identification 15 

accuracy most notably for SeqMov (TapMov: 88.79 ± 7.57%; SeqMov: 83.85 ± 10.35%)[one-way 16 

ANOVA, F2, 34 = 14.07, p = 0.00004]. 17 

To disentangle the role of cross-task from cross-day effects, we compared cross-task 18 

(RS1Ip→XIq) and same-task identification (XIp → XIq) across days (Table A.1, 4). For the pseudo-rest 19 

states (X = {TapWait, SeqWait}), cross-task accuracy with RS1 decision-rules produced a small but 20 

statistically significant reduction relative to same-task identification [ANOVA, Train {RS1, Same} 21 

x Condition {TapWait, SeqWait}, Train*Condition: F1,17 = 4.14, p = 0.06; Train: F1,17  = 10.02, p = 22 

0.00566; Condition: F1, 17 = 0.00001, p = 1.00]. The cross-task accuracy reduction was significantly 23 

larger for the movement-states (X = {TapMov, SeqMov}) with a larger loss for SeqMov [ANOVA, 24 

Train{RS,Same} x Condition {TapMov, SeqMov}, Train*Condition: F1,17 = 9.15, p = 0.00764; 25 

Train: F1,17  = 43.94, p < 0.00001; Condition: F1, 17 = 2.51, p = 0.13].   26 

139



 
 
 

43 

Figure 10: Cross-task identification with RS1. (A) Mean accuracy of decision-rules trained on RS1 (1-day) and tested 1 
across days on RS1 (blue), pseudo-rest states (green) and movement states (orange). Light colored dots/lines indicate 2 
individual accuracies. Error bars: SD. Accuracy differences between RS1 and pseudo-rest states were not statistically 3 
significant (n.s.), but were between RS1 and movement states (** = 0.00001 ≤ p < 0.001). (B) Decision-rules trained on 4 
RS1 with different levels with aggregation (dotted lines) increased cross-day accuracy for all task-states. Error bars: 5 
Within-subject s.e.m. (C) Scatter plots of cross-day (1-day) accuracy in RS1 to the corresponding cross-task accuracy in 6 
all non-rest tasks. Each dot represents one individual. Correlations were assessed with Spearman’s rank order 7 
correlation (threshold: p < 0.05/4). (D) Cross-task/day accuracy of RS1 with mono-band subsets. Deviations from cross-8 
day accuracy for RS1 were larger for the movement states (orange) than the pseudo-rest states (green) and deviations 9 
increased with the frequency (lowest for Bδ, highest for Bβ2). Error bars: Within-subject s.e.m. (E) Cross-task/day 10 
accuracy of RS1 with mono-location subsets. Deviations from RS1 were larger for movement states (orange) than 11 
pseudo-rest states (green). Error bars: Within-subject s.e.m.   12 
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To disentangle the role of day-specificity in RS1Ip → XIq, we used multi-day aggregation 1 

(RS1Ip ∘ RS1Iq  … → XIr). Although aggregation reduced day-specificity with RS1 (Figure 5), it could 2 

nevertheless increase specificity to the properties of RS1. If so, aggregation might lower the 3 

accuracy of cross-task identification. Contrary to this possibility, aggregation increased cross-task 4 

accuracy to the pseudo-rest states (TapWait, SeqWait) in a comparable manner to same-task 5 

accuracy (Figure 10B) [ANOVA: Condition {RS1, TapWait, SeqWait} x Type {1-day, 2-day, 3-6 

day} [Condition*Type: F4, 68 = 0.52, p = 0.72; Condition: F2, 34  = 2.44, p = 0.10; Type: F2, 34 = 7 

21.63, p < 0.00001]. This was particularly striking because aggregation (i.e., related to day-8 

specificity) produced a relatively larger increase in cross-task accuracy than a change in task-9 

specificity. Following aggregation, the mean residual cross-task/day accuracy loss relative to same-10 

task/day identification with RS1 was only ~3%. Aggregation also increased cross-task accuracy to 11 

the movement states (TapMov, SeqMov) [ANOVA: Condition {RS1, TapMov, SeqMov} x Type {1-12 

day, 2-day, 3-day} [Condition*Type: F4, 68 = 1.35, p = 0.26; Condition: F2, 34  = 13.04, p = 0.00006; 13 

Type: F2, 34 = 29.33, p < 0.00001]. Following aggregation, the mean residual cross-task/day 14 

difference was less than ~10% for the movement states. 15 

Similar to the same-task correlations described above (section 3.4.2, Figure 9B), the 16 

individual cross-task (1-day) accuracy in each of these task states showed a statistical significant 17 

correlation to the corresponding cross-day accuracy in RS1 (Figure 10C)[threshold: p < 0.05/4; 18 

TapWait: r(17)=0.948, p < 0.00001; SeqWait: r(17)=0.771, p = 0.00018; TapMov: r(17)=0.897, 19 

p<0.00001; SeqMov: r(17)=0.631, p = 0.00503]. The correlation coefficients were particularly high 20 

for both Tap states (TapWait and TapMov) as compared to the Seq states (SeqWait and SeqMov), 21 

Furthermore, the scatter plots suggested that the relatively lower cross-task/day accuracy for 22 

SeqMov was driven by the low generalization of a few individuals. 23 

In summary, decision-rules trained on RS1 on a single day could identify individuals from 24 

samples from states that verifiably differed from RS1 to differing extents. Importantly, aggregated 25 
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training solely on RS1 lead to increases in identification accuracy on samples from these non-rest 1 

task states. 2 

 3 

3.5.2. Low cross-task identification with feature subsets  4 

The full-feature set has a crucial role in limiting the cross-day loss in accuracy in RS1 5 

(Figure 6). Appling the cross-task scheme RS1Ip → XIq to the mono-band (Figure 10D) and mono-6 

location (Figure 10E) feature sets provided further evidence of the importance of the full feature-set 7 

to enable robust cross-task identification.  8 

For the mono-band feature sets (Figure 10D), increasing deviations from RS1 in cognitive 9 

state (X = {RS1, TapWait, SeqWait}) lead to state-related accuracy reductions that were also larger 10 

for the higher frequency bands [ANOVA: Condition {RS1, TapWait, SeqWait} x Band {Bδ, Bθ, Bα, 11 

Bβ1, Bβ2} [Condition*Band: F8, 136 = 2.60, p = 0.01136; Condition: F2, 34  = 6.44, p = 0.00426; Band: 12 

F4, 68 = 18.36, p < 0.00001]. In a similar manner, increasing deviations from RS1 for the movement 13 

states (X = {RS1, TapMov, SeqMov}) produced state-related accuracy reductions that were greater 14 

for SeqMov than for TapMov particularly at the higher frequencies [ANOVA: Condition {RS1, 15 

TapMov, SeqMov} x Band {Bδ, Bθ, Bα, Bβ1, Bβ2} [Condition*Band: F8, 136 = 8.95, p < 0.00001; 16 

Condition: F2, 34  = 20.59, p < 0.00001; Band: F4, 68 = 12.16, p < 0.00001]. These task-linked 17 

accuracy reductions were notably absent at Bδ. 18 

The pattern of cross-task accuracy deviation from RS1 took a different form for the mono-19 

location feature sets (Figure 10E). For the pseudo-rest states (X = {RS1, TapWait, SeqWait}), 20 

increasing deviations from RS1 lead to increasing accuracy reductions (largest for SeqWait) that 21 

were relatively uniform at all the locations [ANOVA: Condition {RS1, TapWait, SeqWait} x 22 

Location {LF, LFC, LCP, LPO} [Condition*Location: F6, 102 = 0.98, p = 0.45; Condition: F2, 34  = 8.99, 23 

p = 0.00073; Location: F3, 51 = 4.34, p = 0.00849]. This pattern of reduction was similar for the 24 

movement states (X = {RS1, TapMov, SeqMov}), where deviations from RS1 lead to accuracy 25 

reductions that were largest for SeqMov and relatively uniform at all locations [ANOVA: Condition 26 
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{RS1, TapMov, SeqMov} x Location {LF, LFC, LCP, LPO} [Condition*Location: F6, 102 = 0.99, p = 1 

0.44; Condition: F2, 34  = 32.92, p < 0.00001; Location: F3, 51 = 4.95, p = 0.00432].  2 

Thus, the large accuracy reductions with band/location-defined feature subsets confirmed 3 

that the full feature-set was crucial to high cross-task identification accuracy. Taken together, the 4 

cross-task/cross-day robustness of person identification with the full feature-set was consistent with 5 

the hypothesized properties of a configuration constrained by individual neurophysiology.  6 

 7 

 8 

4. DISCUSSION 9 

The central motivation for the current study was whether RS-activity could support a critical 10 

demand for individualized longitudinal tracking, namely, decoding the origin of inter-day RS 11 

differences (i.e., NP+ or NP-) from the relationship between the resting state activity patterns. A 12 

major obstacle to NP+/NP- decoding was the ill-defined rest task itself and its potential to confound 13 

the interpretation of RS-activity differences. To evaluate a commonality-based alternative, we 14 

hypothesized that the existence of an activity configuration defined by neurophysiological 15 

constraints would afford an escape from the confounding effects of the rest task. Our findings 16 

support the existence of such a configuration in the longitudinal characteristics of the EEG 17 

oscillatory power spectrum at rest. Formulated in terms of individual identification, inter-day 18 

differences in individual RS-activity were classified with high accuracy across a diverse range of 19 

confounding inter-day differences, with day-generality confirmed using aggregation. Consistent 20 

with a configuration based in whole-brain neurophysiology, accurate identification was higher with 21 

a full feature-set that enabled the integration of information from multiple frequency bands at 22 

channels distributed across the scalp. 23 

 24 

 25 

 26 
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4.1. Empirical simulations of cognitive and neurophysiological variation 1 

