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Abstract 

The co-location of air pollution and socio-economic deprivation is increasingly 

well documented and studies have found that the socio-spatial distribution of 

health-related environmental characteristics, specifically air pollution, can be an 

important driver of geographical inequalities in health. The most deprived 

members of society face the highest exposures and the greatest risks due to a 

concept termed the triple jeopardy. Children face an increased susceptibility to 

air pollution exposure, and exposure can result in a range of health issues, such 

as asthma.  

Linking longitudinal data from the Millennium Cohort Study (MCS), air pollution 

data available from EMEP4UK, and area level deprivation data from the Index of 

Multiple Deprivation, this thesis aims to explore the relationship between air 

pollution exposure, and both individual and area level socio-economic status to 

understand how these exposures interact to impact respiratory health in children. 

Following data linkage, cross-sectional analysis, time series analysis and 

multilevel modelling are employed to examine the data. Multilevel modelling is 

used to appropriately attribute variations in spatial health outcomes to differences 

between places, differences between people within places and differences over 

time. The use of multilevel modelling is an innovative step in understanding the 

relationship between socio-economic factors, air pollution and health outcomes.  

Multilevel modelling found that 85% of the variation in asthma prevalence in 

children lies within MSOAs, whilst 14% of the variation was found to be over time. 

In comparison, 47% of the variation in wheezing was found to be due to 

differences over time. Two- and three-way interaction terms were included in the 

analysis to explore the impact of individual level socio-economic status, area level 

deprivation and air pollution exposure on asthma and wheezing prevalence in 

children, however no association was found. Moving forward, focussing 

interventions on improving both individual and area level socio-economic status, 

and implementing policies to lower pollution in the most deprived areas could help 

alleviate the health burden faced by the most deprived in society when exposed 

to air pollution.  
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Chapter 1. Introduction 

 

Understanding persistent and increasing spatial inequalities in health is an 

important field of academic enquiry for epidemiologists and public health 

researchers. The aim of this research is to explore the impact of air pollution on 

health outcomes in childhood, controlling for both area and individual level 

deprivation across the English regions. Linking spatially disaggregated data on 

air pollution and area level deprivation with microdata containing demographic, 

socio-economic and health outcomes, this thesis uses a multilevel modelling 

approach to estimate the impact of air pollution exposure on respiratory health in 

childhood controlling for both individual and area level socio-economic profile.  

The co-location of air pollution and socio-economic deprivation is increasingly 

well documented. The socio-economic patterning of residential opportunities 

means that individuals that are constrained financially face limited choices of 

where to live, and are more likely to reside near major sources of pollution, 

including roads with high traffic density, industrial facilities, waste disposal 

facilities, or airports (Gunier et al., 2003, Perlin et al., 1999). Recent studies have 

found that the socio-spatial distribution of health-related environmental 

characteristics, specifically measures of air pollution, can be an important driver 

of geographical inequalities in health status (Briggs et al., 2008, Crouse et al., 

2009, Richardson et al., 2011). However, few studies have specifically looked at 

effect modification by individual level socio-economic status. Thus, studies have 

estimated the impact of air pollution on health outcomes adjusting for socio-

economic position using area level deprivation as a proxy for individual socio-

economic status. 

This is problematic for two reasons. First, not all the people living in poor places 

are equally poor. Residential patterns of socio-economic status are 

heterogeneous even at small area levels such as the Lower-layer Super Output 

Area (LSOA). Thus, using an average area level indicator of socio-economic 

status loses information on the distribution or heterogeneity of socio-economic 

status within areas. Second, using only either individual or area level proxies fails 

to take account of both individual and area level context on health outcomes. The 

interaction between individual socio-economic status and area level deprivation 
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will be examined to ascertain if air pollution will have a more adverse impact on 

respiratory health for people with low socio-economic status living in the most 

deprived areas than people with low socio-economic status living in less deprived 

areas. 

Currently there is no single dataset containing all the relevant data required for 

this research. Childhood data are available via The Millennium Cohort Study 

(MCS). Local level air pollution data are available from the UK Centre for Ecology 

& Hydrology via the EMEP4UK model, and deprivation data is available through 

the Index of Multiple Deprivation (IMD). Using spatially explicit data linkage 

techniques, data from the Millennium Cohort, the EMEP4UK model and the Index 

of Multiple Deprivation will be anonymously linked at the LSOA level to create a 

dataset with the necessary variables to examine the influence of socio-economic 

status, area level deprivation and exposure to air pollution on respiratory health 

in childhood in England. 

1.1  Hypotheses 

Air pollution exposure and its influence on human health is complex. This thesis 

sets out to examine how individual and area level socio-economic interact with 

air pollution to further impact childhood respiratory health, and seeks to address 

this with the following hypotheses: 

1. The association between respiratory health and air pollution is stronger 

amongst individuals of lower, compared to higher, socio-economic status. 

2. Area level deprivation will interact with individual socio-economic status so 

that the impact of pollution on respiratory health is stronger for people with 

low socio-economic status living in the most deprived areas than people 

with low socio-economic status living in less deprived areas. 

The remainder of this Introduction Chapter outlines the motivations for this focus. 

1.2  Respiratory health 

Affecting approximately 300 million people globally (Braman, 2006), asthma is 

defined as “a heterogeneous disease, usually characterised by chronic airway 

inflammation”, and is associated with a history of respiratory symptoms which 

includes wheezing, shortness of breath, tightness of chest and a reduced airflow 
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(Reddel et al., 2015). Research examining the impact of air pollution across the 

life course found that childhood is a particularly vulnerable time period for an 

individual (Schwartz, 2004). Weinmayr et al. (2010) found that exposure to air 

pollution had statistically significant associations with asthma symptoms in child 

respiratory health. A further review by Rodriguez-Villamizar et al. (2016) explored 

the effects of ambient air pollution on the respiratory health of children in Canada. 

This review confirmed the adverse effects that air pollution has on the respiratory 

system, lung function and health service use in children. It also found an 

association between traffic-related exposures and adverse respiratory outcomes. 

The UK has one of the highest asthma mortality rates among young people for 

high-income countries worldwide and the highest rates of asthma symptoms 

globally in children (Gupta et al., 2018). The UK also has the highest rates of 

asthma related hospital admissions in Europe. A fifth of British children have been 

diagnosed with asthma by a doctor (Panico et al., 2007), while recent research 

has found that asthma affects approximately 15% of the population of England 

by the time they are in their early teens (Lewis et al., 2018). Asthma, and in 

particular, asthma in childhood is thus an important health priority within the UK. 

1.3  Air Pollution 

Air pollution is defined as ‘the presence of substances in the atmosphere that can 

cause adverse effects to man and the environment’ (Tiwary and Williams, 2018). 

Air pollution broadly incorporates any unwanted substance that contaminates the 

air and is detrimental to air quality, and can be anthropogenic, arising from human 

activities, or biogenic, arising naturally from the environment, such as animals or 

plants (Tiwary and Williams, 2018). Whilst natural events such as volcanic 

eruptions and wildfires account for some contribution to air pollution, 

anthropogenic activities have outweighed natural sources as the main source of 

air pollution for some time, to a larger degree since the Industrial Revolution 

(Kampa and Castanas, 2008). 

Kampa and Castanas (2008) categorise pollutants into four main groups which 

include:  

 gaseous pollutants, such as nitrogen oxides (NOX), ozone (O3) and 

sulphur dioxide (SO2);  

 persistent organic pollutants, like dioxins;  
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 heavy metals, which include lead and mercury; and  

 particulate matter (PM).  

To be classified as a health risk, a pollutant must undergo clinical, epidemiological 

or animal studies that show an association between pollutant exposure and 

detrimental health impacts. Research indicates (Chen and Kan, 2008) that the 

key air pollutants that impact people’s health include: 

 Particulate matter (PM); 

o PM10 (particulate matter with a particle diameter of 10 µm or under); 

o PM2.5 (particulate matter with a particle diameter of 2.5 µm or 

under); 

 Nitrogen oxides (NOX) which is a generic term for the nitrogen oxides that 

are most associated with air pollution;  

o nitrogen dioxide (NO2);  

o nitric oxide (NO); 

 Ozone (O3). 

Focussing on the impact of air pollution on child respiratory health, these are the 

pollutants of interest to this thesis. It is important to note that a full chemical 

analysis of air pollutants and a full physiological discussion of the impact of air 

pollution on human health was deemed outside the remit of this thesis. As such 

the aim of the remainder of this chapter is to introduce the air pollutants of interest 

to the rest of this thesis and briefly set the context of the mechanisms in which air 

pollution may impact human health. 

1.3.1  Pollutants of interest 

1.3.1.1  Particulate Matter (PM) 

PM encompasses both natural and man-made pollutant emissions (Kelly and 

Fussell, 2012). Natural sources of PM include pollen, fungal spores, volcanic ash, 

sea salt, wind-blown dust and soil particles, among others. Man-made sources of 

PM include fossil fuel combustion, industrial processes, construction work, 

quarrying and mining activities, cigarette smoking and wood stove burning (Kelly 

and Fussell, 2012). In urban areas, road transportation is the main source of PM 

pollution with factories and power stations that burn fossil fuels also contributing 

a significant amount of PM in less developed countries. PM produced from road 
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transport includes engine emissions and wear, tyre and brake wear and dust from 

the surface of the road (Kelly and Fussell, 2012). Diesel vehicles produce a higher 

volume of PM than their unleaded counterparts, and thus are the largest single 

source of vehicle emitted PM. Kelly and Fussell (2012) state that due to the 

increase in the number of diesel cars in the industrialised world, diesel exhaust 

particles can account for up to 90% of airborne PM in some cities. PM can be 

described as being either primary or secondary particles. Primary particles are 

released directly from their source into the atmosphere, whilst secondary particles 

come about within the atmosphere following chemical reactions (Kelly and 

Fussell, 2012). 

Depending on the diameter of the PM, PM can be classified into three size 

ranges; ultrafine, fine and coarse PM. PM0.1 (ultrafine PM) has a diameter that is 

0.1 µm or less and is generated directly by combustion and photochemical activity 

(Valavanidis et al., 2008), as well as from transportation emissions. These 

particles are unstable and exist for only a short period of time, however, they are 

capable of growing in size through coagulation and condensation and are capable 

of the deepest lung penetration, having the potential for passing into the blood 

stream.  

PM2.5 (fine PM) is made up of particles with a diameter of 2.5 µm and under. The 

main source of PM2.5 is transportation emissions. PM2.5 can also be called 

respirable particles due to their ability to enter the alveolar gas exchange region 

in the lungs, where up to 50% of the particles are retained (Valavanidis et al., 

2008). Additionally, due to their porous surface, they can absorb and retain toxic 

substances. PM10 (coarse PM) is made up of particles with a diameter of 10 µm 

or less and come from the combustion of fossil fuels. PM10 can also be called 

thoracic particles as they can travel beyond the nose, throat and larynx and 

become deposited along the airways in the thorax (Kelly and Fussell, 2012). The 

majority of PM suspended in the air consists of around 90% to 95% coarse 

particles, whilst the smaller particles account for only 1% to 8% of airborne PM 

(Valavanidis et al., 2008). However, PM2.5 is more prolific, resulting in a larger 

total surface area than coarse particles.  

Figure 1.1 depicts the variation in PM levels in the UK from 1970 to 2018, using 

the 1970 outputs as a reference for the index line. Both PM10 and PM2.5 follow the 

same pattern and it can clearly be seen that PM pollution has decreased 
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considerably since 1970. Troughs in the graph that are visible in the years 1972, 

1974 and 1984 coincide with mining strikes (Spence and Stephenson, 2007, 

Hughes, 2012). Figures 1.2 and 1.3 illustrate the proportion of PM10 and PM2.5 

that are derived from each pollutant source in the UK from 1970 to 2018. 

 

 

Figure 1.1  Historical trends in UK emissions of key air pollutants 

between 1970 and 2018 (adapted from NAEI UK, 2018) 

 

 

Figures 1.2 & 1.3 Graphs showing the proportion of PM10 (1.2) and PM2.5 (1.3) 

that comes from various sources (adapted from NAEI UK, 

2018) 
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Table 1.1 summarises the different characteristics of PM, including size, where 

the particles are most commonly deposited based on their size and some 

examples of the impacts these particles have on human health. 

Table 1.1 Characteristics of particulate matter 

Pollutant Size (µm) 

Common deposition 

area 

Examples of impact on human 

health 

PM0.1 PM <0.1 Blood vessels Mortality, decreased lung 

function, lung cancer, bronchitis 

PM2.5 0.1< PM <2.5  Alveoli  Mortality, heart rate variability, 

cardiac arrhythmia, deep vein 

thrombosis 

PM10 2.5< PM <10 Thorax Mortality, lung cancer, COPD, 

CVD, asthma 

 

1.3.1.2  Nitrogen oxide (NOX) 

NOX is the term given to a group of highly reactive gases. The majority of these 

gases are emitted in the air as nitric oxide (NO) and nitrogen dioxide (NO2). Fossil 

fuel combustion is the main anthropogenic source of NOX, particularly from 

transportation but also from industrial processes like power generation (Brook et 

al., 2004). Furthermore, a high temperature can result in combustion that oxidises 

atmospheric nitrogen (N), firstly to NO and then to NO2. Urban areas with a high 

concentration of traffic can experience a high local NOX concentration. A usual 

daily pattern of NOX pollution follows a generally low background reading, with 

peaks in the morning and evening, coinciding with rush-hour traffic. N found in 

fossil fuels can become oxidised under oxygen-rich combustion conditions, 

however NOX is also produced naturally and can be released from sources such 

as fires and volcanoes. NO has a low solubility in water, being able to spread to 

all parts of the respiratory system and diffuse through both the epithelium and the 

capillary vessels of the lungs, disrupting the alveolar structures and the function 

they play (Boningari and Smirniotis, 2016). Acid rain is an example of the 

environmental impact caused by NOX pollution.  

Figure 1.1 also illustrates the variation in levels of NOX emission in the UK from 

1970 to 2018. NOX levels tended to fluctuate near to 1970 levels for 20 years 

before starting to decrease slowly at the beginning of the 1990s. Figure 1.4 

illustrates the proportion of NOX that is derived from various sources in the UK 

from 1970 to 2018. 
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Figure 1.4 The proportion of NOX that comes from various sources 

(Adapted from NAEI UK, 2018)  

1.3.1.3  Ozone (O3) 

Whilst O3 is important in the stratosphere for blocking the sun’s harmful ultraviolet 

light, at ground level it is toxic to human health (Curtis et al., 2006). At the ground 

level O3 is formed through photochemical reactions between sunlight and other 

pollutants, such as NOX emitted from vehicular and industrial sources (Brook et 

al., 2004). These reactions are more common during periods of warmer weather, 

thus O3 production peaks with the highest summer temperatures. In terms of its 

day-to-day production, there tends to be a broad peak of O3 formation from late 

morning through to late afternoon, although large-scale vehicle use can cause 

such an increase in O3 production that the elevated concentration expands over 

thousands of square miles (Brook et al., 2004). However, O3 concentrations tend 

to be lower in city centres compared to rural areas as a result of O3 scavenging 

by NO from traffic (Brunekreef and Holgate, 2002). 
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1.3.2  Air pollution exposure and its health effects 

In the UK, air pollution exposure is accountable for up to 50,000 premature deaths 

annually, as well as decreasing life expectancy by 7 to 8 months on average 

(Jephcote and Chen, 2012). For England and Wales, it has been estimated that 

a 10 μg/m3 reduction in annual PM2.5 would result in a total population gain of 

over 29 million life-years (Jephcote and Chen, 2012).  

At the same time, research on the relationship between individual socio-

economic status and individual living environment and human health outcomes 

has grown (Braubach et al., 2009). People that are disadvantaged or 

marginalised are more likely to experience a more polluted and hazardous living 

environment, which in turn has impacts on their health (Briggs et al., 2008). Within 

this context, Jerrett et al. (2001) proposed the term ‘triple jeopardy’ to explain how 

disadvantaged groups face increased risks from social and behavioural 

determinants of health, higher risks from high ambient pollution exposure and an 

effect modification that makes exposure to ambient air pollution exert 

disproportionately large health effects on them when compared to more 

advantaged groups.  

Although air pollution levels are decreasing, the focus on air pollution, socio-

economic status and child health is particularly important as evidence from the 

UK demonstrates that childhood poverty is increasing (Wickham et al., 2016). At 

the same time, the UK government has abolished previous plans and policies 

that attempted to eradicate childhood poverty (Wickham et al., 2016).  

1.4  Thesis structure  

It is within this context that the thesis continues as follows: 

Chapter 1 introduces the topic of the thesis, explaining the rationale behind its 

creation. It presents the hypotheses and structure of the thesis. Chapter 1 also 

introduces asthma and wheezing as proxies for respiratory health, and presents 

a brief overview of air pollution, specifying the pollutants of interest to this thesis. 

The effects of air pollution exposure are discussed, as are the health impacts of 

exposure. 

Chapter 2 provides a review of the current literature concerning air pollution, its 

impact on health and how it interacts with socio-economic status to further 
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exacerbate health issues faced. Chapter 2 also presents the theoretical 

framework underpinning this thesis, the social causation theory. The complex, 

interacting relationship between air pollution, area level deprivation and individual 

level socio-economic status, referred to as the triple jeopardy is also introduced. 

Particular attention is given to the health impacts faced by children. The review 

highlights the need for future analysis to take into consideration socio-economic 

status at both the individual and area level when exploring the impact of air 

pollution on health. 

Chapter 3 details the data and methods used throughout this thesis. Cohort data 

from the Millennium Cohort Study, air pollution data from EMEP4UK and 

deprivation data available through the Index of Multiple Deprivation were all used 

in the analyses. Data linkage was necessary to compile all data available into one 

working dataset before statistical analysis through cross-sectional, time series 

and multilevel approaches could be carried out. 

Chapter 4 presents the results from cross-sectional analysis, providing a basis 

to understand the relationship between air pollution, area level deprivation, and 

individual socio-economic status on childhood respiratory health. This analysis 

examined each wave individually to investigate the impact of exposures at each 

point in time.  

Chapter 5 presents the results from time series analysis, building on the previous 

chapter with the inclusion of time. This chapter specifically examines how 

respiratory health is influenced by both early life exposures (in Wave 1) to air 

pollution and socio-economic status, and by exposures over time. This approach 

allows for conclusions to be drawn about the importance of critical periods of 

exposure as well as the accumulative effect of the different exposures. 

Chapter 6 presents the results from multilevel modelling, an approach that 

accounts for both the spatial and temporal aspects of the data, further building on 

previous analyses. Multilevel modelling considers the natural nested structure of 

the data, providing a robust analytical method that details how much of the 

variation in respiratory health can be accounted for between Middle-Layer Super 

Output Areas (MSOAs), within MSOAs or over time. 

Chapter 7 discusses the results presented in previous chapters, positing 

explanations for the findings. Particular attention is given to interaction terms that 
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aimed to examine the relationship between air pollution exposure and individual 

and area level socio-economic status. Conclusions are drawn from the findings, 

strengths and limitations are discussed and future policy is considered. 
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Chapter 2. Literature Review 

 

2.1  Introduction 

Air pollution is a major global public health risk (Boogaard et al., 2019). Following 

the Industrial Revolution and the associated increase in air pollution levels due to 

the combustion of fossil fuels, several major air pollution events occurred that 

provided quantitative evidence of the adverse effects that short-term air pollution 

exposure had on health (Dockery and Pope III, 1994). As scientific knowledge 

developed, people began to fully understand the impact that air pollution 

exposure had on their health. The first published piece of literature that focussed 

on air pollution was published in 1911, although it wasn’t until the 1950s that 

literature discussing air pollution was regularly published (Figure 2.1). More 

recently, literature has discussed how the very nature of air pollution is changing 

(Landrigan, 2017). Whilst air pollution in the home has been decreasing since the 

1990s, there has been an increase in ambient air pollution brought about by rapid 

globalisation and its associated industrialisation. 

The 12,000 excess deaths associated with the Great Smog of London in 

December of 1952 drew widespread attention to the negative impact of air 

pollution on human health and led to the implementation of The Clean Air Act, a 

policy that aimed to reduce dangerous levels of air pollution (Polivka, 2018). The 

Great Smog was a landmark case in environmental epidemiology due to the scale 

of the disaster and for providing empirical evidence of the relationship between 

air pollution and human health. The first recorded piece of literature that 

examined both air pollution and health was published in 1915, but again it was 

not until the 1950s that literature examining this topic was regularly published 

(Figure 2.1). As the literature expanded in this area, the pollutants that were most 

frequently examined in relation to human health, and as mention in Chapter 1, 

included; 

 Particulate matter (PM); 

o PM10 (particulate matter with a particle diameter of 10 µm or under); 

o PM2.5 (particulate matter with a particle diameter of 2.5 µm or 

under); 
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 Nitrogen oxides (NOX) which is a generic term for the nitrogen oxides that 

are most associated with air pollution;  

o nitrogen dioxide (NO2);  

o nitric oxide (NO); 

 Ozone (O3). 

As research on the negative implications of air pollution on human health 

developed, studies in this area expanded to include the role of individual societal 

factors, such as socio-economic status, and their interaction with air pollution and 

subsequent impact on health (Jerrett et al., 1997, Briggs et al., 2008). This 

research demonstrated that people with lower socio-economic status were more 

likely to be exposed to higher levels of air pollution, while also having increased 

vulnerability to the impacts of air pollution due to worse baseline health. The first 

piece of literature that examined air pollution, health and socio-economic status 

was published in 1970, and interest in health inequality and environmental 

injustice has grown steadily since (Figure 2.2) 

 

Figure 2.1 and 2.2 Number of published pieces of work with titles 

containing the terms “air pollution”, “health” and 

“socio-economic status” between the years 1960 and 

2020 (Review of papers available on Scopus, 2021) 

This review continues by discussing the differing definitions used for asthma in 

epidemiology studies, and how asthma is clinically diagnosed in children. 

Following this, literature that explores exposure and susceptibility to air pollution 

is discussed, also examining how this is impacted by socio-economic status. The 

theoretical framework that underlies the relationship between air pollution, socio-

economic status and health is then outlined before exploring literature that 

discusses the links between air pollution and socio-economic status, and socio-
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economic status and its impacts on health. The review moves on to examine the 

association between air pollution, socio-economic status and health, as well as 

focussing specifically on the health of children. 

2.2  Air Pollution: Exposure and Susceptibility to Exposure 

People are exposed to air pollution in a variety of ways, the most common method 

being through inhalation. However, exposure may also arise through the 

ingestion of food and water that has become contaminated from air pollution and 

dermal contact (Kampa and Castanas, 2008). When examining the impact of air 

pollution on health, studies look at both long- and short-term exposures (day-to-

day variation), with both types of exposures found to negatively impact on 

people’s health. In turn the temporal impact of air pollution can be either acute or 

chronic. An acute condition is one that is severe and occurs rapidly, within a few 

hours to a few weeks, whilst a chronic condition develops over a longer period of 

time, usually a number of years (Pisano, 1996). Increases in mortality, morbidity 

and hospital admissions are associated with both long- and short-term exposure 

to pollutants (Brunekreef and Holgate, 2002).  

2.2.1  Long-term exposure 

Studies focussing on the impacts of long-term exposure to air pollution have 

found consistent associations between long-term exposures and negative health 

impacts, such as decreased lung function, chronic bronchitis, increased risk of 

lung cancer, and cardiopulmonary mortality (Valavanidis et al., 2008). Studies 

focussing on long-term PM2.5 exposure found that it impacts heart rate variability, 

blood viscosity and coagulability, cardiac arrhythmia, deep vein thrombosis, 

atherogenesis, among other health impacts (Valavanidis et al., 2008). Pope III et 

al. (2002) conducted a study to examine the effect of long-term exposure to PM2.5 

on all-cause, cardiopulmonary and lung cancer mortality and found that a 10 

µg/m3 increase in PM2.5 was associated with a 4% increased risk of all-cause 

mortality, a 6% increased risk of cardiopulmonary mortality and an 8% increase 

in lung cancer mortality. This research also found that long-term exposure to PM 

has larger, more persistent and cumulative effects when compared to short-term 

exposures (Pope III, 2007). Similarly, long-term exposure to NOX has also been 

shown to be associated with an increase in mortality rates as well as having an 

impact on lung function, and subsequent repercussions (Stockfelt et al., 2015, 
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Mölter et al., 2013). Long-term exposure to O3 has also been seen to be 

associated with an increase in mortality, specifically mortality related to 

respiratory and circulatory issues (Jerrett et al., 2009, Lim et al., 2019, Turner et 

al., 2016). 

2.2.2  Short-term exposure 

The impact of short-term exposure to air pollution has received considerable 

attention (Bell et al., 2013, Wilson et al., 2005, Chen et al., 2016, Guo et al., 

2013), particularly the impact of big pollution events on mortality and hospital 

admissions. With regard to the impact of short-term exposure to air pollution on 

mortality, higher mortality rates are particularly seen among the elderly and/or 

those with chronic illnesses (Valavanidis et al., 2008). Indeed, the APHEA (Air 

Pollution and Health: a European Approach) found an increase in daily mortality 

associated with an increase in air pollution concentration. Brunekreef and 

Holgate (2002) and Dockery and Pope III (1994) had similar findings in the United 

States. The APHEA also found an increase in hospital admissions associated 

with increased air pollution concentration, and Schwartz et al. (1993) found an 

increase in emergency department visits for asthma related health issues. An 

increase in reported asthma attacks was also associated with increased air 

pollution concentrations (Dockery and Pope III, 1994, Laurent et al., 2008, Cai et 

al., 2016). 

Short-term exposure to PM has been linked with increased hospital admissions, 

as well as both increased mortality and morbidity (Bell et al., 2013). Short-term 

exposure to PM specifically exacerbates certain respiratory diseases, such as 

asthma (Miri et al., 2017). Exposure to NOX has been associated with an 

increased occurrence of acute respiratory diseases and a decrease in pulmonary 

function (Valavanidis et al., 2008). Respiratory morbidity, decreased immune 

system and lung function, lung inflammation and reduced lung growth have also 

all been linked to NOX exposure (Boningari and Smirniotis, 2016). Exposure to 

NOX pollution also gives rise to respiratory disease, like bronchitis and 

emphysema, and exacerbates issues surrounding heart disease (Boningari and 

Smirniotis, 2016, Valavanidis et al., 2008). Short-term exposure to O3 can lead to 

increased hospital admissions for respiratory illness, as well as resulting in airway 
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inflammation, decreased lung function, pulmonary disease and asthma, and 

cardiovascular mortality (Tager et al., 2005).  

Although providing important evidence on the negative impact of big weather and 

pollution events on human health, Valavanidis et al. (2008) argue short-term 

exposure studies only capture: 

(i) deaths attributable to these events in the relative short term; and  

(ii) are likely to only capture deaths of the most frail people who would 

most likely have died shortly afterwards regardless.  

In response, Valavanidis et al. (2008) argue that, long-term studies following 

people facing exposure to air pollution, especially those exposed to low or very 

low concentrations of pollutants, consistently over a period of time are important 

to understand the extent to which air pollution impacts health. 

2.2.3  Child susceptibility to air pollution 

The susceptibility of an individual to both long- and short-term exposure to air 

pollution is variable and depends on different factors, such as age. Children and 

the elderly are more susceptible to the effects of air pollution in comparison to 

middle-aged adults (Jephcote and Chen, 2012, Lavigne et al., 2012, Chen et al., 

2014). Children face increased risk from exposure to air pollution due to their 

undeveloped respiratory and immune systems (Schwartz, 2004). Compared to 

adults, children have a larger lung surface area per kilogram of body weight, 

meaning they breathe up to 50% more air per kilogram of body weight. As a 

child’s lungs are still developing, specifically the epithelial layer, there is an 

increased permeability which results in an increased absorption of detrimental 

pollutants (Jephcote and Chen, 2012). This in turn increases the chance of tissue 

inflammation and agitators passing into the blood stream, which may result in 

asthma. Research has found that long-term exposure can stunt the development 

of cardiorespiratory organs which could result in long-term limiting health 

conditions.  

2.3  Socio-economic Status 

As noted previously, exposure to air pollution is influenced by socio-economic 

status, and at the individual level people with a lower socio-economic status may 
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be exposed to increased levels of air pollution through a number of pathways 

(Jerrett et al., 1997, Briggs et al., 2008). The pathways leading to higher exposure 

rates are multiple and multifaceted. For example, certain employment 

opportunities and poorly maintained housing are associated with increased 

exposure to air pollution (Blanc et al., 2006). At the area level, people with a lower 

socio-economic status are more likely to live closer to polluting factories, airports, 

waste management facilities and main roads, consequently facing increased risk 

of exposure to lower quality air (Blanc et al., 2006). To fully understand how an 

individual’s rate of exposure and susceptibility to air pollution varies depending 

on socio-economic status, with a view to modelling the impact of air pollution and 

human health it is important to explore the theoretical concepts underpinning 

these relationships. 

2.4  Health inequalities – the theoretical framework 

Since the release of the Black Report (Gray, 1982), the dominant conceptual 

framework underlying the analysis of poor health in the social sciences is the 

multifactorial model of disease causation. This model posits that most illnesses 

are the result of multiple causes, determinants, and risks involving a complex set 

of interactions between individuals, the environment, and other factors. Based on 

this model, social research seeks to identify characteristics that increase the 

likelihood an individual has of developing a particular disease. Following the 

Black Report and the subsequent Marmot Report (Marmot et al., 2010) research 

in the health and social sciences has focussed on the role of socio-economic 

status on health outcomes. Whilst much of this research acknowledges that 

socio-economic status is a multi-dimensional concept, empirically it has been 

modelled through a combination of individual factors including educational 

outcomes, occupation and income (Elo, 2009). Education is believed to impact 

on health through the accumulation of knowledge regarding health-promoting 

behaviours, as well as through problem solving and decision making skills (Elo, 

2009). Those working in a higher occupational class are more likely to have jobs 

that are not physically challenging or that could be perceived as being dangerous. 

Income directly influences an individual’s ability to make use of certain resources, 

for example high quality housing and health care access. Building upon this, 

education, occupation, and income are all interlinked, as education influences 
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subsequent occupation and therefore income, and so should be considered when 

exploring a person’s socio-economic status (Chi et al., 2016).  

2.4.1  The social causation theory 

Under the umbrella of the multifactorial model of disease causation, the social 

causation theory of health outcomes has received much attention. The social 

causation theory states that health inequality is caused by the negative effect a 

lower socio-economic status has on health, therefore, circumstances in higher 

socio-economic positions are more beneficial to health than in lower socio-

economic positions (Kröger et al., 2015). Although health inequality has been 

widely researched, the causal mechanisms underpinning the relationship 

between low socio-economic status and poor health are much debated 

(Foverskov and Holm, 2016). Socio-economic status is theorised to have a 

negative effect via mediating factors that are underpinned by: 

 material,  

 cultural-behavioural or  

 psychosocial  

factors (Skalická et al., 2009, Foverskov and Holm, 2016). Understanding what 

factors impact negatively on health outcomes is important in deciding the most 

effective policy measures for population health.  

2.4.1.1  The materialist explanation 

The materialist explanation views material conditions as the most important factor 

influencing an individual’s health. It reflects their social position in society and 

focuses on income and what income enables, such as access to goods and 

services and exposures to material risk factors, like poor housing conditions, 

hazards in the workplace and environmental exposures, such as high ambient air 

pollution concentrations (Foverskov and Holm, 2016, Skalická et al., 2009). 

Expanding on this, land use restriction can explain further; people with lower 

income have a restricted choice when deciding where to live and are therefore 

more likely to live in close proximity to sources of pollution, such as industrial or 

waste disposal facilities, airports and busy roads due to the affordability of these 

locations (Crouse et al., 2009). Furthermore, polluting facilities are frequently 

prevented from being situated near affluent areas due to zoning restrictions, land 
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prices and prevailing winds. Therefore, people with financial difficulties are more 

likely to reside in poor quality housing in areas with higher ambient air pollution 

concentrations. In the UK, research by Mitchell and Dorling (2003) found that the 

communities with access to the fewest cars tend to experience the highest levels 

of air pollution due to increased risks of exposure when travelling via foot or public 

transport. In addition, the areas that experience the highest levels of air pollution 

whilst simultaneously emitting the lowest levels of air pollution are among the 

poorest in the country (Mitchell and Dorling, 2003).  

2.4.1.2  The cultural-behavioural explanation 

The cultural-behavioural explanation suggests that differences in health 

behaviour are a consequence of disadvantage and that unhealthy behaviour may 

be more culturally acceptable within groups of people with similar socio-economic 

status (Skalická et al., 2009). There is much evidence demonstrating that people 

with lower social status are more likely to partake in less healthy behaviours 

(Foverskov and Holm, 2016) such as smoking, physical inactivity and excessive 

alcohol consumption. Cigarette smoke is a major component of indoor air 

pollution and exposure to it is a significant risk factor for respiratory symptoms 

and diseases, especially in children (Seaton, 1996, Pugmire et al., 2014). 

Physical inactivity can result in overweight or obese individuals, which in turn 

could impact on their susceptibility to air pollution. Children with obesity are more 

likely to suffer from asthma, and children that are overweight may be more 

susceptible to the pulmonary effects of pollutant exposure (Matsui, 2014). 

Furthermore, overweight and obese children have a decreased response to 

inhaled steroids, increasing the health risks associated with respiratory events 

(Forno et al., 2011).  

2.4.1.3  The psychosocial explanation 

The psychosocial explanation focusses on how social inequality can make people 

experience feelings of subordination or inferiority, and how these feelings can 

have an effect on health (Skalická et al., 2009). The relationship between socio-

economic status and health is explained by the unequal distribution of 

psychosocial risk factors, such as levels of control and work demands, a lack of 

social support, or imbalances in effort-reward (Skalická et al., 2009). The 

psychosocial determinants of health operate at the individual level, are subjective 
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to the individual (Denton et al., 2004) and can be split into three main groups that 

are interrelated: critical life events, chronic stressors and psychological 

resources. Exposure to stress inducing life events increases risk of psychological 

distress and psychiatric disorders, poor physical health and substance abuse 

(Denton et al., 2004). Exposure to chronic stress, which is the ongoing and 

challenging conditions of daily life such as financial stress, social life stress and 

family health stress, is also associated with distress and chronic health conditions 

(McDonough and Walters, 2001). Psychological resources such as self-esteem 

and sense of coherence are also determinants of health (Denton et al., 2004), for 

example, low self-esteem is linked with an increased prevalence of depression 

which could in turn increase an individual’s susceptibility to the negative impacts 

of air pollution exposure. 

2.4.2  The triple jeopardy 

As noted in Chapter 1, the last two decades have seen an increased interest in 

the relationship between the environment and health inequalities (Jephcote and 

Chen, 2012, Hansell et al., 2016).The relationship between socio-economic 

status and an individual’s living environment must also be considered as one of 

the main influencing factors pertaining to environmental inequalities as the quality 

and environmental context of housing, which is dictated by socio-economic status 

(Braubach et al., 2009). As discussed, people that are disadvantaged or 

marginalised are therefore more likely to experience a more polluted and 

hazardous living environment, which in turn has impacts on their health (Briggs 

et al., 2008).  

Within this context, Jerrett et al. (2001) proposed the term ‘triple jeopardy’ to 

explain how disadvantaged groups face increased risks from social and 

behavioural determinants of health, higher risks from high ambient pollution 

exposure and an effect modification that makes exposure to ambient air pollution 

exert disproportionately large health effects on them when compared to more 

advantaged groups. O'Neill et al. (2003) built on this work using the social 

causation framework to understand the pathways in which the effects of air 

pollution exposure on health are differently distributed by socio-economic status. 

According to O'Neill et al. (2003) air pollution exposure may impact health 

outcomes via: 
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 Materialist factors: air pollution exposure is differently distributed based on 

socio-economic status (Hajat et al., 2015), so the more disadvantaged are 

exposed to higher concentrations of air pollution both at home and in the 

workplace. 

 Cultural-behavioural factors: some health conditions such as asthma, 

diabetes and cardiovascular diseases, as well as certain behavioural traits 

that increase vulnerability to air pollution, are linked to socio-economic 

status (Denton et al., 2004). 

 Psychosocial factors: low socio-economic status may directly increase 

susceptibility to air pollution related health consequences due to raised 

levels of psychosocial stress (Forastiere et al., 2007).  

Similarly, to the social causation theory, the triple jeopardy concept mirrors the 

materialist, cultural-behavioural and psychosocial explanations and should 

therefore be considered collectively. The explanations presented interact with 

each other in a multitude of pathways to have an impact upon people’s health in 

different ways. For example, an individual suffering from poor health would have 

limited employment opportunities, thus also having a limited income which further 

impacts their mobility and access to power. This then impedes their ability to 

move away from or to mitigate against the hazards in their community, such as 

exposure to air pollution (Briggs et al., 2008). These theories provide a clear and 

robust example of the complex relationship between health, socio-economic 

status and the environment, especially air pollution. Before discussing literature 

that focusses on this interaction between air pollution, socio-economic status and 

health, literature examining the relationship between air pollution and socio-

economic status will first be discussed. 

2.5  The relationship between air pollution and socio-economic status 

Jerrett et al. (1997) examined the relationship between air pollution and socio-

economic status in Ontario, Canada. This study explored the relationship 

between household income, housing prices, manufacturing employment, 

population change and air pollution emissions. Jerrett et al. (1997) found a 

significant relationship between these aforementioned variables and air pollution 

emissions. Together, these variables explained roughly 63% of the variation in 

pollution emissions, however household income was shown to have a positive 
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association with pollution emissions which disagreed with the original hypothesis. 

Jerrett et al. (2001) examined whether populations that had low socio-economic 

status were more likely to experience high levels of air pollution, this time looking 

specifically in Hamilton, Ontario. Using a comprehensive intra-urban air pollution 

monitoring network, Jerrett et al. (2001) found that two large steel-makers based 

in the study area had created zones with high levels of pollution. This study 

estimated that sickness and death caused by PM emissions in this area cost 

roughly Can$537 million per annum. From the research, Jerrett et al. (2001) 

concluded that people with a lower socio-economic status were exposed to higher 

levels of ambient air pollution in Hamilton than groups with a higher socio-

economic status. Pollutant exposure was significantly negatively associated with 

house prices, whilst unemployment and low income were also found to be 

significant predictors of exposure.  

One of the first studies in the UK that explored environmental inequalities 

regarding air pollution and socio-economic status was carried out by Friends of 

the Earth in 1999 (McLaren et al., 1999). Using data from their own ‘Factorywatch’ 

project as well as income data for every postcode sector in the country, Friends 

of the Earth discovered that there were 662 polluting factories in postcode areas 

with an average annual income below £15,000. In addition, only five factories 

were found in areas with an average annual income above £30,000. Areas with 

a higher number of factories were found to generally have a lower average annual 

income. Teesside in North East England had one area with 17 factories and an 

average annual income of £6,200, 64% below the national average. McLaren et 

al. (1999) found that the poorest families, those with an average annual income 

below £5,000, were twice as likely to live within the vicinity of a factory when 

compared to families with an average annual income over £60,000. The study 

also found that over 90% of factories in London were situated in areas with a 

below average income.  

Research in Montreal, Canada, by Crouse et al. (2009) explored the association 

between socio-economic status and ambient air pollution, specifically NO2 at the 

household and neighbourhood level. The research found a clear association 

between NO2 concentration and both material and social deprivation indicators 

at the neighbourhood level, including household income and proportion of people 

that live alone. Crouse et al. (2009) also found that there were certain areas in 
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Montreal that experienced a ‘double burden’, as these areas experienced both 

high levels of deprivation and high concentrations of ambient NO2. However, the 

highest levels of pollution were not only found in the more deprived areas, but in 

some wealthier areas also. Before adjusting the analysis, Crouse et al. (2009) 

found that neighbourhoods with a high proportion of individuals with lower 

education also experienced lower levels of air pollution, and vice versa. One 

possible explanation of this is ‘student ghettos’, where high concentrations of 

students live in areas of the city that experience a high volume of traffic.  

Research in London by Goodman et al. (2011) explored the impacts of traffic 

based air pollution and area and individual level socio-economic status. The 

concentration of NOX steadily decreased moving out from central London, and 

throughout the city the mean air pollution concentration was higher in areas of 

increased deprivation, although the magnitude of the association was 

overestimated in the study. In Minnesota, Pratt et al. (2015) examined the 

combination of traffic, air pollution, ethnicity and socio-economic status. Owning 

a car lowered the emissions someone faced when compared to walking or using 

public transport, which are the more common methods of transport for those with 

a lower socio-economic status. Ethnic minorities and those with low socio-

economic status experienced higher exposure to pollution and were therefore at 

a disproportionately greater risk of health impacts. It is difficult to investigate 

socio-economic status without also discussing the influence it has on an 

individual’s health. The following section discusses the findings from literature 

that touched on this topic. 

2.6  Respiratory health: asthma and wheeze 

Asthma is a complex respiratory disease and due to its complexity, over time 

epidemiological studies have typically employed differing definitions for asthma. 

For example, a recent systematic review (Islam et al., 2021) examined 190 

studies published between 1995 and 2020 that focussed on asthma and wheeze 

in children under the age of 13 years, and found that ten different definitions for 

asthma and five different definitions for wheeze were used. Islam et al. (2021) 

found that when defining asthma, epidemiological studies have either used an 

evidence-based definition or an operational definition. An evidence-based 

definition depends on clear evidence of the type, severity and frequency of 
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symptoms, which is challenging to ascertain in children. Diagnosing asthma 

clinically can be difficult with children and is generally not done for children under 

five years (Moral et al., 2019). Clinical diagnosis may consist of three different 

tests; a spirometry test to show if airways are blocked and narrow; a FeNO 

(fractional exhaled nitric oxide) test measuring airway inflammation which can 

show allergic asthma; and a peak flow test, which measures how quick a child 

can exhale. The results from these tests, along with relevant information about 

symptoms (such as potential triggers, severity, duration, etc.) are considered by 

a medical professional when making an asthma diagnosis.  

An operational definition of asthma was found to be generally based off of 

parental responses to a questionnaire developed by the International Study of 

Asthma and Allergies in Childhood (ISAAC), and focuses on parent reported 

symptoms over time. Of the 190 articles, Islam et al. (2021) found that a diagnosis 

of asthma was based on asking parents if ‘A child having ever had asthma 

(‘asthma ever’)’ in 89 articles. Reported asthma was further broken down into ten 

separate definitions based on whether it was from parental reporting, healthcare 

professional diagnosis, or medical records. Children that experienced a recent 

asthma attack (‘current asthma’) were reported in 53 articles, and this 

classification had 25 different definitions. Clinically diagnosed asthma (‘doctor-

diagnosed asthma’) was seen in 76 articles with five different definitions. There 

were other less common categories of asthma used in a small number of articles; 

‘diagnosed-asthma’ in two articles; ‘asthma-like syndrome’ in three articles; 

‘probable asthma’ in three articles; ‘past asthmatics’ in two articles; ‘persistent 

asthma’ in two articles; and ‘possible asthma’ in one article. In studies that were 

interested in wheezing, ‘wheeze ever’ was recorded when a child had 

experienced wheezing at some point throughout their life, and this was seen in 

95 articles. The most common definition used for wheezing was ‘current wheeze’ 

which was used in 129 articles, and recorded whether a child had experienced 

wheezing within the previous 12 months. This could be broken down into eight 

differing definitions depending on wheezing frequency and additional symptoms. 

‘Exercise-induced wheeze’ was recorded in 49 articles when a child experienced 

wheezing after partaking in physical activity. ‘Persistent wheeze’ was recorded in 

two articles, and ‘infant asthma’ was recorded in one article.  
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Asthma is a nebulous term and issues relating to the definition of the disease 

have been a common topic of research in the epidemiological field. With the 

definition varying between studies, the ISAAC initiative aimed to create a 

universal definition of childhood asthma through the use of its accessible 

questionnaire, although it remains a challenge (Dharmage et al., 2019). With 

some definitions being more sensitive, and others more specific, there has been 

misclassification of asthma (Dharmage et al., 2019). However, an exact definition 

may never be feasible as research is indicating that asthma is in fact an umbrella 

term for several similar diseases (Pavord et al., 2018). Therefore it is likely that 

asthma will continue to be a nebulous term with an ever-evolving definition as 

more is understood about the disease through further research. 

2.7  The relationship between socio-economic status and respiratory 

health 

Examining the impact of socio-economic status and respiratory health, Basagaña 

et al. (2004) used data from the European Community Respiratory Health Survey 

to explore the link between socio-economic status and asthma prevalence for 

young adults in 32 centres in 15 countries throughout Europe, the United States, 

Australia and New Zealand. The study found a range in asthma prevalence from 

2.8% to 15.7%, giving an overall prevalence of 8.4%, with a larger prevalence 

seen in people of low social class and a low educational level. There was also 

evidence that regardless of an individual’s socio-economic status, if they lived in 

a centre with a generally low education level, they still faced a higher risk of 

asthma. Possible explanations for the increased prevalence of asthma among 

the less affluent vary. Basagaña et al. (2004) hypothesised that early life events 

are possibly influential, such as the diet of the mother or the postnatal 

environment. A further explanation could be that poorer patients are likely to have 

poorly controlled asthma, owing to lack of concern or dismissal of symptoms 

(Ernst et al., 1995). Other factors that could be considered are lack of accessibility 

to healthcare and differences in both the prescription and use of asthma 

medication.  

Basagaña et al. (2004) had taken universal healthcare into consideration and 

stated that it does not always equate to equal access nor equal utilisation. Their 

work found that in Spain, both the employed and unemployed visited physicians 
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with the same frequency, however those that were unemployed were less likely 

to be seen by a specialist. Further research found that prescription rates of 

inhaled steroids (Lang et al., 1997) and the proportion of people suffering from 

asthma receiving anti-inflammatory drugs were lowest amongst those with a 

lower socio-economic status. In contrast, Rona (2000) found that the lower socio-

economic groups were prescribed more medication than the higher socio-

economic groups. 

In the UK Violato et al. (2009) examined the effects of household income on 

children’s respiratory health using the UK Millennium Cohort Study and found a 

weak positive association between low income and childhood respiratory health, 

controlling for parental health, socio-economic status of grandparents and health 

impacts from maternal behaviour. One reason for such a weak association 

compared to other countries could be due to differences in health services. 

Indeed, the findings discussed in this section can all be related back to the 

concept of health inequalities, and the reasoning behind the findings can easily 

be linked to the materialist explanation provided for the social causation theory. 

2.8 The association between air pollution, socio-economic status and 

health 

The research discussed previously consisted of studies exploring the association 

between air pollution exposure and its negative impacts on health, as well as 

studies examining how people that are more disadvantaged face an increased 

burden of poor health when compared to those of higher socio-economic status. 

Bringing this research together, Fairburn et al. (2019) conducted a systematic 

review examining research that discussed social inequalities and air pollution 

exposure. The review found that those experiencing higher levels of deprivation 

and lower levels of socio-economic status were more likely to also experience 

high levels of pollutants, specifically PM10, PM2.5, NO2 and NOX.  

The remainder of the chapter examines the relationship between exposure to air 

pollution, socio-economic status and health. Whilst cross-sectional analysis 

provides a valuable insight into the relationship between air pollution, socio-

economic status and health, it is not without limitations. These studies cannot be 

used to address longitudinal issues as they provide no direct indication of the 

causal mechanisms that lie behind environmental inequalities (Richardson et al., 
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2011). The studies also cannot account for the accumulation of exposure across 

life course (Richardson et al., 2013). As such, for ease of comparison the 

literature is divided into studies using a cross sectional and a longitudinal 

approach. 

2.8.1  The association between air pollution, socio-economic status and 

health: Cross-sectional analysis 

2.8.1.1  England 

Wheeler and Ben-Shlomo (2005) utilised the Health Survey for England to 

explore the relationship between air quality and respiratory health, whilst 

examining how socio-economic status and exposure to air pollution also tie in 

with this relationship to further impact on respiratory health. This research found 

that those of a lower social class lived in areas that typically experienced worse 

air quality, an example of environmental inequality. This was not found to be the 

case in rural areas however as the more affluent were more likely to live near 

good transport links, such as main roads, meaning that those of a lower socio-

economic status lived in areas that were increasingly remote, further from 

development and consequently, less polluted. An improved quality of air was also 

associated with better lung function in adults, although there was no pattern with 

asthma (Wheeler and Ben-Shlomo, 2005). The results did not prove that social 

class differences in respiratory function were explained by air pollution inequity. 

However, there was a weak suggestion that for men, poor air quality interacted 

with low social class, with double the impact compared to men in high social class 

households (Wheeler and Ben-Shlomo, 2005).  

