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Abstract
Currently, passwords are the default method used to authenticate users. As hardware
continues to advance in speed, breaking these passwords becomes easier. The tradi-
tional solution to this problem is ever increasing password complexity and two-factor
authentication. However, users become strained under overly complex login systems
and often circumvent them. Two-factor authentication also adds to this complexity
and many forms of two-factor authentication are inherently insecure. In answer to
these problems, this project proposes a password-less multi-factor authentication sys-
tem, which leverages the tried-and-proven existing technologies, asymmetric cryptog-
raphy, digital signatures, and biometric authentication. Simulated user testing shows
promising results, suggesting that registration can be completed in just over thirty sec-
onds, and authentication in just over two seconds. An analysis of this project’s possible
attack vectors, preventative steps taken, and their solutions in potential future research
are also discussed.
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1 Introduction

1.1 Problem Statement

Cyber security is a constant battle between those who have information worth secur-

ing and those who wish to take that information. As technology has advanced, security

has increased in complexity at an exponential rate. Early computers brought about

a shift in security design, from little protection by restriction of physical access, to

multi-user security and application layering. With the age of the Internet, any device

connected is potentially vulnerable. One method to secure login vulnerabilities is with

passwords.

In the realm of technology, passwords are implemented by computers, with a com-

puter prompting a challenge that has to be correctly answered in text format. A com-

puter can only parse text input and compare it to the exact correct response, meaning

the correct text response to the challenge needs to be remembered precisely by the

user. As technology continues to advance, passwords can be guessed, deciphered, or

brute-forced, causing requirements for passwords including length, use of symbols, and

variances in letter casing to increase. For several decades, it has been Department of

Defense (DoD) and National Institute of Standards and Technology (NIST) policy, that

a secure password requires [1] [2]:

• At least 9 characters in length

• At least one special character

• At least one number

• At least one uppercase letter

• At least one lowercase letter

• Be at least 4 characters different from last password

• Be changed every 90-150 days

Difficulty in remembering long strings of random text is not a new problem. In a

1956 psychological study, Miller [3] found the average person can only easily remember

about seven digits or characters, plus or minus two. In a proceeding to the USENIX
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Security Workshop, Klein [4] states users tend to choose a small subset of characters

and numbers which are most memorable to them as passwords. These passwords tend to

be less secure since they are not random, and patterns can be discovered and exploited

from them. In an article titled “If your password is 123456, just make it hackme”,

Vance [5] discusses an ever growing pool of common exposed user passwords.

Cheswick [6] in a 2013 study, found requiring frequent password changes tends

to make users choose less secure, more memorable passwords while simply changing

a few characters to make the password meet the minimum requirements. Adams et

al. [7] add that these problems with passwords are compounded by the fact that many

users frequently utilize multiple systems that require authentication, many requiring a

separate set of authentication credentials. In response to these problems, many methods

have been proposed; one of these proposals is Multi-factor Authentication (MFA).

Two-Factor Authentication (2FA), a subset of MFA, has been proposed as a possible

solution for combating weak user passwords, but it brings about its own set of problems.

Jover [8] found that Short Message Service (SMS) One-time passwords (OTPs) are vul-

nerable to being stolen in transit by insecure cellular lines and SIM swapping. Kogan et

al. [9] in their proposal for T/Key discuss how Time-Based One-time Password (TOTP)

requires the secret seed to be stored in the clear on the server, and can be exposed in

the event of a server-wide attack. Drew [10] reports on a successful network breach on

Lockheed Martin, a National Defense Contractor after Lockheed Martin’s secret seeds

were stolen from their servers.

Hardware Universal Serial Bus (USB) tokens, such as YubiKey [11] not only require

the need to purchase and carry additional nonstandard hardware, but are also vulnerable

to a replay request attack, as demonstrated by Jacomme et al. [12] in their analysis

of MFA protocol. Finally, adding another layer of complexity to an already complex

security solution does nothing to ensure that users will comply with additional 2FA

security measures.

According to Cheswick [6], users’ perception about the need for security greatly

influences their choices concerning security. Adams et al. [7] suggests users are typi-
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cally not fully aware of the risks of security exposure and information elicitation, and

in some cases, users elude security policies consciously out of consternation for what

they perceive to be a needless system. Sasse et al. [13] explain, if users believe security

or password policies are overly complex or do not fully understand the policies, they

are more likely to circumvent them. These problems are transparent in the growing

threat of phishing, browser drive-by, Cross-Site Request Forgery (CSRF), Cross-Site

Scripting (XSS), and Man-In-The-Middle (MITM) attacks, leaving a user confused in

how to best protect themselves. A system that provides a standard level of security and

is simple to use and understand might allow for greater user compliance.

1.2 Goals

This paper proposes a novel approach for these dilemmas, enabling a password-less

login system using asymmetric keys, digital signatures, and biometrics to provide MFA

using a mobile device. This project seeks to create a system that is more secure or at

least as secure as a traditional user-password authentication system utilizing 2FA. The

system must be convenient and understandable enough for the average user to easily

employ. Establishing a workable prototype to demonstrate the level of security and

the ease of user interaction will be sufficient. Therefore this project’s goals are the

following:

1. Develop an Apple mobile application that will create and securely store the user’s
private keys. The application will also be responsible for communicating with the
server to provide authentication.

2. Setup an Apache web server to demonstrate authentication and authorization us-
ing PHP: Hypertext Preprocessor (PHP) and the Laravel framework to provide
back-end functionality.

3. Create a Single Page Application (SPA) front-end, what will be viewable to the
user, using Vue.js and Vue Router to prevent unauthorized access.
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2 Background

This section explores the multiple pieces of technology that are used in this project.

It is split into four distinct parts with each technology subdivided for reader convenience

as follows:

2.1 Discusses how authentication is defined and how the traditional password pro-
cess works. Asymmetric cryptography is explained along with digital signatures
and certificates and the roles public and private keys play in identity verification.
Cryptographic hashing is included here, since it is essential in providing repudi-
ation when validating signatures. Biometric authentication is discussed and its
importance in providing a very high level of identity assurance.

2.2 Explains MFA along with the two most commonly used methods, SMS and TOTP
including their benefits and drawbacks.

2.3 Defines authorization and how it differs from authentication. Some common
methods of providing authorization such as OAuth and JSON Web Tokens (JWTs)
are discussed.

2.4 Discusses several components utilized in this project, along with the reasoning
for each component choice.

2.1 Authentication

Authentication is defined as: a way to prove with reasonable certainty that you are

the person you declare yourself to be. Outside of the technology domain, this is typ-

ically done with an identification card issued by a governmental body. In the state of

Washington, an example would be a State Issued Driver’s License. The Department of

Licensing issues licenses on the contingency that they are able to verify your identity

from a list of approved identification documents [14]. In the technology realm, authen-

tication can be performed in a number of ways, including: passwords, digital signatures

and certificates, and biometrically. Each of these methods has their own advantages and

disadvantages.
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2.1.1 Passwords

A password is a form of symmetric cryptography where two parties agree on a secret

word or phrase (also called a key). Assuming perfect secrecy of the key between the

two parties, when identity is challenged, mere knowledge of this key would provide rea-

sonable certainty of identity. The NIST provides guidelines for the password exchange

process outlined in Grassi et al. [15]. The process can be summarized as follows. When

a user attempts to login to a service, the service attempts to gain assurance of the user’s

identity. The service sends a challenge request to the user for their password. When

the user inputs their password in response to the challenge request, the service checks

to see if the received password matches the stored password for the user. Because it is

assumed the password is only known to the user and the service, the password provides

reasonable certainty to the user’s identity, and the service is able to authenticate the

user.

Since the service typically initiates the challenge, the service needs to store the

password in order to compare it to the received input. Since passwords can be leaked

or stolen from an attack, they need to be stored in a way that keeps them secret. Steven

et al. [16] of Open Web Application Security Project cite best practices regarding pass-

word storage. Best practices require not storing the actual password itself, but a hashed

version using a one way cryptographic hashing algorithm, along with a random string

called a salt.

