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Abstract

In this paper we consider a problem where N jobs are to be scheduled on a single

machine and assigned to one of the two due-dates which are given at equal intervals. Tardy

jobs are not allowed, thus the due-dates are deadlines. There is a linear due-date penalty

and linear earliness penalty, and the sum of these penalties is to be minimized. This

problem is shown to be NP-hard. One case of the problem (the unrestricted case) is shown

to be solvable in linear time. For the restricted case, lower and upper bounds are

developed. Computational experience is reported which suggests that the bounds are quite

effective.

* University of Illinois, Department of Business Administration, 350 Commerce West,

Champaign, IL 61820.





1. Introduction

To motive the problem in this paper, consider a shop with a single machine and N

jobs available at time that need to be assigned a due-date and sequenced on the machine.

The time required by each job on the machine is known and deterministic. Finished jobs are

supplied to the customer by a truck that is dispatched at a fixed time interval, for example,

at the end of each week. Since all jobs finished during the week will be shipped at the end

of the week, the due-date assigned to a job will be the end of the week in which the job is

scheduled to be completed. Since customers prefer their jobs to shipped as early as

possible, there is a penalty for assigning jobs to a due-date that is praportional to the length

of the due-date. A finished job incurs a holding cost until it is shipped. The shop has the

policy of delivering on the promised due-date, thus tardy jobs are not allowed. The

measure of customer service level is through due-date cost. The problem is to find an

assignment of due-dates (the week in which the job will be completed) and sequence such

that the sum of earliness penalty and due-date penalty is minimized, subject to no tardy job.

The problem of scheduling a given number of jobs to minimize the sum of

earliness, tardiness, and due-date costs where the due-date cost of an order is praportional

to its assigned due-date is well studied. Panwalkar, Smith, and Seidmann (1982) consider

the case of single due-date and Chand and Chhajed (1990) consider the case of multiple

due-dates. Models in which there a single fixed due-date and a schedule of minimum total

earliness and tardiness costs are also considered (Hall, Kubiak, and Sethi, 1989; Kanet,

1981; Bagachi, Sullivan, and Chang, 1986).

The interest in studying problems with earliness and tardiness costs (E/T Cost)

supports the growing success and popularity of Just-In-Time (Baker and Scudder, 1990).

Typically in a schedule obtained for a problem with E/T costs, some jobs will be finished

on time, some will be early and others will be tardy. An early job incurs a penalty for each

time unit it has to wait after completion until shipped to the customer, whereas a tardy job is



shipped as soon as it is completed. In the literature, the cost associated with shipping each

tardy job separately is not considered. A comprehensive review of the literature on

scheduling problems with E/T costs is given in Baker and Scudder (1990). Note that in an

JIT environment a tardy job may force a customer to shut down operations, the cost of

which may be very high.

In the problem we consider, the due-dates cannot be violated and so they are

deadlines as considered in Ahmadi and Bagchi (1986) and Chand and Schneeberger

(1988). Matsuo (1988) considers the problem with fixed shipping times (similar to ours)

and minimizes the sum of overtime and tardiness costs.

Our focus in this paper is on a restricted version of the above problem where only

two due-dates are considered. We concentrate on this restricted version because even this

case is computationally difficult (Appendix A). However this simple case provides us

insights and results which can be useful in solving the general case. This paper also

provides a framework for developing a solution scheme for many other useful and

interesting variations of the problem, some of these are outlined in the concluding section.

The rest of the paper is organized as follows. In section 2, we introduce the

notation and formulate the problem for the two due-dates case. In section 3, we show that

certain special case of the problem is easy to solve. In section 4, we provide a method to

obtain lower and upper bounds. Our computational study, reported in section 5, indicates

that these bounds are very effective. Concluding remarks are in section 6. In Appendix A,

we show the complexity of the problem and proofs of several results are in Appendix B.

2. Preliminaries

The statement of the problem we consider is: Assign N jobs to one of two due-

dates and schedule them such that there is no tardy job and the sum of due-date penalty and

earliness penalty is minimum. The two due-dates are given and are at equal intervals. We

assume that pre-emption is not allowed and only one job can be processed at a time. All



cost functions are assumed to be linear. We call this problem the 2-Due-Date Scheduling

Problem (2DSP).

