Chromospheric CA II H and K and H alpha Emission in Single and Binary Stars of Spectra Types F6-M2

Klaus G. Strassmeier
Vanderbilt University
Francis C. Fekel
Tennessee State University
Bernard W. Bopp
University of Toledo
Robert C. Dempsey
University of Toledo
Gregory W. Henry
Tennessee State University

Follow this and additional works at: https://digitalscholarship.tnstate.edu/coe-research
Part of the Stars, Interstellar Medium and the Galaxy Commons

Recommended Citation

Strassmeier, K.G.; Fekel, F.C.; Bopp, B.W.; Dempsey, R.C.; Henry, G.W. "Chromospheric CA II H and K and H alpha Emission in Single and Binary Stars of Spectra Types F6--M2" Astrophysical Journal Supplement v.72, p. 191 (1990)

This Article is brought to you for free and open access by the Center of Excellence in Information Systems and Engineering Management at Digital Scholarship @ Tennessee State University. It has been accepted for inclusion in Information Systems and Engineering Management Research Publications by an authorized administrator of Digital Scholarship @ Tennessee State University. For more information, please contact XGE@Tnstate.edu.

CHROMOSPHERIC Ca II H AND K AND $\mathrm{H} \alpha$ EMISSION IN SINGLE AND BINARY STARS OF SPECTRAL TYPES F6-M2

Klaus G. Strassmeier ${ }^{1}$ and Francis C. Fekel ${ }^{1}$
Department of Physics and Astronomy, Vanderbilt University
Bernard W. Bopp ${ }^{1}$
Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada; and Department of Physics and Astronomy, University of Toledo
Robert C. Dempsey
Department of Physics and Astronomy, University of Toledo
AND
Gregory W. Henry
McDonald Observatory, University of Texas at Austin; and Center of Excellence in Information Systems Engineering, Tennessee State University
Received 1989 April 7; accepted 1989 July 5

Abstract

We have obtained high- and medium-resolution $\mathrm{Ca}_{\text {II }} \mathrm{H}$ and K and/or $\mathrm{H} \alpha$ line profiles for 100 single and binary stars of spectral type F6 to M2 and luminosity class III, IV, and V. The sample includes inactive single and binary stars as well as moderately to extremely active single stars including the FK Com stars and active binary stars of the RS CVn and BY Dra class with a total range of rotation periods from 0.5 to 310 days. A total of 444 spectra have been acquired and are used to measure absolute $\mathrm{Ca}_{\text {II }} \mathrm{H}$ and K emission-line surface fluxes and Balmer $\mathrm{H} \alpha$ core emission equivalent widths. Some of the stars also have been observed at $6430 \AA$ to determine their rotational velocities. These data, supplemented by published observations, have been used to identify correlations between chromospheric activity at Ca II H and K and $\mathrm{H} \alpha$ and effective surface temperature and rotation. Several new stars with chromospheric $\mathrm{Ca}_{\text {II }} \mathrm{H}$ and K emission have been discovered. We have also used ultraviolet C iv emission-line fluxes taken from the literature and compared them with the present data. No single activity-rotation relation can be derived for all luminosity classes, and there is clear evidence that evolved stars are generally more active than main-sequence stars of the same rotation period. Binarity per se within the evolved stars plays apparently no role, while the main-sequence binary stars show generally higher levels of activity than their single counterparts. Chromospheric emission in the $\mathrm{Ca}_{\text {II }} \mathrm{H}$ and K lines depends also upon surface temperature in the sense that the flux declines with cooler temperature. The trend in the $\mathrm{H} \alpha$ equivalent width-log $\mathscr{F}^{\prime}\left(\mathrm{Ca}\right.$ II $^{\mathrm{K}}$) plane is that with increasing K line flux the $\mathrm{H} \alpha$ absorption core first deepens until $\log \mathscr{F}^{\prime}(\mathrm{K}) \sim 5.8 \mathrm{ergs} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$ is reached and then fils in quite rapidly.

Subject headings: Ca II emission - line profiles - stars: binaries - stars: chromospheres -
stars: emission-line - stars: late-type - stars: rotation

I. INTRODUCTION

Over 70 years ago, Eberhart and Schwarzschild (1913) discovered bright emission lines in the cores of the strong Ca II absorption features of α Boo, α Tau, and σ Gem. Further observations by several authors (e.g., Deslandres and Burson 1922; Wellmann 1940) revealed H_{3} and K_{3} absorption reversals on top of the H_{2} and K_{2} emission lines, strengthening the analogy between solar and stellar phenomena.

Efforts to detect active regions from rotational modulation have focused on single main-sequence stars (Vaughan and Preston 1980; Duncan 1981; Baliunas et al. 1983; Soderblom 1985; and others). Only a few attempts have been made to see

[^0]if rapidly rotating single subgiants and giants differ in their chromospheric behavior if compared with (a) main-sequence stars with the same rotation rates and effective temperatures (e.g., Rutten 1987) and (b) with a similar star in a binary system (e.g., Basri, Laurent, and Walter 1985; Basri 1987; Simon and Fekel 1987). Moreover, the latter studies are based mainly on ultraviolet emission lines.

The activity in classes of stars such as the RS CVn binaries and the BY Dra variables is at least one order of magnitude greater than that of our Sun. The stellar parameters of these systems have been summarized in a catalog of chromospherically active binary stars (= CABS; Strassmeier et al. 1988). Absolute Ca II H and K emission-line fluxes and $\mathrm{H} \alpha$ core emission equivalent widths for these stars rarely were determined. One reason for this might be the complication in the analysis due to the binary nature of these stars, that is, e.g., the (presumably unknown) contamination of the emission by the secondary component or the presence of a continuum of a
hot component which dilutes the emission from the primary. Recent Ca II H and K observations focused almost exclusively on single stars, e.g., Linsky et al. (1979), 43 stars; Worden, Schneeberger, and Giampapa (1981), 17 stars; Giampapa et al. (1981), seven stars; Bopp (1983), 19 stars; Bopp (1984), 14 stars; Fernández-Figueroa et al. (1986b), seven stars; and most recently Pasquini, Pallavicini, and Pakull (1988), 50 stars. A more detailed investigation of subgiants and giants in binary systems seemed to be needed.

Several authors noted significant filling in of the cores of $\mathrm{H} \alpha$ in very active binary stars (Smith and Bopp 1982; Fekel, Moffett, and Henry 1986) as well as in relatively young Hyades stars (Cayrel et al. 1983) and other solar-type dwarfs (Herbig 1985). Chromospheric activity is therefore also established by the presence of emission in the core of the $\mathrm{H} \alpha$ line. While the dwarf stars in the sample of 85 stars of spectral type F8 and later of Zarro and Rogers (1983) showed the same brightening of the $\mathrm{H} \alpha$ core (increasing R_{c}) with increasing Ca II K emission, the giants tended to have deeper $\mathrm{H} \alpha$ cores. From a sample of eight short-period RS CVn and W UMa stars, Barden (1985) found a possible correlation of $\mathrm{H} \alpha$ emission and Rossby number (the ratio between the rotational period and the convective time scale).

In this paper we present new observations of the Ca II H and K and $\mathrm{H} \varepsilon$ region and/or the Balmer $\mathrm{H} \alpha$ line for a total of 100 mostly very active stars but also for weak or inactive stars which had suspected activity. With the exception of most of the $\mathrm{H} \alpha$ reference stars, almost all of the program stars have been observed at Ca II and $\mathrm{H} \alpha$. Note that the Ca II and $\mathrm{H} \alpha$ observations were not simultaneous. The data were obtained with a variety of telescopes between 1981 and 1989. Our primary goal is to present a set of high-resolution ($0.18-0.3 \AA$) and medium-resolution ($0.5-0.9 \AA$) spectra which will serve the needs described. In addition we will try to verify some trends that may be present. In § II we describe the instrumentation, and in § III we discuss the analysis techniques applied. The spectra are described in § IV, and in § V
we discuss systematic trends in the line fluxes and equivalent widths. Appendix A contains a short summary of previously published absolute H and K fluxes for active stars which were included in some of the graphs in § V. Individual Ca II H and K region plots for our program stars are given in Appendix B.

II. INSTRUMENTATION

a) Calcium H and K

Two telescopes have been used; the Kitt Peak National Observatory's (KPNO) 0.9 m coudé feed telescope and the Dominion Astrophysical Observatory's (DAO) 1.8 m telescope. Table 1 is a summary of the different telescope-spectro-graph-detector combinations.

The KPNO data were obtained in the course of three observing intervals in 1987 December, 1988 March, and 1988 May. The coudé spectrograph was used in third order with grating A and camera 5 at a reciprocal dispersion of 4.7 $\AA \mathrm{mm}^{-1}$. The observations in December utilized a 512×512 pixel Tektronix CCD and had a 2-pixel resolution of $0.24 \AA$ and a wavelength coverage of $65 \AA$. For the March and May data we used a 800×800 pixel Texas Instruments (TI-3) CCD and a slightly larger slit width resulting in an effective resolution of $0.3 \AA$ and a wavelength coverage of $56 \AA$. All observations were centered on $3950.0 \AA$. The integration times and signal-to-noise (SNR) ratios varied from 1 minute and SNR ≈ 150 (at the K line bottom) for $\beta \mathrm{Gem}$, to 90 minutes and SNR ≈ 50 for HD 65195 .

The DAO data set was obtained during three observing intervals; 1987 December, 1988 March/April, and 1988 May with the Cassegrain spectrograph fed by the 1.8 m telescope. The observations in December were obtained with a 1872 pixel Reticon array and had a spectral resolution of $0.5 \AA$. The March and April observations utilized a 512×512 pixel RCA CCD and had, combined with the slightly larger slit width, a resolution of $0.9 \AA$. The same chip was used for the

TABLE 1
Telescope-Spectrograph-Detector Combinations

Year and Month	Telescope	Spectrograph	Detector	Dispersion $\left(\AA \mathrm{mm}^{-1}\right)$	Resolution (A)	Code
Ca II H and K						
1987 Dec	KPNO CF	Coudé	TEK CCD	4.7	0.24	KPNO0. 24
1988 Mar, May	KPNO CF	Coudé	TI-3 CCD	4.7	0.30	KPNO0.30
1987 Dec	DAO 1.8 m	Cassegrain	Reticon 1872	15	0.5	DAORET0. 5
1988 Mar, Apr	DAO 1.8 m	Cassegrain	RCA CCD	15	0.9	DAOCCD0.9
1988 May.........	DAO 1.8 m	Cassegrain	RCA CCD	15	0.5	DAOCCD0.5
$\mathrm{H} \alpha$						
1986 Feb, May ...	McDonald 2.1 m	Coudé	Reticon 1728	9.5	0.28	2.1McD0. 28
1983 Apr, Aug	McDonald 2.1 m	Coudé	Reticon 1728	9.5	0.42	2.1McD0.42
1981 Jan, May.....	McDonald 2.7 m	Coudé	Reticon 1024	4.4	0.35	2.7McD0.35
1989 Jan...........	KPNO CF	Coudé	TI-3 CCD	7.6	0.21	KPNO0. 21
1988 May.	KPNO CF	Coudé	TI-3 CCD	7.6	0.18	KPNO0.18
1985 Sep, Oct, Nov. .	KPNO CF	Coudé	TI-3 CCD	7.6	0.2	KPNO0.2
1985 Mar.............	KPNO CF	Coudé	TI-3 CCD	15	0.4	KPNO0.4
1985 Mar.....	KPNO CF	Coudé	RCA CCD	7.6	0.5	KPNO0.5
1986 Apr-1988 Sep	Ritter 1 m	Echelle	Reticon 1024	2.5	0.3	Ritter0.3

May observations, but with effective wavelength resolution of $0.5 \AA$. The signal-to-noise ratios are in the same range as the KPNO data.

Both data sets were reduced in the standard fashion using the Image Reduction and Analysis Facility's (IRAF) ${ }^{2}$ subpackage for CCD Spectra (Pilachowski and Barnes 1987) available at KPNO and DAO.

b) Balmer $\mathrm{H} \alpha$

These observations were obtained at three different observatories: McDonald Observatory, University of Texas, using mostly the 2.1 m telescope; KPNO using the coude feed telescope; and Ritter Observatory, University of Toledo, using the 1 m reflector.

A few spectra were obtained with the 2.7 m McDonald telescope and a 1024 pixel Reticon array at a resolution of $0.35 \AA$ as early as 1981 . The vast majority, however, was taken with the 2.1 m in 1983 and 1986. These observations utilized the coude spectrograph with grating 2 in first order and the 1872 pixel Reticon and had a dispersion of 9.5 A mm^{-1} covering a wavelength region of approximately 265 A. For the 1983 data we used a $90 \mu \mathrm{~m}$ slit achieving a spectral resolution of $0.42 \AA$, whereas the 1986 observations were made with a $60 \mu \mathrm{~m}$ wide slit resulting in a somewhat better resolution of $0.28 \AA$. The SNRs for all three data sets were in the range $50-200: 1$ with most around 100:1.

The Ritter data were obtained between 1986 and 1988 with the 1 m telescope and a fiber-fed echelle spectrograph at a reciprocal dispersion of $2.5 \AA \mathrm{~mm}^{-1}$. The detector was an intensified 1024 pixel Reticon array (Bopp, Dempsey, and Maniak 1988), which when combined with a relatively large slit width in order to decrease integration time resulted in a spectral resolution of $0.3 \AA$. The wavelength coverage was 60 \AA centered on $6570 \AA$. The SNRs for these observations are in the range of $50-150: 1$.

Higher resolution scans were obtained in 1988, and 1989 with the KPNO coude feed telescope using camera 5 and grating A in second order. The dispersion of $7 \AA \mathrm{~mm}^{-1}$ and the TI-3 CCD pixel size of $15 \mu \mathrm{~m}$ resulted in a 2-pixel spectral resolution of $0.18 \AA$ while covering a $84 \AA$ field centered on $\mathrm{H} \alpha$. The obtained SNR is approximately 150:1. The 1985 runs utilized camera 5 , grating B or D , and the TI- 3 or RCA CCD at resolutions between 0.2 and $0.5 \AA$.

III. DESCRIPTION OF MEASURED PARAMETERS

a) Absolute Ca II H and K Surface Flux

Our measurements of the surface flux in ergs $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ followed the procedures outlined by Linsky et al. (1979). Willstrop (1964) obtained absolutely calibrated $50 \AA$ bandpass photometry for stars of various spectral types and luminosity classes. Barnes and Evans (1976) have shown that the angular diameter of a star may be derived from its $V-R$ color and apparent visual brightness. Linsky et al. used this relation to convert Willstrop's 3925-3975 £̊ fluxes into abso-

[^1]lute surface fluxes and plotted them versus the $V-R$ color and found a tight correlation with only 1.4% average deviation. A piecewise linear least-squares fit to these data describes then the relationship between the stellar flux per angstrom, \mathscr{F}, in the 3925-3975 \AA bandpass and the $V-R$ color
\[

$$
\begin{equation*}
\log \mathscr{F}=8.264-3.076(V-R) \quad \text { for } V-R<1.3 \tag{1}
\end{equation*}
$$

\]

Knowing the $V-R$ color of a stars one can derive its stellar surface continuum flux in ergs $\mathrm{cm}^{-2} \mathrm{~s}^{-1} \AA^{-1}$ in the 3925-3975 \AA bandpass. Thus, all Ca II H and K spectra for which this calibration may be applied must contain this $50 \AA$ bandpass centered on 3950 A.

The H and K emission-line fluxes are derived by setting the measured relative fluxes, $f(\Delta \lambda)$, equal to the calibrated flux so that

$$
\begin{equation*}
\mathscr{F}\left(H_{1} ; K_{1}\right)=\frac{50 \mathscr{F}}{f(\Delta \lambda=50 \AA)} f\left(H_{1} ; K_{1}\right), \tag{2}
\end{equation*}
$$

where the observed fluxes are always measured from the zero-flux level. This is demonstrated in Figure 1 where the bottom line of the graph shall represent the zero-flux level. While this calibration technique places all stars on a uniform flux scale for intercomparison there are still several problems which may be noted:

1. The emission-line surface fluxes, also called the K_{1} and H_{1} indices, are defined as the flux above the zero-flux level and between (e.g., for the K line) the $\mathrm{K}_{1 V}$ and $\mathrm{K}_{1 R}$ minima, as illustrated in Figure 1. Our measurements of, e.g., $\Delta \lambda\left(\mathrm{K}_{1}\right)=$ $\lambda\left(\mathrm{K}_{1 R}\right)-\lambda\left(\mathrm{K}_{1 V}\right)$ (Table 4) showed internal errors of up to 9%, or approximately 6% in the resulting flux, depending on how well the minima were defined and therefore depending on the instrumental resolution.
2. If the observed $B-V$ of a chromospherically active (CA) star is matched with the appropriate value of the intrinsic color in Johnson's (1966) tables, the CA stars show $V-R$ and $V-I$ color excesses of $0.06-0.10 \mathrm{mag}$ (Fekel, Moffett, and Henry 1986) while dark starspots normally account only for $V-R$ changes of $\leq 0.03 \mathrm{mag}$ (an exception might be II Peg where a big spot in 1977 produced $V-R$ variations of $0.066 \mathrm{mag} ;$ Vogt 1981). Moreover, several of our program stars have never been observed in R and therefore have no observed $V-R$ color. To be on a consistent scale throughout this paper we decided to use Johnson's (1966) spectral type- V $-R$ color relation for the flux calibration procedure. Whenever possible we used the spectral types given in the CABS catalog or, especially for the single stars, we used the classifications listed in Keenan (1983) and Fekel, Moffett, and Henry (1986). These $V-R s$ are listed in Table 2. Recently, Soderblom (1989) presented evidence that the color "anomalies" of active Hyades stars (Campbell 1984) are not real but due to duplicity which might justify the use of theoretical colors instead of observed.
3. The integral, $f(\Delta \lambda=50 \AA)$, in the denominator in equation (2) includes the H and K emission features but the calibration of $\mathscr{F}(\Delta \lambda=50 \AA)$ is derived from the Willstrop stars which were selected without much regard to their H and K characteristics.

