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Summary 

Psoriasis is a common, chronic inflammatory skin disease associated with arthritis 

and multiple comorbidities. Autoantigens in the skin elicit a response in cytotoxic T 

cells, leading to local inflammation and recruitment of Th1 and Th17 cells from the 

blood. There is a complex immunological interplay between cytokines and cells from 

the innate and adaptive immune system, creating self-sustaining amplification loops. 

Increased levels of inflammatory cytokines and cells have been detected in blood 

from psoriasis patients. This notion, together with mechanistic similarities in 

establishment of psoriatic and atherosclerotic plaques, probably contributes to the 

increased prevalence of cardiovascular disease in psoriasis patients, however, this 

link needs to be further elucidated. 

No cure for psoriasis exists, and treatments aim at amelioration of symptoms. 

If topical treatments or UV-light are not effective enough, systemic medication 

including methotrexate, ciclosporin, fumarate or acitretin can be tried. Biological 

drugs specifically targeting the key cytokines TNF, IL-12/23 and IL-17 are available 

if conventional treatment is insufficient or contraindicated. However, these newer 

drugs are not accompanied by similarly precise laboratory analyses to aid selection of 

a specific drug for individual patients. As adverse events and loss of effect can be 

encountered, the switching from original to cheaper biosimilar drug has been 

controversial.  

The overall aim of this thesis was to study the blood immune system in 

psoriasis during active inflammation and treatment with biological drugs, in the 

search for disease specific immune signatures and biomarkers. In Study I, Luminex® 

Technology was used to investigate if serum cytokine levels could reflect psoriasis 

activity. In Study II, we compared impact of switching from original TNF inhibitor 

infliximab to biosimilar CT-P13 in psoriasis patients, both evaluating clinical 

parameters and effect on peripheral blood cells and their intracellular signalling, 

measured by phosphoflow cytometry. In Study III, single cell analysis of blood 

immune subsets, with special emphasis on the T cell lineage and intracellular 
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signalling, was explored by use of mass cytometry. In all studies, clinical parameters 

including Psoriasis Area and Severity Index and Dermatological Life Quality Index 

were incorporated in analyses. 

The results indicate that cytokine and single cell analysis of blood can be 

useful methods for describing the complex systemic immunological picture in 

psoriasis. In Study I, logistic regression revealed higher risk of having severe 

psoriasis with increased IL-17A. Increase of IL-2 positively correlated with 

improvement of PASI and DLQI. Moreover, increase of IL-5, IL-10, IL-12, IL-22 

and GM-CSF correlated with treatment effect.  

In Study II, intracellular phosphorylation levels in peripheral blood 

mononuclear cells were increased in psoriasis patients compared to healthy controls. 

This increased signalling activity decreased during continued treatment with 

infliximab, but did not completely normalize despite clinical remission. Switching 

from original to biosimilar infliximab did not affect laboratory findings, like cell 

abundance and phosphorylation levels, or clinical parameters. 

Study III revealed that biological therapy of psoriasis facilitated a shift in the 

balance of Th1 and Th2 cells in blood, transition from naïve/effector to memory 

predominance, reduction of circulating Th17, Th22, Th9 and CD8 cells and 

enhancement of inhibitory PD-1 expression on T cells. In the monocyte compartment, 

changes in favor of reduced cardiovascular risk were observed. Intracellular 

phosphorylation of blood immune cells was higher in psoriasis patients compared to 

healthy controls and in non-responders to treatment compared to responders. 

 In conclusion, multiple aberrancies in circulating cells and cytokines were 

detected in patients with severe psoriasis, confirming that systemic inflammation is a 

trait of psoriasis. Further research can highlight the role of cytokines and peripheral 

blood mononuclear cells as potential tools for stratification of patients for 

personalized treatment. Optimized therapeutic strategies might alter the chronic 

course of psoriasis with positive implications on quality of life and long-term 

comorbidities. 
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Abbreviations 

