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Detailed Velocity and Heat
Transfer Measurements in an
Advanced Gas Turbine Vane
Insert Using Magnetic Resonance
Velocimetry and Infrared
Thermometry
This work reports the results of paired experiments for a complex internal cooling flow
within a gas turbine vane using magnetic resonance velocimetry (MRV) and steady-state
infrared (IR) thermometry. A scaled model of the leading edge insert for a gas turbine
vane with multi-pass impingement was designed, built using stereolithography fabrication
methods, and tested using MRV techniques to collect a three-dimensional, three-component
velocity field data set for a fully turbulent test case. Stagnation and recirculation zones were
identified and assessed in terms of impact on potential cooling performance. A paired exper-
iment employed an IR camera to measure the temperature profile data of a thin, heated
stainless steel impingement surface modeling the inside turbine blade wall cooled by the
impingement from the vane cooling insert, providing complementary data sets. The tem-
perature data allow for the calculation of wall heat transfer (HT) characteristics, including
the Nusselt number distribution for cooling performance analysis to inform design and vali-
date computational models. Quantitative and qualitative comparisons of the paired results
show that the flow velocity and cooling performance are highly coupled. Module-to-module
variation in the surface Nusselt number distributions is evident, attributable to the complex
interaction between transverse and impinging flows within the apparatus. Finally, a com-
parison with internal HT correlations is conducted using the data from Florschuetz et al.
[1981, “Streamwiseflow and Heat Transfer Distributions for Jet Array Impingement With
Crossflow,” ASME 1981 International Gas Turbine Conference and Products Show, Amer-
ican Society of Mechanical Engineers. doi:10.1115/1.3244463]. Measurement uncertainty
was assessed and estimated to be approximately ±7% for velocity and ranging from ±3% to
±10% for Nusselt number. [DOI: 10.1115/1.4052310]

Keywords: impingement cooling, IR thermography, MRV, turbine vane cooling, convective
heat transfer

1 Introduction
Gas turbine engines provide a useful source of power for military

and civilian aircraft, electrical generation, and many other applica-
tions. The engine components, especially the turbine vanes, are
subject to high temperatures and pressures in order to increase the
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thermal and overall system efficiency [1,2]. Increasing internal
engine temperature has a positive effect on thermal efficiency, but
the higher combustion temperatures can often exceed the melting
temperature of the internal materials [1,2]. The utilization of air
bypassing the combustion stage is a commonly accepted practice
for engine component cooling with the most effective use of the
cooling air being a widely researched area [3–14]. Impinging jets,
used in a variety of engineering applications for highly efficient
heat removal, have been extensively studied in general, as in
Refs. [15–19] among many others, and in turbomachinery applica-
tions to cool the internal surface of blades and vanes [20–22].
Complex internal geometries are often implemented in engines
using vane inserts to deliver impingement cooling.
Over the past decade, a stage-and-one-half transonic turbine was

developed at the Air Force Research Laboratory (AFRL) [23] to
improve the understanding of unsteady flows and heat transfer
(HT) in a full-scale, rotating turbine stage consistent with a Gener-
ation 6 engine study cycle. This turbine was used successfully to
benchmark conjugate HT analysis against experimental data from
a fully cooled three-dimensional nozzle guide vane [24] as well
as to demonstrate the potential to use aerodynamic design techni-
ques to reduce unsteady shock interactions that occur when the
vane downstream of the stage is consistent with the inlet-guide-vane
of a counter-rotating low pressure turbine [25]. Additionally, an
attempt was made to employ design optimization techniques to
improve the cooling distribution over the pressure side of the
nozzle guide vane [26]. In the course of validating the optimized
cooling design, it became clear that the sensors within the experi-
mental turbine suffered from a high attrition rate. The loss of
sensors is detrimental to making judgements about the efficacy of
design variations. This is because direct comparison of the heat

flux at the same airfoil surface location between any two different
cooling designs requires the survival of as many as four sensors
over the lifetime of the experiment [27]. The next phase of the
turbine experimental program involves the evaluation of a pair of
internal cooling designs installed in the inlet guide vane: a standard
impingement array and a multi-impingement array. It is expected
that the inclusion of internal cooling schemes in conjunction with
external film cooling distributions will further complicate any com-
parison of the designs made with existing measurement capabilities
available in the full-scale turbine experiment. Accordingly, the
effort presented in this paper was executed to supplement and com-
plement the data that will be available at the end of the experiments
conducted at full-scale in the transonic, rotating turbine stage.
This work seeks to characterize the thermal performance of an