Briggs et al. (2008) investigated how environmental inequity varies in England 

with regard to different air pollutants, differing socio-economic status and different 

scales and contexts. Briggs et al. (2008) stated how there was a complex 

relationship at work, where poor health can lead to lower employment 

opportunities, lower income, restricted mobility and less access to power, thus 

increasing people’s risk of worsening health. This relationship can be related to 

the social causation theory, specifically the materialist and psychosocial 

explanations (Foverskov and Holm, 2016). The pollutants examined in this study 

were NOX, PM10, SO2 and total volatile organic compounds (VOC). The north of 

England experienced higher rates of air pollution and lower socio-economic 
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status, whilst inner city areas were also found to experience higher levels of air 

pollution as well as being more deprived. This investigation returned a significant 

positive association between health and income, employment and education, as 

well as a significant positive association between health and distance to emission 

sources, percentage of industrial land, proximity to airports and PM10 emissions, 

among other variables. Similar to the research carried out by Wheeler and Ben-

Shlomo (2005), Briggs et al. (2008) found strong associations in urban, rather 

than rural areas. Briggs et al. (2008) also found evidence to suggest that 

deprivation could exacerbate the impacts of environmental exposures in some 

cases through increasing susceptibility to environmental factors, which could be 

due to already impaired health status and poorer access to health care.  

Research in both England and the Netherlands carried out by Fecht et al. (2015) 

looked at the associations between air pollution, both PM10 and NO2, and 

population characteristics, which were socio-economic status, ethnicity and the 

age profile at the neighbourhood level. There was an association between air 

pollution with both deprivation and ethnicity, meaning that people that had a lower 

socio-economic status and were an ethnic minority, were more likely to 

experience higher levels of air pollution.  

Similar to previous research, Fecht et al. (2015) hypothesised that people with 

lower socio-economic status experienced elevated levels of air pollution in urban 

areas due to their home location, which was normally in close proximity to busy 

main roads and industrial sites. As previously stated, home location can be 

related back to socio-economic status and therefore the materialist explanation 

of the social causation theory, as an individual’s income dictates where they can 

afford to live (Foverskov and Holm, 2016). With regard to the relationship 

between ethnicity and higher pollution levels, it was hypothesised that people of 

minority ethnicities may endure low quality of air to be closer to friends and family, 

as they tend to live congregated in the same neighbourhood, regardless of socio-

economic status (Fecht et al., 2015). 

2.8.1.2  Europe 

Research in Rome (Forastiere et al., 2007) found that in urban areas, those with 

a higher socio-economic status were more likely to be living in areas of increased 

traffic emissions than those of a lower socio-economic status. However, 
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individuals with lower socio-economic status were still more likely to experience 

worse health than those of higher socio-economic status, even if they lived in less 

polluted areas. This could be due to differential susceptibility, however as this 

study looked only at road traffic emissions, it may not be representative of the 

actual air pollution concentration that an individual would experience in a given 

area. Forastiere et al. (2007) further stated that individuals that are less affluent 

may spend a longer proportion of their time outside, working on the street for 

example, therefore facing air pollution exposure for longer periods of time than 

someone who would work indoors. The wealthiest could also own second homes, 

away from the busy city centre, thus spending less time in the highly polluted 

area. Those of a lower social class also experienced higher rates of hospital 

admissions.  

Schikowski et al. (2008) studied women in the Ruhr region in Germany examining 

how the combination of occupational exposures, outdoor air pollution and 

smoking would impact the socio-economic status and respiratory health 

relationship. This research found that women with a lower level of education were 

more likely to experience respiratory issues, such as reduced lung function. 

Schikowski et al. (2008) also found that long-term exposure to high levels of PM10 

was significantly associated with reduced lung function. However, the relationship 

between poor respiratory health and low levels of education was lessened when 

adjusted for smoking and ambient air pollution.  

A Europe-wide study conducted by Richardson et al. (2013) was interested in 

particulate air pollution and health inequalities, and the relationship with 

household income. Some of the richest areas in Western Europe were also the 

most polluted, similar to findings by Forastiere et al. (2007), although it was 

suggested that income-related inequalities in exposure to ambient air pollution 

may contribute to Europe-wide mortality inequalities. There was also evidence 

that people living in lower income regions were more susceptible to the health 

impacts of air pollution. Morelli et al. (2016) investigated the risk related to PM2.5 

exposure in the urban areas of Grenoble and Lyon in France, and looked at the 

relationship with social deprivation. This study included the number of full-term 

low birth weight cases which were attributable to air pollution, and carried out the 

investigation at a small scale. Areas of high deprivation experienced a greater 
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burden of PM2.5 exposure on mortality, lung cancer and full-term low birth weight 

when compared to less deprived neighbourhoods.  

2.8.1.3  Worldwide  

Jerrett et al. (2004) conducted a study in Hamilton, Canada to test the hypothesis 

that socio-economic characteristics modify the acute health effects of ambient air 

pollution exposure. In a citywide model, increased mortality was found to be 

associated with air pollution exposure and also in intra-urban zones that had 

lower socio-economic characteristics. Weighted regression analysis suggested 

that underlying socio-economic characteristics modify the health effects of air 

pollution exposure (Jerrett et al., 2004). Three possible explanations were 

proposed to explain these findings. First, that people working in the 

manufacturing industry, like steel factories, face increased exposure to air 

pollution at their workplace, which, when combined with ambient air pollution 

exposure could have a greater impact on their health. Second, people with lower 

education were found to move around less, therefore experiencing lower 

exposure measurement error, reducing the bias toward the null. Third, working in 

manufacturing and educational levels serve as proxies for many social variables 

representing material deprivation, and poor material conditions increase an 

individual’s susceptibility to health risks from air pollution. Another study in the 

Hamilton-Burlington area of Ontario explored how income, mortality and air 

pollution were related (Finkelstein et al., 2003). It was found that those living in 

low income areas had higher mortality rates than those living in higher income 

areas. Mean pollutant levels tended to be higher in areas with increased levels of 

deprivation, and both pollutant and income levels were associated with mortality 

differences. When compared to those living in areas with higher income and lower 

levels of pollution, all others in the study had a higher risk of death from non-

accidental causes. 

Richardson et al. (2011) investigated the association between exposure to PM10 

and mortality and health inequalities in New Zealand. A positive association was 

found between PM10 exposure and respiratory disease mortality, as well as a 

socio-economic gradient. This means that those living with a low socio-economic 

status experience an increased risk of respiratory disease mortality. Socio-

economic inequalities were found to be greater in the most polluted areas, 
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however this was not always statistically significant. Richardson et al. (2011) did 

not find that health inequalities were heightened in areas with increased exposure 

and instead stated that other socio-economic aspects were likely to have more of 

an impact than PM10 pollution, such as housing quality. Housing quality as 

justification for the inequalities experienced is an example of the materialist 

explanation of the social causation theory (Foverskov and Holm, 2016).  

In China, Jiao et al. (2018) examined the non-linear relationship between area 

level air pollution and socio-economic status in urban area. This study found that 

as socio-economic status increased, so did levels of air pollution, similar to what 

was seen in Forastiere et al. (2007). This raises the suggestion that air pollution 

is a ‘by-product’ of economic development. However, this was only true up to a 

certain level because as socio-economic levels increased further, air pollution 

levels started to decrease. The study also found that the health effects associated 

with air pollution on people with lower socio-economic status were significantly 

greater when compared to people with a higher socio-economic status (Jiao et 

al., 2018). 

2.8.2  The association between air pollution, socio-economic status and 

health: Longitudinal analysis 

Hill et al. (2019) examined the impact of income inequality on the relationship 

between air pollution and life expectancy in the United States and found that 

states with higher levels of PM2.5 pollution were more likely to exhibit a lower 

average life expectancy. This association was stronger in states with high levels 

of income inequality. A similar study conducted by Jorgenson et al. (2020) also 

examined the impact of PM2.5 exposure on life expectancy in the United States, 

including both income inequality and racial composition in the study. The results 

found that air pollution exposure is more detrimental to life expectancy in areas 

with higher levels of income inequality and larger black populations. Jorgenson 

et al. (2021) conducted a study that investigated the effects of PM2.5 pollution and 

income inequality on life expectancy across 136 nations. Again there was a 

negative association found between PM2.5 pollution and average life expectancy 

which was amplified by increased levels of income inequality. 

Whilst there is a wide range of longitudinal studies interested in air pollution 

epidemiology, there are a limited number that examine the impacts of the 
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association of air pollution and socio-economic status on health. Longitudinal 

studies that are interested in this relationship tend to focus on the effects faced 

by children, commonly following birth cohort studies. These are discussed further 

in Section 2.8.2.  

2.9  The association between air pollution, socio-economic status and 

children’s health 

There is a growing body of literature that is interested in the effects of air pollution 

on the health of children, and how these effects are associated with socio-

economic status. Rodriguez-Villamizar et al. (2016) conducted a systematic 

review to explore the evidence of socio-economic status as an effect modifier of 

the association between asthma exacerbations in children and ambient air 

pollution (Rodriguez-Villamizar et al., 2016). The studies included in this review 

displayed an association between hospitalisation and air pollution exposure, 

where a stronger effect was seen on children living in higher levels of deprivation. 

However, only one study confirmed the effect modification by statistically 

significant interactions between air pollutants and socio-economic status, most 

likely due to a limited sample size of the original studies (Rodriguez-Villamizar et 

al., 2016). This literature review continues by discussing the evidence base 

exploring the association between air pollution, socio-economic status and 

children’s health. As above, the literature is divided into cross-sectional and 

longitudinal analysis. As noted, whilst cross-sectional analysis provides valuable 

insights on human health at one point in time, longitudinal studies are particularly 

valuable for child epidemiology. A focus on child health is particularly important 

with regard to air pollution, as research has demonstrated that as children 

develop and grow, they are more susceptible to the impacts of air pollution 

(Esposito et al., 2014). 

2.9.1  The association between air pollution, socio-economic status and 

children’s health: Cross-sectional analysis 

2.9.1.1  England 

Jephcote and Chen (2012) examined the hospitalisation of children aged up to 

15 years with respiratory issues and how this was related to socio-economic 

status and exposure to vehicular PM10 emissions in the city of Leicester from 
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2000 to 2009. This study found that higher levels of PM10 emissions were related 

to an increase in respiratory related hospitalisations for children. This study was 

a precursor to a later investigation by Jephcote et al. (2014) who built on this 

research, again in Leicester, to study the spatial relationships between minor and 

severe respiratory conditions, including to what extent socio-environmental 

mechanisms were responsible for the worsening of respiratory health in children. 

The research indicated that exposure to poor socio-environmental factors could 

cause upper respiratory tract infection episodes in children, with continued 

exposure resulting in longer periods of recovery. In addition, if a child was not 

sufficiently recovered before temperatures began to decrease in colder months, 

the child faced the risk of infection with a virus, further worsening their respiratory 

health.  

2.9.1.2  Worldwide 

Ostro et al. (2001) studied how certain pollutants, including PM10, PM2.5 and NOX, 

exacerbated the impacts of asthma in African-American children in Los Angeles. 

The research looked at the interaction between air pollution and asthma severity, 

socio-economic status and respiratory infections. A considerable number of the 

children included in this study were from families with a relatively low socio-

economic status. Ostro et al. (2001) found that daily average PM10 concentration 

was associated with the probability and incidence of coughing, wheezing and 

shortness of breath. Exposure to PM2.5 was found to produce similar effects as 

PM10, albeit to a lesser magnitude. NOX was also found to be associated with the 

daily probability of wheezing and with episodes of coughing and wheezing. 

Furthermore, asthma severity, income and the use of medicine was not found to 

significantly impact the association of PM10 with either daily probability of 

symptoms or the onset of episodes of coughing or wheezing.  

In Seoul, Lee et al. (2006) looked at asthma related hospital admissions for 

children and how this was related to socio-economic status, analysing pollution 

data for pollutants that included PM10, CO, NO2 and O3. The findings suggested 

that children living in areas with a low average socio-economic status were 

exposed to higher levels of NO2 and CO, and that more children from these areas 

were admitted to hospital due to asthma than children from higher socio-

economic status districts. The relative risk for O3 was found to increase 



  48 
 

significantly from higher to lower socio-economic status. Lee et al. (2006) goes 

on to list reasons explaining the increased pollutant susceptibility of children in 

lower socio-economic status areas; the pattern of environmental exposure to the 

pollutant; the child’s health, influenced by exercise, diet and degree of socio-

psychological stress; accessibility and provision of medical services; the 

surrounding physical and sociological environment.  

The explanations provided for these findings have all been previously discussed 

in relation to the social causation theory (Foverskov and Holm, 2016). Bell et al. 

(2007) examined the relationship between air pollution, including PM10, PM2.5 and 

NO2, and low birth weight in Connecticut and Massachusetts in the US. Low birth 

rate is indicative of health as it is associated with a higher risk of infant and 

childhood mortality and this research did find that there was an association 

between air pollution exposure and birth weight. However PM2.5 was found to 

have a greater impact on the birth weight of babies born to black mothers, 

indicating a relationship with socio-economic status due to previous findings 

related to socio-economic status and ethnicity (Bell et al., 2007).  

A study by Rosenlund et al. (2009) in Rome investigated the association between 

traffic-related pollution and lung function in schoolchildren. The air pollution 

indicators used were residential levels of NO2, self-reported traffic level and 

proximity to busy roads. A strong association was found between estimated NO2 

exposure and decreased lung function, with stronger associations found in 

female children, older children, children of high socio-economic status and those 

exposed to smoking through their parents. The strong association seen with 

children of higher socio-economic status echoes the findings of Forastiere et al. 

(2007). Grineski et al. (2010) explored the relationship between race, ethnicity 

and health insurance status with air pollution, specifically NO2, on the 

hospitalisation of children for asthma in Phoenix, Arizona in the US, from 2001 

until 2003. This study found that there was an increased risk of admission to 

hospital with asthma for children without health insurance when compared to 

children with private health insurance. A lack of health insurance can be indicative 

of having a lower socio-economic status, and it was found that black and Hispanic 

children without health insurance faced a greater risk from air pollution when 

compared to white children with health insurance.  
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In Windsor, Canada, Cakmak et al. (2016) explored the association of 

schoolchildren’s respiratory health with traffic type, traffic volume and air pollution 

stratifying by socio-economic status, based on household income and education 

at the household level. Increased traffic density within 200 metres of a child’s 

house and increased air pollution were associated with increased respiratory 

symptoms and this association was stronger in areas of low income and low 

educational levels. This evidence shows that children living in a deprived area 

are more at risk of certain respiratory health problems due to a higher volume of 

traffic and consequently increased air pollution exposure. In up to 62% of cases 

the differences between high and low socio-economic groups were statistically 

significant, indicating that socio-economic status was a significant effect modifier. 

Kravitz-Wirtz et al. (2018) examined early life exposure to air pollution, area level 

poverty and asthma risk in children in the US. The study theorised why children 

living in the most deprived areas would face increased exposure and be more 

susceptible to air pollution for a number of reasons. Poor healthcare and a lack 

of nutritious foods, as well as increased exposures to psychosocial stressors such 

as violence were all listed. The association between pollution exposure and 

asthma was found to be significant for children living in areas of high poverty.  

2.9.2  The association between air pollution, socio-economic status and 

children’s health: Longitudinal analysis 

Gauderman et al. (2007) studied the impact that traffic-related air pollution had 

on children’s lung development in California over eight years. The results showed 

that children living within 0.5 km of a freeway had a decreased lung capacity when 

compared to children that lived at least 1.5 km away from a freeway. This 

indicated that the increased exposure faced by children living closer to a freeway 

had negative impacts on their health. The study found that low socio-economic 

status was associated with increased exposure to traffic-related emissions, with 

those that were more deprived more likely to live closer to a freeway. However 

there was no significant association between socio-economic status and forced 

expiratory volume or lung-function growth. Clougherty et al. (2007) studied the 

influence of violence exposure as a stressor that influenced asthma rates among 

children in Boston. As stated by Foverskov and Holm (2016), exposure to stress 

has the potential to be a primary pathway through which socio-economic status 
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impacts health as explained through the psychosocial explanation of the social 

causation theory. The study found an association between NO2 exposure from 

traffic emissions and asthma diagnosis only among children that were exposed 

to a high level of continued violence.  

In Stockholm, Sweden, Nordling et al. (2008) investigated the impact that air 

pollution from transportation had on the respiratory system of children over four 

years. This study found a positive association between traffic-related air pollution, 

in this case PM10 and NOX, during the first year of the children’s lives and 

indicators of airway disease in the same children when they were four years of 

age. These indicators were wheezing, a lower lung output and pollen sensitivity. 

The children with the highest socio-economic status were found to be exposed to 

the most air pollution as they tended to live in the inner city where there was a 

higher concentration of traffic. Chang et al. (2009) was interested in repeated 

hospital visits in California for children with asthma and the association with 

residential proximity to busy roads. There was a positive association between 

distance to roads and freeways and repeated hospital visits, as those living within 

0.3 km of main roads were more likely to return to the hospital with respiratory 

issues. There was also a stronger association found for children without private 

health insurance, again this is an indicator of having a lower socio-economic 

status. Shankardass et al. (2009) explored childhood asthma incidence in relation 

to high parental stress or low socio-economic status and traffic-related air 

pollution. This study looked at children between the ages of five and nine from 

California that did not suffer from asthma or wheezing, and followed up over three 

years to discover if any participant had been newly diagnosed with asthma. The 

study found that there was a significantly increased risk of developing asthma for 

children with high parental stress when compared to those with low parental 

stress. Stress was also associated with effects of in utero tobacco smoke. 

Furthermore, there was also an increased risk of asthma for children from more 

deprived families, black children and underweight children. This suggests that 

children from households of high stress were more susceptible to the impacts of 

air pollution. 
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2.10  Conclusion 

Air pollution and its negative impact on human health is well established; 

however, literature that also includes the impact of socio-economic status at both 

individual and area levels has been limited to date. The evidence outlined in this 

Literature Review indicate that there is an association between socio-economic 

status and air pollution, one which can have a lasting impact on an individual’s 

health throughout their life. The theories that underpin this relationship have been 

discussed and evidence has supported this framework.  

Whilst findings are inconsistent, this inconsistency demonstrates the need for 

future analysis to fully understand the complex relationships at play. Within this 

context, this thesis aims to explore the association between air pollution, socio-

economic status and respiratory health in children through answering the 

following hypothesis; 

1. Whether the association between asthma and air pollution is stronger 

amongst children of lower, compared to higher, socio-economic status, 

and; 

2. Whether area level deprivation interacts with individual socio-economic 

status so that the impact of air pollution exposure on asthma is stronger 

for children with low socio-economic status living in the most deprived 

areas than children with similar socio-economic status living in less 

deprived areas. 

The next chapter, Chapter 3, outlines the data and methods used in this study 

that seeks to understand the above hypothesis. 
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Chapter 3. Data and Methods 

 

3.1  Introduction 

This chapter introduces the data and research design and methods used to 

explore the relationships between respiratory health in children, individual and 

area level socio-economic status and air pollution exposure. As noted in the 

Introduction (Chapter 1), this thesis specifically seeks to address the following 

hypotheses; 

1. The association between respiratory health and air pollution is stronger 

amongst individuals of lower, compared to higher, socio-economic status. 

2. Area level deprivation will interact with individual socio-economic status so 

that the impact of pollution on respiratory health is stronger for people with 

low socio-economic status living in the most deprived areas than people 

with low socio-economic status living in less deprived areas. 

This chapter will begin by examining the different data sources used in this thesis 

and the associated variables each data source provides. These data sources 

include; the Millennium Cohort Study (MCS) (outlined in section 3.2.1), the 

European Monitoring and Evaluation Programme for the UK (EMEP4UK) 

(outlined in section 3.2.2) and the Index of Multiple Deprivation (IMD) (outlined in 

section 3.2.3). 

To create the necessary dataset to answer the hypotheses outlined above, data 

linkage was necessary to compile all relevant data into one dataset. Section 3.4 

outlines the data linkage methodology used. Section 3.5 introduces the statistical 

methods used to analyse the research question; cross-sectional analysis is the 

first analytical method that will be discussed, followed by time series analysis and 

finally multilevel modelling. Each analytical method aims to build on the previous 

to better understand the relationships at play. 
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3.2  Secondary Data Sources 

3.2.1 Millennium Cohort Study 

The Millennium Cohort Study (MCS) is a longitudinal study that is conducted by 

the Centre for Longitudinal Studies (CLS) at the Institute of Education, University 

of London (Plewis et al., 2007). This study aims to follow children born in the UK 

around the turn of the millennium throughout their lives. The study is funded by 

the Economic and Social Research Council (ESRC), as well as a selection of UK 

government departments, the Welsh Government, the Scottish Government and 

the Northern Irish Executive. The study seeks to provide the basis for comparison 

with previous cohort studies and to facilitate international comparative research 

(Connelly and Platt, 2014). Furthermore, the study allows the in-depth analysis 

of the inequalities faced by a contemporary cohort of individuals throughout their 

life course. The research design for the MCS was based on the following five 

principles (Plewis et al., 2007); 

1. “The MCS should provide data about children living and growing up in the 

four countries of the UK.” 

2. “The MCS should provide usable data for sub-groups of children, in 

particular those living in advantaged and disadvantaged circumstances, 

and for children of ethnic minorities and those living in Scotland, Wales 

and Northern Ireland.” 

3. “As well as data about children, the study should provide data about their 

family circumstances and the broader socio-economic context in which the 

children grow up.” 

4. “The MCS should include children born throughout a single 12-month 

period.”  

5. “All children born as members of the MCS population should have a known 

and non-zero probability of being included in the selected sample.” 

The study comprises children from England and Wales that were born between 

1 September 2000 and 31 August 2001, and children from Scotland and Northern 

Ireland that were born between 24 November 2000 and 11 January 2002. These 

children had to be living in the UK when they were nine months old and their 

families would also have had to be eligible to receive Child Benefit (Plewis et al., 
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2007). To be eligible to receive Child Benefit, one must be responsible for a child 

under the age of 16, or older depending on different factors, and must be living in 

the UK. In 2001, 6.02 million families in England were eligible for Child Benefit 

(Sorensen, 2002). 

As per the principles, the study was designed to accurately reflect the total 

population whilst also being representative of key sub-groups, thus the study 

oversampled children from deprived backgrounds. This allowed the effects of 

disadvantage on children’s outcomes to be better addressed. Areas that featured 

a relatively high ethnic minority concentration were also oversampled to reflect 

the increasing diversity of the UK, and to examine the different health, educational 

and social outcomes across ethnic groups.  

Due to these demands, the population was stratified. Specifically in England, the 

population fit into three strata (Plewis et al., 2007); 

1. An ‘ethnic minority’ stratum where the proportion of ethnic minorities in that 

ward in the 1991 Census was at least 30%. 

2. A ‘disadvantaged’ stratum which comprised of children living in wards that 

were in the poorest 25% using the Child Poverty Index for England and 

Wales (excluding wards falling into the ethnic minority stratum). 

3. An ‘advantaged’ stratum, capturing children living in wards other than 

those in the other two strata. 

The sample is clustered by characteristics of electoral wards and randomly 

selected within each stratum which produced a disproportionately stratified 

cluster sample. Following this, a list of all children that would turn nine months 

old during the survey period, that lived in a selected ward, and that were entitled 

to Child Benefit were written to, with an opt out option if they did not wish to be 

included in the survey. Just over half (51%) of the children surveyed in the first 

wave were male and 82% were White. Around 2.5% were Indian, 4.8% were 

Pakistani, 2% were Bangladeshi, 1.3% were Black Caribbean, 2% were Black 

African and 3% had mixed ethnicity (Plewis et al., 2007).  

The children in the MCS were first surveyed when they were aged nine months 

(Wave 1) and follow up surveys took place at ages 3 (Wave 2), 5 (Wave 3), 7 

(Wave 4) and 11 (Wave 5) (Connelly and Platt, 2014). Further follow up occurred 
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at ages 14 (Wave 6) and 17 (Wave 7), but only the first five sweeps are used in 

this thesis.  

Table 3.1 depicts the number of wards sampled, the target number of responses 

and the actual received number of responses in Wave 1. There were a number 

of families with twins and triplets, and a small amount with multiple cohort 

members due to two separate pregnancies during the eligibility period. 

Table 3.1 Total target and achieved responses for the MCS in Wave 1 in the 

UK 

 Wards 

sampled 

Target 

responses 

Achieved responses 

Children (Families) 

England 200 13,146 11,695 (11,533) 

Wales 73 3,000 2,798 (2,760) 

Scotland 62 2,500 2,370 (2,336) 

Northern Ireland 63 2,000 1,955 (1,923) 

Total 398 20,646 18,818 (18,552) 

Table 3.2 depicts the total number of children sampled at each wave, focussing 

on the total number of children in England that were surveyed. The study has 

experienced attrition, re-entry and late entrants, as well as non-response due to 

refusal, non-contact, emigration or death. 

Table 3.2 Total number of families and children that participated in the MCS in 

Waves 1 through 5 

Wave Year Age 

Total no. of 

families 

Total no. of 

children 

No. of children 

in England 

1 2001 9 months 18,552 18,818 11,695 

2 2004 3 15,590 15,808 10,188 

3 2006 5 15,246 15,460 9,884 

4 2008 7 13,857 14,043 8,955 

5 2012 11 13,287 13,469 8,618 

As stated, the sample surveyed was clustered geographically and 

disproportionately stratified to over-represent areas with high proportions of 

ethnic minorities in England, residents of areas of high child poverty and residents 

of the three smaller countries of the UK respectively (Plewis et al., 2007). Due to 

this, sample design weights or probability weights are used to correct for MCS 

cases having unequal probabilities of selection that result from the stratified 

cluster sample design. These weights are included in the data.  
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The Millennium Cohort Study is multidisciplinary and records a range of 

information related to the experiences and lives of the children and their families, 

as well as information related to their surrounding environment or neighbourhood. 

As the study is longitudinal, there are repeated measures for a number of topics, 

such as health variables, and data focusses on different stages of development 

over the child’s life course. The study examines topics such as income, housing 

type, parental education and employment, cognitive development, school choice 

and physical growth, among others (Connelly and Platt, 2014). As well as the 

main parent interview survey, each wave has a selection of other interviews and 

measurements taken, for example, second co-resident parent interview, sibling 

interview, teacher interview, cohort member measurements, cohort member 

assessments and self-completed activities. Further enhancement studies have 

also been carried out, such as oral fluid examination, direct measures of physical 

activity using accelerometers, and through the collection of baby teeth. Sub-

studies of the cohort have also occurred, which included a postal survey for health 

workers working in the sample areas and pre-school research carried out in a 

small sample (Connelly and Platt, 2014). The data collected has been further 

enhanced through linkage with administrative records, such as hospital and 

educational records. This linkage further improves the usefulness of the data for 

research and analysis. Due to the extensive range of data available with the MCS, 

it has been used in many different studies, including epidemiological studies. 

Jayaweera and Quigley (2010) used the MCS to investigate how ethnic 

minorities’ access and use healthcare, and Hawkins et al. (2008) explored the 

links between maternal employment and childhood weight gain. 

3.2.1.1  UKDS Secure Lab 

As the data contained in the MCS includes sensitive information regarding the 

area that cohort members live in, access is only granted through the UK Data 

Service’s Secure Lab. The Secure Lab provides remote access to sensitive or 

confidential data, such as geographical data, in a controlled and safe 

environment. Data cannot be downloaded from the Secure Lab, although results 

can be released, following a statistical disclosure control process that ensures no 

potentially identifiable information is included. Training is necessary in order to 

access the Secure Lab. 
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3.2.2 EMEP4UK – European Monitoring and Evaluation Programme for 

the UK 

Air pollution data was produced from the EMEP4UK model, made available 

through the UK Centre for Ecology & Hydrology. The EMEP4UK model is a 

nested regional atmospheric chemistry transport model (ACTM) based on the 

main EMEP MSC-W model (Vieno et al., 2014, Simpson et al., 2012). The 

EMEP4UK model is driven by the Weather Research Forecast (WRF) model and 

the horizontal resolution scales down from 50 km x 50 km in the main EMEP 

‘Greater European’ domain to 5 km x 5 km for the domain covering the British 

Isles. The boundary conditions for the British Isles domain are derived from the 

results of the European domain in a one-way nested setup. 

The EMEP4UK model is capable of representing the UK’s hourly atmospheric 

conditions at a horizontal scale ranging from 100 km to 1 km. The model 

simulates hourly to annual average atmospheric composition and deposition of 

various pollutants; including PM10, PM2.5, secondary organic aerosols, elemental 

carbon, and secondary inorganic aerosols, SO2, NH3, NOX and O3 (Vieno et al., 

2016). Additionally, dry and wet deposition of pollutants are routinely calculated 

by the model. The EMEP4UK model output is compared with observational data 

from over 180 sites from the Automatic Urban and Rural Network (AURN 

network) throughout the British Isles (Lin et al., 2017).  

Data from the EMEP4UK model have previously been used in epidemiological 

research, for example Graham et al. (2020) examined the impact that weather 

has on particulate matter and human health. Doherty et al. (2009) used 

EMEP4UK to examine the impact that heatwave episodes may have on O3 levels, 

and consequently mortality rates. 

3.2.3  Index of Multiple Deprivation (2010) 

Data describing the area level socio-economic status of cohort members is 

available through the Index of Multiple Deprivation (IMD), which is derived from 

the Indices of Deprivation (IoD) (Ministry of Housing and Government, 2011). The 

IoD are measures of relative deprivation at the Lower-layer Super Output Area 

(LSOA) level across England and are produced by the Ministry of Housing, 

Communities and Local Government (McLennan et al., 2011). The IoD provides 
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a set of relative measures of deprivation for small areas across England, based 

on the seven different domains of deprivation, which are; Income deprivation; 

Employment deprivation; Education, skills and training deprivation; Health 

deprivation and disability; Crime; Barriers to housing and services; Living 

environment deprivation. 

The combination of information from the different domains produces an overall 

relative measure of deprivation, and this is the Index of Multiple Deprivation 

(IMD). The IMD is the official measure of relative deprivation for small areas in 

England, each with a population of roughly 1,500, and ranks every LSOA in 

England from the most deprived area (1) to least deprived area (32,844). LSOAs 

are similarly given a score, with the LSOA with the highest score being the most 

deprived (McLennan et al., 2011). The IMD is a combination of the seven 

domains that produce an overall relative measure of deprivation.  

Each domain is weighted differently, which has been derived from academic 

literature on poverty and deprivations, as well as the levels of robustness of the 

indicators: Income deprivation (22.5%); Employment deprivation (22.5%); 

Education, skills and training deprivation (13.5%); Health deprivation and 

disability (13.5%); Crime (9.3%); Barriers to housing and services (9.3%); Living 

environment deprivation (9.3%) (McLennan et al., 2011). The IMD was first 

recorded in 2000, with following versions recorded in 2004, 2007, 2010, 2015 and 

2019, and is available for download from the UK government’s website. It was 

decided that IMD 2010 was suitable to be used for this study as, whist there is 

some temporal variation, deprivation rates remain broadly consistent. Indeed, 

88% of the most deprived LSOAs in IMD 2010 were also among the most 

deprived LSOAs in IMD 2007. In addition, 83% of the most deprived LSOAs in 

IMD 2015 were among the most deprived in IMD 2010 also (Lad, 2011).  

Figure 1 shows the national distribution of the IMD 2010 in England and illustrates 

how most city centres contain areas with high levels of deprivation. Of the 326 

local authorities in England, 56% contain at least one LSOA which is among the 

most deprived in the country (Lad, 2011). 
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Figure 3.1 The LSOAs of England classified by level of deprivation (using IMD 

2010 data from Ministry of Housing and Government (2011) 

The IMD has been utilised in many epidemiological studies, and the impact of 

deprivation on health has been well documented (Hawley et al., 2013, Jordan et 

al., 2004). Deprivation at the area level has been shown to be associated with 

worse health, increased comorbidity levels (Morrissey et al., 2016) and issues 

related to healthcare access and use (Kontopantelis et al., 2018). With regard to 

respiratory health, Gupta et al. (2018) investigated asthma mortality, hospital 

admissions and prevalence and how they varied with socio-economic status in 

England, and found that as average IMD score increased, so too did emergency 

asthma admissions rate per 100,000.  

3.2.4 Ethics  

Ethical approval for this research was granted by Chair’s Action from the 

University of Exeter College of Medicine and Health Research Ethics Committee 

(application reference number 18/02/159). A UK Data Service SURE (Safe User 
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of Research data Environments) training course was attended on 13/06/2018. 

This training course was necessary to access the MCS data through the UK Data 

Service Secure Lab, due to the small area location information being sensitive, 

secure and potentially disclosive. Access was then carried out through remote 

access from the data user’s organisational computer and was carried out in a 

secure setting. 

3.3 Variables  

This Section outlines both the outcome and explanatory variables used 

throughout the thesis.  

3.3.1  Outcome variables - measures of respiratory health 

The Millennium Cohort Study recorded information regarding different health 

conditions that cohort members experienced (Plewis et al., 2007), as well as 

health conditions their family members experienced.  

Health related questions were consistent from Wave 2 onwards, however in 

Wave 1 when the cohort members were nine months old, slightly different 

questions were used. Beginning in Wave 2, questions regarding respiratory 

health were taken from the International Study of Asthma and Allergies in 

Childhood (ISAAC) core questionnaire for asthma (Asher and Weiland, 1998), 

available in Appendix A. This validated questionnaire has been used in many 

studies to measure child respiratory health (Al Ghobain et al., 2012, Ocampo et 

al., 2017, Lee, 2010). The cohort member’s parent or guardian were asked a 

series of questions regarding their respiratory health, and the outcomes of 

interest in this study are ‘ever had asthma’ (asthma) and ‘had wheezing in the 

last 12 months’ (wheeze). 

3.3.1.1  The International Study of Asthma and Allergies in Children 

(ISAAC) 

The International Study of Asthma and Allergies in Children (ISAAC) was 

developed with three main aims; 

 To understand the prevalence and severity of asthma, rhinitis and eczema 

in children worldwide, allowing for comparisons between countries.  
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 To obtain baseline measures for assessment of future trends in the 

prevalence and severity of the diseases. 

 Provide a framework for future aetiological research into factors affecting 

these diseases.  

The study consisted of three separate phases, in which Phase One consisted of 

assessing the prevalence and severity of asthma and allergic diseases in specific 

populations using core questionnaires. The use of a standardised core 

questionnaire allowed for comparisons to be drawn about the epidemiology of 

asthma, among other allergic diseases, between different populations (Asher and 

Weiland, 1998). A sample of the ISAAC questionnaire discussed here can be 

found in Appendix A. The two questions featured in the ISAAC questionnaire that 

directly relate to this study were: 

 Has your child ever had asthma?     [Yes] [No] 

 Has your child had wheezing or whistling in the chest in the last 12 

months?        [Yes] [No] 

Responses to these questions are related to ‘asthma ever’ and ‘current wheezing’ 

respectively, and report the prevalence of asthma and current wheezing among 

the cohort of interest. The questionnaire is completed by the parent or guardian 

of the children, and is interested in the child’s self-reported history of asthma and 

wheezing, therefore a clinical diagnosis was not necessary. This is one reason 

ISAAC has been so widely used in epidemiological studies interested in 

respiratory health in children, as it is readily accessible and simple to incorporate.  

Based off of the above questions giving responses about ‘asthma ever’ and 

‘current wheezing’, the questions used in the Millennium Cohort Study that 

provide the outcome variables for this study are; 

 Has [^Cohort child’s name] ever had asthma?  [Yes] [No] 

 Has [^Cohort child’s name] had wheezing or whistling in the chest in the 

last 12 months?      [Yes] [No] 

A sample of the questionnaire used in the MCS is available in Appendix B. Wave 

2 was the first year that the ISAAC questionnaire was used in the MCS, and so 

responses in Wave 1 are not uniform with the subsequent waves. The MCS has 
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been frequently used to investigate asthma and wheeze in children in the UK, for 

example to measure sex discordance in asthma (Arathimos et al., 2017), to 

examine asthma in children born following infertility treatment (Carson et al., 

2013), and to explore ethnic variation in asthma and wheezing (Panico et al., 

2007). Many studies have utilised the ‘asthma ever’ and ‘current wheeze’ when 

examining the prevalence of asthma and wheeze in children (Arathimos et al., 

2017, Carson et al., 2013, Panico et al., 2007), whilst others have focussed 

specifically on wheezing (Taylor-Robinson et al., 2016, Griffiths et al., 2018, 

Quigley et al., 2018) and other allergies, such as eczema (Panico et al., 2014), 

or specifically on asthma (Kelly et al., 2019) and other allergies (Henderson and 

Quenby, 2021). Some studies, such as the one conducted by Pike et al. (2019) 

combined ‘asthma ever’ and ‘current wheeze’ to create the variable ‘current 

asthma’. From the available research, ‘asthma ever’ and ‘current wheeze’ are 

recurrently used in epidemiological studies about asthma, therefore these terms 

are a good choice for this study. 

3.3.1.2  Asthma – ‘asthma ever’ 

As discussed in Section 1.2, asthma is a chronic respiratory condition that effects 

around 6 to 8% of children in the UK (Bloom et al., 2019), with symptoms that 

include wheezing, loss of breath, coughing and chest tightness, all of which are 

indicative of a limitation of airflow in the respiratory system. Of the health 

conditions surveyed in the MCS, asthma was the condition that best represented 

the respiratory health of the cohort members. As stated, the questionnaire used 

in Wave 1 featured different questions from future waves, and the parent or 

guardian of the cohort member was originally asked; 

 We would like to know about any health problems for which [^Cohort child 

name] has been taken to the GP, Health Centre or Health Visitor, or to 

Casualty, or you have called NHS direct. 

 What ^was this problem? 

o Wheezing or asthma   [Yes] [No] 

The responses to this question covered a wide array of health conditions and 

responses to this question were recorded as a categorical variable (yes, no, 

refusal, don’t know, not applicable). Responses were recoded as a binary 
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variable to record that the child had asthma or not (1 = yes, child has had asthma, 

0 = no, child has not had asthma). However as previously mentioned there are 

difficulties surrounding the diagnosis of asthma in young children (Bush, 2007), 

and proof of clinical diagnosis was not required when answering. Thus the 

responses to this question are self-reported and open to the interpretation of the 

parent respondent.  

As discussed in Section 3.3.1.1, starting in Wave 2 questions were taken from 

the ISAAC core questionnaire for asthma, and the parent or guardian of the 

cohort member was asked; 

 Has [^Cohort child’s name] ever had asthma?  [Yes] [No] 

and again responses were recorded as a categorical variable (yes, no, refusal, 

don’t know, not applicable), which was then recoded as a categorical variable 

and then recoded into a binary variable (1 = yes, child has had asthma, 0 = no, 

child has not had asthma) during data preparation (University of London, 2021g, 

University of London, 2021h, University of London, 2021b, University of London, 

2021a). This variable was named ‘asthma’ across all waves. 

3.3.1.3 Wheeze – ‘current wheeze’ 

Given the difficulties faced when attempting to diagnose asthma in children, 

especially those aged under five years (Moral et al., 2019), and as a confirmed 

clinical diagnosis was not required, a child having experienced a wheezing 

episode in the previous 12 months was also considered to be an appropriate 

indicator of the cohort member’s respiratory health, in addition to the knowledge 

that wheezing is a symptom for asthma. Current wheeze has been used in many 

epidemiological studies that have examined asthma in children.  

The same question seen in Section 3.3.1.2 for asthma in Wave 1 was also used 

for determining wheezing prevalence as there were no other suitable responses. 

Beginning in Wave 2, when questions were taken from the ISAAC core 

questionnaire, the parent or guardian of the cohort member was asked 

specifically about wheezing. They were first asked if their child had ever had a 

wheezing episode in their life. If they responded ‘yes’, they were then asked about 

wheezing episodes within the previous 12 months; 
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 Has [^Cohort child’s name] ever had wheezing or whistling in the chest at 

any time in the past?     [Yes] [No] 

o Has [^Cohort child’s name] had wheezing or whistling in the chest 

in the last 12 months?    [Yes] [No] 

This was available as a categorical variable, and during data preparation for this 

study, was recoded into a binary variable (1 = yes, child has wheezed in the 

previous 12 months, 0 = no, child has not wheezed in the previous 12 months). 

This variable was named ‘wheeze’ across all waves. 

3.3.2  Exposure of interest - measures of air pollution 

The EMEP4UK model provided annual average surface concentrations at a 

resolution of 5 km2 for PM10, PM2.5, NO2, NO and O3 (Vieno et al., 2016). As the 

pollutants were presented as annual average concentrations, it was decided that 

a resolution of 5 km2 was sufficient as there would not be a significant variation 

in concentration as a smaller resolution. Additionally, the mean size of a LSOA is 

4 km2 (Mitchell and Popham, 2007), which further supports 5 km2 as an 

appropriate scale of data.  

The choice of pollutants was based on previous research that demonstrated 

these five pollutants have the greatest influence on respiratory health (Chen and 

Kan, 2008). Figures 3.2 – 3.6 show the annual average surface concentration of 

each pollutant for the five years in question. For the purpose of this research, 

analyses are divided into two:  

(i)  analysis that include all five pollutants – multiple exposure models; 

and  

(ii)  analysis that only use NO2 as an explanatory variable – single 

exposure models. 

Running two separate pollutant specifications was necessary as correlation 

between air pollutants is a well-established modelling issue in air pollutant and 

human health research (Koenig, 1999). Indeed, a correlation analysis using the 

MCS data at the individual level following linkage with pollution data found that 

NO2 is heavily correlated with NO and O3, and is also correlated with PM10, and 

PM2.5. PM2.5 and PM10 were heavily correlated, as was NO and O3. NO was also 
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correlated with PM10 and PM2.5. Table 3.3 presents the results from the test for 

collinearity. 

Thus, in the interest of overcoming modelling difficulties, especially 

multicollinearity, it was decided that it would be useful to focus solely on one 

pollutant for certain models. Therefore, as NO2 is indicative of ambient air 

pollution and also road traffic levels through association, NO2 only models were 

run. 

As was the case for IMD, quartiles were also created for the pollutants, ranging 

from most to least polluted areas. Again, other quartile variables were created for 

each pollutant that recorded the initial concentration that the cohort members 

were exposed to in Wave 1.   
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Table 3.3 Test for multicollinearity (continued overleaf) 

  

Asthma Wheezing 

Child is 

female 

Child is 

white British 

Child is 

obese 

Mother is 

employed 

Mother has 

asthma 

Mother 

smokes 

Asthma 1 
       

Wheezing 0.45 1 
      

Child is female -0.05 -0.05 1 
     

Child is white British 0.01 0.01 0.00 1 
    

Child is obese 0.03 0.03 0.02 -0.05 1 
   

Maternal employment -0.02 -0.02 0.00 0.22 -0.02 1 
  

Maternal asthma 0.14 0.10 0.02 0.10 0.01 -0.01 1 
 

Maternal smoking 0.05 0.04 -0.02 0.14 0.03 -0.11 0.07 1 

Lives below poverty line 0.05 0.02 0.00 -0.29 0.04 -0.48 0.02 0.18 

Lives in social housing 0.07 0.03 0.00 -0.10 0.06 -0.29 0.06 0.27 

Lives in urban area 0.03 0.03 0.00 -0.20 0.03 -0.09 0.00 0.07 

IMD Score 0.05 0.03 0.00 -0.34 0.07 -0.31 0.01 0.16 

NO2 concentration -0.02 0.01 0.00 -0.46 0.04 -0.17 -0.05 -0.03 

PM10 concentration -0.04 0.04 0.00 -0.26 0.02 -0.14 -0.02 -0.01 

PM2.5 concentration -0.04 0.04 -0.01 -0.26 0.01 -0.14 -0.02 -0.01 

NO concentration -0.02 0.01 0.00 -0.41 0.04 -0.15 -0.04 -0.04 

O3 concentration 0.01 0.00 0.00 0.41 -0.03 0.13 0.04 0.04 
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Table 3.3 Test for multicollinearity (continued) 

 

Lives below 

poverty line 

Lives in social 

housing 

Lives in urban 

area 

IMD 

score 

NO2 

conc. 

PM10 

conc. 

PM2.5 

conc. 

NO 

conc. 

O3 

conc. 

Lives below poverty line 1         
Lives in social housing 0.44 1        
Lives in urban area 0.16 0.14 1  

     
IMD Score 0.47 0.39 0.29 1  

    
NO2 concentration 0.20 0.20 0.40 0.34 1   

  
PM10 concentration 0.09 0.13 0.24 0.12 0.69 1    
PM2.5 concentration 0.08 0.11 0.22 0.10 0.69 0.95 1   
NO concentration 0.16 0.19 0.29 0.26 0.93 0.69 0.69 1  
O3 concentration -0.16 -0.17 -0.32 -0.28 -0.91 -0.48 -0.56 -0.85 1 
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Figure 3.2 Annual average surface concentration of NO2 (μg) in 2001, 2004, 2006, 2008 and 2012. 

 

Figure 3.3 Annual average surface concentration of PM10 (μg) in 2001, 2004, 2006, 2008 and 2012. 
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Figure 3.4 Annual average surface concentration of PM2.5 (μg) in 2001, 2004, 2006, 2008 and 2012. 

 

Figure 3.5 Annual average surface concentration of NO (μg) in 2001, 2004, 2006, 2008 and 2012. 
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Figure 3.6 Annual average surface concentration of O3 (μg) in 2001, 2004, 2006, 2008 and 2012.
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3.3.3 Key confounders - measures of socio-economic status 

Previous research has shown that socio-economic status is intrinsically linked 

with human health (Kontopantelis et al., 2018, Gupta et al., 2018). To address 

the hypotheses of this thesis, information on socio-economic status is required at 

both the family level, available from the MCS, and area level, available from the 

IMD. Familial (individual) socio-economic status is required to answer the first 

hypothesis; the association between respiratory health and air pollution is 

stronger amongst individuals of lower, compared to higher, socio-economic 

status, whilst both individual and area level socio-economic status are necessary 

to answer the second hypothesis; area level deprivation will interact with 

individual socio-economic status so that the impact of pollution on respiratory 

health is stronger for children with low socio-economic status living in the most 

deprived areas than children with low socio-economic status living in less 

deprived areas.  

3.3.3.1  Individual level socio-economic status – poverty 

Information regarding familial income was recorded in each wave of the MCS, 

and from this it was calculated whether or not a family was living below the 

poverty line, that is, if the family earned below 60% of the national median income 

before housing costs (Bradshaw and Holmes, 2010). This was then recorded as 

a categorical variable and was recoded into a binary variable (1 = living below the 

poverty line, 0 = living above the poverty line) during data preparation. This 

variable was named ‘poverty’ across all waves. A new variable was also created 

that recorded if the cohort member lived below the poverty line in Wave 1 to allow 

for analysis related to the initial environment the cohort member grew up in, and 

this was called ‘poverty initial’. As seen in Table 3.5, in Wave 5, around 26% of 

participants lived below the poverty line in England, and when focussing on 

London alone, this increased to 30%. 

3.3.3.2 Area level socio-economic status – IMD Score 

The IMD provides data on both the score and rank of each LSOA in England, and 

as previously discussed, this study uses the 2010 IMD score. IMD is a continuous 

variable where a higher score corresponds to an increased level of deprivation. 

The IMD score was also recoded into quartiles and these quartiles were divided 

into LSOAs with the highest levels deprivation, LSOAs with medium to high levels 
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of deprivation, LSOAs of low to medium levels of deprivation and LSOAs of the 

lowest levels deprivation. Using quartiles allows for comparisons between 

differing levels of deprivation in analysis. Furthermore, quartiles also allow for 

nonlinearities to be highlighted in the data, for example if an area of medium-high 

deprivation was associated with a higher rate of asthma, as opposed to an area 

of high deprivation. This variable was named ‘imd’ across all waves, whilst the 

quartiles were named ‘imd1’ (least deprived) through to ‘imd4’ (most deprived). 

In addition to the quartiles, further quartiles were created that recorded the IMD 

of the area the cohort member lived in during Wave 1 in order to have a record 

of what level of deprivation the cohort member experienced during their first 

years. For the multilevel modelling analysis, IMD was aggregated to the MSOA 

level and recorded as a decile, ranging from least deprived (1) to most deprived 

(10). 

3.3.4 Other potential confounders 

The covariates of interest to this study were all available in the MCS. 

3.3.4.1 Sex 

Sex is an important indicator of respiratory health in children, and features 

prominently in research, as male children are more likely to have respiratory 

health issues when compared to female children (Osman, 2003). Sex is available 

as a binary variable from the MCS (1 = female, 0 = male), and in Wave 1, around 

49% of children were female. This variable was named ‘sex’ across all waves. 