A methodological novelty here was our use of empirical “simulations”. Although ad hoc, 2 

they provided a means to obtain verifiable instances of cognitive state variation and 3 

neurophysiological change relative to RS.  4 

As previous studies have demonstrated (Duncan and Northoff 2013; Kawagoe et al. 2018), 5 

the potential for arbitrary cognitive state variation during the rest task is related to experimental 6 

context and instructions. However, beyond the assumption that participants were awake, we did not 7 

model the participant’s cognitive state, for example, using participant’s self-reported subjective 8 

assessments of their cognitive state during the RS measurement (Diaz et al. 2013). Since the 9 

cognitive state and the extent of its fluctuation during rest are difficult to establish for each 10 

individual, the high identification accuracy with RS1 might have been attributable to highly 11 

motivated and instruction-compliant participants rather than the neural characteristics of the rest 12 

state. Therefore, the Tap and Sequence tasks provided verifiable within-subject examples of states 13 

that deviated from rest in order to assess the generality of RS-based inferences.  14 

In a longitudinal setting, the classification problem of interest requires a decision between 15 

NP+ and NP- within the same individual. However, here NP+ was defined based on samples of RS 16 

activity from other individuals. This use of inter-individual differences provided a pragmatic means 17 

to simulate a diverse range of possible changes to an individual’s neurophysiology (Figure 1B) with 18 

the assumption that detecting true within-subject neurophysiological change would possibly be far 19 

more challenging. For example, in the Sequence task, the motor learning across the five days in our 20 

experiment involved neuroplastic changes (Wymbs et al. 2012; Wymbs and Grafton 2014; Bassett 21 

et al. 2015) and the accompanying changes in SeqWait and SeqMov over the duration of the 22 

experiment (Figure 8) could be considered as consequence of this learning-induced neuroplasticity. 23 

However, due to the unclear carryover effects of these plastic changes on RS1 over this five day 24 

period, we instead used the SeqWait and SeqMov to simulate incidental cognitive-state variations 25 
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(NP-) with high inter-day variance, where the neural dynamics on each day was a poor model of the 1 

dynamics on other days. 2 

 3 

4.2. Reliability of identity inferences versus reliability of features 4 

Numerous prior studies have investigated the inter-day similarity in RS activity within a 5 

test-retest framework (Bijsterbosch et al. 2017; Cox et al. 2018; Noble et al. 2019; Postema et al. 6 

2019). In that framework, the focus is on evaluating whether a particular measure of RS activity on 7 

day p was reliably reproduced for RS activity on day q in the assumed absence of a true change. 8 

However, our focus is on the reliability of inferences in the assumed presence of true inter-day 9 

activity changes. This focus required differing considerations about how an individual’s unique 10 

identity was defined and represented as illustrated with an analogy to object recognition.  11 

Consider images of the same object X from day 1 (test) and day 2 (retest) (Figure 11) 12 

represented by a list of filled pixel locations (i.e., features). With this representation, a simple 13 

measure of test-retest reliability is whether a pixel’s filled state on day 1 is a reliable predictor of its 14 

state on day 2. The scenario in Figure 11A is consistent with a high feature-level reliability as the 15 

majority of filled pixels on day 1 are also filled on day 2. However, this high reliability is 16 

misleading about the object’s unique identity. On day 1, object X can be readily distinguished from 17 

object Y based on a few critical pixels (circled). These critical pixels on object X are, however, 18 

unfilled on day 2. Thus, object X is not uniquely identifiable on day 2 as it is now confusable with 19 

object Y. Conversely, in the scenario shown in Figure 11B, a pixel-based test of reliability would 20 

indicate a low reliability due to the large number of filled pixels from day 1 that are unfilled on day 21 

2. However, this low reliability is a limitation of how the object was represented (i.e., as a list of 22 

filled pixel locations relative to the main axes). If this representation included information about the 23 

relationships between the filled locations, then the object’s defining characteristics would be 24 

deemed as being reliably conserved on day 2, e.g., a rotation of the object X on day 2 would bring it 25 

into correspondence with its form on day 1.  26 
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Figure 11: Test-retest reliability versus individual re-identification. (A) Objects X (red) and Y (blue) are uniquely 1 
defined by the configuration of filled and unfilled pixels. On day 1, (top row), the dotted circles indicates the critical 2 
pixels that distinguish X and Y. Most pixels of object X from day 1 are also filled on day 2 (lower row). However, pixels 3 
in the left dotted circle on day 2 differ in their state from day 1. Due to this difference on day 2, object X cannot be 4 
uniquely re-identified as being object X based on its form as it is now confusable with object Y. High inter-day 5 
reliability in pixel state does not imply the same for object identity. (B) The orientation of objects X on day 2 is rotated 6 
relative to its orientations on day 1. If this orientation is accounted for, then object X can be uniquely re-identified on 7 
day 2. However, when considering individual pixels, most of the filled pixels on day 1 are not on day 2. Low inter-day 8 
reliability in pixel state does not imply the same for object identity. 9 
  10 
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As demonstrated by this analogy, high test-retest reliability of individual features does not 1 

imply the reliability of the configuration of these features to enable individual identification and 2 

vice versa. This relationship between reliability and how an individual’s identity is defined and 3 

represented was a central consideration here. 4 

Despite using an analogy of an individual’s configuration to a static object in the above 5 

example, the core variance model in our analysis involved an assumption about time and time-6 

scales. Each same-day measurement was segmented into 2s non-overlapping epochs where each 7 

epoch was treated as a sample drawn from an underlying individual-specific distribution. The 8 

dynamic variability between samples was assumed to be an important characteristic of this 9 

individual-specific distribution. Cross-day/cross-task identification was predicated on whether 10 

training classifiers based on the inter-sample variability on short time-scales (i.e., between the 11 

samples acquired within seconds/minutes of each other on the same day) was a viable model for 12 

samples obtained on long time-scales, i.e., days apart (Figure 1). 13 

Even though we do not use an explicit model of functional connectivity, the multivariate 14 

representations used to represent an individual’s decision-rule assumes a coupling between power 15 

values across distributed locations. A distinction is often drawn between static and dynamic 16 

connectivity based on how the neural time-series over the resting task is interpreted (Hutchison et 17 

al. 2013; Calhoun et al. 2014). Static connectivity refers to the extraction of a single measure (e.g., a 18 

graph) from the time-series. In contrast, dynamic connectivity is based on the view that resting state 19 

refers to a collection of states that dynamically vary at different time points. However, our approach 20 

and findings here are agnostic as to whether the inter-sample differences indicate variability around 21 

a characteristic mean value (i.e., static connectivity) or characteristic transitions between distinct 22 

states (i.e., dynamic connectivity). The relationship between the classifier-based multivariate 23 

representations to connectivity and distances measures (e.g., Valizadeh et al. 2019; Pani et al. 2020) 24 

is a key issue to be resolved by future studies. 25 

 26 
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4.3. Individual identification and longitudinal tracking 1 

By using individual differences as a source of neurophysiological information, here the 2 

problem of distinguishing between NP+ and NP- was equivalent to the problem of individual 3 

identification with similarities to numerous studies that have, for example, sought to use RS-EEG as 4 

an individual-specific signature for biometric identification (Campisi and Rocca 2014; Gui et al. 5 

2015; Valizadeh et al. 2019). However, our focus was not biometric identification or the important 6 

issues related to the neural basis of individual differences and trait-identification (Smit et al. 2005, 7 

2006; Demuru et al. 2017; Finn et al. 2017; Gratton et al. 2018). Nevertheless, our findings are 8 

consistent with these prior studies in demonstrating the high distinctiveness of individual 9 

differences and its robust detectability even across days and tasks from two-second snapshots of the 10 

oscillatory power spectra at rest.  11 

However, the inter-individual differences in cross-day identification with RS1 both with and 12 

without aggregation (Figure 5, 6A, 6C) also demonstrated that resting activity was not the strict 13 

equivalent of a “fingerprint”, i.e., in being entirely immune to cognitive state or even whether a 14 

person is alive (Campisi and Rocca 2014). Even though individual identification was possible 15 

across tasks with high accuracy, the RS-based individual signatures were not completely 16 

independent of cognitive state. Large deviations from rest during TapMov and SeqMov reduced 17 

cross-task identification accuracy even though identification was above random chance. These 18 

accuracy reductions were due to cognitive state differences with RS1 and not merely because 19 

TapMov and SeqMov conditions lacked identifiable signatures or had more movement-related 20 

artifacts (Figure 8D). 21 

The use of an individual identification strategy involved certain tradeoffs. An individual’s 22 

identity was defined by analyzing differences to other individuals in the studied group. Therefore, 23 

the characteristics represented by an individual SX’s decision-rule could vary depending on the 24 

properties of the other individuals in the group. Rather than the number of individuals in the group, 25 

the key determinants of how SX is represented would be the diversity and properties of the most-26 
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similar individuals (as illustrated by the confusion matrix and inter-individual clustering in Figure 1 