advanced multi-impingement array vane insert design of the first
type described in Ref. [28] which shares some similar characteris-
tics to the device described in Ref. [29]. The present system is a
large-scale representation of the internal cooling features developed
by Florida Turbine Technologies (FTT) for insertion into the
leading edge of a vane in a rotating turbine experiment at the
AFRL. The complete vane has both a forward and an aft insert as
shown in Fig. 1. These two inserts are designed to cool the inside
surface of turbine vanes through impingement and film cooling
methods. This work studies the performance of impingement
cooling within the forward insert only. The forward insert of the
vane cooling design consists of 23 modules from top to bottom,
as shown in Fig. 2, and three separate impingement cooling zones
in each module. After entering the insert via the main feed cavity
at the top, the flow is diverted to the first impingement zone
running along the pressure side of the vane and including the
leading edge. The flow then recirculates, impinges on the pressure
side in the second impingement zone, before recirculating again
and impinging a final time on the suction side. The fluid is eventu-
ally extracted from the insert either through the trailing edge of the
vane or through film cooling holes along the vane surface.
This paper reports the results of paired experiments of a complex

internal cooling flow within a gas turbine vane using magnetic reso-
nance velocimetry (MRV) and steady-state infrared (IR) thermome-
try. A scaled model of the vane cooling insert’s leading edge was
designed, built using stereolithography (SLA) fabrication methods,
and tested usingMRV techniques to collect three-dimensional, three-
component velocity field data sets for a fully turbulent test case. The
MRV tests were used to develop velocity fields within the inserts. A
paired experiment employed an IR camera to measure the tempera-
ture profile data of a thin sheet, stainless steel impingement surface
modeling the vane cooling insert, providing complementary data
sets. The temperature data allow for the calculation of surface HT
characteristics, including the Nusselt number distribution for
cooling performance analysis. This work advances the
state-of-the-art by coupling detailed velocimetry and HT data to
fully characterize the thermal performance of turbomachinery

Fig. 1 Vane insert detail showing flow paths

Fig. 2 Comparison of vane cooling insert (left), MRV test section (center), and HT test section
(right). Note that MRV test section (center) and HT test section (right) images are renderedwith
transparent outer walls to highlight device similarity.
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components with complex geometries and internal flow paths. In
doing so, this work can be used as a baseline data set to validate com-
putational models and directly inform designs of advanced gas
turbine engine components.

2 Background
One obstacle in designing the internal geometries of gas turbine

components is the ability to accurately measure flow and HT char-
acteristics. The process for measuring three-dimensional velocity
data in complex internal geometries presents a unique challenge
due to the need for optical access, integration of probes into the
flow path, or simplification of component geometry. Some of the
common practices for measuring velocity are the use of two-
dimensional particle image velocimetry, laser Doppler anemometry,
and advanced laser techniques [30,31]. MRV, as used in this work,
provides the unique capability of measuring three-component,
three-dimensional velocity field data sets of laminar or turbulent
flows in complex geometries without flow-disturbing probes and
requiring no optical access [32]. This method leverages the
nuclear resonance in hydrogen protons [33,34] in order to determine
the velocity of small volumes of fluid or voxels [32,37]. The MRV
experimental method provides the ability to obtain velocity fields
that would be difficult to obtain using other methods and uniquely
offers benefits of low measurement uncertainty, short testing times,
and well-defined boundary conditions.
Measurement techniques to determine local HT characteristics

have focused on the transient cooling response, such as liquid
crystal thermography [36,37]. Steady-state IR testing employs
Joule heating on a thin sheet formed to the desired geometry and
brought to a prescribed boundary condition [38]. The use of a
steady-state IR technique allows for measurement of temperature
data in a single image as opposed to a series of images for a transient
technique and allows for rapid testing [38]. Overlaying multiple
images during steady-state testing further reduces error. This tech-
nique enables mapping the local HT coefficients across the
surface of the imaged geometry to inform areas that require
further cooling. A similar method has been used by other research-
ers to determine relevant HT coefficients for turbine components,
including the effect of HT augmentation due to film cooling
[39,40]. Others have used the Joule heating method to study the per-
formance of impingement cooling [41–43], with the Imbriale work
[42] reporting peak Nusselt numbers between jets for some cases,
attributable to vortical structure formations between jets that
enhance convective HT between the holes’ centerlines.
Computational simulations provide a cost-effective tool to esti-