Fig. 1.-Definition of measured quantities. Left graph: The red (R) and violet $(V) \mathrm{K}_{1}$ points of the central Ca II K emission determine the wavelength boundaries for our flux integration (dotted area labeled W_{0}). The graph bottom indicates the zero-flux level. The $\mathrm{K}_{2 R}$ and $\mathrm{K}_{2 v}$ points, produced by the line reversal in the emission center, mark the strength of the emission line above the pseudocontinuum (i.e. the dashed lines shown in the middle graph). Middle graph: Shown are the integration boundaries of the $\Delta \lambda=50 \AA$ bandpass needed for the flux calibration procedure. $W(\mathrm{~K})$ and $W(\mathrm{H})$ are the equivalent widths of the K and H emission lines measured above the pseudocontinuum (dashed lines), while W is the "equivalent width" within the $50 \AA$ bandpass (dotted area) including $W(\mathrm{~K})$ and $W(\mathrm{H})$. Right graph: Definition of the $\mathrm{H} \alpha$ "equivalent width" term used throughout this paper.

In the case of very active stars, like the RS CVn binaries, point (3) might be significant. To see to what extent this would influence the emission-line fluxes we reduced the 0.24 A resolution KPNO data also in a slightly different way; namely, measuring actual equivalent widths (EW) and subtracting the H and K emission EW measured from the pseudocontinuum, i.e., $W(\mathrm{~K})$ and $W(\mathrm{H})$ in the middle panel of Figure 1, from the EW of the $50 \AA$ bandpass, labeled W in Figure 1, resulting in

$$
\begin{equation*}
\mathscr{F}\left(\mathrm{H}_{1} ; \mathrm{K}_{1}\right)=\frac{50 \mathscr{F}}{W-W(\mathrm{~K})-W(\mathrm{H})-W(\mathrm{H} \varepsilon)} W_{0}(\mathrm{H} ; \mathrm{K}) . \tag{3}
\end{equation*}
$$

The quantities $W_{0}(\mathrm{~K}), W_{0}(\mathrm{H}), W(\mathrm{~K}), W(\mathrm{H})$ and $W(\mathrm{H} \varepsilon)$ are listed in Table 4. Even in stars with emission equivalent widths of $>1 \AA$, the differences in the absolute line fluxes are generally less than 10% but can reach up to approximately 15% in the case of HD $106225[W(\mathrm{~K}) \approx 2.2 \AA]$. A particular
problem with this method is the determination of the continuum. This is demonstrated in the middle graph of Figure 1.

The absolute fluxes of stars which have been observed at KPNO and at DAO are compared in Figure $2 a$. Their mean deviation is within the expected range of the external error of approximately 20%. Figure $2 b$ compares our H_{1} and K_{1} indices with those of other authors. The agreement is mostly better than $\approx 40 \%$ taking into account that the data have been obtained at different epochs, which is important because most of our program stars are supposed to be intrinsically variable. We estimate the internal precision of both data sets (KPNO and DAO) to be $\approx 15 \%$, and the external accuracy (KPNO vs. DAO) to be slightly better than $\approx 20 \%$.

b) H and K Line Radiative Losses

After the absolute surface fluxes in the cores of the H and K lines have been determined, the flux which rises from the underlying photosphere must be subtracted. As demonstrated

Fig. 2.-Left panel: Comparison of the KPNO fluxes with those from DAO. Right panel: Comparison of the KPNO and DAO fluxes from this paper with those from other authors (Table 7).

FIG. 3.-H α profiles for 10 reference absorption-line stars. (a) Dwarfs; (b) subgiants; (c) giants. All 10 observations were made with the KPNO coudé feed telescope at a resolution of $0.18 \AA$. The spectra are shifted in intensity for better display. The ordinate is in pixels with an arbitrary velocity range of $100 \mathrm{~km} \mathrm{~s}^{-1}(\sim 2 \mathrm{~A})$ indicated. Note the increasing $\mathrm{H} \alpha$ wings with hotter spectral type.
by Linsky and Ayres (1978), the resulting excess flux is the net chromospheric radiative loss in the H and K lines, respectively. Linsky et al. (1979) also present H_{1} and K_{1} indices for radiative equilibrium model atmospheres (i.e., no chromosphere), $\mathscr{F}_{\mathrm{RE}}\left(\mathrm{H}_{1}\right)$ and $\mathscr{F}_{\mathrm{RE}}\left(\mathrm{K}_{1}\right)$, which can be used to derive the radiative losses in the H and K lines represented by the corrected H_{1} and K_{1} indices $\mathscr{F}^{\prime}\left(\mathrm{H}_{1}\right)$ and $\mathscr{F}^{\prime}\left(\mathrm{K}_{1}\right)$

$$
\begin{equation*}
\mathscr{F}^{\prime}\left(\mathrm{H}_{1} ; \mathrm{K}_{1}\right)=\mathscr{F}\left(\mathrm{H}_{1} ; \mathrm{K}_{1}\right)-\mathscr{F}_{\mathrm{RE}}\left(\mathrm{H}_{1} ; \mathrm{K}_{1}\right) . \tag{4}
\end{equation*}
$$

These excess fluxes are listed in Table 3 along with the uncorrected fluxes.

c) $\mathrm{H} \alpha$ Core Emission Equivalent Widths

The $\mathrm{H} \alpha$ core emission was determined by subtraction of the equivalent width of a presumably inactive star of the same spectral type and luminosity class. Shown in Figure 3 are some of the reference star spectra. Table 5 lists the equivalent widths and residual intensities of the reference stars. In most cases the program star and the reference star were observed several times. If so, we used their mean values in the analysis.

The core emission equivalent width was measured following the precepts of Bopp, Dempsey, and Maniak (1988). This is schematically illustrated in the right section of Figure 1. First, we established the continuum intensity above the $\mathrm{H} \alpha$ core by searching for the five to 10 highest counts per pixel in two relatively line-free $3 \AA$ windows centered at 6540 and

6590 A. A straight line was then drawn between these two points. Second, extending the sides of the absorption profile in a straight line to the continuum level results in the limits of integration for the equivalent width. This technique nearly eliminates the contamination by nearby water vapor lines, the uncertainties of the sometimes very broad $\mathrm{H} \alpha$ wings and, in addition, concentrates on the core of the line where chromospheric emission should be first visible.

This artificial "equivalent width" however depends on the $v \sin i$ of the star. Therefore, all reference spectra were first rotationally broadened with the appropriate value of $v \sin i$ of the program star and then subtracted from each other. With the nomenclature in Figure 1 we followed

$$
\begin{equation*}
\left\langle W_{\mathrm{em}}\right\rangle=\left\langle W_{\alpha}(\text { program star })\right\rangle-\left\langle W_{\alpha}(\text { broad. ref. star })\right\rangle . \tag{5}
\end{equation*}
$$

The angle brackets denote mean values for the cases where more than one spectrum was obtained. These values are listed in Table 6A with their respective standard deviations. If $\sigma_{W \alpha} \geq 0.060 \AA$, we considered the star to have an intrinsically variable $\mathrm{H} \alpha$ profile and listed the individual results in Table 6B. Also listed are the residual intensities, R_{c}, measured from zero intensity to the line bottom.

The internal precision of the "equivalent width" for spectra of reference stars taken on the same night is approximately 4 $\mathrm{m} \AA$ for the Kitt Peak coudé feed data, $6 \mathrm{~m} \AA$ for the 2.1 m

McDonald data, and 10 mA for the Ritter data. The external accuracy for the core emissions estimated from spectra taken at different epochs, however, has a greater range with a mean of $\approx 40 \mathrm{~m} \AA$. Some of the stars in Table 6 B have been observed with different telescope-spectrograph configurations with approximately the same resolution. The external accuracy for these observations is of course somewhat larger, say $\approx 60 \mathrm{~m} \AA$. The equivalent widths from the $0.18 \AA \mathrm{KPNO}$ coudé feed spectra agree generally to within a few percent with the $0.28 \AA$ McDonald spectra-with one exception, though, i.e., $\beta \mathrm{Vir}$, where the McDonald value is 9% larger. The $0.42 \AA \mathrm{McDonald}$ equivalent widths are consistently $\approx 5 \%$ larger than the $0.18 \AA$ KPNO data, while the $0.3 \AA$ Ritter Observatory echelle equivalent widths are $\approx 10 \%$ larger than a corresponding coudé observation. There is again one exception: η Boo, the only $\mathrm{H} \alpha$ reference star with significantly broadened lines ($v \sin i=11 \mathrm{~km} \mathrm{~s}^{-1}$), where the Ritter value exceeds the $0.18 \AA$ KPNO value by 25%. Therefore, stars with $\mathrm{H} \alpha$ core emission equivalent widths, $\left\langle W_{\mathrm{em}}\right\rangle$, less than +0.04 to $+0.06 \AA$ should be considered as nonactive or, at most, weakly active. Note that we corrected the Ritter echelle spectra for light scattering in the spectrograph (Bopp, Dempsey, and Maniak 1988) but not the coudé spectra where this problem is less significant.

A number of stars were found to have negative core emission equivalent widths; i.e., even weaker chromospheric emission than the reference star used (compare with Herbig 1985). This may be caused by (a) spectral type mismatches between program star and reference star, (b) an unreliably large value of $v \sin i$ of the program star, (c) the presence of a composite spectrum, and (d) differences of the chromospheric structure among stars with H and K emission. Table 6A contains 11 stars with $\left\langle W_{\mathrm{em}}\right\rangle<-0.1 \mathrm{~A}$. While problem (a) makes the core emission equivalent width either smaller or larger, problems (b), (c), and (d) make it always smaller. Thus, we might expect some unfortunate cases where all of these problems are added together resulting in an unrealistic negative emission value. Although spectral type mismatches can cause spurious "emission" equivalent widths, their upper limit should be smaller than our cutoff value of $0.04-0.06 \AA$.

d) Rotational Velocities

For many of the stars in our sample we were unable to find a value of $v \sin i$ in the literature or the existing values are uncertain upper limits (particularly in the case of some reference stars). Thus, we determined values of the projected rotational velocities (Table 2) for 24 systems, five of which are double-lined.

To determine the rotational velocities, the full width halfmaxima (FWHM) of several lines in the $6430 \AA$ region were measured, and the average value determined. The FWHM of comparison-lamp lines were also measured, and the average for these lines was assumed to be the instrumental profile. Such instrumentally corrected FWHM were compared with the line broadening determined from model atmosphere analyses (Vogt 1981) to determine an empirical relationship be-
tween these two quantities:

$$
\begin{equation*}
v \sin i=0.591\left\{\left[\frac{c}{\lambda}\left(\mathrm{FWHM}_{\mathrm{obs}}^{2}-\mathrm{FWHM}_{\mathrm{instr}}^{2}\right)^{1 / 2}\right]^{2}-\zeta^{2}\right\}^{1 / 2} \tag{6}
\end{equation*}
$$

The values of $v \sin i$ were determined using equation (6) with an assumed macroturbulence, ζ, of $3 \mathrm{~km} \mathrm{~s}^{-1}$ (Gray 1982), except for those giant stars having spectral types of G5 or earlier for which a macroturbulence of $5 \mathrm{~km} \mathrm{~s}^{-1}$ (Gray 1982) was assumed. The factor 0.591 is from the empirical relationship mentioned above. The rotational velocities have uncertainties of $2-3 \mathrm{~km} \mathrm{~s}^{-1}$, an estimate based on the consistency of individual widths from line to line, on the reproducibility of results when $v \sin i$ was determined from more than one spectrum, and on the calibration of the system.

IV. INDIVIDUAL RESULTS

A representative example of one Ca II H and K observation for each of the 83 stars listed in Table 3 (including the Sun) is given in Appendix B (Fig. 10). In Table 3 the star's effective temperature is given from the spectral type-temperature relation listed in Landolt-Börnstein (Schmidt-Kaler 1982). Also listed are the uncorrected $\mathrm{H} \varepsilon$ indices, $\log \mathscr{F}(\mathrm{H} \varepsilon)$, defined as the total surface flux above the zero-flux level, the uncorrected Ca II H_{1} and K_{1} indices, $\log \mathscr{F}\left(\mathrm{K}_{1}\right)$ and $\log \mathscr{F}\left(\mathrm{H}_{1}\right)$, the corrected Ca II H_{1} and K_{1} indices, $\log \mathscr{F}^{\prime}\left(\mathrm{K}_{1}\right)$ and $\log \mathscr{F}^{\prime}\left(\mathrm{H}_{1}\right)$, the chromospheric radiative loss normalized to the total surface luminosity of the star, R_{HK}, and in the last column a code for the telescope-spectrograph-detector combination explained in Table 1.

Listed in Table 4 are the measured equivalent widths and line widths at different locations in the H and K lines. This table contains only data from the $0.24 \AA$ and $0.3 \AA$ resolution KPNO spectra. The first column lists the equivalent width of the H_{ε} emission feature (if present), defined as the equivalent width above the interpolated wing of the Ca II H line ($=$ pseudocontinuum). The other equivalent width measures in this table, $W_{0}(\mathrm{~K} ; \mathrm{H})$ and $W(\mathrm{~K} ; \mathrm{H})$, are explained in \S III and in Figure 1. The $\Delta \lambda_{(K 1)}$ width is defined as the wavelength separation between $K_{1 V}$ and $\mathrm{K}_{1 R}$ (Fig. 1), similarly for $\Delta \lambda_{(\mathrm{H} 1)}$. The $\Delta \lambda_{(\mathrm{K} 2)}$ and $\Delta \lambda_{(\mathrm{H} 2)}$ widths are defined as the wavelength separations between the two H_{2} and K_{2} points, respectively. The last two columns list the full width at half-maximum for the K and H line, $\mathrm{FWHM}(\mathrm{K})$ and $\mathrm{FWHM}(\mathrm{H})$, and are defined as the full width measured between the flux levels halfway between the mean flux at K_{1} and K_{2} and H_{1} and H_{2}, respectively. We list these parameters so that they may be used in testing different line formation theories.

Representative $\mathrm{H} \boldsymbol{\alpha}$ region spectra for five stars are shown in Figure 4 along with their respective reference stars. Tables $5,6 \mathrm{~A}$, and 6 B summarize the $\mathrm{H} \alpha$-observation results. Table 5 contains the equivalent widths and residual intensities for the reference stars, while Table 6A lists the values for the active

TABLE 2
Properties of Observed Stars

Star Name	HD	Spectral Type (hot/cool)	$\begin{aligned} & V \\ & (\mathrm{mag}) \end{aligned}$	$\begin{aligned} & V-R^{c} \\ & (\mathrm{mag}) \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\text {rot }}{ }^{a} \\ & \text { (days) } \end{aligned}$	$\begin{aligned} & v \sin i \\ & \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{aligned}$	Binarity	Active Chromosphere Star?
δ And	3627	K3III	3.27	0.96	[260]	$\leq 3^{\text {b }}$	SB1	no
HR 166	3651	K0V	5.87	0.64	48:	$\leq 3.7^{\text {b }}$	S	no
AY Cet	7672	WD/G5III	5.47	/0.69	75.12	14	SB1	yes
HR 339	6903	G0III	5.55	0.51	6.2	91	S	yes
HR 454	9746	gK1	5.92	0.81	76.0	8	S	yes
$\mathrm{BD}+34^{\circ} 363$	12545	G5IV	7.6	0.77	orb23.9	17^{6}	SB1	yes
α Ari	12929	K2III	2.00	0.84	[240]	3.1	S	no
VY Ari	17433	K3-4IV	6.87	0.85	17.4	6	SB1	yes
$\mathrm{BD}+25^{\circ} 497$	19485	G4V/G6V	8.36	0.54/0.55	orb6.15	$10 / 6^{6}$	SB2	yes
HR 1023	21018	G5III	6.38	0.69	[20]	20	SB1	yes
UX Ari	21242	G5V/K0IV	6.5	/0.77	6.44	6/37	SB2	yes
V711 Tau	22468	G5IV/K1IV	5.7	/0.81	2.84	13/38	SB2	yes
10 Tau	22484	F9V-IV	4.28	0.48	[15]	4	S	no
δ Eri	23249	K0+IV	3.54	0.77	[100]	2.2	S	no
HR 1176	23838	G2III	5.66	/0.60	[25]	$<11{ }^{\text {b }}$	SB1	yes
V491 Per	25893	G8IV	7.13	0.64	7.5	6	$\mathrm{CVB}^{\text {d }}$	yes
EI Eri	26337	G5IV	6.95	0.61	1.945	50	SB1	yes
HR 1362	27536	G8IV	6.27	0.64	309.6	6	S	yes
$\mathrm{BD}+14^{\circ} 690$	27691	G0V	7.0	0.50	orb4.00	$8^{\text {b }}$	SB1	yes
V492 Per	28591	K1III	6.72	0.81	21.3	24	SB1	yes
HR 1455	29104	F/G5III-II	6.36	/0.69	[150]	$/ 6^{6}$	SB2	no
$\mathrm{BD}+26^{\circ} 730$...	dK5e	8.42	0.99	orb1.9	$8^{\text {b }}$	SB1	yes
$\mathrm{BD}+64^{\circ} 487$	30957	G8:IV	8.6	0.64	[20]	$6 / 6^{\text {b }}$	SB2	yes
$\mathrm{BD}+0^{\circ} 908$	31738	G5IV	7.13	0.61	4.5	/17	SB2	yes
$\mathrm{BD}+03^{\circ} 733$	31993	K2III	7.53	0.84	13.0	31	S	yes
12 Cam	32357	K0III	6.25	0.77	84.9	15	SB1	yes
$\mathrm{BD}+47^{\circ} 1117$	33798	K0III	7.0	0.77	9.8	$29^{\text {b }}$	S	yes
CD-26 ${ }^{\circ} 2085$	34198	K0III	7.1	0.77	28.4	15	S	yes
HR 1908	37171	K4III	5.94	1.06	[300]	<3	SB1	yes
χ^{1} Ori	39587	G0V	4.41	0.50	5.10	6	S	yes
HR 2081	40084	G5III	5.89	0.69	orb219.		SB2	no
1 Gem	41116	[F6-7/]K0III	4.16	[/]0.77	\ldots	$\dddot{6 / 6}{ }^{\text {b }}$	SB3	no
OU Gem	45088	K3V/K5V	6.79	0.82/	7.36	5.6/5.6	SB2	yes
σ Gem	62044	K1III	4.14	0.81	19.410	25	SB1	yes
κ Gem	62345	G8III	3.57	0.70	[86]	$6^{\text {b }}$	S	no
β Gem	62509	K0III	1.14	0.77	[240]	2.5	S	no
$\mathrm{BD}+42^{\circ} 1790$	65195	G5III	9.12	0.69	orb37.9	$12^{\text {b }}$	SB1	yes
54 Cam	65626	F9IV/F9IV	6.52	0.50/0.50	10.163	$10 / 14^{\text {b }}$	SB2	yes
28 Mon	65953	K4III	4.68	1.06	[87]	10	S	no
β Cnc	69267	K4III	3.52	1.06	[180]	$5^{\text {b }}$	S	no
- UMa	71369	G5III	3.36	0.69	150]	2.6	$\stackrel{S}{S}$	no
35 Cnc	72779	GOIII	6.58	0.51	[2.6]	91	S	no
$\pi^{1} \mathrm{UMa}$	72905	G0V	5.64	0.50	[11]	4	S	yes
Gliese 338 A	79211	M0Ve	7.62	1.28			$\mathrm{CVB}^{\text {d }}$	yes
$\mathrm{BD}+40^{\circ} 2197$	80715	K3V/K3V	7.7	0.82/0.82	3.8	10/10	SB2	yes
IL Hya	81410	K1III	7.4	0.81	12.69	22	SB1	yes
24 UMa	82210	G4IV-III	4.56	0.65	(0.92?)	4.9	S	yes
LQ Hya	82558	dK0	7.5	0.64	1.5978	25	S	yes
Gliese 378.1	86856	dK8	9.04	1.20	[7]	$4^{\text {b }}$	S	yes
Gliese 380	88230	K7V	6.59	1.15			S	yes
LR Hya	91816	K0V/K0V	7.58	0.64/0.64	orb6.8	6/6	SB2	yes
Gliese 410	95650	dM2e	9.52	1.50	2.935		S	yes
$\xi \mathrm{UMa}(\mathrm{B})$	98230	G5V	4.87	0.54	orb3.980	2.8	SB1	yes
HR 4430	99967	K2III	6.35	0.84	76.6	$16^{\text {b }}$	SB1	yes
DF UMa		dM0e	10.12	1.28	orb1.033	≤ 25	SB2	yes
61 UMa	101501	G8V	5.33	0.58	17.1	<15	S	yes
β Vir	102870	F9V	3.61	0.48	[14]	3.2	S	no
BD- $8^{\circ} 3301$	106225	K0III	8.1	0.77	10.6	25	SB1	yes
31 Com	111812	G0III	4.94	0.51	[4.2]	57^{5}	S	yes
ϵ Vir	113226	G8III	2.83	0.70	\ldots	<15	S	no
$\mathrm{BD}+57^{\circ} 1417$	113983	G8III	7.5	0.70	[80]	6	S	no
β Com	114710	G0V	4.26	0.50	[11]	4	S	no
$\mathrm{BD}+34^{\circ} 2411$	115781	F/K0III	8.13	/0.77	orb18.7	7/35	SB2	yes
BM CVn	116204	K1III	7.21	0.81	20.66	15	SB1	yes
$\mathrm{BD}+36^{\circ} 2368$	116378	G5V	8.87	0.54	orb17.76	$\leq 3^{\text {b }}$	SB1	yes
70 Vir	117176	G4V	4.98	0.54	[37]	$1{ }^{\text {b }}$	S	no
FK Com	117555	G2III	8.2	0.58	2.40	120	S	yes
HR 5110	118216	F2IV/K2IV	4.95	/0.79	orb2.613	/10	SB2	yes
τ Boo	120136	F6IV	4.50	0.40	[7]	14.5	S	no
η Boo	121370	G0IV	2.68	0.50	[10]	$11^{\text {b }}$	SB1	no
4 UMi	124547	K3III	4.82	0.96	[160]	$5^{\text {b }}$	SB1	no