3.3.4.2 Ethnicity 

Ethnicity can be related to both respiratory health and socio-economic status, as 

well as potential air pollution exposure, and this is evidenced in the literature for 

example Fecht et al. (2015) found that neighbourhoods that are over 20% non-

White have higher mean PM10 and NO2 concentrations when compared to 

neighbourhoods with less than 20% non-White, and Netuveli et al. (2005) showed 

that individuals of ethnic minorities are at higher risk of asthma incidence when 

comparted with White groups. Originally available as a nominal variable that 

included many different ethnicities, such as White British, Indian, Pakistani and 

African, during data preparation this variable was recoded condensed into a 

binary variable for this research, with a focus on those that were White British as 



 

73 

they made up the vast majority of the cohort members and this would allow insight 

into how ethnic minorities fared (1 = White British, 0 = other). In Wave 1, 73% of 

the children were recorded as being White British. This variable was named 

‘whitebrit’ across all waves. Following review, ethnicity was instead included as a 

categorical variable. As seen in Table 3.5, in Wave 5 around 75% of the cohort 

members were white. In London specifically in Wave 5, only 40% of the cohort 

was white. This categorical variable was named ‘ethnicity’ across all waves. 

3.3.4.3 Obesity 

Rates of obesity have been linked to socio-economic status in previous research 

(Stamatakis et al., 2010), and the impact that obesity has on respiratory health 

has also been widely researched (Beuther et al., 2006, Shore and Johnston, 

2006). Obesity can also provide an insight into lifestyle determinants of health, 

for example, levels of physical activity. It was therefore important to include this 

variable to fully explore the relationship here. From Wave 2 onwards, the height 

and weight of all cohort members were recorded and BMI was calculated to 

determine the prevalence of obesity, which was defined by the International 

Obesity Task Force (IOTF) cut-offs for BMI, that were sex and age specific 

(Brophy et al., 2009). The obesity result was then used to record if the children 

were obese or not in a new binary variable (1 = obese, 0 = not obese). Whilst a 

record of obesity is unavailable for Wave 1, around 5% of children were recorded 

as being obese in Wave 2. This variable was named ‘obese’ across all waves. 

3.3.4.4 Maternal employment 

Previous research has explored the possible relationship between maternal 

employment and respiratory health in children, as well as the possible links with 

air pollution exposure, however results have been inconclusive (Morrill, 2011). 

Maternal employment was therefore included in this research to further explore 

these relationships, in an attempt to better understand the associations present. 

Available as a categorical variable that provides information on the working life of 

the cohort member’s mother, a new variable for maternal employment was 

created as a binary variable during the data preparation phase, which grouped 

both full-time and part-time work together, irrespective of hours worked in a week 

(1 = mother is in employment, 0 = mother is not in employment). In Wave 1, 44% 
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of mothers were employed. This variable was named ‘motheremployed’ across 

all waves. 

3.3.4.5 Maternal asthma 

Maternal asthma has been shown to be related to increased asthma rates in 

children in previous literature (Lebold et al., 2020, Lim and Kobzik, 2009), and so 

is a valuable piece of information when further exploring the relationships at play 

in this study. Maternal asthma was recorded as a categorical variable and was 

recoded into a binary variable during the data preparation stage (1 = mother has 

asthma, 0 = mother does not have asthma). In Wave 1, roughly 16% of children 

had a mother that had asthma. This variable was named ‘motherasthma’ across 

all waves. 

3.3.4.6 Maternal smoking 

The relationship between exposure to tobacco smoke and its impacts on 

respiratory health has been studied extensively (Gonzalez-Barcala et al., 2013), 

as is the relationship between smoking habits and socio-economic status 

(Hiscock et al., 2012). Therefore, as this variable would indicate that a child is 

potentially exposed to second-hand tobacco smoke, it is important that it is 

included. Recorded as a categorical variable that detailed the types of tobacco 

products smoked, a new binary variable was created during the data preparation 

stage for maternal smoking based on whether or not they currently smoked (1 = 

mother smokes, 0 = mother does not smoke), and in Wave 1, around 27% of 

children had a mother that was currently a smoker. This variable was named 

‘mothersmokes’ across all waves. 

3.3.4.7 Housing tenure 

Housing tenure, specifically families living in social housing, was of interest to this 

research because this type of housing may be indicative of lower socio-economic 

status. Furthermore, previous research has examined how living in social housing 

can impact on a child’s respiratory health as well as how it can influence their 

exposure to air pollution (Pevalin et al., 2008). These relationships are complex 

and required further examination. Housing tenure was available as a categorical 

variable, encompassing many different types of housing tenures, such as owning 

own home, owning home with mortgage, living with parents, etc. A binary variable 
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was created during the data preparations stage that grouped the respondents 

who rented from a local authority or rented from a housing association together, 

as they lived in social housing (1 = lives in social housing, 0 = does not live in 

social housing). In Wave 1, around 27% of children lived in social housing. This 

variable was named ‘socialhousing’ across all waves. 

3.3.4.8 Urban residency 

Living in an urban area indicates an increased exposure to air pollution (Hulin et 

al., 2010), and so this was an important variable to include in the analysis. The 

relationship between child respiratory health and living in an urban or rural area 

is also worth considering. A categorical variable was available that recorded the 

living environment of the cohort members based on the ONS rural/urban 

classification. This variable contained details such as if the cohort member lived 

in a sparse or less sparse urban area, or a village or isolated dwelling, for 

example. During the data preparation stage, this was recoded as a binary variable 

to record those that either lived in an urban area or not (1 = lives in urban area, 0 

= lives in rural area), and in Wave 1, around 89% of children lived in an urban 

area. This variable was named ‘urban’ across all waves. 

Table 3.4 presents a summary table of the variables included in this research, 

and Table 3.5 presents the descriptive statistics of the cohort per wave.  
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Table 3.4 Summary table of variables included in this research 

Variable Variable description Source Level 

Asthma Child has ever had asthma MCS Individual 

Wheeze  Child has wheezed in the last 12 

months 

MCS Individual 

Sex Is the child female MCS Individual 

Ethnicity Is the child white British MCS Individual 

Obesity Is the child obese MCS Individual 

Maternal 

employment 

Is the child’s mother employed MCS Individual 

Maternal asthma Does child’s mother have 

asthma 

MCS Individual 

Maternal smoking  Is the child’s mother a smoker MCS Individual 

Social housing Does the child live in social 

housing 

MCS Individual 

Urban  Does the child live in an urban 

area 

MCS Individual 

Poverty Does the child live below the 

poverty line  

MCS Individual 

IMD  Index of Multiple Deprivation 

score 

IMD 2010 Area 

PM10 Average annual PM10 conc. EMEP4UK Area 

PM2.5 Average annual NO2 conc. EMEP4UK Area 

NO2 Average annual PM2.5 conc. EMEP4UK Area 

NO Average annual NO conc. EMEP4UK Area 

O3 Average annual O3 conc. EMEP4UK Area 
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Table 3.5 Summary statistics of the cohort make-up per wave 

  All England (%) Excluding London (%) London only (%) 

  1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

Asthma 7 12 15 16 17 7 12 15 16 17 7 10 13 14 15 

Wheeze 7 19 16 12 11 7 20 16 12 11 7 15 15 11 9 

Child is female 49 49 49 50 50 49 49 49 50 50 49 49 48 49 49 

Ethnicity                     
White 73 76 77 77 75 81 83 83 84 82 45 46 44 43 40 

Mixed 4 4 4 4 4 3 3 3 3 3 8 8 8 8 8 

Indian 4 4 4 4 4 3 3 2 2 3 9 10 10 11 10 

Pakistani & Bangladeshi 11 10 9 9 10 11 10 9 9 10 10 10 9 10 12 

Black 6 5 5 5 5 2 1 2 2 2 21 20 22 21 23 

Other 2 2 2 2 2 1 1 1 1 1 7 7 6 7 7 

Child is obese N/A 5 6 6 6 N/A 5 5 5 6 N/A 7 8 9 8 

Mother is employed 44 49 55 61 66 45 50 56 63 67 42 44 49 55 60 

Mother has asthma 16 16 16 16 16 17 17 17 17 17 12 12 13 12 12 

Mother smokes 27 26 26 24 21 29 28 27 25 22 20 18 18 17 14 

Lives in urban area 89 86 85 84 84 86 83 82 81 81 100 100 100 100 100 

Lives below the poverty line 37 32 34 29 26 37 32 33 29 25 38 34 37 33 30 
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3.4 Data Linkage 

Data linkage was a key step in compiling the necessary data to address the 

hypotheses stated above. Indeed, data linkage is well established in 

environmental and human health literature, especially those including longitudinal 

and epidemiological studies (Christen and Churches, 2006). This section outlines 

the steps required to carry out the analyses presented in Chapters 4, 5 and 6. 

3.4.1 Data preparation 

Air pollution data was made available as NetCDF (Network Common Data 

Format) (.nc) datasets by colleagues working on EMEP4UK (Vieno et al., 2014), 

which is a widely used file format in atmospheric research (Michna and Woods, 

2013) and is generally used for weather and climate models. A NetCDF dataset 

contains dimensions (latitude and longitude information), variables (air pollution 

concentrations) and attributes (used to store metadata) (Michna and Woods, 

2013). Each year was available as a separate NetCDF dataset, however file 

conversion was necessary to get the data in a readable format for use in Stata. 

In ArcMap, using Multidimension Tools, a netCDF file can be opened as a raster 

layer. To do so, the variable of interest must be specified, which in this case would 

be one of the pollutants for that particular year, as well as specifying the X and Y 

dimensions, which are longitude and latitude respectively. This step is repeated 

for each pollutant in a particular year, resulting in five raster layers for each year, 

and 25 raster layers in total.  

The next step involved opening a shapefile (.shp) of the LSOA boundaries in 

England. As the shapefile was using a different geographic coordinate system 

than the one used by the raster layers, it was necessary to convert the coordinate 

system of the shapefile. This ensures that all layers are correctly aligned, 

otherwise data could be hundreds of metres out of position. Following this, using 

the Conversion Toolbox the raster dataset is converted to polygon features. The 

input raster is vectorised during this conversion, and a non-simplified output is 

requested to ensure no data is lost through the polygon being smoothed into a 

simpler shape. As the newly created polygon and the original LSOA shapefile are 

both spatial datasets, it is then possible to join both datasets together through a 

spatial join. If more than one air pollution value was recorded for an LSOA, the 

mean concentration of all the values was calculated. The majority of LSOAs (over 
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50%) had only one value for air pollution concentration. The air pollution data for 

each year were joined with one LSOA shapefile, to create five merged datasets, 

one for each Wave. The newly merged dataset, containing variables for the LSOA 

code and its associated annual average concentration of NO2, PM10, PM2.5, NO, 

and O3, can then be exported from ArcMap in .csv format to Microsoft Excel. From 

here, the dataset can be exported in DTA (.dta) format for use in Stata. The DTA 

files were then sent to the UK Data Service to be uploaded to the Secure Lab for 

further use, along with the IMD 2010 dataset. 

3.4.2  Secure Lab 

In the Secure Lab, Stata (StataCorp, 2017) was used for data cleaning and to 

prepare the separate data files for linkage to create one overall data set.  

Each wave had different files available for linkage, and each file contained 

different necessary variables. These files were; 

 Longitudinal family file: This file forms the basis of the final dataset and 

contains the MCSID, an anonymised identifier for each family that appears 

in every file, allowing for linkage. This file also contains weights which are 

required for statistical analysis.  

 Parent interview file: This file contains important information at each wave 

as the parent of the cohort member is questioned about any developments 

in the cohort members’ lives. This file contains information on respiratory 

health, sex, maternal health and maternal smoking habits. 

 Child measurement file: This file contains height and weight data for the 

cohort members, providing the necessary data to calculate the BMI. 

 Derived family file: This file contains information about housing tenure, 

maternal employment and data about the socio-economic status of the 

family. 

 Geographically linked file: This file contains information about the family 

location in terms of urban/rural. 

 Secure geographical family file: This file contains the LSOA codes that the 

cohort members live in, allowing for spatial analysis. 

Unnecessary variables were dropped to make the final data set a more 

manageable size. Next, as this study was focussing on children living in England, 

data for cohort members living in Northern Ireland, Scotland and Wales were also 
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dropped. Families with twins and triplets were dropped, keeping only singleton 

children. Finally, families where the mother of the cohort member was not the 

primary respondent were also dropped. Focussing on singleton children and 

families where the mother is the main respondent is commonly seen in research 

involving the Millennium Cohort Study (Russell et al., 2014, Heikkilä et al., 2011, 

Hindmarsh et al., 2017), and doing so avoids non-independence of siblings 

(Fitzsimons and Pongiglione, 2017). Additionally, this also ensures a consistent 

relationship between the survey respondent and cohort member.  

Binary variables were then created using the data provided, as mentioned in 

section 3, whilst some new variables were also created, such as the obese 

variable using the newly calculated BMI, again mentioned in Section 3. Further 

to this, a wave variable was created to distinguish the separate waves once 

linkage had occurred. All variables were given uniform names to allow for linkage. 

These steps were repeated throughout all files over all five waves to achieve 

uniformity over each file. This would then enable all variables to successfully link 

together when creating the final dataset. 

As stated, the longitudinal family file formed the base of the final dataset, and this 

file was combined with the parent interview file using the unique MCSID 

identifiers. This was in turn merged with the child measurement file, the family 

derived data file, the geographically linked file and the secure geographical data 

file, again using the unique family identifier MCSID. The secure geographical data 

file contained the 2001 LSOA code that the cohort member lived in, and this was 

required for merging the Millennium Cohort Study dataset with the air pollution 

data file and the IMD file which were previously uploaded. As a result, a dataset 

was created that contained all necessary variables for each wave. This process 

was then repeated for all subsequent waves, creating five separate datasets that 

were ultimately appended together to form the panel dataset. This was the data 

set that was then used for all analyses in this thesis. An illustration of the linkage 

is shown in Figure 3.7. 
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Figure 3.7  The linkage of all separate data sets, creating one complete data 

set used for analyses. 
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3.5 Statistical analysis 

As the objective of this research was to understand the interlinkage between 

household poverty, area level deprivation and air pollution on asthma and wheeze 

over time, this thesis uses a longitudinal research design. However, as a first 

step, cross-sectional analysis is carried out, looking at each wave individually, 

before building on this through time-series analysis. Finally, multilevel modelling 

is used to fully examine the data across both time and space.  

3.5.1  Cross-sectional analysis 

Cross-sectional analysis is a type of observational analysis, in which the 

investigator measures the outcome and exposures in the study participants at the 

same time (Setia, 2016). Cross-sectional analysis is a common analytical method 

in epidemiological studies as it is relatively easy to run, as well as being 

inexpensive and faster than other methods of statistical analysis. It provides a 

snapshot of the data at a specific moment in time, allowing for initial conclusions 

to be drawn from the data, and so is a useful way to check research hypotheses. 

Cross-sectional analysis can therefore help form the basis for future analysis in 

a study.  

The cross-sectional logistic binary regressions for each wave were carried out in 

Stata. The logistic models were fit using the logistic command. The logistic 

command fits a maximum-likelihood logistic regression model of the dependent 

variable on the independent variables, where the dependent variable, in this case 

either asthma or wheezing, is a binary variable. The logistic regression model can 

be written as; 

log Pr(𝑦𝑖 = 1|𝑥𝑖) = 𝛽0 + 𝛽1𝑥1𝑖 + ⋯ + 𝛽𝑛𝑥𝑛𝑖 

Where 𝑦 is the binary response variable, and 𝑖 is the individual. The predictor 

variables (sex, obesity, etc.) are represented by 𝑥. The intercept term is depicted 

by 𝛽0 and represents the log odds when the predictor variables are 0. The 

coefficient 𝛽𝑛 of a predictor variable (𝑥𝑛) is the predicted change in the log of the 

estimated odds corresponding to a one unit change. For the purpose of this 

thesis, model depending, 𝑦𝑖 = 1 represents each child within each wave has had 

asthma or a recent wheezing episode. 
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Estimates are presented in terms of odds ratios. In total, 20 cross-sectional 

logistic regressions were carried out; one for each wave focussing on asthma, 

including all air pollutants; one for each wave focussing on asthma, including NO2 

as the only air pollutant; one for each wave focussing on wheezing, including all 

air pollutants; one for each wave focussing on wheezing, including NO2 as the 

only air pollutant. 

However, cross-sectional analysis is not without its limitations. In terms of 

statistical analysis methods it is a relatively simple analytical technique, but it 

does not take into consideration the temporal aspect of the data, as the analysis 

looks only at one moment in time. Therefore, important relationships or 

interactions can be missed. Hence, to build upon the findings from cross-sectional 

analyses, longitudinal analyses were conducted. This is useful as it facilitates 

understanding of the temporal relationship between exposure and outcome, 

which cross-sectional analysis cannot do. In addition, causal inference is stronger 

when we can be clear that the exposure preceded the outcome in time. Thus, the 

next step in this statistical analysis was to include the temporal element, which is 

done through time-series analysis. 

3.5.2  Time-series analysis  

As the objective of this research was to understand the interlinkage between 

household poverty, area level deprivation and air pollution on asthma and wheeze 

over time, a population-averaged logit model using generalised estimating 

equations (GEE) was selected as the most appropriate way to analyse the data. 

A population-averaged logit model using GEE approach was chosen due to time-

invariant predictors and a strong likelihood of autocorrelated residuals over time 

(Hubbard et al., 2010). A population-averaged approach is focused on modelling 

the mean response across the population of units at each time point as a function 

of time.  

The population-averaged logistic model can be written as; 

log Pr(𝑦𝑖𝑡 = 1|𝑥𝑖𝑡) = 𝛽0
𝑃𝐴 + 𝛽1

𝑃𝐴𝑥𝑖𝑡 + ⋯ 𝛽𝑛
𝑃𝐴𝑥𝑛𝑖𝑡 

where logit p = log (p/1-p) is the usual logit ‘link’ function for any probability 

between 0 and 1 (Szmaragd et al., 2013). Similar to the logistic regression model 

presented in Section 3.5.1, 𝑦 is the binary response variable, 𝑖 represents the 
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individual, and 𝑡 represents time, which in this case is the wave. Therefore 𝑦𝑖𝑡 =

1 represents a child that has had asthma or a recent wheezing episode at that 

point in time. The predictor variables (sex, obesity, etc.) are represented by 𝑥. 

Here, 𝑃𝐴 signifies that this is a population-averaged model, and the intercept term 

is depicted by 𝛽0
𝑃𝐴, representing the log odds when the predictor variables are 0. 

The coefficient 𝛽𝑛
𝑃𝐴 of a predictor variable (𝑥𝑛) is the predicted change in the log 

of the estimated odds corresponding to a one unit change. 

Models were run in Stata using the xtlogit command, specifying the option pa to 

signify population-averaged model. Prior to running the model, a panel variable 

(LSOA) and time variable (wave) was specified using xtset. The command xtlogit 

fits a population-averaged logit model using GEE and produces the estimates as 

odds ratios. GEE is a two-stage method, in which a ‘working correlation matrix’ is 

first estimated (Szmaragd et al., 2013) before this is used to adjust the estimates 

of the logistic model parameters and standard errors for autocorrelation. For 

population-averaged logistic models, the quasi-likelihood information criterion is 

used to choose between the matrices. 

For this analysis, the quartiles of IMD score and air pollution exposure were used. 

The inclusion of the different categorisations for these variables (highest levels of 

deprivation/pollution, mid-high levels of deprivation/pollution, mid-low levels of 

deprivation/pollution, and lowest levels of deprivation/pollution) would highlight 

any nonlinearities in the data. Time-series analysis was also used to explore the 

influence that a child’s early environment and initial exposures had on their 

respiratory health over time. This was achieved by running the models using the 

initial variables, recorded in Wave 1, for poverty, IMD and air pollution, which 

were previously discussed, and comparing the estimates with the outputs from 

running the outputs with the regular time-varying data. This would allow 

comparisons to be made about how being exposed to certain characteristics in 

early life influence respiratory health versus being exposed to changing 

characteristics over a period of time. 

In total, 44 logistic regressions were carried out and presented in 28 tables, 22 

models (14 tables) focussing on asthma prevalence and 22 models (14 tables) 

focussing on rates of wheezing. The following logistic models were run four times 

to explore the association between respiratory health (asthma and wheezing) and 

different variables, examining both the impact of exposures to socio-economic 
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status and air pollution over time (time-varying exposures) and in Wave 1 (initial 

exposures);  

i. Model 1 explored the association of asthma with family level socio-

economic status at Wave 1, using the poverty variable. 

ii. Model 2 explored the association of asthma with area level 

deprivation at Wave 1, as measured by IMD score.  

iii. Model 3 explored the association of asthma with exposure to NO2 

at Wave 1 (Models 1 to 3 were presented in one table). 

iv. Model 4 explored the association of asthma with poverty, IMD and 

NO2 exposure at Wave 1. 

v. Model 5 built on Model 4 by including all individual covariates, as 

outlined in section 3.4. 

vi. Model 6 added to Model 5 with the inclusion of an interaction term 

that examined the relationship between poverty, IMD score and 

NO2 exposure at Wave 1. 

vii. Models 7 to 11 are similar to Models 1 to 5, except this time the 

models were run including exposure to all air pollutants at Wave 1, 

NO2, PM10, PM2.5, NO and O3, as opposed to only NO2.  

viii. Models 1 to 11 we rerun, this time using time-varying exposures to 

poverty, IMD and NO2 exposure. 

ix. All models would then be repeated to explore the impact on 

wheezing in the previous 12 months. 

 Whilst this time-series analysis provides a valuable insight into the relationship 

between these different variables and respiratory health over time, as well as 

allowing comparisons to be drawn between initial (Wave 1) and time-varying 

exposures (such as household income and different pollutants), it does not fully 

explain the relationship between the different variables. Specifically, it does not 

explain how much of the variation in respiratory health is due to variables at the 

individual level, or the LSOA level, or indeed the variation due to the temporal 

aspect of the data. Therefore, the final statistical analysis method to be examined 

as part of this thesis is multilevel modelling. 
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3.5.3  Multilevel modelling 

Multilevel models (MLM) are similar to standard regression models in that they 

aim to model the relationship between a response variable and a set of 

explanatory variables, however MLM account for the nested structure of 

observations at different levels. For example, if a study was interested in 

examination scores of pupils in a school, the levels could be individual pupils 

(level 1), within classes (level 2), within schools (level 3). Level 1 observations 

within the same level 2 unit tend to be more similar to each other than level 1 

observations in different level 2 units. In terms of the study presented in this 

thesis, this would mean that children living in the same MSOA would be more 

similar compared to each other than children in other MSOAs. One explanation 

for this would be that individuals end up in the same area through some 

mechanism that could be related to their specific characteristics, for example, 

families with limited income would be more likely to live in deprived areas. Indeed, 

this resonates with Tobler’s First Law of Geography, “everything is related to 

everything else, but near things are more related than distant things” (Tobler, 

1970). 

In terms of longitudinal data, as each individual is observed over time, it is 

possible to observe individual change that is due to either the passing of time or 

differences in the explanatory variables. In this study, the observations over time, 

or repeated measures, (level 1) are nested within individuals (level 2), who 

themselves are nested within MSOAs (level 3). This nested structure is illustrated 

in the classification diagram, Figure 8, showing the data hierarchy. Here, the 

arrows between nodes signify a nested relationship. One key advantage of MLM 

is that it allows you to partition variance, thus showing how much of the variance 

in asthma or wheezing occurs between individuals and LSOAs respectively. 
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Figure 3.8  Classification diagram for the three-level model 

Using the runmlwin command in Stata, the models are run through MLwiN, with 

the outputs produced in tables in Stata. MLwiN is a specialised software package 

used for fitting multilevel models, and can estimate multilevel models for 

continuous, binary, count, ordinal and nominal responses (Leckie and Charlton, 

2013). The software provides fast estimation by both iterative generalised least 

squares (IGLS), resulting in maximum likelihood estimates, and by Bayesian 

estimation using Markov chain Monte Carlo (MCMC) methods. The command 

runmlwin allows users to fit models by both IGLS and MCMC algorithms and 

allows control over all aspects of the model specifications and estimations (Leckie 

and Charlton, 2013). 

As asthma and wheezing are binary variables, a binary response model was most 

appropriate. The first step involved the estimation of discrete response multilevel 

models. MLwiN has two approximation methods; quasi-likelihood and Markov 

chain Monte Carlo (MCMC) methods. Quasi-likelihood methods approximates 

discrete response multilevel models as continuous response multilevel models 

so standard IGLS algorithm can be applied and there are four quasi-likelihood 

methods; first and second order marginal quasi-likelihood (MQL1, MQL2) and; 

first and second order penalised quasi-likelihood (PQL1, PQL2). PQL2 is the 

most accurate but the least stable and is the slowest to converge, whilst MQL1 is 

least accurate but the most stable and quickest to converge. These methods are 

known to be biased and are only used for model exploration, with final models 

fitted by MCMC (Leckie and Charlton, 2013). 

This is therefore the method that was followed during data analysis. To begin 

with, an asthma model was fit using runmlwin, fitting the model by MQL2, before 
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refitting the model by MCMC. This produces a fixed part parameters and a 

random parts parameters table. The following models for asthma were estimated: 

 Model 1: Null model with no explanatory variables included 

 Model 2: Individual level variables included 

 Model 3: Individual and area level variables included (NO2 only) 

 Model 4: Individual and area level variables included (all air pollutants) 

 Model 5: Individual and area level variables & an interaction term for 

poverty*IMD*NO2 

These models were then repeated for wheezing, giving a total of ten models.  

The fixed parts parameters table presents the odds ratios, as well as one-tailed 

p-values based on the posterior distribution. The 95% Bayesian credible intervals 

are also presented (the 2.5th and 97.5th quantiles of the posterior distribution). 

The random parts parameters table presents variance between individuals or 

LSOAs through the mean.  

The 95% Bayesian credible intervals are also presented as are the intra-class 

correlation coefficient (ICC) and variance partition coefficient (VPC) results. 

Included in this table are the odds and probability of a child having asthma or 

wheezing, as well as the deviance information criterion (DIC) which is useful for 

comparing multilevel models, as the model with the lowest DIC tends to be the 

most informative model. For binary models, there is no single ICC or VPC value 

as the level 1 variance is a function of the mean. However, the model can be 

formulated in terms of a continuous latent response variable which underlies the 

observed binary response (Leckie and Charlton, 2013). As a result, this gives a 

result (the ICC) that can be interpreted as the propensity of the cohort members 

to have asthma or wheezing, or which can be further interpreted as a VPC that 

describes the variation in this propensity that lies between the levels. 

The three-level model can be written as  

𝑦𝑡𝑖𝑗  ~ 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑡𝑖𝑗 , 𝜋𝑡𝑖𝑗) 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑡𝑖𝑗) =  𝛽0𝑖𝑗𝑥0 

𝛽0𝑖𝑗 =  𝛽0 +  𝑣0𝑗 +  𝑢0𝑖𝑗 
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where 𝑦𝑡𝑖𝑗 is the binary response, 𝑡 represents time, 𝑖 represents the child 

(individual level) and 𝑗 represents the LSOA (area level) (Rasbash et al., 2013, 

Browne, 2015). The parameter 𝑛𝑡𝑖𝑗 is known as the denominator, and when 

dealing with binary data, is equal to 1 for all units. The mean parameter is 

represented with 𝜋𝑡𝑖𝑗. The constant is represented by 𝑥0. 𝛽0 represents the fixed 

parameters, with the subscript matching the subscript of corresponding 

explanatory variables, 𝑣0𝑗 is the effect of the LSOA 𝑗 and 𝑢0𝑖𝑗 is the effect of child 

𝑖 within LSOA 𝑗.  

3.6 Conclusion 

In conclusion, this chapter has presented an overview of the data, the MCS, 

EMEP4UK and IMD and methods, cross-sectional, time series and multilevel 

modelling, used in the remainder of this thesis. The breadth of data made 

available for this research is a key strength going forward. Longitudinal data 

enables extensive analysis over time, which will highlight key relationships found 

in the data that would be lost in analysis that does not consider the influence of 

time. Indeed, the linkage used in this research also facilitates extensive analysis, 

bringing together two different records of socio-economic status, allowing the 

impacts of individual and area level socio-economic status to be examined.  

Furthermore, the inclusion of air pollution data at the LSOA level further enhances 

this research. Section 5 outlined the methods chosen to analyse the data with the 

aim of testing each of the hypotheses. The methods chosen are another strength 

of this research. The cross-sectional analysis allows for the data to be examined 

wave by wave, to help understand the relationship between respiratory health, 

socio-economic status and air pollution at various points in the child’s life. Time 

series analysis builds on this through the inclusion of time, and further improves 

the results by examining how respiratory health can be impacted by early life 

exposures when compared to lifetime exposures. Finally, multilevel modelling, 

including both temporal and spatial characteristics of the data, is the most robust 

analytical method used, and with the inclusion of interaction terms, this 

methodological approach aims to fully explore the associations present in the 

data and answer the hypotheses of this thesis. The next chapter will present the 

results from the cross-sectional analyses outlined above.  
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Chapter 4. Cross-sectional Analysis 

 

4.1  Introduction 

This chapter presents the results of the cross-sectional analysis. This analysis 

aims to answer the hypotheses that the association between respiratory health 

and air pollution is stronger amongst children of lower, compared to higher socio-

economic status, as well as that area level deprivation will interact with individual 

socio-economic status so that the impact of air pollution on respiratory health is 

stronger for children with low socio-economic status living in the most deprived 

areas than children with low socio-economic status living in less deprived areas. 

Variables detailing if a child has had asthma or if the child has wheezed in the 

previous 12 months are used as a proxy for respiratory health. It is important to 

note that both the asthma and wheezing variables are parent reported response 

variables, as opposed to asking if the child had been diagnosed with a respiratory 

health issue by a doctor. For example, the survey question for asthma was “has 

[name] ever had asthma?”, and the question for wheezing was “has [name] had 

wheezing or whistling in the chest in the last 12 months?” 

This chapter begins by focussing on the impact of asthma, first examining the 

results from cross-sectional analyses that included all pollutant exposures, before 

moving on to examine the results from analyses that included NO2 as the specific 

pollutant of interest. Then interaction terms are included in the analyses to further 

examine the association between respiratory health, socio-economic status and 

air pollution exposure. These models are then rerun using wheezing as the 

outcome variable. 

4.2  Cross-sectional analysis focussing on asthma 

4.2.1 All pollutants 

To examine the impact of air pollution on asthma, preliminary analysis of the data 

included NO2, PM10, PM2.5, NO and O3. Table 4.2.1 presents the results of five 

logistic regression models, each model examining a wave of the MCS, thus 

showing the impact on asthma when the cohort members were aged 9 months in 
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Wave 1, 3 years old in Wave 2, 5 years old in Wave 3, 7 years old in Wave 4 and 

11 years old in Wave 5. 

Table 4.2.1 shows that in Wave 1, when cohort members were 9 months old, a 

female child (OR 0.66, CI 0.56 – 0.78) or a child that lives in an area with a higher 

concentration of PM10 (OR 0.32, CI 0.10 – 0.98) is less likely to have ever had 

asthma as reported by the parent, whilst a child that lives in a more deprived area 

(OR 1.42, CI 1.10 – 1.84) is statistically significantly more likely to have had 

asthma. Similarly, if a child has a mother that has asthma (OR 1.69, CI 1.39 – 

2.05) or smokes (OR 1.38, CI 1.14 – 1.68), they are statistically significantly more 

likely to have had asthma also. 

From the data for Wave 2, when the cohort members were 3 years old, a female 

child (OR 0.68, CI 0.59 – 0.79) is statistically significantly less likely to have had 

asthma. If a child has a mother that has asthma (OR 2.40, CI 2.04 – 2.83), 

smokes (OR 1.17, CI 0.99 – 1.39), lives in social housing (OR 1.59, CI 1.30- 1.94) 

or lives in a more deprived area (OR 1.42, CI 1.10 – 1.83), they are statistically 

significantly more likely to have had asthma. 

When the children were 5 years old in Wave 3, the results show that a female 

child (OR 0.65, CI 0.57 – 0.75) is statistically significantly less likely to have had 

asthma. A child that has a mother who suffers from asthma (OR 2.22, CI 1.91 – 

2.59), lives below the poverty line (OR 1.26, CI 1.05 – 1.51), lives in social 

housing (OR 1.24, CI 1.04 – 1.49) or lives in a more deprived area (OR 1.67, CI 

1.33 – 2.11) is statistically significantly more likely to have had asthma. 

Looking at Wave 4 when the children were 7 years old, a female child (OR 0.67, 

CI 0.58 – 0.77) is statistically significantly less likely to have had asthma. A child 

that is obese (OR 1.55, CI 1.20 – 2.02), has a mother that has asthma (OR 2.36, 

CI 2.02 – 2.76), lives in social housing (OR 1.34, CI 1.11 – 1.62), lives in an urban 

area (OR 1.33, CI 1.07 – 1.64) or lives in a more deprived area (OR 1.43, CI 1.17 

– 1.76) is statistically significantly more likely to have had asthma. 

The results from Wave 5, when the children were aged 11 years, show that a 

female child (OR 0.80, CI 0.70 – 0.92) is statistically significantly less likely to 

have ever has asthma. A child that is obese (OR 1.39, CI 1.06 – 1.81), has a 

mother that has asthma (OR 2.18, CI 1.86 – 2.56), or lives in social housing (OR 

1.24, CI 1.02 – 1.51) is statistically significantly more likely to have had asthma.  
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Table 4.2.1 Results from cross-sectional analysis focussing on asthma including all pollutants 

 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 

Asthma OR  95% CI OR  95% CI OR  95% CI OR  95% CI OR  95% CI 

Child is female 0.66 *** 0.56 - 0.78 0.68 *** 0.59 - 0.79 0.65 *** 0.57 - 0.75 0.67 *** 0.58 - 0.77 0.80 ** 0.70 - 0.92 

Child is White British 0.98  0.77 - 1.24 1.07  0.86 - 1.33 1.03  0.84 - 1.26 0.91  0.74 - 1.12 0.96  0.78 - 1.18 

Child is obese N/A   1.15  0.84 - 1.57 1.21  0.92 - 1.58 1.55 ** 1.20 - 2.02 1.39 * 1.06 - 1.81 

Mother is employed 1.10  0.91 - 1.34 1.06  0.91 - 1.25 1.03  0.88 - 1.2 1.10  0.93 - 1.29 1.02  0.86 - 1.21 

Mother has asthma 1.69 *** 1.39 - 2.05 2.40 *** 2.04 - 2.83 2.22 *** 1.91 - 2.59 2.36 *** 2.02 - 2.76 2.18 *** 1.86 - 2.56 

Mother smokes 1.38 ** 1.14 - 1.68 1.17 * 0.99 - 1.39 1.05  0.90 - 1.23 1.04  0.88 - 1.23 1.11  0.93 - 1.32 

Lives below poverty line 1.09  0.87 - 1.37 1.06  0.87 - 1.28 1.26 * 1.05 - 1.51 1.11  0.92 - 1.34 1.02  0.82 - 1.27 

Lives in social housing 1.19  0.96 - 1.47 1.59 *** 1.30 - 1.94 1.24 * 1.04 - 1.49 1.34 ** 1.11 - 1.62 1.24 * 1.02 - 1.51 

Lives in urban area 1.18  0.87 - 1.61 1.27  0.97 - 1.65 1.20  0.95 - 1.50 1.33 * 1.07 - 1.64 1.08  0.88 - 1.32 

IMD (level of deprivation)                
low REF   REF   REF   REF   REF   
mid-low 0.98  0.75 - 1.27 1.21  0.97 - 1.51 1.41 ** 1.16 - 1.72 1.30 ** 1.08 - 1.57 1.19  0.99 - 1.42 

mid-high 1.42 ** 1.10 - 1.84 1.28 * 1.02 - 1.62 1.47 *** 1.20 - 1.81 1.43 *** 1.17 - 1.76 1.18  0.95 - 1.45 

high 1.17  0.87 - 1.58 1.42 ** 1.10 - 1.83 1.67 *** 1.33 - 2.11 1.26  1.00 - 1.60 1.08  0.85 - 1.37 

NO2 (level of pollution)                
low REF   REF   REF   REF   REF   
mid-low 0.78  0.48 - 1.25 0.99  0.73 - 1.33 0.89  0.67 - 1.19 0.83  0.63 - 1.08 1.02  0.79 - 1.31 

mid-high 0.68  0.36 - 1.29 1.02  0.64 - 1.65 0.90  0.61 - 1.34 0.61  0.37 - 1.00 0.99  0.61 - 1.62 

high 1.46  0.59 - 3.65 1.02  0.53 - 1.96 0.85  0.43 - 1.68 0.56  0.22 - 1.44 1.00  0.43 - 2.34 

PM10 (level of pollution)                
low REF   REF   REF   REF   REF   
mid-low 0.32 * 0.11 - 0.91 1.10  0.85 - 1.41 1.13  0.86 - 1.49 1.18  0.93 - 1.50 N/A   
mid-high 0.29 * 0.10 - 0.87 1.02  0.70 - 1.48 1.18  0.83 - 1.68 0.74  0.44 - 1.23 0.73  0.49 - 1.08 

high 0.32 * 0.10 - 0.98 0.95  0.53 - 1.69 0.77  0.44 - 1.33 0.68  0.25 - 1.88 N/A   
PM2.5 (level of pollution)                
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low REF   REF   REF   REF   REF   
mid-low 0.86  0.50 - 1.47 0.74  0.53 - 1.03 0.87  0.63 - 1.21 1.03  0.83 - 1.29 N/A   
mid-high 2.63  0.86 - 8.07 0.77  0.51 - 1.17 0.97  0.66 - 1.41 1.04  0.58 - 1.86 0.99  0.78 - 1.25 

high 2.22  0.70 - 7.02 0.71  0.37 - 1.36 0.88  0.46 - 1.68 N/A   1.08  0.59 - 1.98 

NO (level of pollution)                
low REF   REF   REF   REF   REF   
mid-low 1.21  0.75 - 1.95 0.99  0.72 - 1.35 0.92  0.69 - 1.23 1.02  0.78 - 1.32 1.07  0.80 - 1.43 

mid-high 1.35  0.75 - 2.42 0.95  0.59 - 1.53 0.77  0.52 - 1.13 1.29  0.80 - 2.08 1.27  0.80 - 2.02 

high 0.81  0.34 - 1.95 0.92  0.48 - 1.74 1.07  0.59 - 1.97 1.37  0.68 - 2.75 1.42  0.67 - 3.02 

O3 (level of pollution)                
low REF   REF   REF   REF   REF   
mid-low 1.20  0.87 - 1.65 0.99  0.74 - 1.31 1.18  0.79 - 1.75 1.04  0.51 - 2.14 0.92  0.64 - 1.32 

mid-high 1.33  0.83 - 2.15 0.81  0.54 - 1.21 0.96  0.62 - 1.49 0.76  0.35 - 1.65 1.12  0.72 - 1.74 

high 0.63  0.31 - 1.29 0.79  0.47 - 1.34 0.91  0.55 - 1.50 0.81  0.36 - 1.82 1.38  0.85 - 2.26 
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4.2.2 NO2 only 

Due to the presence of multicollinearity between the different air pollutants, as 

discussed in Chapter 3 (see Table 3.3), the analysis was rerun using NO2 as the 

only pollutant of interest. Again, five logistic regressions were carried out and the 

results of this analysis is presented in Table 4.2.2. 

Beginning with Wave 1, a female child (OR 0.66, CI 0.56 – 0.78) is statistically 

significantly less likely to have ever had asthma. If a child has a mother that has 

asthma (OR 1.69, CI 1.39 – 2.05) or smokes (OR 1.38, CI 1.14 – 1.67), or lives 

in a more deprived area (OR 1.43, CI 1.10 – 1.84), they are statistically 

significantly more likely to have had asthma. A child living in an area with high 

levels of NO2 pollution was less likely to have had asthma (OR 0.93, CI 0.68 – 

1.26), however this was not statistically significant. 

It can be seen that at Wave 2 a female child (OR 0.69, CI 0.59 – 0.79) is 

statistically significantly less likely to have had asthma. If a child has a mother 

that has asthma (OR 2.40, CI 2.04 – 2.83), lives in social housing (OR 1.57, CI 

1.29- 1.91) or lives in a more deprived area (OR 1.47, CI 1.15 – 1.88), they are 

statistically significantly more likely to have had asthma. Again, children living in 

areas with the highest levels of NO2 pollution were less likely to have had asthma 

(OR 0.96, CI 0.74 – 1.24), although this was not found to be statistically 

significant. 

The results from Wave 3 show that a female child (OR 0.65, CI 0.57 – 0.75) is 

statistically significantly less likely to have had asthma. A child that has a mother 

who suffers from asthma (OR 2.23, CI 1.91 – 2.60), lives below the poverty line 

(OR 1.26, CI 1.05 – 1.50), lives in social housing (OR 1.22, CI 1.02 – 1.45) or 

lives in a more deprived area (OR 1.62, CI 1.29 – 2.03) is statistically significantly 

more likely to have had asthma. A child living in an area with high levels of NO2 

pollution was less likely to have had asthma (OR 0.91, CI 0.71 – 1.16) however 

this finding was not statistically significant. 

Looking at Wave 4, a female child (OR 0.67, CI 0.58 – 0.77) is statistically 

significantly less likely to have had asthma. Likewise, a child that lives in an area 

with mid-low NO2 pollution (OR 0.84, CI 0.71 – 1.00) is statistically significantly 

less likely to have had asthma also. A child that is obese (OR 1.54, CI 1.19 – 

2.00), has a mother that has asthma (OR 2.35, CI 2.01 – 2.75), lives in social 
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housing (OR 1.33, CI 1.11 – 1.61), lives in an urban area (OR 1.33, CI 1.07 – 

1.64) or lives in a more deprived area (OR 1.40, CI 1.14 – 1.71) is statistically 

significantly more likely to have had asthma throughout their life. A child living in 

an area of high NO2 pollution was less likely to have had asthma (OR 0.84, CI 

0.64 – 1.10) however this was not found to be statistically significant. 

The results from Wave 5 show that that a female child (OR 0.81, CI 0.70 – 0.92) 

is statistically significantly less likely to have ever has asthma. A child that is 

obese (OR 1.39, CI 1.07 – 1.80), has a mother that has asthma (OR 2.18, CI 1.86 

– 2.56), lives in social housing (OR 1.23, CI 1.01 – 1.50) or lives in an area of 

mid-low deprivation (OR 1.22, CI 1.02 – 1.45) is statistically significantly more 

likely to have had asthma. Again a child that lived in an area of high NO2 pollution 

was found to be less likely to have had asthma (OR 0.92, CI 0.68 – 1.25) although 

this was not statistically significant. 
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Table 4.2.2 Results from cross-sectional analysis focussing on asthma including NO2 as the only pollutant 

 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 

Asthma OR  95% CI OR   95% CI OR  95% CI OR   95% CI OR  95% CI 

Child is female 0.66 *** 0.56 - 0.78 0.69 *** 0.59 - 0.79 0.65 *** 0.57 - 0.75 0.67 *** 0.58 - 0.77 0.81 ** 0.7 - 0.92 

Child is White British 1.01  0.80 - 1.27 1.09   0.88 - 1.36 1.06  0.87 - 1.29 0.92   0.75 - 1.12 0.98  0.80 - 1.20 

Child is obese N/A   1.14   0.83 - 1.55 1.21  0.93 - 1.59 1.54 ** 1.19 - 2.00 1.39 * 1.07 - 1.80 

Mother is employed 1.10  0.91 - 1.34 1.07   0.91 - 1.26 1.02  0.87 - 1.19 1.09   0.93 - 1.28 1.02  0.86 - 1.22 

Mother has asthma 1.69 *** 1.39 - 2.05 2.40 *** 2.04 - 2.83 2.23 *** 1.91 - 2.60 2.35 *** 2.01 - 2.75 2.18 *** 1.86 - 2.56 

Mother smokes 1.38 ** 1.14 - 1.67 1.18   0.99 - 1.40 1.06  0.91 - 1.24 1.04   0.89 - 1.23 1.10  0.93 - 1.31 

Lives below poverty line 1.09  0.87 - 1.37 1.07   0.88 - 1.29 1.26 * 1.05 - 1.50 1.11   0.92 - 1.34 1.03  0.83 - 1.28 

Lives in social housing 1.22  0.98 - 1.52 1.57 *** 1.29 - 1.91 1.22 * 1.02 - 1.45 1.33 ** 1.11 - 1.61 1.23 * 1.01 - 1.50 

Lives in urban area 1.10  0.81 - 1.49 1.26   0.97 - 1.64 1.20  0.96 - 1.51 1.33 ** 1.07 - 1.64 1.06  0.86 - 1.29 

IMD (level of deprivation)                      
low  REF   REF     REF   REF     REF   
mid-low  0.98  0.76 - 1.27 1.20   0.97 - 1.49 1.39 ** 1.15 - 1.68 1.29 ** 1.07 - 1.55 1.22 * 1.02 - 1.45 

mid-high  1.43 ** 1.10 - 1.84 1.28 * 1.02 - 1.60 1.43 ** 1.16 - 1.76 1.40 ** 1.14 - 1.71 1.20  0.98 - 1.48 

high  1.19  0.89 - 1.59 1.47 ** 1.15 - 1.88 1.62 *** 1.29 - 2.03 1.24   0.98 - 1.56 1.13  0.90 - 1.43 

NO2 (level of pollution)                      
low  REF   REF     REF   REF     REF   
mid-low  0.93  0.70 - 1.23 0.95   0.76 - 1.19 0.87  0.72 - 1.06 0.84 * 0.71 - 1.00 0.90  0.75 - 1.07 

mid-high  0.76  0.57 - 1.02 1.06   0.84 - 1.33 0.88  0.71 - 1.08 0.83   0.67 - 1.04 0.93  0.74 - 1.17 

high  0.93  0.68 - 1.26 0.96   0.74 - 1.24 0.91  0.71 - 1.16 0.84   0.64 - 1.10 0.92  0.68 - 1.25 
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4.2.3  Interaction terms 

To fully explore the relationship between childhood respiratory health, individual 

level socio-economic status, area level socio-economic status and air pollution, 

we are interested in how the effect of one variable changes when another variable 

changes. This is called an interaction effect (Buis, 2010). Specifically, this thesis 

is interested in exploring the interactions between: 

I. individual and area level socio-economic status  

a. poverty by IMD; and 

II. air pollutant exposure by individual and area level socio-economic status 

a. poverty by air pollutant;  

b. IMD by air pollutant; and  

c. poverty by IMD by air pollutant.  

Table 4.2.3 includes the interaction terms within each cross-sectional analysis. 

The interaction between the two levels of socio-economic status was generally 

negative, and in Wave 3 this relationship was statistically significant (OR 0.98, CI 

0.96 – 1.00). This means that a child that living below the poverty line and in an 

area with high deprivation was less likely to have had asthma in Wave 3. The 

interaction between individual level socio-economic status and NO2, as well as 

the interaction between area level deprivation and NO2 exposure were generally 

negative and were not statistically significant. The three-way interaction was 

again generally negative, which means that a child that lived below the poverty 

line, in an area of high deprivation and high NO2 pollution was less likely to have 

had asthma. However, the three-way interaction was not statistically significant. 

Although exposure to high levels of NO2 pollution was found to not have a 

statistically significant impact on asthma throughout, the results give way to 

further discussion. Asthma is a nebulous term and the Millennium Cohort Study 

did not require proof of medical diagnosis before recording a child as having had 

asthma. Therefore asthma may be an unreliable proxy of respiratory health and 

this could cloud the real impact that air pollution exposure has on asthma rates 

in children. To strengthen the results, wheezing within the previous 12 months 

was also included in the analysis. Wheezing within the previous 12 months may 

be a more appropriate and reliable indicator of respiratory health as it is relating 

to a temporally recent occurrence. 
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Table 4.2.3 Results from cross-sectional analysis focussing on asthma including interaction terms 

 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 

Asthma OR  95% CI OR   95% CI OR  95% CI OR   95% CI OR  95% CI 

Child is female 0.66 *** 0.56 - 0.70 0.68 *** 0.59 - 0.79 0.66 *** 0.57 - 0.75 0.67 *** 0.59 - 0.77 0.81 ** 0.71 - 0.93 

Child is White British 0.96  0.76 - 1.22 1.09   0.89 - 1.35 1.02  0.84 - 1.24 0.89   0.73 - 1.08 0.97  0.80 - 1.19 

Child is obese N/A     1.14   0.84 - 1.56 1.21  0.92 - 1.59 1.53 *** 1.18 - 1.98 1.39 * 1.07 - 1.81 

Mother is employed 1.11  0.91 - 1.34 1.07   0.91 - 1.26 1.01  0.87 - 1.18 1.09   0.93 - 1.28 1.03  0.86 - 1.22 

Mother has asthma 1.69 *** 1.39 - 2.05 2.40 *** 2.04 - 2.83 2.22 *** 1.91 - 2.59 2.34 *** 1.99 - 2.74 2.18 *** 1.85 - 2.55 

Mother smokes 1.38 ** 1.15 - 1.67 1.19 * 1.00 - 1.41 1.05  0.90 - 1.23 1.04   0.88 - 1.22 1.12  0.94 - 1.33 

Lives in social housing 1.24  0.99 - 1.54 1.57 *** 1.29 - 1.92 1.22 * 1.02 - 1.46 1.34 ** 1.12 - 1.62 1.25 * 1.02 - 1.52 

Lives in urban area 1.08  0.80 - 1.44 1.35 * 1.05 - 1.74 1.17  0.94 - 1.47 1.33 ** 1.07 - 1.65 1.05  0.86 - 1.30 

Lives below poverty line 1.69  0.64 - 4.44 0.79   0.34 - 1.81 2.41 * 1.18 - 4.90 2.10   0.95 - 4.64 0.69  0.28 - 1.71 

IMD 1.01  0.99 - 1.03 1.00   0.99 - 1.02 1.02 ** 1.01 - 1.04 1.01   0.99 - 1.03 1.00  0.99 - 1.02 

NO2 1.00  0.98 - 1.02 0.99   0.97 - 1.01 1.00  0.98 - 1.02 0.99   0.97 - 1.01 0.99  0.97 - 1.02 

Poverty*IMD 0.98  0.95 - 1.01 1.00   0.98 - 1.03 0.98 * 0.96 - 1.00 0.98   0.96 - 1.00 1.01  0.98 - 1.03 

Poverty*NO2 0.99  0.96 - 1.03 1.01   0.98 - 1.05 0.98  0.95 - 1.01 0.98   0.94 - 1.02 1.03  0.98 - 1.07 

IMD*NO2 0.99  0.99 - 1.00 1.00   0.99 - 1.00 0.99  0.99 - 1.00 0.99   0.99 - 1.00 0.99  0.99 - 1.00 

Poverty*IMD*NO2 1.00  0.99 - 1.00 0.99   0.99 - 1.00 1.00  0.99 - 1.00 1.00   0.99 - 1.00 0.99  0.99 - 1.00 
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4.3  Cross-sectional analysis focussing on wheezing 

4.3.1  All pollutants 

As stated in Section 4.2.1, initial analysis of the data included all air pollutants 

(PM10, PM2.5, NO2, NO and O3) and the results of this cross-sectional analysis is 

presented in Table 4.3.1. This table presents the results of five logistic regression 

models, each model examining a wave of the MCS. As before, cohort members 

were aged 9 months in Wave 1, 3 years old in Wave 2, 5 years old in Wave 3, 7 

years old in Wave 4 and 11 years old in Wave 5. 