We now introduce the notation.

Notation :

N: number ofjobs

t\: processing time ofjob i

8: due-date penalty per time unit (the earliness penalty per time unit is assumed to be one)

X: time period (interval between two successive due-dates)

Ji: job i. Occasionally we will refer to a job by its index, i.e. job i

Dj: due-date ofjob i

Q: Completion time ofjob i

N
T: sum of the processing times of all jobs = £ ti

i=l

(a, b): Set of integers a,a+l,...,b

In our development, due-date j mean that the due-date is jx, j=l,2. We assume that T < 2x

so that the problem is feasible. Jobs are indexed such that ti<t2^. . .&n-

This problem can be formulated as:.

N N
(Pi) minZ = I(Di-Ci) + 5 XDj

i=l i=l

ST. Di > Q

Die {x,2x}.

Note that there may be idle time before the starting time of the first jobs assigned to

due-dates 1 and 2. Thus a permutation schedule may not be optimal. However, there will

be no idle time between jobs assigned to the same due-date. This can be shown by using a

simple interchange argument. Also the completion time of the last job assigned to the first

due-date may not coincide with the due-date. It is optimal to schedule jobs assigned to the

same due-date in non-decreasing order of their processing time. Figure 1 shows the nature



of different kinds of schedules that may occur. We will denote the optimal value of

function Z by Z*.

Given a schedule, the job at position i, denoted as Jgj, refers to the job which is

preceded by (i-1) jobs. Since there may be idle time, the completion time of of J[i] may not

i

be equal to £ t[j]- Let ni denote the number of jobs (a decision variable) assigned to the

j=l

first due-date and let C[0] = 0. With these notation (Pi) can be rewritten as:

(Pi) min Z = I (x - C[i]) + I (2x- Cm ) + (m + 2(N-ni))x8 (1)
i=l i=ni+l

S. T. Cp] > C[i_i] + tp] , i=l,...N (2)

C [ni ]
< X.

nie (1,N)

(3)

(4)

Any optimal solution to 2DSP will satisfy one of the following cases (Figure 1):

Case I: C[ni ]
- x

Case II: C[ni ] < x.

[ v////xm^/M t^m d̂
t=0 t=x t=2x

V//\ Due-date 1 KS^i Due-date 2

(a)

I l^^g^ii^^^y^^^^^^t^^^^l^^^^trŷ
t=0 t=x t=2x

V7X Due-date 1 CSSS3 Due-date 2

(b)

Figure 1. Two Kinds of Schedules

We now give an example which has an optimal solution corresponding to Case H

Example: Let N=6, x=5.5, ti = {1,1,1,1,3,3}, 5=1.



The optimal solution for this case is:

t=0 t=5.5
d

t=5.5

ZTTA Due-date 1

t=ll

^^^ Due-date 2

which is a Case II solution.

The two cases are now analyzed separately.

Case I: C[n i] = x.

In this case, the following property is satisfied by all optimal solutions:

Property 1: If an optimal solution to (Pi) satisfies C[ni ]
= x, then idle time can be only

before the first job that is processed in due-date 1 and the first job (position ni+1) in due-

date 2.

For this case Qni ]
= x and C[N] = 2x and the objective function of (Pi) can be

rewritten as:

I (x - C[i]) + I (2x- C[ii) + (2N-ni)x5
i=l i=ni+l

ni N
= I (C [ni ]

- C[i]) + I (C[N]- Ch) + (2N-ni)x5
i=l i=ni+l

ni ni N N
= S Itrj]+ I £ tm + (2N-n0x8

i=l j=i+l i=ni+lj=i+l

= I(i-l)t[i]+ I(i-l-ni)t [i] + (2N-ni)x5 (5)
i=l i=ni+l

Therefore (Pi), with the additional constraint that C[ni ]
= X, can be formulated as,

ni N
(P2)minZi= I(i-l)t[i]+ I(i-l-m)t[i] + (2N-ni)T5

i=l i=ni+l

S. T. Ql]^t[l]



C[i] = C[i-i] + t[i], i=2,...,ni

C[ni ]
> t+t[ni]

c [i] = c [i-l] + tffl* i=ni+2,...,N

C[ni ]
= x , and (4).