ADA Antidrug antibodies 
APC Antigen Presenting Cell 
BC Barcode 
BMI Body Mass Index 
CCL20 Chemokine (C-C motif) ligand 20 
CCR4 (6, 10) C-C chemokine receptor type 4 (6, 10)
CD Cluster of Differentiation
CLA Cutaneous lymphocyte-associated antigen
CRP C Reactive Protein
CT Computed Tomography
CTCL Cutaneous T Cell Lymphoma
CTP-13 Infliximab biosimilar
CVD Cardiovascular disease
CXCL Chemokine (C-X-C motif) ligand
CXCR3 Chemokine receptor type 3
CyA Ciclosporin 
DC Dendritic cell 
DLQI Dermtological Life Quality Index
DM Diabetes Mellitus
DMF Dimethyl Fumarate
DMSO Dimethyl sulfoxide
DNA Deoxyribonucleic acid
EDTA Ethylenediaminetetraacetic acid
e.g. exempli gratia
ERK Extracellular signal–Regulated Kinases
FC Fold Change 
FDA Food and Drug Administration
FlowSOM Flow Self-Organizing Maps
GWAS Genome-Wide Association Study
HC Healthy Controls
HL Hodgkin Lymphoma
HLA Human Leukocyte Antigen 
i.e. id est 
IFN Interferon 
IFX Infliximab 
IL Interleukin 
ILC Innate Lymphoid Cell
IL-1RA Interleukin Receptor Antagonist
JAK Janus Kinase 
KC Keratinocyte 
LFA Lymphocyte Function-associated Antigen
LL37 Cathelicidin 
MAPK Mitogen-Activated Protein Kinase
MC Monocyte 



 13

mDC Myeloid Dendritic Cell
MFI Median Fluorescence Intensity
MHC Major Histocompability Complex
MSI Median Signal Intensity
MST Minimum Spanning Tree
MTX Methotrexate
NET Neutrophil Extracellular Trap
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B 

cells 
NHL Non-Hodgkin Lymphoma
NK Natural Killer cell
NKT Natural Killer T cell
NO Nitric Oxide 
PASI Psoriasis Area and Severity Index
PBMC Peripheral Blood Mononuclear Cell
pDC Plasmacytoid Dendritic Cell
PET Positron Emission Tomography
PFA Paraformaldehyde
PMT Photomultiplier
PsA Psoriasis Arthritis
PSORS Psoriasis Susceptibility Loci
pSTAT Phosphorylated Signal Transducer and Activator of 

Transcription
PUVA Psoralen and ultraviolet A
RA Rheumatoid Arthritis
RNA Ribonucleic Acid
SNP Single Nucleotide Polymorphism
SPSS Statistical Package for the Social Sciences
STAT Signal Transducer and Activator of Transcription
Tbet T-box expressed in T cell
Tc Cytotoxic T cell
TGF-β Transforming Growth Factor beta
Th Helper T cell
TL01 Narrow-band UVB
TLR Toll Like Receptor
TNF Tumor Necrosis Factor
Treg Regulatory T cell
Trm Tissue-resident memory cell
TYK Tyrosine Kinase
T1, T2, T3 Timepoint 1, 2, 3
UV Ultraviolet light



 14

1. Introduction 

1.1 Background psoriasis 

1.1.1 Historical overview 

The word psoriasis originates from the Greek psora– which means "itch" and –iasis 

which means "condition", i.e. “itching condition” 1,2. The Corpus Hippocraticum 

aroud 300 B.C. is the first likely reference to psoriasis, and the first indisputable 

reference was around 50 B.C. in a medical text by A. C. Celsus 3. Historically there 

has been a semantic confusion related to psoriasis and lepra 1,4. Psoriasis vulgaris was 

described as a distinct entity in 1808 by R. Willan 1,5. In 2016, the World Health 

Organization published a global report on psoriasis  6. In light of the unmet needs 

related to treatment and management of psoriasis, more research is warranted. 

 

1.1.2 Epidemiology 

Psoriasis prevalence ranges from 0.1% to 11.4% in different ethnicities 7-9. In 

children, the prevalence is 0.4-2.0% and may present in different forms and 

localizations than later in life 6,10. Psoriasis can occur at any age, but the onset has 

two peaks, early (age 16-22), type I psoriasis, and late (age 57-66), type II psoriasis, 

with mean around 33 years 6,11-13. The early form is more often severe with a positive 

family history compared to the later form 11. Multiple studies have shown that 

psoriasis is equally prevalent in both sexes 6,14. 

 

1.1.3 Classification 

Psoriasis has been described as an organ-specific autoimmune disease that is 

triggered by an activated cellular immune system 15-17. Diagnosis of psoriasis is 

usually made on clinical findings and biopsy is only used to exclude other diagnoses. 

About 70-80% have mild disease, but intensity can fluctuate depending on internal 

and external factors. Spontaneous remission might occur, however, recurrent plaques 
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often appear in previously affected sites  6,18. At least five different presentations of 

psoriasis have been described (Figure 1) 6,19. 