5). Furthermore, identifying features that distinguish an individual from others would lead to the 2 

exclusion of features shared by all individuals. For example, in a study of the heritability of 3 

individual RS-connectivity properties with magnetoencephalography (MEG) (Demuru et al. 2017), 4 

the explicit removal of connectivity characteristics shared by all individuals in the group was found 5 

to significantly improve individual identification. However, down-weighting the role of shared 6 

features (explicitly or implicitly) has a tradeoff for tracking neural plasticity since changes to an 7 

individual’s neurophysiology on these shared features might go undetected.  8 

 9 

4.4. What makes an individual configuration robust to changes in cognitive state?  10 

Our primary findings are based on black-box statistical inferences, namely, the pattern of 11 

classification accuracies obtained with different training/test sets that were selected based on 12 

experimental variables (e.g., the effect of day, the conditions defining the cognitive state, and the 13 

feature set). Therefore, an important issue is whether these statistical regularities are consistent with 14 

a neurophysiological signature in RS-activity rather than a byproduct of other factors specific to our 15 

implementation. 16 

The shape of the power spectrum in the frequency domain at rest has long been suggested as 17 

an important individual characteristic (Näpflin et al. 2007; Chiang et al. 2011; Bazanova and 18 

Vernon 2014). This shape has multiple peaks over an aperiodic background of 1/f noise. The 19 

specific frequencies at which these peaks occur, particularly in the α band and in the β band have 20 

been the topic of considerable investigation (van Albada and Robinson 2013; Voytek et al. 2015). 21 

Importantly, in different cognitive states, the changes to this spectrum are not arbitrary and 22 

primarily involve changes to the power at the peaks (as well as small shifts in the peak frequency) 23 

but without large changes to the 1/f background (Buzsáki et al. 2012; Haegens et al. 2014; Cole and 24 

Voytek 2017). Furthermore, Demuru and Fraschini (2020) found that this aperiodic background was 25 
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highly individual-specific and allowed individuals to be identified with higher accuracy than the 1 

power in canonical frequency bands.  2 

Therefore one possibility to explain our results is that an individual’s decision-rule 3 

implicitly represents the shape of their unique power spectrum. If this were the case then it would 4 

provide a plausible explanation for the observed high specificity despite cognitive state variation. In 5 

our feature representation, the power over the full power spectrum was averaged into five canonical 6 

bands. Therefore, capturing the individual shape of the spectrum and, for example, the approximate 7 

location of the α power peak would require a role for features representing the power in the θ, α and 8 

β1 bands. Indeed, it was these three bands that also showed the main consistencies in term of a few, 9 

high valued weights. The classical depiction of the power spectrum is from a particular channel. 10 

Our finding suggests that representation of the individual-specific power in the different bands were 11 

distributed over the scalp with a concentration in the fronto-central and occipital zones. Although 12 

the power spectra are similar across channels, any one channel is an incomplete representation of 13 

that individual’s characteristic power distribution. Consequently, it might lack the robustness to 14 

represent individual variability across days. By contrast, a decision-rule that combines each band’s 15 

best representation might have a greater robustness.  16 

 17 

4.4. Outlook 18 

In the current study, we assumed that individuals in the studied group did not undergo 19 

extensive plastic changes. If individual identification was not possible with longitudinal RS even 20 

with such a group of healthy individuals over a period of five days, then the merits of using RS as a 21 

tracking indicator would seem to require critical re-evaluation especially for tracking over longer 22 

periods of time and with populations where such neuroplastic changes would be expected. Prior 23 

studies have found changes to the power spectrum with aging (van Albada et al. 2010; Chiang et al. 24 

2011; Voytek et al. 2015; Knyazeva et al. 2018), for example, age-related reductions in the 25 

frequencies of the alpha and beta band peaks. Voytek et al. (2015) suggest that such changes might  26 
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indicate a change in the 1/f baseline possibly due to increased physiological noise with 1 

aging.  Furthermore, systematic longitudinal changes in the power spectrum have been observed 2 

following stroke (Giaquinto et al. 1994; Saes et al. 2020). Thus, the application of this physiological 3 

signature to monitor longitudinal RS in clinical populations is an important future priority. 4 

  5 
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APPENDIX 1 

 2 
Table A.1: Identification accuracies in different experimental states reported as Mean % 

(SD). All values were significantly above random chance (50%) (see Suppl. Table 1). 

States 
Type  

CV 1-day 2-day 3-day 

RS1 

(N=24) 

99.98  

(0.04) 

92.10  

 (6.84) 

95.93  

 (3.63) 

97.39  

 (2.65) 

RS1 

(N=18) 

99.98  

 (0.06) 

92.79  

 (6.76) 

96.61  

 (3.30) 

97.53  

 (2.51) 

RS2 

(N=24) 

99.99  

 (0.04) 

91.58  

 (7.49) 

95.86  

 (4.18) 

96.99  

 (3.50) 

TapWait 

(N=18) 

99.99  

 (0.02) 

92.58  

 (6.39) 

96.36  

 (3.42) 

97.60  

 (2.77) 

SeqWait 

(N=18) 

99.99  

 (0.02) 

93.67  

 (7.35) 

97.12  

 (4.36) 

98.03  

 (3.80) 

TapMov 

(N=18) 

99.94  

 (0.12) 

92.39  

 (6.72) 

96.12  

 (3.34) 

97.29  

 (2.41) 

SeqMov 

(N=18) 

100.00  

 (0.00) 

93.47  

 (8.41) 

96.67  

 (4.64) 

97.95  

 (2.99) 

 3 

 4 
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 1 

Table A.2: Identification accuracies for RS1 with mono-band and mono-location 

feature subsets reported as Mean % (SD). All values were significantly above random 

chance (50%) (see Suppl. Table 2). 

Subset 

(N=24) 

Type 

CV 1-day 2-day 3-day 

Bδ 
96.10  

 (2.54) 

64.66  

 (7.92) 

67.87  

 (8.12) 

70.12  

 (8.01) 

Bθ 
97.63  

 (1.52) 

76.99  

 (7.69) 

81.76  

 (7.11) 

83.70  

 (6.94) 

Bα 
98.51  

 (1.17) 

84.20  

 (7.74) 

88.38  

 (6.34) 

89.59  

 (5.67) 

Bβ1 
99.65  

 (0.57) 

81.41  

 (10.44) 

87.03  

 (9.03) 

88.92  

 (8.14) 

Bβ2 
99.74  

 (0.30) 

76.37  

 (9.98) 

83.22  

 (9.00) 

86.66  

 (7.96) 

LF 
98.01 

(1.80) 

82.68 

(8.89) 

87.30 

(7.45) 

88.87 

(6.56) 

LFC 
98.54 

(1.55) 

86.93 

(9.38) 

90.39 

(7.45) 

91.76 

(6.12) 

LCP 
97.94 

(1.78) 

85.28 

(8.57) 

89.43 

(7.30) 

90.37 

(6.52) 

LPO 
97.96 

(2.02) 

81.02 

(8.32) 

86.47 

(7.35) 

87.97 

(7.06) 

 2 
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 1 

Table A.3: Classification accuracy of RS1 vs task state (binary, within-subject)  

reported as Mean % (SD). All values were significantly above random chance (50%) 

(see Suppl. Table 3). 

RS1 vs  

(N=18) 

Type 

CV 1-day 2-day 3-day 

TapWait 
88.35  

 (5.66) 

62.91  

 (6.44) 

66.26  

 (8.69) 

67.28  

 (9.11) 

SeqWait 
95.12  

 (3.74) 

67.79  

 (8.53) 

73.05  

 (11.01) 

74.86  

 (11.37) 

TapMov 
93.56 

 (4.12) 

79.04  

 (7.17) 

82.75  

 (5.99) 

84.18  

 (5.92) 

SeqMov 
97.81  

 (1.76) 

88.77  

 (5.21) 

92.81  

 (3.43) 

93.32  

 (3.77) 

 2 

 3 

Table A.4: Accuracy of cross-task RS1Ip → XIq identification reported 

as Mean % (SD). All values were significantly above random chance 

(50%) (see Suppl. Table 4). 

Test states 

(N = 18) 

Type 

1-day 2-day 3-day 

TapWait 
91.90  

 (6.46) 

95.84  

 (3.30) 

96.90  

 (2.44) 

SeqWait 
90.81  

 (7.09) 

94.95  

 (4.39) 

96.09  

 (3.40) 

TapMov 
88.79  

 (7.57) 

93.02  

 (5.49) 

94.01  

 (4.51) 

SeqMov 
83.85  

 (10.35) 

88.39  

 (9.28) 

90.03  

 (8.87) 

 4 

   5 
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4 Discussion

The main of this goal this thesis was to provide a better understanding about the modulation and

measurement of neuroplasticity using the different methodological frameworks from Study 1 and

Study 2. The discussion of this thesis will primarily focus on the question to what extend the

current findings about the measurement and induction of neuroplasticity may be used to improve

the individual therapeutic strategies in stroke recovery and what additional challenges might be

encountered when translating the approaches into stroke populations.