We will refer to the number multiplied to the processing time of the job assigned to

position i as the positional weight of position i. In (P2), for example, the positional weight

of position i (i<ni) is (i-1).

Case II: C[ni ] < x.

All optimal solutions satisfying this case satisfy the following property:

Property 2: If there is idle time, it will only be before the job scheduled in position 1

.

The objective function of (Pi) can be simplified as:

1 (x - Cm) + I (2x- Cm) + (2N-m)xS
i=l i=ni+l

ni N
= I (C[N] - Cp]) + I (C[N]- Cp]) + (2N-ni)t8 - mx

i=l i=ni+l

N ni

= I Itm + (2N-ni)x8 - nix
i=l j=i+i

= I(i-l)t[i] + (2N-ni)x5-niT (6)

i=l

The formulation (Pi) now takes the following form,

N
(P3) min Z2 = I (i-1) tm + (2N-ni)x8 - nix

i=l

S. T. C[i] > t
f i]

C[i] = C[i-i] + t[i], i=2,...,N

C [ni ] < x, and (4).

In order to solve (Pi), we could solve (P2) and (P3). Then the optimal value of (Pi)

will be given by

Z* = min {Zi*, Z2*}. (7)

In Appendix A we show that (Pi) is NP-hard. If T <x, then all optimal solutions



will correspond to Case I. We call such problems as unrestricted. The unrestricted case can

be easily solved in O(N) time as we show in the next section.

3. The Unrestricted Case

When T<x, any number of jobs can be assigned to the first due-date without the

sum of their processing times exceeding the length of the period. It is this observation

which makes this problem easy to solve. With ni as the number ofjobs assigned to the first

due-date, let

f(i-l) i=l...m
Wl " l(i-l-ni) i=ni+l...N w

be the positional weight of position i. If we fix the value of ni, the optimal solution to (5)

can be obtained by sorting the positional weights in decreasing order and assigning job i to

position k where k is such that w^ has rank i.

To find an optimal solution, we compute the cost Z*\ for different values of fixed

ni and choose the value of ni, and the corresponding solution, which gives the minimum

cost The values of ni that need to be examined are ni = mo to N, where mo = min integer

> N/2. Since sorting takes O(NlogN) time and there are O(N) possible values of hi, this

suggests an CXN^logN) algorithm. However, as we show, this procedure can be reduced

to O(N) time.

We first note that Wi<W|+i, i<ni and Wi<wj+i, i>ni. Thus, the wj's can be sorted

in O(N) time. In the first iteration, with ni=mo, the solution can be obtained in O(N) time.

We now show that, given a solution to any value of ni=n°, the solution for n=n°+l can be

obtained in constant time. To show this, consider an example with 10 jobs and processing

times ti < t2 <...< tio- When ni=6, the positional weights and the assignment of jobs is as

follows:

Due Date 1 Due Date 2

Position 1 2 3 4 5 6 7 8 9 10



Wi 1 2 3 4 5 1 2 3

Job# 10 8 6 4 2 1 9 7 5 3

Thus, jobs { 10,8,6,4,2,1 } are assigned to due-date 1 and the remaining jobs are assigned

to due-date 2. Note that jobs assigned to a due-date are processed in LPT order. When ni =

7, the new weights and the corresponding assignments will be:

Due Date 1 Due Date 2

Position 1 2 3 4 5 6 7 8 9 10

Wi 1 2 3 4 5 6 1 2

Job# 10 8 6 4 3 2 1 9 7 5

In going from a solution with ni=6 to ni=7, the smallest job (here job 3) assigned

to the second due-date is reassigned to due-date 1. All the other jobs remain assigned to

their earlier due-dates. The relative positions of some jobs in due-date 1 are increased by 1,

and the relative position of all jobs assigned to due-date 2 increases by 1. Note that the cost

resulting from these changes can be computed in constant time, once the optimal cost and

the solution for ni=6 is given. Thus, after the initial computation of the solution for ni=mo,

each subsequent optimal cost to (5) as a function of ni can be computed in constant time

resulting in a total complexity of O(N).