2.1.2 Cryptographic Hashing

A hashing function is a way to transform data into a fixed-length output, called a

message digest, that is significantly different than the input, such that repeated hashes of

the same input will always produce the same digest, but even small changes to the input

will result in a significantly differing digest. Hashing provides integrity that the data has

not been changed since it was sent. This repudiation hashing provides is essential when

verifying signatures, otherwise information could be signed and changed by someone

other than the original signer. Since the same input will always produce the same digest,
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a party can send data along with a hash of the data. The receiving party can recompute

the hash on the received data and compare it to the sent hash.

Fig. 1. Data Hash Example. Reprinted from Security Controls Evaluation, Testing, and Assess-
ment Handbook (Second Edition), L. Johnson, Chapter 11 - Security component fundamentals
for assessment, Page 527, Copyright 2020, with permission from Elsevier [17]

Figure 1 illustrates a hash function applied to several word examples, where even

a single letter change produces a vastly different digest. Hashing algorithms differ in

cryptographic strength, block size, and the length of the resulting digest. While the

figure does not state the hashing algorithm used, it is important to note that the length

of each digest is unchanged. When applied to the same hash algorithm, regardless of

the input, the digest length will always remain constant.

While there are several variations of Secure Hash Algorithm (SHA), two fre-

quently used SHA-2 variants, SHA-256 and SHA-512 differ in their block size and

digest length. SHA-256 has 512-bit blocks with a 256 bit digest length, while SHA-

512 has 1024-bit blocks and a digest length of 512 bits. Hash functions are subject to

a phenomenon called collision, where it is theoretically possible to have two different

inputs output the same exact message digest. Andress [18] states that larger block sizes

and longer digest messages provide increased protection from collision.
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2.1.3 Asymmetric Cryptography

Unlike passwords, which are a form of symmetric cryptography and relies on both

parties having a secret in common, asymmetric cryptography relies on each party having

a private secret key, which is not shared. Instead, a public key is mathematically created

from the secret key, such that the private key cannot be discovered from the encrypted

data or public key without an unreasonable amount of time and effort. This is known as

a key pair.

Fig. 2. Asymmetric key encryption. Reprinted from Security Controls Evaluation, Testing,
and Assessment Handbook (Second Edition), L. Johnson, Chapter 11 - Security component
fundamentals for assessment, Page 525, Copyright 2020, with permission from Elsevier. [17]

As shown in Figure 2, the public key can be used to encrypt data and is shared in the

open, while the private key remains secret and is the only means to decrypt information

encrypted with the corresponding public key. While asymmetric cryptography can be

used to encrypt and decrypt data, it can also be used to sign and verify data with digital

signatures.

2.1.4 Certificates and Signatures

Asymmetric Cryptography can also be used to verify the sender of information and

that the data has not been tampered with. Rather than using the public key to encrypt,

the data is first hashed and then encrypted with the private key. This ensures that anyone

with the public key can not only decrypt the data, but can also re-compute the digest
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of the encrypted data, verifying that the data has not been tampered with and was sent

by the holder of the private key. Assuming perfect secrecy of the private key, one can

deduce the identity of the sender with reasonable certainty. This is known as a digital

signature.

Keys can be contained inside a document called a digital certificate. The digital

certificate contains information about the key and its validity. The most common use

of these certificates is in secured websites (such as a banking site). The certificate for a

site contains its public key and the certificate is signed by its private key. Anyone who

visits the site can verify the authenticity of the certificate with the public key contained

in the certificate.

2.1.5 Biometrics

Biometric authentication can include any biological attribute that uniquely identifies

a user. The most common use of this is fingerprints, which police organizations have

been using for decades. Other examples could include retinal scans, facial attributes,

voice identification, and heart rhythms. This information must be collected and stored at

the time of user registration. Authentication can be performed by comparing presented

user biometric data against the previously stored information for that user. Kuhn et

al. [19] state all biometric systems require hardware to capture the user information, but

can provide a very high level of identity assurance, since the authentication mechanism

is based on unique user information that is difficult to duplicate or imitate.

2.2 Multi-Factor Authentication

MFA is a security by redundancy model, where multiple pieces of identification

or phases are required for authentication. The process requires all of the pieces of

identification or all of the phases to pass else authentication fails. Jover [8] states a

common everyday example is an Automated Teller Machine (ATM), where the user has

their bank card as the first authenticator, and a Personal Identifcation Number (PIN)

only the user knows as the second authenticator. Without both of these authenticators,
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usage of the ATM is restricted. It also includes the most common implementation of

MFA, 2FA which requires exactly two authenticators.

The 2FA process typically combines a password with another form of identity such

as: a PIN; an OTP sent through SMS, email, hardware device, or mobile application;

an approval notification sent on a trusted device; or a USB token. Jacomme [12] states

the additional authentication step(s) may prevent an attacker from gaining access to an

otherwise compromised account where the attacker already has knowledge of the user’s

password or possesses another authenticator.

2.2.1 Short Message Service

The SMS MFA process differs depending on the providing service, but generally the

process consists of the user first successfully logging into the service with their user-

name and password. The service then generates and sends an SMS message containing

an OTP to the user on their mobile phone. The user then enters the OTP in the message

back into the service. The service compares the received OTP with the OTP that was

sent. If this second process succeeds, then the user is successfully authenticated and is

allowed access to the service [12]. This process can also be done over email, and the

approach is very similar, except the OTP is sent to the users’ email address rather than

the users’ mobile phone.

The primary advantage of the OTP over SMS or email approach is in its simplic-

ity to set up and administer with little overhead. Since many services use this approach,

it is also familiar to most users. Jover [8] states the primary disadvantage with the SMS

MFA approach is that it requires an active cellular network connection and is reasoned

generally insecure due to its susceptibility to multiple attack vectors. While email could

potentially be a greater risk target, since a compromised account could expose a users’

entire online identity, in a 2019 study Mirian et al. [20] found that email accounts pro-

tected by Google’s 2-step 2FA were difficult if not impossible for hackers to breach

without social engineering. Therefore in some cases, OTP sent securely over email,

such as accounts protected with Google’s 2-step 2FA would not be subject to the same
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security liabilities as OTP sent over SMS. However, email that is secured with SMS

MFA could potentially be subject to the same security issues as other services using

SMS MFA, and a compromised email account would allow an attacker to gain access

to OTP sent over email.

2.2.2 Time-Based One-Time Password

TOTPs as defined by M’Raihi et al. [21] in RFC-6238, operate by using a pre-

defined pseudo-randomly generated secret seed that is stored on both the authenticating

service and a user-controlled device. The device can be a specialized hardware device,

such as the Rivest–Shamir–Adleman (RSA) SecurID [22] or an application on a mobile

device, such as Google Authenticator. The six digit TOTP is continually generated

by applying the secret seed to a Hash-based Message Authentication Code (HMAC)

function using the seed and time as parameters. In practice, the length of time the

TOTP is valid is thirty seconds and is regenerated at this end of this period. The user

enters the six digit TOTP displayed on his or her device into the requesting service. The

requesting service then separately recreates a TOTP from the seed stored on the service

and compares it with the received TOTP.

Kogan et al. [9] state the primary advantage with this approach is that there is no

network connectivity needed to generate these codes, since the service and the device

can compute them separately using the same pre-defined secret seed. This means that

that the TOTP approach is not subject to the same problems as the SMS approach where

the code can be stolen in transit.

Kogan et al. [9] explain the primary disadvantage is that the secret seeds must be

stored in the clear on the requesting service in order for the service to verify the users’

TOTP. Were an attacker to gain unauthorized access to the service, the attacker would

be able to steal the secret seed of every registered user and generate valid codes without

limit. A very public example of this attack type came to light after Lockheed Martin’s

network was compromised, as reported by Drew [10]. Despite this, Jover [8] claims,
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the TOTP method with a mobile application is the most secure way of performing MFA

without requiring additional nonstandard hardware.