mate the performance of a system, but this approach requires substan-
tive validation and is very sensitive to inlet and boundary conditions
and other factors [4,44–47]. Increasing computational power has
aided the growth and development of numerical techniques, which
when validated against robust data sets can provide excellent
insight into fundamental flow features that are difficult to experimen-
tally measure. The use of MRV to accurately and efficiently measure
velocity through a test section and steady-state HT to characterize the
system’s thermal response offers a robust validation data set. The
volume of data obtained through these experiments is large, provid-
ing orders ofmagnitudemore data points thanmost traditional exper-
iments. Benson et al. [48] showed that one MRV test provided over
4.2 million locations, each with three-component velocity data,
which is on the order of a reasonable computational mesh for the
domain studied. Combining MRV and IR tests enables computa-
tional model validation with high resolution data sets.

3 Experimental Setup and Analytical Methods
The test geometry was inspired by the vane cooling insert system

[17,29]. For this test, only the forward insert was modeled, which
consists of three separate cooling zones, as depicted in Fig. 1.
The flow direction indicated in Fig. 1 represents coolant flowing

in the radial direction within the vane (e.g., from tip to root
through the insert). This flow direction will be referred to as the
streamwise direction for internal crossflow. Experiments were con-
ducted in two parts: (1) time-averaged, three-dimensional, three-
component velocity measurements using MRV and (2) steady-state
HT measurements using IR thermography. The MRV experiments
were completed in the Richard M. Lucas Center for Radiology at
Stanford University. The HT tests were completed at the U.S. Mil-
itary Academy at West Point. Experimental rigs for both tests were
manufactured to meet the specific dimensions of the testing facili-
ties, while maintaining similitude with the vane cooling insert
developed by FTT and AFRL. The HT rig was manufactured
using SLA with a Viper Si2 printer using Accura 60 resin; both
printer and resin are made by 3D Systems, Incorporated. The use
of SLA manufacturing methods enables complex wall geometries
using materials that can be thermally and electrically insulating.
The MRV and HT experimental rigs were designed to approximate
the behavior of fluid within the mid-span of the vane cooling insert.
A comparison of the respective experimental test sections is pro-
vided in Fig. 2. Table 1 summarizes key parameters for the actual
vane cooling insert, the MRV test section, and the HT test section.

3.1 Magnetic Resonance Velocimetry. TheMRVresultswere
obtained using a 3.0 Tesla GE Signa Pioneer Magnetic Resonance
Imaging (MRI) scanner. The imaging matrix was 222 × 300 × 166
volumetric elements (voxels) with an isotropic resolution of
0.8 mm. A single scan time lasted 473 s. A full data set was defined
as 12 scans during which the flow was on, and seven scans with the
flow off. The order in which these scans were taken was one with
no flow followed by two with flow on (off-on-on-off, etc.). This
sequence accounts for any change in the background noise produced
by the MRI scanner over time.
The test section shown in the center image of Figs. 2 and 3(a) was

built specifically for MRV testing. This rig consists of five modules
as opposed to 23 in the vane cooling insert. The scale selected for
MRV testing was 1:6.67. An inlet section, shown in Fig. 3(b),
includes two gridded inserts to distribute the flow as the internal
shape changes from circular to non-circular. A tip bleed was intro-
duced at the end of the main feed cavity, below the outlet in
Fig. 3(a), allowing some of the bulk flow to bleed out of the
system. This feature’s purpose was twofold: first, it prevented stag-
nation at the end of the main feed cavity to better model modules at
the root of the vane cooling forward insert; and second, it provided
independent control of impingement jet velocities and the Reynolds
number within the main feed cavity. Additional details of the MRV
test section are available in Ref. [17].
Velocity fields within the test section were collected for a fully

turbulent Reynolds number based on the hydraulic diameter of
the inlet section, Re= 10,000, at an inlet flowrate of 37.2 L/min.
The tip bleed accounted for 45% of the flow exiting the system.
The overall schematic for MRV testing is displayed in Fig. 4(a).
As shown, the temperature of the fluid was maintained using a
cold fluid reservoir, and flowrates were controlled by ball
valves. Flowrate was measured directly at the inlet and tip bleed
using an ultrasonic flowmeter with measurement uncertainty of
±0.075 L/min, or ±1%. Figure 4(b) shows the experimental rig

Table 1 Comparison of vane cooling insert and test sections for
completing velocimetry and HT tests

Parameter
Vane cooling

insert
MRV test
section

HT test
section

Scale 1:1 1:6.67 1:4.66
Impingement hole
diameter

0.381mm 2.54 mm 1.77 mm

Working fluid Air Water Air
Inlet Reynolds number 10,000 10,000 10,000
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that houses the MRV test section, including a portion of the MRI
head coil at the entrance to the magnet.