4. Sharp Lower and Upper Bounds

In this section we provide a method to obtain lower and upper bounds to 2DSP

when 2t >T>t. Suppose we know that ni jobs are assigned to due-date 1 and the

remaining N-ni jobs are assigned to due-date 2, i.e. constraint (4) is no longer present. Let

the optimal objective function value with ni jobs assigned to due-date 1 be Z*(ni). As the

number of jobs assigned to the first due-date can vary from 1 to N (more on this later), the

optimal value of (Pi) is be given by, Z* = minni e (^nj Z*(ni).

With ni jobs assigned to due-date 1, we find Z*(ni) by considering the two cases



as before. We now analyze these two cases separately in order to obtain a lower bound to

Z*(ni).

Case I: C[ni ]
= x, ni fixed.

In order for the completion time of the last job assigned to due-date 1 (the job in

position ni) to be x, it is necessary and sufficient to have the sum of the processing time of

jobs assigned to each of the two due-dates to be less than or equal to x. This is written as,

It[i]<xand (9)
i=l

N
I tfi] < T. (10)

i=ni+l

N ni ni ni

As X t[i] = T- X t[i], (10) becomes, T- X t[i] ^ x or X t[i] ^ T - x. Thus, an equivalent

i=nj i=l i=l i=l

formulation of (P2) with an additional requirement that ni is fixed is written as:

ni N
(P4) min Zi(m) =I(i-l)t[i] + X (i-l-m) tm + (2N-m)x5

i=l i=ni+l

S. T. Xt[i]<X (11)
i=l

-It[i]<x-T. (12)

i=l

We form a Lagrangian relaxation of (P4) by multiplying constraints (11) and (12)

by non-negative numbers Xi and X2, respectively, and adding them to the objective

function:

ni N
min Zi(ni,A.i,A,2) = X (Ki - X2+ i-l)t[i] + X ( i-l-ni) t[i] + (2N-ni)x5 - Xi% + A.2(T- x).

i=l i=ni+l

= X (A.i - X2+ i-l)t[i] + X (i-1) t[i+ni ] + (2N-m)x8 - Xix + X2(T- x). (13)
i=l i=l

The choice of (X1A2) that solves

Z*i(ni) = maxxbx2 Z*i(ni,Xi,X,2) (14)

provides us with the best choice of the Lagrangian multipliers in the sense of providing the

tightest lower bound. Thus,



10

Z*i(ni) = maxA.
lfX2 Z*i(ni,A.i,A.2) < Z*i(m).

We note that for fixed values of ni, Xi and X2, Z*i(ni,Xi,A.2) is obtained by

arranging the sequence {fti-A,2 + i-l):i=l . . .ni }u{ ( i- l-ni):i=ni+l . . .N} in decreasing

order and multiplying the sequence with ti's.

Case II: C[ni] < X, ni fixed.

In order to have a schedule with the completion time of the last job assigned to the

first due-date not coincide with x, we must have,

ni

I t[i] <X and (15)
i=l

N
It[i]>x. (16)

i=ni+l

Constraint (15) restricts the total processing times ofjobs assigned to due-date 1 to less

than the period and constraint (16) is required because the total processing time ofjobs

N ni ni

assigned to due-date 2 must exceed x. With £t[i] = T- £ t[g
f
(16) becomes T- £ t[i]

i=ni+l i=l i=l

ni

>xor T - x > X t[i] . Since T - x < x, constraint (16) implies (15). (P3) with ni fixed can
i=l

be rewritten as:

N
min Z2(ni) = £ (i-l)t[i] + (2N-ni)x5 - nix

i=l

S. T. It[i]<T-x. (17)

i=l

Again we form a Lagrangian relaxation by multiplying constraint (17) by X and including it

in the objective function to get,

ni N
min Z2(nbX) = Z ft + i-l)tM + I (i-l)t[i] + (2N-ni)x5 - n^ - (T-x)X. (18)

i=l i=ni +1

We want a value of X that solves the dual problem,

Z*2(ni) = max^ Z*2(ni,X) < Z*2(ni)

.

(19)
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Theorem 1 shows how a lower bound to 2DSP can be computed.