In Study 1, cTBS was applied over M1 in a dose-dependent manner and changes in cortical

and corticospinal excitability were quantified through TEPs and MEPs. The results provided

evidence that the combination of TMS-EEG is a suitable technique to measure cTBS-induced

plasticity in local and remote regions of the brain. Especially the N45 component, a marker

of GABAA-mediated neurotransmission, was significantly modulated after each dose around the

centro-parietal regions (Study 1, Figure 8). The N100 component, a marker of GABAB-mediated

cortical inhibition, was altered within ipsilateral and contralateral hemisphere around and in prox-

imity of the motor regions, potentially suggesting a shift in interhemispheric balance of GABAB-

mediated inhibition (Study 1, Figure 8). The findings provide novel insights into cTBS-induced

plasticity, suggesting that changes in the GABAA-mediated neurotransmission around centro-

parietal sites are a characteristic of cTBS over M1. However, the results also demonstrated that

the mechanisms that mediate responses to rTMS are complex, and conclusions about the cTBS

response directions based on the unmodulated TEP seem to be limited, according to the responder

subgroup comparison (Figure 10). Nevertheless, TMS-EEG provides a promising framework to

measure and study cTBS-induced changes in cortical excitability in healthy individuals.
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The results provided preliminary evidence that cTBS might be a suitable tool to modify GABAA-

mediated neurotransmission within the human motor system and adjacent regions. This finding

is especially relevant for stroke rehabilitation strategies, as GABAA-mediated cortical inhibition

is heavily increased around the lesion site after stroke (Carmichael, 2012; Clarkson et al., 2010).

This increase of inhibitory GABAA results in a reduction of excitability within the lesioned hemi-

sphere. Measures of this inhibition also serve as an important prognostic marker for the potential

functional recovery stroke patients might experience in the following weeks to month (Bembenek

et al., 2012; Stinear et al., 2012). It has been hypothesized that this increase in GABAA around the

perilesional region acts as initial protective mechanism to prevent excitotoxicity (Cassidy et al.,

2014) caused by an abundance of excitatory glutamate neurotransmitter (Armada-Moreira et al.,

2020). Transcallosal inhibition from the contralateral M1 is frequently increased following stroke,

constituting another mechanism that leads to additional inhibition of ipsilesional M1 (Cassidy et

al., 2014; Nowak et al., 2009). This severe upregulation of inhibitory mechanisms can reduce

other efforts to normalize cortical excitability within the lesioned hemisphere and thereby impair

the process of recovery (Murase et al., 2004). Administration of drugs that counteract this inhi-

bition have been shown to promote functional recovery in mice (Clarkson et al., 2010). While

delivering drugs selectively to one particular region of the brain is challenging, cTBS might al-

low to normalize levels of GABAA-mediated inhibition in a more localized fashion, involving the

target site and possibly some of the connected regions.

It remains to be clarified if the observed after-effects can be induced within larger populations

and represent a genuine mode of action of cTBS. In Study 1, the N45 amplitude indicated that

GABAA-mediated inhibition was reduced around the motor and parietal regions. Interestingly,

this reduction appeared within the whole group, the inhibitory subgroup and to some weaker extent

also within the facilitatory subgroup (Study 1, Figure 8 & 9). Thus, there was a general tendency of

cTBS to reduce GABAA-mediated inhibition, even though after-effects on corticospinal excitabil-

ity indicated modulations in opposite direction within subgroups (Study 1, Figure 4). While it

is unclear what exactly caused this divergence, it could be hypothesized cTBS-induced GABAA-

mediated inhibition primarily affects cortical circuits that are not involved or only marginally

affecting the generation of corticospinal output.
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Reliability studies are of high importance to validate the cTBS-induced after-effects and its mod-

ulation of the N45 component. Here, cTBS was only applied in a single session, but a study

from Schilberg et al. (2017) suggests that TBS after-effects on corticospinal excitability show

high interindividual and interindividual variability. As consequence, the after-effects were rather

largely inconsistent when investigated in separate sessions. This also seems to be the case of

the TEP itself, as a recent study from Ozdemir et al. (2021), who investigated the reliability of

cTBS after-effects on the TEP, observed that cTBS after-effects were indistinguishable from sham

when measured at separate visits. Unfortunately, the authors did not specifically report effects on

the N45 peak and it remains to be clarified if this lack of reliability also applies to measures of

GABAA-mediated inhibition. Thus, further reliability measurements are necessary to validate if

this predominant reduction of GABAA-mediated inhibition is a genuine mode of action of cTBS,

or if it may reflect a coincidental effect related to some peculiarity of the study sample. If cTBS-

induced changes in N45 component are for the greater part uncoupled from the cTBS-induced

changes in corticospinal excitability, the current observation might simply reflect that the study

sample consisted of many individuals that are prone to respond with a reduction of GABAA-

mediated inhibition to cTBS, rather than an increase.

Regarding the translation into clinical populations, it should be expected that variability of after-

effects is even more pronounced in a sample of individuals suffering from stroke, as the lesions will

affect how pulses can spread through cortico-cortical connections, resulting in more heterogeneous

activation of cortical networks. For example, an fMRI study by Diekhoff-Krebs et al. (2017)

demonstrated that interindividual differences in iTBS response characteristics in stroke patients

are influenced by the coupling strength within the motor network of the lesion hemisphere. Thus,

replicating studies are required within healthy and stroke individuals to validate the findings of

Study 1. If reductions in GABAA-mediated inhibition consistently appear in a large proportion

of individuals, this would certainly increase the suitability of cTBS to induce neuroplasticity in

the framework of rTMS-based rehabilitation for stroke recovery. It would be valuable to assess in

future studies if those seemingly unidirectional changes in cortical excitability appear consistently

across larger groups of individuals or if there are responder subgroups, comparable to those that

can be defined when measuring MEPs measurements.
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Another important consideration is related to the existence of local and remote changes in cortical

excitability. In Study 1, cTBS altered cortical responses to a considerable amount in parietal and

occipital regions or even on the contralateral hemisphere, rather than locally around ipsilateral M1.

For example, cTBS resulted in bilateral and distant changes of the N45 (Study 1, Figure 8, TEP

3) and the N100 component (Study 1, Figure 8, TEP 2) of the TEP. Interestingly, those distant

changes were in part characterized by increases at one cortical region and reductions in another.

This raises the question to what extend a localized and unilateral modulation of M1 might be

achievable in clinical practice. The model of interhemispheric competition after stroke suggests

that the contralesional hemisphere exerts increased transcallosal inhibition over the ipsilesional

hemisphere (Hoyer & Celnik, 2011; Nowak et al., 2009). The existence of significant alterations

in cortical excitability distant from the stimulation site suggests that it may be rather challenging

to increase or decrease excitability locally within one hemisphere without affecting projections to

the contralateral hemisphere or adjacent regions in an undesired way. Optimizing stimulation in-

tensities could potentially improve selective activation of target regions while reducing the spread

to other regions. However, increasing the focality of stimulation is at least in part limited by the

physical principles behind TMS. The electrical current in the stimulation coil has to be strong

enough to generate a magnetic field that can pass through the skull, consequently generating a

stronger but less focal electrical field within the brain (Gomez et al., 2018; Wagner et al., 2009).

Thus, even the smallest possible activation of the target region might still be strong enough to

enable propagation of the pulse to connected regions.

Regarding the measurement of cTBS-induced plasticity through the TEP, it is only poorly un-

derstood to which degree a TEP response can be evoked within stroke individuals. So far, it is

unknown whether the mechanisms of neurotransmission can be indexed in a similar fashion in

stroke individuals as it has been demonstrated in healthy individuals. Not only structural integrity

of the brain, but also ongoing oscillatory dynamics influence how the cortical response to a TMS

pulse will propagate through the brain. For example, complexity and spread of TEP response were

significantly reduced after participants entered the non-rem sleep phase compared to wakefulness

(Massimini et al., 2005). In vegetative patients, a simple and focal response could be measured,

whereas TEPs in minimally conscious patients were more complex and also spread to more distant

cortical regions (Rosanova et al., 2012). Future studies might attempt to control for differences in
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vigilance to avoid such potential confounding factors. RS-EEG measurements could be included

between TMS measurements as a way to track EEG markers of fatigue and wakefulness (De Gen-

naro et al., 2007; Jap et al., 2009). TEP responses acquired from M1 stimulation in acute stroke

patients have been shown to demonstrate similar reductions in complexity as during non-rem sleep

(Tscherpel et al., 2020), indicating that stroke related lesions can disrupt connectivity and prevent

the TMS-induced electric field to spread from the stimulation site to distant brain regions. In the

study by Tscherpel et al. (2020), TEPs were so heavily reduced in complexity, that the N45 peak

was not even detectable in some of the individuals. Such modifications of the TEP might drasti-

cally reduce its capabilities to track neuroplasticity in clinical populations. In contrast, Pellicciari

et al. (2018) investigated TEPs in patients affected by subcortical stroke. While the authors did not

investigate individual TEP peaks, cortical responses were differentiated and more complex than

the ones reported by Tscherpel et al. (2020). Additional support for the usability of TMS-EEG in

stroke patients is provided by Hordacre et al. (2019), who reported a relationship between ampli-

tude of the N45 component and the hold ratio in stroke patients. Thus, extent of the lesion and

remaining integrity of the cortico-cortical connections might play an important role in determining

whether TEPs are able to measure TBS-induced changes in GABAA-mediated neurotransmission

in individuals affected by stroke.