2.3 Authorization

Rather than providing identity verification, as authentication does, authorization is

a way of ensuring clearance or privilege to access a system or service. It is possible

for a user to be authenticated but not have authorization to access a resource or vice

versa. An everyday example would the difference between an identification badge and

a key. The identification badge may prove identity, but it will not open a locked door.

Conversely, the possession of a key that will open a locked door does not prove identity,

as the key may have been lost or stolen. Most systems have protocols in place to both

authenticate and authorize users.

In a single user system, the authenticated owner or primary user of the system would

have administrator or root access to all parts of the system. Most modern systems how-

ever provide multiple services to many users. Properly configured services should allow

for authenticated users to access and configure their own data within a service, while

preventing any access from users without permission. The exact method for verifying

and enforcing authorization largely depends on the system but according to Harrison et

al. [23], authorization can generally be reduced to a relational matrix or access control

list (ACL), which maps boolean (true or false) values to users and the areas each user is

allowed to access.

2.3.1 Tokens

JWT is a standard for storing encoded JavaScript Object Notation (JSON) [24]

claims in a token, and is widely used for granting and proving authorization. JWTs

store information about the service or entity which issued the token, the user the token

was issued for, the time the token was issued, and the token’s expiration time. JWTs

can also be digitally signed or encrypted by their issuer, which allows verification that

the token was not tampered with since it was issued. Tokens are typically stored within
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the browser in local or local storage, but can also be stored in a cookie. Jones et al. [25]

define the process for exchanging tokes for authorization in RFC-7519. When used

for authorization, tokens are typically sent in the Hypertext Transfer Protocol (HTTP)

request header in the format: “Authorization: Bearer <token string>.”

2.3.2 OAuth

OAuth [26] is an open standard of protocols designed to allow delegate authoriza-

tion. This means that a service may not be able to directly authenticate a user, but if

another service has already authenticated that user, the service may vouch for the users’

identity. A common example of this is using a Facebook account to log into Website

A. The user does not have an account established with Website A, but does have an

account with Facebook. The user can click the Connect with Facebook button, which

sends information about the user to Website A. Depending on Website A’s information

request, the information contains at minimum, an authorization token, and a unique

user identifier that can be used to identify the user on Website A, but never the user’s

Facebook password.

2.4 Technology

Since this project focuses on creating an MFA prototype using asymmetric keys and

scannable barcodes, several pieces of technology are required. The following section

summarizes the technologies used for this project and the reasons each was chosen.

The section is divided into mobile device components and server components for reader

convenience.

2.4.1 Mobile Device Components

• The Apple iPhone X is used because of its availability, its ability to secure private
keys in the Secure Enclave, and its biometric authentication technology, which
allows for password-less login.

• Xcode 12 is used to create a native Apple application that allows access to all the
hardware components of the Apple iPhone X.



13

• Access to the application is secured using biometric authentication or with a
legacy PIN passcode.

• BCryptSwift, a Swift implementation of bcrypt is used to securely store the legacy
passcode in the keychain. Bcrypt provides additional protection against brute-
force and dictionary attacks.

• The Secure Enclave is available to specific Apple products and is used to secure
the user’s biometric information and the user’s private key.

• QR Codes are a type of two-dimensional barcodes which can be scanned from
every direction in 360 degrees by virtually every smartphone brand and model
with no special hardware or software. QR Codes are used in this project to render
a nonce that is scanned by the user with a smartphone.

• 256 bit Elliptical Curve Digital Signature Algorithm (ECDSA) keys are the only
key type allowed by the Secure Enclave. ECDSA keys are used in this project to
digitally sign the user’s payload during authentication to provide identity assur-
ance.

2.4.2 Server Components

• Windows 10 was used as the server operating system due to availability.

• Apache is used to host the server due to its familiarity and ease of setup.

• Transport Layer Security (TLS) 1.3 is used to secure connections to the server.
TLS is used due to industry standards for secure server connections and TLS 1.2
is the minimum accepted standard by Apple’s Application Transport Security.

• Ngrok is a freemium service that allows a developer to create tunnels to a locally
hosted server to expose the server to the Internet. Ngrok is used due to Apple’s
Application Transport Security requirements for a secured TLS connection with
a certificate signed by a trusted root Certificate Authority (CA).

• Let’s Encrypt is a free service provided by the Internet Security Research Group
that allows anyone to verify a domain name and obtain a free certificate signed
by the trusted root CA Let’s Encrypt. Let’s Encrypt was used on account of its
simplicity, cost and Apple’s Application Transport Security requirements for a
secured TLS connection with a certificate signed by a trusted root CA.

• MySQL is used as the data storage driver due to the need for multiple concurrent
reads and writes during authentication. SQLite was originally chosen for its sim-
plicity, however according to SQLite [27], it only supports one write operation
with no concurrency. This lack of concurrency frequently caused login to fail due
to multiple concurrent writes performed during authentication and authorization.

• Laravel is a PHP developer framework. Laravel is used in this project on account
of its Object Relational Mapping (ORM), Eloquent, and Laravel’s Model View
Controller (MVC) feature set, which allows for rapid development of a front-end
agnostic Application Programming Interface (API).
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• Laravel Passport, a first-party Laravel library is used on account of its ease of
integration with Laravel. Passport is used as the API authorization driver.

• Axios is an HTTP requests client. Axios was chosen due to its integration with
Laravel. Axios is used to perform XMLHttpRequests on the user’s browser to
gain an authorization token after authentication.

• Vue.js is a JavaScript framework that is included by default with Laravel’s User
Interface (UI) package. Vue.js is used due to its simplicity and ease of integration
with Laravel. Vue.js is used in this project to create the front-end SPA that the
user interacts with.

• Vue-qrcode is a Vue.js component library that is used to render QR Codes to the
front-end SPA. Vue-qrcode is used due to its ease of integration with Vue.js.

• Vue Router is a first-party Vue library that allows for JavaScript routing. Vue
Router was used to perform routing for the front-end SPA and to secure protected
routes from unauthorized requests.

• Pusher Channels is a freemium service that offers a WebSockets broadcast driver.
Pusher Channels is used to broadcast successful authentication events to desktop
clients awaiting authorization. Pusher Channels is used due to its simplicity and
ease of integration with Laravel.

• Laravel Echo is a first-party Laravel JavaScript library that allows for listening
to broadcast events. Laravel Echo is used to listen for successful authentication
broadcasts from Pusher Channels on desktop clients awaiting authorization. Lar-
avel Echo is used due to its ease of integration with Laravel.

• OpenSSL is used in this project to verify hashes and signatures sent by the user’s
mobile device during authentication. OpenSSL is used due to its widespread use
in Internet servers and on account of OpenSSL’s integration with the PHP library.
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3 Architectural Overview

This section provides both a high-level overview of this project’s system and an

in-depth description of the system’s components. This section is divided as follows:

3.1 Contains a high-level overview of the authentication, authorization, and logout
process.

3.2 Contains an in-depth description of the components used in this project and the
way they were utilized.

3.3 Contains a detailed explanation of the desktop UI and several example figures.

3.4 Contains a detailed explanation of the mobile device UI and several example
figures.

3.1 System Overview

The system is presented in logically subdivided components for reader convenience.

The authentication process used for this project works as follows.

3.1.1 Registration

This project assumes the user has the application already installed on his or her de-

vice. Figure 3 illustrates the user registration process. 1. The user opens the application

on their mobile device. 2. The user fills out the registration form on the mobile device.

3. A keypair is generated by the Secure Enclave during registration. 4. The public key,

user’s name, phone number, and email address is sent to the server. The server creates a

new user and saves the user’s information into the database. 5 The server sends a JSON

response with the created user’s id and an HTTP 201 CREATED status to the phone

upon successful user creation, or an error code otherwise.