Theorem 1: The value ofZ* = min (minn JmaxXi,\2 Z*i(ni,Xi,X2)}, minn Jmax\

Z*2(ni,X)}) is a valid lower bound to (2DSP).

Proof: By (7), Z* = min {Z*i,Z*2},

= min(minni {Z*i(ni)},minni {Z*2(ni)}),

> min ( minni {Z*i(ni)}, minni {Z*2(ni)}),

= min (minni {maxx lfx2 Z*\(niMXl)}, minni {maxx Z*2(ni,X)})

= Z*. «»

The dual problems (14) and (19) can be solved by any of the methods given in

Fisher (1981). We now develop several results that reduce the computational time required

to obtain Z* and present an algorithm that uses these results to obtain Z*.

Lemma 1 : There exists an optimal solution to (14) with at least one ofXj and X2 equal to 0.

Proof: We prove this by contradiction. Suppose for fixed ni, we have multipliers X*\ >

and \*2 > for which Z*\(n\,X*\,X*2) is an optimal solution to (14).

Case A: X*\ > \*2- If we use new multipliers X.'i = X*\-X*2 and V2 - ^*2-^-*2=0> tne

relative ranking of the positional weights does not change and so the given sequence is still

optimal with these new values of the multipliers. The new objective function value in (13)

is,

Z*i(ni,ViA2) = I (k\ -V2+ i-l)t[i] + xVl) t[i+ni ]
+ (2N-ni)x8 - V xx - X'j{% - T)

i=l i=l

= Z*i(ni,X*iA*2 ) + ^*2(2l-T).

As 2t >T, Z*i(ni,X'i,V2) > Z*i(ni^,*i,X*2) and thus we have found a solution which

is at least as good as the given optimal solution to (14) and satisfies the Lemma.
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Case B : X*\ < X*2. The proof of this case is similar to the proof of Case A. Now we set

Xf

\ = A.*i-A,*i and X'2 = ^*2 -^*i- «»

Lemma 2: It is sufficient to consider only integer values of the multipliers in (13) and (18).

Proof: Consider (13). Only one X[ (i=l,2) is positive. Suppose Xi >0 and k < ^4 < k+1 for

some integer k. For any value of X\, Z*i(ni,A,i,0) is obtained by arranging the sequence

[(X\ + i-l):i=l...ni)u{( i-l-ni):i=ni+l...N) in decreasing order and multiplying it with

ti's. If we vary X\ between k and k+1, the ordering of the sequence does not change and so

the first two terms in (13) are linear functions of X\. Thus (13), with k < X\ < k+1 has an

optimal solution at an extreme point, i.e., Xi=k or A.i=k+1.

The proof of X2 > in (13) and X > in (18) is similar. «»

By the virtue of the above two Lemmas, we only have to consider integer values of

the multipliers. Furthermore, while computing Z*i(ni,A.i,A,2), at most one of the two

multipliers will be non-zero. We need the following definitions for the next Theorem.

Let,

mo = minimum integer > N/2,

mi =max {j: £ ti<t},
i=l

j

m2 = mm {j: £ tN-i+i > T- t},

i=l

1113 = max {j: £ ti < T-x}.

i=l

Note that in defining mi and 1113 we add the smallest jobs, whereas in defining 1113

we are adding the largest jobs. Theorem 2 provides values of ni and the multipliers (X.i,

X2,X) that are sufficient to evaluate Z*.

Theorem 2: The lower bound Z* in (20) can be computed by restricting the range ofsearch
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to,a)ForZi(ni,XiM):

al) max{m2,mo} ^nj <mi,

a2) X\ e (0, N-nj), and

a3)X2 e (0,ni-l).

b)ForZ2(ni,X):

al) N -mj-1 <n\ <ms and

a2)Xe (0,N-ni).

Proof: The proof of this theorem is given in the Appendix.«»

We now outline the solution procedure to obtain the lower bound Z*.

Algorithm DDLB

Step 1. Compute Z*n(ni) = max{ Z*i(ni,A.i,0) :%ie ( 0, N-ni)} for ni e

<max{m2,mo},mi).

Step 2. Compute Z*i2(ni) = max {Z*i(ni,0,A,2) : ^-2 G (0, ni-1)} for

ni € (max{m2,mo},mi).