In Study 2, EEG was acquired on five subsequent days to test the suitability of RS for longitudinal

tracking of individual neuroplastic changes. It was investigated if individual-specific signatures

obtained from RS-EEG would allow to distinguish changes in neurophysiological organization

from unintentional variations in cognitive state that are likely to occur between measurements. The

ability to make such distinction is a crucial prerequisite to use RS-EEG for longitudinal tracking

in scenarios of increased neuroplasticity, as differences in cognitive state between measurements

might lead to wrong inferences, erroneously interpreting variations in cognitive state as ongoing

process of cortical reorganization. Assuming that healthy individuals do not undergo significant

neuroplastic changes within this five day period, activity pattern of other individuals were used

as proxy to simulate a wide range of potential neurophysiological changes. The results extend

previous findings about high interindividual and low intraindividual variability of EEG oscillatory

dynamics at rest (Gasser et al., 1985; Näpflin et al., 2007), and thereby strongly supports the usage

of RS-EEG for individualized longitudinal tracking. Moreover, it was demonstrated that RS-EEG
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contains configurations of oscillatory activity that are highly specific to individual neurophysiolog-

ical organization and very stable across time. Distinguishing inter-day variations in cognitive state

from the simulated changes in neurophysiological organization was therefore possible with very

high accuracy. These results emphasize the high specificity of oscillatory dynamics at rest with

respect to individual neurophysiological brain organization. They furthermore provide a proof of

concept for the potential of longitudinal RS-EEG to track individual trajectories of neuroplastic

reorganization, even in the presence of inter-day variability in cognitive state.

The translation of this approach towards individualized tracking in individuals affected by stroke

requires additional important considerations and raises several questions. For example, how

does oscillatory power change after stroke and in the following period of cortical reorganization?

Would the approach from Study 2 be able to recognize such changes over time? One of

the fundamental assumptions of Study 2 was that the oscillatory power during rest is highly

structured, reflecting the individual neurophysiological organization of underlying large-scale

brain networks. If these networks are reorganized, as consequence of neuroplastic processes or

neurodegenerative diseases, this should lead to distinctive changes in the oscillatory signature

recorded from the scalp. Previous studies have already demonstrated that RS-EEG can reveal

similar information about integrity and functional state of large-scale brain networks as the

fMRI-based RS measurements (Deligianni et al., 2014; Mantini et al., 2007).

An asymmetry in activity between hemispheres is a common observation in stroke patients when

investigating them with techniques such as TMS or fMRI (Cunningham et al., 2015; Traversa

et al., 1998). Similar observations also exist from RS-EEG studies, showing that the measurement

of oscillatory power can also serve as indicator of interhemispheric imbalances after stroke (Agius

Anastasi et al., 2017; Sebastián-Romagosa et al., 2020; Trujillo et al., 2017; Van Putten & Tavy,

2004). Another important EEG marker of stroke is the delta and alpha power ratio (DAR), which

reflects the relationship of oscillations in the delta and the alpha frequency band. The DAR has

been shown to have a prognostic value in predicting the recovery perspectives of patients after

stroke (Fanciullacci et al., 2017; Leon-Carrion et al., 2009). Thus, there is sufficient evidence

showing that EEG dynamics are considerably altered as consequence of the stroke related lesions.
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The classification framework in Study 2 did not make any explicit assumptions made about how

exactly oscillatory signatures are required to change to allow a differentation of neuroplastic reor-

ganization from cognitive state variations. Instead, individual-specific signatures were extracted

from cortical dynamics and represented in a high dimensional feature space, containing all chan-

nels and covering frequencies from 1-40 Hz. Such large-scale changes in asymmetry of oscillatory

power between hemispheres or changes in the DAR likely fall into the category of changes that

could potentially be recognized using the classification approach of Study 2. However, it has to

be considered that those significant changes are often based on group-level inferences and in com-

parison to healthy populations. Distinguishing changes in DAR or changes in interhemispheric

imbalance over time from cognitive state variations within individuals will be considerably more

challenging. There is also only little evidence about how these EEG markers of stroke change over

time during the process of recovery. A longitudinal study by Saes et al. (2020) reported that the

DAR of the affected hemisphere gradually returned to normal levels after stroke within the first

months, whereas the BSI remained lateralized. Thus, more studies are required to assess to what

extend such EEG markers of stroke also track the progress of ongoing neuroplastic processes,

rather than simply reflecting damage of the networks compared to a healthy population.

The usage of interindividual differences to simulate neuroplastic changes was a novel and practical

implementation to generate possible examples of significant changes in individual neurophysio-

logical brain organization for the classification. However, it has to be considered that these were

undoubtedly extreme examples of neurophysiological change. In reality, EEG correlates of corti-

cal reorganization will likely be more subtle and therefore certainly more difficult to distinguish

from incidental changes in cognitive state. Furthermore, Study 2 demonstrated that individual-

specific RS pattern show a high degree of stability across days. It is unclear to what extend those

findings translate to individuals suffering from stroke. Evidence from stroke individuals in the

chronic stage suggested that EEG power is in general reliable, with some exception regarding the

delta band (Dalton et al., 2021). However, the delta band (in form of the DAR) is a critical feature

of stroke related changes in EEG dynamics and a lack of reliability might prevent adequate track-

ing of such changes within individuals. Interestingly, the delta band was also the frequency band

with the lowest cross-day classification accuracy (Study 2, Figure 6A), indicating a certain lack of

robustness across time within healthy individuals.
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The extraction of individual-specific signatures in Study 2 was realized through a classification

model. A core assumption behind this strategy was that oscillatory EEG dynamics at rest show

a considerable degree of interindividual variability, which are mainly governed by individual dif-

ferences in the underlying neurophysiological organization. By finding combinations of charac-

teristic features that were robust across time and maximize these interindividual differences, it

was hypothesized to identify signatures of brain activity that primarily represent the individual un-

derlying neurophysiological organization rather than day-specific characteristics of the prevalent

brain state. Conversely, this implies that individual-specific signatures always depend on the com-

position of the group that was used to extract the signature (see Study 2, section 4.3). This raises

the question how the other group should be defined regarding the application of this strategy in

stroke individuals. A homogeneous group of stroke patients with very similar lesions might actu-

ally have a lower interindividual variability than a group of individuals with heterogenous lesions,

or a mixture of healthy individuals and patients. In addition, the study sample was relatively small

with 27 subjects in Study 2 and it was not not investigated how individual-specific pattern would

change in relation to the composition of the group. It should be investigated if robust signatures

can also be obtained from smaller or larger study samples. These are critical questions that need to

be addressed when translating this approach into stroke populations for the longitudinal tracking

of neuroplasticity.

Future studies might also combine the two methodological approaches from Study 1 and Study 2

to improve experimental designs, possibly providing deeper insights into the induction and track-

ing of neuroplastic changes using TMS and EEG. For example, as demonstrated in Study 1, rTMS

protocols can induce neuroplasticity in a target brain region and connected networks. The sig-

nificance of Study 2 was limited due to the inability to systematically induce cortical plasticity

within healthy individuals. As consequence, brain activity pattern of other individuals had to be

used to test the robustness of individual- specific signatures. By using rTMS to induce cortical

plasticity within those healthy and young individuals, it could be explicitly tested if such neuro-

plastic changes would be recognizable and distinguishable from inter-day variations in cognitive

state or not. This induction of cortical plasticity would certainly constitute a more realistic and

neurophysiologically plausible representation of neuroplastic changes compared to the extreme

examples that were used for classification in Study 2.
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On the other hand, RS-EEG could be used to inform the experimenter in real-time about the

strength and frequencies of brain oscillations, and thereby potentially improve the way of how

neuroplasticity can be induced via rTMS. There are indications that the individual oscillatory

dynamics play an important role in mediating the effects of rTMS, and might therefore help to

reduce variability of TBS after-effects. For example, the bursts of TBS are usually applied with

a fixed frequency of 5 Hz, which approximately corresponds to the frequency of the human theta

rhythm (4-7 Hz). However, it has been suggested that an adaptation of the burst frequency to

the individual frequency of theta oscillations measured by EEG could potentially reduce response

variability and improve TBS after-effects (Brownjohn et al., 2014; Chung et al., 2019).

Another promising approach to reduce outcome variability of neuromodulatory brain stimulation

is based on the approach to apply the rTMS pulses in phase with the ongoing oscillatory rhythm

of the human motor system. Zrenner et al. (2018) hypothesized that the phase of the dominant

oscillatory activity around the motor cortex, the µ-rhythm, represents states of low and high cor-

tical excitability. By recording EEG activity in real-time and triggering TMS pulses at either the

positive or negative phase of the rhythm, they were able to demonstrate that rTMS pulses applied

around the negative phase of the human µ-rhythm induces neuroplasticity, but not at the positive

phase of the rhythm (Zrenner et al., 2018). In contrast, this assumption was challenged by (Madsen

et al., 2019) who did not find any indications of such phase-based relationship between stimulation

effects and cortical excitability states.

Since Study 1 already required the setup of EEG recordings, it would have been possible to imple-

ment the techniques described above to potentially reduce the variability of cTBS-induced neuro-

plasticity. Especially the tuning to individual theta frequency rhythms can be realized without any

major obstacles, as it simply requires an estimation of the thet rhythm peak frequency, which can

be easily obtained from a short period of RS-EEG measurements prior to the application of cTBS.

In contrast, real-time and phase-based triggering of rTMS pulses is technically very challenging as

it requires a forward estimation of the phase from the ongoing oscillatory activity. Only recently,

a toolbox for this real-time phase estimation was published by Zrenner et al. (2020). However,

due to the complexity of this method, it is unlikely that it can be translated into clinical practice in

near future.
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5 Conclusion

This thesis was motivated by the difficult challenges that are encountered in clinical practice in

the realms of stroke recovery. First, therapeutic interventions, such as rTMS, require a profound

understanding about the direction and extent of induced plasticity to achieve the best possible

therapy outcome. Second, it is necessary to measure neuroplastic processes on an individual basis

to optimize the timing of interventions to support ongoing beneficial cortical reorganization while

inhibiting changes that might turn out maladaptive. The goal of this thesis was therefore to provide

a better understanding about the induction and measurement of cortical plasticity within the hu-

man brain, using a combination of rTMS, TMS-EEG and RS-EEG in two different experimental

frameworks.