Psoriasis vulgaris, the chronic plaque type of psoriasis, accounts for around 90% of 

cases 5,6. Typical lesions are sharply demarcated erythematous plaques covered by 

silvery scales (Figure 1 A-C) 6. Plaques are often symmetrical and may remain 

localized or become generalized over time. Predilection sites are extensor surfaces on 

elbows and knees, peri-umbilical, peri-anal, and retro-auricular regions. In addition, 

75-90% of patients have scalp involvement (Figure 1 E) 6,19,20. Frequently reported 

symptoms are scaling (92%), itching (72%), erythema (69%), fatigue (27%), swelling 

(23%), burning (20%) and bleeding (20%) (27). The characteristic tendency of skin 

injuries to trigger psoriasis lesions is known as the Koebner Phenomenon 21. Another 

characteristica, the Auspitz Sign, refers to the pinpoint bleeding that occurs when 

psoriasis scales are removed. 

Erythrodermic psoriasis affects above 90% of the body surface and is rare, but 

potentially life-threatening due to widespread erythema and exudative exfoliation 

(Figure 1 D). Triggering factors include withdrawal of systemic glucocorticosteroids, 

abrupt discontinuation of methotrexate, phototherapy burns or infections 19.  

Inverse psoriasis occurs in flexural and intertriginous areas and is usually devoid of 

scales (Figure 1 I) 6,20. 

Pustular psoriasis can appear in different forms. Generalised pustular psoriasis, von 

Zumbusch, is characterized by disseminated, dark erythematous patches with 

multiple sterile pustules (Figure 1 J, K) 6. The disease is potentially life-threatening. 

Localized forms of pustular psoriasis include pustulosis palmoplantaris in palms and 

soles, and acrodermatitis continua suppurativa (of Hallopeau) affecting the tips of 

fingers and toes (Figure 1 L, M).  

Guttate (droplet) psoriasis is often preceded by a streptococcal throat infection in 

children or young adults. Antigenic similarities between keratinocytes and 

streptococcal proteins might be the cause (Figure 1 N-Q) 22. Guttate psoriasis 
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presents as 1-2 cm large red plaques scattered over the body surface. Around 30% of 

children with guttate psoriasis develop plaque psoriasis later in life 23.   

        

 

 

 

 

 

 

Figure 1. Clinical manifestations of psoriasis. Typical erythematous plaques with silvery 
scales (A) can be scattered (B, psoriasis nummularis), cover larger areas of the skin (C, 
psoriasis geographica) or affect the entire body surface (D, erythrodermic psoriasis). Scalp 
involvement might be accompanied by non-scarring alopecia (E). Psoriatic arthritis affects up 
to 30% of all patients (F, thumb interphalangeal joint). Nail changes are frequent and range 
from pitting and yellow or brown discolouration (G) to complete dystrophy (H). Psoriasis 
inversa occurs in intertriginous areas and is usually devoid of scales (I). Pustular psoriasis 
might occur in a generalised form (J, K) or localised (L, palmoplantar type and M, 
acrodermatitis continua suppurativa type). In children, the onset as guttate psoriasis might 
follow streptococcal infection of the upper respiratory tract (N) and affect any site of the body 
(O,P,Q).  

Reprint from the Lancet, Volume 386, Boehncke W.H. et al, Psoriasis, pages 683-94, 6. © 
2015 with permission from Elsevier. 
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Psoriatic arthritis is an inflammatory, seronegative arthritis, which leads to joint 

deformations, bone erosion and disability in 20-30% of psoriasis patients usually 

debutating after several years of skin disease (Figure 1 F) 24-29. Peripheral arthritis 

and dactylitis (profuse swelling of the fingers or toes), spondylitis and enthesitis 

(inflammation of the sites where tendons insert into the bone) are considered to be the 

most common symptoms. 

Nail psoriasis occurs in 50% of patients at diagnosis with a lifetime prevalence of 

80-90% 6. Psoriatic nail changes include pitting, yellow/brown discolouration, 

thickening and in severe cases disabeling dystrophy (Figure 1 G, H) 6. 