3.2 Heat Transfer Test. The test section for the HT rig varied
in several ways from the MRV rig, but overall geometric similarity
was maintained. The HT test used a similar setup to that in
Ref. [38]. The HT test section is illustrated in Fig. 5(a). The test
section was reduced to 70% of the scale of the MRV test section
(i.e., a scale of 1:4.67), a design decision to permit greater tempera-
ture across the impingement surface and, subsequently, lower rela-
tive uncertainty for the HT test measurement. The HT test section
had a hydraulic diameter of 0.0465 m, and it eliminated the SLA
shell that was used in the MRV tests. Stainless steel shim with a

thickness of 0.13 mm was used to cover the impingement zones
for the HT experiments. The stainless steel was painted with a
matte black to increase the emissivity. Copper bus bars were used
at the top and bottom of each shim to distribute electrical power
evenly across the shims. The SLA test section, stainless steel
shim, and copper bus bar were attached mechanically. The assem-
bly was sealed with both epoxy and silicone adhesive to eliminate
leaks. A schematic of the final assembly is shown in Fig. 5(c).
Prior to the experiment, fiducial marks were made along the top
and bottom of each shim, spaced 3.2 mm apart.
Impingement zones one and three were subdivided into two

smaller zones, depicted in Fig. 5(b). These subdivisions allowed
for smaller regions to be powered and imaged individually. The
divisions do not extend into the impingement zones themselves,

Fig. 3 Experimental test section employed in MRV, illustrating the flow outlet and tip bleed (left) and inlet with successive
gridded inserts for flow conditioning (right). (a) primary test section, highlighting outlet and tip bleed and (b) test section inlet.

Fig. 4 Full MRV setup: flow loop schematic (left) andMRV test sectionwith coil and inmagnet (right). (a) MRV setup schematic
and (b) MRV test section.

Fig. 5 HT test section highlighting installed stainless steel, matte black shims and copper bus bars (left), geometry with five
sections (center), and air inlets and exits and IR camera position (right). (a) HT test section, (b) HT test section geometry, and
(c) HT full setup.

021009-4 / Vol. 144, FEBRUARY 2022 Transactions of the ASME



so air is free to flow laterally across all three zones as it does in both
the vane cooling geometry and the MRV test section.
Prior to collecting data on the HT rig, the system was brought to

steady state. Compressed air was supplied to the test rig, and the
flowrate was monitored with two Omega FMA 1600-series flowme-
ters (uncertainty <± 1%). Using a FLIR model A655sc long wave
form IR camera (15 deg field of view), sequential images were taken
of the rig surface to confirm that the assembly had reached steady
state. Once at steady state, the resultant surface temperature was
used to estimate the temperature of the supplied air. This method
of temperature measurement was preferred to a separate thermocou-
ple measurement to reduce bias error associated with the camera
when computing the temperature difference used in the calculation
of the convective cooling rate.
A Sorensen XFR 12-220 power source was used to produce a

constant heat flux boundary condition across the shim using electric
resistance heating. The power source provided a measurement of
the current flowing through the assembly, and a voltmeter was
used to determine the voltage drop at the top and bottom of the
shim to ensure uniform current distribution. The power into the
shim was estimated as the product of the current and voltage drop
across the shim, expressed as,

Q̇Joule = I · V (1)

where I is the electric current (A) and V is the steady-state voltage
(V). The heated surface was imaged with the IR camera. Air flow
entering the SLA model provided convective cooling on the interior
surface of the heated shim. The high-temperature steady-state con-
dition was established within a few minutes, with the time to reach
steady state depending on power supplied and air flowrate. Several
IR images were taken during a run, providing the temperature of the
surface and surroundings. To image different zones of the test
section, the camera was relocated to minimize the viewing angle.
An energy balance was used to solve for the HT coefficient of the

cooling air, with Eq. (2) written on a rate basis,

Q̇conv = Q̇Joule − Q̇cond − Q̇natural − Q̇rad (2)

where Q̇ is the HT rate. The total power input to the test section is
given in Eq. (1). The power applied to each pixel can be computed
by a factor equivalent to the ratio of pixel-to-plate surface areas. The
thermal energy lost due to conduction can be found using a basic
conduction nodal analysis assuming that each pixel is small
enough to maintain a uniform temperature, as