The studies yield experimental evidence for the suitability of TMS-EEG and RS-EEG to measure

processes of cortical plasticity in healthy and young individuals. Study 1 demonstrated that TMS-

EEG could be a viable strategy to characterize the degree and spatial extent of cTBS-induced

plasticity as complementary measure of MEPs. It was shown that cTBS-induced plasticity affects

markers of GABAA- and GABAB-mediated inhibition, suggesting that cTBS could be a useful

therapeutic approach to normalize abnormal levels of GABAA-mediated inhibition after stroke.

The relationship between measures of cortical and corticospinal excitability require further inves-

tigation. While strong relationships between both measures were absent, cTBS altered excitability

in remote but connected regions and it is unlikely that MEPs are able to indicate such remote ex-

citability changes accurately. Interestingly, a recent investigation by Ozdemir et al. (2021) raised

significant doubts about the ability of TMS-EEG to measure cTBS-induced plasticity in a reli-

able manner. This problem needs to be addressed in future studies, to find out if reliability is
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limited by the measurement of plasticity via TMS-EEG or the induction of plasticity via cTBS.

Improvements of the preprocessing pipelines could help to standardize the still complex analysis

of TMS-EEG measurements and help to translate the approach into clinical practice.

The results of Study 2 support the suitability of RS-EEG to realize individualized longitudinal

tracking of neuroplastic changes. Measurements of RS power were very stable across time. In

addition, it was possible to extract signatures of brain activity that were present in other cognitive

states but were at the same time, highly specific to the individual neurophysiological organization.

The results demonstrate that distinguishing inter-day variations in cognitive state from changes

in the neurophysiological organization are possible with very high accuracy. While the study did

not directly induce neuroplasticity within the healthy participants, it still provides preliminary

evidence that such distinctions are possible, eliminating one important confounding factor that

might limit the usability of RS in repeated measurements. Importantly, the applied classification

approach is not restricted to measurements of RS power or EEG, but could be translated to other

neuroimaging modalities to explore other possibilities to track neuroplasticity within individuals

over time. Further studies are required to investigate if such tracking would be possible in stroke

patients and are sensitive enough to detect neuroplastic reorganization during the critical period of

stroke recovery.

In conclusion, TMS-EEG and RS-EEG have desirable properties to measure intrinsic or cTBS-

induced plasticity. While both studies had an explorative character regarding the methodologies

and the analytical approaches, they provide an important basis for future studies to improve and

extend the measurement and induction of neuroplasticity using TMS and EEG.
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Ilmoniemi, R. J., & Kičić, D. (2010). Methodology for combined TMS and EEG. Brain

Topography, 22(4), 233–248. https://doi.org/10.1007/s10548-009-0123-4

Ilmoniemi, R. J., Virtanen, J., Ruohonen, J., Karhu, J., Aronen, H. J., Näätänen, R., &

Katila, T. (1997). Neuronal responses to magnetic stimulation reveal cortical reac-

tivity and connectivity. NeuroReport, 8(16), 3537–3540. https://doi.org/10.1097/

00001756-199711100-00024

Jackson, A. F., & Bolger, D. J. (2014). The neurophysiological bases of EEG and EEG

measurement: A review for the rest of us. Psychophysiology, 51(11), 1061–1071.

Jacobs, J., Hwang, G., Curran, T., & Kahana, M. J. (2006). EEG oscillations and recog-

nition memory: Theta correlates of memory retrieval and decision making. Neu-

roImage, 32(2), 978–987. https://doi.org/10.1016/j.neuroimage.2006.02.018

Jap, B. T., Lal, S., Fischer, P., & Bekiaris, E. (2009). Using EEG spectral components

to assess algorithms for detecting fatigue. Expert Systems with Applications, 36(2

PART 1), 2352–2359. https://doi.org/10.1016/j.eswa.2007.12.043

Jasper, H. H. (1958). The 10/20 international electrode system. Electroencephalography

and Clinical Neurophysiology, 10(2), 370–375.

Jennum, P., Winkel, H., & Fuglsang-Frederiksen, A. (1995). Repetitive magnetic stimu-

lation and motor evoked potentials. Electroencephalography and clinical neuro-

physiology, 97(2), 96–101. https://doi.org/10.1016/0924-980x(94)00293-g

186

https://doi.org/10.3233/RNN-2011-0611
https://doi.org/10.1016/j.neuron.2004.12.033
https://doi.org/10.1016/j.neuron.2004.12.033
https://doi.org/10.1212/WNL.0b013e3181a609c5
https://doi.org/10.1212/WNL.0b013e3181a609c5
https://doi.org/10.1007/s10548-009-0123-4
https://doi.org/10.1097/00001756-199711100-00024
https://doi.org/10.1097/00001756-199711100-00024
https://doi.org/10.1016/j.neuroimage.2006.02.018
https://doi.org/10.1016/j.eswa.2007.12.043
https://doi.org/10.1016/0924-980x(94)00293-g


Kasai, T., Kawai, S., Kawanishi, M., & Yahagi, S. (1997). Evidence for facilitation of mo-

tor evoked potentials (MEPs) induced by motor imagery. Brain Research, 744(1),

147–150. https://doi.org/10.1016/S0006-8993(96)01101-8

King, R. B. (1996). Quality of life after stroke. Stroke, 27(9), 1467–1472. https://doi.org/

10.1161/01.str.27.9.1467

Kirschstein, T., & Köhling, R. (2009). What is the source of the EEG? Clinical EEG and

neuroscience, 40(3), 146–149. https://doi.org/10.1177/155005940904000305

Kleinjung, T., Eichhammer, P., Langguth, B., Jacob, P., Marienhagen, J., Hajak, G., Wolf,

S. R., & Strutz, J. (2005). Long-term effects of repetitive transcranial magnetic

stimulation (rTMS) in patients with chronic tinnitus. Otolaryngology - Head and

Neck Surgery, 132(4), 566–569. https://doi.org/10.1016/j.otohns.2004.09.134

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory per-

formance: a review and analysis. Brain research. Brain research reviews, 29(2-3),

169–195. https://doi.org/10.1016/s0165-0173(98)00056-3

Klomjai, W., Katz, R., & Lackmy-Vallée, A. (2015). Basic principles of transcranial mag-

netic stimulation (TMS) and repetitive TMS (rTMS). Annals of Physical and Re-

habilitation Medicine, 58(4), 208–213. https://doi.org/10.1016/j.rehab.2015.05.

005

Kolb, B., & Whishaw, I. Q. (1998). Brain plasticity and behavior. Annual review of psy-

chology, 49, 43–64. https://doi.org/10.1146/annurev.psych.49.1.43

Komssi, S., Aronen, H. J., Huttunen, J., Kesäniemi, M., Soinne, L., Nikouline, V. V., Ol-

likainen, M., Roine, R. O., Karhu, J., Savolainen, S., & Ilmoniemi, R. J. (2002).

Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation. Clini-

cal Neurophysiology, 113(2), 175–184. https://doi.org/10.1016/S1388-2457(01)

00721-0

Kubicki, S., Herrmann, W. M., Fichte, K., & Freund, G. (1979). Reflections on the Top-

ics: EEG Frequency Bands and Regulation of Vigilance TT - Überlegungen zu

den Themen: EEG-Frequenzbandeinteilung und Regulierung der Vigilanz. Phar-

macopsychiatry, 12(02), 237–245.

187

https://doi.org/10.1016/S0006-8993(96)01101-8
https://doi.org/10.1161/01.str.27.9.1467
https://doi.org/10.1161/01.str.27.9.1467
https://doi.org/10.1177/155005940904000305
https://doi.org/10.1016/j.otohns.2004.09.134
https://doi.org/10.1016/s0165-0173(98)00056-3
https://doi.org/10.1016/j.rehab.2015.05.005
https://doi.org/10.1016/j.rehab.2015.05.005
https://doi.org/10.1146/annurev.psych.49.1.43
https://doi.org/10.1016/S1388-2457(01)00721-0
https://doi.org/10.1016/S1388-2457(01)00721-0


Kwakkel, G., Kollen, B., & Twisk, J. (2006). Impact of time on improvement of out-

come after stroke. Stroke, 37(9), 2348–2353. https://doi.org/10.1161/01.STR.

0000238594.91938.1e

La Rocca, D., Campisi, P., & Scarano, G. (2012). EEG biometrics for individual recogni-

tion in resting state with closed eyes. Proceedings of the International Conference

of the Biometrics Special Interest Group, BIOSIG 2012, (Figure 1), 39–50.

Laakso, I., Hirata, A., & Ugawa, Y. (2013). Effects of coil orientation on the electric

field induced by TMS over the hand motor area. Physics in Medicine and Biology,

59(1), 203–218. https://doi.org/10.1088/0031-9155/59/1/203

Langhorne, P., Coupar, F., & Pollock, A. (2009). Motor recovery after stroke: a systematic

review. The Lancet Neurology, 8(8), 741–754. https://doi.org/10.1016/S1474-

4422(09)70150-4

Lefaucheur, J. P. (2006). Stroke recovery can be enhanced by using repetitive transcranial

magnetic stimulation (rTMS). Neurophysiologie Clinique, 36(3), 105–115. https:

//doi.org/10.1016/j.neucli.2006.08.011

Leon-Carrion, J., Martin-Rodriguez, J. F., Damas-Lopez, J., Barroso y Martin, J. M., &

Dominguez-Morales, M. R. (2009). Delta-alpha ratio correlates with level of re-

covery after neurorehabilitation in patients with acquired brain injury. Clinical

Neurophysiology, 120(6), 1039–1045. https://doi.org/10.1016/j.clinph.2009.01.