 

1.1.4 Assessment of disease severity 

Psoriasis Area and Severity Index (PASI) is a validated tool that combines the 

assessment of the severity of lesions and the area affected into a single score ranging 

from 0 to 72 (maximal disease) 30. Scores above 10 are usually considered severe 

disease, scores above 30 are rarely encountered. The body is divided into four 

sections were head equals 10%, arms 20%, trunk 30%, and legs 40% of a 

person's skin. For each section, the percent of skin involved is estimated and then 

transformed into a grade from 0 to 6 (0, < 10, 10–29, 30–49, 50–69, 70–89, 90–100% 

of involved area). Within each area, the erythema (redness), induration (thickness) 

and desquamation (scaling) are estimated on a scale from 0-4 (maximum). The sum 

of these three severity parameters is calculated for each section, multiplied by the 

area score for that area and by predefined weight of respective section. Response to 

treatment is usually presented as a percentage response rate; e.g. PASI75 31,32. 

Interrater and intrarater variation can affect reproducibility 31.  

Dermatological Life Quality Index (DLQI) is well validated, also in Norwegian 

patients 33. The DLQI consists of 10 questions concerning adult patients' perception 

of the impact of skin diseases on different aspects of their quality of life over the last 

week. Each question is scored on a four-point scale (0-3) and the sum of all questions 

ranges from 0-30. The higher the score, the more quality of life is impaired.  
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Other measures of disease severity are Body surface area (BSA), Physician’s 

Global Assessment (PGA) and Nail Psoriasis Severity Index (NAPSI) 31. Screening 

for PsA, depression and metabolic disease should be considered in selected      

patients 6,34,35.  

 

1.1.5 Triggering factors 

In genetically predisposed individuals, external and internal triggers can provoke 

psoriasis 6. Skin injury, like mild trauma, sunburn and chemical irritants can induce 

psoriasis through Koebner phenomenon 6. Infections, in particular streptococcal 

throat infection, can be aggravating or initiating factors 36,37. T cells activated by 

streptococci migrate to the skin and cross-react with keratin self antigens presenting 

homology with streptococcal proteins. Tonsillectomy in patients with recurrent 

tonsillitis can improve the course of psoriasis 38. Systemic drugs such as β blockers, 

lithium, antimalarials and non-steroidal anti-inflammatory agents, in addition to 

withdrawal of systemic steroids, can exacerbate psoriasis 6. Stress, tobacco smoking 

and weight gain are other aggravating factors (34)39. Weight loss is associated with 

improvement of PASI in obese patients and obesity is associated with low treatment 

response 40-43. 

 

1.1.6 Genetics 

Genome-wide association studies (GWAS) have identified at least 12 major psoriasis 

susceptibility loci (PSORS) and near 40 single nucleotide polymorphisms (SNPs) 

associated with psoriasis 6,44,45. These include genes related to antigen presentation, 

kerationocyte proliferation and regulation of the immune system 46. 

The allele HLA-Cw6, psoriasis susceptibility locus 1 (PSORS1) is associated 

with early onset psoriasis and accounts for up to 50% of disease heritability 5,47,48. 

Since PSORS1 lies in the MHC class I region, which is important for antigen 
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presentation to CD8+ T cells, this locus links the genetics with the autoantigens in 

psoriasis 17,44. HLA-B57 is another MHC class I genotype associated with psoriasis 49. 

Some of the psoriasis susceptibility loci are involved in pathways for 

keratinization. PSORS4 gene locus is associated with epidermal differentiation 

pathways S100 proteins and defensins 50. 

Other psoriasis susceptibility loci correspond to genes that are associated with 

the adaptive and innate immune system like T and natural killer (NK) cell 

differentiation, proliferation and leukocyte adhesion. Genes involved in cytokine 

responses can have gain or loss of function, exemplified with increased activation for 

nuclear factor κB (NF-κB) pathway in Figure 2 44,46,51-57.  

  

 

Figure 2. Genetic associations with psoriasis have been found in both components that activate 
and components that repress the NF-κB pathway. It is likely that gain-of-function mutations in 
NF-κB activating components (left) and loss-of-function mutations in NF-κB inhibitory 
components (right) decrease the threshold for immune activation and the subsequent onset of 
psoriasis.  

Reprint from Journal of Autoimmunity, volume 64, Harden J.L. et al, The immunogenetics of 
Psoriasis: A comprehensive review, pages 66-73, 56. © 2015, with permission from Elsevier. 
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Genes related to interferon (IFN) and genes that encode interleukin (IL)-23A, 

IL-12B and IL-23R, amongst others in the IL-23/IL17 axis are associated with 

psoriasis 44,58-63. Genes related to inflammasome, IL-1β, caspase, IL-22 and IL-18 are 

also associated with psoriasis 64-66. Also of functional significance in psoriasis are 

genes involved in the JAK-STAT cascade that encode transcription factors TYK2 and 

STAT3 46,49. TYK2 is involved in signal transduction of IL-12/23 67. STAT3 is 

essential for differentiation of Th17 cells and promotes proliferation in keratinocytes 

(Figure 3) 56. 