Q̇cond = k(Tm,n−1 + Tm,n+1 + Tm−1,n + Tm+1,n − 4Tm,n) (3)

with m and n representing the indices in a two-dimensional x–y
plane stenciled onto a uniform grid (Δx=Δy) with a unit depth
(Δz= 1), Tm,n the temperature at the node of interest, and
common assumptions of constant thermal conductivity and
steady-state behavior [49]. Natural convection was assumed negli-
gible using estimated values for thermo-physical properties and an
order of magnitude comparison of Grashof and Reynolds numbers:

Gr

Re2
≪ 1

Radiation was assumed negligible based on the relatively small
temperature difference between the experimental rig and the
ambient room temperature.

4 Results
4.1 Velocity Measurements. Figure 6 shows a representative

inlet profile using the MRV method at an inlet Reynolds number of
10,000 based on hydraulic diameter at the inlet shown in Fig. 3(b)
just downstream of the inlet grids. The profile was taken after the
flow passed through flow straighteners, but before it entered the
feed cavity within the vane cooling insert geometry. This result
can provide an inlet boundary condition for CFD. Note in Fig. 6
that the direction of the flow is along the positive x-axis, with the
y and z coordinates representing the radial direction. In the
bottom right corner is an inset showing the position of the figure
within the overall geometry of the test section.
Figure 7(a) illustrates the streamwise flow velocity. This view

shows the impingement holes within zone 3b at the top of the
figure and holes across the center of zone 2 at the bottom of the
figure. The high velocity of the impingement jets can also be seen
as small, bright columns at the top of Fig. 7(a). Figure 7(b)
shows jet-to-jet interaction with extraction across both multiple
modules and rows. There are slight differences between the three
jet pairs based on their locations within each module. This observa-
tion suggests that there may be corresponding differences in HT
performance across these locations as well and is a clear indicator
that three-dimensional effects are important for the jet flows. For
example, it is evident that the second module depicted in
Fig. 7(b) has one jet highly impacted by these effects in zone 2,
which is not apparent in the other jet pairs in neighboring
modules. The row location, which also differs, is another contribut-
ing feature, and the corresponding effects on HT performance will
be shown in Secs. 4.2 and 4.3.
Figures 8(a) and 8(b) show the return channel from zone 1 to

zone 2 and zone 2 to zone 3, respectively, at approximately the

Fig. 6 Inlet velocity profiles (m/s). Left image shows profile through flow conditioning grates. Flow is into page.
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mid-span of the test section. Figure 1 can help orient the reader to
the direction of flow within Figs. 8(a) and 8(b). The regions
circled in these figures highlight locations within the internal vane
cooling insert geometry that can be altered to improve the flow
path. These areas are characterized by low-speed flow and recircu-
lation. Improving the flow path has the potential to increase the effi-
ciency with which heat can be removed from the vane surface. In
each of these cases, the flowrate was at or below 0.1 m/s in the
majority of each identified zone.

4.2 Heat Transfer Measurements. After filtering the tem-
perature data with a Gaussian filter, accounting for curvature with
fiducial marks, and performing a power balance as described in
Sec. 3.2, the Nusselt number was computed at each pixel on all
five sections. Figure 9(a) illustrates the Nusselt number at every
point in the leading-edge-half of zone 1 (i.e., zone 1b) and shows
decreased effectiveness radially away from the center of each
impinging jet. Extraction areas can be seen in the dark blue
regions between the double rows of impingement zones. These
regions are characterized by lower convective HT coefficients on
the interior surface of the shims because the flow of coolant is
drawn away from the shim as it recirculates to another impingement
zone. Figure 9(b) shows the variation in Nusselt number in the
streamwise direction for zone 1b at y= 90, which includes several
of the impingement holes. Figure 9(b) highlights the module-