Fig. 3. User registration process
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3.1.2 Authentication

Fig. 4. Authentication process

Figure 4 illustrates the authentication process. 1. If the user is already registered,

the user simply logs into the application. 2. After registration and login, the user’s

device is redirected to the Home camera view screen. 3a. The user clicks on the Login

button on the website SPA. The SPA makes an Axios API request to the /randomBytes

endpoint. A pseudo-random cryptographically secure 64 byte nonce is created and

base64 string encoded and is returned to the SPA. A QR Code is generated and rendered

in the SPA with the nonce string. 3b. The SPA begins listening on a channel identified

by the nonce for an ‘approval-granted’ broadcast.

4. The user scans the QR Code on the SPA with the Home camera view on the

mobile device. A JSON encoded bundle is created on the device containing the user’s

id, and the nonce contained in the scanned data from the QR Code. An SHA-512 hash

is created from the bundle. The device then sends a request to the Secure Enclave to
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sign the bundle with the private key on the device. The user is prompted for biometric

authentication. If the biometric authentication fails, the process is halted. 5. Otherwise,

the bundle is signed using American National Standards Institute (ANSI) X9.62 [28]

with an SHA-512 hash. Then, the bundle, the hash, and the signature are enclosed in a

payload. The payload is base64 encoded and is sent to the server in an API request to

the /login endpoint in the request body.

6. Once the server receives an authentication request with a payload it then unwraps

the payload and base64 decodes, and JSON decodes the bundle. The server looks for a

user which matches the user id contained in the bundle. If a user is found, a user object is

retrieved using Eloquent ORM, and the user’s public key is retrieved from the database.

7. The server re-computes the SHA-512 hash on the bundle and compares it with the

hash contained in the payload. If the values match, the server verifies a signature is

present in the bundle, base64 decodes it, and uses PHP OpenSSL verify [29] to validate

the signature against the user’s public key. If a user is not found, the hash computed

does not match the hash sent, a signature is not found, or the signature is not verified,

then an HTTP 401 unauthorized code is sent back to the requester.

8. After the signature is verified a personal bearer JWT is created that is unique to

the user from the user object. The JWT is given an expiration time of one week from

the date of creation. 9. The JWT is placed into the server cache, using the nonce string

as the key and the JWT as the value, with a Time To Live (TTL) of two seconds. If the

JWT is not retrieved during this period, it is removed from the cache. 10. The server

then dispatches a LoginAuthorized event, which broadcasts ‘approval-granted’ on the

channel id of the nonce, and returns a JSON HTTP 200 OK status along with the created

JWT to the mobile device.

11. Once the listening SPA receives the ‘approval-granted’ broadcast it sends an

Axios API request to the /login/confirm endpoint along with the nonce in the request

body. 12. The server checks the cache for a key that matches the received nonce, if none

is found, an HTTP 401 unauthorized status is returned to the requester. Otherwise, the

JWT is retrieved from the cache, and the cache entry is deleted to prevent timed-replay
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attacks. The retrieved JWT is sent back to the requesting client along with an HTTP

200 OK status. 13. The Axios client receives the JWT and saves it into the browser

localStorage. 14. The Axios client fetches the JWT, if it is present, and sends it in the

header on every request to the server. Finally, the user is redirected to the home page.

The user’s browser client is now authorized to make any resource requests, since the

JWT is saved in localStorage and Axios will automatically send the JWT in the header

on every request.

3.1.3 Logout

Fig. 5. Logout process

Since the entire authentication method is stateless, the user will only be logged out

when the JWT expires or the user manually logs out. Browser localStorage is persisted

across tabs, windows, and when the browser is closed. A /logout API endpoint was

defined, which can be accessed from the user’s mobile device or directly in the browser.

No logout hook was defined, so the browser and mobile device are not automatically

notified when the other device logs out, although the logout process is nearly identical

for either device. Figure 5 illustrates this logout process. When logging out via either

device, the /logout API is called, which revokes and deletes the user’s JWT from the

server, making any further requests return unauthorized. When logging out from the

browser, the JWT is removed from browser localStrage, and the user is redirected back

to the login page. When logging out from the mobile device, the user is reminded to

close the browser, as the browser will remain on whatever page it was last accessing
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until closed. When the browser is reopened, the SPA will redirect to the login page and

remove any JWTs that were present in the browser localStorage.

3.2 Tools

Since a website with MFA requires multiple pieces of technology, this section will

discuss in detail all of the components that this project utilized. Each component has

been logically subdivided for reader convenience.

3.2.1 Mobile Device

A device is required to read the QR Codes, since at least one authenticator is required.

For this reason, a mobile device with a camera is needed. O’Dea [30] states over three

billion people are smartphone owners around the world. Pew Research Center [31]

shows that smartphones have become nearly ubiquitous in the United States, with over

85 percent of Americans owning a smartphone in 2021. The previous statistics suggest

that most users have a smartphone, and since smartphones are already used for several

types of MFA, a smartphone would be a good choice for this project. There are several

models and brands of smartphones available, however there are several hardware re-

quirements that could provide the best security with the least amount of inconvenience

to the user, such as: biometric authentication, a camera with sufficient resolution, and a

mobile device with a secure enclave, an isolated hardware container that will store the

user’s private key.

Since the user’s private key is stored on the mobile device, it is required to secure

the key in case of a lost or compromised device. Securing the key is accomplished with

the Secure Enclave. Most smartphone devices have a setting in place to allow the user

to password protect it, while this is optimal, this project does not assume the user has

this setting enabled, so an additional login was added to the application. Since many

smartphone models in use have a method of biometric authentication available and this

allows for better user ease, integrated biometrics is used where available.
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The Apple iPhone X fulfills all these requirements and was readily available. There-

fore an Apple iPhone X with iOS 14 was used for this project.

3.2.2 Secure Enclave

The Secure Enclave is an isolated hardware container within a supported Apple main

Central Processing Unit (CPU). The Secure Enclave adds another layer of protection

to the user’s key, since keypairs cannot be imported or taken out of the Secure Enclave.

The container has its own processor, which is strictly limited to operations within the

Secure Enclave and runs at a lower clock rate to prevent brute-force clock and power

attacks. The Secure Enclave container does not have its own memory, but features a

Memory Protection Engine which sequesters and encrypts a protected region of mem-

ory on bootup from the main memory controller, which is only accessible by the Secure

Enclave [32]. The layout of the Secure Enclave components on the chip is shown in

Figure 6. The Secure Enclave also stores the user’s biometric data, such as their finger-

print or facial data. The biometric data is only ever stored and referenced in the Secure

Enclave. The data cannot be exported, cannot be accessed by Apple, and in the event a

device is compromised, cannot be easily extracted from the device.

This project used the Secure Enclave to create the user’s public and private keypair,

store the user’s private key, and digitally sign the user’s payload during login. Keypairs

are generated by the Secure Enclave and while the public key is exportable, the private

key remains inside the Secure Enclave itself. Applications which create keypairs by the

Secure Enclave never actually see the private key, but only receive a reference to the

private key and only receive the result of operations performed by the Secure Enclave.

This means in the event a device is compromised, the user’s private key cannot be easily

extracted from the device.

3.2.3 Keys

The keypairs created in the Secure Enclave are 256 bit ECDSA keys, with the secp256r1

prime random domain parameter [33], which is comparable to the cryptographic strength
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Fig. 6. Secure Enclave components on chip. Screen shot reprinted from Secure Enclave
Overview 2021, with permission from Apple Inc. Copyright 2021 by Apple Inc. [32]

of a 3072 bit RSA or Digital Signature Algorithim (DSA) key. This means they are

much smaller and are computationally faster to sign and verify than their equivalent

RSA or DSA keys. Two additional parameters were added during key creation: kSe-

cAttrAccessibleWhenUnlockedThisDeviceOnly, allowing access to the key only when

the device is unlocked and the application is in the foreground [34], and biometryAny,

which makes the key available, only if the device is able to authenticate the user using

an available biometric authenticator [35].