Table 4.3.1 shows that at Wave 1, a female child (OR 0.66, CI 0.56 – 0.78) or 

one who lives in an area with a higher concentration of PM10 (OR 0.32, CI 0.10 – 

0.98) is less likely to have ever had wheezed in the last year, whilst a child that 

lives in a more deprived area (OR 1.42, CI 1.10 – 1.84) is statistically significantly 

more likely to have wheezed in the last year. Similarly, if a child has a mother that 

has asthma (OR 1.69, CI 1.39 – 2.05) or smokes (OR 1.38, CI 1.14 – 1.68), they 

are statistically significantly more likely to have wheezed in the last year also. 

Looking at the results from Wave 2, a female child (OR 0.78, CI 0.69 – 0.87) is 

statistically significantly less likely to have wheezed in the last year. If a child has 

a mother that has asthma (OR 1.93, CI 1.68 – 2.22), lives in social housing (OR 

1.30, CI 1.10 – 1.53), lives in an urban area (OR 1.25, CI 1.02 – 1.54) or lives in 

a more deprived area (OR 1.39, CI 1.16 – 1.67), they are statistically significantly 

more likely to have wheezed in the last year. 

Moving on to examine the results from Wave 3, the analysis shows that a female 

child (OR 0.74, CI 0.65 – 0.84) is statistically significantly less likely to have 

wheezed in the last year. A child that has a mother who suffers from asthma (OR 

1.82, CI 1.56 – 2.12), lives below the poverty line (OR 1.20, CI 1.01 – 1.43), or 

lives in an area with mid-high deprivation (OR 1.26, CI 1.04 – 1.53) is statistically 

significantly more likely to have wheezed in the last year. 

Looking at Wave 4, a female child (OR 0.70, CI 0.60 – 0.81) is statistically 

significantly less likely to have wheezed in the last year. A child that is obese (OR 

1.71, CI 1.29 – 2.27), has a mother that has asthma (OR 2.03, CI 1.70 – 2.43), 

lives in an urban area (OR 1.30, CI 1.02 – 1.65), lives in an area of mid-high 

deprivation (OR 1.26, CI 1.01 – 1.58), or lives in an area of mid-low PM2.5 
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concentration (OR 1.38, CI 1.08 – 1.76) is statistically significantly more likely to 

have wheezed in the last year. 

The results from Wave 5 show that a female child (OR 0.70, CI 0.59 – 0.82) is 

statistically significantly less likely to have wheezed in the last year. A child that 

is obese (OR 1.85, CI 1.38 – 2.47) or has a mother that has asthma (OR 1.85, CI 

1.52 – 2.23) is statistically significantly more likely to have wheezed in the last 

year. 
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Table 4.3.1 Results from cross-sectional analysis focussing on wheezing including all pollutants 

 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 

Wheeze OR  95% CI OR   95% CI OR  95% CI OR   95% CI OR  95% CI 

Child is female 0.66 *** 0.56 - 0.78 0.78 *** 0.69 - 0.87 0.74 *** 0.65 - 0.84 0.70 *** 0.60 - 0.81 0.70 *** 0.59 - 0.82 

Child is White British 0.98  0.77 - 1.24 0.98   0.82 - 1.18 0.91  0.75 - 1.09 0.86   0.69 - 1.08 0.92  0.73 - 1.17 

Child is obese N/A   1.03   0.79 - 1.34 1.28  0.99 - 1.67 1.71 *** 1.29 - 2.27 1.85 *** 1.38 - 2.47 

Mother is employed 1.10  0.91 - 1.34 1.10   0.97 - 1.25 1.04  0.90 - 1.21 1.04   0.87 - 1.24 0.89  0.72 - 1.09 

Mother has asthma 1.69 *** 1.39 - 2.05 1.93 *** 1.68 - 2.22 1.82 *** 1.56 - 2.12 2.03 *** 1.70 - 2.43 1.85 *** 1.52 - 2.23 

Mother smokes 1.38 ** 1.14 - 1.68 1.15   1.00 - 1.32 1.12  0.96 - 1.30 0.99   0.82 - 1.19 1.02  0.83 - 1.26 

Lives below the poverty line 1.09  0.87 - 1.37 0.94   0.80 - 1.11 1.20 * 1.01 - 1.43 0.98   0.79 - 1.21 1.19  0.91 - 1.56 

Lives in social housing 1.19  0.96 - 1.47 1.30 ** 1.10 - 1.53 1.13  0.95 - 1.35 1.16   0.94 - 1.44 0.86  0.67 - 1.10 

Lives in urban area 1.18  0.87 - 1.61 1.25 * 1.02 - 1.54 1.08  0.88 - 1.33 1.30 * 1.02 - 1.65 1.10  0.87 - 1.40 

IMD (level of deprivation)      

low  REF   REF REF REF REF 

mid-low  0.98  0.75 - 1.27 1.24 * 1.04 - 1.46 1.16  0.97 - 1.39 1.15   0.94 - 1.41 1.06  0.86 - 1.32 

mid-high  1.42 ** 1.10 - 1.84 1.39 *** 1.16 - 1.67 1.26 * 1.04 - 1.53 1.26 * 1.01 - 1.58 1.03  0.80 - 1.32 

high  1.17  0.87 - 1.58 1.22   1.00 - 1.50 1.18  0.94 - 1.47 1.11   0.85 - 1.45 0.99  0.75 - 1.31 

NO2 (level of pollution)      

low  REF   REF REF REF REF 

mid-low  0.78  0.48 - 1.25 0.97   0.76 - 1.25 0.96  0.73 - 1.25 0.98   0.72 - 1.34 0.95  0.71 - 1.28 

mid-high  0.68  0.36 - 1.29 0.87   0.59 - 1.29 0.99  0.68 - 1.45 0.73   0.42 - 1.27 0.83  0.46 - 1.50 

high  1.46  0.59 - 3.65 0.86   0.50 - 1.49 0.74  0.38 - 1.46 0.78   0.35 - 1.75 0.61  0.19 - 1.96 

PM10 (level of pollution)      

low  REF   REF REF REF REF 

mid-low  0.32 * 0.11 - 0.91 1.09   0.88 - 1.34 1.05  0.82 - 1.34 1.00   0.77 - 1.30 0.77  0.49 - 1.23 

mid-high  0.29 * 0.10 - 0.87 1.04   0.77 - 1.4 0.96  0.69 - 1.34 0.76   0.46 - 1.25 N/A   
high  0.32 * 0.10 - 0.98 0.83   0.51 - 1.34 0.76  0.45 - 1.26 0.25   0.06 - 1.12 N/A   
PM2.5 (level of pollution)      
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low  REF   REF REF REF REF 

mid-low  0.86  0.5 - 1.47 0.89   0.68 - 1.17 1.11  0.82 - 1.51 1.38 * 1.08 - 1.76 1.06  0.81 - 1.40 

mid-high  2.63  0.86 - 8.07 0.89   0.63 - 1.24 1.21  0.85 - 1.73 1.11   0.62 - 2.00 1.28  0.61 - 2.68 

high  2.22  0.7 - 7.02 0.81   0.48 - 1.38 1.23  0.68 - 2.24 N/A     N/A   
NO (level of pollution)      
low  REF   REF REF REF REF 

mid-low  1.21  0.75 - 1.95 1.12   0.88 - 1.45 0.88  0.66 - 1.17 0.99   0.74 - 1.33 0.86  0.61 - 1.21 

mid-high  1.35  0.75 - 2.42 1.14   0.78 - 1.65 0.86  0.59 - 1.26 1.18   0.69 - 2.01 1.00  0.57 - 1.76 

high  0.81  0.34 - 1.95 1.08   0.64 - 1.82 1.20  0.67 - 2.16 1.20   0.53 - 2.69 2.13  0.72 - 6.32 

O3 (level of pollution)      
low  REF   REF REF REF REF 

mid-low  1.20  0.87 - 1.65 0.97   0.77 - 1.21 0.88  0.58 - 1.33 1.08   0.69 - 1.68 1.06  0.69 - 1.64 

mid-high  1.33  0.83 - 2.15 0.84   0.61 - 1.15 0.99  0.64 - 1.54 0.91   0.53 - 1.54 0.98  0.59 - 1.65 

high  0.63  0.31 - 1.29 0.90   0.60 - 1.36 0.93  0.57 - 1.53 1.05   0.57 - 1.92 1.42  0.81 - 2.50 
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4.3.2 NO2 only 

Again, because of the issue of covariance among the air pollutants, the analysis 

was also conducted using NO2 as the only pollutant of interest. Again, five logistic 

regressions were carried out and the results of this analysis is presented in Table 

4.3.2. 

Table 4.3.2 shows that at Wave 1, a female child (OR 0.66, CI 0.56 – 0.78) is 

statistically significantly less likely to have ever had wheezed in the last year, 

whilst a child that lives in a more deprived area (OR 1.43, CI 1.10 – 1.84) is 

statistically significantly more likely to have wheezed in the last year. 

Furthermore, if a child has a mother that has asthma (OR 1.69, CI 1.39 – 2.05) 

or smokes (OR 1.38, CI 1.14 – 1.67), they are statistically significantly more likely 

to have wheezed in the last year also. 

Looking at the results from Wave 2, a female child (OR 0.78, CI 0.69 – 0.87) is 

statistically significantly less likely to have wheezed in the last year. If a child has 

a mother that has asthma (OR 1.93, CI 1.68 – 2.23), has a mother that smokes 

(OR 1.15, CI 1.00 – 1.32), lives in social housing (OR 1.27, CI 1.08 – 1.50), lives 

in an urban area (OR 1.24, CI 1.01 – 1.52) or lives in a more deprived area (OR 

1.26, CI 1.04 – 1.54), they are statistically significantly more likely to have 

wheezed in the last year. 

Examining the results from Wave 3, the analysis shows that a female child (OR 

0.74, CI 0.65 – 0.84) is statistically significantly less likely to have wheezed in the 

last year. A child that has a mother who suffers from asthma (OR 1.82, CI 1.57 – 

2.13), lives below the poverty line (OR 1.20, CI 1.01 – 1.43), or lives in an area 

with mid-high deprivation (OR 1.23, CI 1.02 – 1.49) is statistically significantly 

more likely to have wheezed in the last year. 

Moving on to look at Wave 4, a female child (OR 0.70, CI 0.60 – 0.81) is 

statistically significantly less likely to have wheezed in the last year. A child that 

is obese (OR 1.70, CI 1.29 – 2.25), has a mother that has asthma (OR 2.03, CI 

1.70 – 2.42), or lives in an urban area (OR 1.30, CI 1.02 – 1.65) is statistically 

significantly more likely to have wheezed in the last year. 

The results from Wave 5 show that a female child (OR 0.70, CI 0.59 – 0.82), or a 

child that lives in an area of mid-high NO2 concentration (OR 0.73, CI 0.56 – 0.96) 
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is statistically significantly less likely to have wheezed in the last year. A child that 

is obese (OR 1.84, CI 1.38 – 2.46) or has a mother that has asthma (OR 1.84, CI 

1.52 – 2.23) is statistically significantly more likely to have wheezed in the last 

year. To further examine the associations between exposure variables, 

interaction terms can be included in the models. 
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Table 4.3.2 Results from cross-sectional analysis focussing on wheezing including NO2 as the only pollutant 

 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 

Wheeze OR  95% CI OR   95% CI OR  95% CI OR   95% CI OR  95% CI 

Child is female 0.66 *** 0.56 - 0.78 0.78 *** 0.69 - 0.87 0.74 *** 0.65 - 0.84 0.70 *** 0.60 - 0.81 0.70 *** 0.59 - 0.82 

Child is White British 1.01  0.80 - 1.27 1.01   0.84 - 1.21 0.91  0.76 - 1.10 0.85   0.68 - 1.06 0.94  0.74 - 1.19 

Child is obese N/A    1.02   0.78 - 1.32 1.27  0.98 - 1.66 1.70 *** 1.29 - 2.25 1.84 *** 1.38 - 2.46 

Mother is employed 1.10  0.91 - 1.34 1.11   0.98 - 1.26 1.04  0.90 - 1.21 1.02   0.85 - 1.22 0.89  0.73 - 1.10 

Mother has asthma 1.69 *** 1.39 - 2.05 1.93 *** 1.68 - 2.23 1.82 *** 1.57 - 2.13 2.03 *** 1.70 - 2.42 1.84 *** 1.52 - 2.23 

Mother smokes 1.38 ** 1.14 - 1.67 1.15 * 1.00 - 1.32 1.12  0.96 - 1.30 0.99   0.82 - 1.19 1.03  0.84 - 1.26 

Lives below the poverty line 1.09  0.87 - 1.37 0.96   0.81 - 1.12 1.20 * 1.01 - 1.43 0.97   0.78 - 1.20 1.17  0.90 - 1.52 

Lives in social housing 1.22  0.98 - 1.52 1.27 ** 1.08 - 1.50 1.12  0.94 - 1.34 1.18   0.95 - 1.46 0.87  0.69 - 1.11 

Lives in urban area 1.10  0.81 - 1.49 1.24 * 1.01 - 1.52 1.07  0.87 - 1.31 1.30 * 1.02 - 1.65 1.08  0.85 - 1.36 

IMD (level of deprivation)                          

low  REF     REF      REF    REF    REF   
mid-low  0.98  0.76 - 1.27 1.22 * 1.03 - 1.43 1.13  0.94 - 1.35 1.15   0.94 - 1.40 1.10  0.89 - 1.36 

mid-high  1.43 ** 1.10 - 1.84 1.35 ** 1.14 - 1.61 1.23 * 1.02 - 1.49 1.22   0.98 - 1.52 1.06  0.82 - 1.35 

high  1.19  0.89 - 1.59 1.26 * 1.04 - 1.54 1.14  0.92 - 1.42 1.03   0.79 - 1.33 1.02  0.78 - 1.35 

NO2 (level of pollution)                        

low  REF    REF     REF     REF    REF    

mid-low  0.93  0.70 - 1.23 1.04   0.86 - 1.25 0.94  0.78 - 1.13 0.95   0.78 - 1.15 0.84  0.68 - 1.03 

mid-high  0.76  0.57 - 1.02 1.05   0.87 - 1.28 0.93  0.77 - 1.13 0.83   0.65 - 1.06 0.73 * 0.56 - 0.96 

high  0.93  0.68 - 1.26 0.86   0.69 - 1.07 0.87  0.70 - 1.10 0.85   0.62 - 1.16 0.94  0.66 - 1.35 
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4.3.3 Interaction terms 

Table 4.3.3 includes the interaction terms of interest. As before, the interactions 

of interest are between individual and area level socio-economic status (poverty 

* IMD) and NO2 exposures (poverty * NO2, IMD * NO2, poverty * IMD * NO2).  

The interaction between the two levels of socio-economic status was generally 

mixed, as in Wave 2, a child living below the poverty line and in an area of high 

deprivation was less likely to have experienced wheezing in the previous 12 

months (OR 0.99, CI 0.98 – 1.02) whilst in Wave 4 a child living in a similar 

situation was more likely to have experienced wheezing in the previous 12 

months (OR 1.01, CI 0.98 – 1.03) although these interactions were not statistically 

significant. The interactions between individual level socio-economic status and 

NO2, as well as the interactions between area level deprivation and NO2 exposure 

were also mixed and not statistically significant. The three-way interaction 

generally did not show any association, for example in Wave 2 (OR 1.00, CI 0.99 

– 1.00), and these interactions were not statistically significant. 
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Table 4.3.3 Results from cross-sectional analysis focussing on asthma including NO2 as the only pollutant 

 Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 

Wheeze OR  95% CI OR   95% CI OR  95% CI OR   95% CI OR  95% CI 

Child is female 0.66 *** 0.56 - 0.70 0.77 *** 0.67 - 0.87 0.74 *** 0.65 - 0.84 0.70 *** 0.60 - 0.81 0.70 *** 0.59 - 0.82 

Child is White British 0.96  0.76 - 1.22 0.99   0.83 - 1.20 0.93  0.77 - 1.12 0.86   0.69 - 1.07 0.97  0.77 - 1.24 

Child is obese N/A   1.02   0.78 - 1.33 1.27  0.98 - 1.65 1.70 *** 1.28 - 2.24 1.84 *** 1.39 - 2.46 

Mother is employed 1.11  0.91 - 1.34 1.11   0.98 - 1.27 1.03  0.89 - 1.20 1.02   0.85 - 1.22 0.89  0.73 - 1.09 

Mother has asthma 1.69 *** 1.39 - 2.05 1.96 *** 1.69 - 2.24 1.82 *** 1.56 - 2.12 2.03 *** 1.70 - 2.43 1.84 *** 1.52 - 2.22 

Mother smokes 1.38 *** 1.15 - 1.67 1.17 * 1.02 - 1.34 1.12  0.96 - 1.30 1.00   0.83 - 1.20 1.04  0.84 - 1.27 

Lives in social housing 1.24  0.99 - 1.54 1.30 ** 1.10 - 1.53 1.12  0.94 - 1.34 1.18   0.96 - 1.47 0.89  0.70 - 1.14 

Lives in urban area 1.08  0.80 - 1.44 1.30 ** 1.07 - 1.59 1.09  0.89 - 1.34 1.32 * 1.03 - 1.68 1.10  0.86 - 1.40 

Lives below the poverty line 1.69  0.64 - 4.44 1.10   0.55 - 2.19 1.53  0.77 - 3.03 0.95   0.38 - 2.36 0.66  0.22 - 2.02 

IMD 1.01  0.99 - 1.03 1.01   0.99 - 1.02 1.01  0.99 - 1.02 0.99   0.98 - 1.01 0.99  0.98 - 1.02 

NO2 1.00  0.98 - 1.02 1.00   0.99 - 1.02 0.99  0.98 - 1.01 0.99   0.97 - 1.01 0.98  0.95 - 1.00 

Poverty*IMD 0.98  0.95 - 1.01 0.99   0.98 - 1.02 0.99  0.96 - 1.01 1.01   0.98 - 1.03 1.00  0.97 - 1.04 

Poverty*NO2 0.99  0.96 - 1.03 0.99   0.97 - 1.02 1.00  0.97 - 1.03 1.01   0.96 - 1.05 1.04  0.98 - 1.11 

IMD*NO2 0.99  0.99 - 1.00 0.99   0.99 - 1.00 1.00  0.99 - 1.00 1.00   0.99 - 1.00 1.00  0.99 - 1.00 

Poverty*IMD*NO2 1.00  0.99 - 1.00 1.00   0.99 - 1.00 1.00  0.99 - 1.00 0.99   0.99 - 1.00 0.99  0.99 - 1.00 
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4.4  Conclusion of Cross-sectional Analysis of Asthma and Wheezing  

The results show that female children are consistently less likely to have had 

asthma or to have had a recent episode of wheezing. The results also indicate 

that maternal asthma is also consistently related to higher rates of asthma and 

wheezing among cohort members throughout the five waves. Furthermore, 

higher rates of IMD as well as living below the poverty line, are also shown to be 

related to higher rates of asthma and wheezing at different stages in the lives of 

the cohort members. Maternal smoking patterns were also linked to increased 

rates of asthma and wheezing during early childhood and living in social housing 

and being obese were also related to increased rates of both asthma and 

wheezing. The impact of pollution varied throughout, with few statistically 

significant relationships found. Living in an area that experienced mid-low levels 

of PM2.5 pollution was found to have a statistically significant impact on wheezing 

rates in Wave 4, when compared to areas of low PM2.5 pollution. Whilst this 

statistically significant relationship was seen only in one wave, it is worthwhile 

exploring this relationship in further analysis with a different methodological 

approach. 

The individual and area level socio-economic status of children and their families 

were represented by poverty (individual) and IMD score (area) in this analysis. 

For both asthma and wheezing, children living below the poverty line or living in 

an area of higher deprivation were more likely to have had asthma or wheezing 

during different waves. These relationships were, at times, found to be statistically 

significant. A full discussion examining these results is offered in Chapter 7.  

The inclusion of interaction terms provides some support of the hypothesis that 

there is a relationship between air pollution and poor respiratory health as 

measured by wheezing, although further research is needed. Cross-sectional 

analysis ignores the temporal aspect that is available with this longitudinal dataset 

and it is not possible to determine whether the exposures, in this instance air 

pollution, socio-economic status and area level deprivation or outcome, poor 

respiratory health came first. The fact that the data is available in a longitudinal 

format is one strength of this research, thus it is important to use a methodological 

approach that allows for time to be included to fully explore the relationships 

present.  
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Chapter 5. Time Series Analysis 

 

5.1  Introduction 

This chapter presents the results of the time series analysis, as outlined in 

Chapter 3. Building on cross-sectional analysis presented in Chapter 4, the next 

step is to fully incorporate the temporal aspect of the data into the analysis, and 

examine how the respiratory health of cohort members is impacted by time-based 

exposure to different levels of air pollution and socio-economic status. Given the 

temporal nature of air pollution concentration, as well as changing socio-

economic status, it is important to consider this data throughout time as 

information can be overlooked when examining only one specific moment in time. 

As discussed in Chapter 3, time-series analysis examines both initial and time-

varying exposures to poverty, IMD and air pollution concentrations. This allows 

for comparisons to be drawn between the impact that the exposures a cohort 

member faced during their earliest years (recorded in Wave 1) and the impact 

that exposures that change over the subsequent years have on their respiratory 

health. As with the cross-sectional analysis, both asthma and wheezing are 

considered as the indicator for respiratory health, and separate analyses are run 

to examine the impacts of all the air pollutants as well as analyses including NO2 

as the only air pollutant of interest. 

5.2 Time series analysis of asthma rates 

5.2.1 Time series analysis of asthma rates with initial exposures from 

Wave 1 

To begin, analysis focussed on the initial exposures of poverty, IMD and pollution 

concentration that cohort members would have faced in Wave 1 when they were 

nine months old. Models were run that specifically looked at Wave 1 exposures 

to NO2 pollution, and later Wave 1 exposures to all pollutants. 

Table 5.1 depicts the results of running three separate regression models for 

poverty, IMD and NO2 exposure in Wave 1. There is a statistically significant 

increase in asthma occurrence over time for a child that lived below the poverty 

line in Wave 1 (OR 1.49, CI 1.33 – 1.67), as well for as a child that lived in an 
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area of higher deprivation in Wave 1 (OR 1.71, CI 1.48 – 1.99). In terms of air 

pollution, there is a statistically significant decrease in asthma for a child that lived 

in an area of low-medium NO2 pollution in Wave 1 (OR 0.86, CI 0.72 – 1.02), and 

whilst the odds ratio increases for higher levels of pollution, it loses significance 

(OR 0.94, CI 0.80 – 1.11). 

Table 5.1 Time series analysis of three separate models looking at the impact 

of exposures to poverty, IMD and NO2 in Wave 1 on asthma rates in children 

 Asthma OR  CI 95% 

Lives below the poverty line (initial) 1.49 *** 1.33 - 1.67 

Level of deprivation (IMD) (initial) low REF   

low-medium 1.25 *** 1.07 - 1.47 

medium-high 1.63 *** 1.40 - 1.89 

high 1.71 *** 1.48 - 1.99 

NO2 (level of pollution) (initial) low REF   

low-medium 0.86 * 0.72 - 1.02 

medium-high 0.92  0.79 - 1.09 

high 0.94  0.80 - 1.11 

Table 5.2 runs the model with poverty, IMD and NO2 pollution at Wave 1 in one 

regression. Similarly, a child that lived below the poverty line at Wave 1 is 

statistically significantly more likely to have had asthma over time (OR 1.27, CI 

1.12 – 1.45), and this is also the case for a child that lived in an area of high 

deprivation at Wave 1 (OR 1.55, CI 1.30 – 1.85). On the other hand, those that 

lived in areas of higher NO2 pollution are statistically significantly less likely to 

have had asthma over time (OR 0.80, CI 0.67 – 0.94). 

Table 5.2 Time series analysis looking at the impact of exposure to different 

levels of poverty, IMD and NO2 in Wave 1 on asthma rates in children 

Asthma OR  CI 95% 

Lives below the poverty line (initial) 1.27 *** 1.12 - 1.45 

Level of deprivation (IMD) (initial) low REF   

low-medium 1.21 ** 1.03 - 1.42 

medium-high 1.56 *** 1.33 - 1.83 

high 1.55 *** 1.30 - 1.87 

NO2 (level of pollution) (initial) low REF   

low-medium 0.82 ** 0.69 - 0.97 

medium-high 0.84 ** 0.71 - 0.99 

high 0.80 *** 0.67 - 0.94 

Table 5.3 builds on Table 5.2 with the inclusion of individual level variables. 

Similarly, a child that lived below the poverty line in Wave 1 is statistically 
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significantly more likely to have had asthma over time (OR 1.13, CI 0.98 – 1.31). 

Likewise, a child living in an area of higher deprivation is statistically significantly 

more likely to have had asthma over time (OR 1.41, CI 1.18 – 1.69) (excluding 

low-medium levels of deprivation). A child that lived in an area of higher NO2 

pollution in Wave 1 is statistically significantly less likely to have had asthma over 

time (OR 0.78, CI 0.64 – 0.95), as is a female child (OR 0.70, CI 0.63 – 0.78). If 

a child is obese (OR 1.32, CI 1.10 – 1.58), has a mother that is employed (OR 

1.10, CI 0.99 – 1.22), has a mother that suffers asthma (OR 2.28, CI 2.01 – 2.59), 

lives in social housing (OR 1.32, CI 1.15 – 1.51) or lives in an urban area (OR 

1.23, CI 1.04 – 1.45), they are statistically significantly more likely to have had 

asthma over time. 

Table 5.3 Time series analysis looking at the impact of exposure to different 

levels of poverty, IMD and NO2 in Wave 1, and individual level variables, on 

asthma rates in children 

Asthma OR  CI 95% 

Lives below the poverty line (initial) 1.13 * 0.98 - 1.31 

Level of deprivation (IMD) (initial) low REF   

low-medium 1.14  0.97 - 1.34 

medium-high 1.41 *** 1.19 - 1.67 

high 1.41 *** 1.18 - 1.69 

NO2 (level of pollution) (initial) low REF   

low-medium 0.79 *** 0.66 - 0.94 

medium-high 0.77 *** 0.65 - 0.92 

high 0.78 ** 0.64 - 0.95 

Child is female 0.70 *** 0.63 - 0.78 

Child is White British 1.02  0.87 - 1.20 

Child is obese 1.32 *** 1.10 - 1.58 

Mother is employed 1.10 * 1.00 - 1.22 

Mother has asthma 2.28 *** 2.01 - 2.59 

Mother smokes 1.08  0.96 - 1.21 

Lives in social housing 1.32 *** 1.15 - 1.51 

Lives in urban area 1.23 ** 1.04 - 1.45 

Table 5.4 explores the interactions between poverty, IMD and NO2 pollution at 

Wave 1 and how they interact to influence asthma rates among the cohort 

members. The interaction terms were included in the analysis to fully explore the 

associations present in the data between the exposure variables of interest. 

Interacting individual and area level socio-economic status (poverty and 

deprivation) and air pollution exposure within a three-way interaction, aims to 

answer the second hypothesis; whether area level deprivation interacts with 
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individual level socio-economic status so that the impact of air pollution exposure 

on respiratory health is stronger for children with low socio-economic status living 

in the most deprived areas than children with similar socio-economic status living 

in less deprived areas. Four interaction terms are presented. Although none are 

statistically significant, the three-way interaction, poverty*IMD*NO2 is positive, 

which indicates that those living in poverty, in a more deprived and polluted area 

are more likely to have had asthma. 

Table 5.4 Time series analysis looking at the impact of different exposures on 

asthma rates in children, including interactions 

 Asthma OR   CI 95% 

Child is female 0.70 *** 0.62 - 0.78 

Child is White British 1.00  0.85 - 1.17 

Child is obese 1.33 ** 1.11 - 1.59 

Mother is employed 1.11 * 1.00 - 1.22 

Mother has asthma 2.29 *** 2.02 - 2.60 

Mother smokes 1.08  0.96 - 1.22 

Lives in social housing 1.33 *** 1.16 - 1.53 

Lives in urban area 1.21 * 1.03 - 1.43 

Lives below the poverty line (initial) 1.40  0.34 - 5.71 

IMD score (initial) 0.84  0.59 - 1.21 

NO2 (initial) 0.97  0.70 - 1.34 

Poverty*IMD (initial) 0.85  0.47 - 1.52 

Poverty*NO2 (initial) 0.90  0.57 - 1.43 

IMD*NO2 (initial) 0.98  0.87 - 1.11 

Poverty*IMD*NO2 (initial) 1.08   0.88 - 1.31 

Table 5.5 expands the NO2 exposure analysis presented in Table 5.1 by also 

including the exposures of PM10, PM2.5, NO and O3 at Wave 1. Again, a child that 

lived below the poverty line in Wave 1 is statistically significantly more likely to 

have had asthma over time (OR 1.49, CI 1.33 – 1.67), as is a child that lived in 

an area of higher IMD (OR 1.71, CI 1.48 – 1.99). Whilst there were positive results 

for children that lived in areas with the highest levels of PM2.5 pollution in Wave 1 

(OR 1.05, CI 0.59 – 1.86), areas with high NO2 pollution (OR 1.33, CI 0.80 – 2.22) 

and areas with low-medium (OR 1.19, CI 0.96 – 1.47) and medium-high levels 

(OR 1.14, CI 0.84 – 1.56) of O3 pollution, these were not statistically significant. 

A child that lived in an area of low-medium NO pollution at Wave 1 is statistically 

significantly less likely to have had asthma over time (OR 0.68, CI 0.52 – 0.90) 

as is a child living in area of high PM10 pollution (OR0.75, CI 0.44 – 1.28) although 

this was not statistically significant. 
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Table 5.5 Time series analysis of three separate models looking at the impact 

of exposures to poverty, IMD and all air pollutants in Wave 1 on asthma rates 

in children 

 Asthma OR  CI 95% 

Lives below the poverty line (initial) 1.49 *** 1.33 - 1.67 

Level of deprivation (IMD) (initial) low REF   

 low-medium 1.25 *** 1.07 - 1.47 

 medium-high 1.63 *** 1.40 - 1.89 

 high 1.71 *** 1.48 - 1.99 

NO2 (level of pollution) (initial) low REF   

 low-medium 1.11  0.85 - 1.44 

 medium-high 1.07  0.72 - 1.58 

 high 1.33  0.80 - 2.22 

PM10 (level of pollution) (initial) low REF   

 low-medium 0.75  0.47 - 1.18 

 medium-high 0.77  0.47 - 1.26 

 high 0.75  0.44 - 1.28 

PM2.5 (level of pollution) (initial) low REF   

 low-medium 0.79  0.55 - 1.12 

 medium-high 0.98  0.57 - 1.69 

 high 1.05  0.59 - 1.86 

NO (level of pollution) (initial) low REF   

 low-medium 0.68 *** 0.52 - 0.90 

 medium-high 0.95  0.65 - 1.40 

 high 0.76  0.46 - 1.24 

O3 (level of pollution) (initial) low REF   

 low-medium 1.19  0.96 - 1.47 

 medium-high 1.14  0.84 - 1.56 

 high 0.95  0.63 - 1.44 

Table 5.6 re-runs the regression presented in 5.5, this time including all 

pollutants, poverty and IMD exposures at Wave 1 in one model. A child that lived 

below the poverty line in Wave 1 is statistically significantly more likely to have 

had asthma over time (OR 1.27, CI 1.12 – 1.44), as is a child that lived in an area 

of higher deprivation (OR 1.56, CI 1.31 – 1.86). A child that lived in an area of 

high PM2.5 pollution (OR 1.05, CI 0.58 – 1.88), an area of medium-high NO 

pollution (OR 1.01, CI 0.69 – 1.49) or an area of low-medium (OR 1.23, CI 0.99 

– 1.53) or medium-high O3 pollution (OR 1.13, CI 0.82 – 1.55) is more likely to 

have had asthma over time, however only the area of low-medium O3 pollution 

was statistically significant. A child that lived in an area of low-medium NO 

pollution in Wave 1 is statistically significantly less likely to have had asthma over 

time (OR 0.72, CI 0.54 – 0.95). 
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Table 5.6 Time series analysis looking at the impact of exposure to different 

levels of poverty, IMD and all air pollutants in Wave 1 on asthma rates in 

children 

Asthma OR  CI 95% 

Lives below the poverty line (initial) 1.27 *** 1.12 - 1.44 

Level of deprivation (IMD) (initial) low REF   

 low-medium 1.20 ** 1.02 - 1.41 

 medium-high 1.56 *** 1.33 - 1.84 

 high 1.56 *** 1.31 - 1.86 

NO2 (level of pollution) (initial) low REF   

 low-medium 0.97  0.74 - 1.28 

 medium-high 0.86  0.58 - 1.28 

 high 0.89  0.52 - 1.52 

PM10 (level of pollution) (initial) low REF   

 low-medium 0.85  0.54 - 1.35 

 medium-high 0.85  0.52 - 1.40 

 high 0.80  0.47 - 1.37 

PM2.5 (level of pollution) (initial) low REF   

 low-medium 0.78  0.55 - 1.11 

 medium-high 0.95  0.54 - 1.65 

 high 1.05  0.58 - 1.88 

NO (level of pollution) (initial) low REF   

 low-medium 0.72 ** 0.54 - 0.95 

 medium-high 1.01  0.69 - 1.49 

 high 0.93  0.56 - 1.56 

O3 (level of pollution) (initial) low REF   

 low-medium 1.23 * 0.99 - 1.53 

 medium-high 1.13  0.82 - 1.55 

 high 0.93  0.61 - 1.41 

Table 5.7 builds on the model used in Table 5.6 with the inclusion of individual 

level variables. A child that, in Wave 1, lived in an area of medium-high (OR 1.42, 

CI 1.20 – 1.68) or high deprivation (OR 1.41, CI 1.18 – 1.70), or an area of low-

medium O3 pollution (OR 1.22, CI 0.98 – 1.52) is statistically significantly more 

likely to have had asthma over time, whilst a child that lived in an area of low-

medium NO pollution (OR 0.71, CI 0.53 – 0.95) is statistically significantly less 

likely to have had asthma. Furthermore, a female child is statistically significantly 

less likely to have had asthma over time (OR 0.70, CI 0.63 – 0.78), whilst a child 

that is obese (OR 1.32, CI 1.11 – 1.58), has a mother that is employed (OR 1.10, 

CI 0.99 – 1.21), has a mother that has asthma (OR 2.30, CI 2.02 – 2.61), lives in 

social housing (OR 1.31, CI 1.14 – 1.51) or lives in an urban area (OR 1.23, CI 

1.04 – 1.46) is statistically significantly more likely to have had asthma over time. 
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Table 5.7 Time series analysis looking at the impact of exposure to different 

levels of poverty, IMD and all pollutants in Wave 1, and individual level 

variables, on asthma rates in children 

Asthma OR  CI 95% 

Lives below the poverty line (initial) 1.12  0.97 - 1.29 

Level of deprivation (IMD) (initial) low REF   

 low-medium 1.14  0.97 - 1.34 

 medium-high 1.42 *** 1.20 - 1.68 

 high 1.41 *** 1.18 - 1.70 

NO2 (level of pollution) (initial) low REF   

 low-medium 0.93  0.71 - 1.23 

 medium-high 0.79  0.52 - 1.18 

 high 0.85  0.50 - 1.46 

PM10 (level of pollution) (initial) low REF   

 low-medium 0.80  0.51 - 1.28 

 medium-high 0.78  0.47 - 1.29 

 high 0.72  0.42 - 1.25 

PM2.5 (level of pollution) (initial) low REF   

 low-medium 0.80  0.56 - 1.14 

 medium-high 1.02  0.58 - 1.79 

 high 1.15  0.63 - 2.08 

NO (level of pollution) (initial) low REF   

 low-medium 0.71 ** 0.53 - 0.95 

 medium-high 0.99  0.67 - 1.46 

 high 0.94  0.56 - 1.57 

O3 (level of pollution) (initial) low REF   

 low-medium 1.22 * 0.98 - 1.52 

 medium-high 1.09  0.79 - 1.50 

 high 0.91  0.60 - 1.40 

Child is female 0.70 *** 0.63 - 0.78 

Child is White British 1.01  0.86 - 1.19 

Child is obese 1.32 *** 1.11 - 1.58 

Mother is employed 1.10 * 0.99 - 1.21 

Mother has asthma 2.30 *** 2.02 - 2.61 

Mother smokes 1.08  0.96 - 1.21 

Lives in social housing 1.31 *** 1.14 - 1.51 

Lives in urban area 1.23 ** 1.04 - 1.46 

5.2.2 Time series analysis of asthma with time varying exposures 

throughout the Waves 

Moving on from Wave 1 exposures, analysis then focussed on time varying 

exposures of poverty, IMD and air pollution concentration. Time varying analysis 

allows variables to vary for each wave instead of using only the initial recording 
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from Wave 1. It is important to take this into consideration as the exposure 

variables change over time. For example, a family’s socio-economic status may 

change so they no longer live below the poverty line. Additionally, as evident in 

Figure 3.2, air pollution concentrations vary over time, as such it is important to 

consider the effects of exposure to varying concentrations over time in 

comparison to initial early life exposure. 

Table 5.8 shows the results of three separate regressions for poverty, IMD and 

NO2 pollution. A child that lives below the poverty line (OR 1.44, CI 1.31 – 1.59) 

is statistically significantly more likely to have had asthma over time. Similarly, a 

child living in an area of high deprivation (OR 1.73, CI 1.50 – 2.00) is also more 

likely to have had asthma. Table 5.8 also shows that a child living in an area of 

high NO2 pollution is less likely to have had asthma (OR 0.97, CI 0.84 – 1.13); 

however these results were not statistically significant. 

Table 5.8 Time series analysis of three separate models looking at the impact 

of exposures to poverty, IMD and NO2 on asthma rates in children  

 Asthma OR  CI 95% 

Lives below the poverty line 1.44 *** 1.31 - 1.59 

Level of deprivation (IMD) low REF    
low-medium 1.36 *** 1.18 - 1.57  
medium-high 1.57 *** 1.36 - 1.80  
high 1.73 *** 1.50 - 2.00 

NO2 (level of pollution) low REF    
low-medium 0.95  0.85 - 1.05  
medium-high 0.95  0.84 - 1.08  
high 0.97  0.84 - 1.13 

Table 5.9 included all variables in a single model. From this, it can be seen that 

a child living below the poverty line (OR 1.25, CI 1.12 – 1.38), or in an area of 

higher deprivation (OR 1.63, CI 1.39 – 1.91) is statistically significantly more likely 

to have had asthma throughout their life, whilst a child living in an area of higher 

NO2 pollution is statistically significantly less likely to have had asthma over time 

(OR 0.80, CI 0.68 – 0.93). 

Table 5.9 Time series analysis looking at the impact of exposure to different 

levels of poverty, IMD and NO2 on asthma rates in children 

Asthma OR  CI 95% 

Lives below the poverty line 1.25 *** 1.12 - 1.38 

Level of deprivation (IMD) low REF   

 low-medium 1.34 *** 1.16 - 1.54 
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 medium-high 1.53 *** 1.32 - 1.78 

 high 1.63 *** 1.39 - 1.91 

NO2 (level of pollution) low REF   

 low-medium 0.89 ** 0.80 - 1.00 

 medium-high 0.87 ** 0.76 - 0.99 

 high 0.80 *** 0.68 - 0.93 

Table 5.10 further builds on this with the addition of individual level variables. A 

child living below the poverty line (OR 1.12, CI 1.00 – 1.24), as well as living in 

an area of higher deprivation (OR 1.38, CI 1.16 – 1.64) is statistically significantly 

more likely to have had asthma throughout their life. On the other hand, a child 

living in an area of higher NO2 pollution (OR 0.77, CI 0.64 – 0.92) is statistically 

significantly less likely to have had asthma. Furthermore, a female child is also 

statistically significantly less likely to have had asthma (OR 0.70, CI 0.63 – 0.79). 

A child that is obese (OR 1.33, CI 1.11 – 1.59), has a mother that is employed 

(OR 1.10, CI 1.00 – 1.22), has a mother that has asthma (OR 2.28, CI 2.01 – 

2.59), lives in social housing (OR 1.35, CI 1.18 – 1.55) or an urban area (OR 1.25, 

CI 1.06 – 1.47) is statistically significantly more likely to have had asthma 

throughout their life. 

Table 5.10 Time series analysis looking at the impact of exposure to different 

levels of poverty, IMD and NO2, and individual level variables, on asthma rates 

in children 

Asthma OR  CI 95% 

Lives below the poverty line 1.12 ** 1.00 - 1.25 

Level of deprivation (IMD) low REF   

 low-medium 1.27 *** 1.10 - 1.46 

 medium-high 1.33 *** 1.14 - 1.56 

 high 1.38 *** 1.16 - 1.64 

NO2 (level of pollution) low REF   

 low-medium 0.83 *** 0.74 - 0.94 

 medium-high 0.83 *** 0.72 - 0.95 

 high 0.77 *** 0.64 - 0.92 

Child is female 0.70 *** 0.63 - 0.79 

Child is White British 0.96  0.82 - 1.13 

Child is obese 1.33 *** 1.11 - 1.59 

Mother is employed 1.10 * 1.00 - 1.22 

Mother has asthma 2.28 *** 2.01 - 2.59 

Mother smokes 1.08  0.96 - 1.21 

Lives in social housing 1.35 *** 1.18 - 1.55 

Lives in urban area 1.25 *** 1.06 - 1.47 

Table 5.11 explores the interactions between time varying poverty, IMD and NO2 
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pollution. Four interaction terms are shown, and these are not statistically 

significant. 

Table 5.11 Time series analysis looking at the impact of different exposures on 

asthma rates in children, including interactions 

 Asthma OR   CI 95% 

Child is female 0.71 *** 0.63 - 0.79 

Child is White British 0.95  0.81 - 1.11 

Child is obese 1.33 ** 1.12 - 1.60 

Mother is employed 1.10  0.99 - 1.22 

Mother has asthma 2.28 *** 2.00 - 2.58 

Mother smokes 1.09  0.97 - 1.22 

Lives in social housing 1.36 *** 1.18 - 1.56 

Lives in urban area 1.28 ** 1.08 - 1.51 

Lives below the poverty line 1.23  0.76 - 2.01 

IMD score 1.01  1.00 - 1.02 

NO2 0.98 * 0.97 - 1.00 

Poverty*IMD 0.99  0.98 - 1.01 

Poverty*NO2 1.00  0.98 - 1.03 

IMD*NO2 1.00  1.00 - 1.00 

Poverty*IMD*NO2 1.00   1.00 - 1.00 

Table 5.12 is similar to Table 5.8, but includes all pollutants (PM10, PM2.5, NO and 

O3, as well as NO2). A child living below the poverty line (OR 1.44, CI 1.31 – 1.59) 

is statistically significantly more likely to have had asthma, as is a child living in 

areas of higher deprivation (OR 1.73, CI 1.50 – 2.00). Regarding the pollution 

variable, a child living in areas of higher PM10 (OR 1.03, CI 0.94 – 1.81) and NO2 

pollution (OR 1.30, CI 0.94 – 1.81) also has an increased likelihood of having had 

asthma throughout their life, however these results were not statistically 

significant. Furthermore, a child living in an area of high O3 (OR 0.99, CI 0.81 – 

1.23) or NO (OR 0.94, CI 0.68 – 1.31) pollution is less likely to have had asthma, 

although this also was not statistically significant. A child living in an area of higher 

PM2.5 pollution (OR 0.55, CI 0.39 – 0.76), however, was statistically significantly 

less likely to have had asthma. 

Table 5.12 Time series analysis of three separate models looking at the impact 

of exposures to poverty, IMD and all air pollutants on asthma rates in children 

 Asthma OR  CI 95% 

Lives below the poverty line 1.44 *** 1.31 - 1.59 

Level of deprivation (IMD) low REF    
low-medium 1.36 *** 1.18 - 1.57  
medium-high 1.57 *** 1.36 - 1.80 
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high 1.73 *** 1.50 - 2.00 

NO2 (level of pollution) low REF   

 low-medium 1.06  0.93 - 1.22 

 medium-high 1.12  0.90 - 1.40 

 high 1.30  0.94 - 1.81 

PM10 (level of pollution) low REF   

 low-medium 1.08  0.96 - 1.22 

 medium-high 1.09  0.88 - 1.35 

 high 1.03  0.73 - 1.46 

PM2.5 (level of pollution) low REF   

 low-medium 0.81 *** 0.72 - 0.91 

 medium-high 0.73 *** 0.61 - 0.88 

 high 0.55 *** 0.39 - 0.79 

NO (level of pollution) low REF   
 low-medium 0.94  0.82 - 1.08 
 medium-high 0.95  0.76 - 1.19 
 high 0.94  0.68 - 1.31 

O3 (level of pollution) low REF   
 low-medium 0.98  0.84 - 1.13 
 medium-high 0.92  0.77 - 1.10 
 high 1.00  0.81 - 1.23 

Table 5.13 presents the results of a single model that includes all the variables 

examined in Table 5.12. A child living below the poverty line (OR 1.26, CI 1.13 – 

1.39) is statistically significantly more likely to have had asthma throughout their 

life, as is a child living in areas of higher deprivation (OR 1.57, CI 1.33 – 1.84). A 

child living in areas of higher PM2.5 deprivation is statistically significantly less 

likely to have had asthma (OR 0.66, CI 0.46 – 0.94). 

Table 5.13 Time series analysis looking at the impact of exposure to different 

levels of poverty, IMD and all air pollutants on asthma rates in children 

Asthma OR  CI 95% 

Lives below the poverty line 1.26 *** 1.13 - 1.39 

Level of deprivation (IMD) low REF   

 low-medium 1.34 *** 1.16 - 1.54 

 medium-high 1.53 *** 1.32 - 1.77 

 high 1.57 *** 1.33 - 1.84 

NO2 (level of pollution) low REF   

 low-medium 0.95  0.83 - 1.10 

 medium-high 0.94  0.75 - 1.18 

 high 0.95  0.68 - 1.32 

PM10 (level of pollution) low REF   

 low-medium 1.07  0.95 - 1.21 

 medium-high 1.08  0.87 - 1.33 
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 high 0.90  0.63 - 1.29 

PM2.5 (level of pollution) low REF   

 low-medium 0.85 *** 0.76 - 0.96 

 medium-high 0.78 *** 0.65 - 0.93 

 high 0.66 ** 0.46 - 0.94 

NO (level of pollution) low REF   

 low-medium 0.96  0.83 - 1.09 

 medium-high 0.96  0.77 - 1.20 

 high 1.00  0.71 - 1.40 

O3 (level of pollution) low REF   

 low-medium 0.98  0.84 - 1.14 

 medium-high 0.91  0.75 - 1.09 

 high 0.93  0.75 - 1.15 

Table 5.14 includes the individual level variables. The analysis shows that a child 

living below the poverty line (OR 1.11, CI 0.99 – 1.24) or living in areas of higher 

deprivation (OR 1.31, CI 1.10 – 1.56) is statistically significantly more likely to 

have had asthma throughout their life. Furthermore, a child living in areas of 

higher PM2.5 pollution (OR 0.65, CI 0.45 – 0.95) is statistically significantly less 

likely to have had asthma. A female child (OR 0.70, CI 0.63 – 0.78) is also 

statistically significantly less likely to have ever had asthma, whilst a child that is 

obese (OR 1.34, CI 1.12 – 1.60), has a mother that has asthma (OR 2.29, CI 2.01 

– 2.60), lives in social housing (OR 1.37, CI 1.19 – 1.57) or an urban area (OR 

1.25, CI 1.05 – 1.47) is statistically significantly more likely to have had asthma. 