 

|  

 

Figure 3. Genes in the IL-23 axis associated with psoriasis. IL-12 and IL-23 share a common 
subunit (p40) and chain in their heterodimeric receptor, IL-12RB1 andsignal though JAK-STAT 
signaling. IL-12 signaling activates STAT4, whereas IL-23 signaling activates STAT3. 
Components underlined and bolded represent the protein products of genes found to have 
associations with psoriasis.  

Reprint from Journal of Autoimmunity, volume 64, Harden J.L. et al, The immunogenetics of 
Psoriasis: A comprehensive review, pages 66-73, 56. © 2015, with permission from Elsevier. 
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Other transcription factors of functional significance include RUNX3, 

involved in auto-reactive Th17 cells 68,69. Genetic studies have confirmed that 

neutrophils are involved in pathogenetic mechanisms of psoriasis 70. A recent study 

found new genetic pathways associated with psoriasis risk such as retinol 

metabolism, the transport of inorganic ions and amino acids, and post-translational 

protein modification 71. 

PSORS1 is strongly associated with guttate psoriasis, but not with 

palmoplantar pustulosis 72. Generalised pustular psoriasis has been linked to a caspase 

recruitment domain family member; CARD14 (gain-of-function mutation involved in 

inflammasome and NF-κB signalling) 6,44, and IL-36RA deficiency 49. The IL-36-RN 

gene codes for an anti-inflammatory protein and a mutation leads to unopposed 

stimulation of NF-κB and MAPK with downstream increased production of pro-

inflammatory proteins 44,73,74. 

Psoriasis and PsA have some common genetic associations, including IL-23R, 

NK cell receptors and MHC class I alleles 16,49,50,75-77. A psoriasis and PsA associated 

gene, RAPTOR, regulates the function of a key regulator of T cell function and 

growth 16,78.  

 

1.1.7 Histology and inflammatory infiltrate 

Psoriasis is characterized by thickening of epidermis due to tenfold increased 

acceleration of keratinocyte proliferation, resulting in epidermal acanthosis 

(thickening of viable layers), hyperkeratosis (thickening of cornified layer), and 

parakeratosis (reduced granular layer of the epidermis; Figure 4) 6,44,51. The stratum 

corneum forms from incompletely differentiated keratinocytes that retain their nuclei, 

resulting in scaling 6,44. Another histological feature is the epidermal elongated rete 

ridges that project downward and hyperplastic blood vessels that reach up in the 

papillary dermis, causing visible redness and punctate bleeding spots,            

Auspitz’s sign 6,44.  
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Figure 4. Histopathological features of psoriasis. Within the typical plaque, psoriatic epidermis 
shows marked epidermal acanthosis, hyperkeratosis, and elongation of rete ridges (A, normal 
skin and B, lesional psoriatic skin; stained with haematoxylin and eosin). Dilated and contorted 
dermal blood vessels reach into the tips of the dermal papillae (B, arrows). A mixed 
inflammatory infiltrate with neutrophils accumulating within the epidermis is noted (B, asterisk). 
By contrast with normal skin (C), immunohistochemical detection of CD3 reveals many T cells 
in the dermis and epidermis of lesional psoriatic skin (D, arrows). Cell nuclei present in the 
cornified layer of the epidermis are also characteristic for lesional psoriatic skin (D, asterisk).  

Reprint from the Lancet, Volume 386, W.H. Boehncke et al, Psoriasis, pages 683-94, 6. © 2015, 
with permission from Elsevier. 
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 Mixed inflammatory cellular infiltrates are found in different anatomic layers 

of the skin, with distinct compartmentalization of T cells 6. Epidermal T cells are 

heterogenous, comprised of mostly memory CD8+ T cells (Tc), often nearby 

dendritic cells (DCs) 79. In addition, neutrophilic granulocytes gather within small 

foci in the stratum corneum (Munro’s microabscesses), or in the stratum spinosum 

(spongiform micropustules of Kogoj) 44,49,80. 

In psoriatic dermis, T helper (Th)1 and Th17 lymphocytes predominate the 

inflammatory infiltrate just beneath the dermal-epidermal junction 51,81-84. DCs are 

detected mainly within the upper part of the dermis together with macrophages 49,85. 

Innate lymphoid cells (ILC3s), γδ T, NK and NKT cells in dermis also play a role 

in psoriasis 80,86-91.  