Step 3. Set Z*i(ni) = min (Z*n(ni), Z*i2(ni)} forni e (max{m2,mo}, mi).

Step 4. Compute Z*2(ni) = max{Z*i(ni,X) : X e( 0, N-ni>} for ni € <N -mi, m3>.

Step 5. Set Z* = min (minni {Z*i(ni)}, minni {Z*2(ni)}).

To obtain the time complexity, we note that functions Z*i(ni,A.i,0), Z*i(ni,0,^2)>

and Z*2(ni,>.) are piece-wise concave function in the multipliers (Nemhauser and Wolsey,

1988). Thus for a given value of ni, max{ Z*i(ni,A.i,0) : ^i e < 0, N-ni)} can be

computed by performing a binary search over the feasible range of X\. This will require

O(logN) computations of Z*i(). Computation of Z*i() requires finding the weights

(wi=^l + i-l:i=l...ni}u{vi=i-l-ni:i=ni+l...N}and sorting them. Since wi < wj+i and

vj< vj+ i finding a sorted list of these two can be done in O(N) time and hence Z*i() can be



14

computed in O(N) time. Consequently, maxx
2 { Z*i(ni,0,X2)} can be computed in

O(NlogN) time. A similar argument shows that max{ Z*i(ni,0,A,2)}and max{ Z*2(n\,X)}

can also be computed in O(NlogN) time. Since ni < N, the total complexity is 0(N2logN).

Upper Bound: While solving each problem in steps 1,2, and 4, an upper bound is

computed as follows. Given the assignment of jobs, if the assignment is feasible (the sum

of the processing times of the ni jobs assigned to the first due-date is less than or equal to

x) then the cost of the schedule is computed using (5) or (6). Finally, the lowest cost

feasible assignment gives an upper bound.

5. Empirical Analysis

To investigate the effectiveness of the proposed lower and upper bounds we coded

the heuristic algorithm in the Pascal programming language on a personal computer

(Macintosh Hex). A 34 experimental design was used involving number of jobs (N);

processing times of jobs; tightness of due-date; and the due-date penalty. The values of N

were (20,30,40). The processing times (integer) of the jobs were generated from a uniform

distribution between (l,tmax) with tmax being (10,20,30). The tightness of the due-date

refers to the relative amount of idle time. We set the time period x =ocZti/2 where a is a

parameter with values (1.1,1.3,1.4). Here a=l.l implies 10% idle time in the data. The

earliness penalty was set to 1 and (0.1, .75, 1.25) were the values used for the due-date

penalty per job per time period. . Thus 81 different problems were studied. For each

problem five replications were done. Lower bounds were computed using the algorithm

DDLB and upper bounds were obtained as per the method outlined earlier.

Table 1 summarizes the average and the maximum values of the relative gap,

measured as 100*(upper bound - lower bound)/lower bound. As Table 1 indicates, the

lower and the upper bounds are very close. The maximum gap for the 405 problems we

solved was 0.24%. For over 65% of the problems, optimal solution was found. The

average time for the 40 job problems was approximately 14 seconds.
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6. Conclusion

This paper introduces a new scheduling problem with due-date and earliness costs

that has applications in JIT environments. The problem with two due-dates was shown to

be NP-hard. A linear time algorithm for a special case and a lower bound for the general

case were provided. Computational experience suggests that these bounds are quite tight.

There are several possible extensions, some of which are subject of our on-going

research.

(i) The extension of this methodology to more than two due-dates and the identification of

special cases that are solvable in polynomial time.

(ii) Variable delivery intervals and the possibility of dispatching additional trucks with extra

cost or perhaps not making a trip in some time periods.

(iii) Truck capacity constraints, job dependent earliness penalties, and different release

times of jobs.
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Appendix A

Problem Complexity

We show that 2DSP is NP-hard by reducing the NP-hard even-odd partitioning

problem (Garey, Tarjan, and Wilfong, 1988) to 2DSP in polynomial time.

Even-Odd Partitioning Problem fEOPP): Given 2n numbers, x\<X2,. . .,<X2n > does there

exists a partition Xj andXi of these numbers such that ZX eXj *i = ExseX? xi and exactly

one of {x2i-iPC2iJ is in Xj (and so in X2) for i=l,. . ,,n.