Table 5.14 Time series analysis looking at the impact of exposure to different 

levels of poverty, IMD and all pollutants, and individual level variables, on 

asthma rates in children 

Asthma OR  CI 95% 

Lives below the poverty line 1.11 * 0.99 - 1.24 

Level of deprivation (IMD) low REF   

 low-medium 1.26 *** 1.09 - 1.46 

 medium-high 1.32 *** 1.13 - 1.55 

 high 1.31 *** 1.10 - 1.56 

NO2 (level of pollution) low    

 low-medium 0.90  0.78 - 1.04 

 medium-high 0.91  0.72 - 1.15 

 high 0.96  0.68 - 1.35 

PM10 (level of pollution)  low REF   

 low-medium 1.07  0.95 - 1.21 

 medium-high 1.03  0.84 - 1.28 

 high 0.86  0.60 - 1.25 

PM2.5 (level of pollution)  low REF   
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 low-medium 0.85 *** 0.75 - 0.95 

 medium-high 0.78 *** 0.65 - 0.94 

 high 0.65 ** 0.45 - 0.95 

NO (level of pollution)  low REF   

 low-medium 0.97  0.84 - 1.11 

 medium-high 0.98  0.78 - 1.23 

 high 1.00  0.71 - 1.40 

O3 (level of pollution)  low REF   

 low-medium 0.98  0.84 - 1.15 

 medium-high 0.92  0.76 - 1.11 

 high 0.97  0.78 - 1.20 

Child is female 0.70 *** 0.63 - 0.78 

Child is White British 0.96  0.82 - 1.12 

Child is obese 1.34 *** 1.12 - 1.60 

Mother is employed 1.08  0.97 - 1.20 

Mother has asthma 2.29 *** 2.01 - 2.56 

Mother smokes 1.08  0.96 - 1.22 

Lives in social housing 1.37 *** 1.19 - 1.57 

Lives in urban area 1.25 *** 1.06 - 1.47 

 

5.2.3 Comparing the effects of initial and time-varying exposures on 

asthma 

To illustrate the difference between impacts on asthma rates based on exposures 

in Wave 1 and over time, Figures 1a and 1b show the log odds of a child having 

had asthma based on the IMD score of the LSOA that they lived in in Wave 1 

(5.1) or that they lived in in each wave (5.2). These graphs show that someone 

living in the least deprived quartile, either in Wave 1 or over time, is consistently 

less likely to have had asthma than someone living in a more deprived area. 

Figures 5.3 and 5.4 show the log odds of a child having had asthma based on 

the annual average NO2 concentration of the LSOA that they lived in in Wave 1 

(5.3) or that they lived in in each wave (5.4). These graphs show that there is not 

much variability over the quartiles. 

Figures 5.5 and 5.6 show the log odds of a child having had asthma based on 

whether they lived below the poverty line in Wave 1 (5.5) or in each wave (5.6). 

These graphs show that someone living above the poverty line, either initially or 

over time, is consistently less likely to have had asthma than someone living 

below the poverty line. 
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Whilst asthma is a good indicator of respiratory health, it may not be a 

consistently reliable predictor of poor respiratory health, as discussed previously. 

Indeed, wheezing within the previous 12 months may be a more reliable indicator 

of the current respiratory health of the cohort member. The next Section of this 

Chapter reruns the analysis with wheezing as the outcome variable. 
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Figure 5.1  The log odds of a child having had asthma throughout the five 

waves of the MCS based on the IMD score (separated into 

quartiles) of the LSOA they lived in during Wave 1.  

 

Figure 5.2  The log odds of a child having had asthma throughout the five 

waves of the MCS based on the IMD score (separated into 

quartiles) of the LSOA they lived in during each wave.  
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Figure 5.3  The log odds of a child having had asthma throughout the five 

waves of the MCS based on the annual average NO2 concentration 

(separated into quartiles) of the LSOA they lived in during Wave 1. 

 

Figure 5.4  The log odds of a child having had asthma throughout the five 

waves of the MCS based on the annual average NO2 concentration 

(separated into quartiles) of the LSOA they lived in during each 

wave. 
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Figure 5.5  The log odds of a child having had asthma throughout the five 

waves of the MCS based on their socio-economic situation (living 

below or above the poverty line) of the LSOA they lived in during 

Wave 1. 

 

Figure 5.6  The log odds of a child having had asthma throughout the five 

waves of the MCS based on their socio-economic situation (living 

below or above the poverty line) of the LSOA they lived in during 

each wave.  
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5.3 Time series analysis of wheezing rates 

5.3.1 Time series analysis of wheezing rates with initial exposures from 

Wave 1 

Analysis began by examining initial recordings of poverty, IMD and air pollution 

levels from Wave 1. Table 5.15 presents the results from three separate 

regression analyses for poverty, IMD and NO2 pollution at Wave 1. A child that 

lived below the poverty line at Wave 1 (OR 1.31, CI 1.19 – 1.44) is statistically 

significantly more likely to have wheezed in the previous 12 months, as is a child 

that initially lived in an area of higher deprivation (OR 1.32, CI 1.17 – 1.50). A 

child that lived in an area with a high level of NO2 pollution (OR 0.95, CI 0.82 – 

1.01) is less likely to have wheezed in the previous 12 months, however this 

relationship was not statistically significant. 

Table 5.15 Time series analysis of three separate models looking at the impact 

of exposures to poverty, IMD and NO2 in Wave 1 on wheezing rates in children 

 Wheeze OR  CI 95% 

Lives below the poverty line (initial) 1.31 *** 1.19 - 1.44 

Level of deprivation (IMD) (initial) low REF   

 low-medium 1.20 *** 1.05 - 1.38 

 medium-high 1.43 *** 1.27 - 1.62 

 high 1.32 *** 1.17 - 1.50 

NO2 (level of pollution) (initial) low REF   

 low-medium 0.94  0.81 - 1.09 

 medium-high 0.98  0.85 - 1.13 

 high 0.95  0.82 - 1.09 

Table 5.16 shows the results when these variables were included in a single 

model. Here it can be seen that a child that lived below the poverty line in Wave 

1 (OR 1.21, CI 1.09 – 1.35) is statistically significantly more likely to have 

wheezed in the previous 12 months, as is a child that lived in an area with higher 

levels of deprivation (OR 1.22, CI 1.05 – 1.41). A child that lived in an area of 

high NO2 pollution is statistically significantly less likely to have wheezed in the 

previous 12 months (OR 0.86, CI 0.74 – 1.00). 

Table 5.16 Time series analysis looking at the impact of exposure to different 

levels of poverty, IMD and NO2 in Wave 1 on wheezing rates in children 

Wheeze OR  CI 95% 

Lives below the poverty line (initial) 1.21 *** 1.09 - 1.35 

Level of deprivation (IMD) (initial) low REF   
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 low-medium 1.17 ** 1.03 - 1.34 

 medium-high 1.38 *** 1.22 - 1.57 

 high 1.22 *** 1.05 - 1.41 

NO2 (level of pollution) (initial) low REF   

 low-medium 0.92  0.79 - 1.07 

 medium-high 0.94  0.82 - 1.08 

 high 0.86 ** 0.74 - 1.00 

Table 5.17 includes individual variables in the regression. From this analysis, a 

child that lived in an area of low-medium (OR 1.12, CI 0.98 – 1.28) or medium-

high levels of deprivation in Wave 1 (OR 1.28, CI 1.12 – 1.46) is statistically 

significantly more likely to have wheezed in the previous 12 months. A child that 

lived in an area of high NO2 pollution in Wave 1 (OR 0.82, CI 0.70 – 0.97) is 

statistically significantly less likely to have wheezed in the previous 12 months. 

Furthermore, a female child (OR 0.73, CI 0.67 – 0.80) is also statistically 

significantly less likely to have wheezed in the previous 12 months, whilst a child 

that is obese (OR 1.33, CI 1.13 – 1.57), has a mother with asthma (OR 1.86, CI 

1.70 – 2.11), has a mother that smokes (OR 1.11, CI 1.01 – 1.23) or lives in an 

urban area (OR 1.21, CI 1.05 – 1.39) is statistically significantly more likely to 

have wheezed in the previous 12 months. 

Table 5.17 Time series analysis looking at the impact of exposure to different 

levels of poverty, IMD and NO2 in Wave 1, and individual level variables, on 

wheezing rates in children. 

Wheeze OR  CI 95% 

Lives below the poverty line (initial) 1.09  0.97 - 1.23 

Level of deprivation (IMD) (initial) low REF   

 low-medium 1.12 * 0.98 - 1.28 

 medium-high 1.28 *** 1.12 - 1.46 

 high 1.11  0.96 - 1.29 

NO2 (level of pollution) (initial) low REF   

 low-medium 0.89  0.76 - 1.03 

 medium-high 0.87 * 0.74 - 1.01 

 high 0.82 ** 0.70 - 0.97 

Child is female 0.73 *** 0.67 - 0.80 

Child is White British 0.96  0.84 - 1.10 

Child is obese 1.33 *** 1.13 - 1.57 

Mother is employed 0.96  0.88 - 1.05 

Mother has asthma 1.89 *** 1.69 - 2.11 

Mother smokes 1.11 ** 1.01 - 1.23 

Lives in social housing 1.10  0.98 - 1.24 

Lives in urban area 1.21 *** 1.05 - 1.39 
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Table 5.18 explores the interactions between poverty, IMD and NO2 pollution at 

Wave 1 and how they interact with each other over time to influence wheezing 

rates among the cohort members. Four interaction terms are analysed, however 

these are not statistically significant. However, the relationship in the three-way 

interaction (poverty*IMD*NO2) is positive, which means that those living in 

poverty, in a more deprived and polluted area are more likely to have wheezed 

over time. 

Table 5.18 Time series analysis looking at the impact of different exposures on 

wheezing rates in children, including interactions 

 Wheeze OR  CI 95% 

Child is female 0.73 *** 0.67 - 0.80 

Child is White British 0.96  0.84 - 1.09 

Child is obese 1.34 *** 1.14 - 1.58 

Mother is employed 0.96  0.88 - 1.05 

Mother has asthma 1.89 *** 1.69 - 2.11 

Mother smokes 1.12 * 1.01 - 1.23 

Lives in social housing 1.11  0.98 - 1.24 

Lives in urban area 1.21 ** 1.05 - 1.39 

Lives below the poverty line (initial) 1.53  0.46 - 5.06 

IMD (initial) 0.97  0.73 - 1.31 

NO2 (initial) 1.03  0.80 - 1.35 

Poverty*IMD (initial) 0.86  0.53 - 1.40 

Poverty*NO2 (initial) 0.84  0.57 - 1.24 

IMD*NO2 (initial) 0.97  0.87 - 1.07 

Poverty*IMD*NO2 (initial) 1.08  0.92 - 1.28 

Table 5.19 builds on Table 5.15 by running a regression that includes all pollutant 

variables, PM10, PM2.5, NO and O3, in addition to NO2, as well as regressions 

looking at IMD and poverty exposure at Wave 1. A child living below the poverty 

line in Wave 1 (OR 1.31, CI 1.19 – 1.44) is statistically significantly more likely to 

have wheezed in the previous year, as is a child living in an area of higher 

deprivation (OR 1.32, CI 1.17 – 1.50). A child that resided in an area of low-

medium levels of O3 pollution in Wave 1 (OR 1.20, CI 1.01 – 1.43) is also 

statistically significantly more likely to have wheezed in the previous year, whilst 

a child living in an area of low-medium NO pollution in Wave 1 (OR 0.70, CI 0.56 

– 0.88) is statistically significantly less likely to have wheezed in the previous 

year. 
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Table 5.19 Time series analysis of three separate models looking at the impact 

of exposures to poverty, IMD and all air pollutants in Wave 1 on wheezing rates 

in children 

 Wheeze OR  CI 95% 

Lives below the poverty line (initial) 1.31 *** 1.19 - 1.44 

Level of deprivation (IMD) (initial) low REF   

 low-medium 1.20 *** 1.05 - 1.37 

 medium-high 1.43 *** 1.27 - 1.62 

 high 1.32 *** 1.17 - 1.50 

NO2 (level of pollution) (initial) low REF   

 low-medium 1.18  0.96 - 1.46 

 medium-high 1.14  0.83 - 1.58 

 high 1.36  0.85 - 2.18 

PM10 (level of pollution) (initial) low REF   

 low-medium 0.91  0.63 - 1.32 

 medium-high 1.05  0.70 - 1.57 

 high 1.09  0.70 - 1.69 

PM2.5 (level of pollution) (initial) low REF   

 low-medium 0.87  0.64 - 1.18 

 medium-high 0.90  0.58 - 1.40 

 high 0.86  0.54 - 1.37 

NO (level of pollution) (initial) low REF   

 low-medium 0.70 *** 0.56 - 0.88 

 medium-high 0.92  0.67 - 1.27 

 high 0.75  0.47 - 1.18 

O3 (level of pollution) (initial) low REF   

 low-medium 1.20 ** 1.01 - 1.43 

 medium-high 1.17  0.90 - 1.52 

 high 1.00  0.71 - 1.43 

Table 5.20 shows the results of a single regression including all the variables 

seen in Table 5.19. A child living below the poverty line in Wave 1 (OR 1.21, CI 

1.09 – 1.35) is statistically significantly more likely to have wheezed over time, as 

is a child that lived in an area of higher deprivation in Wave 1 (OR 1.22, CI 1.06 

– 1.42), and also a child that lived in an area of low-medium O3 pollution (OR 

1.22, CI 1.02 – 1.46). A child living in an area of low-medium NO pollution in Wave 

1 (OR 0.72, CI 0.58 – 0.91) is statistically significantly less likely to have wheezed 

in the previous year. A child living in an area of high NO2 (OR 1.05, CI 0.64 – 

1.72) or high PM10 (OR 1.11, CI 0.71 – 1.74) pollution is more likely to have 

experienced wheezing over time, although this was not statistically significant. A 

child living in area of high PM2.5 (OR 0.87, CI 0.54 – 1.39) is less likely to have 

wheezed, although this was again not statistically significant. 
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Table 5.20 Time series analysis looking at the impact of exposure to different 

levels of poverty, IMD and all air pollutants in Wave 1 on wheezing rates in 

children 

Wheeze OR  CI 95% 

Lives below the poverty line (initial) 1.21 *** 1.08 - 1.35 

Level of deprivation (IMD) (initial) low REF   

 low-medium 1.15 ** 1.01 - 1.32 

 medium-high 1.37 *** 1.20 - 1.56 

 high 1.22 *** 1.06 - 1.42 

NO2 (level of pollution) (initial) low REF   

 low-medium 1.09  0.88 - 1.35 

 medium-high 1.00  0.72 - 1.39 

 high 1.05  0.64 - 1.72 

PM10 (level of pollution) (initial) low REF   

 low-medium 0.98  0.67 - 1.42 

 medium-high 1.10  0.74 - 1.66 

 high 1.11  0.71 - 1.74 

PM2.5 (level of pollution) (initial) low REF   

 low-medium 0.86  0.63 - 1.17 

 medium-high 0.89  0.57 - 1.39 

 high 0.87  0.54 - 1.39 

NO (level of pollution) (initial) low REF   

 low-medium 0.72 *** 0.58 - 0.91 

 medium-high 0.96  0.70 - 1.32 

 high 0.86  0.54 - 1.38 

O3 (level of pollution) (initial) low REF   

 low-medium 1.22 ** 1.02 - 1.46 

 medium-high 1.15  0.88 - 1.49 

 high 0.98  0.69 - 1.39 

Table 5.21 includes individual level variables in the regression, and indicates that 

a child that lived in an area of medium-high deprivation in Wave 1 (OR 1.27, CI 

1.11 – 1.45) or an area with low-medium O3 pollution in Wave 1 (OR 1.22, CI 1.10 

– 1.45) is statistically significantly more likely to have wheezed in the previous 

year, whilst a child that lived in an area of low-medium NO pollution in Wave 1 

(OR 0.72, CI 0.57 – 0.91) is statistically significantly less likely to have wheezed 

in the previous year. Furthermore, a female child (OR 0.74, CI 0.67 – 0.81) is 

statistically significantly less likely to have wheezed in the previous year, whilst a 

child that is obese (OR 1.34, CI 1.14 – 1.58), has a mother that has asthma (OR 

1.89, CI 1.69 – 2.11), has a mother that smokes (OR 1.11, CI 1.01 – 1.23) or lives 

in an urban area (OR 1.20, CI 1.05 – 1.39) is statistically significantly more likely 

to have wheezed in the previous year. 
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Table 5.21 Time series analysis looking at the impact of exposure to different 

levels of poverty, IMD and all pollutants in Wave 1, and individual level 

variables, on wheezing rates in children 

Wheeze OR  CI 95% 

Lives below the poverty line (initial) 1.09  0.97 - 1.22 

Level of deprivation (IMD) (initial) low REF   

 low-medium 1.10  0.97 - 1.26 

 medium-high 1.27 *** 1.11 - 1.45 

 high 1.12  0.96 - 1.30 

NO2 (level of pollution) (initial) low REF   

 low-medium 1.05  0.84 - 1.31 

 medium-high 0.92  0.66 - 1.29 

 high 0.99  0.60 - 1.63 

PM10 (level of pollution) (initial) low REF   

 low-medium 0.93  0.64 - 1.34 

 medium-high 1.02  0.68 - 1.53 

 high 1.02  0.65 - 1.59 

PM2.5 (level of pollution) (initial) low REF   

 low-medium 0.89  0.65 - 1.21 

 medium-high 0.95  0.61 - 1.48 

 high 0.93  0.58 - 1.50 

NO (level of pollution) (initial) low REF   

 low-medium 0.72 *** 0.57 - 0.91 

 medium-high 0.95  0.69 - 1.31 

 high 0.87  0.54 - 1.39 

O3 (level of pollution) (initial) low REF   

 low-medium 1.22 ** 1.02 - 1.45 

 medium-high 1.11  0.85 - 1.45 

 high 0.97  0.68 - 1.40 

Child is female 0.74 *** 0.67 - 0.81 

Child is White British 0.96  0.84 - 1.10 

Child is obese 1.34 *** 1.14 - 1.58 

Mother is employed 0.96  0.88 - 1.04 

Mother has asthma 1.89 *** 1.69 - 2.11 

Mother smokes 1.11 ** 1.01 - 1.23 

Lives in social housing 1.10  0.98 - 1.23 

Lives in urban area 1.20 ** 1.04 - 1.39 

 

5.3.2 Time series analysis of wheezing rates with time varying exposures 

Building on the analysis presented above, the analysis moves on to explore the 

impact of poverty, IMD and air pollution concentration as time varying variables 

on the respiratory health for our cohort, using wheezing as the outcome variable. 
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Table 5.22 shows the results of three separate regressions, similar to table 5.15. 

From this, it can be seen that a child living below the poverty line (OR 1.30, CI 

1.19 – 1.41) is statistically significantly more likely to have wheezed in the 

previous year. A child living in an area with higher levels of deprivation (OR 1.37, 

CI 1.21 – 1.55) is also more likely to have wheezed in the previous year, as is a 

child living in an increasingly polluted area (OR 1.19, CI 1.05 – 1.36) as measured 

by NO2. 

Table 5.22 Time series analysis of three separate models looking at the impact 

of exposures to poverty, IMD and NO2 on wheezing rates in children  

 Wheeze OR  CI 95% 

Lives below the poverty line 1.30 *** 1.19 - 1.41 

Level of deprivation (IMD) low REF    
low-medium 1.22 *** 1.08 - 1.38  
medium-high 1.42 *** 1.26 - 1.60  
high 1.37 *** 1.21 - 1.55 

NO2 (level of pollution)  low REF    
low-medium 1.10 * 0.99 - 1.21  
medium-high 1.18 *** 1.05 - 1.32  
high 1.19 *** 1.05 - 1.36 

Table 5.23 includes all variables of interest in one single regression. A child living 

below the poverty line (OR 1.18, CI 1.07 – 1.30) is statistically significantly more 

likely to have wheezed in the previous year. A child living in areas of higher 

deprivation (OR 1.23, CI 1.07 – 1.41) is also statistically significantly more likely 

to have wheezed in the previous year, whilst a child living in an area of medium-

high NO2 pollution (OR 1.12, CI 1.00 – 1.26) is also statistically significantly more 

likely to have wheezed in the previous year. 

Table 5.23 Time series analysis looking at the impact of exposure to different 

levels of poverty, IMD and NO2 in Wave 1 on wheezing rates in children 

Wheeze OR  CI 95% 

Lives below the poverty line 1.18 *** 1.07 - 1.30 

Level of deprivation (IMD) low REF   

 low-medium 1.20 *** 1.06 - 1.35 

 medium-high 1.33 *** 1.18 - 1.51 

 high 1.23 *** 1.07 - 1.41 

NO2 (level of pollution)  low REF   

 low-medium 1.07  0.96 - 1.18 

 medium-high 1.12 ** 1.00 - 1.26 

 high 1.07  0.94 - 1.22 
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Table 5.24 includes individual level variables in the analysis. A child living in an 

area of low-medium (OR 1.15, CI 1.02 – 1.30) or medium-high levels of 

deprivation (OR 1.23, CI 1.08 – 1.40) is statistically significantly more likely to 

have wheezed in the previous 12 months, as is a child that lived in an area of 

medium-high NO2 pollution (OR 1.12, CI 0.99 – 1.27). A female child (OR 0.74, 

CI 0.67 – 0.81) is statistically significantly less likely to have wheezed in the 

previous 12 months. A child that is obese (OR 1.33, CI 1.13 – 1.57), has a mother 

that has asthma (OR 1.90, CI 1.70 – 2.12), has a mother that smokes (OR 1.12, 

CI 1.02 – 1.24) or lives in social housing (OR 1.11, CI 0.99 – 1.25) is statistically 

significantly more likely to have wheezed in the previous 12 months. 

Table 5.24 Time series analysis looking at the impact of exposure to different 

levels of poverty, IMD and NO2, and individual level variables, on asthma rates 

in children 

Wheeze OR  CI 95% 

Lives below the poverty line 1.08  0.97 - 1.20 

Level of deprivation (IMD) low REF   

 low-medium 1.15 ** 1.02 - 1.30 

 medium-high 1.23 *** 1.08 - 1.40 

 high 1.11  0.96 - 1.29 

NO2 (level of pollution)  low REF   

 low-medium 1.04  0.93 - 1.16 

 medium-high 1.12 * 0.99 - 1.27 

 high 1.10  0.94 - 1.27 

Child is female 0.74 *** 0.67 - 0.81 

Child is White British 1.02  0.90 - 1.17 

Child is obese 1.33 *** 1.13 - 1.57 

Mother is employed 0.97  0.89 - 1.06 

Mother has asthma 1.90 *** 1.70 - 2.12 

Mother smokes 1.12 ** 1.02 - 1.24 

Lives in social housing 1.11 * 0.99 - 1.25 

Lives in urban area 1.09  0.94 - 1.25 

Table 5.25 explores the interactions between poverty, IMD and NO2 pollution over 

time and how they interact to influence wheezing rates among the cohort 

members. Four interaction terms are shown, and these are not statistically 

significant. 

Table 5.25 Time series analysis looking at the impact of different exposures on 

wheezing rates in children, including interactions 

 Wheeze OR   CI 95% 

Child is female 0.74 *** 0.67 - 0.81 
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Child is White British 1.03  0.90 - 1.17 

Child is obese 1.34 *** 1.14 - 1.57 

Mother is employed 0.97  0.89 - 1.06 

Mother has asthma 1.90 *** 1.70 - 2.12 

Mother smokes 1.13 * 1.02 - 1.25 

Lives in social housing 1.11  0.99 - 1.25 

Lives in urban area 1.11  0.96 - 1.27 

Lives below the poverty line 1.25  0.82 - 1.92 

IMD score 1.01  1.00 - 1.01 

NO2 1.01  1.00 - 1.02 

Poverty*IMD 0.99  0.98 - 1.01 

Poverty*NO2 1.00  0.98 - 1.02 

IMD*NO2 1.00  1.00 - 1.00 

Poverty*IMD*NO2 1.00   1.00 - 1.00 

Table 5.26 includes all pollutants of interest, once again run in separate models 

from both poverty and IMD. A child living below the poverty line (OR1.30, CI 1.19 

– 1.41) is statistically significantly more likely to have wheezed in the previous 12 

months throughout their life, as is a child living in an area with higher deprivation 

(OR 1.37, CI 1.21 – 1.55). A child living in areas of higher PM2.5 pollution (OR 

1.68, CI 1.22 – 2.32) is also statistically significantly more likely to have wheezed 

in the previous 12 months. A child living in areas of high NO2 (OR 0.87, CI 0.63 

– 1.20) or PM10 (OR 0.81, CI 0.60 – 1.11) pollution is less likely to have had 

wheezing, whilst a child living in area of high NO pollution (OR 1.13, CI 0.82 – 

1.57) is more likely to have experienced recent wheezing over time. 

Table 5.26 Time series analysis of three separate models looking at the impact 

of exposures to poverty, IMD and all air pollutants on wheezing rates in children 

 Wheeze OR  CI 95% 

Lives below the poverty line 1.30 *** 1.19 - 1.41 

Level of deprivation (IMD) low REF    
low-medium 1.22 *** 1.08 - 1.38  
medium-high 1.42 *** 1.26 - 1.60  
high 1.37 *** 1.21 - 1.55 

NO2 (level of pollution)  low REF   

 low-medium 1.04  0.90 - 1.19 

 medium-high 1.00  0.81 - 1.24 

 high 0.87  0.63 - 1.20 

PM10 (level of pollution)  low REF   

 low-medium 1.06  0.94 - 1.19 

 medium-high 0.95  0.78 - 1.15 

 high 0.81  0.60 - 1.11 

PM2.5 (level of pollution)  low REF   
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 low-medium 1.31 *** 1.16 - 1.47 

 medium-high 1.55 *** 1.30 - 1.84 

 high 1.68 *** 1.22 - 2.32 

NO (level of pollution)  low REF   
 low-medium 1.00  0.87 - 1.15 
 medium-high 1.02  0.82 - 1.26 
 high 1.13  0.82 - 1.57 

O3 (level of pollution)  low REF   
 low-medium 0.97  0.84 - 1.12 
 medium-high 0.93  0.78 - 1.10 
 high 1.03  0.84 - 1.26 

Table 5.27 runs all these variables in one model. A child living below the poverty 

line (OR 1.17, CI 1.06 – 1.29) or in an area of higher deprivation (OR 1.33, CI 

1.15 – 1.53) is statistically significantly more likely to have wheezed in the 

previous 12 months. A child living in areas of high PM10 pollution (OR 0.73, CI 

0.53 – 1.01) or high NO2 pollution (OR 0.70, CI 0.50 – 0.97) is statistically 

significantly less likely to have wheezed in the previous 12 months. A child living 

in areas of higher PM2.5 pollution (OR 1.89, CI 1.35 – 2.63) is statistically 

significantly more likely to have wheezed in the previous 12 months. 

Table 5.27 Time series analysis looking at the impact of exposure to different 

levels of poverty, IMD and all air pollutants on wheezing rates in children 

Wheeze OR  CI 95% 

Lives below the poverty line 1.17 *** 1.06 - 1.29 

Level of deprivation (IMD) low REF   

 low-medium 1.22 *** 1.08 - 1.38 

 medium-high 1.38 *** 1.22 - 1.56 

 high 1.33 *** 1.15 - 1.53 

NO2 (level of pollution)  low REF   

 low-medium 0.97  0.84 - 1.11 

 medium-high 0.89  0.72 - 1.11 

 high 0.70 ** 0.50 - 0.97 

PM10 (level of pollution)  low REF   

 low-medium 1.05  0.93 - 1.19 

 medium-high 0.93  0.77 - 1.13 

 high 0.73 * 0.53 - 1.01 

PM2.5 (level of pollution)  low REF   

 low-medium 1.35 *** 1.20 - 1.52 

 medium-high 1.61 *** 1.36 - 1.92 

 high 1.89 *** 1.35 - 2.63 

NO (level of pollution)  low REF   

 low-medium 1.02  0.88 - 1.17 

 medium-high 1.04  0.83 - 1.29 
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 high 1.20  0.86 - 1.66 

O3 (level of pollution)  low REF   

 low-medium 0.97  0.84 - 1.13 

 medium-high 0.92  0.78 - 1.09 

 high 0.99  0.81 - 1.21 

Table 5.28 builds on this by including the individual level variables. A child living 

in an area of high deprivation (OR 1.20, CI 1.03 – 1.39) is statistically significantly 

more likely to have wheezed in the previous 12 months, as is a child living in 

areas of higher PM2.5 pollution (OR 1.89, CI 1.35 – 2.65). A child living in an area 

of high PM10 pollution (OR 0.72, CI 0.52 – 0.99) is statistically significantly less 

likely to have wheezed in the previous 12 months, as is a child living in an area 

of high NO2 pollution (OR 0.72, CI 0.51 – 0.99). A female child (OR 0.74, CI 0.67 

– 0.81) is also statistically significantly less likely to have wheezed in the previous 

12 months, whilst a child that is obese (OR 1.35, CI 1.14 – 1.59), has a mother 

that has asthma (OR 1.90, CI 1.70 – 2.12) or a mother that smokes (OR 1.11, CI 

1.00 – 1.23) is statistically significantly more likely to have wheezed in the 

previous 12 months. 

Table 5.28 Time series analysis looking at the impact of exposure to different 

levels of poverty, IMD and all pollutants, and individual level variables, on 

wheezing rates in children 

Wheeze OR  CI 95% 

Lives below the poverty line 1.08  0.97 - 1.20 

Level of deprivation (IMD) low REF   

 low-medium 1.17 ** 1.04 - 1.32 

 medium-high 1.26 *** 1.11 - 1.44 

 high 1.20 ** 1.03 - 1.39 

NO2 (level of pollution)  low REF   

 low-medium 0.94  0.82 - 1.08 

 medium-high 0.88  0.70 - 1.09 

 high 0.72 ** 0.51 - 1.00 

PM10 (level of pollution)  low REF   

 low-medium 1.05  0.93 - 1.18 

 medium-high 0.91  0.75 - 1.11 

 high 0.72 ** 0.52 - 0.99 

PM2.5 (level of pollution)  low REF   

 low-medium 1.35 *** 1.20 - 1.52 

 medium-high 1.61 *** 1.35 - 1.93 

 high 1.89 *** 1.35 - 2.65 

NO (level of pollution)  low REF   

 low-medium 1.03  0.89 - 1.19 
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 medium-high 1.06  0.86 - 1.32 

 high 1.22  0.88 - 1.69 

O3 (level of pollution)  low REF   

 low-medium 0.98  0.84 - 1.13 

 medium-high 0.93  0.79 - 1.11 

 high 1.02  0.83 - 1.25 

Child is female 0.74 *** 0.67 - 0.81 

Child is White British 1.02  0.89 - 1.16 

Child is obese 1.35 *** 1.14 - 1.59 

Mother is employed 1.00  0.92 - 1.10 

Mother has asthma 1.90 *** 1.70 - 2.12 

Mother smokes 1.11 ** 1.00 - 1.23 

Lives in social housing 1.10  0.98 - 1.24 

Lives in urban area 1.12  0.97 - 1.30 

5.3.3 Comparing the effects of initial and time-varying exposures on 

wheezing 

To illustrate the difference between impacts on wheezing rates based on 

exposures in Wave 1 and over time, Figures 5.7 and 5.8 show the log odds of a 

parent reporting that a child had wheezing based on the IMD score of the LSOA 

that they lived in in Wave 1 (5.7) or that they lived in in each wave (5.8). These 

graphs show that someone living in the least deprived quartile, either initially or 

over time, is consistently less likely to have had wheezing than someone living in 

a more deprived area. 

Figures 5.9 and 5.10 show the log odds of a child having had wheezing based on 

the annual average NO2 concentration of the LSOA that they lived in in Wave 1 

(5.9) or that they lived in in each wave (5.10). As with asthma as the outcome 

variable, these graphs show that there is not much variability over the quartiles, 

however, someone living in an area with lower levels of NO2 pollution are shown 

to be more likely to have had wheezing. 

Figures 5.11 and 5.12 show the log odds of a child having had wheezing based 

on if they lived below the poverty line in Wave 1 (5.11) or in each Wave (5.12). 

These graphs show that someone living above the poverty line, either initially or 

over time, is consistently less likely to have had wheezing than someone living 

below the poverty line. 
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Figure 5.7 The log odds of a child having wheezed in the previous 12 

months throughout the five waves of the MCS based on the 

IMD score (separated into quartiles) of the LSOA they lived 

in during Wave 1. 

 

Figure 5.8 The log odds of a child having wheezed in the previous 12 

months throughout the five waves of the MCS based on the 

IMD score (separated into quartiles) of the LSOA they lived 

in during each wave. 
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Figure 5.9 The log odds of a child having wheezed in the previous 12 

months throughout the five waves of the MCS based on the 

annual average NO2 concentration (separated into quartiles) 

of the LSOA they lived in during Wave 1. 

 

Figure 5.10 The log odds of a child having wheezed in the previous 12 

months throughout the five waves of the MCS based on the 

annual average NO2 concentration (separated into quartiles) 

of the LSOA they lived in during each wave. 
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Figure 5.11 The log odds of a child having wheezed in the previous 12 

months throughout the five waves of the MCS based on their 

individual level socio-economic status during Wave 1. 

 

Figure 5.12  The log odds of a child having wheezed in the previous 12 

months throughout the five waves of the MCS based on their 

individual level socio-economic status during each wave. 
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5.4 Conclusion 

Using a time series analysis and the inclusion of initial and time-varying variants 

of poverty, IMD and pollution variables allowed for an in-depth analysis of their 

impacts on respiratory health amongst cohort members over time. The analysis 

presented here, allows for the exploration of the impact that each variable has on 

respiratory health separately, whilst the inclusion of the interaction terms further 

builds on these findings and allows assumptions to be made about how said 

socio-economic status variables interact with each other, as well as exposure to 

NO2. 

The results show that socio-economic status at both the individual and area level 

impacted the respiratory health of cohort members and increased their likelihood 

of both having had asthma and having wheezed in the previous 12 months, 

regardless of whether or not they were initially exposed to higher levels of poverty 

and deprivation, or experienced increased poverty and deprivation at later stages 

in their childhood. However, the findings show that initial exposure to higher levels 

of poverty in Wave 1 has a greater impact on respiratory health when compared 

to exposure over time. Conversely, exposure to higher levels of deprivation over 

time has a greater effect on respiratory health than exposure in Wave 1. The 

results show that it is important to consider both the critical period of a child’s 

early development whilst also taking into consideration the accumulative effect 

that said exposures have on their health. 

Other findings were similar to those seen in Chapter 5. Female children were less 

likely to have experienced asthma or wheezing, whilst children that were obese, 

had a mother with asthma, had a mother that was in employment, lived in social 

housing or lived in an urban area were all more likely to have experienced asthma 

or wheezing. 

When examining the impacts of air pollution on asthma and wheezing, exposure 

to higher levels of NO2 in Wave 1 resulted in decreased rates of asthma and 

wheezing over time, whilst time-varying exposures to NO2 results in decreased 

rates of asthma only. This means that children that have lived in the most polluted 

areas during their early years (Wave 1) would be less likely to experience asthma 

or wheezing over time, and children living in the most polluted areas throughout 

their life would also be less likely to experience respiratory health problems.  
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Conversely, time-varying exposures to NO2 resulted in increased rates of 

wheezing over time. A full discussion examining these results is offered in 

Chapter 7. Whilst negative associations between respiratory health and air 

pollution exposure contradict the hypothesis, this Chapter highlights the 

importance of including a temporal aspect in environmental health research. In 

an attempt to further explore the impacts on respiratory health and the 

interactions between variables, multilevel modelling will be used to analyse the 

data whilst taking both the temporal and spatial aspect of the data into 

consideration, and this is discussed in Chapter 6.  
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Chapter 6. Multilevel Modelling 

 

6.1 Introduction 

This chapter presents the results of the multilevel modelling analysis. As outlined 

in Chapter 3, multilevel models account for the nested structure of observations 

at different levels. Multilevel modelling is an important component of this thesis 

as it is a robust analytical method allowing for both spatial and temporal data to 

be taken into consideration during analysis. As with Chapter 4 and 5, the main 

predicator of interest is air pollution across time. A 3-level logistic multilevel model 

was used to predict the difference between both parental reported asthma and 

parental reported wheezing structured by year (level 1), participant (level 2) and 

MSOA (level 3). Individual covariates are the same as those outlined in Chapter 

3 and reported in Chapter 4 and 5. Area level covariates include area level 

deprivation as measured by the Index of Multiple Deprivation.  

In specifying the multilevel model, the LSOA level was originally considered as 

the spatial scale for level 3. Descriptive statistics indicated that while data was 

available at the LSOA level for all of MCS waves, there was a large proportion of 

LSOAs in which there was only one cohort member.  For example, 38% of LSOAs 

had only one cohort member residing in them in Wave 5 (Table 6.1 and Table 

6.2). However, moving up one administrative boundary to MSOA level, only 18% 

of MSOAs had only one cohort number. Similarly, only 3% of LSOAs had 11 or 

more respondents at this wave, compared to 39% of MSOAs. Although the issue 

of small numbers remains even using the MSOA administrative boundary, 

aggregating the IMD to Local Authority or regional level risked introducing 

ecological fallacy into the analysis (Morrissey et al., 2021b). Based on these 

considerations, air pollution data and IMD was aggregated up to the MSOA level. 

Furthermore, there is the potential that London, a wealthy yet polluted city (Font 

et al., 2019), could skew the results of the analyses. To counteract this, analyses 

were also run for England with London excluded, as well as for London only, the 

results of which are available in Section 6.5. 
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Table 6.1 Number of respondents per LSOA (%) 

No. of Wave 

respondents 1 2 3 4 5 

1 2.1 20.9 28.0 32.8 38.0 

2-10 36.0 60.4 62.3 61.1 58.9 

11+ 61.8 18.7 9.7 6.1 3.1 

 

Table 6.2 Number of respondents per MSOA (%) 

No. of Wave 

respondents 1 2 3 4 5 

1 1.2 11.4 13.7 15.2 18.3 

2-10 5.7 22.3 30.9 36.6 42.6 

11+ 93.1 66.3 55.5 48.2 39.1 

 

Results are presented for both the random part parameters and the fixed part 

parameters. As before, both asthma and wheezing are included as the indicators 

of respiratory health, and analyses are run for models focussing only on NO2. 

Interaction terms are also included in the analysis with the intent of answering the 

hypothesis posed in this thesis: 

 The association between respiratory health and air pollution is stronger 

amongst individuals of lower, compared to higher, socio-economic status. 

 Area level deprivation will interact with individual socio-economic status so 

that the impact of pollution on respiratory health is stronger for people with 

low socio-economic status living in the most deprived areas than people 

with low socio-economic status living in less deprived areas. 

Following the presentation of the results examining England as a whole, the 

results from the analyses focussing on England excluding London, and London 

only are reported. Again, baseline, individual level, area level and interaction 

models are presented. Separate multilevel models were also conducted for 

England, England excluding London, and London only for all other pollutants, as 

were multilevel models including interactions. These are not discussed here but 

are presented in Tables D.1 to D.16 in Appendix D. 

6.2 Multilevel modelling analysis of asthma prevalence 

This section will examine the outputs for the asthma model, first presenting the 

baseline model before building on this by including individual and area level 

variables as well as interaction terms. Using the Deviance Information Criterion 



 

145 

(DIC) presented during modelling, the models presented in this chapter are 

estimated to be the best fit for the analyses. 

6.2.1 Baseline model 

Table 6.3 depicts the baseline model (null model) for asthma. Table 6.3 shows 

the between-MSOA variance is estimated to be 0.002, whilst the within-MSOA 

(between-individual) variance is estimated to be 19.93. These results allow for 

the intraclass correlation coefficient (ICC) to be calculated, which gives an ICC 

0.001 for level 3 (MSOA level) and 0.86 for the level 2 (individual level). From 

this, the ICC can be extrapolated for level 1 (time level) as the total variance must 

add up to 1, giving an ICC of 0.14.  

Using the ICC, the variance partition coefficient (VPC) can be calculated, giving 

level 3, 2 and 1 a VPC of 0.05, 85.83 and 14.12 respectively. This means that 

less than 1% (0.05%) of the variation in asthma lies between MSOAs, 86% of the 

variation in asthma lies between individuals, and 14% of the variation in asthma 

outcomes lies between waves.  

Table 6.3 Asthma baseline multilevel model 

Random part parameters Mean 95% CI VPC 

Level 3: MSOA 0.002 0.001 0.003 0.05 

Level 2: Individual 19.93 17.04 22.16 85.83 

Level 1: Wave       14.12 

 

6.2.2  Including individual level variables 

Table 6.4.1 builds on the preliminary null model by including variables at the 

individual level. This table shows that a female child (OR 0.46, CI 0.36 – 0.58) is 

less likely to have had asthma over time, and is statistically significant. This 

finding is in line with results from the cross-sectional and time series analysis. A 

child that is mixed-race (OR 1.74, CI 0.98 – 2.75), is obese (OR 1.71, CI 1.23 – 

2.27), has a mother that is employed (OR 1.21, CI 1.00 – 1.41), has a mother 

with asthma (OR 9.61, CI 7.27 – 12.45), has a mother that smokes (OR 1.41, CI 

1.14 – 1.71), lives in an urban area (OR1.82, CI 1.33 – 2.59) or lives below the 

poverty line (OR 1.41, CI 1.18 – 1.64) is statistically significantly more likely to 

have had asthma throughout their life. Again, these findings are in line with 

findings from previous results from cross-sectional and time series analyses. 
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The random parts parameters table in Table 6.4.1 shows that the between-MSOA 

variance (mean) is 0.05 and the within-MSOA variance is 18.75. The VPC was 

calculated to show that around 1% of the variation in asthma lies between MSOAs 

and 85% of the variation in asthma lies within MSOAs. The variation in asthma 

between waves is around 13%. 

6.2.3 Including area level variables (IMD and NO2) 

Table 6.4.2 includes the area level variables of IMD and annual average NO2 

concentrations within the analysis. To understand if non-linearities exist, IMD is 

included as a decile variable, and NO2 is included as a quartile variable, ranging 

from the least polluted or deprived to the most polluted or deprived. These results 

show that a female child (OR 0.46, CI 0.35 – 0.56) or a child that is Pakistani or 

Bangladeshi (OR 0.70, CI 0.43 – 1.05) is statistically significantly less likely to 

have had asthma over time.  

A child that is mixed-race (OR 1.74, CI 0.98 – 2.75), is obese (OR 1.68, CI 1.23 

– 2.24), has a mother that is employed (OR 1.23, CI 1.04 – 1.45), has a mother 

with asthma (OR 9.26, CI 7.05 – 12.01), has a mother that smokes (OR 1.27, CI 

1.03 – 1.56) or lives below the poverty line (OR 1.27, CI 1.03 – 1.53) is statistically 

significantly more likely to have had asthma over time. A child that lives in an 

increasingly deprived area is also more likely to have had asthma (OR 3.50, CI 

2.18 – 5.56) which is significantly significant. A child that lives in an area of high 

NO2 pollution is less likely to have had asthma (OR 0.91, CI 0.61 – 1.33), however 

this is not statistically significant. These findings are again similar to the results 

found in the cross-sectional and time series analysis. 

The random parts parameters table in Table 6.4.2 shows that the between-MSOA 

variance is 0.001 and the within-MSOA variance is 19.12. The VPC shows that 

less than 1% (0.04%) of the variation in asthma lies between MSOAs and 85.32% 

of the variation in asthma lies within MSOAs. As a result, 14.64% of the variation 

in asthma lies between waves. 
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Table 6.4 Asthma individual and area level multilevel models 

 6.4.1   6.4.2   

Fixed part parameters OR   95% CI OR   95% CI 

Child is female 0.46 *** 0.36 0.58 0.46 *** 0.35 0.56 

Ethnicity White REF    REF    
Mixed 1.74 * 0.98 2.75 1.67 * 0.95 2.70 

Indian 1.02  0.55 1.77 0.86  0.44 1.45 

Pakistani & Bangladeshi 0.93  0.61 1.35 0.70 * 0.43 1.05 

Black 0.82  0.45 1.33 0.66  0.37 1.08 

Other 0.91  0.37 1.87 0.83  0.32 1.86 

Child is obese 1.71 ** 1.23 2.27 1.68 ** 1.23 2.24 

Mother is employed 1.21 * 1.00 1.41 1.23 * 1.04 1.45 

Mother has asthma 9.61 *** 7.27 12.45 9.26 *** 7.05 12.01 

Mother smokes 1.41 *** 1.14 1.71 1.27 * 1.03 1.56 

Lives in urban area 1.82 *** 1.33 2.59 1.35  0.82 1.91 

Lives below the poverty line 1.41 *** 1.18 1.64 1.27 * 1.03 1.53 

IMD  1     REF    
2     1.33  0.86 2.01 

3     1.27  0.82 1.91 

4     1.60 * 1.02 2.36 

5     2.49 *** 1.60 3.82 

6     2.91 *** 1.85 4.42 

7     2.55 *** 1.68 4.03 

8     3.00 *** 1.89 4.72 

9     3.12 *** 1.93 5.25 

10     3.50 *** 2.18 5.56 
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NO2 low     REF    
mid-low     0.98  0.74 1.33 

mid-high     1.01  0.75 1.34 

high     0.91   0.61 1.33 

Random part parameters Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.05 0.01 0.16 1.44 0.001 0.001 0.002 0.04 

Level 2: Individual 18.75 17.17 20.88 85.07 19.12 17.47 20.77 85.32 

Level 3: Wave  
  13.49    14.64 
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6.3 Multilevel modelling analysis of wheezing prevalence 

This section details the multilevel models that examine the impact on wheezing 

as the proxy for respiratory health. This section will begin with examining the 

results from the baseline null model before building on this by including individual 

and area level variables as well as interaction terms. 

6.3.1 Baseline model 

Table 6.5 presents the null model for wheezing. This table shows that the 

between-MSOA variance is estimated to be around 0.02, whilst the within-MSOA 

variance is estimated to be around 4.30. The ICC is calculated as 0.01 for the 

MSOA level and 0.57 for the individual level. These results can be interpreted as 

a VPC of 0.51 and 56.64 respectively. This means that less than 1% (0.51%) of 

the variation in wheezing lies between MSOAs, 56.64% of the variation in 

wheezing lies between individuals and 42.85% of the variation lies between 

waves. 

Comparing these results to the null model for asthma, presented in Table 6.3, 

whilst variation between MSOAs is still under 1%, there is a higher variation seen 

in wheezing. Conversely variation for wheezing within-MSOAs, or between 

individuals, is much lower compared to variation for asthma. Furthermore, 

variation between waves is much higher for wheezing rates when compared to 

temporal variation in asthma rates. This could mean that wheezing rates are more 

variable over time, as an individual could experience wheezing temporarily, when 

compared to asthma rates, which may be more fixed. 

Table 6.5 Wheeze baseline multilevel model 

Random part parameters Mean 95% CI VPC 

Level 3: MSOA 0.02 0.003 0.04 0.51 

Level 2: Individual 4.30 3.91 4.67 56.64 

Level 1: Wave       42.85 

 

6.3.2 Including individual variables 

Table 6.6.1 builds on the null model by including individual level variables. This 

table shows that a female child (OR 0.64, CI 0.57 – 0.72) is less likely to have 

wheezed in the previous 12 months, as is a child that is Black (OR 0.77, CI 0.58 

– 0.99) or has a mother that is employed (OR 0.88, CI 0.79 – 0.97). A child that 
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is obese (OR 1.44, CI 1.19 – 1.72), has a mother with asthma (OR 2.70, CI 2.34 

– 3.10), has a mother that smokes (OR 1.28, CI 1.14 – 1.45) or lives in an urban 

area (OR 1.34, CI 1.15 – 1.60), is statistically significantly more likely to have 

wheezed in the previous 12 months. 

The random parts parameters table in Table 6.6.1 shows that including individual 

variables the between-MSOA variance is 0.001 and the within-MSOA variance is 

4.08. Less than 1% (0.04%) of the variation in wheezing lies between MSOAs 

and 55.35% of the variation lies between individuals. The between wave variation 

was calculated to be 44.61%. 