to-module similarity and the significant variation at extraction
regions. The coolant that is extracted from zone 1 is channeled to
zone 2, as shown in Fig. 1. The HT results for zone 2 are provided
inFigs. 9(c) and 9(d ). The increase in Nusselt number at the center-
line of the impingement holes in zone 2 as compared to zone 1 can
be attributed to an increase in impingement hole velocity. The
increased velocity is a result of mass conservation through fewer
holes in zone 2 compared to zone 1.
Figures 9(e) and 9( f ) illustrate the results for zone 3b, which is on

the suction side of the vane and has no local extraction. All extrac-
tion is out the bottom of the test section as shown in Fig. 5(a). The
Nusselt number at the centerline of the impingement jets in zone 3 is
higher than impingement jets presented in Fig. 9(a). This increase in
convective HT coefficient is primarily a result of zone 3b having
fewer holes than zone 1b resulting in high centerline jet velocities
for zone 3 due to conservation of mass of the coolant. It is also
worth noting that the coolant within zone 3 is extracted in
the streamwise direction, rather than being extracted between the
rows of impingement holes. The extraction at the bottom of zone
3 results in the presence of crossflow. This crossflow can be
observed in the top of Fig. 7(a) showing the velocity magnitude
increasing as the coolant moves from left to right in the upper
channel. While the impact of crossflow is minor compared to the
effect of impingement cooling, the crossflow does enhance
the HT between the rows of impingement jets, thereby increasing
the spatially averaged Nusselt number. This improvement

Fig. 7 Velocity magnitude in main feed cavity for two different views: (a) spanwise centerplane showing velocity magnitude
and (b) transverse cut.

Fig. 8 Velocity magnitude along radial planes: return channel between zone 1 and zone 2 (left) and between zone 2 and zone 3
(right). Ovals highlight regions of low-speed flow and recirculation. (a) Return channel between zone 1 and zone 2. (b) Return
channel between zone 2 and zone 3.
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between the impingement jets can be observed in Fig. 9(e) and is
qualitatively demonstrated in the more gradual increase in each
peak in Fig. 9( f ), recalling the flow direction is right to left as dis-
played, as compared to Fig. 9(b).

Figure 10 is a HT comparison for each module within the various
sections using a spatially averaged Nusselt number. There are
several key takeaways from this figure. First, module-to-module
variation shows a generally monotonic decrease following the

Fig. 9 Nusselt number distribution, zone 1b (top), zone 2 (middle), and zone 3b (bottom). Dashed vertical lines show
the location for the Nusselt variation in the streamwise crossflow direction (root to tip) depicted at right. (a) Nusselt
number, zone 1b. (b) Nusselt number variation, zone 1b. (c) Nusselt number, zone 2. (d ) Nusselt number variation,
zone 2. (e) Nusselt number, zone 3b. (f ) Nusselt number variation, zone 3b.
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flow path for zones 1 and 2. The first module in zone 1a has the
highest Nusselt number within zone 1, likely attributable to
inflow effects. The view in Fig. 7(a) suggests that the core flow
adjacent to zone 1a is quite fast which may increase the jet flowrates
within this first module. Zone 3 results show the opposite effect
from zones 1 and 2, with a monotonic increase in the average
Nusselt number in the streamwise direction. This trend is most
likely due to flow path differences: in zones 1 and 2, there are
extraction channels between modules; in zone 3, the flow exits in
the streamwise direction and enhances HT, an observation espe-
cially evident in zone 3b.

4.3 Magnetic Resonance Velocimetry and Heat Transfer
Test Comparison. By comparing the MRV and HT results, it is
clear that the two experimental methods inform each other. As
one example, Fig. 11 shows that peak Nusselt numbers are coinci-
dent with peak fluid velocities, consistent with forced convection
theory. Likewise, the extraction regions in between each module
of holes reveal low velocity flow, yielding a decreased HT rate
and corresponding Nusselt number. Two lines are overlaid in
Fig. 11 which correspond to the transverse plane in Fig. 7(b). The

velocity plane is within the fluid and slightly off the vane wall
surface; however, the HT measurements were made at the vane
wall surface. The velocity field shows some periodicity across the
plane with alternately faster and slower moving fluid that is not
entirely uniform based on row location within the module. While
subtle, this observation suggests that the flow within the zone is
complex and three-dimensional. More important, this fine flow
detail could be valuable in validating computational models.
Further analysis of impingement surfaces in both datasets can
inform future designs of the vane cooling insert system.