ECDSA keys are calculated using elliptical curves over a finite field determined by

their domain parameter. The signature created from a 256 bit ECDSA key is 512 bits,

and is verified by re-calculating the hash using the algorithm specified in the signature,

then recovering a point on the curve using the public key and verifying it is the same

point that was randomly generated during signing [36] [37].
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When preparing the public key for export, the Apple Software Development Kit

(SDK) exports public ECDSA keys into ANSI X9.63 [38] format (04 ||X ||Y). While

OpenSSL has support for X9.63 keys, the PHP OpenSSL library requires that keys

be Privacy Enhanced Mail (PEM) formatted. To allow for key verification with PHP

OpenSSL, the key is first converted to Distinguished Encoding Rules (DER) format, and

the Abstract Syntax Notation One (ASN.1) object identifier header for the secp256r1

domain parameter is added. The key is then base 64 encoded and the key is wrapped

in the PEM —–BEGIN PUBLIC KEY—– heading and —–END PUBLIC KEY—–

closing tags. Figure 7 illustrates an example of a PEM formatted sec256r1 ECDSA key

exported from the Secure Enclave.

Fig. 7. An example of a PEM encoded exported public key

3.2.4 Mobile App Development

A native application was required in order to utilize all of the hardware components

of the Apple iPhone. Apple requires native applications to use their Xcode Integrated

Development Environment (IDE), which is only available through Apple’s App Store

on macOS systems. Several pieces of hardware and parts of the Swift UI required the

use of Apple iOS SDK version 13 or greater, which is only available through Xcode 11.

However, since iOS 14 was used for this project, which requires Xcode 12, Xcode 12

was used on a Macbook Pro with macOS 10.15.4 Catalina installed.

The mobile application was built using the Swift language, version 4. The mobile

application required the use of several third-party libraries. CocoaPods was used as

a dependency manager to obtain all third-party libraries. Eureka, a form builder, was

used to create the user registration form. BCryptSwift, a Swift implementation of bcrypt

was used to securely store user’s passcodes in hashed and salted form in the keychain.

OAuthSwift was used to process tokens and connections to the server.
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3.2.5 BCrypt

BCrypt is a common algorithm that takes advantage of the CPU intensive key setup in

eksblowfish to securely store user’s passwords in a hashed and salted form. Its main

advantage is that its work value is adjustable. The work factor is the amount of time

required to hash the password and salt n rounds. The work factor should be adjusted

to the highest tolerable value, as advances in hardware will decrease the work factor

significantly. According to Pornin [39], the work factor value should be at least 241ms.

This time value ensures that user experience is not affected significantly, while pro-

viding sufficient protection from brute-force and dictionary attacks. The BCryptSwift

library by default sets n at ten rounds but allows the work factor to be adjusted by set-

ting n to an integer between four and sixteen rounds. Each time n is incremented, the

work factor increases exponentially.

From testing the BCryptSwift library on the Apple iPhone X, the highest number

of rounds tested, fourteen, required a work factor of approximately nine minutes. Four

rounds, the minimum, required a work factor of approximately 0.54 seconds, and ten

rounds, the default, required approximately 31.3 seconds. Six rounds was chosen with

the highest tolerable work factor of approximately two seconds (1.96s). This resulted in

an additional two second delay during registration and when logging into the application

with a passcode.

3.2.6 Server

The Laravel framework provided the back-end API, along with several libraries, in-

cluding a first party OAuth 2.0 library, Passport version 10.0.1, to handle authentication

and issuing of tokens to clients. A SPA was built with Vue.js, a minimalist JavaScript

framework, which enabled storage and retrieval of tokens from browser localstorage,

and requests to the back-end API. The PHP OpenSSL library was used along with

OpenSSL version 1.1.1 to verify the hash and digital signature during authentication.

The server was hosted using Apache 2.4.46 with PHP 7.4.9 and MySQL Community

Server version 8.0.21 as the data storage engine on a local Windows 10 machine. The
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connection to the server was secured using TLS 1.3 with a 2048 bit RSA key and a

certificate from the trusted root CA Let’s Encrypt.

3.2.7 Laravel

Laravel is a PHP framework that allows for MVC programming strategy, enabling clean,

flexible, and scalable server applications. Laravel includes an ORM API, Eloquent,

which allows for data and business logic separation. Laravel is also front-end agnos-

tic, enabling developers to choose Laravel’s included Blade Engine for traditional PHP

written and Hypertext Markup Language (HTML) rendered pages or use API routing

to make requests from a separate front-end client. This project used the latter approach

with Laravel version 8.7.1. Laravel also includes Axios, a third-party requests library

that was used for making XMLHttpRequests from the browser.

3.2.8 Vue.js

Vue.js, or simply Vue, is presented as a progressive framework, minimalist at its core,

but with the ability to scale and adapt as needs change. Its main functionality is to

power front-end views, but can be integrated with other libraries to allow more func-

tionality. Vue was mainly chosen for its simple integration with Laravel, and the need to

store and retrieve tokens from the browser, which is only possible through a client-side

application such as JavaScript. Vue version 2.6.12 was used.

Vue operates with the concept of components. Components are small pieces of

code that are compiled into the main JavaScript library the client uses. This allows for

a more object-oriented code approach. Vue also supports data-binding, which allows

for an MVC programming strategy, rather than diving into the Document Object Model

(DOM) and changing values directly. Each component has one or more defined sec-

tions: template, script, and style. The template section contains standard HTML and

any defined data bindings, which are applied directly to the bound element. The script

section contains any JavaScript which is local to the component and any code which

updates data bindings defined in the template section. The style section contains cas-
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cading style sheets (CSS), which can be applied dynamically to any of the elements in

the template section.

Since Vue was used to create an SPA in this project, each component was used as

a view, which can be thought of as a Uniform Resource Locator (URL) page. When

accessing a specific URL, Vue Router loads the component template and any code and

styles defined in the script and style sections.

3.2.9 Vue Router

Although Laravel provides routing functionality, a JavaScript SPA consuming a back-

end API requires the use of JavaScript routing. This was done through a first-party

addon Vue library, Vue Router version 3.5.1. Vue Router also includes the ability to

add navigation guards, which was used to guard protected routes from unauthorized

and unauthenticated access. This was achieved by first defining a list of slugs, or

named URLs. These slugs were then mapped to specific Vue components. For exam-

ple, when accessing the /login slug, the Login component is returned. When defining

these mappings, an asynchronous beforeEnter function was assigned to each protected

route. When the slug is accessed via the browser, the router first checks if there is a

beforeEnter function on the route. If the router discovers the function, then the function

is called.

This project defined an isAuthenticated function, which returns a boolean true value

if the browser is authenticated, false otherwise. The isAuthenticated function calls a

project defined API route /isAuthenticated. This route is sent through Laravel’s Pass-

port API driver, which checks if a valid token was sent in the request. The route returns

an HTTP status code of 200 OK if the token is valid or an HTTP status code 401

unauthenticated otherwise. If a status code of 200 was received, then the isAuthenti-

cated function returns true, otherwise it returns false. The beforeEnter function calls the

isAuthenticated function each time a protected route is accessed. If the function returns

true, then the requested route is returned, otherwise the login route is returned and any

JWTs present in local storage are removed.
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3.2.10 QR Codes

QR Codes, (a registered trademark of DENSO WAVE INCORPORATED) are a form

of universal barcode, which can be scanned from every direction in 360 degrees by vir-

tually every smartphone brand and model with no special hardware or software [40].

Although several types of barcodes exist, QR Codes, being nearly ubiquitous and easy

to scan, are used for this project. QR Codes can store up to three Kilobytes of virtually

any type of data and are highly resistant to damage. This data storage ability is in con-

trast to conventional two-dimensional barcodes (such as the barcode used in Universal

Product Codes), which are only capable of storing about twenty numeric digits at max-

imum. Since this project will need to render a 64 byte nonce in an easily assimilable

mobile format, QR Codes are best suited for this use.