6.3.3 Including area level variables (IMD and NO2) 

Table 6.6.2 shows further development of the multilevel model to also include the 

area level variables of IMD and annual average NO2 concentrations. This table 

shows that a female child (OR 0.65, CI 0.58 – 0.72) or a child with a mother in 

employment (OR 0.87, CI 0.78 – 0.97) is statistically significantly less likely to 

have wheezed in the last year. A child that is obese (OR 1.44, CI 1.18 – 1.76), 

has a mother with asthma (OR 2.70, CI 2.32 – 3.12), has a mother that smokes 

(OR 1.25, CI 1.10 – 1.41) or lives in an urban area (OR 1.49, CI 1.24 – 1.79) is 

statistically significantly more likely to have wheezed in the last year. A child that 

lives in the most deprived area (OR 1.42, CI 1.04 – 1.84) is statistically 

significantly more likely to have had wheezing in the previous year, whilst a child 

living in an area with high NO2 pollution (OR 0.64, CI 0.51 – 0.77) is statistically 

significantly less likely to have wheezed in the previous year.  

The random parts parameters table in Table 6.6.2 shows that the between-MSOA 

variance is 0.001 and the within-MSOA variance is 4.11. Less than 1% (0.02%) 

of the variation in wheezing lies between MSOAs and 55.52% of the variation in 

wheezing lies between individuals. The between wave variation was calculated 

to be 44.46%. 
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Table 6.6 Wheeze individual and area level multilevel models 

 6.6.1   6.6.2   

Fixed part parameters OR   95% CI OR   95% CI 

Child is female 0.64 *** 0.57 0.72 0.65 *** 0.58 0.72 

Ethnicity White REF    REF    

 Mixed 1.09  0.80 1.43 1.20  0.91 1.55 

 Indian 1.05  0.76 1.41 1.22  0.87 1.64 

 Pakistani & Bangladeshi 0.89  0.73 1.08 0.97  0.77 1.19 

 Black 0.77 * 0.58 0.99 0.96  0.69 1.24 

 Other 0.82  0.51 1.24 0.98  0.59 1.49 

Child is obese 1.44 *** 1.19 1.72 1.44 *** 1.18 1.76 

Mother is employed 0.88 ** 0.79 0.97 0.87 ** 0.78 0.97 

Mother has asthma 2.70 *** 2.34 3.10 2.70 *** 2.32 3.12 

Mother smokes 1.28 *** 1.14 1.45 1.25 ** 1.10 1.41 

Lives in urban area 1.34 *** 1.15 1.60 1.49 *** 1.24 1.79 

Lives below the poverty line 1.05  0.94 1.18 1.04  0.91 1.16 

IMD  1     REF    

 2     1.04  0.81 1.31 

 3     1.14  0.89 1.41 

 4     1.26 * 0.98 1.58 

 5     1.37 ** 1.06 1.73 

 6     1.36 ** 1.06 1.71 

 7     1.24  0.96 1.59 

 8     1.10  0.83 1.39 

 9     1.13  0.84 1.46 

 10     1.42 * 1.04 1.84 
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NO2  low     REF    

 mid-low     0.88  0.74 1.04 

 mid-high     0.84 * 0.69 0.99 

 high     0.64 *** 0.51 0.77 

 Random part parameters Mean 95% CI   VPC Mean 95% CI   VPC 

Level 3: MSOA 0.001 0.001 0.003 0.04 0.001 0.0004 0.001 0.02 

Level 2: Individual 4.08 3.72 4.45 55.35 4.11 3.70 4.56 55.52 

Level 3: Wave       44.61       44.46 
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6.4 Including interactions in multilevel models 

The models previously presented in this Chapter assume that the effects of the 

different covariates are additive, however this is not always the case. Indeed, the 

hypotheses of this thesis is specifically interested in the interaction between 

socio-economic status, both at the individual and area level, and air pollution. An 

interaction between two or more variables suggests that the effect of each 

variable depends on the value of the other variable. For example, that the effect 

of NO2 exposure on asthma or wheezing prevalence depends on the level of 

deprivation of the area. This section will first examine the effects of the 

interactions on asthma before moving onto examine wheezing. 

6.4.1 Interactions in asthma multilevel models 

Table 6.7 presents the results from multilevel model that included interactions 

between individual level socio-economic status (poverty), area level socio-

economic status (IMD) and NO2 pollution. The interaction between poverty and 

IMD, representing a child that lives below the poverty line and in an area of 

increased deprivation (OR 1.01, CI 0.99 – 1.02), shows that they are more likely 

to have had asthma, however this was not statistically significant. The results 

show no clear association between a child living below the poverty line in an area 

of higher NO2 pollution (OR 1.00, CI 0.98 – 1.02), or a child living in a more 

deprived area that has a higher level of NO2 pollution (OR 1.00, CI 1.00 – 1.00), 

or a child that lives below the poverty line, in a more deprived area that also 

experiences high levels of NO2 (OR 1.00, CI 1.00 – 1.00). The random parts 

parameters table in Table 6.7 shows that the between-MSOA variance is 0.001 

and the within-MSOA variance is 18.63. Less than 1% (0.03%) of the variation in 

asthma lies between MSOAs, 84.99% of the variation in asthma lies between 

individuals and 14.98% of the variation lies between waves. 
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Table 6.7 Asthma multilevel models with interaction terms 

 Fixed part parameters OR 95% CI 

Child is female 0.45 *** 0.36 0.56 

Ethnicity White REF    
Mixed 1.83 * 1.01 2.85 

Indian 1.08  0.56 1.91 

Pakistani & Bangladeshi 0.80  0.51 1.24 

Black 0.89  0.51 1.49 

Other 0.99  0.40 2.06 

Child is obese 1.68 *** 1.22 2.22 

Mother is employed 1.24 * 1.04 1.48 

Mother has asthma 9.43 *** 7.19 12.46 

Mother smokes 1.30 ** 1.04 1.58 

Lives in urban area 1.79 *** 1.20 2.46 

Lives below poverty line 1.32 ** 1.07 1.63 

IMD 1.02 *** 1.01 1.03 

NO2 0.98 ** 0.97 1.00 

Poverty*IMD 1.01  0.99 1.02 

Poverty*NO2 1.00  0.98 1.02 

IMD*NO2 1.00  1.00 1.00 

Poverty*IMD*NO2 1.00  1.00 1.00 

 Random part parameters Mean 95% CI VPC 

Level 3: MSOA 0.001 0.0004 0.002 0.03 

Level 2: Individual 18.63 17.15 20.37 84.99 

Level 3: Wave       14.98 
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6.4.2 Interactions in wheezing multilevel models 

The interaction results presented in Table 6.8 show that a child that lives below 

the poverty line and in an area of increased deprivation (OR 0.99, CI 0.99 – 1.00) 

is less likely to have wheezed in the previous year, however this was not 

statistically significant. The results show no association between a child living 

below the poverty line in an area of higher NO2 pollution (OR 1.00, CI 0.98 – 

1.01), or a child living in a more deprived area that has a higher level of NO2 

pollution (OR 1.00, CI 1.00 – 1.00), or a child that lives below the poverty line, in 

a more deprived area that also experiences high levels of NO2 (OR 1.00, CI 1.00 

– 1.00), and these results are also not statistically significant.  

The random parts parameters table show that the between-MSOA variance 

presented in this model is 0.001 and the within-MSOA variance is 4.09. Less than 

1% (0.03%) of the variation in wheezing lies between MSOAs, 55.41% of the 

variation in asthma lies between individuals and 44.56% of the variation lies 

between waves. 

  



 

156 

Table 6.8 Wheeze multilevel models with interaction terms 

 6.6.1     

 Fixed part parameters OR  95% CI 

Child is female 0.65 *** 0.57 0.73 

Ethnicity White REF    

 Mixed 1.13  0.81 1.51 

 Indian 1.08  0.78 1.44 

 Pakistani & Bangladeshi 0.89  0.71 1.09 

 Black 0.84  0.61 1.11 

 Other 0.88  0.53 1.34 

Child is obese 1.45 *** 1.18 1.76 

Mother is employed 0.87 ** 0.78 0.98 

Mother has asthma 2.66 *** 2.29 3.08 

Mother smokes 1.23 ** 1.08 1.39 

Lives in urban area 1.30 ** 1.05 1.60 

Lives below poverty line 1.04  0.92 1.20 

IMD 1.01 *** 1.00 1.01 

NO2 0.99  0.99 1.00 

Poverty*IMD 0.99  0.99 1.00 

Poverty*NO2 1.00  0.98 1.01 

IMD*NO2 1.00  1.00 1.00 

Poverty*IMD*NO2 1.00  1.00 1.00 

 Random part parameters Mean 95% CI VPC 

Level 3: MSOA 0.001 0.0003 0.002 0.03 

Level 2: Individual 4.09 3.67 4.47 55.41 

Level 3: Wave     44.56 
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6.5 Multilevel model analysis focussing on England without London and 

London only 

The multilevel models presented previously were also run examining England 

excluding London, and for London only. This allows for comparisons to be drawn 

between the three different models and to account for any potential ‘London 

effect’ in the data, whereby wealthier individuals living in the city would also be 

more likely to live in area with higher pollution levels, for example due to 

congestion. This could potentially skew data in the models examining England as 

a whole that have already been presented in this Chapter. Table E.1 in Appendix 

E details the different IMD scores and air pollution concentrations seen in the 

three different geographies. It can be seen that whilst London has a smaller range 

in IMD score, the mean is higher, so people in London would be generally 

wealthier compared to the other two geographies. Looking at NO2 it can be seen 

that London again has a smaller range, yet a much higher mean. 

6.5.1 Multilevel modelling analysis of asthma 

This section will examine the outputs for the asthma models for England 

excluding London, and London only. First the baseline models will be presented 

before including individual and area level variables, and finally interaction terms. 

As before, using the DIC presented during modelling, the models presented in 

this chapter are estimated to be the best fit for the analyses. 

6.5.1.1 Baseline model 

Table 6.9 presents the baseline models for England excluding London (Table 

6.9.1), and London only (Table 6.9.2). Beginning with the England excluding 

London model, Table 6.9.1 shows that the between-MSOA variance is estimated 

to be around 0.05, whilst the within-MSOA variance is estimated to be around 

19.40. The VPC was calculated to show that 1.49% of the variation in asthma lies 

between MSOAs, whilst 85.50% of the variation in asthma lies between 

individuals and 13.01% of the variation lies between waves.  

Looking at London only, Table 6.9.2 shows that the between-MSOA variance is 

estimated to be around 0.003, whilst the within-MSOA variance is estimated to 

be around 21.34. The VPC shows that less than 1% (0.08%) of the variation in 



 

158 

asthma in London lies between MSOAs, 86.64% of the variation in asthma lies 

between individuals and 13.28% of the variation lies between waves. 

Table 6.9 Asthma baseline multilevel models 

 6.9.1 Excluding London 6.9.2 London only 

 Random part 

parameters 
Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.05 0.01 0.14 1.49 0.003 0.001 0.01 0.08 

Level 2: Individual 19.4 17.03 21.32 85.50 21.34 16.81 27.54 86.64 

Level 1: Wave       13.01       13.28 

 

6.5.1.2 Including individual variables 

Table 6.10.1 and Table 6.11.1 builds on the previous null models by including 

individual level variables. Beginning with England excluding London, Table 6.10.1 

shows that a female child (OR 0.46, CI 0.36 – 0.57) is statistically significantly 

less likely to have had asthma. A child that is mixed-race (OR 2.27, CI 1.20 – 

3.99), is obese (OR 1.90, CI 1.34 – 2.62), has a mother in employment (OR 1.18, 

CI 0.98 – 1.41), has a mother that has asthma (OR 8.37, CI 6.03 – 11.39), has a 

mother that smokes (OR 1.39, CI 1.11 – 1.71), lives in an urban area (OR 1.97, 

CI 1.36 – 2.79) or lives below the poverty line (OR 1.40, CI 1.15 – 1.68) is 

statistically significantly more likely to have had asthma. The random parts 

parameters table in Table 6.10.1 also shows that the between-MSOA variance is 

0.003 and the within-MSOA variance is 18.71. Less than 1% (0.08%) of the 

variation in asthma lies between MSOAs, 85.04% of the variation in asthma lies 

between individuals and 14.88% of the variation lies between waves. 

For London only, Table 6.11.1 shows that a female child (OR 0.46, CI 0.22 – 

0.79) is statistically significantly less likely to have had asthma, whilst a child that 

has a mother in employment (OR 1.51, CI 0.96 – 2.28), or has a mother with 

asthma (OR 24.42, CI 10.27 – 52.15) is statistically significantly more likely to 

have had asthma. The random parts parameters table here shows that the 

between-MSOA variance is 0.03 and the within-MSOA variance is 21.34. 

Roughly around 1% (0.98%) of the variation in asthma lies between MSOAs, 

86.64% of the variation in asthma lies between individuals and 12.38% of the 

variation lies between waves. 
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6.5.1.3 Including area level variables (IMD and NO2) 

Adding area level deprivation (IMD) and annual average NO2 concentrations the 

models, Table 6.10.2 and Table 6.11.2 presents the results from these multilevel 

models. Again IMD is included as a decile variable, and NO2 is included as a 

quartile variable, ranging from the least polluted or deprived to the most polluted 

or deprived. 

In Table 6.10.2, in England excluding London, a female child (OR 0.45, CI 0.35 

– 0.56) or a child that lives in an area of mid-high NO2 pollution (OR 0.72, CI 0.50 

– 1.06) is statistically significantly less likely to have had asthma. A child that is 

mixed-race (OR 2.15, CI 1.08 – 3.81), is obese (OR 1.84, CI 1.30 – 2.51), has a 

mother with asthma (OR 8.01, CI 5.92 – 10.54), has a mother that smokes (OR 

1.25, CI 0.98 – 1.54), lives below the poverty line (OR 1.23, CI 1.01 – 1.52), lives 

in a highly deprived area (OR 4.30, CI 2.11 – 6.87) is statistically significantly 

more likely to have had asthma. The random parts parameters table in Table 

6.10.2 shows that the between-MSOA variance is 0.002 and the within-MSOA 

variance is 19.05. Less than 1% (0.05%) of the variation in asthma lies between 

MSOAs, 85.27% of the variation in asthma lies between individuals and 14.68% 

of the variation lies between waves. 

For London, Table 6.11.2 shows that a female child (OR 0.44, CI 0.22 – 0.78) or 

a child that lives in a highly deprived area (OR 0.40, CI 0.08 – 1.18) is statistically 

significantly less likely to have had asthma. A child that has a mother in 

employment (OR 1.55, CI 0.96 – 2.45), has a mother with asthma (OR 40.84, CI 

15.77 – 97.63) or lives in an urban area (OR 6.95, CI 1.07 – 24.90) is statistically 

significantly more likely to have had asthma. The random parts parameters table 

in Table 6.11.2 shows that the between-MSOA variance is 0.002 and the within-

MSOA variance is 26.40. Less than 1% (0.06%) of the variation in asthma lies 

between MSOAs, 88.92% of the variation in asthma lies between individuals and 

11.02% of the variation lies between waves. 

  



 

160 

Table 6.10 Asthma individual and area level multilevel models for England excluding London 

 6.10.1   6.10.2      

 Fixed part parameters  OR   95% CI OR   95% CI 

Child is female 0.46 *** 0.36 0.57 0.45 *** 0.35 0.56 

Ethnicity White REF       REF       

 Mixed 2.27 ** 1.20 3.99 2.15 * 1.08 3.81 

 Indian 1.25   0.52 2.45 1.09   0.44 2.31 

 Pakistani & Bangladeshi 1.09   0.70 1.56 0.77   0.47 1.15 

 Black 0.98   0.33 2.27 0.74   0.24 1.72 

 Other 2.06   0.49 6.30 1.60   0.37 5.03 

Child is obese 1.90 *** 1.34 2.62 1.84 *** 1.30 2.51 

Mother is employed 1.18 * 0.98 1.41 1.17   0.97 1.41 

Mother has asthma 8.37 *** 6.03 11.39 8.01 *** 5.92 10.54 

Mother smokes 1.39 ** 1.11 1.71 1.25 * 0.98 1.54 

Lives in urban area 1.97 *** 1.36 2.79 1.40   0.92 2.00 

Lives below the poverty line 1.40 ** 1.15 1.68 1.23 * 1.01 1.52 

IMD 1     REF       

 2     1.71 * 0.91 2.74 

 3     1.48   0.79 2.40 

 4     1.99 * 1.05 3.20 

 5     3.29 *** 1.61 5.31 

 6     3.40 *** 1.65 5.45 

 7     3.44 *** 1.66 5.36 

 8     4.68 *** 2.30 7.30 

 9     4.97 *** 2.47 7.55 

 10     4.30 *** 2.11 6.87 
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NO2 low     REF       

 mid-low     0.91   0.65 1.26 

 mid-low     0.72 * 0.50 1.26 

 high     1.00   0.64 1.55 

Random part parameters Mean 95% CI   VPC Mean 95% CI   VPC 

Level 3: MSOA 0.003 0.001 0.01 0.08 0.002 0.0004 0.003 0.05 

Level 2: Individual 18.71 16.91 20.99 85.04 19.05 17.31 21.29 85.27 

Level 3: Wave       14.88    14.68 

 

Table 6.11 Asthma individual and area level multilevel models for London only 

 6.11.1     6.11.2     

 Fixed part parameters OR   95% CI OR   95% CI 

Child is female 0.46 ** 0.22 0.79 0.44 ** 0.22 0.78 

Ethnicity White REF    REF    

 Mixed 1.54  0.45 4.26 1.31  0.29 3.55 

 Indian 0.88  0.31 2.15 0.81  0.18 2.32 

 Pakistani & Bangladeshi 0.54  0.16 1.39 0.60  0.12 1.71 

 Black 1.11  0.47 2.13 1.12  0.36 2.79 

 Other 0.71  0.17 2.00 0.57  0.11 1.76 

Child is obese 1.15  0.51 2.17 1.20  0.51 2.35 

Mother is employed 1.51 * 0.96 2.28 1.55 * 0.96 2.45 

Mother has asthma 24.42 *** 10.27 52.15 40.84 *** 15.77 97.63 

Mother smokes 1.42  0.72 2.50 1.55  0.74 2.71 

Lives in urban area 0.48  0.10 1.13 6.95 * 1.07 24.9 

Lives below the poverty line 1.40  0.83 2.24 1.45  0.86 2.39 
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IMD 1     REF    

 2     1.07  0.27 2.89 

 3     0.66  0.17 1.91 

 4     3.35  0.72 9.38 

 5     1.10  0.26 2.95 

 6     0.58  0.12 1.55 

 7     1.05  0.17 2.58 

 8     1.22  0.24 3.76 

 9     0.40 * 0.08 1.18 

 10     0.63  0.08 2.15 

NO2 low     REF    

 mid-low     1.47  0.68 2.66 

 mid-high     1.47  0.68 2.66 

 high     2.13   0.84 5.12 

 Random part parameters  Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.03 0.002 0.11 0.96 0.002 0.001 0.01 0.06 

Level 2: Individual 21.34 15.25 29.17 86.64 26.40 19.45 35.15 88.92 

Level 3: Wave       12.40    11.02 
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6.5.1.4  Including interactions  

To answer the hypotheses of this thesis, it is necessary to include interaction 

terms in the multilevel model to fully explore the interaction between individual 

and area level socio-economic status and air pollution exposure. As stated 

previously, an interaction suggests that the effect of variables within the 

interaction term are dependent on one another. This section will first explore the 

impact of interactions focussing on NO2 as the pollutant of interest. 

Table 6.12 presents the results from the multilevel models for both England 

excluding London, and London only. Table 6.12.1 shows that there was no 

association found for a child that lives below the poverty line in an area of high 

deprivation (OR 1.00, CI 0.99 – 1.02), lives in an area with high deprivation and 

high NO2 pollution (OR 1.00, CI 1.00 – 1.00) or lives below the poverty line in an 

area with both high deprivation and high NO2 pollution (OR 1.00, CI 1.00 – 1.00), 

however these findings are not statistically significant. The random parts 

parameters table in Table 6.10.1 shows that the between-MSOA variance is 

0.001 and the within-MSOA variance is 19.03. Less than 1% (0.02%) of the 

variation in asthma lies between MSOAs, 85.26% of the variation in asthma lies 

between individuals and 14.72% of the variation lies between waves. 

For London specifically, Table 6.12.2 shows that a child that lives below the 

poverty line in an area of high deprivation and high NO2 pollution (OR 0.99, CI 

0.98 – 1.00) is statistically significantly less likely to have had asthma. Here the 

random parts parameters table shows that the between-MSOA variance is 0.01 

and the within-MSOA variance is 24.90. Less than 1% (0.31%) of the variation in 

asthma lies between MSOAs, 88.33% of the variation in asthma lies between 

individuals and 11.36% of the variation lies between waves. 
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Table 6.12 Asthma multilevel models with interaction terms – NO2 only       

 6.12.1 England exc. London 6.12.2 London only 

Fixed part parameters OR   95% CI OR   95% CI 

Child is female 0.45 *** 0.36 0.57 0.41 *** 0.20 0.68 

Ethnicity White REF       REF    

 Mixed 2.05 * 1.07 3.83 1.96  0.47 5.07 

 Indian 1.13   0.47 2.23 1.05  0.26 2.58 

 Pakistani & Bangladeshi 0.80   0.47 1.30 1.09  0.28 2.93 

 Black 0.79   0.26 1.72 1.53  0.49 3.30 

 Other 1.61   0.32 5.18 0.97  0.20 3.14 

Child is obese 1.89 *** 1.34 2.61 1.04  0.49 2.03 

Mother is employed 1.22 * 1.02 1.43 1.47  0.95 2.17 

Mother has asthma 8.48 *** 6.35 11.34 35.13 *** 10.86 93.88 

Mother smokes 1.30 * 1.05 1.59 1.49  0.77 2.44 

Lives in urban area 1.79 *** 1.18 2.76 0.07 *** 0.01 0.16 

Lives below poverty line 1.32 * 1.04 1.61 1.96 * 1.03 3.34 

IMD 1.02 *** 1.01 1.03 0.98  0.94 1.01 

NO2 0.99   0.98 1.01 1.02  0.96 1.06 

Poverty*IMD 1.00   0.99 1.02 1.03  0.98 1.08 

Poverty*NO2 1.01   0.98 1.03 0.98  0.90 1.06 

IMD*NO2 1.00   1.00 1.00 1.00  1.00 1.01 

Poverty*IMD*NO2 1.00   1.00 1.00 0.99 *** 0.98 1.00 

 Random part parameters Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.001 0.0003 0.001 0.02 0.01 0.001 0.09 0.31 

Level 2: Individual 19.03 17.22 20.58 85.26 24.90 17.72 33.16 88.33 

Level 3: Wave     14.72     11.36 
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6.5.2 Multilevel modelling analysis of wheezing 

This section details the multilevel models that focus on wheezing For England 

excluding London, and London only. This section first presents the results from 

the baseline null model before moving on to include individual and area level 

variables, and interaction terms. 

6.5.2.1 Baseline model 

Table 6.13 presents the results from the baseline model for England excluding 

London, and London only. For England excluding London, Table 6.13.1 shows 

that the between-MSOA variance is estimated to be around 0.01, whilst the 

within-MSOA variance is estimated to be around 4.34. Less than 1% (0.24%) of 

the variation in asthma lies between MSOAs, 56.90% of the variation in asthma 

lies between individuals and 42.86% of the variation lies between waves. Table 

6.13.2 reports that for London only, the between-MSOA variance is estimated to 

be around 0.15, whilst the within-MSOA variance is estimated to be around 4.29. 

4.37% of the variation in asthma lies between MSOAs, 56.58% of the variation in 

asthma lies between individuals and 39.05% of the variation lies between waves. 

Table 6.13 Wheeze baseline multilevel models 

 6.13.1 England exc. London 6.13.2 London only 

 Random part 

parameters 
Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.01 0.004 0.01 0.24 0.15 0.01 0.33 4.37 

Level 2: Individual 4.34 3.94 4.79 56.90 4.29 3.33 5.51 56.58 

Level 1: Wave       42.86       39.05 

 

6.5.2.2 Including individual variables 

Building on the baseline model, individual level variables were then included in 

the analyses, and the results are presented in Table 6.14 and 6.15. For England 

excluding London, Table 6.14.1 reports that a female child (OR 0.65, CI 0.58 – 

0.74) or a child that has a mother in employment (OR 0.88, CI 0.78 – 1.00) is 

statistically significantly less likely to have had wheezing in the previous 12 

months. A child that is obese (OR 1.44, CI 1.13 – 1.79), has a mother with asthma 

(OR 2.64, CI 2.24 – 3.08), has a mother that smokes (OR 1.21, CI 1.06 – 1.37) 

or lives in an urban area (OR 1.39, CI 1.14 – 1.63) is statistically significantly 

more likely to have had wheezing in the previous 12 months. The random parts 
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parameters table in Table 6.14.1 shows that the between-MSOA variance is 

0.003 and the within-MSOA variance is 4.15. Less than 1% (0.10%) of the 

variation in wheezing lies between MSOAs, 55.79% of the variation in wheezing 

lies between individuals and 44.11% of the variation lies between waves. 

From Table 6.15.1, examining London only, a female child (OR 0.61, CI 0.45 – 

0.81), a child that is Pakistani or Bangladeshi (OR 0.57, CI 0.31 – 0.96) or has a 

mother in employment (OR 0.77, CI 0.59 – 1.02) is statistically significantly less 

likely to have had wheezing in the previous 12 months. A child that is obese (OR 

1.59, CI 0.99 – 2.41), has a mother with asthma (OR 3.35, CI 2.21 – 4.82), has a 

mother that smokes (OR 1.79, CI 1.24 – 2.46) or lives in an urban area (OR 13.12, 

CI 2.30 – 31.23) is statistically significantly more likely to have had wheezing in 

the previous 12 months. The random parts parameters table shows that the 

between-MSOA variance is 0.09 and the within-MSOA variance is 4.37. 2.79% 

of the variation in wheezing lies between MSOAs, 57.06% of the variation in 

wheezing lies between individuals and 40.15% of the variation lies between 

waves. 

6.5.2.3 Including area level variables (IMD and NO2) 

Building on the multilevel models that examined the individual level variables, the 

area level variables of IMD and annual average NO2 concentration were also 

added, the results of which are presented in Table 6.14.2 and 6.15.2. 

Beginning with England excluding London in Table 6.14.2, a female child (OR 

0.65, CI 0.57 – 0.73), a child that has a mother in employment (OR 0.89, CI 0.79 

– 1.01) or lives in an area of high NO2 pollution (OR 0.80, CI 0.65 – 0.96) is 

statistically significantly less likely to have had wheezing in the previous 12 

months. A child that is obese (OR 1.42, CI 1.13 – 1.78), has a mother with asthma 

(OR 2.62, CI 2.24 – 3.05), has a mother that smokes (OR 1.18, CI 1.03 – 1.35), 

lives in an urban area (OR 1.43, CI 1.16 – 1.69) or lives in a highly deprived area 

(OR 1.57, CI 1.15 – 2.12) is statistically significantly more likely to have had 

wheezing in the previous 12 months. The random parts parameters table shows 

that the between-MSOA variance is 0.004 and the within-MSOA variance is 4.15. 

Less than 1% (0.13%) of the variation in wheezing lies between MSOAs, 55.81% 

of the variation in wheezing lies between individuals and 44.06% of the variation 

lies between waves. 



 

167 

For London only from Table 6.15.2, a female child (OR 0.61, CI 0.45 – 0.81), a 

child that has a mother in employment (OR 0.77, CI 0.57 – 1.03) or lives in a 

highly deprived area (OR 0.35, CI 0.16 – 0.79) is statistically significantly less 

likely to have had wheezing in the previous 12 months. A child that is obese (OR 

1.64, CI 1.03 – 2.47), has a mother with asthma (OR 3.34, CI 2.22 – 4.99) or has 

a mother that smokes (OR 1.86, CI 1.32 – 2.61) is statistically significantly more 

likely to have had wheezing in the previous 12 months. The random parts 

parameters table in Table 6.15.2 shows that the between-MSOA variance is 0.08 

and the within-MSOA variance is 4.37. 2.36% of the variation in wheezing lies 

between MSOAs, 57.04% of the variation in wheezing lies between individuals 

and 40.60% of the variation lies between waves. 
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Table 6.14 Wheeze individual and area level multilevel models for England excluding London 

 6.14.1  6.14.2  

Fixed part parameters OR   95% CI OR   95% CI 

Child is female 0.65 *** 0.58 0.74 0.65 *** 0.57 0.73 

Ethnicity White REF       REF       

 Mixed 1.16   0.81 1.60 1.17   0.80 1.64 

 Indian 1.00   0.64 1.47 1.07   0.68 1.59 

 Pakistani & Bangladeshi 0.99   0.78 1.21 1.01   0.78 1.29 

 Black 0.68   0.39 1.11 0.7   0.40 1.09 

 Other 1.06   0.50 2.05 1.08   0.50 1.92 

Child is obese 1.44 ** 1.13 1.79 1.42 ** 1.13 1.78 

Mother is employed 0.88 * 0.78 1.00 0.89 * 0.79 1.01 

Mother has asthma 2.64 *** 2.24 3.08 2.62 *** 2.24 3.05 

Mother smokes 1.21 ** 1.06 1.37 1.18 * 1.03 1.35 

Lives in urban area 1.39 ** 1.14 1.63 1.43 *** 1.16 1.69 

Lives below the poverty line 1.07   0.93 1.23 1.04   0.9 1.2 

IMD 1     REF       

 2     1.26   0.91 1.67 

 3     1.19   0.85 1.57 

 4     1.26   0.94 1.66 

 5     1.47 ** 1.09 1.94 

 6     1.36 * 1.01 1.78 

 7     1.46 ** 1.07 1.91 

 8     1.29   0.94 1.69 

 9     1.35 * 0.99 1.8 

 10     1.57 ** 1.15 2.12 
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NO2 low     REF       

 mid-low     0.91   0.76 1.06 

 mid-high     0.82 * 0.69 0.99 

 high     0.80 ** 0.65 0.96 

Random part parameters Mean 95% CI   VPC Mean 95% CI   VPC 

Level 3: MSOA 0.003 0.001 0.01 0.10 0.004 0.001 0.01 0.13 

Level 2: Individual 4.15 3.79 4.54 55.79 4.15 3.69 4.63 55.81 

Level 3: Wave       44.11    44.06 

 

Table 6.15 Wheeze individual and area level multilevel models for London only 

 6.15.1   6.15.2   

Fixed part parameters OR   95% CI OR   95% CI 

Child is female 0.61 ** 0.45 0.81 0.61 ** 0.45 0.81 

Ethnicity White REF    REF    

 Mixed 1.25  0.75 2.08 1.35  0.72 2.27 

 Indian 1.40  0.78 2.33 1.40  0.77 2.18 

 Pakistani & Bangladeshi 0.57 * 0.31 0.96 0.70  0.35 1.22 

 Black 1.17  0.76 1.76 1.32  0.86 2.00 

 Other 0.98  0.50 1.70 1.03  0.53 1.80 

Child is obese 1.59 * 0.99 2.41 1.64 * 1.03 2.47 

Mother is employed 0.77 * 0.59 1.02 0.77 * 0.57 1.03 

Mother has asthma 3.35 *** 2.21 4.82 3.34 *** 2.22 4.99 

Mother smokes 1.79 ** 1.24 2.46 1.86 *** 1.32 2.61 

Lives in urban area 13.12 *** 2.30 31.23 2.42  0.33 7.52 

Lives below the poverty line 0.88  0.64 1.19 0.94  0.66 1.27 
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IMD 1     REF    

 2     0.49 ** 0.25 0.88 

 3     0.89  0.48 1.57 

 4     0.92  0.47 1.69 

 5     0.64  0.32 1.17 

 6     0.50 * 0.24 0.95 

 7     0.58  0.28 1.15 

 8     0.62  0.30 1.21 

 9     0.64  0.33 1.16 

 10     0.35 ** 0.16 0.79 

NO2 low     REF    

 mid-low     0.91  0.57 1.34 

 mid-high    0.98  0.56 1.60 

 high     1.01  0.58 1.54 

 Random part parameters  Mean 95% CI   VPC Mean 95% CI   VPC 

Level 3: MSOA 0.09 0.01 0.33 2.79 0.08 0.01 0.24 2.36 

Level 2: Individual 4.37 3.23 5.52 57.06 4.37 3.29 5.61 57.04 

Level 3: Wave       40.15    40.6 
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6.5.2.4  Including interactions 

As mentioned, multilevel models with interaction terms included were also run to 

answer the hypotheses of this thesis, and the results from this analysis is 

presented in Table 6.16. Table 6.16.1 shows that for England excluding London, 

no associations were found for a child that lives in an area of high deprivation and 

high NO2 pollution (OR 1.00, CI 1.00 – 1.00) or a child living below the poverty 

line in an area with high deprivation and high NO2 pollution (OR 1.00, CI 1.00 – 

1.00), however these findings are not statistically significant. A child living below 

the poverty line in an area with high deprivation (OR 0.99, CI 0.99 – 1.00) is 

statistically significantly less likely to have wheezed in the previous year. A child 

living below the poverty line in an area with high NO2 pollution (OR 0.99, CI 0.97 

– 1.01) is also less likely to have wheezed in the previous 12 months, however 

this interaction is not statistically significant. The random parts parameters table  

in Table 6.16.1 shows that the between-MSOA variance is 0.001 and the within-

MSOA variance is 4.10. Less than 1% (0.04%) of the variation in wheezing lies 

between MSOAs, 55.50% of the variation in wheezing lies between individuals 

and 44.46% of the variation lies between waves. 

For London only, from Table 6.16.2, no association was found for a child that 

lives in an area of high deprivation and high NO2 pollution (OR 1.00, CI 1.00 – 

1.01), although this is not statistically significant. Similarly, no association was 

found for a child living below the poverty line in an area with both high deprivation 

and high NO2 pollution (OR 1.00, CI 0.99 – 1.00) and this is significant. A child 

living below the poverty line in an area with high deprivation (OR 0.98, CI 0.96 – 

1.01) is less likely to have had wheezing in the previous 12 months but again this 

was not statistically significant. A child living below the poverty line in an area of 

high NO2 pollution (OR 1.01, CI 0.97 – 1.05) is more likely to have had wheezing 

in the previous 12 months, however this is not statistically significant. The random 

parts parameters table in Table 6.16.2 shows that the between-MSOA variance 

is 0.005 and the within-MSOA variance is 4.72. Less than 1% (0.14%) of the 

variation in wheezing lies between MSOAs, 56.48% of the variation in wheezing 

lies between individuals and 43.38% of the variation lies between waves. 
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Table 6.16 Wheeze multilevel modes with interaction terms – NO2 only       

 6.16.1 England exc. London 6.16.2 London only 

Fixed part parameters OR   95% CI OR   95% CI 

Child is female 0.65 *** 0.57 0.73 0.61 ** 0.44 0.81 

Ethnicity White REF    REF    

 Mixed 1.10  0.77 1.53 1.38  0.77 2.23 

 Indian 0.97  0.62 1.46 1.47  0.87 2.38 

 Pakistani & Bangladeshi 0.92  0.71 1.17 0.83  0.43 1.36 

 Black 0.63 * 0.36 1.00 1.31  0.87 1.91 

 Other 0.96  0.44 1.79 1.10  0.56 1.96 

Child is obese 1.43 ** 1.14 1.76 1.59 * 0.98 2.47 

Mother is employed 0.89 * 0.79 0.99 0.77 * 0.57 1.00 

Mother has asthma 2.62 *** 2.26 3.05 3.34 *** 2.22 4.91 

Mother smokes 1.17 ** 1.03 1.33 1.78 *** 1.24 2.45 

Lives in urban area 1.28 ** 1.07 1.52 5.08 * 1.25 9.45 

Lives below the poverty line 1.05  0.91 1.19 1.15  0.81 1.60 

IMD (level of deprivation) 1.01 *** 1.00 1.01 0.99  0.97 1.01 

NO2 (level of pollution) 1.00   0.99 1.01 1.01  0.99 1.03 

Poverty*IMD 0.99  * 0.99 1.00 0.98  0.96 1.01 

Poverty*NO2 0.99   0.97 1.01 1.01  0.97 1.05 

IMD*NO2 1.00   1.00 1.00 1.00  1.00 1.00 

Poverty*IMD*NO2 1.00   1.00 1.00 1.00 ** 0.99 1.00 

 Random part parameters Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.001 0.001 0.002 0.04 0.005 0.001 0.01 0.14 

Level 2: Individual 4.10 3.72 4.51 55.50 4.27 3.40 5.39 56.48 

Level 3: Wave    44.46    43.38 
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6.6 Conclusion 

Accounting for the nested structure of data available at different spatial levels, 

multilevel modelling is a valuable analytical technique. The analysis presented in 

this Chapter has built upon the findings from previous Chapters in this thesis and 

has highlighted the relationship between individual and area level socio-

economic status, air pollution exposure and respiratory health.  

Regarding the multilevel model results including all respondents in the MCS, 

individual level socio-economic status (living below the poverty line) was found to 

have a consistently statistically significant effect on asthma prevalence, with a 

child that lives below the poverty line more likely to have had asthma throughout 

their life. However, no statistically significant association was found for wheezing 

and living below the poverty line. Examining area level socio-economic status 

(IMD), a child living in an MSOA with greater deprivation was consistently more 

likely to have had asthma or to have experienced wheezing within the previous 

12 months. This was found to be statistically significant for the most deprived 

deciles. Similar to results from cross-sectional and time series analyses 

presented previously, a child living in an MSOA with the highest levels of NO2 

was found to be less likely to have had asthma or to have wheezed in the previous 

12 months. The effect of NO2 exposure on wheezing was found to be statistically 

significant. Two- and three-way interaction terms were included in the analysis to 

account for the complex connections underlying these variables to answer the 

hypothesis of this thesis. It was hypothesised that a child with low individual socio-

economic status living in a more deprived area would face greater health risks 

from exposure to higher levels of pollution, however the models showed generally 

weak and not statistically significant results. 

In order to account for both the high levels of wealth and NO2 in London, the 

models were also run without London, as well as only looking specifically at 

London. When excluding London, findings were similar to what was seen when 

examining England as a whole. A lower individual and area level socio-economic 

status were found to increase the likelihood of a child having asthma or wheezing, 

whilst exposure to higher levels of NO2 was still found to decrease the likelihood. 

Conversely, when examining only London, children living in areas of the highest 

deprivation were found to be statistically significantly less likely to have had 

asthma ever or wheezing in the previous 12 months. These findings support the 
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decision to rerun these models to both include and exclude London, to fully 

comprehend the underlying relationship between these variables of interest and 

child respiratory health.  

As seen in previous Chapters, female children were less likely to have had 

asthma or wheezing, and children of mothers who were employed were less likely 

to have had wheezing in the previous 12 months. With the inclusion of ethnicity 

as a categorical variable, further understanding of the relationship between 

ethnicity and respiratory health could be gained, such as mixed-race children 

being more likely to have ever had asthma. As before, a child that was obese, 

had a mother that smokes, or lived in an urban area were more likely to have had 

asthma and wheezing. The following Chapter will discuss the results of the 

multilevel models presented here in more detail. 
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Chapter 7. Discussion 

 

7.1  Introduction 

The negative impact of health, socio-economic status and air pollution on human 

health is what Jerrett refers to as triple jeopardy (Jerrett et al., 2001). Within this 

context, this thesis used a data linkage methodology and series of regression 

analysis to investigate: 

1. Whether the association between asthma and air pollution is stronger 

amongst children of lower, compared to higher, socio-economic status, 

and; 

2. Whether area level deprivation interacts with individual socio-economic 

status so that the impact of air pollution exposure on asthma is stronger 

for children with low socio-economic status living in the most deprived 

areas than children with similar socio-economic status living in less 

deprived areas. 

This Chapter discusses the cross-sectional analysis results, the time series 

analysis results and the multilevel model results presented in Chapters 4, 5 and 

6 within the context of previous research and the concept of triple jeopardy. This 

Chapter also discusses the strengths and potential limitations of this research, 

and what implications the findings could have for future research. 

As noted in Chapter 1, asthma is a chronic respiratory condition that develops in 

around 15% of the population of England by the time they are in their early teens 

(Lewis et al., 2018), affecting approximately 300 million people globally (Braman, 

2006). Asthma is defined as “a heterogeneous disease, usually characterised by 

chronic airway inflammation” and is associated with a history of respiratory 

symptoms which includes wheezing, shortness of breath, tightness of chest and 

a reduced airflow (Reddel et al., 2015). The UK has one of the highest asthma 

mortality rates among young people for high-income countries worldwide and the 

highest rates of asthma symptoms globally in children (Gupta et al., 2018). The 

UK also has the highest rates of asthma related hospital admissions in Europe. 

A fifth of British children have been diagnosed with asthma by a doctor (Panico 
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et al., 2007), however it is noted that it is difficult to define asthma in children 

under the age of five as the clinical symptoms of asthma are variable (Pedersen 

et al., 2011). 

The Millennium Cohort Study (MCS) is an invaluable source of data for this 

research for several reasons. As a longitudinal study, the MCS provides a wide 

breadth of data over a period of time, allowing for extensive analysis to be 

conducted which provides a greater insight into the data, as opposed to using a 

dataset that collected data from only one point in time. Additionally, the MCS 

dataset is multidisciplinary, covering an array of topics including economic, social 

and demographic information (Connelly and Platt, 2014). The dataset is also 

intergenerational, not only providing data on the child cohort member, but also on 

their parents, siblings and other family members, which allows a better 

understanding for how inequalities are inherited through families (Connelly and 

Platt, 2014). 

A series of cross-sectional logistic models for each wave of the MCS exploring 

the association between air pollution, area level deprivation and individual/familial 

characteristics and asthma and wheezing were presented (Chapter 4). Logistic 

regression models were run including all air pollutant data available (PM10, PM2.5, 

NO2, NO and O3), and including NO2 as the only pollutant of interest. As noted in 

Chapter 1, much of the UK’s air pollution is attributed to transport emissions, and 

NO2 pollution is strongly associated with traffic density (Salonen et al., 2019), and 

is therefore a good indicator of ambient air pollution. To test both hypotheses, 

socio-economic status is examined through poverty (individual/familial level) and 

IMD (area level) variables. The results were presented as odds ratios. Data were 

then examined using time series analysis as presented in Chapter 5. First, data 

were analysed to explore the impact of socio-economic and air pollution 

exposures at Wave 1, before examining the impact of these exposures over time. 

Finally, data were analysed using a multilevel modelling approach (Chapter 6), 

allowing the data to be separated onto their separate spatial or temporal levels.  

This Chapter is structured as follows. Section 7.2 will explore the main effects of 

air pollution and socio-economic status on the respiratory health of children in 

England, as well as discussing how these exposures interact with each other and 

the complexity of understanding this relationship. Moving on, other covariates of 
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interest will be discussed, and further complex interactions will also be examined. 

Finally, the strengths and limitations of this study will be considered. 

7.2 Respiratory health and air pollution: Main effects 

Concerning the impacts of air pollution on respiratory health, it is widely 

understood that children living in areas with higher air pollution concentrations 

would experience higher asthma and wheezing prevalence. This study expected 

to discover that children living in the most polluted LSOAs or MSOAs were more 

likely to have ever had asthma or to have wheezed in the previous 12 months, 

however outputs across all modelling approaches provided mixed and 

inconclusive results.  

Beginning with analysis that focused on NO2 pollution as the sole exposure and 

examining the data through a cross-sectional approach (Chapter 4), the results 

generally indicated that those living in areas with the highest levels of NO2 

pollution were less likely to have had asthma or wheezing in the previous 12 

months. The time series approach (Chapter 5) showed that early life exposures 

(in Wave 1) to higher levels of NO2 also resulted in a decreased likelihood of 

developing respiratory problems as a child. Indeed, the same result was found 

when examining NO2 concentration that varied over each wave. Finally, 

examining the results from the multilevel modelling approach (Chapter 6) again 

found that children in England that were living in areas with greater NO2 pollution 

were less likely to have ever had asthma or to have wheezed in the previous 12 

months. In contrast, children living in London were more likely to have had 

asthma if they lived in an area with high NO2 pollution. 

Exploring the impacts of exposure to PM10 pollution, the results from all modelling 

approaches show that a child living in an area with a high concentration of PM10 

pollution is generally less likely to have had asthma or wheezing when compared 

to a child living in an area with lower levels of PM10 pollution. In regards to 

exposure to PM2.5, the results throughout show that exposure to high levels of 

PM2.5 pollution is generally associated with a decreased likelihood of a child 

having had asthma. However, the model results show that living in areas with 

higher concentrations of PM2.5 pollution was generally a consistent statistically 

significant risk factor for wheezing prevalence. When looking at the impact of NO 

pollution, the cross-sectional approach indicates that living in an area of high NO 
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pollution is a consistent risk factor for a child having had asthma or wheezing in 

the previous 12 months whilst results from the time series model contradict these 

findings and report the opposite.  

The results examining exposure to O3 pollution were again mixed. Using the 

cross-sectional approach found that living in areas of higher O3 pollution 

decreased the risk of a child having asthma or wheezing, and similar findings 

were seen with the time series approach when examining exposure to O3 

pollution over the five waves. However, the time series approach that examined 

the impact of a child’s early life exposure to O3 pollution in Wave 1 found that 

higher levels of exposure increased their likelihood of having asthma or wheezing 

throughout their life. 

The inconsistencies in results across the different modelling approaches for all 

pollutants could be due to how the different modelling approaches handle the 

data. The cross-sectional approach could only examine one wave at a time, whilst 

the time series approach examined the data as a whole. The incorporation of the 

temporal aspect of the data could account for different outputs seen between 

these approaches. In addition, the multilevel modelling approach further builds 

on this and also takes the spatial aspect of the data into account. 

As established in Chapter 2, there has been a large amount of research on the 

relationship between air pollution and respiratory health. However as with the 

analyses provided in this thesis, the results from these studies have been mixed. 

Several studies have found statistically significant relationships between air 

pollution exposure and asthma occurrence in children, however, there has been 

great variability in said relationships.  

One study found a strong association between increased exposure to PM10 and 

NO2 pollution, among others, and increased occurrence of wheezing in children 

(Andersen et al., 2008). McConnell et al. (2010) also found that children that were 

exposed to higher levels of traffic-related air pollution at both their home and 

school environments were more likely to develop asthma. In addition, they found 

the impacts of air pollution exposure at school to be independent to exposure at 

home, potentially due to compulsory periods of exercise during school hours that 

would increase a child’s inhalation rates, thereby increasing their intake of air 

pollution (McConnell et al., 2010). This relationship may also be due to the child 
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being present in school during peak traffic hours in the morning. Bowatte et al. 

(2015) conducted a systematic review and meta-analysis of birth cohort studies 

to examine the relationship between exposure to traffic-related air pollution and 

childhood asthma. There was a modest association between exposure to NO2 

and asthma incidence, however the association varied greatly across studies. 

There was an association found between early life exposure (under the age of 

six) to NO2 and the incidence of asthma, although there was no pattern found in 

later years (Bowatte et al., 2015). 

A further time series study (Oftedal et al., 2009) examining long-term exposure 

to traffic-related air pollution and the onset of asthma in children aged 9 to 10 

years old failed to find a positive association. An explanation provided for the lack 

of association was exposure levels potentially being too low, and this reasoning 

could be applicable to the results seen in Chapters 4, 5 and 6. Further research 

by Heinrich and Wichmann (2004) also explored the relationship between traffic-

related air pollution and asthma, however only a weak association was found. 

Kravitz-Wirtz et al. (2018) discussed the challenges with research in this subject, 

namely the heterogeneity in the definition and measurement of asthma and the 

different assessment methods for quantifying air pollution exposure.  

Another possible explanation for the results discussed in this section could be 

due to the different microenvironments in which a child spends their time. In this 

study, a child’s location was derived from the LSOA or MSOA their home was 

situated in, however children spend a third of their waking day in school (Driscoll 

et al., 2015). Here, they typically have set times for playing outside as well as 

timetabled exercise, and as mentioned this causes increased breathing rates and 

consequently increased inhalation of air pollutants (McConnell et al., 2010). 

Therefore, exposure at school may be just as important, if not more important 

than exposures in the home environment. On the other hand, Martins et al. (2012) 

discussed how a child spends most of their life inside, offering further explanation 

as to why readings of atmospheric air pollution concentration could appear to not 

have an impact on the prevalence of asthma. 
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7.3 Respiratory health and individual and area level socio-economic 

status (poverty and deprivation) 

As noted throughout this thesis, exposure to air pollution and low income are 

spatially correlated. Living below the poverty line and living in an area with a 

higher IMD score are both indications of a low individual and area level socio-

economic status respectively. In terms of individual level socio-economic status, 

a child is described as living below the poverty line if their family earned below 

60% of the national median income before housing costs (Longford et al., 2012).  