021

Lin, Q., Rosenberg, M. D., Yoo, K., Hsu, T. W., O’Connell, T. P., & Chun, M. M.

(2018). Resting-state functional connectivity predicts cognitive impairment

related to Alzheimer’s disease. Frontiers in Aging Neuroscience, 10(APR), 1–10.

https://doi.org/10.3389/fnagi.2018.00094

Lovinger, D. M. (2008). Communication networks in the brain: neurons, receptors, neu-

rotransmitters, and alcohol. Alcohol research health : the journal of the National

Institute on Alcohol Abuse and Alcoholism, 31(3), 196–214. https : / / pubmed .

ncbi.nlm.nih.gov/23584863%20https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC3860493/

188

https://doi.org/10.1161/01.STR.0000238594.91938.1e
https://doi.org/10.1161/01.STR.0000238594.91938.1e
https://doi.org/10.1088/0031-9155/59/1/203
https://doi.org/10.1016/S1474-4422(09)70150-4
https://doi.org/10.1016/S1474-4422(09)70150-4
https://doi.org/10.1016/j.neucli.2006.08.011
https://doi.org/10.1016/j.neucli.2006.08.011
https://doi.org/10.1016/j.clinph.2009.01.021
https://doi.org/10.1016/j.clinph.2009.01.021
https://doi.org/10.3389/fnagi.2018.00094
https://pubmed.ncbi.nlm.nih.gov/23584863%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860493/
https://pubmed.ncbi.nlm.nih.gov/23584863%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860493/
https://pubmed.ncbi.nlm.nih.gov/23584863%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3860493/


Madsen, K. H., Karabanov, A. N., Krohne, L. G., Safeldt, M. G., Tomasevic, L., & Sieb-

ner, H. R. (2019). No trace of phase: Corticomotor excitability is not tuned by

phase of pericentral mu-rhythm. Brain Stimulation, 12(5), 1261–1270. https://doi.

org/10.1016/j.brs.2019.05.005

Maeda, F., Keenan, J. P., Tormos, J. M., Topka, H., & Pascual-Leone, A. (2000). In-

terindividual variability of the modulatory effects of repetitive transcranial mag-

netic stimulation on cortical excitability. Experimental Brain Research, 133(4),

425–430. https://doi.org/10.1007/s002210000432

Magistris, M. R., Rösler, K. M., Truffert, A., & Myers, J. P. (1998). Transcranial stimula-

tion excites virtually all motor neurons supplying the target muscle: A demonstra-

tion and a method improving the study of motor evoked potentials. Brain, 121(3),

437–450. https://doi.org/10.1093/brain/121.3.437

Mansur, C., Fregni, F., & Boggio, P. (2005). A sham controlled trial of rTMS of the

unaffected hemisphere. Neurology, 64(10), 1802–1804. https://doi.org/10.1212/

01.WNL.0000161839.38079.92

Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., & Corbetta, M. (2007).

Electrophysiological signatures of resting state networks in the human brain. Pro-

ceedings of the National Academy of Sciences of the United States of America,

104(32), 13170–13175. https://doi.org/10.1073/pnas.0700668104

Massimini, M., Ferrarelli, F., Huber, R., Esser, S. K., Singh, H., & Tononi, G. (2005).

Neuroscience: Breakdown of cortical effective connectivity during sleep. Science,

309(5744), 2228–2232. https://doi.org/10.1126/science.1117256

Münte, T. F., Altenmüller, E., & Jäncke, L. (2002). The musician’s brain as a model of

neuroplasticity. Nature reviews. Neuroscience, 3(6), 473–478. https://doi.org/10.

1038/nrn843

Murase, N., Duque, J., Mazzocchio, R., & Cohen, L. G. (2004). Influence of interhemi-

spheric interactions on motor function in chronic stroke. Annals of neurology,

55(3), 400–409. https://doi.org/10.1002/ana.10848

189

https://doi.org/10.1016/j.brs.2019.05.005
https://doi.org/10.1016/j.brs.2019.05.005
https://doi.org/10.1007/s002210000432
https://doi.org/10.1093/brain/121.3.437
https://doi.org/10.1212/01.WNL.0000161839.38079.92
https://doi.org/10.1212/01.WNL.0000161839.38079.92
https://doi.org/10.1073/pnas.0700668104
https://doi.org/10.1126/science.1117256
https://doi.org/10.1038/nrn843
https://doi.org/10.1038/nrn843
https://doi.org/10.1002/ana.10848


Murphy, T. H., & Corbett, D. (2009). Plasticity during stroke recovery: From synapse to

behaviour. Nature Reviews Neuroscience, 10(12), 861–872. https: / /doi .org/10.

1038/nrn2735

Näpflin, M., Wildi, M., & Sarnthein, J. (2007). Test-retest reliability of resting EEG spec-

tra validates a statistical signature of persons. Clinical Neurophysiology, 118(11),

2519–2524. https://doi.org/10.1016/j.clinph.2007.07.022

Nettekoven, C., Volz, L. J., Leimbach, M., Pool, E. M., Rehme, A. K., Eickhoff, S. B.,

Fink, G. R., & Grefkes, C. (2015). Inter-individual variability in cortical excitabil-

ity and motor network connectivity following multiple blocks of rTMS. NeuroIm-

age, 118, 209–218. https://doi.org/10.1016/j.neuroimage.2015.06.004

Noble, A. J., & Schenk, T. (2014). Psychological distress after subarachnoid hemorrhage:

Patient support groups can help us better detect it. Journal of the Neurological

Sciences, 343(1-2), 125–131. https://doi.org/10.1016/j.jns.2014.05.053

Nowak, D. A., Grefkes, C., Ameli, M., & Fink, G. R. (2009). Interhemispheric Com-

petition After Stroke: Brain Stimulation to Enhance Recovery of Function of the

Affected Hand. Neurorehabilitation and Neural Repair, 23(7), 641–656. https :

//doi.org/10.1177/1545968309336661

doi: 10.1177/1545968309336661

Oberman, L., Edwards, D., Eldaief, M., & Pascual-Leone, A. (2011). Safety of theta burst

transcranial magnetic stimulation: A systematic review of the literature. Jour-

nal of Clinical Neurophysiology, 28(1), 67–74. https: / /doi .org/10.1097/WNP.

0b013e318205135f

Ozdemir, R. A., Boucher, P., Fried, P. J., Momi, D., Jannati, A., Pascual-Leone, A., San-

tarnecchi, E., & Shafi, M. M. (2021). Reproducibility of cortical response mod-

ulation induced by intermittent and continuous theta-burst stimulation of the hu-

man motor cortex. Brain Stimulation, 14(4), 949–964. https : / / doi . org / https :

//doi.org/10.1016/j.brs.2021.05.013

Park, C. H., Chang, W. H., Ohn, S. H., Kim, S. T., Bang, O. Y., Pascual-Leone, A., &

Kim, Y. H. (2011). Longitudinal changes of resting-state functional connectivity

190

https://doi.org/10.1038/nrn2735
https://doi.org/10.1038/nrn2735
https://doi.org/10.1016/j.clinph.2007.07.022
https://doi.org/10.1016/j.neuroimage.2015.06.004
https://doi.org/10.1016/j.jns.2014.05.053
https://doi.org/10.1177/1545968309336661
https://doi.org/10.1177/1545968309336661
https://doi.org/10.1097/WNP.0b013e318205135f
https://doi.org/10.1097/WNP.0b013e318205135f
https://doi.org/https://doi.org/10.1016/j.brs.2021.05.013
https://doi.org/https://doi.org/10.1016/j.brs.2021.05.013


during motor recovery after stroke. Stroke, 42(5), 1357–1362. https://doi.org/10.

1161/STROKEAHA.110.596155

Pascual-Leone, A., Peris, M., Tormos, J. M., Pascual, A. P., & Catalá, M. D. (1996).

Reorganization of human cortical motor output maps following traumatic forearm

amputation. Neuroreport, 7(13), 2068–2070. https://doi.org/10.1097/00001756-

199609020-00002

Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human

brain cortex. Annual Review of Neuroscience, 28, 377–401. https:/ /doi.org/10.

1146/annurev.neuro.27.070203.144216

Pascual-Leone, A., Valls-Solé, J., Wassermann, E. M., & Hallett, M. (1994). Responses

to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain,

117(4), 847–858. https://doi.org/10.1093/brain/117.4.847

Pathania, A., Clark, M., Cowan, R., Euler, M., Duff, K., & Lohse, K. (2021). Relating

resting EEG power spectra to age-related differences in cognitive performance:

An observational pilot study. medRxiv, 2021.02.12.21251655. https://doi.org/10.

1101/2021.02.12.21251655

Pellicciari, M. C., Bonnì, S., Ponzo, V., Cinnera, A. M., Mancini, M., Casula, E. P.,

Sallustio, F., Paolucci, S., Caltagirone, C., & Koch, G. (2018). Dynamic reor-

ganization of TMS-evoked activity in subcortical stroke patients. NeuroImage,

175(September 2017), 365–378. https : / /doi .org /10 .1016/ j .neuroimage .2018.