4.4 Comparison to Correlation. Measurement of the com-
plete three-dimensional velocity field within the vane cooling
insert [28] and the surface HT distribution over each of the impinge-
ment zones provides a unique opportunity to evaluate the usefulness
of existing durability design correlations for such flow situations.
For example, the correlation of Florschuetz et al. [16] is widely
used in the gas turbine industry to provide estimates of internal
HT coefficients for impingement arrays with crossflow that have
one downstream flow outlet. In the vane cooling impingement
insert, this situation is obtained in zone 3. The impingement array
in zone 3 is “inline” in the parlance of Ref. [16], so the ratio of
local Nusselt number between the impingement holes (Nu) to that
directly underneath the first row of the impingement array (Nu1)
is given by the correlation

Nu
Nu1

= 1 − 0.596

(
xn
d

)−0.103( yn
d

)−0.380( zn
d

)0.803(Gc

Gj

)0.561

(4)

where Gc/Gj is the ratio of the mass-flux due to crossflow between
the rows in the streamwise direction to the mass-flux of the
impingement jets. For comparison purposes, the coordinates are
defined consistently with the work of Florschuetz: xn is the stream-
wise jet hole spacing, yn is the spanwise jet hole spacing, and zn is
the jet to hole spacing. In Ref. [16], the quantity Gc/Gj was evalu-
ated based on conservation of mass arguments, and if that analysis
is followed here taking into account the jet mass fluxes measured in
the MRV experiments, it is possible to compare the correlation of
Eq. (4) to the measurements obtained in the HT experiment. The
results of this analysis are presented in Fig. 12 where the top plot
is the variation of the quantity Gc/Gj versus streamwise distance
normalized by the streamwise hole spacing. The bottom plot is an

Fig. 10 Average Nusselt number across all modules and
sections

Fig. 11 Comparison of Nusselt number (left) and velocity profile
(right) in zone 2, highlighting stagnating flow in extraction
regions and corresponding decrease in HT rate

Fig. 12 Streamwise variations of the ratio of crossflow to jet
mass-flux (top) and predicted normalized Nusselt number varia-
tion (bottom) obtained from Eq. (4), where x is the radial direction
within the vane (e.g., from root to tip). The crossflowmass-flux is
determined via a mass balance applied to MRVmeasurements of
jet velocities according to the analysis of Florschuetz et al. [16].
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evaluation of Eq. (4) for the values of Gc/Gj given in the upper plot.
For comparison, data obtained in the HT experiment of this work
are also plotted using results of Fig. 9(e). The experimental data
were first averaged in the spanwise direction at all streamwise loca-
tions opposite to the impingement jets. The data were then normal-
ized by the spanwise average obtained at the streamwise location of
the first impingement row. These data were then plotted versus
impingement row number in the bottom plot of Fig. 12, which illus-
trates correlated values of the Nusselt number compared to the mea-
sured variation of streamwise-averaged Nusselt numbers between
impingement rows. One can see that the variation in mean
Nusselt number from row to row is fairly well approximated by
the correlated values. However, it should be noted that some of
the impingement-array design parameters are on the limits of
those used by Florschuetz et al. [16] to develop Eq. (4). In particu-
lar, the quantity (yn/d )(zn/d )= 9.1 × 3= 27.3 is larger than that used
for any impingement array with (zn/d )= 3 in Ref. [16]. Addition-
ally, the quantity (xn/d )(yn/d )= 13.2 × 9.1= 120.12 is on the
upper limit of impingement spacing measured by Florschuetz
et al. [16]. Taken together, these impingement design parameters
result in a small level of crossflow as seen in the upper plot of
Fig. 12. Accordingly, the effect on the streamwise variation of the
spanwise-averaged Nusselt number is also small.
While Eq. (4) does seem to allow for accurate design-level esti-

mates of the spanwise-mean Nusselt number variation in the stream-
wise direction for impingement zone 3, it is not clear whether there
is a rigorous way to apply the correlation of Florschuetz et al. [16] in
a spatially resolved durability analysis. For example, Fig. 13(a) is a
plot of the local mass-flux due to crossflow normalized by the
impingement jet mass-flux over a portion of zone 3. One can see
that the local mass-flux ratio can be locally very high, and if this
local variation is evaluated according to Eq. (4) and plotted in
Fig. 13(b), then there is a large local effect on the Nusselt
number. This effect is not seen in the HT experiments of this
work, and the spatial variation in Nusselt number obtained
through this application of Eq. (4) is quite different from that mea-
sured experimentally. So, for the purposes of a turbine durability
analysis that relies on the spatial variation of Nusselt numbers for
a thermal boundary condition, perhaps it is better to apply the full
map of HT coefficients measured in this HT experiment directly
rather than relying on Florschuetz et al. [16] correlation. This is
in part the method advocated by Downs et al. [50], which empha-
sized the need for rapid, complementary computational and exper-
imental evaluation of advanced turbine durability designs.