In order to render QR Codes on the server, a Vue component library was used, vue-

qrcode, a wrapper for node-qrcode, which is based on “QRCode for JavaScript” by

Kazuhiko Arase. The library was installed through the node package manager (npm)

and the component was imported into the main Vue application. Finally, rendering a

QR Code on the page was accomplished by adding an HTML element into the Login

component template section.

3.2.11 Application Transport Security

Starting in iOS 13, Apple made changes to their TLS requirements, requiring all appli-

cations to use TLS with certificates verified by a trusted root CA. In order to conform

to these specifications while hosting a server on a local machine, a domain name was

purchased, and Ngrok was used to create a forwarded secure TLS termination with a

Canonical Name (CNAME) record pointing to Ngrok’s name servers in the Domain

Name System (DNS) registrar. Finally, a free certificate was obtained through the

trusted open CA, Let’s Encrypt [41] and configured within Apache to create a secured

TLS connection over the purchased domain name.
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3.2.12 Ngrok

Ngrok is a freemium service which runs an installed program that allows developers

to expose their local servers behind Network Address Translation (NAT) and firewalls

to the public Internet without resorting to port forwarding. This is done by creating

a tunnel from the local machine to the public Internet and provides a public URL to

access the server. The URL is created as a subdomain on ngrok.io as a random unique

hexadecimal string, such as d758984e9d54, followed by ngrok.io, where the full URL

would be http://d758984e9d54.ngrok.io. Figure 8 illustrates Ngrok’s console with an

active tunnel.

Fig. 8. Ngrok console in command line with example of generated URL

While the core service is free, there are a number of features that are only available

for a paid monthly subscription, such as the ability to create a tunnel on a custom do-

main or a secure TLS tunnel. This project required a valid TLS secured domain name,

which typically requires a dedicated Internet protocol (IP) address. Ngrok offers the

ability to create a TLS tunnel on a custom domain by first reserving the custom domain

in the Ngrok dashboard. Figure 9 illustrates an example of reserving a custom domain

in the Ngrok dashboard. The custom domain name is then pointed to Ngrok by creating

a CNAME record in the DNS registrar. Figure 10 illustrates an example of a created

CNAME record pointing a custom subdomain to Ngrok. This custom domain name

was then used for all requests to the server from the mobile application.
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Fig. 9. Ngrok dashboard reserving a domain

Fig. 10. A CNAME record added to the DNS registrar

3.2.13 Broadcast Notifications

Because authentication is done from the phone, the desktop client needs to be noti-

fied on successful authentication. WebSockets provide the ability to send real-time up-

dates to clients, which is more efficient than continually polling to see if data has been

updated. Laravel includes broadcast and event functionality that will dispatch events

over a WebSocket and enable the handling of an event from a listener. Laravel offers

two drivers for client-side broadcasting, Ably and Pusher Channels. This project used

Pusher Channels.

3.2.14 Laravel Echo

Laravel includes built-in functionality to listen and handle server-side events, how-

ever these events are not visible to separate front-end clients. Laravel has a first-party

JavaScript library called Laravel Echo, which allows allows JavaScript clients to listen
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to broadcasting channels for any dispatched events. This is done by first subscribing to

a channel the client wishes to listen on and for what event to listen. The client may then

handle the event [42].

3.2.15 Pusher Channels

Pusher Channels is a premium subscription service with a limited free Sandbox plan

for developers with less than two-hundred thousand messages per day and less than one

hundred concurrent connections [43]. For this project, Pusher acts as a bridge between

the Laravel backend, and the Laravel Echo front-end. Laravel dispatches an event and

broadcasts it to Pusher, which then redirects the event to Laravel Echo. Pusher includes

a web dashboard, which features a debug console. Channel subscriptions, and events

are shown in the console in real-time.

3.3 Desktop User Interface

The desktop UI, includes several portions of the hosted SPA that are user intractable.

A simple prototype SPA was constructed to hold a collection of assets. These assets

would be available to download by any user that is authenticated. There is no admin-

istrator interface, and no additional authorization is required by authenticated users.

Figure 11 illustrates an example of the SPA to an unauthenticated user. A menu is

shown on the left. The menu is always shown, as an SPA does not need to refresh the

page in order to update the page content. Bold text separates sections in the menu, with

text underneath that are links to content. An unauthenticated user may click on any link

but will be continually redirected back to the login page without any feedback. The

only thing that an unauthenticated user may do is click on the blue login button.
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Fig. 11. SPA Login page

After a user clicks on the Login button, new content will be presented on the same

page. Figure 12 illustrates the QR Code displayed by the SPA after the login button

is clicked. After a user is successfully authenticated, a JWT is issued to the desktop

client to provide authorization and the user is automatically redirected to the home

page. Figure 13 illustrates the SPA home page. Figure 14 illustrates an assets page

an authenticated user would be able to access. Finally, a logout link is provided at the

bottom of the menu so a user may logout using only the site. After logout, the user is

automatically redirected back to the login page.

3.4 Mobile User Interface

The mobile UI includes several intractable portions of the developed native appli-

cation. Figure 15 illustrates a very basic welcome screen when opening the application

for the first time. Upon tapping the screen, the user will be presented with a registration

form. 16 illustrates the registration form. The form gives guidance to users, highlight-

ing entry errors in red. Figure 17 illustrates the registration form with an extra digit

inserted into the phone number. The registration form requires: a name, unique email,

unique phone number and a passcode with six or more digits. When the form is filled

out, the Submit button can be pressed. After the Submit button is pressed, the user’s
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Fig. 12. SPA Login page after user clicks login button

Fig. 13. SPA Home page after user is authenticated—user details are obfuscated

keypairs are created on the device, and the public key and the user’s information is

transmitted securely to the server. This process involves a brief delay and the user is

shown a loading screen while this process completes. Figure 18 illustrates the loading

screen shown to the user. In the case there is an error submitting this information to the

server, the user is shown an alert, and is given the option to retry. Figure 19 illustrates

an alert shown in the case of a failed upload.

Once the user’s information has been successfully uploaded to the server, the user

is redirected to the Home screen. Figure 20 illustrates the Home camera screen. The
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Fig. 14. SPA with example of Colors asset page

Fig. 15. Mobile application welcome screen

Home screen is a camera view with a navigation bar at the bottom, allowing access to the

Settings screen. The Settings screen, mainly contains data used for performance testing,

and features a button which allows for deleting all user data. Figure 21 illustrates the

settings screen.

From the Home screen, the user scans the QR Code that is generated by the website

SPA. Upon successful authentication, the user is redirected to a dashboard, where the

user can view his or her information and may logout by pressing the Logout button.

Figure 22 illustrates the user dashboard. After a successful logout, the user is redirected
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Fig. 16. Mobile application registration screen

Fig. 17. Mobile application registration form with an extra digit entered in phone number

back to the Home screen, and a logout alert is displayed, to remind the user to close

the browser to complete the logout process. Figure 23 illustrates the alert shown after

successful logout.

If the user exits or navigates away from the application, the application immedi-

ately locks, and login is required to re-enter the application. If the user opted to enable

biometric authentication during the registration process, then a biometric login is initi-

ated. If the user opted out of biometric authentication, cancels the biometric login, or

the biometric login fails, then the user may login with a standard passcode. Figure 24

illustrates the login screen with a biometric authentication in progress.
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Fig. 18. Mobile application loading screen

Fig. 19. Mobile application upload error alert

4 Related Work

The following section discusses current products that are similar to this research.

4.1 CamAuth

CamAuth [44] proposes a method that uses a standard username and password along

with an additional security step that utilizes a mobile device’s camera, a computer cam-

era, and a browser extension to decode two QR Codes for a 2FA request. The user

first enters their username and password then clicks the SecureLogin button. A QR
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Fig. 20. Mobile application Home camera view screen. The navigation bar is visible at the
bottom.