TABLE 2-Continued

Star Name	HD	Spectral Type (hot/cool)	$\begin{aligned} & V \\ & (\mathrm{mag}) \end{aligned}$	$\begin{aligned} & V-R^{c} \\ & (\mathrm{mag}) \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\text {rot }}{ }^{a} \\ & \text { (days) } \end{aligned}$	$\begin{aligned} & v \sin i \\ & \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{aligned}$	Binarity	Active Chromosphere Star?
α Boo	124897	K1III	-0.04	0.81	[280]	2.4	S	no
ρ Boo	127665	K3III	3.57	0.96	[200]	$4^{\text {b }}$	S	no
ϵ Boo	129989	K0III-II	2.37	0.77	[200]	6.6	S	no
HR 5534	130948	G0-2V	5.85	0.50			S	yes
ξ Boo A	131156	G8V	4.74	0.58	6.2	3	S	yes
ξ Boo B	131156	K4V	6.9	0.91	11.5	...	S	yes
HR 5553	131511	K2V	6.01	0.74	[7.7]	$4^{\text {b }}$	SB1	yes
UV CrB	136901	K1III	7.21	0.81	orb18.67	42	SB1	yes
α Ser	140573	K2III	2.64	0.84	...	~ 0	S	no
$\delta \mathrm{CrB}$	141714	G3.5IV-III	4.63	0.65	45.	<15	S	yes
MS Ser	143313	K2V/K6V	8.36	0.74/	9.60	...	SB2	yes
$\sigma^{2} \mathrm{CrB}$	146361	F6V/G0V	5.7	0.50	1.168	26/25	SB2	yes
HR 6469	157482	[]/G5IV	5.51	[]/0.61	81.9	[]/6	SB3	yes
29 Dra	160538	WD/K0-2III	6.55	/0.77	28.8	18	SB1	yes
β Oph	161096	K2III	2.77	0.84	[470]	1.6	S	no
$\mu \mathrm{Her}(\mathrm{A})$	161797	G5IV	3.42	0.61	[100]	1.1	S	no
HR 6806	166469	K2V	6.40	0.74	[13]	$2.5{ }^{\text {b }}$	S	no
V775 Her	175742	K0V	8.04	0.64	2.898	15	SB1	yes
HR 7275	179094	K1IV-III	5.81	0.80	28.	15	SB1	yes
V1764 Cyg	185151	K1III	7.69	0.81	40.25	28	SB1	yes
β Aql	188512	G8IV	3.71	0.64	[50]	2.2	S	no
$\mathrm{BD}+15^{\circ} 4057$	191262	G5V/G5V	7.79	0.54/0.54	orb5.43	6/6	SB2	yes
61 Cyg A	201091	K5V	5.23	0.99	37.9	~ 0	S	no
61 Cyg B	201092	K7V	6.03	1.15	48.	$4^{\text {b }}$	S	no
HR 8703	216489	K2III-II	5.60	0.84	24.39	24	SB1	yes
λ And	222107	G8IV-III	3.7	0.70	53.952	10	SB1	yes
HR 9024	223460	G1III	5.90	0.54	22.61	20	S	yes
II Peg	224085	K1IV	7.2	0.81	6.718	21	SB1	yes
SUN	\ldots	G2V	\ldots	0.53	25.38	2	S	no

${ }^{a}$ A period in brackets is an estimate from $v \sin i$.
${ }^{\mathrm{b}}$ New measure this paper.
${ }^{\text {c }}$ From the spectral type-color relation of Johnson 1966.
${ }^{\mathrm{d}}$ Close visual binary.

TABLE 3
Balmer $\mathrm{H} \varepsilon$ and Ca il H and K Absolute Emission-Line Fluxes

Star Name	$\mathrm{T}_{e f f}$ (K)	$\log \mathcal{F}(\mathrm{H} \epsilon)$	$\log \mathcal{F}\left(\mathrm{K}_{1}\right)$	$\begin{aligned} & \log \mathcal{F}\left(\mathrm{H}_{1}\right) \log \mathcal{F}^{\prime}\left(\mathrm{K}_{1}\right) \log \mathcal{F}^{\prime}\left(\mathrm{H}_{1}\right) \\ &(\operatorname{erg~cm} \end{aligned}$			$\begin{aligned} & \mathrm{R}_{H K}{ }^{a} \\ & (-) \end{aligned}$	Code
δ And	4200	...	5.42	5.23	5.39	5.20	$2.3(-5)$	KPNO0.24
		...	5.42	5.22	5.39	5.20	2.3 (-5)	KPNO0.24
			5.40	5.22	5.37	5.19	2.2 (-5)	KPNO0.24
			5.38	5.20	5.36	5.17	2.1 (-5)	KPNO0.24
AY Cet	5150		6.55	6.41	6.54	6.40	1.5 (-4)	KPNO0.24
HR 339	5850	...	6.48	6.56	6.43	6.53	9.2(-5)	DAORET0.5
HR 454	4600	...	6.61	6.38	6.61	6.38	2.5 (-4)	KPNO0.24
			6.41	6.42	6.40	6.41	2.0 (-4)	DAORET0.5
			6.45	6.44	6.44	6.43	2.2 -4)	DAORET0.5
			6.44	6.48	6.43	6.48	2.3(-4)	DAORET0.5
HD 12545	4750	...	6.72	6.67	6.72	6.67	3.4(-4)	DAORET0.5
		...	6.66	6.63	6.66	6.63	3.0 -4)	DAORET0.5
HD 17433	4400	...	6.15	6.15	6.14	6.14	5.7(-5)	DAORET0.5
HD 19485c ${ }^{\text {b }}$	5700	\ldots	6.74	6.67	6.72	6.65	1.6(-4)	KPNO0.24
HD 19485h ${ }^{\text {b }}$	5800	\ldots	6.64	6.56	6.61	6.53	$1.2(-4)$	KPNO0.24
HR 1023	5150	...	6.29	6.25	6.28	6.23	9.0 -5)	KPNO0.24
UX Ari ${ }^{\text {c }}$	/5000	...	6.34	6.37	6.26	6.31	1.1 (-4)	DAORET0.5
V711 Tau ${ }^{\text {c }}$	/4840	...	6.44	6.44	6.43	6.43	1.7 (-4)	DAORET0.5
10 Tau	6115	...	5.86	5.81	5.26	5.35	5.1(-6)	KPNO0.30
HR 1176 ${ }^{\text {d }}$	/5450	...	6.25	6.17	6.22	6.14	$6.1(-5)$	KPNO0. 24
V491 Per $\mathrm{A}^{\text {d }}$	5235	...	6.38	6.26	6.36	6.24	$9.4(-5)$	KPNO0.30
EI Eri	5460	...	6.80	6.70	6.79	6.69	2.2 -4)	KPNO0.24
		...	6.80	6.70	6.79	6.69	2.2.-4	KPNO0.24
		...	6.54	6.58	6.52	6.58	1.4 (-4)	DAORET0.5
		...	6.72	6.66	6.71	6.66	1.9 -4)	DAORET0.5
HR 1362	5235	...	6.54	6.42	6.52	6.40	1.4.-4)	KPNO0.24
HD 27691	6030	...	6.48	6.36	6.41	6.27	6.0 -5)	KPNO0.24
V492 Per	4600	...	6.20	6.04	6.20	6.02	1.0(-4)	KPNO0.24
HR 1455 ${ }^{\text {d }}$	5100	...	$4.79{ }^{\text {e }}$	$4.67{ }^{\text {e }}$,	KPNO0.24
		...	4.89^{e}	$4.80{ }^{\text {e }}$				KPNO0.30
$\mathrm{BD}+26^{\circ} 730$	4350	\ldots	6.00	6.08	5.99	6.07	1.1(-4)	DAOCCD0.9
HD 30957 ${ }^{\text {d }}$	5235	...	6.59	6.43	6.57	6.41	1.5(-4)	KPNO0.24
HD $31738{ }^{\text {d }}$	5460	(6.27:)	6.81	6.72	6.80	6.71	$2.3(-4)$	KPNO0. 24
		(6.27)	6.70	6.68	6.69	6.67	1.9 -4)	DAORET0. 5
HD 31993	4420	...	6.23	6.13	6.22	6.12	1.4 -4)	KPNO0.30
12 Cam	4750	...	6.41	6.37	6.40	6.36	$1.73-4$	DAOCCD0.9
HD 33798	4750	...	6.34	6.16	6.33	6.15	1.2 -4)	KPNO0.24
HD 34198	4750	...	6.37	6.21	6.36	6.20	1.3 -4)	KPNO0.24
HR 1908	4000	...	5.03	4.97	4.96	4.90	$1.2(-5)$	DAOCCD0.9
χ^{1} Ori	6030	\ldots	6.54	6.57	6.48	6.52	$8.4(-5)$	DAORET0.5
		...	6.54	6.47	6.48	6.41	7.4 -5	DAORET0.5
		...	6.67	6.58	6.62	6.53	$1.0(-4)$	DAOCCD0.9
		...	6.64	6.57	6.59	6.52	9.6(-5)	DAOCCD0.9
HR 2081	5150	...	$<5.4{ }^{f}$	$<5.4{ }^{f}$	\ldots	\ldots	\cdots	DAOCCD0.9
$1 \mathrm{Gem}{ }^{\text {d }}$OU Gem	$4730 /$...	5.37	5.29	5.28	5.18	$1.2(-5)$	KPNO0.30
		...	6.15	6.18	6.13	6.17	$1.05-4$	DAORET0.5
			6.17	6.16	6.16	6.15	$1.00-4)$	DAOCCD0.9
σ Gem	4600	...	6.20	6.04	6.19	6.02	$1.0{ }^{-4}$	KPNO0.30
		...	6.22	6.21	6.21	6.20	1.3 -4)	DAORET0.5
		...	6.25	6.24	6.24	6.23	1.43 -4)	DAORET0.5
		...	6.26	6.20	6.25	6.19	1.3 -4)	DAOCCD0.9
		...	6.27	6.21	6.26	6.20	$1.4{ }^{-4}$	DAOCCD0.9
κ Gem β Gem		...	5.38	5.34	5.25	5.21	1.05	KPNO0.30
	4750	...	5.36	5.22	5.27	5.11	9.5 -6)	KPNO0.24
		...	5.30	5.19	5.20	5.10	$9.5(-6)$	KPNO0.24
		...	5.29	5.21	5.18	5.10	9.5(-6)	KPNO0.30
HD 65195 ${ }^{\text {d }}$	5150	...	6.08	6.04	6.06	6.01	$5.4\left(\begin{array}{c}5 \\ 8\end{array}\right.$	KPNO0. 24
		...	6.25	6.24	6.23	6.22	$8.5(-5)$	DAOCCD0.9
$54 \mathrm{Cam}^{\text {d }}$	6060	...	6.70	6.59	6.66	6.55	1.1 (-4)	KPNO0.30
		...	6.62	6.58	6.58	6.54	9.6	DAORET0. 5
		\cdots	6.69	6.67	6.66	6.64	1.2 (-4)	DAOCCD0.9
28 Mon	4000	\ldots	4.88	5.01	4.78	4.95	$1.0{ }^{-5}$	DAORET0.5
- UMa	5150	\ldots.	5.55	5.44	5.45	5.33	$1.2(-5)$	KPNOO.30
$35 \mathrm{Cnc}^{\text {g }}$	5850	\ldots	DAORET0. 5
								DAOCCD0.9
$\pi^{1} \mathrm{UMa}$	6030	...	6.57	6.46	6.51	6.39	$7.6(-5)$	KPNO0.30
Gliese 338 A	3850	\ldots	4.86	4.83	4.84	4.81	$1.1\left(\begin{array}{c}-5 \\ \hline\end{array}\right.$	DAOCCD0. 9
		.	4.90	4.83	4.88	4.81	$1.1(-5)$	DAOCCD0.9
HD 80715a ${ }^{\text {b }}$	4730	(5.79)	6.45	6.28	6.45	6.28	1.6(-4)	KPNO0.24
HD $80715{ }^{\text {b }}$	4730	5.79	6.45	6.32	6.45	6.31	$1.7(-4)$	KPNO0.24
IL Hya	4600	5.66	6.36	6.29	6.35	6.28	1.6(-4)	KPNO0.30