Given an instance of EOPP, we define an instance of 2DSP with 2n jobs. The
2n

processing time of the jobs are, ti = Xi + |i, for i = 1,. . .,2n with ji = £x
i
and the time

! 2n
j

M
period x= ~ £ti = (n-Hy)|i. Observe that ti<t2,. . -,<t2n and the total processing time of the

z
i=l

z

2n jobs is Ziti = 2x. So, it is possible to complete all the jobs in the first two time periods

and no idle time is possible. We set the earliness penalty to 1 and the due-date penalty 5 =

2^. We consider the decision version of 2DSP, where we want to find a schedule with cost

n

< = 3nx2M- + 2Z (t2(n-i+l) + l2(n-l)+l)» if ft exists. We show that solving this decision

i=l

problem gives us a solution to the EOPP, thus showing that decision version of 2DSP is

NP-complete.

Since the due-date penalty is large, there is an incentive to assign more number of

jobs to the first due-date. However, it is not possible to complete more than n jobs in the

n+l
first period since the sum of the processing times of the smallest (n+l) jobs is £tj =

n+l n i=1

(n+l)|i + £*i > X. As J£ l
i
< x, the optimal schedule will have n jobs assigned to each of

i=l i=l

two due-dates. We now analyze the two cases considered in section 2 with the value of ni

fixed to n.

Case I: The completion time of the n* job coincides with x. The total penalty of such a

schedule is given by (5), which in this case, is:

n 2n n

Zi(n)= X(i-l)t[i]+ X(i-l-n)t [i] + 3nx8= I <i-l)(tm +t[n+i]) + 3nx8.

i=l i=n+l i=l
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The optimization problem can be written as,

minZi(n)

ST. (2) and

C [n] = X. (Al)

Let Zi*(n) the optimum solution value to the above problem and let Zi*(n) be the minimum

value of Z(cl) with constraint (Al) relaxed to C[n ] ^ x.

Case II: C[n ] < x. To compute the total cost of such a schedule consider (1),

2n 2n

I (x - C[i]) + X (2x- Cp]) + (4n-n)x5
i=l i=n+l

= I (Qn] - C[i]) + I (C[2n]- C[i]) + 3nx5 + n(x - C [n])

i=l i=n+l

n n 2n 2n
= I It[fl+ I Stij] + 3nx8 + n(t-C[„])

i=l j=i+l i=n+lj=i+l

n 2n
= I (i-D t[i] + I (i-1 - n) t[i] + 3nx5 + n(x - C[n] )

i=l i=n+l

= S (i-D (t[i] + t[n+i] ) + n (x - C[n] ) + 3n =Z2(n). (A2)
i=l

Thus, the optimization problem for Case II is:

min Z2(n)

S. T„ (2) and

C[n] < X. (A3)

Let Z2*(n) be the minimum value of Z2(n) with the constraint (A3) relaxed to

C[n]<x.

We note that Zi*(n) minimizes the first term of (A2). Since the second term in (A2)

is non-negative, Zi*(n) < Z2*(n). We now show that a minimum cost solution to 2DSP

with cost C* is possible if and only if EOPP has a solution. Furthermore, this optimal

solution to 2DSP will satisfy Case I. We note that Zi(n) is multiplication of two series of

2n numbers. One series is formed by the processing times of the 2n jobs and the other

series consists of integers {0,. . .,n-l } with each integer repeated twice. To minimize this
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sum of products (without constraint (Al)), we have to arrange one series in increasing

order and the other in decreasing order. This is equivalent to assigning jobs {1,2} to

position {n,2n},jobs {3,4} to positions {n-l,2n-l },...,and jobs {2n-l,n} to positions

{ l,n+l }. This gives Zi*(n) = 3nx2M + £ (t2(n-i+i) + t2(n-l)+ l) =@ ^ min {Z2*(n),
i=l

Zi*(n)}. If such an assignment also satisfies (Al) then the resulting schedule is optimal.

n 2n
(Al) is satisfied if and only if this assignment can be made such that £ tpj = £ t[i] = x.

i=l i=n+l

Since t[i] = a[i] + |i, such an assignment is possible if and only if EOPP has a solution.