Fig. 21. Mobile application Settings screen

Code is generated by the browser extension which is then scanned by the mobile de-

vice. The mobile device then computes an additional QR Code which is then scanned

by the computer camera. CamAuth does not rely on Internet access or Secure Sock-

ets Layer (SSL)/TLS and provides resilience against Man-In-The-Middle (MITM) and

phishing attacks.

Unlike this project, which uses a digital signature created by a keypair for authen-

tication, CamAuth uses a standard username and password. Similar to this project,

CamAuth uses a the concept of QR Codes for an additional security step. However, the
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Fig. 22. Mobile application Dashboard

Fig. 23. Mobile application logout alert

QR Code that is generated only provides an additional security step, and the QR Code

does not provide authorization information. CamAuth also requires the user to scan two

QR Codes, one that is generated on the desktop, and another code that is generated on

the phone. While CamAuth does improve upon security with their 2FA method, they

do not reduce the complexity of the login process or improve the user experience.

4.2 SC@CCO

SC@CCO [45] is similar in nature to CamAuth including providing an additional

2FA step using a mobile device’s camera and a two-dimensional barcode. SC@CCO
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Fig. 24. Mobile application biometric login

also provides resilience against MITM and phishing attacks. SC@CCO’s largest dif-

ference from CamAuth is that SC@CCO utilizes OTP and does not use QR Codes.

SC@CCO instead relies on a pre-shared Advanced Encryption Standard (AES) key

that is used to encrypt and decrypt a bi-dimensional Data Matrix barcode. The user first

logs into a secured website using a username and password and initiates a transaction.

The user’s id along with the transaction information is sent to SC@CCO’s server. A

barcode is generated on the server using the user’s id and transaction information. The

encrypted barcode is displayed on the secured website, which is scanned by the user’s

mobile device. The mobile device decrypts the barcode information sent from the server

to obtain an OTP, which the user inputs into the service along with the user’s chosen

PIN. The SC@CCO server compares the received OTP against the sent OTP and veri-

fies the user’s PIN. The SC@CCO server then communicates with the web application

that the user’s identity is confirmed.

Similar to this project, S@CCO utilizes pre-shared keys and two-dimensional bar-

codes to provide an additional layer of security. Unlike this project, which uses a digi-

tal signature created by an asymmetric keypair for authentication, SC@CCO utilizes a

symmetric AES key to provide an additional security step after the user is first authenti-

cated into a secured website with a username and password. Since the key is symmetric,

the same key can be used to both encrypt and decrypt. Unlike this project, which stores
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the user’s private key in the Secure Enclave, SC@CCO’s keys are not stored securely

on the mobile device or on the SC@CCO server.

An attacker could potentially gain access to a user’s key from a stolen device or

from a server breach. A compromised key means an attacker could impersonate the

server to send a fake challenge to a user potentially gaining the user’s PIN. An attacker

could also use the same key to impersonate a user, reading any challenges sent by

the server and responding with the correct OTP and a stolen user’s PIN. While in

theory SC@CCO does improve upon security with their 2FA method, SC@CCO’s use

of symmetric AES keys provides a significant security drawback while doing nothing

to reduce the complexity of the login process or improve the user experience.

4.3 WebTicket

Unlike CamAuth and SC@CCO, which provide an additional 2FA step to an other-

wise traditional login process, WebTicket [46] is a form of password management using

QR Code tickets. Each password is randomly machine generated and is encoded along

with the username and the site URL into a QR Code which can be printed or stored on

a user’s mobile device. The user then scans the ticket using a workstation’s web camera

and is directed to the encoded site and automatically logged in. These tickets protect

against phishing, since the correct URL is encoded into the QR Code, which prevents

a phishing website from being accessed accidentally. Since the passwords are machine

generated randomly, they are more likely to be secure and are not known by the user so

they cannot be user entered into a phishing website. Unlike SC@CCO, WebTicket does

not secure a user’s password from MITM attacks.

Similar to this project, WebTicket utilizes QR Codes to encode user and site in-

formation into a barcode to simplify the login process. WebTicket differs from this

project since it does not provide any additional MFA protection. Although WebTicket

does simplify the user login process, WebTicket still utilizes a traditional username and

password approach. Since WebTickets are a form of printed password, they have similar

drawbacks to written-down passwords. A lost or stolen ticket means an attacker would
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have a user’s complete login information. WebTickets are also vulnerable to over-the-

shoulder attacks, as pictures or scans of a user’s WebTicket would give an attacker a

user’s complete login information.

4.4 Discord

Somewhat similar to WebTicket, Discord [47], a popular web-based voice and text

communication service, requires a full registration including a username and password

but offers a shortcut alternative on subsequent authentications. While Discord’s service

is proprietary, and the exact underlying methods are unknown, the process works as

follows. Similar to CamAuth and SC@CCO, Discord presents a QR Code which is

scanned by an already authenticated user’s Discord mobile application. The Discord

mobile application then prompts the user if they are attempting to log in on the computer

along with a picture of his or her avatar and Discord username on the computer. If the

user clicks the affirm button, the user is then logged into the Discord application.

Similar to this project, Discord offers additional 2FA protection and offers a shortcut

authentication method, which reduces login complexity and improves the user experi-

ence. Unlike this project, Discord requires the user to first register with a password and

be authenticated with a username and password before this authentication shortcut is

available.
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5 Results

The password-less authentication performance was evaluated with randomized user

data created by PHP Faker [48] estimating theoretical user registration time and re-

peated testing of authentication time for several random users. Registration and au-

thentication time is reported via the Settings screen in the mobile application. Various

attacks were considered and their possible implications on security.

5.1 Registration Time

Twenty random users were created, and their first name, email, phone, and pass-

codes ranging between 6 and 9 digits were all inputed into the mobile application. This

information was then submitted to the server. The total time for registration, including

the time inputting the user information, and submitting the information to the server

was calculated and averaged together. The average time for user registration was 38.20

seconds. The median was 37.054 seconds. While these results are not completely in-

dicative of an average user’s registration experience, they do provide some baseline

information that the average user should be able to complete registration in one minute

or less.

5.2 Authentication Time

Using five of the simulated users created above, selected at random, authentication

was performed ten times for each user. The total time for authentication was calcu-

lated at the beginning of the QR Code scan, ending at a JWT being received by the

mobile device. The times were then averaged together for each user. This is shown in

Figure 25. The average for all authentications for all users was 2.027 seconds. This

is again, not necessarily indicative of the average user’s authentication experience, but

provides baseline information that authentication should take less than five seconds for

the average user.
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Fig. 25. Average of authentication times for each user

5.3 Server Security

Several means were used to secure the connection to the server including TLS, route

guards, middleware, and CSRF protection. This project could not secure against every

avenue of potential threat, with many potential attack vectors out of scope. However,

the main threats are considered timed replay attacks, and XSS.

5.3.1 Timed Replay Attack

Since the authorization process relies on a nonce that is made available through a QR

Code, which is easy to scan and potentially vulnerable to an over-the-shoulder attack,

an attacker could scan another user’s code and obtain the user’s nonce during login. The

cache TTL window for obtaining a JWT is very short, two seconds, and the nonce is re-

moved from the cache once used. However, if timed precisely, an attacker could poten-

tially wait for a user to be authenticated and submit a post request to the /login/confirm

API endpoint in the second before the user’s client to obtain the user’s JWT. Testing

confirmed this is a potential vulnerability. Using Postman (a Representational State

Transfer (REST) API client), and precisely timing a POST request, another user’s JWT

was able to be obtained. This took multiple attempts, and while clearly possible, in prac-

tice it is likely improbable, because the conditions needed to exploit this vulnerability

required such precision. The conditions required, a copy of an authenticating user’s

nonce, which had to be manually copied to Postman before the user authenticated. It
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also required timing the post request so it sends after the user is authenticated but be-

fore the user’s browser makes a separate POST request. Nevertheless, users should

remain aware of their surroundings, and be wary of persons who seem like they may

be attempting to capture a picture of his or her screen. Users should refresh the page to

obtain a new nonce if they believe another user has attempted to scan or capture their

QR Code. Future work should be done to provide additional security to the barcode to

prevent over-the-shoulder scans.