TABLE 3-Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Star Name \& \[
\begin{aligned}
\& \mathrm{T}_{\mathrm{eff}} \\
\& (\mathrm{~K})
\end{aligned}
\] \& \[
\log \mathcal{F}(H \epsilon)
\] \& \[
\log \mathcal{F}\left(\mathrm{K}_{1}\right)
\] \& \[
\begin{gathered}
\log \mathcal{F}\left(\mathrm{H}_{1}\right. \\
(\mathrm{erg}
\end{gathered}
\] \& \[
\begin{aligned}
\& \mathcal{F}^{\prime}(\mathrm{K} \\
\& -1)
\end{aligned}
\] \& \[
\mathcal{F}^{\prime}\left(\mathrm{H}_{1}\right)
\] \& \[
\begin{aligned}
\& \mathrm{R}_{H K}{ }^{a} \\
\& (-)
\end{aligned}
\] \& Code \\
\hline \multirow[t]{4}{*}{24 UMa} \& \multirow[t]{4}{*}{5200} \& ... \& 6.16 \& 6.15 \& 6.14 \& 6.13 \& 6.6(-5) \& DAORET0.5 \\
\hline \& \& \& 6.33 \& 6.28 \& 6.32 \& 6.27 \& 9.4(-5) \& DAOCCD0.9 \\
\hline \& \& \& 6.22 \& 6.21 \& 6.20 \& 6.19 \& 7.6(-5) \& DAOCCD0.9 \\
\hline \& \& \& 6.20 \& 6.17 \& 6.18 \& 6.15 \& 7.1 (-5) \& DAOCCD 0.5 \\
\hline \multirow[t]{3}{*}{LQ Hya Gliese 378.1} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& 5250 \\
\& 4000
\end{aligned}
\]} \& 6.68 \& 7.05 \& 6.89 \& 7.04 \& 6.88 \& 4.3 (-4) \& KPNO0.24 \\
\hline \& \& 4.49 \& 5.09 \& 4.88 \& 5.07 \& 4.85 \& 1.3 (-5) \& KPNO0.24 \\
\hline \& \& ... \& 5.03 \& 4.97 \& 5.01 \& 4.95 \& 1.3 -5) \& DAOCCD0.9 \\
\hline \multirow[t]{3}{*}{Gliese 380} \& \multirow[t]{3}{*}{4060} \& ... \& 5.08 \& 5.11 \& 5.06 \& 5.09 \& 1.6 (-5) \& DAORET0.5 \\
\hline \& \& ... \& 5.24 \& 5.18 \& 5.23 \& 5.17 \& 2.0-5) \& DAOCCD0.9 \\
\hline \& \& ... \& 5.28 \& 5.24 \& 5.27 \& 5.23 \& 2.3 -5) \& DAOCCD0.9 \\
\hline LR Hya \({ }^{\text {c }}\) \& 5250 \& ... \& 6.41 \& 6.34 \& 6.38 \& 6.31 \& 1.0 -4) \& KPNO0.30 \\
\hline Gliese 410 \& 3580 \& ... \& 4.88 \& 4.89 \& 4.88 \& 4.89 \& 1.6 (-5) \& DAOCCD0.9 \\
\hline \(\xi \mathrm{UMa}(\mathrm{B})\) \& 5770 \& ... \& 6.31 \& 6.18 \& 6.24 \& 6.11 \& 4.8(-5) \& KPNO0.24 \\
\hline \multirow[t]{3}{*}{HR4430} \& \multirow[t]{3}{*}{4420} \& ... \& 5.86 \& 5.73 \& 5.85 \& 5.71 \& \(5.6(-5)\) \& KPNO0. 24 \\
\hline \& \& \(\ldots\) \& 5.70 \& 5.57 \& 5.68 \& 5.54 \& 3.8 (-5) \& DAOCCD0.9 \\
\hline \& \& ... \& 5.64 \& 5.55 \& 5.61 \& 5.52 \& 3.4 4.5 \& DAOCCD0.5 \\
\hline DF UMa \({ }^{\text {c }}\) \& 3850 \& ... \& 5.14 \& 5.24 \& 5.13 \& 5.23 \& \(2.5(-5)\) \& DAOCCD0.9 \\
\hline \multirow[t]{4}{*}{61 UMa} \& \multirow[t]{4}{*}{5570} \& ... \& 6.18 \& 6.09 \& 5.99 \& 5.91 \& 3.3 (-5) \& KPNO0.30 \\
\hline \& \& \(\ldots\) \& 6.29 \& 6.33 \& 6.24 \& 6.29 \& \(6.7(-5)\) \& DAORET0.5 \\
\hline \& \& \(\ldots\) \& 6.37 \& 6.29 \& 6.33 \& 6.24 \& 7.1 (-5) \& DAOCCD0.9 \\
\hline \& \& \(\ldots\) \& 6.30 \& 6.29 \& 6.25 \& 6.24 \& 6.5.-5) \& DAOCCD0.5 \\
\hline \(\beta\) Vir \& 6115 \& \(\ldots\) \& 5.91 \& 5.87 \& 5.43 \& 5.51 \& 7.5.-6) \& KPNO0.30 \\
\hline \multirow[t]{2}{*}{HD 106225} \& \multirow[t]{2}{*}{4750} \& 6.09 \& 6.70 \& 6.61 \& 6.69 \& 6.60 \& 3.1.-4) \& KPNO0.30 \\
\hline \& \& \& 6.59 \& 6.64 \& 6.58 \& 6.64 \& 2.8 (-4) \& DAOCCD0.9 \\
\hline \multirow[t]{2}{*}{31 Com} \& \multirow[t]{2}{*}{5850} \& ... \& 6.67 \& 6.65 \& 6.64 \& 6.62 \& 1.3(-4) \& DAORET0.5 \\
\hline \& \& \& \& \& \& \& \& DAOCCD0.9 \\
\hline HD 113983 \& 4900 \& \(\ldots\) \& 5.48 \& 5.37 \& 5.38 \& 5.25 \& 1.3(-5) \& KPNO0.30 \\
\hline \multirow[t]{3}{*}{HD 115781 \({ }^{\text {d }}\)} \& \multirow[t]{3}{*}{4750} \& \(\ldots\) \& 6.50 \& 6.32 \& 6.49 \& 6.31 \& \(1.8(-4)\) \& KPNO0. 24 \\
\hline \& \& ... \& 6.39 \& 6.35 \& 6.38 \& 6.34 \& 1.6 (-4) \& DAOCCD0.9 \\
\hline \& \& ... \& 6.33 \& 6.21 \& 6.32 \& 6.20 \& 1.3 (-4) \& DAOCCD0.5 \\
\hline \multirow[t]{4}{*}{HD 116204} \& \multirow[t]{4}{*}{4600} \& ... \& 6.51 \& 6.46 \& 6.50 \& 6.45 \& 2.4(-4) \& DAOCCD0.9 \\
\hline \& \& ... \& 6.46 \& 6.46 \& 6.45 \& 6.45 \& 2.2.-4) \& DAOCCD0.9 \\
\hline \& \& ... \& 6.48 \& 6.46 \& 6.47 \& 6.45 \& 2.3 -4) \& DAOCCD0.9 \\
\hline \& \& ... \& 6.44 \& 6.35 \& 6.43 \& 6.34 \& 1.93 -4 \& DAOCCD0.5 \\
\hline HD 116378 \& 5770 \& ... \& 6.38 \& 6.33 \& 6.32 \& 6.28 \& 6.3 (-5) \& DAOCCD0.9 \\
\hline 70 Vir \& 5800 \& ... \& 5.77 \& 5.73 \& 5.44 \& 5.46 \& 8.7 (-6) \& KPNO0.30 \\
\hline FK Com \& 5450 \& ... \& 7.32 \& 7.18 \& 7.32 \& 7.18 \& 7.2(-4) \& DAOCCD0.9 \\
\hline \multirow[t]{4}{*}{HR \(5110^{\text {d }}\)} \& \multirow[t]{4}{*}{/4660} \& \& 5.72 \& 5.82 \& 5.68 \& 5.80 \& 4.2(-5) \& KPNO0. 24 \\
\hline \& \& ... \& ... \& ... \& ... \& ... \& ... \& DAOCCD0.9 \\
\hline \& \& \(\ldots\) \& \& \& \& \& \& DAOCCD0.9 \\
\hline \& \& \(\ldots\) \& 5.64 \& 5.52 \& 5.59 \& 5.47 \& \(2.6(-5)\) \& DAOCCD0.5 \\
\hline \(\eta{ }^{\eta} \mathrm{Boo}\) \& 5940
4200 \& \(\ldots\) \& 5.83
5.32 \& 5.75
5.15 \& 5.51
5.29 \& 5.42
5.11 \& \(8.3(-6)\)
\(1.8(-5)\) \& KPNO0.30
KPNO0. 24 \\
\hline HR 5534 \& 6030 \& \(\ldots\) \& 6.46 \& 6.48 \& 6.38 \& 6.42 \& \(6.7(-5)\) \& DAOCCD0.5 \\
\hline \multirow[t]{3}{*}{\(\xi\) Boo A} \& \multirow[t]{3}{*}{5570} \& ... \& 6.65 \& 6.60 \& 6.63 \& 6.58 \& 1.5 (-4) \& DAOCCD0.9 \\
\hline \& \& ... \& 6.65 \& 6.60 \& 6.63 \& 6.58 \& 1.5 (-4) \& DAOCCD0.9 \\
\hline \& \& ... \& 6.48 \& 6.44 \& 6.45 \& 6.41 \& 9.8(-5) \& DAOCCD0.5 \\
\hline \multirow[t]{2}{*}{\(\xi\) Boo B} \& \multirow[t]{2}{*}{4590} \& ... \& 5.88 \& 5.84 \& 5.86 \& 5.82 \& 5.6 -5 \& DAOCCD0.9 \\
\hline \& \& ... \& 5.86 \& 5.79 \& 5.84 \& 5.77 \& 5.1(-5) \& DAOCCD0.5 \\
\hline \multirow[t]{5}{*}{HR 5553} \& \multirow[t]{5}{*}{4900} \& ... \& 6.15 \& 6.08 \& 6.13 \& 6.06 \& 7.6 (-5) \& DAOCCD0.9 \\
\hline \& \& ... \& 6.13 \& 6.02 \& 6.11 \& 5.99 \& 6.9 -5 \& DAOCCD0.9 \\
\hline \& \& ... \& 6.15 \& 6.12 \& 6.13 \& 6.10 \& 7.9 -5 \& DAOCCD0.9 \\
\hline \& \& ... \& 6.15 \& 6.10 \& 6.13 \& 6.08 \& 7.6 (-5) \& DAOCCD0.9 \\
\hline \& \& ... \& 5.96 \& 5.94 \& 5.92 \& 5.91 \& 5.0 -5 \& DAOCCD0.5 \\
\hline UV CrB \& 4600 \& ... \& 6.20 \& 6.14 \& 6.19 \& 6.13 \& \(1.1(-4)\) \& KPNO0.30 \\
\hline \multirow[t]{3}{*}{\(\delta \mathrm{CrB}\)} \& \multirow[t]{3}{*}{5300} \& ... \& 6.15 \& 6.12 \& 6.12 \& 6.10 \& \(5.8(-5)\) \& DAOCCD0.9 \\
\hline \& \& ... \& 6.20 \& 6.11 \& 6.18 \& 6.08 \& \(6.1(-5)\) \& DAOCCD0.9 \\
\hline \& \& \& 6.08 \& 6.05 \& 6.05 \& 6.02 \& 4.8 (-5) \& DAOCCD0.5 \\
\hline HD \(143313^{\text {c }}\) \& 4900/ \& 相 \& 6.58 \& 6.54 \& 6.57 \& 6.53 \& \(2.2(-4)\) \& DAOCCD0.9 \\
\hline \multirow[t]{2}{*}{\(\sigma^{2} \mathrm{CrB}^{\text {c }}\)} \& \multirow[t]{2}{*}{/6030} \& \& 7.08 \& 6.97 \& 7.06 \& 6.95 \& \(2.7(-4)\) \& DAOCCD0.9 \\
\hline \& \& ... \& 6.93 \& 6.91 \& 6.91 \& 6.89 \& 2.1 (-4) \& DAOCCD0.5 \\
\hline HR 6469 \({ }^{\text {d }}\) \& 5460 \& \(\ldots\) \& 6.12 \& 6.09 \& 6.09 \& 6.05 \& \(4.7(-5)\) \& DAOCCD0.5 \\
\hline 29 Dra \& 4600 \& \(\ldots\) \& 6.41 \& 6.35 \& 6.40 \& 6.34 \& 1.9 -4) \& DAOCCD0. 5 \\
\hline \({ }^{\mu} \mathrm{Her}{ }^{\text {HD }} 175742\) \& 5460 \& \& 5.52 \& 5.44 \& 5.23 \& 5.14 \& 6.1.-6) \& KPNO0.30 \\
\hline HD 175742 \& 5250
4600 \& 6.48 \& 6.71
6.33 \& 6.67
6.24 \& 6.70
6.33 \& 6.66
6.23 \& \begin{tabular}{l}
2.2 \\
1.5 \\
\hline
\end{tabular}\((-4)\) \& DAOCCD0.5 \\
\hline V1764 Cyg \& 4600

5770 \& \cdots \& 6.33
6.47 \& 6.24
6.45 \& 6.33
6.42 \& 6.23 \& 1.5(-4) \& KPNO0.30

\hline HD 191262a ${ }^{\text {HD }} 191262{ }^{\text {b }}$ \& ${ }^{\text {b }} 57770$ \& \ldots \& 6.47
6.54 \& 6.45
6.46 \& 6.42
6.50 \& 6.41 \& $8.3(-5)$
$9.3(-5)$ \& KPNO0.30
KPNO0.30

\hline HR 8703 \& 4420 \& ... \& 6.36 \& 6.41 \& 6.35 \& 6.41 \& 2.2 (-4) \& DAORET0.5

\hline \multirow[t]{3}{*}{λ And} \& \multirow[t]{3}{*}{4900} \& ... \& 6.46 \& 6.46 \& 6.45 \& 6.45 \& 1.7 (-4) \& DAORET0.5

\hline \& \& ... \& 6.49 \& 6.49 \& 6.48 \& 6.48 \& 1.8 (-4) \& DAORET0.5

\hline \& \& \& 6.50 \& 6.47 \& 6.49 \& 6.46 \& 1.8 (-4) \& DAORET0.5

\hline HR 9024 \& 5650 \& \& 6.74 \& 6.72 \& 6.73 \& 6.71 \& 1.8 (-4) \& DAORET0.5

\hline II Peg \& 4840 \& \ldots \& 6.47 \& 6.47 \& 6.46 \& 6.46 \& 1.9(-4) \& DAORET0.5

\hline SUN (Sky) \& 5860 \& \ldots \& 5.85 \& 5.72 \& 5.72 \& 5.56 \& 1.3(-5) \& KPNO0.30

\hline
\end{tabular}

[^2]TABLE 4
Balmer He and Ca ii H and K Mean Equivalent Widths and Line Widths for the 0.24 and 0.30 Å Resolution KPNO Data

Star Name	$\begin{aligned} & \mathrm{W}(\mathrm{H} \epsilon) \\ & (\AA) \end{aligned}$	$\begin{aligned} & \mathrm{W}(\mathrm{~K}) \\ & (\AA) \end{aligned}$	$\begin{aligned} & \mathrm{W}(\mathrm{H}) \\ & (\AA) \end{aligned}$	$\begin{aligned} & \mathrm{W}_{\mathrm{o}}(\mathrm{~K}) \\ & (\AA) \end{aligned}$	$\begin{aligned} & \mathrm{W}_{0}(\mathrm{H}) \\ & (\AA) \end{aligned}$	$\begin{aligned} & \Delta \lambda_{\left(\mathrm{K}_{1}\right)} \Delta \lambda_{\left(\mathrm{H}_{1}\right)} \\ & (\AA) \quad(\AA) \end{aligned}$		$\Delta \lambda_{\left(\mathrm{K}_{2}\right)} \Delta \lambda_{\left(\mathrm{H}_{2}\right) \mathrm{FWHM}(\mathrm{K})}$			Fwhm(H) (\AA)
								(\AA)	(\AA)	(\AA)	
δ And	...	0.148	0.066	0.239	0.157	1.57	1.40	0.66	0.61	0.70	0.79
AY Cet		0.711	0.475	1.001	0.723	1.92	1.57	...		0.70	0.65
HR 454		2.020	1.130	2.143	1.262	2.79	1.92	...		1.13	0.96
HD 19485 ${ }^{\text {b }}$		0.320	0.258	0.559	0.474	1.27	1.40	0.59	0.57
HD $19485 \mathrm{~h}^{\text {b }}$...	0.200	0.160	0.475	0.396	blend	1.22:			0.49:	0.78:
HR 1023	...	0.164	0.105	0.558	0.503	2.44	2.70	1.04	1.66
10 Tau				0.057	0.050						
HR $1176{ }^{\text {a }}$		0.063	0.063	0.336	0.280	1.48	1.40	0.52	0.52	0.84	0.79
$V 491$ Per $A^{\text {a }}$		0.363	0.252	0.453	0.346	1.05	1.31	0.52	0.49
V491 Per $\mathrm{B}^{\text {a }}$		0.060:	0.040:	0.240	0.182	blend	0.62	...		blend	0.26
EI Eri		0.620	0.352	1.303	1.041	2.42	2.27			0.87	0.96
HR 1362	...	0.418	0.283	0.580	0.443	1.57	1.48	0.44	0.40	0.84	0.77
HD 27691	...	0.058	0.040	0.300	0.225				
V492 Per	...	0.630	0.360	0.972	0.658	2.10	1.92	1.05	0.96
HR 1455 ${ }^{\text {a }}$...			0.025	0.019				\ldots		
HD 30957 ${ }^{\text {a }}$		0.468	0.301	0.827	0.580	1.40	1.26	0.73	0.84
HD 31738°	0.052:	0.781	0.463	1.235	0.997	2.10	1.92		...	0.52	0.47
HD 31993	...	0.816	0.551	1.323	1.053	2.95	2.32	0.54	\ldots	1.50	1.16
HD 33798	...	0.698	0.410	1.098	0.727	1.40	1.92	...		1.00	0.84
HD 34198	...	0.635	0.368	1.020	0.702	1.43	1.91	0.70:	0.52	1.34	1.19
$1 \mathrm{Gem}^{\text {a }}$...	0.096	0.041	0.142	0.115	0.62:	0.77:	0.46:	0.62:
σ Gem	...	0.835	0.506	1.026	0.696	2.20	1.82			0.95	0.89
$\kappa \mathrm{Gem}$...	0.023	0.021	0.064	0.058	1.07	1.18	0.62	0.64	0.48	
β Gem	...	0.038	0.024	0.090	0.065	1.13	1.05	0.56	0.61	0.53	0.78:
HD 65195 ${ }^{\circ}$...	0.207	0.150	0.380	0.340	1.22	1.24	0.65	0.70
$54 \mathrm{Cam}^{\text {a }}$...	0.133	0.090	0.456	0.356	1.55	1.24	...	\ldots	0.67	0.62
- UMa	...	0.042	0.039	0.090	0.070	1.27	1.00	0.73	0.68	\ldots	
$\pi^{1} \mathrm{UMa}$		0.183	0.142	0.328	0.255	1.09	0.92	0.14	...	0.54	0.49
HD 80715a ${ }^{\text {b }}$	blend	1.742	1.076	2.028	1.374	blend	blend	0.40	0.35
HD 80715b ${ }^{\text {b }}$	0.094	1.758	1.116	2.027	1.489	blend	blend	0.49	0.35
IL Hya	0.025	1.328	1.011	1.722	1.478	2.48	2.01	0.82	0.70
LQ Hya	0.306	1.480	0.933	1.853	1.284	1.40	1.40	0.48	0.44
Gl 378.1	0.055	0.978	0.576	1.182	0.727	0.87	0.77	0.42	0.38
LR Hya ${ }^{\text {c }}$...	0.316	0.237	0.498	0.423	1.24	1.28	0.59	0.54
ξ UMa B	...	0.082	0.074	0.253	0.187	1.05	0.87			0.38	0.35
HR 4430	...	0.282	0.159	0.461	0.337	1.75	1.75	0.58	0.49	1.19	1.05
61 UMa	...	0.107	0.088	0.213	0.174	0.91	0.80	0.21	0.20	0.54	0.51
β Vir				0.060	0.060:	0.93:	0.77:		
HD 106225	0.182	2.244	1.620	2.682	2.185	2.63	2.17		\ldots	0.85	0.73
HD 113983	...	0.043	0.025	0.122	0.094	1.05		0.57	0.57	
HD 115781 ${ }^{\text {a }}$...	1.020	0.572	1.673	1.104	2.79	2.44	1.13	0.96
70 Vir	...	0.21	0.21	0.061	0.056	0.71	0.70:	0.55	0.56:		
HR 5110 ${ }^{\circ}$	\ldots	0.179	0.369	0.485	0.614	1.08	0.96	0.47	0.40
η Boo	\ldots			0.056	0.047	0.75:	0.60:				
4 UMi	...	0.160	0.080	0.261	0.176	1.57	1.48	0.80	0.70	1.22	0.84
UV CrB		0.620	0.447	1.080	0.946	2.79	2.63		...	1.33	1.15
$\mu \mathrm{Her}$...			0.059	0.050	0.77:	0.74:	0.46		0.38	
V1764 Cyg	...	0.910	0.679	1.586	1.278	3.10	2.94	0.65	0.47	1.70	1.49
HD 191262a ${ }^{\text {b }}$		0.142	0.140	0.306	0.297	0.93:	1.95:			0.54	0.50
HD $191262 b^{\text {b }}$		0.184	0.154	0.365	0.301	0.93:	1.08:	0.19	0.14	0.54	0.57
SUN (Sky)	...	0.009	...	0.080	0.060	0.77	\ldots	0.46	...	0.31	\ldots

[^3]

Fig. 4.-H α profiles for five program stars. Each of the five stars represents a typical example of a particular type of $\mathrm{H} \alpha$ line profile. The dotted lines are spectra of reference stars of the same spectral type and luminosity class. All spectra are on the same scale but are shifted in intensity for better display. $B D+26^{\circ} 730$: Strong and variable emission line. The spectra from two consecutive nights (phase difference ≈ 0.5) have been shifted in wavelength to align their respective photospheric absorption features. HD 17433: Weak emission line with strong superposed absorption profile. 29 Dra: Filled-in absorption-line profile. $H D$ 45088: Filled-in absorption-line profiles in a double-lined spectroscopic binary (the arrows indicate the two $\mathrm{H} \alpha$ lines). $H R$ 1455: Composite $\mathrm{H} \alpha$ absorption profile. The deep core is primarily from the G5 III primary while the wings are dominated by an early F star.
stars which have σ_{W} less than 60 mA , and Table 6B gives the individual observations for the stars with variable $\mathrm{H} \alpha$ line profile, i.e., if σ_{W} is greater than $60 \mathrm{~m} \AA$.