The results from Chapters 4, 5 and 6 show that living below the poverty line and 

living in areas of high deprivation were consistently found to be statistically 

significant risk factors for both asthma and wheezing amongst children, 

regardless of which modelling approach was used. However, the multilevel 

models show that a child living in an area of high deprivation in London is less 

likely to have had asthma or wheeze, indicating that children living in the 

wealthiest areas are more likely to have had asthma or a recent wheezing event. 

It is well established that lower socio-economic status, both at the individual and 

area level, has a negative impact on individual health, including respiratory 

health. A study by Bacon et al. (2009) found that individual level socio-economic 

status is associated with worse asthma control, an increase in emergency 

hospital use for asthma related issues and ultimately, worse asthma morbidity. 

Another study (Cesaroni et al., 2003) focussed on both individual and area level 

indicators of socio-economic status and found that those that were more 

disadvantaged faced an increased rate of asthma occurrence, which was also 

more severe when compared to less disadvantaged individuals. Research in 

England found that asthma related hospital admissions were strongly associated 

with deprivation in the community (Gupta et al., 2018). 

The association between respiratory health and socio-economic status could be 

explained through a number of pathways. For example, someone living below the 

poverty line can face challenges when trying to access healthcare, and 

consequently they could then be under-medicated (Rona, 2000). Furthermore, 

they may become reliant on crisis management to deal with their asthma, which 

would result in increased hospital admissions.  
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7.4 The association between respiratory health, air pollution and socio-

economic status 

The first hypothesis this thesis set out to answer was whether the association 

between respiratory health and air pollution is stronger amongst children of lower, 

compared to higher, socio-economic status or the theory of triple jeopardy. The 

triple jeopardy theory states that individuals that are amongst the most deprived 

in society face higher rates of exposure to air pollution as well as higher risks 

related to said exposure (Jerrett et al., 2001). Furthermore, their disadvantaged 

nature results in increased risks from social and cultural-behavioural 

determinants of health, and as a result they experience disproportionately worse 

health impacts when compared to individuals that are less deprived (Jerrett et al., 

2001).  

Studies exploring this relationship have found that families in low-income areas 

have been found to face increased rates of exposure to detrimental 

environmental pollutants, such as industrial pollution, diesel emissions, indoor 

allergens and second-hand smoke (Stronks et al., 1998). Furthermore, they are 

more likely to be exposed to damaging psychosocial stressors (Stronks et al., 

1998, Beck et al., 2017) which can include poor quality or unhealthier foods, 

housing issues, financial insecurity, social marginalisation and violence, both in 

the home and the community.  

Simplistically, it can be stated that health inequalities are caused by the negative 

effect that living in deprivation has on health, and whilst the justification behind 

this is complex, research is ongoing to help better understand the pathways. To 

date, three causal mechanisms have been put forward based on the social 

causation theory; neomaterial, cultural-behavioural and psychosocial 

explanations (Skalická et al., 2009). 

First, the neo-material explanation focusses on material wealth, and how income 

enables behaviours that benefit health, such as providing access to goods and 

services (Skalická et al., 2009). Conversely, lack of income therefore limits 

benefits to health, through issues such as causing barriers to healthcare and poor 

quality housing. This could mean living in a house with a mould problem due to 

poor circulation, which could increase a child’s likelihood of having asthma 

(Caillaud et al., 2018). Assari and Moghani Lankarani (2018) found that a high 
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familial socio-economic status, for example a substantial family income and high 

level of parental education, is protective against asthma, whilst a low socio-

economic status, financial strain and poverty could exacerbate asthma and 

wheeze in children. With regard to the neo-material mechanisms, this analysis 

found that variables such as social housing and urban residency, both neo-

material factors, were generally found to increase a child’s likelihood of having 

respiratory health problems, and this is discussed in Section 7.5 and 7.6. 

Second, the cultural-behavioural explanation relates to how people act and how 

their actions influence their health (Skalická et al., 2009). This includes how some 

behaviours may be more common and deemed more socially acceptable in less 

affluent areas, such as smoking, excessive alcohol consumption and increased 

levels of physical inactivity (Ellen et al., 2001). With regard to the cultural-

behavioural mechanisms, exposures to second-hand smoke in the home can 

increase a child’s probability of having asthma, and this is discussed in Section 

7.5. 

Third, the psychosocial explanation suggests that social inequality makes people 

feel a sense of domination or subordination, and superiority and inferiority, which 

impacts on people’s mental and physical health (Skalická et al., 2009). For 

example, a mother may not feel comfortable or confident in booking an 

appointment to see a doctor to discuss potential health issues her child may be 

facing, resulting in the child’s health issues remaining undiagnosed and 

untreated, which could then exacerbate their health problems. Another 

psychosocial trigger is exposure to violence which has been shown to further 

increase the likelihood of a child having asthma or wheezing (Wright et al., 2004). 

From an epigenetics perspective, maternal exposure to chronic stressors could 

also explain higher rates of asthma in children, and areas with higher rates of 

poverty are more likely to feature higher exposure to chronic stressors, such as 

violence (Flanigan et al., 2018). A combination of both individual level and area 

level psychosocial stressors throughout the life course, beginning in the prenatal 

stage, can explain the influence of poverty on health inequalities. The magnitude 

of these stressors can impact the immune system and increase a child’s 

susceptibility to the effects of air pollution and is highest in the most deprived 

communities (Kravitz-Wirtz et al., 2018). 
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To test the theory of triple jeopardy for the MCS cohort a series of interaction 

terms were created. To test Hypothesis 1, an interaction term was created to 

examine the impact of living below the poverty line and average LSOA or MSOA 

levels of pollutants (familial poverty * NO2). To test Hypothesis 2 a three-way 

interaction term was created that examined the relationship between individual 

level socio-economic status (measured using the poverty variable), area level 

socio-economic status (measured using the IMD rank) and exposure to NO2 

pollution (familial poverty * IMD * NO2). 

With regard to Hypothesis 1, examining the results of the cross-sectional analysis 

including the interactions terms (Chapter 4), the results show that children that 

live below the poverty line and in an area of high NO2 pollution were less likely to 

have had asthma or to have experienced wheezing in the previous 12 months. 

With regard to Hypothesis 2, the cross-sectional analysis presented in Chapter 

4, the three-way interaction term did not find a relationship between familial socio-

economic status, area level deprivation and air pollution exposure and asthma 

and wheezing in children. When using a time series approach, the interaction 

term that was concerned with exposures at Wave 1 found that a child living below 

the poverty line, as well as in an area of high deprivation and high NO2 pollution 

at this time point, was more likely to have had asthma or to have experienced 

wheezing in the previous 12 months. However, when the interaction term was 

explored across all waves, it failed to find a relationship between the three 

exposures and asthma or wheezing.  

From the results presented from the multilevel modelling approach in Chapter 6, 

the interaction term shows that there was no association between the variables 

for a child living below the poverty line, in an area of high deprivation and high 

NO2 concentration in terms of asthma or wheeze prevalence. Likewise, no 

association was found when examining the two-way interaction between 

individual level socio-economic status and NO2 pollution. When controlling for all 

other pollutants, the three-way interaction was found to suggest that a child living 

below the poverty line, in an area of high deprivation and high NO2 concentration 

would be more likely to have had asthma. When excluding London from the 

multilevel model, again no association was found for the three-way interaction. 

Regarding the two-way interaction, the results did suggest a child living below the 
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poverty line in an area of NO2 pollution was more likely to have had asthma, but 

not wheezing, however these results were not found to be statistically significant. 

No association was found for the three-way interaction on wheezing prevalence 

when examining London only, however the results suggest that a child living 

below the poverty line, in an area of high deprivation and high NO2 concentration 

would be less likely to have had asthma. 

With some exceptions, such as the time series analysis presented in Chapter 5, 

the three-way interaction term did not find a relationship between familial or area 

level socio-economic status, air pollution exposure and respiratory health. 

However, in these models it appears that poverty and deprivation have stronger 

associations with respiratory health, and it is difficult to then disentangle the tree-

way interaction following the inclusion of air pollution exposure. There is evidence 

that in England, the most deprived places have also been the most polluted 

(Milojevic et al., 2017), and these areas have continued to develop in this way 

over time. As a result, it is difficult to separate the effects from each other and 

poverty and deprivation prove to be more dominant. Nevertheless, the results still 

provide a valuable insight into the data through the interpretation of these results 

and the findings highlight the complexity of the relationship in question. 

Multilevel modelling provided data regarding the variation in asthma and 

wheezing prevalence that lay between MSOAs, within MSOAs and between 

waves. Approximately 85% of variation in asthma lay within MSOAs, also termed 

between individuals. In comparison, only 56% of the variation in wheezing lay 

between individuals. Furthermore, 14% of asthma variation lay between waves, 

compared to approximately 43% of wheezing variation. An explanation for this 

contrast between asthma and wheezing prevalence could be due to the fact that 

wheezing is more variable over time when compared to asthma. Asthma is an 

established, yet hard to define chronic illness, whilst current wheeze is related to 

recent occurrence within the previous 12 months, allowing for more variability 

over time. In addition, a child can experience wheezing without having had 

asthma, and as a standalone symptom, it is easier to record episodes of 

wheezing in comparison to obtaining an asthma diagnosis. 

There may be confounding taking place due to the number of variables included 

in the models. In population-based time-series studies of the relationship 
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between air pollution events and hospital admissions, various risk factors, such 

as diet, smoking, or socio-demographic factors, are not likely to be confounders 

because they do not co-vary with pollution over relatively short time periods of 

interest (i.e., days) when averaged over large populations (Burnett et al., 2003, 

Sheppard et al., 2012). However, these risk factors clearly have spatial patterns 

and thus must be accounted for in the analysis of cohort studies when considering 

the effects of longer-term pollution exposure. 

Even with rich model data used for this analysis, models are needed to predict 

individual exposures. Special data collection and modelling efforts are required 

for some components of individual exposure, specifically non-ambient source 

exposures, individual time-activity, and building- and season-specific infiltration. 

Due to the nature of cohort studies, our air pollution variables were averaged to 

the LSOA or MSOA level and related to a yearly average and will therefore not 

include the full pollution distribution for an area.  

7.5 Associations with other covariates 

This section reviews the observed associations between the covariates and 

outcomes in order to explore how consistent the data and models are with the 

established relationships found in previous literature. 

7.5.1 Biological sex 

Results from Chapters 5, 6 and 7 have shown that female children were 

consistently less likely to have had asthma or to have experienced wheezing in 

the previous 12 months when compared to male children, however this differential 

begins to decrease in Wave 5. The results displayed significant statistical 

evidence for a relationship between biological sex and respiratory health. 

Osman (2003) observed that epidemiological studies that looked at both the 

incidence and prevalence of asthma found that male children had an increased 

likelihood of having asthma and atopic conditions before puberty. However, this 

reversed following the onset of puberty, where female children then experienced 

an increased likelihood. Given that Wave 5 of the MCS was carried out when the 

children were aged around 11, which would generally coincide with the onset of 

puberty, this could explain the decrease seen in the differential. Skobeloff et al. 
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(1992) found that male children aged under 10 were twice as likely to be 

hospitalised with asthma compared to female children of the same age.  

The biological factors behind these sex differences have been thoroughly 

examined, and research has found that male children have increased non-

specific bronchial hyperresponsiveness in comparison to female children 

(Osman, 2003). Fluctuation levels of hormones over the course of puberty and 

atopy explain why females become more susceptible to asthma in adulthood 

(Osman, 2003). In addition, airway development differs between sexes, with male 

children experiencing a slower pace of airway development when compared to 

their lung volume growth (Osman, 2003). In contrast, female children experience 

a proportionate growth of both their airways and lung volume, and this in turn 

causes increased air flow rates at fixed proportions of total lung capacity (Osman, 

2003). Male children therefore have a lower expiratory air flow rate at all 

comparable lung volumes (Osman, 2003). 

7.5.2 Ethnicity 

Results from Chapters 4 and 5 were inconsistent and not statistically significant. 

The results show that in some Waves, children that were White British were more 

likely to have had asthma or wheezing in the previous 12 months, whilst in other 

Waves the reverse was seen. Following the inclusion of ethnicity as a categorical 

variable, the multilevel modelling approach showed that, when compared to a 

child that was white, a child that was mixed-race was more likely to have had 

asthma whilst a child that was Pakistani or Bangladeshi was found to be less 

likely to have had asthma, and statistical evidence supported this relationship. 

Black children were also found to be less likely to have had wheezing in the 

previous 12 months. 

Health inequalities related to ethnicity and health in England have been 

previously researched (Morris et al., 2005). Reports from the Health Survey of 

England (Whitrow and Harding, 2010) showed that Black Caribbean children 

reported higher rates of wheezing in the previous year compared to all other 

groups, whilst both Bangladeshi and Black African children reported low rates of 

wheezing, supporting the results seen in the multilevel model. In both England 

and Wales, ethnic minorities had significantly higher asthma incidence rates 

when compared to White groups (Netuveli et al., 2005). Furthermore, those from 
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ethnic minorities that were born in the UK had a higher incidence than those born 

elsewhere (Netuveli et al., 2005). Another study examined the differences in 

asthma related hospital admissions and deaths in Scotland and found substantial 

ethnic variation (Sheikh et al., 2016) where South Asian groups had a 20 to 50% 

higher rate of hospital admissions compared to White people. Conversely, 

Chinese groups had 30 to 40% lower admission rates compared to White people 

(Sheikh et al., 2016). The impact of ethnicity on respiratory health is complex and 

cannot be fully explored without considering the other variables, therefore this 

relationship will be further explored in Section 7.6. 

7.5.3  Obesity 

As stated in Chapter 3, obesity is a chronic condition that is generally defined as 

excess body fat. The MCS recorded the height and weight of cohort members 

and calculated the prevalence of obesity, which was defined by the International 

Obesity Task Force (IOTF) cut-offs for BMI, that were sex and age specific 

(Brophy et al., 2009). The results from all modelling approaches show that obesity 

was a consistent risk factor for both asthma and wheezing prevalence. The 

results generally provided statistically significant evidence to support this 

relationship, however the results were not statistically significant throughout. 

Epidemiological studies have highlighted the relationship between respiratory 

health and obesity. Indeed, obesity is a known risk factor for incident asthma and 

it can impact the management of the disease (Forno and Celedón, 2017). Whilst 

obesity and asthma can co-exist in children, there is evidence of an “obese 

asthma” phenotype, where a higher body weight impacts and modifies asthma 

characteristics (Forno and Celedón, 2017). This phenotype is theorised to be 

associated with an increased number of symptoms, worse control, more frequent 

and more severe acute episodes, a lower response to treatment, and a lower 

quality of life. Studies found that higher BMI was associated with an increased 

prevalence of asthma among children aged around 8 years old (Bibi et al., 2004, 

Scholtens et al., 2009). Furthermore, obese male children were found to 

experience more chest symptoms than obese female children (Bibi et al., 2004), 

which can be related back to the sex differences in child asthma rates that was 

previously discussed.  
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7.5.4 Maternal employment 

The findings from Chapters 4, 5 and 6 have shown that a child of a mother that 

is employed is generally more likely to have had asthma when compared to a 

child of an unemployed mother, whilst the reverse is true for wheezing in the 

previous 12 months. The results from the multilevel modelling approach provided 

statistical evidence for this relationship. 

Maternal employment and the way in which it can impact on child health, including 

the impact it may have on the respiratory health of children can be complex. 

Morrill (2011) suggests that the theories underpinning this relationship indicate 

that the relationship is not causal, but rather a mother being in employment could 

signify inherent skills, abilities or preferences, thus making an employed 

individual intrinsically different from an unemployed individual. An employed 

mother could have a higher level of education, and through obtaining their own 

income, a strong sense of agency which then influences different decisions being 

made in relation to their child’s health and wellbeing. In addition, there is a 

possibility that having an employed mother increases the likelihood of a child 

experiencing a short-term health event, but in the long run actually having better 

health through the development of higher cognitive abilities (Morrill, 2011). 

Another study specifically looked at actions taken by parents in the home to limit 

allergen exposure in children with asthma (Ungar et al., 2010). Women who 

remained at home and looked after their children instead of being in employment 

were found to better limit exposures their asthmatic children faced, when 

compared to mothers in employment and those receiving welfare (Ungar et al., 

2010).  

Maternal employment is linked with socio-economic status and could have a 

positive impact on child health through increased income and what this facilitates, 

such as better access to health care, and improved self-esteem and 

empowerment of the child’s mother, enabling her to seek out appropriate 

diagnosis and treatment for illnesses the child may experience (Pratley, 2016). In 

contrast to this, a mother living in deprivation may have a decreased sense of 

self-esteem, and would face challenges when trying to access health care, as 

well as the potential of not being taken as seriously as someone who would be 

more confident and assertive when dealing with healthcare professionals 
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(Macintyre et al., 1998). However, it has been argued that maternal employment 

can also have a negative impact on the health of the child (Morrill, 2011). If a 

mother is working, especially during the early years of a child’s life, the child may 

experience less diligent supervision during the period where the mother is at work 

(Morrill, 2011). This could result in the child being exposed to certain 

environments that could result in poorer health, for example, playing outdoors 

during times of increased air pollution from nearby traffic. Another argument is 

that the mother would not be involved in encouraging their child to partake in 

health promoting activities (Morrill, 2011). An asthmatic child may also not take 

appropriate asthma medication as and when needed if their mother is absent, 

which could result in a more serious asthma episode if it remains untreated for a 

length of time (Morrill, 2011). However, results tended to be small and 

insignificant, similar to the results produced in this research. 

7.5.5  Maternal asthma 

The results presented across all modelling approaches show that maternal 

asthma is a major and statistically significant risk factor for asthma and wheezing 

prevalence in children. However, when compared with the impacts on wheezing, 

maternal asthma was found to be a greater risk factor for asthma. 

These findings are supported by the literature, with previous research indicating 

that maternal asthma is associated with an increased prevalence of asthma in 

children (Litonjua et al., 1998). Research suggests genetic inheritance influences 

asthma prevalence in children, which appears to have a stronger maternal 

relationship (Litonjua et al., 1998), suggesting a preferential inheritance of 

childhood asthma among maternal lines. Indeed, Lim and Kobzik (2009), found 

that children of asthmatic mothers are more likely to have asthma when 

compared to children of non-asthmatic mothers. This suggests that non-genetic 

in utero and/or post-natal factors may influence asthma susceptibility in children 

(Litonjua et al., 1998). Burke et al. (2003) stated that having one parent with 

asthma increases a child’s risk of also having asthma by two to four times.  

Further explanation for the impact of maternal asthma could be due to a lack of 

maternal asthma control during pregnancy, as this was found to heighten the risk 

of child asthma and recurrent wheeze (Mirzakhani et al., 2019). Mirzakhani et al. 

(2019) also found that the risk of child asthma and wheeze increases if both 
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parents have asthma. The predisposition to developing asthma appears to be 

established in utero, and this is genetic susceptibility. Furthermore, maternal 

environmental exposure could impact early life airway hyperresponsiveness and 

asthma risk (Mirzakhani et al., 2019).  

Another possible explanation put forth has been that mothers that suffer from 

asthma themselves are quick to identify when similar symptoms are present in 

their child, and are therefore more knowledgeable about what their child is 

experiencing and are more likely to seek diagnosis and treatment for them, when 

compared to non-asthmatic mothers who may not pick up on indicative 

behaviours (Davidson et al., 2010).  

7.5.6 Maternal smoking 

The results in Chapters 4, 5 and 6 show that maternal smoking habits was 

generally a consistent risk factor for both asthma and wheezing prevalence 

throughout all different modelling approaches. The multilevel modelling approach 

provides evidence that maternal smoking has a statistically significant 

relationship with both asthma and wheezing amongst the children in the study. 

Exposure to second-hand smoke is an environmental factor that has been shown 

to impact respiratory health. Previous research has examined the impacts of 

second-hand smoke on respiratory health in children, especially in relation to 

parental smoking habits, and has shown that exposure to second-hand smoke is 

related to an increased prevalence of asthma in children and may result in an 

increased severity of asthma (Zuraimi et al., 2008). Gonzalez-Barcala et al. 

(2013) found that asthma symptoms were more prominent with an increasing 

exposure to parental smoking, suggesting a clear detrimental impact of second-

hand smoke on respiratory health. Gonzalez-Barcala et al. (2013) studied 

children aged 6 to 7 years old, and children aged 13 to 14 years old and found 

that the effect of second-hand smoke was stronger among the younger children. 

Palmieri et al. (1990) also discovered a stronger relationship between parental 

smoking and asthma in younger children, aged under 6, when compared to older 

children. The impact of second-hand smoke was stronger when both parents 

smoked, however when only one parent smoked, a stronger association was 

found between asthma and maternal smoking compared to paternal smoking 

(Gonzalez-Barcala et al., 2013). 
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Maternal smoking could have such an impact for a number of reasons. Typically, 

a child has a closer relationship with their mother, and so spends more time in 

their presence as opposed to with their father, especially in their younger years 

(Gonzalez-Barcala et al., 2013). This could result in an increased exposure to 

second-hand smoke from maternal smoking and may explain why the results in 

Wave 1 are significant. Further to this, if a child’s mother is a smoker, there is a 

possibility that the mother continued to smoke throughout the pregnancy, 

exposing the foetus directly to the second-hand smoke, which in turn would have 

impacted development and lung maturation, as well as limiting immune system 

growth, increasing the chances of prematurity and, in turn, making their airways 

smaller (Gonzalez-Barcala et al., 2013). Once born, second-hand smoke causes 

damage to the respiratory system through inflammation, increasing epithelial 

permeability, disposition to respiratory infections and allergic sensitisation, as 

well as limiting response to medical treatment (Gonzalez-Barcala et al., 2013). 

7.5.7  Housing 

The results show across all modelling approaches that living in social housing is 

generally linked with an increased risk of both asthma and wheezing, and indeed 

this relationship was found to be statistically significant at times. 

Housing type and quality have both been examined to identify how they could 

promote or inhibit a child’s health, and housing has been linked to health through 

three pathways; internal housing conditions; area characteristics and; housing 

tenure (Gibson et al., 2011). Research has shown that social housing is 

characterised by extremes of poverty and environmental factors that worsen 

asthma, and therefore has been associated with increasing the risk of developing 

asthma through individual risk factors as well as community-level risk factors 

(Northridge et al., 2010). As stated, living in social housing is indicative of a 

family’s socio-economic status, and can also be linked to deprivation, therefore 

this relationship will be further explored in Section 7.6.  

7.5.8  Urban residency 

The results presented in Chapters 4, 5 and 6 show that residing in an urban area 

is also generally a consistent risk factor for increasing the likelihood of a child 

having had asthma or wheezing, and this relationship was found across all 
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modelling approaches. There is evidence to suggest that this relationship is 

statistically significant in some instances. It was important to run the multilevel 

model for England excluding London to investigate the impact of urban residency 

on asthma and wheeze prevalence in children when London, a major urban area, 

has been removed from the analysis. Indeed, urban residency was still seen to 

increase the likelihood of a child having had asthma or having wheezed in the 

previous 12 months. 

Research shows that living in urban areas increases exposure to ambient air 

pollution for longer durations and at greater volume than living in rural areas 

(Briggs et al., 2008). As previously mentioned, those living in urban areas are 

more likely to reside in areas with increased traffic emissions, thereby facing 

increased exposure to pollutants like NO2. This in turn results in increased 

prevalence of asthma (Forastiere et al., 2007). The most deprived communities 

living in urban areas are more likely to be situated close to polluting factories, 

airports, waste management facilities and busier main roads, thus experiencing 

even higher exposure to pollutants (Achakulwisut et al., 2019). Another factor that 

may explain the relationship found is healthcare access. Whilst deprived 

communities face issues accessing healthcare, rural communities may also face 

barriers to accessing appropriate healthcare due to their remoteness (Estrada 

and Ownby, 2017). However, the protective factors that a rural area could provide 

are complex, but could include early exposure to microbes that could bolster the 

developing immune system of a child, reducing their risk of asthma (Estrada and 

Ownby, 2017). 

7.6 Interactions between air pollution, socio-economic status and other 

covariates 

As noted by Sheppard et al. (2012), one cannot examine each variable 

independently whilst ignoring other variables as they are intrinsically linked 

together. As stated, no singular exposure is responsible for the development of 

asthma or the occurrence of wheezing in children, and no singular exposure can 

be considered by itself (Dick et al., 2014). The following section takes into account 

all covariates used in the analyses (sex, ethnicity, obesity, maternal employment, 

maternal asthma, maternal smoking, housing type and urban residency) and 

considers the relationships between the covariates, socio-economic status, air 



 

193 

pollution exposure and respiratory health. Certain covariates have been shown 

to be predictors for asthma and wheezing in children. If the interactions discussed 

in Section 7.4 between socio-economic status and air pollution have a direct 

impact on the respiratory health of children, it is possible that these interactions 

indirectly impact respiratory health through these covariates also. 

Relationships between biological sex, deprivation and air pollution exposure are 

complex and unclear, and more research needs to be carried out on the subject. 

Environmental exposures are believed to play a bigger role in regard to sex 

differences in asthma prevalence later in life, as children spend the majority of 

their time either in the home or in school (Lueke, 2011). However, sex is 

intrinsically linked to gender and cultural norms, roles and behaviours 

(Clougherty, 2010). Gender and gender roles therefore impact where individuals 

spend time as well as what activities they partake in, and this in turn influences 

the exposures they face. Indeed, gender differences in time spent outdoors and 

physical activity participation could explain the differences seen in the results, 

however evidence for this is minimal. 

Previous literature has discussed the link between ethnicity and socio-economic 

status (Grineski et al., 2010), and the relationship with housing, parental 

employment and general health. Forno and Celedón (2009) discusses how 

certain ethnicities are disproportionately represented among people living in 

poverty. As poverty has been associated with an increased prevalence of asthma, 

poverty may explain the relationship between ethnicity and asthma or wheeze, 

however it is important to consider other factors, including environmental 

exposures, health care access, and cultural or physiological factors. Given the 

association with socio-economic status, ethnic minorities are more likely to face 

increased air pollution exposure, however this was not found to be an issue in 

this study. Assari and Moghani Lankarani (2018) found that living above the 

poverty line was associated with a decreased likelihood of having asthma, and 

this relationship was stronger for white children compared to black children. 

Children from ethnic minorities may face under-diagnosis of asthma (Panico et 

al., 2007) which can be a consequence of limited health care access, lack of 

knowledge about available services and lower levels of health literacy (Panico et 

al., 2007). Data suggests that Bangladeshi mothers under-report asthma and 

wheezing in children when compared to white mothers (Panico et al., 2007). 
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Another theory put forward to explain health inequalities faced by ethnic 

minorities is the Minorities’ Diminished Return theory (Assari and Moghani 

Lankarani, 2018). This theory states that the socially dominant and privileged 

groups gain the most health benefits, whilst the socially oppressed and deprived 

groups gain the least health benefits from the same socio-economic resources 

(Assari and Moghani Lankarani, 2018). 

High levels of deprivation have been associated with higher rates of obesity 

(Stamatakis et al., 2010). Naeem and Silveyra (2019) found that a higher BMI 

increased the risk of asthma for male children more so than female children. 

Physiologically, the relationship between asthma and obesity is complex. Obesity 

causes a multitude of health issues, such as a reduced lung volume and a lower 

response to inhaled corticosteroids (Forno et al., 2011). Di Genova et al. (2018) 

posited that a bidirectional relationship could be present between asthma and 

obesity, where an individual with asthma may be less likely to partake in physical 

activity, resulting in weight gain. Longitudinal studies have examined the 

relationship between air pollution exposure and obesity, and found that exposure 

to high levels of traffic-related air pollution and second-hand smoke were 

associated with childhood obesity (Jerrett et al., 2014). 

The relationship between maternal asthma, socioeconomic status and air 

pollution is straightforward and can be explained through the triple jeopardy 

theory. Living in an area of increased deprivation would result in exposure to 

higher levels of air pollution, a mother that already has asthma as a pre-existing 

health burden would therefore have an increased susceptibility to air pollution 

because of this (Jerrett et al., 2001). Therefore it can be assumed that a higher 

proportion of mothers living in the more deprived areas would experience asthma, 

just as a higher proportion of children living in the more deprived areas would 

also experience asthma. Consequently, a more deprived area would have higher 

proportions of mothers with asthma and children with asthma. As deprived areas 

are generally more polluted, this would exacerbate issues related to both mother 

and child asthma. Additionally, mothers living in the more deprived areas may not 

seek treatment for their own asthma, or for their child’s asthma due to barriers 

restricting health care access, or indeed a low self-esteem (Macintyre et al., 

1998). 
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Smoking patterns are associated with deprivation in England, with an increased 

prevalence in more deprived areas (Hiscock et al., 2012). This variation in 

smoking prevalence over different socioeconomic groups contributes to pre-

existing health inequalities in society (Hiscock et al., 2012). The interaction 

between concurrent exposures, such as ambient air pollution and second-hand 

smoke could exacerbate asthma in children (Norbäck et al., 2019). Whilst some 

research has been conducted into this interaction, the results are still unclear 

(Norbäck et al., 2019). Indeed, one study found that exposure to second-hand 

smoke limits inflammation in the airways following exposure to low-level ambient 

PM2.5 exposure (Rabinovitch et al., 2011).  

Social housing is rented at lower rates to those that need it most, typically those 

with a lower income, and social housing developments are commonly situated in 

lower income areas (Hills, 2007). In addition, poor quality housing can impact on 

health in a number of ways (Hood, 2005). High humidity and mould has been 

associated with increased asthma morbidity and asthma related hospital 

admissions, as well as more frequent wheezing. Many social housing properties 

have been draft-proofed to prevent heat loss, thus reducing ventilation in the 

home which can result in increased indoor air pollution levels, specifically levels 

of NO2, which can then exacerbate asthma (Sharpe et al., 2019). Having a familial 

income low enough to qualify for social housing could suggest other difficulties 

that could be faced when accessing healthcare or other amenities. The social 

aspect of this type of housing can also impact a child’s health. Deprived areas 

can experience increased level of crime and social disorder, resulting in 

increased levels of stress for residents (Denton et al., 2004). In regards to 

second-hand smoke exposure, 33% of people living in social housing smoke 

compared to 10% of people living in houses they own themselves (Jackson et al., 

2019). Furthermore, as social housing tends to be situated in more deprived 

areas, people living in social housing are more likely to be exposed to higher 

levels of air pollution. 

Whilst literature has presented evidence suggesting a relationship between urban 

residency and socio-economic status, positing that rural communities are at a 

disadvantage, results are conflicting (Wheeler and Ben-Shlomo, 2005, Briggs et 

al., 2008). Individuals with a lower socio-economic status that live in an urban 

area are more likely to face increased air pollution exposure (Briggs et al., 2008) 
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as the more deprived tend to be situated closer to sources of pollution. However 

the reverse is true in rural areas (Wheeler and Ben-Shlomo, 2005) as individuals 

with a higher socio-economic status are more likely to live near major transport 

links.  

This section has illustrated the complexities that lie in understanding the impact 

of different variables and exposures on asthma and wheezing prevalencein 

children. The triple jeopardy can help understand the pathways in which 

respiratory health is affected. Indeed, it could be said that the triple jeopardy can 

apply to the complex system of interactions and direct and indirect pathways 

between respiratory health and air pollution, deprivation, sex, ethnicity, and other 

variables previously mentioned. 

7.7  Strengths and limitations 

This thesis draws its strength from its data and methods. The Millennium Cohort 

Study provided panel data that followed children from birth throughout their 

childhood. A multidisciplinary and intergenerational study, the data provided 

contained important information regarding details such as familial health 

information, as well as social, economic and demographic information. In total, 

44,219 observations were used in the analyses, which is a substantial size of a 

dataset.  

Through a data linkage process, the inclusion of socio-economic indicators at 

both the individual and area level is another strength of this thesis. As stated in 

Chapter 1, using only one socio-economic status proxy fails to take into account 

the impact of both individual and area level socio-economic status on health. As 

few studies have examined this relationship, there is a clear knowledge gap here. 

Coupled with the modelled annual average air pollution data, which was available 

at a high resolution of 5km2, the dataset used in this thesis has proven to be a 

real strength. Extensive analysis through both cross-sectional, time series and 

multilevel modelling approaches has provided a valuable insight into the 

relationship between air pollution, health and individual and area level socio-

economic status. The interaction terms that have been included in different 

analyses have shown that the relationships discussed are complex, yet it is vital 

that they are taken into consideration. The inclusion of the different geographies 

of England, England excluding London, and London only in the multilevel model 



 

197 

analysis is another strength of this thesis. Running the multilevel models for the 

three different geographies allows for a better understanding of the data. There 

was the potential for data to be skewed when examining England as a whole due 

to the inclusion of London as typically there would be a concentration of wealthier 

individuals living in areas of high pollution. By modelling England without London, 

the potential ‘London effect’ was removed from the analysis. 

However, there are certain limitations to this thesis. As stated in Section 3.3.1.1, 

the responses in the Millennium Cohort Study relating to the health of the cohort 

member are reliant on parental response, and because of this certain questions 

are open to scrutiny. The survey questions chosen as the focus of this thesis, 

which were “has [^Cohort child’s name] ever had asthma?” providing the variable 

for ‘asthma ever’ and “has [^Cohort child name] had wheezing or whistling in the 

chest in the last 12 months?” giving the variable for ‘current wheeze’, are posited 

to parents only. Therefore clinical diagnosis was not necessary when recording 

whether or not a child had asthma or wheezing issues. This could result in either 

underrepresentation or overrepresentation of asthma and wheezing prevalence 

among cohort members. Indeed, other variables from the questionnaire could 

have been utilised when examining asthma prevalence. For example, frequency 

of wheezing attacks, instances of severe wheezing or hospitalisation due to 

wheezing or asthma could have been chosen as the outcome variables of interest 

(Islam et al., 2021). Such a limitation is not unique to this work, and it is common 

in literature interested in childhood asthma.  

Asthma is indeed nebulous and issues relate to a lack of a ‘gold standard 

definition of asthma’ (Dick et al., 2014) as touched upon in Section 2.6. However, 

the ISAAC questionnaire which the MCS questions were based off of is a 

validated questionnaire which has been used in many studies investigating 

childhood asthma (Lee, 2010, Al Ghobain et al., 2012, Ocampo et al., 2017). 

Additionally there are difficulties surrounding the clinical diagnosis of a child with 

asthma when they are in adolescence (Caudri et al., 2009, Moral et al., 2019). 

Due to these difficulties, the inclusion of current wheeze in addition to ever having 

asthma adds to the robustness to the data. Cases where a cohort member has 

wheezed in the previous 12 months may provide a clearer indication of current 

levels asthma prevalence amongst the children in the study. 
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Another limitation of this study is the use of binary variables and how this can 

result in important data being excluded. Ethnicity, for example, uses White British 

as the binary variable, grouping all other variables together as ‘not White British’. 

Information about specific ethnicities is lost and this limits both the results and 

interpretation of said results, as different ethnicities can be diverse in terms of 

their general socio-economic status, their culture and health behaviours. The 

data becomes generalised and interpretations cannot be made about specific 

groups of people. This limitation was addressed in Chapter 6, where ethnicity was 

instead recorded as a categorical variable comprised of six different ethnicities or 

groups of ethnicities. This inclusion of ethnicity as a categorical variable allowed 

for further interpretation of the data. For example, the results show that a child 

that is mixed-race has a greater likelihood of having asthma compared to a child 

that is white. 

The use of a binary variable also limits the information learned from a mother’s 

employment status, as it does not specify if the employment is full- or part-time 

or give any indication of wage. In terms of obesity, it excludes information related 

to children who may be recorded as being overweight or underweight. In addition, 

obesity had to be calculated through BMI using the recorded height and weight 

of all children. Whilst BMI is more of an indicator of obesity rather than a true 

measure (Rothman, 2008), obesity in the MCS was defined by the International 

Obesity Task Force and the BMI cut-offs were age and sex specific, making the 

variable more reliable (Brophy et al., 2009). Making social housing a binary 

variable also loses valuable information about other housing tenures, for example 

the interpretation could then exclude someone who is registered as being 

homeless, or assumptions could not be made about people that own their own 

home outright.  

Another potential limitation is the way in which air pollution data was recorded. 

As the air pollution data are available for the same year each wave was studied, 

important air pollution measurements in the years preceding and following each 

wave are ignored. These missing data may play an important role in terms of 

lagged exposure and its impacts on a child’s respiratory health. Furthermore, as 

air pollution exposure is recorded as a yearly average, all variability throughout 

the year is effectively smoothed over. This could exclude major air pollution 

events, where there may have been a peak in emissions for a period of time that 
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then exacerbated asthma in children. Additionally, indoor air pollution data would 

have been beneficial for this study, although this information was not available. 

In terms of the modelling approaches, correlation was shown to be a problem 

amongst the air pollution variables (Table 3.3 and Table C.1 to C.3 in Appendix 

C). Correlation was also a potential issue among the social variables, although 

the correlation seen here was generally weak and not a concern. It was because 

of correlation amongst the air pollutants that analysis was focussed on one 

pollutant, NO2. Whilst modelling interactions with all pollutants included in one 

model would have been interesting, the high correlation would have influenced 

the outputs. Much like the IMD, an index of pollution or air quality, which has been 

seen in other countries (Cromar et al., 2020, Morrissey et al., 2021a), could be 

beneficial to analysis such as the multilevel models conducted here.  

7.8  Conclusion 

This thesis aimed to address whether: 

1. The association between respiratory health and air pollution is stronger 

amongst individuals of lower, compared to higher, socio-economic status. 

2. Area level deprivation will interact with individual socio-economic status so 

that the impact of pollution on respiratory health is stronger for people with 

low socio-economic status living in the most deprived areas than people 

with low socio-economic status living in less deprived areas. 

The literature presented in Chapter 2 highlighted previous findings on the impact 

of air pollution exposure, area level deprivation and individual level socio-

economic status on health. Using a data linkage approach, data from the 

Millennium Cohort Study, EMEP4UK and IMD, facilitated cross-sectional, time 

series and multilevel analysis to examine the role of air pollution, area level 

deprivation and familial socio-economic status on childhood respiratory health.  

Whilst cross-sectional analysis was useful to quickly interpret the data at specific 

time points, time series analysis built on this further by examining how different 

exposures impacts on health. Initial exposures to air pollution and deprivation in 

Wave 1 were compared against exposures over time to estimate if a critical 

exposure period in early life or if exposures over time had a greater influence over 

respiratory health in children. Multilevel modelling developed this analysis one 

step further through the inclusion of the spatial aspect of the data in addition to 
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the temporal aspect. Due to this, multilevel modelling provided the most robust 

results and reported that both individual and area level socio-economic status 

had a statistically significant impact on asthma prevalence in children, thereby 

playing a pivot role in a child’s health. Although this was not the case in London. 

In comparison, it was found that for wheezing, area level socio-economic status 

had a greater, and more statistically significant impact that individual level socio-

economic status. In terms of air pollution, when looking at England the results 

were mixed, however in London, NO2 was found to have a statistically significant 

impact on asthma, increasing the likelihood of a child ever having asthma. 

The multilevel analysis also presented the variation in asthma and wheezing rates 

that were due to between MSOA variation, within MSOA variation and over time 

variation. Over time, wheezing was found to vary considerably more when 

compared to asthma (47% compared to 14%), whilst the majority of asthma 

variation was found to be within MSOAs (85%). Very little variation in asthma or 

wheeze occurred between MSOAs, highlighting the importance of the individual, 

as well as the importance of time. As stated previously, asthma is an established 

chronic illness, and so has the potential to be more fixed over time, whilst current 

wheeze allows for more temporal variability. Interaction terms were useful to fully 

explore the two- and three-way relationships of interest in the analysis, in order 

to better understand how individual level socio-economic status, area level 

deprivation and air pollution interact with one another to impact on childhood 

respiratory health.  

Rates of childhood asthma are increasing in the UK and at the same time, as 

noted in Chapter 1, child poverty rates in the UK are rising (Wickham et al., 2016). 

Further insight into the role of childhood familial socio-economic status is now 

more crucial than ever. This research helps to understand the complex 

relationships between asthma, air pollution and socio-economic status. The 

results presented in this thesis provide a valuable insight in terms of how to 

approach certain issues, and how policy makers should react in order to lessen 

the health burden faced by children suffering from respiratory health issues. It is 

important to consider the individual, and how socio-economic status can 

exacerbate the impact of air pollution exposure on their health.  

This research has also shown the need for policy and interventions to target 

alleviating deprivation at both the individual and area level. Deprivation underpins 
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all aspects of the theoretical framework presented in this thesis, and so 

interventions and policy should be considered with both air pollution and 

deprivation in mind. However, policy recommendations can only do so much, and 

restrictions and regulations would be more beneficial to those who would benefit 

most. As those living in the most deprived areas are at most risk of exacerbated 

health issues, enforcing low emission zones in residential areas, in particular 

residential areas in deprived areas, would be advantageous. In addition, stricter 

land use regulations could have a positive impact on people’s respiratory health, 

as those living in deprived areas are more likely to be situated close to polluting 

facilities. With a specific focus on childhood respiratory health, low emission 

zones surrounding schools could be encouraged during the hours that school 

would be in session. A further suggestion would be that an air quality index, much 

like the one seen in the U.S. or Malaysia (Cromar et al., 2020, Morrissey et al., 

2021a), be created for England, as a composite indicator of air quality. Such an 

index could help deal with correlation seen in this thesis. 

Current evidence points towards a complex relationship between genetic 

susceptibility, host factors (such as obesity), and environmental exposures 

influencing asthma prevalence (Dharmage et al., 2019). However, socio-

economic status must also be considered. The results presented here show how 

important individual and area level socio-economic status are when examining 

asthma and wheezing prevalence in children. Whilst this thesis presents a good 

starting point, further analysis is required to properly understand the complex 

interactions underpinning the relationship between individual socio-economic 

status, area level deprivation and pollution exposure. 
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Appendices 

Appendix A:  The International Study of Asthma and Allergies in 

Childhood questionnaire – relevant questions 
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Appendix B:  The Millennium Cohort Study – relevant questions 
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Appendix C:  Correlation matrices for England, England excluding London and London only 

Table C.1 Correlation matrix for variables for England (1 of 2) 

  

Asthma Wheezing 

Child is 

female Ethnicity 

Child is 

obese 

Mother is 

employed 

Mother has 

asthma 

Mother 

smokes 

Asthma 1        

Wheezing 0.455 1       

Child is female -0.054 -0.050 1      

Ethnicity -0.009 -0.014 -0.003 1     

Child is obese 0.030 0.028 0.016 0.060 1    

Maternal 

employment -0.022 -0.021 -0.001 -0.226 -0.018 1   

Maternal asthma 0.136 0.102 0.016 -0.095 0.006 -0.009 1  

Maternal smoking 0.051 0.042 -0.024 -0.159 0.031 -0.107 0.072 1 

Lives in urban area 0.028 0.025 0.000 0.199 0.033 -0.094 0.000 0.067 

Lives below poverty 

line 0.047 0.025 0.004 0.307 0.040 -0.481 0.016 0.181 

IMD Score 0.042 0.026 -0.004 0.370 0.060 -0.293 0.004 0.139 

NO2 concentration -0.006 -0.006 0.000 0.480 0.050 -0.152 -0.048 -0.043 

PM10 concentration -0.020 -0.005 -0.002 0.335 0.036 -0.102 -0.028 -0.041 

PM2.5 concentration -0.024 -0.006 -0.005 0.324 0.033 -0.097 -0.034 -0.049 

NO concentration -0.012 -0.012 -0.001 0.465 0.045 -0.133 -0.049 -0.057 

O3 concentration 0.007 0.009 0.000 -0.430 -0.040 0.129 0.040 0.047 
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Table C.1 Correlation matrix for variables for England (2 of 2) 

 

Lives in 

urban area 

Lives below 

poverty line IMD score NO2 conc. PM10 conc. PM2.5 conc. NO conc. O3 conc. 

Lives in urban area 1        

Lives below poverty 

line 0.158 1       

IMD Score 0.317 0.458 1      

NO2 concentration 0.421 0.198 0.376 1     

PM10 concentration 0.302 0.080 0.158 0.714 1    

PM2.5 concentration 0.282 0.069 0.124 0.717 0.959 1   

NO concentration 0.317 0.164 0.308 0.958 0.718 0.700 1  

O3 concentration -0.344 -0.172 -0.314 -0.954 -0.619 -0.677 -0.907 1 
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Table C.2 Correlation matrix for variables for England excluding London (1 of 2) 

  

Asthma Wheezing 

Child is 

female Ethnicity 

Child is 

obese 

Mother is 

employed 

Mother has 

asthma 

Mother 

smokes 

Asthma 1        

Wheezing 0.453 1       

Child is female -0.056 -0.050 1      

Ethnicity 0.002 -0.004 0.017 1     

Child is obese 0.034 0.030 0.013 0.045 1    

Maternal 

employment -0.027 -0.025 0.000 -0.262 -0.020 1   

Maternal asthma 0.129 0.101 0.015 -0.092 0.011 -0.017 1  

Maternal smoking 0.051 0.038 -0.025 -0.147 0.031 -0.118 0.070 1 

Lives in urban area 0.037 0.033 0.001 0.178 0.029 -0.094 0.011 0.089 

Lives below poverty 

line 0.051 0.030 0.006 0.342 0.038 -0.484 0.016 0.194 

IMD Score 0.052 0.036 -0.004 0.415 0.057 -0.305 0.005 0.151 

NO2 concentration 0.017 0.016 0.009 0.398 0.037 -0.154 -0.023 0.008 

PM10 concentration -0.004 0.019 0.001 0.159 0.012 -0.083 0.005 0.007 

PM2.5 concentration -0.011 0.015 -0.004 0.166 0.010 -0.078 -0.005 -0.007 

NO concentration 0.015 0.015 0.012 0.378 0.031 -0.139 -0.023 -0.002 

O3 concentration -0.012 -0.008 -0.009 -0.338 -0.027 0.116 0.018 0.007 
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Table C.2 Correlation matrix for variables for England excluding London (2 of 2) 

 

Lives in 

urban area 

Lives below 

poverty line IMD score NO2 conc. PM10 conc. PM2.5 conc. NO conc. O3 conc. 

Lives in urban area 1        

Lives below poverty 

line 0.171 1       

IMD Score 0.328 0.470 1      

NO2 concentration 0.431 0.226 0.418 1     

PM10 concentration 0.253 0.058 0.121 0.513 1    

PM2.5 concentration 0.225 0.049 0.084 0.552 0.935 1   

NO concentration 0.338 0.200 0.371 0.965 0.485 0.508 1  

O3 concentration -0.323 -0.172 -0.305 -0.935 -0.423 -0.544 -0.908 1 
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Table C.3 Correlation matrix for variables for London only (1 of 2) 

  

Asthma Wheezing 

Child is 

female Ethnicity 

Child is 

obese 

Mother is 

employed 

Mother has 

asthma 

Mother 

smokes 

Asthma 1        

Wheezing 0.469 1       

Child is female -0.049 -0.050 1      

Ethnicity -0.009 -0.006 -0.060 1     

Child is obese 0.021 0.027 0.033 0.056 1    

Maternal 

employment -0.005 -0.011 -0.008 -0.125 0.001 1   

Maternal asthma 0.176 0.105 0.020 -0.063 -0.010 0.019 1  

Maternal smoking 0.036 0.059 -0.018 -0.148 0.056 -0.075 0.055 1 

Lives in urban area -0.013 0.008 -0.001 0.050 0.015 0.001 -0.048 -0.016 

Lives below poverty 

line 0.032 0.004 -0.010 0.274 0.043 -0.464 0.023 0.135 

IMD Score -0.018 -0.031 -0.006 0.319 0.071 -0.207 0.019 0.094 

NO2 concentration -0.020 0.000 -0.034 0.226 0.002 -0.138 -0.013 -0.011 

PM10 concentration -0.027 -0.006 -0.012 0.141 0.017 -0.134 -0.009 0.020 

PM2.5 concentration -0.028 -0.006 -0.012 0.106 0.014 -0.122 -0.004 0.020 

NO concentration -0.017 0.001 -0.031 0.203 0.002 -0.137 -0.012 -0.013 

O3 concentration 0.021 0.007 0.037 -0.226 -0.001 0.133 0.011 0.017 
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Table C.3 Correlation matrix for variables for London only (2 of 2) 

 

Lives in 

urban area 

Lives below 

poverty line IMD score NO2 conc. PM10 conc. PM2.5 conc. NO conc. O3 conc. 