4.5 Experimental Uncertainty. The MRI velocity measure-
ments reported herein contain several sources of random, bias,
and statistical error. Following the approach described in
Ref. [17], the measurement uncertainty estimates for MRV used
the standard deviation of the velocity in a region of interest (ROI)
within the central feed channel of the experimental model. Uncer-
tainty estimates employed a 95% confidence interval from a Stu-
dent’s t-test, calculated with a voxel-by-voxel approach and
averaged over the ROI. The bias errors were calculated using the
measured bulk velocity compared to a calibrated flowmeter. The
two error sources were combined using a root sum of squares tech-
nique, with an overall uncertainty for the reported velocity measure-
ments estimated to be 0.035m/s, or ±7% of the peak velocity at the
inlet to the feed cavity.
HT test uncertainty estimates were based on full field propagation

of imposed errors in all key parameters. The authors estimate uncer-
tainty to range from approximately 3% in the impingement zones to
approximately 10% in the low HT zones. This estimate includes
bias errors applied in dx, dy, external temperature (Text), voltage,
thickness, thermal conductivity, emissivity, and natural convection
as well as large (∼1 K) single-pixel noise on temperature. Of note,
the uncertainty shown for Fig. 12 was assumed to be ±5%; future
work will evaluate the spatial dependence of error to further
refine the uncertainty estimate of Nu/Nu1.

5 Conclusions and Future Work
Two novel, paired experiments were designed, conducted, and

analyzed using MRV and steady-state IR imaging techniques.
These methods provided high-fidelity velocity and HT data sets
that can be used to validate computational simulations of the vane
cooling forward insert and directly inform the design of the
device’s complex geometry and impingement cooling method.
Velocity testing was conducted at a Reynolds number of 10,000.
Velocity data showed some jet-to-jet variability and minimal
module-to-module variation, a result with two notable outcomes.
First, it confirmed the design decision to introduce a tip bleed in
the MRV test section to more closely model the first modules fea-
tured in the vane cooling forward insert. Second, it revealed a
degree of feed mechanism effectiveness, thereby eliminating the
need to design a complex manifold shape in this dimension, a valu-
able observation for designers. HT datasets showed similar results
along the impingement surfaces of the vane cooling insert.

Fig. 13 Local variation of the ratio of crossflow to jet mass-flux evaluated fromMRVmeasurements (left) and local variation of
the quantity Nu/Nu1 determined via application of Eq. (4) to the Gc/Gj data given in left side subfigure (right). (a) zone 3, Gc/Gj
and (b) zone 3, Nu/Nu1.
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Furthermore, the HT testing methods used in this study proved to be
cost-effective compared to other techniques. Quantitative and qual-
itative comparisons of the paired tests’ results showed strong agree-
ment between flow velocity and cooling performance.
Module-to-module variation in Nusselt number was evident, attrib-
utable to the complex interaction between transverse and impinging
flows within the apparatus. Comparison with internal HT correla-
tions using the data from Florschuetz et al. [16] showed reasonable
agreement for some impingement-array design parameters. Mea-
surement uncertainty was assessed and estimated to be approxi-
mately ±7% for velocity and ranging from ±3% to ±10% for
Nusselt number.
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Nomenclature
d = jet hole diameter
k = thermal conductivity of impingement plate
x = streamwise direction of internal crossflow
I = electric current
T = temperature
V = voltage
Q̇ = HT rate
xn = streamwise jet hole spacing
yn = spanwise jet hole spacing
zn = jet plate to impingement hole spacing
Gc = crossflow mass-flux in the streamwise direction
Gj = impingement jet mass-flux
Gr = Grashof number
Nu = Nusselt number
Re = Reynolds number

Subscripts

cond = HT due to conduction
conv = HT due to forced convection
ext = external temperature

Joule = thermal energy generation due to Joule heating
natural = HT due to free convection

rad = HT due to radiation
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