In the following part we will briefly describe the spectroscopic features of the not-so-well known and/or very peculiar program stars but do not intend to give a full discussion of all the individual stars. For references on most of the active binary stars in this paper see the "Chromospherically Active Binary Star" (= CABS) catalog (Strassmeier et al. 1988) and also the discussion in Fekel, Moffett, and Henry (1986).

HD 7672. - Strong Ca II H and K emission at a flux level of $\log \mathscr{F}(\mathrm{K}) \sim 6.55$ ergs $\mathrm{cm}^{-2} \mathrm{~s}^{-1} . \mathrm{H} \alpha$ is an absorption feature clearly filled in by emission.

HR $339=\psi^{3}$ Psc.-Approximately the same $\mathrm{Ca}_{\text {II }} \mathrm{H}$ and K flux level as HD 7672 but no obvious emission features are visible (Fig. 10). Our one $\mathrm{H} \alpha$ spectrum shows a strong absorption profile, but no appropriate reference star spectrum was available for this early G giant.

HD 9746.- Broad $\mathrm{Ca}_{\mathrm{I}} \mathrm{II} \mathrm{H}$ and K emission lines with equivalent widths of $+2 \AA$ and $+1.1 \AA$ for the K and H line, respectively (Table 4). The $\mathrm{H} \alpha$ absorption line is very shallow and has a blueshifted emission feature of about $30 \pm 5 \mathrm{~m} \AA$.

HD 12545.-This is one of the few systems with $\mathrm{H} \alpha$ consistently in emission. Its equivalent width is highly variable (Table 6B) and in strength comparable to V711 Tau. H_{ε} seems to be also an emission feature. The two Ca II H and K
spectra show strong emission features above the continuum and may also indicate moderate variability of the K line (Table 3).

HD 17433.-Strong Ca II H and K emission features with emission-line flux of $\log \mathscr{F}(\mathrm{K}) \sim 6.15$-if the star is a subgiant rather than a G9 dwarf as previously thought (otherwise our measurement of the line flux would be ≈ 6.80 if $V-R=$ $0.64)$. The $\mathrm{H} \alpha$ line profile consists of an emission feature with a strong and broad central reversal (Fig. 4). The equivalent width and residual intensity listed in Table 6A are estimates. Recently, Bopp et al. (1989) found the $\mathrm{H} \alpha$ line varying from a pure emission profile to an absorption profile with occasionally enhanced $\mathrm{H} \alpha$ emission presumably related to flare events.

HD 19485. - This double-lined spectroscopic binary shows double H and K emission (Fig. 10) at an emission-line flux level of $\log \mathscr{F}(\mathrm{K}) \sim 6.7$ and 6.6 for the G6 and G4 component, respectively. $\mathrm{H} \alpha$ is a double absorption feature with the weaker line belonging to the cooler (presumably more active) component.
$H R$ 1023. - The H and K line profiles show H_{2} and K_{2} points at a flux level of $\log \mathscr{F}(\mathrm{K}) \sim 6.3$. The strong central reversal obscures the emission line, and high resolution is needed to resolve the H_{1} and K_{1} points. $H \alpha$ is a very strong absorption line with an equivalent width 440 m larger than the reference star o UMa.
$U X$ Ari.- $\mathrm{H} \varepsilon$ in emission.

TABLE 5
Balmer H α Reference Stars

Star Name	Spectral Type ${ }^{\text {a }}$	$\left\langle W_{\alpha}\right\rangle$ (A)	σ_{W} (\AA)	$\left\langle R_{c}\right\rangle$	$\sigma_{R_{c}}$	n	Observatory Code
Dwarfs							
β Vir	F9 V	-1.240	0.000	0.191	0.000	2	KNO0.18
		-1.367	0.040	0.232	0.004	4	2.1McD0. 28
β Com.	G0 V	-1.570	0.017	0.261	0.006	3	Ritter0.3
70 Vir	G4 V	-1.059	0.003	0.174	0.005	2	KPNO0.18
HR 166	K0 V	-0.947	...	0.205	...	1	KPNO0.18
HR 6806	K2 V	-0.877	0.020	0.205	0.004	2	KPNO0.18
61 Cyg A	K5 V	-0.678	0.009	0.395	0.003	2	Ritter0.3
61 Cyg B	K7 V	-0.565	...	0.347	...	1	KPNO0.18
$10 \mathrm{Tau} . . .$. .	F9 IV-V	-1.155		0.175		1	KPNO0.21
Subgiants							
$\begin{gathered} \tau \text { Boo....... } \\ \eta \text { Boo........ } \end{gathered}$	F6 IV	-1.909	0.065	0.278	0.002	2	Ritter0.3
	G0 IV	-1.262	0.006	0.187	0.000	2	KPNO0.18
		-1.675	0.050	0.228	0.003	2	Ritter0.3
$\mu \mathrm{Her}$.	G5 IV	-1.056	0.003	0.181	0.000	2	KPNO0.18
		-1.078	0.025	0.239	0.011	4	2.1McD0.28
		-1.260	0.020	0.251	0.007	5	Ritter0.3
$\begin{aligned} & \beta \text { Aql } \\ & \delta \text { Eri } \ldots . . . \end{aligned}$	$\begin{aligned} & \text { G8 IV } \\ & \text { K0 IV } \end{aligned}$	$\begin{aligned} & -1.002 \\ & -1.019 \end{aligned}$	0.001	0.182	0.000	21	KPNO0.18 2.1McD0.42
				0.290			
Giants							
o UMa.	G5 III	-1.179	0.010	0.176	0.000	2	KPNO0.18
$\boldsymbol{\kappa}$ Gem	G8 III	-1.077	0.003	0.176	0.002	2	KPNO0.18
ε Vir	G8 III	-1.280		0.251	...	2	Ritter0.3
ε Boo	K0 II-III	-1.258	0.004	0.244	0.004	2	Ritter0.3
β Gem.	K0 III	-1.052	0.002	0.183	0.003	2	KPNO0.18
		-1.019	0.009	0.243	0.003	11	2.1 McD 0.28
		-1.039		0.205		1	KPNO0.4
		-1.137	0.019	0.249	0.005	38	Ritter0.3
α Boo.......	K1 III	-1.130	0.016	0.253	0.002	7	2.1 McD 0.42
		-1.109	...	0.225	...	1	2.7 McD 0.35
		-1.148		0.204		1	KPNO0.4
		-1.260	0.027	0.219	0.007	24	Ritter0.3
α Ari	K2 III	-1.033	0.004	0.266	0.006	9	2.1 McD 0.42
β Oph	K2 III	-0.999	0.010	0.193	0.002	3	KPNO0.18
		-1.015	..	0.270	...	1	2.1McD0.42
		-0.976	0.034	0.289	0.011	12	Ritter0.3
α Ser	K2 III	-1.007	0.009	0.275	0.005	3	Ritter0.3
ρ Boo.......	K3 III	-1.082	0.052	0.256	0.006	5	Ritter0.3
β Cnc	K4 III	-1.091	0.005	0.224	0.011	2	Ritter0.3

${ }^{\mathrm{a}}$ Taken from Keenan 1983.

V711 Tau.- $\mathrm{H} \varepsilon$ in emission.
HR 1176. - Our only Ca iI spectrum shows weak blueshifted H and K emission lines with large V / R emission ratio. $\mathrm{H} \alpha$ appears to be a normal absorption feature.

HD 25893. - The star is a close visual binary, V491 Per A (= the G8 IV primary) and B, with strong emission from the A component and weak emission from the B component. Observations in the red at $6430 \AA$ show only lines from the G8 IV component. $\mathrm{H} \alpha$ is a filled-in absorption line.

HD 26337. - The Ca iI K line flux might be variable.
HR 1362. - This single star has the longest known rotation period for a chromospherically active star (310 days; Strass-
meier and Hall 1988) and high Ca II emission-line flux of $\log \mathscr{F}(\mathrm{K}) \sim 6.5$. Both emission lines show reversals. $\mathrm{H} \alpha$ appears to be a rather normal absorption line.

HD 27691.-Although no obvious H and K emission lines are visible (Fig. 10), the flux level of this G0 dwarf is nevertheless quite high, $\log \mathscr{F}(\mathrm{K}) \sim 6.5$. However, $\mathrm{H} \alpha$ is a rather strong absorption feature, stronger than that in the reference star β Vir.
$H R$ 1455. - This star is one of the few examples in the candidate list of the CABS catalog where we could not detect chromospheric H and K emission. Our $0.21 \AA \mathrm{CCD}$ spectrum of the $\mathrm{H} \alpha$ region shows a composite $\mathrm{H} \alpha$ line profile of an

TABLE 6A
Balmer $\mathrm{H} \alpha$ Equivalent Widths and Residual Intensities

Walter and Basri (1982)

FK Com	$<+3.3>$	~ 2.0	\ldots	\ldots	\ldots	95	\ldots	Lick
Strassmeier, Weichinger, and Hanslmeier (1986)								

HR 5110^{b}	-0.715	0.065	0.760	0.010	\ldots	2	\ldots

${ }^{\text {a }}$ Corrected for the presence of two continua. Although the $\mathrm{H} \alpha$ cores are well separated, both $\mathrm{H} \alpha$ lines show pronounced wings which are strongly blended, and the measured equivalent width might not be reliable.
${ }^{\mathrm{b}}$ Composite equivalent width.
${ }^{\mathrm{c}}$ The large standard deviation is primarily due to one measure.
${ }^{\mathrm{d}}$ Corrected for the presence of two continua.

TABLE 6B
$\mathrm{H} \alpha$ Equivalent Widths for the Stars with $\sigma_{W} \geq 0.060 \AA$

Star Name	Date of Observation	W_{α} (\AA)	$\mathrm{R}_{\text {c }}$	$\begin{aligned} & \mathrm{W}_{e m} \\ & (\AA) \end{aligned}$	Reference Star	Observatory Code
HD 12545	03/01/1985	+0.751	1.22	+1.857	$\mu \mathrm{Her}$	KPNO0.4
	03/04/1985	+0.992	1.23	$+2.098$		KPNO0.4
	03/05/1985	+1.961	1.40	+3.067		KPNO0.4
	03/15/1985	+0.895	1.27	+2.001		KPNO0.5
	09/30/1985	+0.963	1.21	$+2.069$		KPNO0.2
	10/03/1985	+0.189	1.13	+1.295		KPNO0.2
	10/04/1985	+0.182	1.13	+1.288		KPNO0.2
	11/08/1986	+1.352	1.45	+2.458		KPNO0.2
$V 711$ Tau ${ }^{\text {a }}$	09/30/1985	+0.805	1.26	+1.919	δ Eri	KPNO0.2
	11/08/1986	+1.103	1.42	+2.217		KPNO0.2
	11/11/1986	+1.969	1.53	+3.083		KPNOO. ${ }^{\text {a }}$
EI Eri	08/23/1983	-0.311	0.877	$+0.990$	$\mu \mathrm{Her}$	2.1McD0.42
	08/24/1983	-0.817	0.770	+0.484		2.1McD0.42
	08/25/1983	-0.341	0.868	+0.960		2.1 McD 0.42
	08/26/1983	-0.486	0.832	+0.815		2.1 McD 0.42
$\mathrm{BD}+26^{\circ} 730$	03/01/1985	+0.183	1.16	$+0.748$	61 Cyg B	KPNO0.4
	10/22/1988	+0.391	1.291	+0.956		KPNO0.18
	10/23/1988	+0.453	1.345	+1.018		KPNO0.18
12 Cam	03/06/1988	-1.250	0.477	-0.113	β Gem	Ritter0.3
	03/12/1988	-1.049	0.475	+0.088		Ritter0.3
IL Hya	01/22/1981	-0.232	0.819	+0.837	β Gem	2.7 McD 0.35
	05/01/1983	-0.431	0.727	+0.638		$2.1 \mathrm{McD0} 0.42$
	02/24/1986	-0.325	0.764	+0.744		2.1 McD 0.28
	02/27/1986	-0.402	0.744	+0.667		2.1 McD 0.28
	05/01/1986	-0.540	0.659	+0.529		2.1 McD 0.28
LQ Hya	04/30/1983	-0.172	0.881	+0.838	HR 166	2.7McD0.35
	05/01/1983	-0.099	0.946	+0.911		2.1 McD 0.42
	05/02/1983	-0.190	0.878	+0.820		2.1 McD 0.42
	05/01/1986	+0.011	1.022	$+1.021$		$2.1 \mathrm{McD0} 0.28$
	02/24/1986	-0.097	0.946	+0.913		2.1 McD 0.28
	02/26/1986	-0.047	0.933	+0.963		$2.1 \mathrm{McD0} 0.28$
	02/27/1986	+0.035	1.046	+1.045		2.1 McD 0.28
Gliese 410					61 Cyg B	
	$03 / 13 / 1985$	-0.159	0.768	$+0.406$		KPNO0.5
HD 106225			1.137	+1.520	β Gem	
	$04 / 29 / 1983$	+0.075	1.058	+1.162		2.1 McD 0.42
	04/30/1983	+0.064	≈ 1.	+1.151		2.1McD0.42
	02/24/1986	-0.601	0.652	+0.486		2.1McD0. 28
$\sigma^{2} \mathrm{CrB}^{\text {a }}$	05/27/1988	-1.392	0.640	+0.178	β Com	
	06/04/1988	-1.427	0.634	+0.143		Ritter0.3
	06/06/1988	-1.298	0.662	+0.272		Ritter0.3
	06/10/1988	-1.327	0.643	+0.243		Ritter0.3
	.06/11/1988	-1.395	0.630	+0.175		Ritter0.3
	06/13/1988	-1.426	0.617	+0.144		Ritter0.3
	06/20/1988	-1.219	0.624	$+0.351$		Ritter0.3
	06/27/1988	-1.046	0.668	+0.524		Ritter0.3
	06/27/1988	-1.018	0.656	+0.552		Ritter0.3
	06/27/1988	-1.154	0.683	+0.416		Ritter0.3
	06/28/1988	-1.249	0.640	+0.321		Ritter0.3
	06/30/1988	-1.302	0.729	+0.268		Ritter0.3
	06/30/1988	-1.297	0.709	$+0.273$		Ritter0.3
	07/01/1988	-1.152	0.715	+0.418		Ritter0.3
	07/02/1988	-1.476	0.699	+0.094		Ritter0.3
	07/05/1988	-0.970	0.663	+0.600		Ritter0.3
HR 6469 ${ }^{\text {a }}$	04/30/1987	-1.384	0.377	-0.124	$\mu \mathrm{Her}$	Ritter0.3
	05/05/1987	-1.094	0.485	$+0.166$		Ritter0.3
	05/09/1987	-1.226	0.403	$+0.034$		Ritter0.3
	06/17/1987	-1.285	0.400	-0.025		Ritter0.3
29 Dra	04/29/1983	-0.748	0.561	+0.292	β Gem	2.1 McD 0.42
	05/02/1983	-0.767	0.552	+0.273		$2.1 \mathrm{McD0} 0.42$
	08/23/1983	-0.562	0.635	$+0.478$		$2.1 \mathrm{McD0} 0.42$
	08/25/1983	-0.048	0.906	+0.992		$2.1 \mathrm{McD0} 0.42$
	08/27/1983	-0.342	0.728	+0.698		2.1McD0.42
	07/05/1988	-0.772	0.602	+0.365		Ritter0.3
	07/13/1988	-0.694	0.607	+0.443		Ritter0.3
	10/23/1988	-0.641	0.534	+0.399		KPNO0.18