Lives in urban area 1        

Lives below poverty 

line 0.021 1       

IMD Score 0.059 0.391 1      

NO2 concentration 0.091 0.240 0.543 1     

PM10 concentration 0.132 0.229 0.498 0.752 1    

PM2.5 concentration 0.129 0.198 0.441 0.683 0.984 1   

NO concentration 0.085 0.228 0.513 0.987 0.782 0.726 1  

O3 concentration -0.054 -0.233 -0.526 -0.983 -0.652 -0.587 -0.966 1 
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Appendix D:  Further multilevel models 

Table D.1 Asthma area level multilevel models – PM10 only  

  All England Excluding London London only 

ASTHMA OR   95% CI OR   95% CI OR   95% CI 

Child is female 0.45 *** 0.36 0.55 0.45 *** 0.34 0.55 0.43 ** 0.23 0.76 

Ethnicity                 
White REF    REF       REF    
Mixed 1.64 * 0.94 2.64 2.09 * 1.07 3.68 1.69  0.42 4.55 

Indian 0.92  0.48 1.57 1.01   0.43 2.01 1.04  0.24 2.68 

Pakistani & Bangladeshi 0.67 * 0.41 1.02 0.78   0.49 1.25 0.70  0.19 2.01 

Black 0.68 * 0.38 1.05 0.66   0.24 1.49 1.24  0.45 2.54 

Other 0.77  0.31 1.56 1.59   0.36 4.40 0.74  0.15 2.33 

Child is obese 1.68 *** 1.25 2.22 1.84 *** 1.29 2.55 1.25  0.54 2.46 

Mother is employed 1.23 ** 1.05 1.43 1.20 * 0.98 1.43 1.49  0.91 2.33 

Mother has asthma 9.48 *** 7.29 12.41 8.20 *** 5.97 11.10 36.23 *** 13.87 78.17 

Mother smokes 1.27 * 1.01 1.57 1.27 * 1.02 1.56 1.63  0.81 3.11 

Lives in urban area 1.26  0.89 1.78 1.34   0.87 2.01 4.96  0.11 27.75 

Lives below the poverty line 1.28 ** 1.05 1.52 1.24 * 1.01 1.51 1.36  0.80 2.27 

IMD (level of deprivation)                 
1 REF    REF       REF    
2 1.47  0.88 2.18 1.84 * 1.02 3.05 0.90  0.17 2.83 

3 1.47  0.92 2.30 1.48   0.79 2.39 0.49  0.08 1.62 

4 1.83 ** 1.16 2.77 1.96 * 1.10 3.30 2.45  0.37 8.30 

5 2.85 *** 1.80 4.27 3.29 *** 1.75 5.28 0.77  0.08 2.48 

6 3.25 *** 1.98 4.79 3.28 *** 1.68 5.36 0.44  0.05 1.51 

7 2.92 *** 1.86 4.26 3.40 *** 1.91 5.53 0.84  0.10 3.26 

8 3.54 *** 2.30 5.17 4.52 *** 2.58 7.19 0.97  0.10 3.41 
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9 3.68 *** 2.39 5.54 5.01 *** 2.54 8.00 0.28  0.04 0.82 

10 4.10 *** 2.41 6.33 4.26 *** 2.04 7.08 0.55  0.07 1.79 

PM10 (level of pollution)                 
low REF    REF       REF    
mid-low 1.04  0.78 1.33 0.98   0.72 1.26 1.44  0.74 2.92 

mid-high 0.96  0.71 1.26 1.23   0.90 1.63 2.93 ** 1.17 6.27 

high 0.90  0.63 1.18 1.25   0.87 1.79 2.01  0.73 4.44 

  Mean 95% CI VPC Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.001 0.001 0.002 0.04 0.002 0.0004 0.003 0.05 0.002 0.001 0.01 0.06 

Level 2: Individual 19.12 17.47 20.77 85.32 19.05 17.31 21.29 85.27 26.40 19.45 35.15 88.92 

Level 1: Wave    14.64    14.68    11.02 

 

Table D.2 Wheeze area level multilevel models – PM10 only  

  All England Excluding London London only 

WHEEZE OR   95% CI OR   95% CI OR   95% CI 

Child is female 0.64 *** 0.57 0.72 0.66 *** 0.57 0.74 0.60 *** 0.44 0.79 

Ethnicity                 
White REF    REF       REF    
Mixed 1.14  0.83 1.50 1.14   0.78 1.59 1.44  0.84 2.38 

Indian 1.10  0.80 1.47 1.00   0.66 1.47 1.52  0.80 2.54 

Pakistani & Bangladeshi 0.90  0.71 1.13 0.96   0.73 1.22 0.76  0.41 1.35 

Black 0.88  0.66 1.17 0.67 * 0.39 1.06 1.40  0.90 2.18 

Other 0.90  0.55 1.40 0.99   0.46 1.77 1.14  0.55 2.23 

Child is obese 1.46 *** 1.20 1.75 1.43 *** 1.14 1.73 1.67 * 1.03 2.59 

Mother is employed 0.86 ** 0.76 0.97 0.88 * 0.79 0.99 0.76 * 0.56 1.00 

Mother has asthma 2.70 *** 2.34 3.12 2.61 *** 2.25 2.99 3.46 *** 2.18 5.26 

Mother smokes 1.26 ** 1.12 1.44 1.19 ** 1.05 1.36 1.91 *** 1.29 2.72 
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Lives in urban area 1.33 * 1.07 1.62 1.34 *** 1.11 1.58 1.01  0.37 2.77 

Lives below the poverty line 1.03  0.90 1.17 1.05   0.92 1.19 0.94  0.66 1.32 

IMD (level of deprivation)                 
1 REF    REF       REF    
2 1.02  0.79 1.30 1.26   0.97 1.61 0.49 * 0.21 0.94 

3 1.08  0.83 1.38 1.17   0.89 1.53 0.84  0.40 1.52 

4 1.20  0.92 1.57 1.21   0.93 1.55 0.87  0.40 1.65 

5 1.32 * 1.03 1.68 1.41 ** 1.10 1.80 0.58 * 0.26 1.09 

6 1.31 * 1.01 1.70 1.29 * 1.00 1.70 0.46 ** 0.19 0.85 

7 1.20  0.93 1.54 1.40 ** 1.10 1.81 0.51 * 0.22 0.99 

8 1.02  0.78 1.32 1.21   0.92 1.59 0.54 * 0.24 1.04 

9 1.06  0.81 1.37 1.25 * 0.97 1.66 0.62  0.26 1.21 

10 1.27 * 0.97 1.67 1.40 ** 1.05 1.87 0.32 *** 0.12 0.67 

PM10 (level of pollution)                 
low REF    REF       REF    
mid-low 1.03  0.89 1.19 1.05   0.90 1.24 1.09  0.72 1.57 

mid-high 0.90  0.77 1.04 0.99   0.83 1.18 1.40  0.90 2.09 

high 0.79 *** 0.67 0.91 1.05   0.86 1.27 0.99  0.61 1.49 

  Mean 95% CI VPC Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.002 0.001 0.003 0.05 0.002 0.001 0.01 0.07 0.04 0.01 0.11 1.14 

Level 2: Individual 4.13 3.77 4.55 55.67 4.11 3.70 4.53 55.51 4.63 3.30 5.92 58.48 

Level 1: Wave    44.28    44.42    40.38 
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Table D.3 Asthma area level multilevel models – PM2.5 only  

  All England Excluding London London only 

ASTHMA OR   95% CI OR   95% CI OR   95% CI 

Child is female 0.45 *** 0.36 0.56 0.46 *** 0.36 0.57 0.45 ** 0.20 0.82 

Ethnicity                 
White REF    REF       REF    
Mixed 1.60  0.86 2.68 1.99 * 1.04 3.49 1.56  0.40 3.91 

Indian 0.84  0.42 1.44 1.03   0.45 1.99 0.91  0.21 2.71 

Pakistani & Bangladeshi 0.69  0.40 1.08 0.76   0.48 1.15 0.65  0.15 1.60 

Black 0.62 * 0.34 1.05 0.79   0.27 1.94 1.31  0.47 2.84 

Other 0.71  0.31 1.48 1.49   0.33 4.18 0.67  0.12 2.07 

Child is obese 1.65 ** 1.19 2.21 1.86 *** 1.33 2.59 1.19  0.54 2.31 

Mother is employed 1.24 ** 1.04 1.47 1.21 * 1.00 1.42 1.51  0.92 2.33 

Mother has asthma 9.41 *** 7.02 12.37 8.17 *** 6.01 11.16 31.03 *** 12.34 67.50 

Mother smokes 1.29 * 1.03 1.62 1.29 * 1.03 1.57 1.52  0.74 2.64 

Lives in urban area 1.26  0.91 1.94 1.27   0.84 1.80 0.25 ** 0.06 0.58 

Lives below the poverty line 1.28 ** 1.05 1.52 1.24 * 1.00 1.51 1.42  0.84 2.27 

IMD (level of deprivation)               
1 REF    REF       REF    
2 1.37  0.84 2.14 1.79 ** 1.11 2.94 0.75  0.19 2.04 

3 1.35  0.85 2.09 1.44 * 0.95 2.44 0.49  0.10 1.37 

4 1.67 * 1.03 2.66 1.92 *** 1.24 3.16 2.21  0.62 5.81 

5 2.59 *** 1.59 4.23 3.15 *** 1.91 5.05 0.82  0.20 2.28 

6 3.00 *** 1.83 4.69 3.18 *** 1.98 5.44 0.40 * 0.09 1.21 

7 2.63 *** 1.53 4.13 3.36 *** 2.04 5.48 0.78  0.18 2.31 

8 3.09 *** 1.90 4.83 4.40 *** 2.71 7.28 0.99  0.25 2.76 

9 3.31 *** 1.97 5.30 4.83 *** 2.91 8.30 0.32 * 0.06 1.10 

10 3.56 *** 2.06 5.99 4.18 *** 2.34 7.31 0.50  0.09 1.64 
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PM2.5 (level of pollution)               
low REF    REF       REF    
mid-low 1.15  0.87 1.48 1.20   0.90 1.55 1.21  0.62 2.18 

mid-high 1.04  0.76 1.37 1.32 * 0.98 1.66 1.65  0.68 3.27 

high 1.15  0.83 1.66 1.30 * 0.97 1.70 2.01  0.80 4.22 

  Mean 95% CI VPC Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.001 0.0003 0.002 0.03 0.001 0.0003 0.002 0.03 0.06 0.005 0.16 1.76 

Level 2: Individual 19.23 17.18 22.15 85.39 18.63 17.01 20.62 84.99 24.60 18.58 31.90 88.20 

Level 1: Wave    14.58    14.98    10.04 

 

Table D.4 Wheeze area level multilevel models – PM2.5 only  

  All England Excluding London London only 

WHEEZE OR   95% CI OR   95% CI OR   95% CI 

Child is female 0.64 *** 0.58 0.72 0.65 *** 0.57 0.73 0.62 *** 0.45 0.83 

Ethnicity                 
White REF    REF       REF    
Mixed 1.13  0.84 1.47 1.14   0.80 1.58 1.43  0.75 2.44 

Indian 1.11  0.79 1.50 0.99   0.64 1.50 1.46  0.79 2.41 

Pakistani & Bangladeshi 0.90  0.72 1.13 0.95   0.73 1.23 0.76  0.40 1.30 

Black 0.84  0.63 1.11 0.64 * 0.38 1.09 1.44  0.92 2.18 

Other 0.88  0.53 1.33 1.03   0.47 1.90 1.09  0.58 1.93 

Child is obese 1.46 *** 1.20 1.74 1.42 ** 1.14 1.74 1.65 * 1.03 2.50 

Mother is employed 0.88 * 0.79 0.98 0.89 * 0.80 1.00 0.77 * 0.57 1.01 

Mother has asthma 2.67 *** 2.31 3.06 2.62 *** 2.24 3.07 3.47 *** 2.28 5.16 

Mother smokes 1.26 *** 1.11 1.42 1.19 ** 1.04 1.36 1.88 ** 1.33 2.61 

Lives in urban area 1.36 *** 1.14 1.67 1.31 *** 1.09 1.62 1.40  0.21 6.66 

Lives below the poverty line 1.05  0.93 1.17 1.04   0.92 1.17 0.95  0.70 1.31 
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IMD (level of deprivation)               
1 REF    REF       REF    
2 1.02  0.79 1.28 1.34 * 1.00 1.77 0.47 ** 0.23 0.85 

3 1.09  0.88 1.37 1.24   0.91 1.61 0.88  0.47 1.62 

4 1.21  0.94 1.51 1.29 * 0.98 1.69 0.88  0.44 1.61 

5 1.31 ** 1.05 1.65 1.52 ** 1.16 1.99 0.60 * 0.31 1.07 

6 1.30 * 1.02 1.62 1.39 ** 1.06 1.84 0.44 ** 0.22 0.79 

7 1.18  0.92 1.47 1.51 ** 1.14 2.04 0.53 * 0.25 1.00 

8 1.01  0.79 1.26 1.30   0.97 1.71 0.58 * 0.28 1.07 

9 1.03  0.77 1.29 1.37 * 1.00 1.82 0.61  0.29 1.22 

10 1.24 * 0.97 1.55 1.55 ** 1.11 2.15 0.33 *** 0.14 0.66 

PM2.5 (level of pollution)               
low REF    REF       REF    
mid-low 1.03  0.87 1.19 1.07   0.90 1.27 0.99  0.68 1.40 

mid-high 0.94  0.79 1.09 1.02   0.84 1.19 1.04  0.65 1.56 

high 0.82 ** 0.67 0.97 1.06   0.89 1.28 0.97  0.58 1.47 

  Mean 95% CI VPC Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.004 0.001 0.01 0.11 0.001 0.0005 0.003 0.04 0.08 0.02 0.20 2.51 

Level 2: Individual 4.16 3.74 4.56 55.82 4.21 3.80 4.70 56.15 4.47 3.42 5.60 57.60 

Level 1: Wave    44.07    43.81    39.89 
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Table D.5 Asthma area level multilevel models – NO only  

  All England Excluding London London only 

ASTHMA OR   95% CI OR   95% CI OR   95% CI 

Child is female 0.46 *** 0.37 0.56 0.45 *** 0.36 0.58 0.47 ** 0.24 0.85 

Ethnicity                 
White REF    REF       REF    
Mixed 1.64 * 0.94 2.72 2.17 * 0.99 3.92 1.63  0.41 4.85 

Indian 0.95  0.46 1.71 1.15   0.51 2.26 1.00  0.28 2.59 

Pakistani & Bangladeshi 0.70 * 0.48 1.00 0.82   0.51 1.31 0.63  0.17 1.84 

Black 0.64  0.36 1.14 0.75   0.25 1.64 1.26  0.52 2.71 

Other 0.78  0.32 1.62 1.73   0.35 5.44 0.71  0.16 2.01 

Child is obese 1.67 ** 1.17 2.25 1.86 *** 1.32 2.58 1.20  0.51 2.38 

Mother is employed 1.22 ** 1.04 1.44 1.18 * 1.01 1.39 1.50  0.88 2.43 

Mother has asthma 9.15 *** 6.91 12.61 8.05 *** 5.71 10.93 33.36 *** 11.77 79.43 

Mother smokes 1.27 * 1.03 1.53 1.25 * 1.03 1.54 1.53  0.75 2.71 

Lives in urban area 1.28  0.82 1.84 1.49 ** 1.12 1.97 0.02 *** 0.00 0.06 

Lives below the poverty line 1.28 ** 1.06 1.52 1.24 * 1.01 1.49 1.42  0.81 2.42 

IMD (level of deprivation)                 
1 REF    REF       REF    
2 1.40  0.92 2.09 1.74 * 1.00 2.78 0.78  0.20 1.89 

3 1.36  0.88 2.03 1.44   0.75 2.38 0.56  0.11 1.49 

4 1.69 ** 1.09 2.50 1.97 * 1.02 3.27 2.16  0.59 5.59 

5 2.59 *** 1.69 3.81 3.21 *** 1.77 5.42 0.85  0.20 2.15 

6 3.04 *** 2.03 4.37 3.29 *** 1.79 5.18 0.43 * 0.11 1.11 

7 2.72 *** 1.86 4.04 3.40 *** 1.81 5.47 0.87  0.24 2.26 

8 3.23 *** 2.10 4.78 4.46 *** 2.29 7.13 1.32  0.32 3.63 

9 3.34 *** 2.15 5.12 4.72 *** 2.66 7.19 0.35 * 0.07 1.01 

10 3.72 *** 2.46 5.79 4.13 *** 2.16 6.58 0.54  0.11 1.50 
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NO (level of pollution)                 
low REF    REF       REF    
mid-low 1.09  0.86 1.40 0.96   0.70 1.37 1.14  0.53 2.14 

mid-high 1.07  0.81 1.40 0.75   0.50 1.10 1.13  0.47 2.49 

high 0.96  0.70 1.28 1.00   0.66 1.40 1.84  0.64 4.30 

  Mean 95% CI VPC Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.001 0.0003 0.001 0.02 0.002 0.0003 0.01 0.07 0.002 0.001 0.005 0.06 

Level 2: Individual 18.80 16.57 21.05 85.10 18.58 16.75 20.68 84.96 24.72 18.88 32.43 88.26 

Level 1: Wave    14.88    14.97    11.68 

 

Table D.6 Wheeze area level multilevel models – NO only  

  All England Excluding London London only 

WHEEZE OR   95% CI OR   95% CI OR   95% CI 

Child is female 0.64 *** 0.57 0.71 0.65 *** 0.57 0.72 0.61 ** 0.44 0.82 

Ethnicity                 
White REF    REF       REF    
Mixed 1.21  0.91 1.58 1.14   0.80 1.57 1.37  0.75 2.22 

Indian 1.18  0.85 1.61 1.03   0.70 1.49 1.38  0.79 2.17 

Pakistani & Bangladeshi 0.97  0.76 1.20 0.99   0.76 1.26 0.73  0.36 1.26 

Black 0.93  0.68 1.24 0.65 * 0.39 1.06 1.32  0.86 2.00 

Other 0.95  0.60 1.48 0.98   0.44 1.81 1.06  0.53 1.93 

Child is obese 1.44 ** 1.17 1.74 1.44 ** 1.15 1.78 1.60 * 0.97 2.45 

Mother is employed 0.87 ** 0.78 0.96 0.89 * 0.78 1.01 0.77 * 0.58 1.01 

Mother has asthma 2.70 *** 2.36 3.13 2.65 *** 2.30 3.05 3.31 *** 2.15 4.89 

Mother smokes 1.25 *** 1.10 1.42 1.20 ** 1.04 1.37 1.82 *** 1.30 2.53 

Lives in urban area 1.44 *** 1.18 1.74 1.54 *** 1.25 1.95 0.83  0.05 2.06 

Lives below the poverty line 1.03  0.91 1.16 1.04   0.90 1.20 0.98  0.70 1.33 
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IMD (level of deprivation)                 
1 REF    REF       REF    
2 1.03  0.80 1.32 1.25   0.92 1.64 0.51 * 0.23 0.99 

3 1.09  0.85 1.39 1.20   0.91 1.58 0.91  0.42 1.77 

4 1.22  0.94 1.56 1.22   0.93 1.62 1.03  0.46 2.03 

5 1.34 * 1.04 1.67 1.42 ** 1.08 1.85 0.67  0.30 1.30 

6 1.31 * 1.01 1.63 1.30 * 1.00 1.66 0.50 * 0.23 1.03 

7 1.17  0.88 1.49 1.42 ** 1.06 1.84 0.62  0.25 1.30 

8 1.05  0.81 1.37 1.23   0.92 1.60 0.64  0.26 1.29 

9 1.08  0.83 1.38 1.27   0.95 1.68 0.68  0.29 1.46 

10 1.36 ** 1.05 1.76 1.44 ** 1.06 1.88 0.38 * 0.12 0.81 

NO (level of pollution)                 
low REF    REF       REF    
mid-low 0.89  0.76 1.04 0.85 * 0.71 1.00 0.77  0.51 1.12 

mid-high 0.81 * 0.68 0.97 0.78 ** 0.64 0.94 0.93  0.58 1.45 

high 0.68 *** 0.56 0.83 0.85   0.69 1.04 0.83  0.51 1.33 

  Mean 95% CI VPC Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.002 0.0005 0.003 0.05 0.001 0.0005 0.001 0.02 0.20 0.02 0.59 5.86 

Level 2: Individual 4.13 3.75 4.61 55.69 4.16 3.78 4.54 55.86 4.33 2.96 6.23 56.83 

Level 1: Wave    44.26    44.12    37.31 
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Table D.7 Asthma area level multilevel models – O3 only  

  All England Excluding London London only 

ASTHMA OR   95% CI OR   95% CI OR   95% CI 

Child is female 0.46 *** 0.36 0.56 0.46 *** 0.36 0.56 0.44 ** 0.22 0.77 

Ethnicity                 
White REF    REF       REF    
Mixed 1.61  0.90 2.73 2.11 * 0.98 3.82 1.66  0.46 5.28 

Indian 0.86  0.44 1.47 1.06   0.44 2.32 0.95  0.22 2.55 

Pakistani & Bangladeshi 0.67 * 0.42 0.98 0.81   0.49 1.22 0.64  0.17 1.72 

Black 0.60 * 0.32 0.98 0.73   0.25 1.69 1.31  0.47 2.88 

Other 0.75  0.24 1.62 1.69   0.36 4.73 0.75  0.16 2.44 

Child is obese 1.68 *** 1.23 2.26 1.86 *** 1.32 2.52 1.17  0.50 2.29 

Mother is employed 1.23 * 1.02 1.47 1.18 * 0.99 1.40 1.51  0.90 2.31 

Mother has asthma 9.27 *** 6.97 12.57 8.36 *** 6.23 11.53 32.29 *** 12.61 66.33 

Mother smokes 1.29 ** 1.05 1.57 1.27 * 1.00 1.57 1.48  0.75 2.57 

Lives in urban area 1.19  0.83 1.60 1.36 * 1.00 1.92 0.03 *** 0.00 0.16 

Lives below the poverty line 1.27 ** 1.04 1.51 1.22 * 0.99 1.49 1.46  0.81 2.35 

IMD (level of deprivation)                 
1 REF    REF       REF    
2 1.41  0.90 2.23 1.75 * 0.95 2.87 0.84  0.22 2.12 

3 1.35  0.84 2.04 1.47   0.77 2.71 0.53  0.11 1.42 

4 1.68 * 1.05 2.57 1.95 ** 1.11 3.64 2.89 * 0.87 7.41 

5 2.63 *** 1.69 3.86 3.24 *** 1.84 5.61 0.98  0.23 2.53 

6 3.06 *** 1.97 4.67 3.34 *** 2.00 5.98 0.57  0.11 1.60 

7 2.74 *** 1.72 4.31 3.44 *** 2.01 6.20 1.16  0.34 3.02 

8 3.32 *** 2.16 5.04 4.57 *** 2.58 8.22 1.56  0.35 4.57 

9 3.53 *** 2.13 5.50 4.94 *** 2.72 9.21 0.42 * 0.09 1.15 

10 3.79 *** 2.18 6.31 4.50 *** 2.40 10.03 0.76  0.13 2.34 
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O3 (level of pollution)                 
low REF    REF       REF    
mid-low 0.93  0.68 1.17 0.96   0.69 1.30 0.95  0.42 1.78 

mid-high 1.09  0.80 1.44 0.98   0.68 1.32 0.84  0.31 1.70 

high 0.92  0.66 1.24 1.11   0.76 1.56 1.41  0.48 3.23 

  Mean 95% CI VPC Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.01 0.001 0.01 0.16 0.002 0.001 0.005 0.08 0.01 0.001 0.03 0.19 

Level 2: Individual 19.12 17.12 21.83 85.32 18.94 17.00 20.95 85.20 24.05 18.95 29.29 87.97 

Level 1: Wave    14.52    14.72      11.84 

 

Table D.8 Wheeze area level multilevel models – O3 only  

  All England Excluding London London only 

WHEEZE OR   95% CI OR   95% CI OR   95% CI 

Child is female 0.64 *** 0.57 0.72 0.65 *** 0.58 0.73 0.60 *** 0.43 0.79 

Ethnicity                 
White REF    REF       REF    
Mixed 1.18  0.86 1.58 1.15   0.80 1.60 1.36  0.74 2.26 

Indian 1.17  0.86 1.56 1.02   0.66 1.47 1.46  0.81 2.32 

Pakistani & Bangladeshi 0.95  0.74 1.19 0.98   0.75 1.24 0.75  0.39 1.30 

Black 0.89  0.66 1.20 0.67   0.37 1.10 1.38  0.86 2.06 

Other 0.92  0.58 1.37 1.01   0.48 1.84 1.06  0.54 1.82 

Child is obese 1.46 *** 1.20 1.75 1.44 ** 1.14 1.77 1.67 * 0.98 2.57 

Mother is employed 0.87 ** 0.78 0.97 0.89 * 0.79 1.01 0.76 * 0.57 1.02 

Mother has asthma 2.71 *** 2.34 3.10 2.61 *** 2.25 3.04 3.40 *** 2.20 5.24 

Mother smokes 1.26 *** 1.12 1.42 1.20 ** 1.06 1.37 1.89 *** 1.31 2.68 

Lives in urban area 1.41 ** 1.10 1.70 1.39 ** 1.09 1.71 14.51 ** 1.13 67.91 

Lives below the poverty line 1.04  0.92 1.16 1.05   0.92 1.20 0.95  0.67 1.30 
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IMD (level of deprivation)                 
1 REF    REF       REF    
2 1.06  0.83 1.33 1.21   0.90 1.57 0.47 ** 0.22 0.86 

3 1.13  0.89 1.43 1.13   0.84 1.55 0.83  0.42 1.43 

4 1.25 * 0.97 1.56 1.19   0.90 1.54 0.88  0.43 1.50 

5 1.37 ** 1.07 1.71 1.38 * 1.04 1.81 0.60  0.29 1.11 

6 1.37 ** 1.07 1.69 1.26   0.95 1.68 0.45 ** 0.22 0.84 

7 1.23  0.95 1.55 1.37 * 1.03 1.82 0.52 * 0.26 0.93 

8 1.09  0.83 1.38 1.19   0.91 1.55 0.56 * 0.26 1.06 

9 1.12  0.86 1.44 1.21   0.90 1.61 0.59  0.28 1.15 

10 1.41 ** 1.08 1.81 1.42 * 1.03 1.90 0.31 *** 0.13 0.58 

O3 (level of pollution)                 
low REF    REF       REF    
mid-low 1.15  0.97 1.36 1.01   0.84 1.21 0.91  0.61 1.35 

mid-high 1.39 *** 1.18 1.65 1.06   0.87 1.27 0.98  0.60 1.54 

high 1.33 ** 1.09 1.60 1.12   0.91 1.35 1.02  0.61 1.58 

  Mean 95% CI VPC Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.001 0.0002 0.002 0.02 0.002 0.001 0.003 0.05 0.07 0.004 0.20 2.08 

Level 2: Individual 4.16 3.82 4.56 55.84 4.07 3.69 4.48 55.29 4.30 3.31 5.81 56.68 

Level 1: Wave    44.14    44.66     41.24 
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Table D.9 Asthma interaction multilevel models – PM10 only 

  All England Excluding London London only 

ASTHMA OR   95% CI OR   95% CI OR   95% CI 

Child is female 0.45 *** 0.37 0.55 0.46 *** 0.35 0.57 0.44 *** 0.21 0.76 

Ethnicity                 
White REF    REF       REF    
Mixed 1.95 ** 1.15 3.20 2.15 * 0.98 3.98 1.76  0.47 4.75 

Indian 1.04  0.56 1.74 1.28   0.54 2.77 1.04  0.29 2.53 

Pakistani & Bangladeshi 0.77  0.51 1.10 0.86   0.53 1.31 0.78  0.21 2.13 

Black 0.96  0.57 1.63 0.81   0.27 1.78 1.32  0.54 2.70 

Other 1.02  0.43 2.18 1.50   0.34 4.32 0.96  0.21 2.70 

Child is obese 1.71 *** 1.27 2.23 1.81 *** 1.29 2.43 1.20  0.51 2.30 

Mother is employed 1.22 ** 1.03 1.44 1.20 * 0.99 1.42 1.42  0.90 2.11 

Mother has asthma 9.34 *** 6.92 12.69 8.52 *** 5.85 12.21 29.10 *** 12.13 55.56 

Mother smokes 1.29 * 1.05 1.57 1.31 ** 1.06 1.58 1.46  0.76 2.58 

Lives in urban area 1.72 *** 1.23 2.63 1.72 *** 1.28 2.27 1.13  0.28 3.15 

Lives below the poverty line 1.29 ** 1.07 1.55 1.27 * 0.99 1.57 1.80 * 0.96 2.97 

IMD (level of deprivation) 1.02 *** 1.01 1.02 1.02 *** 1.01 1.03 0.99  0.96 1.02 

PM10 (level of pollution) 0.90 *** 0.87 0.92 0.94 *** 0.89 0.98 0.88 *** 0.80 0.94 

Poverty*IMD 1.00  0.99 1.01 1.00   0.99 1.01 1.00  0.96 1.04 

Poverty*PM10 0.99  0.91 1.07 0.94   0.85 1.05 1.14  0.80 1.65 

IMD*PM10 1.00  1.00 1.00 1.00   1.00 1.01 1.01  0.99 1.03 

Poverty*IMD*PM10 1.00  0.99 1.00 1.00   0.99 1.01 0.96 ** 0.93 0.99 

  Mean 95% CI VPC Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.001 0.0003 0.004 0.04 0.001 0.0005 0.003 0.04 0.06 0.003 0.23 1.71 

Level 2: Individual 18.80 17.20 20.39 85.11 18.75 16.80 21.27 85.07 21.90 15.91 26.78 86.94 

Level 1: Wave    14.85    14.89      11.35 
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Table D.10 Wheeze interaction multilevel models – PM10 only 

  All England Excluding London London only 

WHEEZE OR   95% CI OR   95% CI OR   95% CI 

Child is female 0.64 *** 0.57 0.72 0.66 *** 0.58 0.75 0.61 *** 0.46 0.82 

Ethnicity                 
White REF    REF       REF    
Mixed 1.10  0.82 1.46 1.12   0.78 1.57 1.29  0.72 2.20 

Indian 1.02  0.74 1.37 0.94   0.63 1.35 1.51  0.88 2.37 

Pakistani & Bangladeshi 0.88  0.70 1.09 0.90   0.70 1.13 0.81  0.40 1.48 

Black 0.80  0.57 1.06 0.60 * 0.34 0.95 1.26  0.81 1.85 

Other 0.82  0.51 1.26 0.94   0.43 1.75 1.06  0.52 1.84 

Child is obese 1.44 *** 1.19 1.74 1.43 ** 1.14 1.77 1.62 * 1.00 2.49 

Mother is employed 0.87 * 0.78 0.98 0.89 * 0.79 1.01 0.77 * 0.58 1.03 

Mother has asthma 2.71 *** 2.34 3.15 2.61 *** 2.21 3.05 3.22 *** 2.04 4.67 

Mother smokes 1.25 *** 1.11 1.40 1.17 * 1.02 1.35 1.80 ** 1.26 2.51 

Lives in urban area 1.25 * 1.02 1.52 1.25 * 1.02 1.48 2.25  0.31 13.01 

Lives below the poverty line 1.04  0.91 1.17 1.05   0.91 1.21 1.08  0.75 1.49 

IMD (level of deprivation) 1.01 ** 1.00 1.01 1.01 *** 1.00 1.02 0.99  0.98 1.01 

PM10 (level of pollution) 0.99  0.96 1.02 1.02   0.97 1.06 1.01  0.97 1.05 

Poverty*IMD 0.99 * 0.99 1.00 0.99 * 0.99 1.00 0.98  0.95 1.00 

Poverty*PM10 0.99  0.93 1.04 0.97   0.90 1.05 1.25 * 0.99 1.58 

IMD*PM10 1.00 * 1.00 1.00 1.00   1.00 1.00 1.00  0.99 1.01 

Poverty*IMD*PM10 1.00  1.00 1.00 1.00   1.00 1.01 0.97 *** 0.95 0.99 

  Mean 95% CI VPC Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.002 0.001 0.005 0.06 0.001 0.0003 0.001 0.02 0.01 0.001 0.07 0.38 

Level 2: Individual 4.14 3.79 4.57 55.70 4.12 3.67 4.59 55.61 4.24 3.33 5.36 56.32 

Level 1: Wave    44.24    44.37      43.30 
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Table D.11 Asthma interaction multilevel models – PM2.5 only 

  All England Excluding London London only 

ASTHMA OR   95% CI OR   95% CI OR   95% CI 

Child is female 0.46 *** 0.36 0.58 0.46 *** 0.36 0.59 0.43 ** 0.22 0.75 

Ethnicity                 
White REF    REF       REF    
Mixed 1.83 * 1.07 2.91 2.17 * 1.08 3.89 1.79  0.46 4.65 

Indian 1.08  0.54 1.98 1.30   0.50 2.64 1.00  0.23 2.58 

Pakistani & Bangladeshi 0.79  0.53 1.12 0.82   0.46 1.33 0.71  0.17 2.01 

Black 0.87  0.49 1.40 0.81   0.29 1.82 1.39  0.55 3.01 

Other 0.94  0.38 2.03 1.53   0.31 4.31 0.76  0.18 2.28 

Child is obese 1.71 *** 1.22 2.30 1.88 *** 1.36 2.57 1.15  0.52 2.18 

Mother is employed 1.23 ** 1.03 1.44 1.21 * 1.00 1.44 1.55  0.91 2.40 

Mother has asthma 9.38 *** 6.94 12.31 8.49 *** 6.34 11.23 34.77 *** 11.60 96.10 

Mother smokes 1.32 ** 1.08 1.59 1.33 * 1.04 1.67 1.49  0.77 2.51 

Lives in urban area 1.71 *** 1.20 2.33 1.82 * 1.12 2.60 0.10 *** 0.01 0.33 

Lives below the poverty line 1.29 ** 1.05 1.58 1.27 * 1.03 1.58 1.76 * 0.90 3.07 

IMD (level of deprivation) 1.01 *** 1.01 1.02 1.02 *** 1.01 1.03 1.00  0.96 1.03 

PM2.5 (level of pollution) 0.92 *** 0.89 0.95 0.93 * 0.83 1.00 0.73 *** 0.67 0.81 

Poverty*IMD 1.00  0.99 1.01 1.00   0.99 1.01 1.00  0.95 1.05 

Poverty*PM2.5 0.96  0.88 1.06 0.96   0.84 1.10 1.30  0.78 2.11 

IMD*PM2.5 1.00  1.00 1.00 1.004   1.00 1.01 1.01  0.99 1.04 

Poverty*IMD*PM2.5 1.00  0.99 1.00 1.00   0.99 1.00 0.95  0.91 1.00 

  Mean 95% CI VPC Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.001 0.0001 0.003 0.04 0.002 0.001 0.01 0.07 0.01 0.001 0.02 0.19 

Level 2: Individual 19.12 17.11 21.35 85.32 19.11 16.99 22.12 85.32 24.21 16.85 33.89 88.04 

Level 1: Wave    14.64    14.61      11.77 
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Table D.12 Wheeze interaction multilevel models – PM2.5 only 

  All England Excluding London London only 

WHEEZE OR   95% CI OR   95% CI OR   95% CI 

Child is female 0.64 *** 0.57 0.71 0.65 *** 0.57 0.73 0.61 *** 0.44 0.82 

Ethnicity                 
White REF    REF       REF    
Mixed 1.11  0.83 1.46 1.11   0.77 1.55 1.35  0.76 2.23 

Indian 1.04  0.76 1.43 0.95   0.63 1.40 1.48  0.86 2.35 

Pakistani & Bangladeshi 0.88  0.71 1.10 0.89   0.70 1.10 0.85  0.47 1.44 

Black 0.81  0.59 1.08 0.61 * 0.35 0.97 1.32  0.84 1.92 

Other 0.83  0.53 1.21 0.96   0.47 1.74 1.08  0.53 1.88 

Child is obese 1.45 *** 1.20 1.74 1.43 *** 1.15 1.77 1.63 * 1.01 2.52 

Mother is employed 0.87 ** 0.78 0.96 0.88 * 0.78 0.98 0.76 * 0.56 1.01 

Mother has asthma 2.70 *** 2.30 3.09 2.57 *** 2.17 3.01 3.31 *** 2.19 4.84 

Mother smokes 1.24 ** 1.09 1.40 1.16 ** 1.03 1.32 1.80 *** 1.24 2.53 

Lives in urban area 1.27 * 1.02 1.50 1.30 ** 1.07 1.55 1.92  0.51 5.52 

Lives below the poverty line 1.03  0.89 1.16 1.06   0.92 1.21 1.05  0.77 1.40 

IMD (level of deprivation) 1.01 * 1.00 1.01 1.01 *** 1.00 1.01 0.99  0.97 1.01 

PM2.5 (level of pollution) 0.97 *** 0.94 0.99 1.00   0.94 1.05 0.99  0.90 1.13 

Poverty*IMD 0.99 * 0.99 1.00 0.99 * 0.98 1.00 0.98  0.95 1.01 

Poverty*PM2.5 1.00  0.94 1.06 0.99   0.91 1.08 1.27  0.91 1.69 

IMD*PM2.5 1.00 * 0.99 1.00 1.00   0.996 1.00 1.00  0.98 1.01 

Poverty*IMD*PM2.5 1.00  1.00 1.01 1.00   1.00 1.01 0.97 ** 0.94 0.99 

  Mean 95% CI VPC Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.001 0.0002 0.001 0.02 0.001 0.0003 0.002 0.02 0.10 0.03 0.32 2.99 

Level 2: Individual 4.05 3.65 4.49 55.19 4.07 3.63 4.65 55.32 4.17 3.35 5.14 55.88 

Level 1: Wave    44.79    44.66     41.13 

 



 

226 

Table D.13 Asthma interaction multilevel models – NO only 

  All England Excluding London London only 

ASTHMA OR   95% CI OR   95% CI OR   95% CI 

Child is female 0.45 *** 0.35 0.55 0.46 *** 0.36 0.57 0.43 * 0.23 0.84 

Ethnicity                 
White REF    REF       REF    
Mixed 1.91 ** 1.13 3.04 2.10 * 0.98 3.67 1.99  0.58 5.10 

Indian 1.17  0.60 2.02 1.24   0.53 2.52 1.20  0.35 3.07 

Pakistani & Bangladeshi 0.85  0.53 1.27 0.83   0.50 1.30 0.97  0.22 2.92 

Black 0.99  0.56 1.67 0.83   0.24 2.00 1.46  0.62 2.98 

Other 1.07  0.45 2.16 1.67   0.33 4.73 1.02  0.24 2.61 

Child is obese 1.70 ** 1.25 2.25 1.87 *** 1.32 2.56 1.14  0.48 2.31 

Mother is employed 1.23 ** 1.04 1.46 1.20 * 0.99 1.45 1.48 * 0.99 2.21 

Mother has asthma 9.15 *** 7.00 12.05 8.29 *** 6.07 11.11 29.06 *** 11.55 60.60 

Mother smokes 1.31 ** 1.06 1.59 1.30 ** 1.06 1.58 1.48  0.72 2.53 

Lives in urban area 1.66 *** 1.22 2.24 1.63 *** 1.25 2.22 0.12 *** 0.01 0.41 

Lives below the poverty line 1.34 ** 1.07 1.60 1.30 * 1.05 1.58 1.99 * 1.09 3.46 

IMD (level of deprivation) 1.02 *** 1.01 1.02 1.02 *** 1.01 1.03 0.98  0.94 1.01 

NO (level of pollution) 0.97 ** 0.95 0.99 0.99   0.94 1.02 1.01  0.95 1.07 

Poverty*IMD 1.00  0.99 1.02 1.00   0.99 1.01 1.02  0.97 1.07 

Poverty*NO 1.01  0.98 1.04 1.01   0.95 1.06 0.99  0.91 1.08 

IMD*NO 1.00  1.00 1.00 1.00   1.00 1.00 1.00  1.00 1.01 

Poverty*IMD*NO 1.00  1.00 1.00 1.00   1.00 1.00 0.99 *** 0.98 0.99 

  Mean 95% CI VPC Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.002 0.001 0.005 0.05 0.003 0.001 0.005 0.09 0.002 0.0004 0.01 0.06 

Level 2: Individual 18.62 16.84 20.92 84.99 18.75 16.48 21.41 85.07 23.47 17.42 30.36 87.71 

Level 1: Wave    14.96    14.84      12.23 
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Table D.14 Wheeze interaction multilevel models – NO only 

  All England Excluding London London only 

WHEEZE OR   95% CI OR   95% CI OR   95% CI 

Child is female 0.64 *** 0.58 0.71 0.65 *** 0.57 0.74 0.59 *** 0.42 0.78 

Ethnicity                 
White REF    REF       REF    
Mixed 1.14  0.85 1.48 1.11   0.77 1.52 1.35  0.77 2.23 

Indian 1.07  0.75 1.42 0.95   0.62 1.37 1.42  0.79 2.37 

Pakistani & Bangladeshi 0.88  0.71 1.12 0.91   0.70 1.14 0.82  0.43 1.38 

Black 0.84  0.61 1.12 0.60 * 0.34 0.96 1.33  0.83 2.04 

Other 0.86  0.55 1.31 0.93   0.43 1.78 1.16  0.58 2.11 

Child is obese 1.44 *** 1.18 1.75 1.41 *** 1.13 1.73 1.62 * 1.02 2.50 

Mother is employed 0.89 * 0.80 0.99 0.89 * 0.79 1.02 0.75 ** 0.57 0.96 

Mother has asthma 2.71 *** 2.33 3.14 2.61 *** 2.22 3.05 3.41 *** 2.10 5.20 

Mother smokes 1.24 *** 1.09 1.38 1.17 * 1.03 1.32 1.85 *** 1.26 2.57 

Lives in urban area 1.29 ** 1.06 1.53 1.34 *** 1.13 1.60 3.19  0.19 11.16 

Lives below the poverty line 1.06  0.92 1.21 1.06   0.91 1.21 1.08  0.78 1.48 

IMD (level of deprivation) 1.01 ** 1.00 1.01 1.01 *** 1.00 1.01 0.98 * 0.97 1.00 

NO (level of pollution) 0.99  0.98 1.01 1.00   0.98 1.02 1.02  0.99 1.05 

Poverty*IMD 0.99  0.99 1.00 0.99 * 0.99 1.00 0.99  0.96 1.02 

Poverty*NO 1.00  0.98 1.02 0.99   0.96 1.03 1.01  0.96 1.06 

IMD*NO 1.00  1.00 1.00 1.00   1.00 1.00 1.00  1.00 1.00 

Poverty*IMD*NO 1.00  1.00 1.00 1.00   1.00 1.00 1.00 ** 0.99 1.00 

  Mean 95% CI VPC Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.001 0.0004 0.001 0.02 0.001 0.0003 0.002 0.02 0.13 0.02 0.33 3.84 

Level 2: Individual 4.13 3.77 4.52 55.67 4.14 3.69 4.65 55.70 4.35 3.31 6.03 56.95 

Level 1: Wave    44.31    44.28    39.21 
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Table D.15 Asthma interaction multilevel models – O3 only 

  All England Excluding London London only 

ASTHMA OR   95% CI OR   95% CI OR   95% CI 

Child is female 0.45 *** 0.37 0.56 0.46 *** 0.35 0.59 0.42 ** 0.21 0.76 

Ethnicity                 
White REF    REF       REF    
Mixed 1.73 * 1.04 2.64 2.18 * 1.12 4.03 1.95  0.58 5.18 

Indian 0.94  0.48 1.61 1.18   0.54 2.34 1.06  0.32 2.64 

Pakistani & Bangladeshi 0.74  0.46 1.10 0.82   0.51 1.24 1.01  0.29 2.55 

Black 0.75  0.42 1.19 0.78   0.30 1.73 1.54  0.66 3.05 

Other 0.86  0.37 1.67 1.38   0.32 3.86 0.91  0.23 2.49 

Child is obese 1.68 ** 1.21 2.22 1.85 *** 1.35 2.55 1.08  0.45 2.09 

Mother is employed 1.21 * 1.00 1.44 1.18 * 0.98 1.40 1.44  0.92 2.14 

Mother has asthma 8.96 *** 6.82 11.78 7.91 *** 5.58 10.70 29.61 *** 11.61 61.00 

Mother smokes 1.30 ** 1.04 1.61 1.31 ** 1.07 1.61 1.42  0.71 2.55 

Lives in urban area 1.45 ** 1.07 1.98 1.65 *** 1.23 2.29 1.06  0.14 3.07 

Lives below the poverty line 1.32 ** 1.09 1.59 1.29 ** 1.05 1.56 1.96 * 1.08 3.22 

IMD (level of deprivation) 1.01 *** 1.00 1.02 1.02 *** 1.01 1.03 0.97 * 0.94 1.00 

O3 (level of pollution) 1.01  0.99 1.02 1.02 *** 1.01 1.05 0.94  0.82 1.09 

Poverty*IMD 1.01  1.00 1.02 1.00   0.99 1.01 1.03  0.98 1.08 

Poverty*O3 1.00  0.95 1.05 0.97   0.91 1.03 1.12  0.92 1.36 

IMD*O3 1.00  1.00 1.00 1.00   1.00 1.00 1.00  0.99 1.01 

Poverty*IMD*O3 1.00  1.00 1.00 1.00   1.00 1.01 1.03 *** 1.01 1.04 

  Mean 95% CI VPC Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.002 0.001 0.005 0.49 0.001 0.0003 0.002 0.03 0.02 0.003 0.07 0.71 

Level 2: Individual 18.19 16.49 20.03 83.79 18.24 16.38 20.11 84.72 23.15 17.30 30.02 87.56 

Level 1: Wave    15.72    15.25      11.73 
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Table D.16 Wheeze interaction multilevel models – O3 only 

  All England Excluding London London only 

WHEEZE OR   95% CI OR   95% CI OR   95% CI 

Child is female 0.65 *** 0.58 0.72 0.65 *** 0.57 0.74 0.61 ** 0.45 0.80 

Ethnicity                 
White REF    REF       REF    
Mixed 1.10  0.79 1.43 1.11   0.76 1.58 1.38  0.76 2.28 

Indian 1.06  0.77 1.44 0.96   0.60 1.46 1.45  0.84 2.33 

Pakistani & Bangladeshi 0.88  0.69 1.11 0.91   0.71 1.13 0.79  0.42 1.39 

Black 0.81  0.59 1.08 0.62 * 0.35 1.00 1.30  0.83 1.92 

Other 0.87  0.53 1.31 0.96   0.43 1.85 1.07  0.53 1.85 

Child is obese 1.43 *** 1.17 1.72 1.43 *** 1.14 1.75 1.58 * 0.98 2.43 

Mother is employed 0.88 * 0.79 0.99 0.89 * 0.79 1.00 0.76 * 0.57 1.04 

Mother has asthma 2.68 *** 2.27 3.09 2.60 *** 2.21 3.09 3.25 *** 2.15 4.67 

Mother smokes 1.24 *** 1.11 1.40 1.19 ** 1.03 1.35 1.76 *** 1.21 2.37 

Lives in urban area 1.28 *** 1.08 1.51 1.30 ** 1.06 1.58 4.02 * 0.72 16.04 

Lives below the poverty line 1.05  0.93 1.20 1.05   0.90 1.20 1.14  0.80 1.57 

IMD (level of deprivation) 1.01 ** 1.00 1.01 1.01 * 1.00 1.01 0.99  0.97 1.01 

O3 (level of pollution) 1.01  1.00 1.02 1.00   0.98 1.02 0.97  0.91 1.02 

Poverty*IMD 1.00  0.99 1.00 0.99 * 0.99 1.00 0.99  0.96 1.02 

Poverty*O3 1.01  0.98 1.05 1.01   0.97 1.06 1.00  0.89 1.11 

IMD*O3 1.00  1.00 1.00 1.00   1.00 1.00 1.00  0.99 1.00 

Poverty*IMD*O3 1.00  1.00 1.00 1.00   1.00 1.00 1.01 ** 1.00 1.02 

  Mean 95% CI VPC Mean 95% CI VPC Mean 95% CI VPC 

Level 3: MSOA 0.01 0.001 0.01 0.17 0.001 0.0002 0.001 0.02 0.004 0.001 0.01 0.12 

Level 2: Individual 4.07 3.74 4.48 55.32 4.11 3.68 4.67 55.56 4.24 3.32 5.26 56.30 

Level 1: Wave    44.51    44.42      43.58 

  



 

230 

Appendix E:  Differences in IMD score and air pollution 

concentrations for England, England excluding 

London, and London only 

 

Table E.1 Differences in area level variables for the different geographies 

  All England Excluding London London only 

  min. mean max. min. mean max. min. mean max. 

IMD score 0.8 25.2 81.6 0.8 24.8 81.6 2.2 27.3 62.3 

NO2 conc. 1.9 21.9 60.7 1.9 19.2 60.7 12.1 35.7 56.2 

PM10 conc. 12.0 19.9 26.6 12.0 19.3 26.0 17.9 22.8 26.6 

PM2.5 conc. 5.8 12.5 19.2 5.8 12.1 19.2 11.2 14.9 18.3 

NO conc. 0.1 6.9 40.7 0.1 5.0 37.9 1.6 16.9 40.7 

O3 conc. 11.8 26.8 37.5 11.8 27.6 37.5 14.5 22.7 30.5 
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