5.3.2 Cross Site Scripting Attack

Because the JWT is stored in browser localStorage, which allows it to be accessed

by JavaScript, it is potentially vulnerable to XSS attacks. Although this attack is out

of scope and was unable to be performed in testing, one potential solution is to store

the JWT in a secure cookie with the HTTPOnly flag, which does not allow JavaScript

access. Unfortunately, this also makes it more difficult to use the JWT in an SPA, since

the front-end client will not be able to access the JWT. Cookies are also potentially

vulnerable to CSRF attacks, and require additional measures to ensure that another

domain is not allowed access to secured cookies.

5.4 Application Security

Since perfect security and convenience are usually mutually exclusive, they have

to be balanced in favor of usability. Access to the device and the application allows

for complete user authentication and is therefore considered a high security risk if the

device is compromised. Although the private key itself can be used to identify and

authenticate the user, access to the private key is unlikely since it is stored in the Secure

Enclave. Therefore the application itself is considered the most vulnerable security

vector. Multiple steps were taken to provide additional security to the application and

the user’s private key. The application itself requires a login, and the private key requires

biometric authentication to unlock it for signing. This requires an attacker to not only
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gain access to the application, but to also have in possession the user’s unique biometric

authenticator.

Because it is possible for users to possess their mobile device with any kind of

authentication, an additional authentication step was added to the application. The main

objective of this project was to allow completely password-less login, and this project

assumed the majority of users would opt into biometric authentication. However, a

standard PIN passcode was provided for legacy purposes. A standard passcode was also

provided in the case biometric authentication were to fail or is unavailable. A simple

digit passcode was decided because it is the default authentication provided on many

devices and because it was the simplest method to implement. A six digit minimum

was decided, with no maximum value, in order to provide a greater security surface

area than the standard four digit PIN. In order for an attacker to access the application

without knowledge of the passcode or possession of a biometric authenticator requires

either a brute-force or dictionary attack. Although other attacks are possible, they are

outside of scope.

5.4.1 Brute-Force attack

A brute-force attack is simply trying every possible permutation of potential password

until access is gained or the attacker gives up. In the case of a six digit minimum, an

attacker with access to the device and application would start at 000000, proceeding to

000001...etc trying every possible password combination to 999999. Since many users

will comply with only the minimum security requirements, an attack of this nature

would likely eventually succeed. The goal therefore is to make the work factor of the

attack expensive enough for the attacker to give up prematurely, or give the owner of

the device sufficient time to regain access to the device, remotely wipe the device, or

change the private key. An analysis of the attack area and the work factor required for

this attack follows.

Because there is no enforcement on repeating digits, a user could choose the min-

imum number of digits and set the passcode to six repeating digits (such as 000000).
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Assuming the user has no authentication on the device, a best-case attack would be

an attacker gaining immediate access to the application with six repeating 0s. An at-

tacker might heuristically try every other combination of repeating digits and gain ac-

cess in under a minute. Other heuristic attacks such as attempting linear progressing

passwords, 1-6, 2-7, 3-8, etc might also be employed but are outside the scope of this

project. The worst-case attack would then be methodically trying every other permuta-

tion P of ten digits n out of every possible six digit combination in order r expressed as

P = nr = 106.

As previously mentioned, passwords are hashed using bcrypt with a work factor

of two seconds. Then for an attacker with an attack space of 106 possible password

permutations yields a total work factor of 2s · 106 or approximately twenty-three days.

This is a short time period when considering password requirements for public servers,

where password breaches may not be discovered for a long period of time. However,

twenty-three days should be sufficient time for a user to realize their device has been

compromised and take appropriate action.

5.4.2 Dictionary attack

A dictionary attack or more formally, pre-computed dictionary attack is a method where

an attacker is able to gain access to a database of encrypted passwords. The attacker

creates a dictionary of all possible hashed values and maps them to their unhashed

equivalent. The attacker then simply looks up the hashed password from the stolen

database to the unhashed value in the dictionary. However, because bcrypt was used,

which hashes the passcode with a randomly generated salt, this dictionary needs to be

re-created using bcrypt and the salt value for all possible passcode permutations.

The work factor is difficult to define, because the assumption is the device is not

using any authentication, which allows the attacker to download the contents of the

device keychain to his or her computer. This means that the two second work factor

on the device could be much less on the attacker’s machine. Also, when factoring in

the brute-force approach, the order of the passcode matters. However, because hashing
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repeated digits r, such as 111111 will always return the same hashed output, the possible

ten digit n hashed password combinations P is significantly decreased. This can be

expressed as

P (n, r) =
n!

(n− r)!
(1)

P (10, 6) =
10!

(10− 6)!
=

10!

4!
= 151,200 different combinations (2)

which is significantly less than the 106 possible combinations expressed above. Test-

ing a simple implementation of bcrypt in Node.js on a local Windows 10 machine using

the salt round value of six, which is the same as on the device, yielded a work factor

of approximately 5ms (4.73ms). The total work factor required to generate all possible

hashed combinations can be expressed as 5ms · 151,200 ≈ 12.6 minutes.

Unfortunately to even gain the recommended work factor of at least 241ms on the

Windows 10 machine, required a salt round value of twelve, which required a pro-

hibitively expensive work factor of over six minutes (400 seconds) on the mobile de-

vice. This means the application itself is culpable to this type of attack, assuming the

device is not protected with any kind of authentication. If the device is protected with

authentication, then the device keychain itself is encrypted making access much more

difficult. However, even if the attacker gains access to the application, the private key

itself is still protected within the Secure Enclave, and generating signatures with the

private key still requires a biometric authenticator to unlock it.
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6 Conclusion and Future Work

While future work is needed to provide additional validation of results and secure

other avenues of attack, this project was able to accomplish its primary objectives. This

project leveraged existing, proven cryptography systems, combining them in a novel

way. It also succeed in creating a working prototype of a password-less MFA system

that is efficient, simple, and easy to use. Simulated user registration suggests that regis-

tration can be completed in one minute or less. Repeated simulated authentication tests

suggest that authentication can be performed in under five seconds.

This is contrasted against a password system that is archaic and fraught with com-

plexities. 2FA is proposed as the solution but adds additional complexity. SMS 2FA

requires additional messages to be sent, which can be intercepted. TOTP provide a high

level of additional security, but require a separate application or additional hardware

and require the secret seed to be stored in the clear on the server, which was the target

of a major national defense breach.

Asymmetric cryptography can provide a high level of security, provided the user’s

private key is never revealed. Embedded hardware systems like the Secure Enclave

on modern mobile devices can allow secure access to private keys, while preventing

their exposure if a device is compromised. Biometric authentication can allow for effi-

cient, accurate identify verification without the use of passwords. Combing biometric

authentication and digital signatures can allow for a password-less MFA system while

providing a much better user experience than a traditional password approach.

Much research has already been completed on new and better authentication sys-

tems. This project shows that much more work is still required to stay ahead of attack-

ers. This project used QR Codes because of simple implementation and ubiquity, but bar

codes which only allow scanning by authorized users could be created. More secure QR

Codes like the SQRC [49] from DENSO WAVE Incorporated could be implemented to

prevent over-the-shoulder and timed replay attacks. Encrypted cookies, which contain

a CSRF resistant token could protect against XSS and CSRF attacks, while also being

available to JavaScript frameworks. An authorization system for identifying authorized
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devices after authentication would allow for a more secure and seamless device hand

off.

This project used barcodes for authentication, but possible advancements with Near-

Field Communication, similar to what is currently being done for contactless payment

systems could be utilized for simple and efficient authentication. Bluetooth, while be-

ing somewhat insecure, could also provide another avenue for a smaller more efficient

encrypted authentication system.
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