TABLE 6B-Continued

Star Name	Date of Observation	$\begin{aligned} & \mathrm{W}_{\alpha} \\ & (\AA) \end{aligned}$	$\mathrm{R}_{\text {c }}$	$\begin{aligned} & \mathrm{W}_{e m} \\ & (\AA) \end{aligned}$	Reference Star	Observatory Code
HR 7275	05/17/1987	-0.504	0.666	+0.683	α Boo	Ritter0.3
	07/29/1987	-0.549	0.617	+0.638		Ritter0.3
	08/12/1987	-0.817	0.561	+0.370		Ritter0.3
	08/18/1987	-0.723	0.544	+0.464		Ritter0.3
	09/06/1987	-0.741	0.557	+0.446		Ritter0.3
	09/15/1987	-0.865	0.486	+0.322		Ritter0.3
	09/27/1987	-0.939	0.497	+0.248		Ritter0.3
	10/19/1987	-0.868	0.514	+0.319		Ritter0.3
	10/28/1987	-0.779	0.535	+0.408		Ritter0.3
	11/06/1987	-0.917	0.486	+0.270		Ritter0.3
	12/31/1987	-0.823	0.548	+0.364		Ritter0.3
	07/01/1988	-0.897	0.565	+0.290		Ritter0.3
	07/02/1988	-0.692	0.603	+0.495		Ritter0.3
	07/03/1988	-0.842	0.547	+0.345		Ritter0.3
	07/05/1988	-0.750	0.550	+0.437		Ritter0.3
	07/13/1988	-0.746	0.584	+0.441		Ritter0.3
	07/14/1988	-0.931	0.520	+0.256		Ritter0.3
	08/21/1988	-0.739	0.593	+0.448		Ritter0.3
	08/26/1988	-0.738	0.555	+0.449		Ritter0.3
	09/08/1988	-0.728	0.570	+0.459		Ritter0.3
HR 8703	10/04/1987	-0.438	0.712	+0.577	β Oph	Ritter0.3
	10/04/1987	-0.520	0.671	+0.495		Ritter0.3
	10/14/1987	-0.700	0.591	+0.315		Ritter0.3
	10/19/1987	-0.668	0.633	+0.347		Ritter0.3
	10/28/1987	-0.184	0.854	+0.831		Ritter0.3
	11/04/1987	-0.702	0.590	+0.313		Ritter0.3
	11/06/1987	-0.575	0.680	+0.332		Ritter0.3
	11/13/1987	-0.884	0.540	+0.131		Ritter0.3
	12/30/1987	-1.015	0.493	0.000		Ritter0.3
II Peg	$\begin{aligned} & 11 / 08 / 1986 \\ & 11 / 11 / 1986 \end{aligned}$	$\begin{aligned} & +0.350 \\ & +0.605 \end{aligned}$	$\begin{aligned} & 1.22 \\ & 1.41 \end{aligned}$	$\begin{aligned} & +1.399 \\ & +1.654 \end{aligned}$	δ Eri	KPNO0. 2 KPNO0. 2

${ }^{\mathrm{a}}$ Equivalent width of the composite line is given.
early F star (most likely a subgiant) and a G5 giant (Fig. 4). Any H and K emission from the late-type star would be substantially diluted by the F star continuum.
$B D+26^{\circ} 730=V 833 T a u .-\mathrm{H} \alpha$ is a variable emission feature (Table 6B and Fig. 4). $\mathrm{H} \varepsilon$ seems also to be in emission but is blended with the Ca II H emission line.

HD 30957.-A recently discovered double-lined spectroscopic binary (F. C. F.; see entry in the CABS catalog). Our Ca II observation shows strong H and K emission at a flux level of $\log \mathscr{F}(\mathrm{K}) \sim 6.6$ and a weak $\mathrm{H} \alpha$ absorption line filled in by chromospheric emission.

HD 31738. - This is also a newly discovered double-lined spectroscopic binary with very strong Ca II emission lines of $\log \mathscr{F}(\mathrm{K}) \sim 6.8$, presumably from the G5 IV primary. $\mathrm{H} \varepsilon$ might be an emission feature. Our observations of the $\mathrm{H} \alpha$ region show $\mathrm{H} \alpha$ to be a very weak, almost absent, absorption feature filled in by chromospheric emission.

HD 31993.- Moderately strong Ca iI H and K emission lines indicate activity, while $\mathrm{H} \alpha$ appears as a strong absorption line. Its equivalent width is about 300 mA larger than the value for the reference star $\beta \mathrm{Oph}$.

12 Cam. - The $\mathrm{H} \alpha$ absorption line may show variable filling (Table 6B), but this needs to be confirmed.

HD 33798.-This star is a rapidly rotating single K 0 giant with strong Ca II emission lines at a flux level of $\log \mathscr{F}(\mathrm{K}) \sim$ 6.3. $\mathrm{H} \alpha$ appears to be a normal absorption feature comparable to that of the reference star β Gem. A high-resolution $6430 \AA$ CCD spectrum shows rotationally broadened lines of $29 \pm 2 \mathrm{~km} \mathrm{~s}^{-1}$.

HD 34198.-Another rapidly rotating single K0 giant with moderately strong H and K emission but very strong $\mathrm{H} \alpha$ absorption.

HR 1908. - Being among the latest-type giants in this sample (K4), HR 1908 shows weak H and K emission lines at a normal flux level of $\log \mathscr{F}(\mathrm{K}) \sim 5.0 \mathrm{H} \alpha$ seems to be also a normal absorption feature or, at most, very weakly filled in by emission if compared, e.g., with the K4 III reference star β Cnc (Table 6A).
χ^{1} Ori.-Although the H and K emission lines of this G0 dwarf star are only marginally visible in our $0.5 \AA$ resolution spectrum in Figure 10, the star has a fairly large emission-line flux level of $\log \mathscr{F}(\mathrm{K}) \sim 6.6$. From our six $\mathrm{H} \alpha$ region spectra $\mathrm{H} \alpha$ appears to be a normal and constant absorption feature.

HR 2081.-This star is a double-lined spectroscopic binary with a relatively long orbital period of 219 days (Beavers and Griffin 1979). Our H and K flux measure in Table 3 is approximately the lower limit for reliable fluxes from the DAO $0.9 \AA$ spectra. Higher resolution spectra are needed to determine a more accurate flux. $\mathrm{H} \alpha$ is a very strong absorption feature even if compared with the reference star o UMa.

1 Gem.-Basri, Laurent, and Walter (1985) list the period of this system as 9.6 days with spectral type of F5 V + G5 II and note that the spectral type of the secondary (the F star) is estimated from an ultraviolet spectrum. Thus, they imply that the system is a double-lined binary with a 9.6 day period. In fact the system is triple. The mid-F star which dominates the ultraviolet is the primary of the 9.6 day binary whose secondary is undetected. Thus, it is unlikely to be particularly
chromospherically active. The continuum of the late-type star, a K0 III, dominates at yellow and red wavelengths. This component has an orbital period of 13.4 yr. See Griffin and Radford (1976) for further discussion. Thus, substantial chromospheric activity from this component is also unexpected. The flux of the K line bottom does not exceed $\log \mathscr{F}(K) \sim 5.3$. $\mathrm{H} \alpha$ seems to be a normal absorption line.
$O U G e m=H D$ 45088.-This star is known double-lined spectroscopic binary with an orbital period of 7 days (Tomkin 1980). Ca II H and K emission is evident from the $0.9 \AA$ spectrum in Figure 10 but higher resolution spectra are needed to resolve the emission from both components for a more accurate flux determination. One $0.2 \AA \mathrm{H} \alpha$ region spectrum shows double $\mathrm{H} \alpha$ absorption lines (Fig. 4) with a line ratio of $\mathrm{K} 5 / \mathrm{K} 3=0.43 \pm 0.02$ for photospheric lines and 0.32 for $\mathrm{H} \alpha$.
$\boldsymbol{\sigma}$ Gem.-Probably variable Ca ir H and K emission.
HD 65195.-Our Ca II H and K spectra show weak emission lines but a flux level of $\log \mathscr{F}(\mathrm{K}) \sim 6.1$. The star is one of the single-lined spectroscopic binaries listed in the "candidate table" in the CABS catalog which turned out to be chromospherically active. $\mathrm{H} \alpha$ appears to be a normal absorption feature or, at most, weakly filled in by chromospheric emission.

54 Cam.-The H and K emission lines are blueshifted in our spectrum in Figure 10 but unshifted (or even slightly redshifted) on other spectra. Although this is a double-lined spectroscopic binary whose components have similar line strengths, only one component appears to have Ca iI H and K emission. This system is of particular interest because the estimated spectral type of F9 IV for both components is quite early for a chromospherically active star. We note, however, that Wolff, Boesgaard, and Simon (1986) found that onset of "activity" in stars on or near the main sequence occurs approximately at spectral type F0. The listed $\mathrm{H} \alpha$ equivalent width is measured from the composite spectrum and is fairly weak if compared to the reference star η Boo.

28 Mon.-Our six H α spectra show a normal absorption profile with slightly larger equivalent width if compared to the reference star β Cnc. Ca iI H and K emission seems to be present but our spectrum has insufficient signal-to-noise ratio (Fig. 10) to compute a reliable flux.

35 Cnc.-Two $0.5 \AA$ and $0.9 \AA$ resolution Ca II observations did not reveal any emission lines. Bopp, Dempsey, and Maniak (1988) report a very strong $\mathrm{H} \alpha$ absorption line.
$\pi^{1} U M a$.-A single G0 dwarf with weak Ca II H and K emission lines but fairly high line flux of $\log \mathscr{F}(\mathrm{K}) \sim 6.5$. No $\mathrm{H} \alpha$ observation has been obtained.

HD 80715.-Both components show strong Ca II H and K emission lines. Balmer $\mathrm{H} \varepsilon$ emission from both component is also evident. Barden and Nations (1988) report $\mathrm{H} \alpha$ emission from both components (Table 6A), with one of them variable.

IL Hya = HD 81410.-Strong Ca II H and K emission, weak and variable $\mathrm{H} \alpha$ absorption, possible $\mathrm{H} \varepsilon$ emission, and photometric variability make this system a good candidate for a monitoring program.

24 UMa.-Our Ca II observation show only weak H and K emission lines but a moderately strong flux level of $\log \mathscr{F}(\mathrm{K})$ \sim 6.2. Recent $\mathrm{H} \alpha$ observations by Bopp, Dempsey, and Ma-
niak (1988) reveal a normal absorption feature when compared to the reference star μ Her.

LQ Hya = HD 82558. - Very strong Ca II H and K emission and also strong $\mathrm{H} \varepsilon$ emission at a flux level of $\log \mathscr{F}(\mathrm{H} \varepsilon)$ ~6.7.

HD 86856. - Strong Ca II H and K emission. $\mathrm{H} \varepsilon$ also might be in emission. $\mathrm{H} \alpha{ }_{\mathrm{o}}$ is a very strong absorption feature, approximately 100 mA stronger than the K 7 V reference star 61 Cyg B.
$L R H y a=H D$ 91816. - The H and K emission line in our Ca II spectrum in Figure 10 is a composite from the two K0 dwarf components. The $\mathrm{H} \alpha$ region spectra, taken at a different phase than the Ca II observation, show two very weak filled-in $\mathrm{H} \alpha$ absorption lines.

Gliese 410.-Another dMe star with strong Ca II H and K emission. One of our $\mathrm{H} \alpha$ spectra show the $\mathrm{H} \alpha$ line in absorption while in another spectrum $\mathrm{H} \alpha$ is completely filled in (Table 6B).
$\xi U M a B$.- $\mathrm{Ca}_{\text {II }} \mathrm{H}$ and K emission is rather weak but the flux level reaches $\log \mathscr{F}(\mathrm{K}) \sim 6.3$. Our one $\mathrm{H} \alpha$ region spectrum shows an absorption feature slightly filled in by chromospheric emission.

HR 4430. - This 75 day single-lined spectroscopic binary is apparently only a very weakly "active" system, if at all. The $0.24 \AA$ CCD observation in Figure 10 shows weak H and K emission at a flux level of only $\log \mathscr{F}(\mathrm{K}) \sim 5.7$. From $10 \mathrm{H} \alpha$ region spectra, $\mathrm{H} \alpha$ appears to be a very strong absorption feature with an equivalent width of approximately $280 \mathrm{~m} \AA$ larger than the K2 III reference star β Oph.

DF UMa.-The visual component (ADS 8242B) is also a dM star with weak Ca II emission and forms together with DF UMa a spectroscopic triple system containing three dM stars. Although listed in Table 6A, there is a lot of $\mathrm{H} \alpha$ variability of the composite emission line. Thus, we did not use this star in the analysis. Figure 10 shows strong $\mathrm{H} \varepsilon$ emission.

61 UMa.-A fairly active single G8 dwarf star with $\log \mathscr{F}(\mathrm{K}) \sim 6.3$ but strong $\mathrm{H} \alpha$ absorption ($160 \mathrm{~m} \AA$ in excess compared to the reference star HR 166).

HD 106225.-Very active RS CVn system with $\log \mathscr{F}(\mathrm{K})$ ~ 6.7 and also variable $\mathrm{H} \alpha$ absorption line profile (Table 6B).

31 Com.-Very hard to measure at Ca iI H_{1} and K_{1} due to almost absent emission lines. The emission flux level is nevertheless very high $[\log \mathscr{F}(K) \sim 6.6]$. Bopp, Dempsey, and Maniak (1988) report very strong $\mathrm{H} \alpha$ absorption. Note, our $v \sin i$ value of $57 \mathrm{~km} \mathrm{~s}^{-1}$ is substantially less than the value of $80 \mathrm{~km} \mathrm{~s}^{-1}$ given in Uesugi and Fukuda (1982) from six references. This may be because the broad lines are less blended with other features in our red wavelength spectra, while the other determinations were made in the blue.

HD 113983. - Very likely not an active system.
HD 115781. - This star is listed in the "candidate table" in the CABS catalog because no observations of activity indicators were made. Our three Ca II H and K spectra show strong emission lines at a flux level of $\log \mathscr{F}(\mathrm{K}) \sim 6.4 . \mathrm{H} \alpha$ appears to be a normal absorption feature.
$H D$ 116204.-Very active RS CVn system with $\log \mathscr{F}(\mathrm{K})$ ~ 6.5 and filled-in $\mathrm{H} \alpha$ absorption.

HD 116378.-Although the H and K emission-line strengths are very weak (compare our spectrum in Fig. 10), the emission-line fluxes are typical of chromospherically active stars $[\log \mathscr{F}(\mathrm{K}) \sim 6.4] . \mathrm{H} \alpha$ appears as a normal absorption feature.

FK Com.-Ca in K line surface flux of $\log \mathscr{F}(\mathrm{K}) \sim 7.3$! Walter and Basri (1982) and others reported a very broad and variable $\mathrm{H} \alpha$ emission line with equivalent widths of sometimes up to $10 \AA$!
$H R 5110$. - The $\mathrm{H} \alpha$ profile is clearly composite, from an F star and a K star. The $\mathrm{Ca} \mathrm{II}_{\mathrm{H}}$ and K emission from the K star is decreased by the addition of the F star's continuum (Fig. 10).

4 UMi.-Although listed in the CABS catalog, our highresolution Ca II CCD observation (Fig. 10) shows only very weak H and K emission at a flux level of $\log \mathscr{F}(K) \sim 5.3$, thus the star should not be considered as chromospherically active.

HR 5534. - This is a new CA star having H and K emission at a flux level of $\log \mathscr{F}(\mathrm{K}) \sim 6.4$. Six $\mathrm{H} \alpha$ region spectra show a constant but filled-in $\mathrm{H} \boldsymbol{\alpha}$ absorption line.

HR 5553.-Four Ca II spectra show moderate H and K emission lines of $\log \mathscr{F}(\mathrm{K}) \sim 6.15$, while $14 \mathrm{H} \alpha$ region observations reveal a strong $\mathrm{H} \alpha$ absorption feature which might be variable.
δ CrB.-Bopp, Dempsey, and Maniak (1988) report normal $\mathrm{H} \boldsymbol{\alpha}$ absorption (see also Table 6A). From three Ca II spectra we find moderate emission-line fluxes of $\log \mathscr{F}(\mathrm{K}) \sim$ 6.1.

HD 143313.-The star is listed as a chromospherically active double-lined binary star in the CABS catalog without having a Ca II H and K observation. Our one observation shows strong (composite) emission lines at a flux level of $\log \mathscr{F}(\mathrm{K}) \sim 6.6$ and thus verifies its chromospheric activity.
σ^{2} CrB. - Together with FK Com and LQ Hya, $\boldsymbol{\sigma}^{2} \mathrm{CrB}$ is another system having Ca II K emission-line flux greater than 10^{7} ergs $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$. The system is, however, a double-lined spectroscopic binary with two rapidly rotating components. From $16 \mathrm{H} \alpha$ observations we find the line to be variable and filled-in.

29 Dra.-Ca II H and K emission above the continuum; $\log \mathscr{F}(\mathrm{K}) \sim 6.4$ from one $0.9 \AA$ spectrum. $\mathrm{H} \alpha$ is a weak and variable absorption feature (Table 6B).

V775 Her $=$ HD 175742. - Strong Ca II H and K emission. Balmer $\mathrm{H} \varepsilon$ emission of $\log \mathscr{F}(\mathrm{H} \varepsilon) \sim 6.5 . \mathrm{H} \alpha$ is a weak, filled-in absorption line.
$H R$ 7275.-Bopp (1984) reported strong Ca iI H and K emission of $\log \mathscr{F}(\mathrm{K}) \sim 6.5$ (Table 7). Our $\mathrm{H} \alpha$ monitoring reveals a weak and variable absorption line profile (Table 6B).

HD 185151.-Broad H and K emission lines of $\log \mathscr{F}(\mathrm{K})$ $\sim 6.3 \mathrm{H} \alpha$ appears to be a normal absorption line if compared to the reference star α Boo.

HD 191262.-Our 0.3-Å CCD spectrum in Figure 10 shows double Ca II H and K emission lines of $\log \mathscr{F}(\mathrm{K}) \sim 6.5$ for each component.
$H R$ 8703.-Strong Ca II H and K emission lines well above the continuum at a flux level of $\log \mathscr{F}(\mathrm{K}) \sim 6.4$. $\mathrm{H} \alpha$ monitor-
ing reveals a quite variable and weak absorption line profile (Table 6B).
λ And.-Three Ca II H and K observations show no significant flux variability.
$H R$ 9024.-Weak H and K emission lines but flux level of $\log \mathscr{F}(\mathrm{K}) \sim 6.7$. Three $\mathrm{H} \alpha$ region spectra show a normal absorption line feature comparable to that of the reference star o UMa.