Appendix B

Proof of Theorem 2:

(al) For Case I, it is clear that at least as many jobs are assigned to the first due-date as in

the second. (Otherwise interchanging the due-dates of all jobs gives a better solution.) Thus

ni should be at least equal to mo. We note that m2 is the minimum number of jobs required

to satisfy (12) and so ni cannot be smaller than m2 . Therefore, ni has to be at least the

maximum of m2 and mo.

Since the sum of the smallest (mi+1) jobs violates (11), ni cannot exceed mi.

(a2) By Lemma 1, if X\ > 0, X2 = 0. By Lemma 2 we restrict A,i to non-negative integers.

Consider (13) and let the positional weights be,

wj = A,i +i-l i=l,...,ni

vj = i-

1

i=l...,N-ni.

Note that wi < w2 <...<wni and vi<v2...<VN_ni . If \\ > N-ni, V]sf.ni ^wi and thus the

smallest ni jobs are assigned to the first due-date to get Zi*(ni,>.i,0). This optimal value is

equal to,

ni N-ni

Zi*(ni,Xi,0) = X witni+ i- i
+ I vi tN+i-i + (2N-ni)x5 - X xx

i=l i=l

ni

= ^l( S ti - x) + Constant
i=l
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ni

Since ni satisfies (al), X U ^ T, and so Zi*(ni,A.i,0) > Zi*(ni,A.i+l,0) for X\ > N-n\.
i=l

Therefore max^j Zi*(ni,A.i,0) = max^N-i^ Zi*(ni,A.i,0).

(a3) Again by Lemma 2, when X2 > 0, it is sufficient to set ^i = and by Lemma 2,

integer values of X2 are sufficient. Consider (18) and let

Wi = -A.2+i-l i=l,...,ni

vi = i-

1

i=ni+l...,N.

Note that wi < W2 <...<wn . and vi<v2...<VN_ni . If A,i ^ ni -1, vi ^Wni- Therefore, the

largest ni jobs are assigned to the first due-date. This gives

ni N
Z2*(ni,0 fA.2) = I witN-i+i + I vi-nj tN-i+l + (2N-ni)x§ - X2(x-T)

m i=l i=ni+l

= A.2(T - t - £ tN-i+i ) + Constant

ni i=l

As 2 tN-i+l > T- x when ni satisfies (al), Z2*(ni,0,A.2) ^ Z2*(ni,O.A.2+1) f°r ^2 ^ ni-1.
i=l

Therefore max\
2
Z2*(ni,0,X.2) = maxx

2
< ni -i Z2*(ni,0,A.2)-

(bl) The argument for the upperbound on ni is similar to the corresponding case in (al).

To show that N-mi-1 <ni, note that the N-ni jobs assigned to the second due-date must be

such that the sum of their processing times exceed x (to satisfy constraint (16)). mi is the

maximum number ofjobs which can be assigned to a due-date without their total

processing time exceeding x and so mi+1 is the maximum number ofjobs which can be

assigned to the second due-date. Thus, the minimum number of jobs which can be

assigned to the first due-date is N-mi-1.

(b2) The proof of this is similar to (a2).
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Table 1

a=Ll a=1.3 a=1.5

tmax 5=0.1 5=.75 8=1.25 8=0.1 8=.75 8=1.25 8=0.1 8=75 8=1.25

N=20

10 .076
.24

.052

.16

20 .13

.21

.084

.13

.032

.11

.02

.07

30 .002

.011

.024

.12

.031

.07

.012

.03

.016

.08

.01

.05

.011

.038

N=30

10 .036

.18

.024

.12

.012

.06

.012

.06

.008

.04

20 .072

.33

.048

.22

.044

.13

.029

.085

30 .11

.19

.073

.12

.025

.04

.017

.03

.006

.03

.04

.2

N=40

10 .026

.07

.018

.05

.006

.03

.004

.02

20 .049

.14

.035

.1

.016

.03

.01

.02

30 .07

.122

.044

.08

.008

.02

.006

.01

gap = 100*(ub-lb)/lb

First Number: Average gap of 5 replications

Second Number: Maximum gap of 5 replications
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