04.011

Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchroniza-

tion and desynchronization: basic principles. Clinical Neurophysiology, 110(11),

1842–1857. https://doi.org/https://doi.org/10.1016/S1388-2457(99)00141-8

Pisoni, A., Vergallito, A., Mattavelli, G., Varoli, E., Fecchio, M., Rosanova, M., Casali,

A. G., & Romero Lauro, L. J. (2018). TMS orientation and pulse waveform ma-

nipulation activates different neural populations: Direct evidence from TMS-EEG.

bioRxiv. https://doi.org/10.1101/308981

191

https://doi.org/10.1161/STROKEAHA.110.596155
https://doi.org/10.1161/STROKEAHA.110.596155
https://doi.org/10.1097/00001756-199609020-00002
https://doi.org/10.1097/00001756-199609020-00002
https://doi.org/10.1146/annurev.neuro.27.070203.144216
https://doi.org/10.1146/annurev.neuro.27.070203.144216
https://doi.org/10.1093/brain/117.4.847
https://doi.org/10.1101/2021.02.12.21251655
https://doi.org/10.1101/2021.02.12.21251655
https://doi.org/10.1016/j.neuroimage.2018.04.011
https://doi.org/10.1016/j.neuroimage.2018.04.011
https://doi.org/https://doi.org/10.1016/S1388-2457(99)00141-8
https://doi.org/10.1101/308981


Pool, E.-M., Rehme, A. K., Eickhoff, S. B., Fink, G. R., & Grefkes, C. (2015). Func-

tional resting-state connectivity of the human motor network: differences between

right- and left-handers. NeuroImage, 109, 298–306. https: / /doi .org/10.1016/j .

neuroimage.2015.01.034

Premoli, I., Castellanos, N., Rivolta, D., Belardinelli, P., Bajo, R., Zipser, C., Espenhahn,

S., Heidegger, T., Müller-Dahlhaus, F., & Ziemann, U. (2014). TMS-EEG sig-

natures of GABAergic neurotransmission in the human cortex. The Journal of

neuroscience : the official journal of the Society for Neuroscience, 34(16), 5603–

5612. https://doi.org/10.1523/JNEUROSCI.5089-13.2014

Quartarone, A., Siebner, H. R., & Rothwell, J. C. (2006). Task-specific hand dystonia:

can too much plasticity be bad for you? Trends in Neurosciences, 29(4), 192–199.

https://doi.org/10.1016/j.tins.2006.02.007

Rabiller, G., He, J. W., Nishijima, Y., Wong, A., & Liu, J. (2015). Perturbation of brain

oscillations after ischemic stroke: A potential biomarker for post-stroke function

and therapy. International Journal of Molecular Sciences, 16(10), 25605–25640.

https://doi.org/10.3390/ijms161025605

Raichle, M. E. (2015). The Brain’s Default Mode Network. Annual Review of Neuro-

science, 38(April), 433–447. https:/ /doi .org/10.1146/annurev- neuro- 071013-

014030

Rehme, A. K., Fink, G. R., von Cramon, D. Y., & Grefkes, C. (2011). The Role of the

Contralesional Motor Cortex for Motor Recovery in the Early Days after Stroke

Assessed with Longitudinal fMRI. Cerebral Cortex, 21(4), 756–768. https://doi.

org/10.1093/cercor/bhq140

Reineberg, A. E., Andrews-Hanna, J. R., Depue, B. E., Friedman, N. P., & Banich, M. T.

(2015). Resting-state networks predict individual differences in common and spe-

cific aspects of executive function. NeuroImage, 104, 69–78. https://doi.org/10.

1016/j.neuroimage.2014.09.045

192

https://doi.org/10.1016/j.neuroimage.2015.01.034
https://doi.org/10.1016/j.neuroimage.2015.01.034
https://doi.org/10.1523/JNEUROSCI.5089-13.2014
https://doi.org/10.1016/j.tins.2006.02.007
https://doi.org/10.3390/ijms161025605
https://doi.org/10.1146/annurev-neuro-071013-014030
https://doi.org/10.1146/annurev-neuro-071013-014030
https://doi.org/10.1093/cercor/bhq140
https://doi.org/10.1093/cercor/bhq140
https://doi.org/10.1016/j.neuroimage.2014.09.045
https://doi.org/10.1016/j.neuroimage.2014.09.045


Ridding, M. C., & Rothwell, J. C. (2007). Is there a future for therapeutic use of transcra-

nial magnetic stimulation? Nature reviews. Neuroscience, 8(7), 559–567. https :

//doi.org/10.1038/nrn2169

Robinson, R. G. (1997). Neuropsychiatric consequences of stroke. Annual Review of

Medicine, 48(1), 217–229. https://doi.org/10.1146/annurev.med.48.1.217

Rogasch, N. C., & Fitzgerald, P. B. (2013). Assessing cortical network properties using

TMS-EEG. Human brain mapping, 34(7), 1652–1669. https://doi.org/10.1002/

hbm.22016

Roos, D., Biermann, L., Jarczok, T. A., & Bender, S. (2021). Local Differences in Corti-

cal Excitability – A Systematic Mapping Study of the TMS-Evoked N100 Com-

ponent. Frontiers in Neuroscience, 15(February), 1–17. https://doi.org/10.3389/

fnins.2021.623692

Rosanova, M., Gosseries, O., Casarotto, S., Boly, M., Casali, A. G., Bruno, M. A., Mari-

otti, M., Boveroux, P., Tononi, G., Laureys, S., & Massimini, M. (2012). Recovery

of cortical effective connectivity and recovery of consciousness in vegetative pa-

tients. Brain, 135(4), 1308–1320. https://doi.org/10.1093/brain/awr340

Rossi, S., Hallett, M., Rossini, P. M., & Pascual-Leone, A. (2009). Safety, ethical consid-

erations, and application guidelines for the use of transcranial magnetic stimula-

tion in clinical practice and research. Clinical neurophysiology : official journal

of the International Federation of Clinical Neurophysiology, 120(12), 2008–2039.

https://doi.org/10.1016/j.clinph.2009.08.016

Rothwell, J. C. (1997). Techniques and mechanisms of action of transcranial stimulation

of the human motor cortex. Journal of Neuroscience Methods, 74(2), 113–122.

https://doi.org/10.1016/S0165-0270(97)02242-5

Saes, M., Zandvliet, S. B., Andringa, A. S., Daffertshofer, A., Twisk, J. W. R., Meskers,

C. G. M., van Wegen, E. E. H., & Kwakkel, G. (2020). Is Resting-State EEG

Longitudinally Associated With Recovery of Clinical Neurological Impairments

Early Poststroke? A Prospective Cohort Study. Neurorehabilitation and neural

repair, 34(5), 389–402. https://doi.org/10.1177/1545968320905797

193

https://doi.org/10.1038/nrn2169
https://doi.org/10.1038/nrn2169
https://doi.org/10.1146/annurev.med.48.1.217
https://doi.org/10.1002/hbm.22016
https://doi.org/10.1002/hbm.22016
https://doi.org/10.3389/fnins.2021.623692
https://doi.org/10.3389/fnins.2021.623692
https://doi.org/10.1093/brain/awr340
https://doi.org/10.1016/j.clinph.2009.08.016
https://doi.org/10.1016/S0165-0270(97)02242-5
https://doi.org/10.1177/1545968320905797


Scally, B., Burke, M. R., Bunce, D., & Delvenne, J.-f. (2018). Neurobiology of Aging

Resting-state EEG power and connectivity are associated with alpha peak fre-

quency slowing in healthy aging. Neurobiology of Aging, 71, 149–155. https :

//doi.org/10.1016/j.neurobiolaging.2018.07.004

Schacter, D. L. (1977). EEG theta waves and psychological phenomena: A review and

analysis. Biological Psychology, 5(1), 47–82. https : / / doi . org / 10 . 1016 / 0301 -

0511(77)90028-X

Schilberg, L., Schuhmann, T., & Sack, A. T. (2017). Interindividual Variability and In-

traindividual Reliability of Intermittent Theta Burst Stimulation-induced Neuro-

plasticity Mechanisms in the Healthy Brain. Journal of cognitive neuroscience,

29(6), 1022–1032. https://doi.org/10.1162/jocn_a_01100

Sebastián-Romagosa, M., Udina, E., Ortner, R., Dinarès-Ferran, J., Cho, W., Murovec,

N., Matencio-Peralba, C., Sieghartsleitner, S., Allison, B. Z., & Guger, C. (2020).

EEG Biomarkers Related With the Functional State of Stroke Patients. Frontiers

in Neuroscience, 14(July), 1–16. https://doi.org/10.3389/fnins.2020.00582

Siebner, H. R., Hartwigsen, G., Kassuba, T., & Rothwell, J. C. (2009). How does transcra-

nial magnetic stimulation modify neuronal activity in the brain? Implications for

studies of cognition. Cortex, 45(9), 1035–1042. https://doi.org/10.1016/j.cortex.

2009.02.007

Srinivasan, R., Winter, W. R., & Nunez, P. L. (2006). Source analysis of EEG oscillations

using high-resolution EEG and MEG. In C. Neuper & W. Klimesch (Eds.), Event-

related dynamics of brain oscillations (pp. 29–42). Elsevier. https://doi.org/https:

//doi.org/10.1016/S0079-6123(06)59003-X

Stam, C. J., Montez, T., Jones, B. F., Rombouts, S. A., Van Der Made, Y., Pijnenburg,

Y. A., & Scheltens, P. (2005). Disturbed fluctuations of resting state EEG syn-

chronization in Alzheimer’s disease. Clinical Neurophysiology, 116(3), 708–715.

https://doi.org/10.1016/j.clinph.2004.09.022
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