Table 8 of the CABS catalog listed 37 candidate stars. For most of these systems, either their binary nature was unknown or questioned or there was no observation of Ca H and K emission. From our present CaH and K observations we confirm that 5 of the candidate stars, HD 19485, HD 30957, HD 65195, HD 115781, and HD 191262, are chromospherically active binaries, according to the CABS catalog definition. If HR $1176=$ HD 23838 has a composite spectrum with an early-type secondary, the emission is probably strong enough to include this star in the catalog. Thus, it remains on the candidate list. The emission of HR $1023=$ HD 21018 is probably too weak to include this star in the catalog. Finally, one star, HR $1455=$ HD 29104, shows no Ca H and K emission and should be rejected from the catalog.

V. DISCUSSION AND ANALYSIS

a) Effect of Limited Sampling

The stars in this sample have been observed on average about 2 times at H and K and about 2-3 times at $\mathrm{H} \alpha$, but there are many stars which have only one observation: from the total of 83 stars observed at H and $\mathrm{K}, 54$ were observed only once and from the 96 stars observed at $\mathrm{H} \alpha, 37 \mathrm{had}$ only a single observation. For example, out of the 34 chromospherically active stars which were observed more than twice at $\mathrm{H} \alpha, 14$ stars showed large equivalent width variations with a standard deviation in excess of 60 mA . That is approximately 40% of those stars. We can say even less about Ca II H and K variability because only few stars have been observed more than twice. How does this affect the analysis? The Ca II H and K solar neighborhood survey (e.g., Vaughan and Preston 1980; Soderblom 1985) showed rotational modulation of the H and K emission of up to 10% and long-term activity cycles with amplitudes up to 30%, in addition to the observational error. Moreover, since the stars in the present sample are mostly very active systems, larger rotational modulations than those found for the solar-type dwarfs of the solar neighborhood survey are likely.

Thus, deriving quantitative relationships between activity indicators and other stellar parameters for very active stars is quite dangerous and needs longer time baseline and substantially increased sampling. Nevertheless, we may search for qualitative relations and trends in the data.

b) Dependence of Activity on Temperature

It has been argued (e.g., Basri 1987; Rutten and Schrijver 1987) that R_{HK} is not the appropriate parameter to describe chromospheric activity, mostly because no tight correlations were found when it was plotted versus the rotation period.

Figure $5 a$ is a plot of the mean values of the sum of the unnormalized Ca II H and K line fluxes corrected for photospheric contribution, $\mathscr{F}^{\prime}(\mathrm{H}+\mathrm{K})$, versus effective (photospheric) temperature. Also included in Figure $5 a$ is the slope of the best fit to the data (dashed lines), labeled on the left side with T^{3}. Note that effective temperature has been always taken from the spectral type-effective temperature tables in Landolt-Börnstein (Schmidt-Kaler 1982; and references therein). $\mathscr{F}^{\prime}(\mathrm{H}+\mathrm{K})$ declines toward cooler effective temperature. This trend emerges despite wide scatter in $\mathscr{F}^{\prime}(\mathrm{H}+\mathrm{K})$ at each spectral type and, presumably, wide scatter in rotation velocity or period at each type. Therefore, caution is required when comparing $\mathscr{F}^{\prime}(\mathrm{H}+\mathrm{K})$ between stars of similar rotation velocity or period but different spectral type. The dotted line is the slope of the best fit found by Kelch, Linsky, and Worden (1979) for the Ca II K line fluxes of 14 stars, K_{1} (corr.) $\approx \mathrm{T}_{\text {eff }}^{3.7}$.

Figure $5 b$ is a plot of the Ca II H and K radiative losses in units of the bolometric flux, R_{HK}, i.e., the fraction of the stellar luminosity which appears as emission in the H and K lines,

$$
\begin{equation*}
R_{\mathrm{HK}}=\frac{\mathscr{F}^{\prime}\left(\mathrm{H}_{1}\right)+\mathscr{F}^{\prime}\left(\mathrm{K}_{1}\right)}{\sigma T_{\mathrm{eff}}^{4}} \tag{7}
\end{equation*}
$$

versus effective temperature. The $\sim T^{3}$ decline toward cooler stars is now gone, the scatter is real, and the gap can be seen running horizontally at $R_{\mathrm{HK}} \sim 2-4 \times 10^{-5}$, which we have used to divide the stars up into "quiet" and "active" chromosphere stars for the entry in Table 2. We may identify this gap as the well-known Vaughan-Preston gap (Vaughan and Preston 1980). It has been suggested by several authors (e.g. Middelkoop 1982) that this gap indicates a discontinuous change in the chromospheric characteristics at a certain age or rotation rate. Assuming a smoothly varying decay of chromospheric activity with age, Hartmann et al. (1984) showed that there is no need for a discontinuous change in the chromospheric behavior to explain the Vaughan-Preston gap. Our data of mostly "overactive" single and binary stars-dwarfs, subgiants, and giants-show the gap for stars with $T_{\text {eff }}>4300$ $\mathrm{K}(\alpha \mathrm{K} 3$ III or K5 V) somewhat clearer than for cooler stars. Rutten (1987) explains an "absence" of the gap for cooler stars with a color-dependent shape of the activity-rotation relation.

Figure $5 c$ shows the situation for $\mathrm{H} \alpha$. Plotted is the core emission equivalent width described in § III c. The vertical bars indicate the variations of stars listed in Table 6B. No clearly visible temperature dependence seems to be present.

We have also used Simon and Fekel's (1987) C Iv line fluxes (their Table 1) of 67 single stars and single-lined spectroscopic binaries in common with our program stars to evaluate their slope. A variety of slopes ranging from T^{3} to T^{10} are plotted in Figure $5 d$ for comparison purposes. No quantitative fit is possible, but it seems clear that there is a general increase in C Iv emission-line flux with temperature by \mathscr{F} (C IV) $\approx T_{\text {eff }}^{7 \ldots 10 .}$. As a comparison, Linsky and Ayres (1978) found for the Mg II k line fluxes of 29 stars a temperature dependence of $\mathscr{F}^{\prime}\left(k_{1}\right) \approx T_{\text {eff }}^{7}$.

Fig. $5 a$

Fig. $5 c$

Fig. 5b

Fig. 5d

Fig. 5.-Temperature-activity relations for the full sample. (a) Plotted is the sum of the corrected H_{1} and K_{1} indices, $\log \mathscr{F}{ }^{\prime}(\mathrm{H}+\mathrm{K})$, vs. $T_{\text {eff }}$. Indicated is the T^{3} slope (dashed lines) for the active and nonactive stars as discussed in the text. Also shown is Kelch et al.'s (1979) $T^{3.7}$ slope (dotted line) for comparison purposes. This line has been arbitrarily shifted for better display. The Sun is also indicated (\odot). (b) R_{HK} vs. $T_{\text {eff }}$. (c) H α core emission equivalent width vs. $T_{\text {eff }}$. The vertical bars indicate the range of $\mathrm{H} \alpha$ variations seen in some of the stars (Table 6B). The mean $\mathrm{H} \alpha$ emission equivalent width for FK Com is $3.3 \AA$ (Walter and Basri 1982) but is highly variable (values up to $10 \AA$ were measured). This is schematically indicated by the arrow. (d) $\log \mathscr{F}$ (C iv) vs $T_{\text {eff }}$. The stars plotted are the same ones as in the other panels. C iv emission-line fluxes have been taken from Simon and Fekel (1987). Several temperature slopes are indicated. Note that the active stars lie well above the $T^{7 \ldots 10}$ trend of most of the inactive and less active stars.

c) Dependence of Activity on Rotation

Rutten and Schrijver (1987) reject the use of the convective turnover time, τ_{c}, to scale the rotation period as introduced by Noyes et al. (1984), mostly because it introduces modeldependence but also because \mathscr{F} versus P for several UV ions shows the same amount of scatter as the relation \mathscr{F} versus
P / τ_{c}. In this paper we follow this precept and use directly the rotation periods as derived from broad-band photometric variations or H and $\mathrm{K}\langle S\rangle$ index variations. Note that some stars have been plotted with a rotation period derived from $v \sin i$. These approximate periods are computed from our $v \sin i$ measures as indicated in Table 2 with stellar radii from the Landolt-Börnstein tables (Schmidt-Kaler 1982), and cor-

Fig. $6 a$

Fig. $6 c$
Fig. 6.-Rotation-activity relations. (a) $\log \mathscr{F}^{\prime}(\mathrm{H}+\mathrm{K})$ vs. rotation period P. The subgiant to the right is HR 1362; its arrow head indicates half of the measured period (see text). The Sun is indicated as \odot. (b) R_{HK} vs. rotation period. (c) $\mathrm{H} \alpha$ core emission equivalent width vs. rotation period. The arrow indicates the position of FK Com with an $\mathrm{H} \alpha$ equivalent width mean value of $3.3 \AA$. The subgiant in the upper right part, HD 12545, is plotted with the orbital period of 23.9 days.
recting for $\langle\sin i\rangle=\pi / 4$

$$
\begin{equation*}
P_{\mathrm{rot}}(v \sin i)=39.7 \frac{R}{v \sin i} \tag{8}
\end{equation*}
$$

where the period P is in days, the radius R in solar radii, and $v \sin i$ in $\mathrm{km} \mathrm{s}^{-1}$. In the case of short-period binaries without

Fig. $6 b$
a photometric period determination, we have assumed synchronization and used their orbital periods (Table 2). The unnormalized Ca II H and K fluxes are plotted against rotation period P in Figure $6 a$. Excluded are double-lined spectroscopic binaries with composite emission lines; included are some stars taken from the literature and listed in Table 7 in the Appendix. No single relation can be employed for all luminosity classes. There is clear evidence that evolved stars are generally more active than main-sequence stars of the same rotation period. Perhaps this really means that surface rotational velocity is the more relevant parameter, since the giants must be rotating faster than dwarfs if the rotation periods are equal.

Another interesting feature in Figure $6 a$ is the discontinuity in the surface flux at $\log \mathscr{F}(\mathrm{H}+\mathrm{K}) \sim 6.0$ for the giant stars (but less pronounced for the dwarf stars). For comparison purposes we have plotted R_{HK} in Figure $6 b$. These data are also in agreement with the expected trend that more rapidly rotating stars have larger R_{HK} but there appears to be a stronger segregation of evolved and unevolved stars plus additional scatter partially introduced by the uncertainties of the spectral type- $T_{\text {eff }}$ relation. The gap, however, is more visible in the $R_{\mathrm{HK}}-\log P$ plane. We may speculate that this gap represents the onset of chromospheric activity in evolved stars at almost exactly 80 days. An interesting star in Figures $6 a$ and $6 b$ is HR 1362, a single G8 subgiant, with a (photometric) rotation period of ≈ 310 days (Strassmeier and Hall 1988) and very strong Ca II H and K emission. It is however not absolutely clear if the 310 day period or half of that is the correct period (this is indicated in Fig. 6 with an arrow). No matter which rotation period is the correct one, it is currently the longest known for a chromospherically active star and does not fit in the above mentioned trend.

The $\mathrm{H} \alpha$ activity-rotation relation (Fig. $6 c$) is quite similar to that of the Ca II surface fluxes. This is not surprising since both lines originate at approximately the same temperature

Fig. $7 a$

Fig. $7 b$

Fig. 7.-The role of duplicity in the rotation-activity relation (a) for main-sequence stars and (b) for evolved stars. The filled symbols indicate binaries; the open symbols, single stars. The Sun is indicated as \odot, and the arrow indicate $1 / 2 P_{\text {phot }}$ for HR 1362 . The most active unevolved stars are all members in binary systems, while the most active evolved stars can be found in binaries as well as single stars. The two very active, evolved single stars in the upper left-hand corner are HD 36705 (at $\log P \sim-0.25$) and FK Com. The two binary stars in the right panel within the activity gap at $\log \mathscr{F}(\mathrm{H}+\mathrm{K}) \sim 6.0$ are η Boo $(\log P \sim 1.0)$ and HR $4430(\log P \sim 2.0)$. Both stars are problematic entries for this figure since the rotation period of η Boo is derived from $v \sin i$ and an assumption for the radius, while HR 4430 is plotted with the orbital period of 75 days.

FIG. 8.-Full sample in the temperature-rotation-activity space. Three outstanding systems have been marked. Note the general decline of activity with rotation and temperature.
level in the chromosphere. Figure $6 c$ also shows the same trend as the Ca II data in that the evolved stars are more active than their main-sequence counterparts for the same rotation period. The arrow at the upper edge of the plot indicates the position of FK Com with a mean $\mathrm{H} \alpha$ emission of $+3.3 \AA$ (Walter and Basri 1982). HD 17433 was originally classified as a G9 dwarf but Bopp et al. (1989) revised its spectral type to a K3-4 star which is slightly above the main sequence. Another interesting star in Figure $6 c$ is the singlelined G5 IV binary star HD 12545 which has quite strong H α emission. However, note that, since no rotation period has been observed, we have assumed synchronization and used the orbital period (24 days) as the rotation period which might turn out to be not true. Also note that HR 1362 (arrow in the lower right-hand corner) is well within the expected activity-rotation trend-as opposed to its Ca II behavior.

Activity-rotation plots from the C IV line can be found in Rutten and Schrijver (1987), Simon and Fekel (1987), Simon, Herbig, and Boesgaard (1985) and others.

d) Single Stars versus Binaries

Shown in Figure 7 is the activity-rotation relation for the same data set as in Figure $6 a$ but subdivided into unevolved and evolved, single and binary stars. The full sample displayed in Figure $7 a$ and $7 b$ consists of 23 unevolved and 52 evolved stars in binary systems, and 14 unevolved and 26 evolved single stars, respectively.

From this figure it is obvious that a cool evolved star in a close binary is more active than a single main-sequence star of the same rotation period (compare also with Fig. 6a). Basri, Laurent, and Walter (1985) arrived at the same conclusion using hotter (UV) diagnostics as activity indicators. While a main-sequence star in a binary system is generally more active than a single star (Fig. 7a), simply because it can have a higher rotation period due to tidal coupling, this is not true for the evolved stars. The plot of the observed sum of the surface fluxes in our evolved star subsample (Fig. 7b) shows single stars well mixed with binaries of the same rotation period.

$$
\text { e) The } P_{\mathrm{rot}}-T_{\mathrm{eff}} \text { Plane }
$$

Simon, Herbig, and Boesgaard (1985) have shown that it might be possible to predict a star's age from the measured emission-line flux. They investigated a sample of solar-type stars of $B-V=0.6\left(\left\langle M / M_{\odot}\right\rangle=1.1\right)$ and found a tight function between $\log R\left(\mathrm{C}\right.$ IV) and $P_{\text {rot }} / \tau_{c}$ and substituted this relation into a functional age- $R\left(\begin{array}{c}\mathrm{C} \\ \mathrm{IV})\end{array}\right.$ law derived from a modification of Duncan's (1981) calibration of lithium abundances. From the Mount Wilson H and K data Duncan (1984) found a nearly linear relationship between rotation and color within $1.5<P_{\text {rot }}<12$ days and $0.4<B-V<0.85$ for the Hyades main-sequence stars. Simon, Herbig, and Boesgaard (1985) used this relationship to check their predictions.

Our sample consists of unevolved stars within a mass range from $0.67 M_{\odot}(\mathrm{K} 5)$ to $1.3 M_{\odot}(\mathrm{F} 6)$ and evolved stars from, say, $1.0 M_{\odot}$ to $3 M_{\odot}$. Because almost all of our stars lack an age determination, we cannot repeat Simon et al.'s analysis
scheme, but we may plot our sample in the $P_{\text {rot }}-T_{\text {eff }}$ plane and investigate its dependence upon activity. This is demonstrated in the pseudo-three-dimensional plot in Figure 8. Plotted is the above mentioned sample (stars of luminosity class V, IV, III, singles and binaries) in the temperature-rota-tion-activity space. The slope of the surface in this threedimensional plot demonstrates the decline of activity [expressed as $\log \mathscr{F}^{\prime}(\mathrm{H}+\mathrm{K})$] with slower rotation and cooler temperature. Due to the mix of stars of different evolutionary status and large mass range, we do not attempt to quantify this behavior. Instead we want point out some details in this figure: (1) the major trend is from the back upper corner to the front lower corner, i.e., from high temperature and fast rotation to low temperature and slow rotation; (2) note that no stars cooler than $\approx 4000 \mathrm{~K}$ are plotted due to a lack of measured rotation periods for the late K and early M dwarf stars in our sample; (3) also note the lack of hotter stars ($\approx 6000 \mathrm{~K}$) at long periods (≈ 100 days) and cooler stars at short periods (≈ 1 day); (4) several of the very active stars stand out from the general trend and have been marked (HD 36705, FK Com, and HR 1362).

Fig. 9.-Top panel: Unnormalized CA II K flux in $\mathrm{ergs}_{\mathrm{cm}} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$ vs. measured $\mathrm{H} \alpha$ equivalent width (EW) in angströms, where the minus sign indicates absorption and the plus sign emission. Lower panel: $\mathrm{Ca}_{\mathrm{II}} \mathrm{K}$ flux vs. $\mathrm{H} \alpha$ core emission EW. The arrow in both panels indicates the $\mathrm{H} \alpha$ EW of FK Comae with very strong and variable emission of +2 to +10 \AA (Walter and Basri 1982). The group of stars at $\log \mathscr{F}^{\prime}(\mathrm{K}) \approx 5.4$ (top panel) are the $\mathrm{H} \alpha$ reference stars which were also measured at Ca II K . For stars with $\log \mathscr{F}^{\prime}(\mathrm{K})>6.0$ there is a correlation between radiative loss in the K line and equivalent width of the $\mathrm{H} \alpha$ line. A puzzling point in the top panel is the rapidly rotating single G0 giant 31 Com with large radiative loss in the K line of $\log \mathscr{F}^{\prime}=6.64$ but strong $\mathrm{H} \alpha$ absorption of -2.1 Å.

f) Observed $\mathrm{Ca} \operatorname{II} \mathrm{K}-\mathrm{H} \alpha$ Diagram

We now turn to Figure 9, the upper panel of which contains a plot of our measured core equivalent widths in angstroms (the minus sign is for absorption, the plus sign for emission) against unnormalized Ca II K line flux for giants (dots), subgiants (pluses), and dwarfs (circles). The lower panel of the figure is an identical plot for the determined $\mathrm{H} \alpha$ core emission equivalent width in \AA (program star minus reference star). The vertical bars indicate the range of $\mathrm{H} \alpha$ variations of some of the stars from Table 6B (for clarity the bars are omitted in the upper panel and only the mean values are plotted).

Comparison of the distribution in the upper panel of Figure 9 with loci from model chromosphere calculations by Cram and Giampapa (1987), their Figure 2, suggests chromospheric temperatures of around 8000 K and a variety of different mass column densities. However, caution is in order if our data are compared to others because our "equivalent width" is defined so that it does not include the line wings. It
is therefore somewhat smaller than the normally defined equivalent width. The trend in the measured $\mathrm{H} \alpha$ equivalent width- $\log \mathscr{F}^{\prime}\left(\mathrm{Ca}_{\text {II }} \mathrm{K}\right)$ plane (Fig. 9, upper panel) is that with increasing K line flux the $\mathrm{H} \alpha$ absorption core first deepens until $\log \mathscr{F}^{\prime}(\mathrm{K}) \sim 5.8$ ergs $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ is reached and then fills in quite rapidly. This is exactly what one would expect from a simple one-component (isothermal) model chromosphere (Cram and Giampapa 1987).

We appreciate the careful reading of the manuscript by Mark S. Giampapa and his helpful comments. K. G. S. acknowledges the financial support of the Austrian Bundesministerium für Wissenschaft und Forschung and of the American Astronomical Society (Henri Chrétien Award). In addition, this project was partially supported by NASA grant NAG 8-111 to Tennessee State University. Research in stellar activity at the University of Toledo is supported by the National Science Foundation through grant AST 85-20542.

APPENDIX A

PREVIOUSLY PUBLISHED Ca iI H AND K FLUXES INCLUDED IN THE ANALYSIS

We list in Table 7 previously measured values of the uncorrected emission-line fluxes, rotation periods, and effective temperatures for several stars in common with the present data set. A few additional stars are listed which have been included in our analysis. Note that some of these fluxes have been originally derived with another value for $V-R$ and differ therefore significantly from the fluxes listed in Table 3 (e.g., σ Gem) but have been recomputed using the same $V-R$ before plotting. The flux for Gliese 380 is a mean value from the two sources. We emphasize that Table 7 is not intended to give a complete listing of all previously published H and K fluxes.

TABLE 7
Previously Published Ca ii H and K Fluxes for Chromospherically Active Stars Used in Some of the Analyses in this Paper

Star Name	HD	$\begin{gathered} \log \mathscr{F}\left(\mathrm{K}_{1}\right) \\ (\mathrm{ergscm} \\ \left.\mathrm{s}^{-1}\right) \end{gathered}$	$\begin{gathered} \log \mathscr{F}\left(\mathrm{H}_{1}\right) \\ (\mathrm{ergs} \mathrm{~cm} \\ \left.\mathrm{s}^{-1}\right) \end{gathered}$	$\begin{gathered} \hline P_{\text {rot }}{ }^{\text {a }} \\ \text { (days) } \end{gathered}$	$\begin{aligned} & \hline T_{\text {eff }}{ }^{b} \\ & (\mathrm{~K}) \end{aligned}$	Reference for \mathscr{F}
BD Cet	1833	6.49	6.52	34.46	4600	1
13 Cet	3196		6.57	2.082	5800	2
ζ And	4502	5.94	6.04	17.7692	4450	3
AY Cet	7672	6.43	6.32	77.22	5150	4
AR Psc	8357	6.46	6.46	12.245	5235	4
BD $-0^{\circ} 210$	8358	6.95	7.04	0.52	5770	5
VY Ari	17433	6.83	6.83	$17.4{ }^{\text {c }}$	5410	4
LX Per	.	6.11	5.93	7.905	5000	3
LX Per		6.38	6.35	7.905	5000	6
UX Ari	21242	6.63	6.53	6.438	5000	3
V711 Tau a...	22468	6.46	6.41	2.841	4840	3
V711 Taub.	22468	6.05	6.12	2.841	5460	7
BD $+26^{\circ} 730$		6.04	5.97	1.9	4350	1
AB Dor	36705	6.92		$0.514^{\text {d }}$	5000	2
TW Lep	37847	6.70	6.64	28.22	4900	4
$\mathrm{BD}+3^{\circ} 1007$	37824	6.11	6.11	$54.1{ }^{\text {e }}$	4600	4
σ Gem.	62044	5.85	5.76	19.410	4600	3
σ Gem.	62044	5.77	5.73	19.410	4600	8
HR 3385	72688	5.98	5.91	19.34	4750	7
TY Pyx	77137	6.51	6.49	3.198	5460	3

TABLE 7-Continued

Star Name	HD	$\begin{gathered} \log \mathscr{F}\left(\mathrm{K}_{1}\right) \\ \left(\mathrm{ergs} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right) \end{gathered}$	$\begin{gathered} \log \mathscr{F}\left(\mathrm{H}_{1}\right) \\ (\mathrm{ergscm} \\ \left.\mathrm{s}^{-1}\right) \end{gathered}$	$\begin{gathered} P_{\mathrm{rot}}{ }^{\text {a }} \\ \text { (days) } \end{gathered}$	$\begin{aligned} & T_{\text {eff }}{ }^{\mathrm{b}}(\mathrm{~K}) \end{aligned}$	Reference for \mathscr{F}
IL Hya	81410	6.30	6.48	12.89	4600	3
24 UMa	82210	6.30	6.26	$50 .{ }^{\text {f }}$	5200	3
Gliese 380	88230	4.99	4.96		4060	4, 9
DH Leo	86590	7.04	6.87	1.0665	4060	
DK Dra a ${ }^{\text {b }}$	106677	6.43	6.36	63.75	(4600)	3
AS Dra a.	107760	5.72	5.91	5.415	5800	10
AS Dra b	107760	5.87	5.56	5.415	5410	10
$\mathrm{BD}+26^{\circ} 2347 \mathrm{a}$.	108102	6.52	6.28	0.82	6200	10
$\mathrm{BD}+26^{\circ} 2347 \mathrm{~b}$	108102	6.46	6.43	0.82	5200	10
UX Com	...	7.06	7.04	3.642	4840	10
RS CVn	114519	6.08	5.99	4.791	5000	3
RS CVn	114519	6.26	6.30	4.791	5000	10
$\sigma^{2} \mathrm{CrBa}+\mathrm{b}$	146361	7.00	7.00			4
$\sigma^{2} \mathrm{CrBa}$	146361	6.61	6.67	$1.168^{\text {e }}$	6400	10
$\sigma^{2} \mathrm{CrBb}$	146361	6.75	6.76	1.168	6030	10
WW Dra	150708	6.34	6.20	4.6296	5000	3
HR 6469	157482	6.62	6.53	$81.9{ }^{\text {e }}$	5460	4
Z Her	163930	5.63	5.61	$3.97{ }^{\text {e }}$	5000	10
V815 Her	166181	6.76	6.79	$1.82^{\text {e }}$	5770	4
V815 Her	166181	6.64	6.62	1.82	5770	10
BY Dra a + b	234677	5.58	5.58	3.827	4060	4
HR 7275	179094	6.48	6.40	27.8	4720	4
V1764 Cyg	185151	5.52	5.38	$40.3{ }^{\text {e }}$	4600	4
BD $+43^{\circ} 3759$	199178	6.75	6.73	$3.337^{\text {g }}$	5300	1
EQ Vir	...	5.92	5.80	$3.96{ }^{\text {h }}$	4350	8
RT Lac a + b	209318	6.62	6.59	5.074	5000	3
AR Lac a + b	210334	6.15	6.08	1.983	5000	3
V350 Lac	213389	6.04	6.08	17.755	4420	4
IM Peg	216489	6.86	6.78	24.39	4380	
SZ Psc...	219113	6.52	6.56	3.955	5000	
SZ Psc..	219113	6.58	6.57	3.955	5000	6
λ And.	222107	6.23	6.23	53.95	5070	3
λ And.	222107	6.23	6.20	53.95	5070	8
HR 9024	223460	6.66	6.72	$22.61{ }^{\text {i }}$	5650	4

[^4]

Fig. 10.-Individual Ca II H and K line profiles for the stars listed in Table 3 (representative examples)

Fig. 10-Continued

Fig. 10-Continued

Fig. 10-Continued

Fig. 10-Continued

Fig. 10-Continued

Fig. 10-Continued

FIG. 10-Continued

Fig. 10-Continued

Fig. 10-Continued

Fig. 10-Continued

Fig. 10-Continued

Fig. 10-Continued

REFERENCES

Baliunas, S. L., et al. 1983, Ap. J., 275, 752.
Barden, S. C. 1985, Ap. J., 295, 162.
Barden, S. C., and Nations, H. L. 1988, private communication.
Barnes, T. G., and Evans, D. S. 1976, M.N.R.A.S., 174, 489.
Basri, G. 1987, Ap. J., 316, 377.
Basri, G., Laurent, R., and Walter, F. M. 1985, Ap. J., 298, 761.
Beavers, W. I., and Griffin, R. F. 1979, Pub. A.S.P., 91, 824.
Bopp, B. W. 1983, in IAU Colloquium 71, Activity in Red Dwarf Stars, ed.
P. B. Byrne and M. Rodonó (Dordrecht: Reidel), p. 363.

1984, Ap. J. Suppl., 54, 387.
Bopp, B. W., Africano, J. L., Stencel, R. E., Noah, P. V., and Klimke, A. 1983, Ap. J., 275, 691.
Bopp, B. W., Ake, T. B., Goodrich, B. D., Africano, J. L., Noah, P. V.,
Meredith, R. J., Palmer, L. H., and Quigley, R. 1985, Ap. J., 297, 691.
Bopp, B. W., Dempsey, R. C., and Maniak, S. 1988, Ap. J. Suppl., 68, 803.

Bopp, B. W., and Fekel, F. C. 1977, A.J., 82, 490.
Bopp, B. W., Saar, S. H., Ambruster, C., Feldman, P., Dempsey, R., Allen, M., and Barden, S. C. 1989, Ap. J., 339, 1059.
Campbell, B. 1984, Ap. J., 283, 209.
Cayrel, R., Cayrel de Strobel, G., Campbell, B., Mein, N., Mein, P., and Dumont, S. 1983, Astr. Ap., 123, 89.
Cram, L. E., and Giampapa, M. S. 1987, Ap. J., 323, 316.
Deslandres, H. A,. and Burson, V. 1922, C. R. Acad. Sci., Paris, 175, 121.

Duncan, D. K. 1981, Ap. J., 248, 651.
1984, in Cool Stars, Stellar Systems, and the Sun, ed. S. L. Baliunas and L. Hartmann (Berlin: Springer), p. 128.
Eberhard, G., and Schwarzschild, K. 1913, Ap. J., 38, 292.
Fekel, F. C., Moffett, T. J., and Henry, G. W. 1986, Ap. J. Suppl., 60, 551.

Fernández-Figueroa, M. J., de Castro, E., Montesinos, B., Barreiro, F. J., Giménez, A., and Reglero, V. 1986a, Adv. Space Res., 6, 187.
Fernández-Figueroa, M. J., Montesinos, B., de Castro, E., Rego, M., Giménez, A., and Reglero, V. 1986b, Astr. Ap., 169, 219.
Giampapa, M., S., Worden, S. P., Schneeberger, T. J., and Cram, L. E. 1981, Ap. J., 246, 502.
Gray, D. F. 1982, Ap. J., 262, 682.
Griffin, R. F., and Radford, G. A. 1976, Observatory, 96, 188.
Hartmann, L., Soderblom, D. R., Noyes, R. W., Burnham, N., and Vaughan, A. H. 1984, Ap. J., 276, 254.
Herbig, G. H. 1985, Ap. J., 289, 269.
Johnson, H. L. 1966, Ann. Rev. Astr. Ap., 4, 193.
Keenan, P. C. 1983, Bull. Information CDS, No. 24, p. 19.

Kelch, W. L., Linsky, J. L., and Worden, S. P. 1979, Ap. J., 229, 700.
Linsky, J.L., and Ayres, T. R. 1978, Ap. J., 220, 619.
Linsky, J. L., Worden, S. P., McClintock, W., and Robertson, R. M. 1979, Ap. J. Suppl., 41, 47.
Lloyd-Evans, T. 1987, S. A.A.O. Circ., No. 11, p. 73.
Middelkoop, F. 1982, Astr. Ap., 107, 31.
Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K., and Vaughan, A. H. 1984, Ap. J., 279, 763.
Pasquini, L., Pallavicini, R., and Pakull, M. 1988, Astr. Ap., 191, 253.
Pilachowski, C., and Barnes, J. 1987, IRAF Reduction of Coudé /CCD Spectra (Tucson: NOAO/KPNO).
Rutten, R. G. M. 1987, Astr. Ap., 177, 131.
Rutten, R. G. M., and Schrijver, C. J. 1987, Astr. Ap., 177, 155.
Schmidt-Kaler, T. 1982, in Landolt-Börnstein, Vol. 2b, ed. K. Schaifers and H. H. Voigt (Heidelberg: Springer), p. 1.
Simon, T., and Fekel, F. C. 1987, Ap. J., 316, 434.
Simon, T., Herbig, G., and Boesgaard, A. M. 1985, Ap. J., 293, 551.
Smith, S. E. 1984, Ph.D. thesis, The University of Toledo.
Smith, S. E., and Bopp, B. W. 1982, Ap. Letters, 22, 127.
Soderblom, D. R. 1985, A.J., 90, 2103. . 1989, Ap. J., 342, 823.
Stern, R. A., Nousek, J. A., Nugent, J. J., Agrawal, P. C., Riegler, G. R., Rosenthal, A., Pravdo, S. H., and Garmire, G. P. 1981, Ap. J. (Letters), 251, L105.
Strassmeier, K. G., and Hall, D. S. 1988, Ap. J. Suppl., 67, 453.
Strassmeier, K. G., Hall, D. S., Boyd, L. J., and Genet, R. M. 1989, Ap. J. Suppl., 69, 141.

Strassmeier, K. G., Hall, D. S., Zeilik, M., Nelson, E., Eker, Z., and Fekel, F. C. 1988, Astr. Ap. Suppl., 72, 291.
Strassmeier, K. G., Weichinger, S., and Hanslmeier, A. 1986, Inf. Bull. Var. Stars, No. 2937.
Tomkin, J. 1980, A.J., 85, 294.
Uesugi, A., and Fukuda, I. 1982, Revised Catalog of Stellar Rotational Velocities (Kyoto: Kyoto University).
Vaughan, A. H., and Preston, G. W. 1980, Pub. A.S.P., 92, 385.
Vogt, S. S. 1981, Ap. J., 247, 975.
Walter, F. M., and Basri, G. S. 1982, Ap. J., 260, 735.
Wellmann, P. 1940, Zs. Ap., 19, 236.
Willstrop, R. V. 1964, Mem. R.A.S., 69, 83.
Wolff, S. C., Boesgaard, A. M., and Simon, T. 1986, Ap. J., 310, 360.
Worden, S. P., Schneeberger, T. J., and Giampapa, M. S. 1981, Ap. J. Suppl., 46, ī59.
Zarro, D. M., and Rodgers, A. W. 1983, Ap. J. Suppl., 53, 815.

Bernard W. Bopp and Robert C. Dempsey: Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606
Francis C. Fekel and Klaus G. Strassmeier: Department of Physics and Astronomy, Vanderbilt University, Box 1807B, Nashville, TN 37235

Gregory W. Henry: Center of Excellence in Information Systems Engineering, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209-1561

[^0]: ${ }^{1}$ Visiting Astronomer, Kitt Peak National Observatory, operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

[^1]: ${ }^{2}$ IRAF is distributed by National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

[^2]: ${ }^{\mathrm{a}}$ The value in parentheses is the power of 10 .
 ${ }^{\mathrm{b}}$ Both components show H and K emission. The given fluxes have been corrected for the presence of two continua (see Table 2).
 ${ }^{\text {c }}$ Both components show H and K emission. The given fluxes are the combined fluxes from both components.
 ${ }^{\mathrm{d}}$ Fluxes are contaminated by the continuum of the (presumably hotter) secondary component.
 ${ }^{\mathrm{e}}$ This measure is approximately our lower limit for reliable fluxes from the $0.24 \AA$ KPNO data.
 ${ }^{\mathrm{f}}$ This measure is approximately our lower limit for reliable fluxes from the $0.9 \AA$ DAO data.
 ${ }^{\mathrm{g}} \mathrm{H}$ and K emission too weak to measure (see Fig. 10).

[^3]: ${ }^{\text {a }}$ Equivalent widths are contaminated by an unknown amount of continuum of the secondary component. No correction has been applied.
 ${ }^{\mathrm{b}} \mathrm{Ca}_{\text {II }} \mathrm{H}$ and K emission from both components resolved. We assumed equal continua due to the nearly identical absorption line strengths and multiplied the measured equivalent widths by a factor of 2 .
 ${ }^{c}$ Both components show H and K emission but the lines are blended in our spectra. Due to the similarity of the spectral types, however, no corrections for continuum are necessary.

[^4]: ${ }^{\text {a }}$ If not otherwise noted, taken from the CABS catalog.
 ${ }^{\mathrm{b}}$ From the spectral type- $T_{\text {eff }}$ relation in Landolt-Börnstein (Schmidt-Kaler 1982).
 ${ }^{\text {c }}$ Bopp et al. 1989.
 ${ }^{\mathrm{d}}$ Lloyd-Evans 1987.
 ${ }^{\text {e }}$ Strassmeier et al. 1989.
 ${ }^{\text {f }}$ Period estimated from $v \sin i$.
 ${ }^{\text {B }}$ Bopp et al. 1983.
 ${ }^{\mathrm{h}}$ Bopp and Fekel 1977.
 ${ }^{\text {i }}$ Strassmeier and Hall 1988.
 References.-(1) Bopp et al. 1983; (2) Pasquini et al. 1988; (3) Bopp 1983; (4) Bopp 1984; (5) Bopp et al. 1985; (6) Fernandes-Figuero et al. 1986a; (7) Smith 1984; (8) Linsky et al. 1979; (9) Giampapa et al. 1981; (10) Fernandes-Figuero et al. 1986 b.