The aggregates of mononuclear leukocytes in the dermis consist of hundreds to 

thousands of intermixed T cells and DCs and might function as organized lymphoid 

tissue that induces and perpetuates the inflammatory cascade in psoriatic          

plaques 44,92,93. The skin is unquestionable a potent immunological organ as normal 

skin contains more than twice as many T cells as blood 94. 

 

1.2 Immunopathogenesis and inflammation in psoriasis 

In genetically susceptible individuals, psoriasis can arise as a consequence of 

autoantigens stimulating the innate and adaptive immune system resulting in self-

amplifying inflammatory loops (Figure 5) 15. The role and interconnection of the 

cells that participate in the different phases of psoriasis will be described in this 

section.  
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Initiation of local inflammation due to autoantigens 

Epidermal autoantigens LL37 (cathelicidin), keratin 17 and melanocyte-derived 

antigen ADAMTS-like protein 5 are increased in psoriasis and have a direct 

stimulatory effect on Tc, via MHC class I and KCs in predisposed               

individuals 17,44,49,95-97. Other pro-inflammatory antimicrobial peptides and proteins 

(AMPs) like S100A7 (psoriasin), S100A15 (koebnerisin) and defensins 98,99, are also 

overexpressed in psoriatic lesions, act as chemoattractant for leukocytes and prime 

immune cells for enhanced production of proinflammatory mediators 100-102. Thus, the 

interaction between KCs and DCs is crucial for initiation of psoriasis (Figure 6) 103. 

Figure 5. There is close interdependence of inflammatory infiltrate in epidermis and 
dermis, as well as a balance between the innate and adaptive immune systems. The genetic 
underpinnings of psoriasis are known to be complex, and these probably interact with 
environmental factors.  

Reprinted by permission from Springer Nature, Nature, Pathogenesis and therapy of 
psoriasis, Lowes M.A. et al, 15. © 2007. Text adapted. 



 25

 

 

 

 

Of these AMPs, LL37 from activated KCs is hypothesized to be a main  

trigger 50,104,105. Due to positive charge, LL37 can form immunostimulatory 

complexes with negatively charged DNA and RNA, released from neutrophil 

extracellular traps (NETs), enhanced in psoriasis. 49. NETs can reduce the activation 

threshold of T cells and increase their response to antigens. DNA-LL37 complex is a 

potent trigger that stimulate toll like receptor (TLR) 9 on plasmacytoid DCs (pDCs) 

with subsequent production of interferon alpha (IFN-α) 44,103,106-109. These immature 

pDCs migrate into the epidermis, where they recognize keratinocyte-expressed 

autoantigens, which might then perpetuate the pathogenic cascade 103. Psoriatic T 

cells have been shown to have increased and prolonged responses to IFN-α 110. The 

pDC-IFN pathway is dominant in acute forms of psoriasis such as erythrodermic 

psoriasis 111. RNA bound to LL37 stimulate TLR7/8 on myeloid DCs (mDCs) to 

secrete TNF, IL-23 and       IL-12 112. Activated by the AMPs, mature DCs present 

self-antigens and stimulate autoreactive cytotoxic T cells. Recognition of epidermal 

Figure 6. Summary of the main pathogenesis steps leading to psoriasis plaque formation.  

Reprint with permission from S. Karger AG, Basel, Dermatology, Psoriasis: Keratinocytes 
or Immune Cells – Which Is the Trigger?, Benhadou F. et al, 103. © 2018 
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autoantigenes by Tc1/Tc17 induces secretion of IL-17/22 that mediate the initial 

phase of epidermal hyperproliferation, altered differentiation and activation of KCs, 

which lead to progression of the inflammatory process 111,113.  

In addition, mature DCs facilitate differentiation of naïve T cells into Th1, 

Th17 and Th22 cell subsets in the lymphnode 44,114-117. When naïve T cells are 

stimulated by IL-12 and IFNγ, they will differentiate into Th1 cells (via pSTAT1/4 

and T-bet) (Figure 7 A) 49. Although Th17 cells are embedded in a complex 

regulatory network, IL-1β, IL-6 and IL-23 stimulation of naïve T cells will in general 

promote this cell lineage (via pSTAT3 and RORγT activation) (Figure 7 B) 49. IL-6 

and TNF leads to Th22 cell differentiation (via pp38 and pNF-κB), further TGFβ and 

IL-10 are involved in differentiation of Tregs (via pSTAT5 and FoxP3) 44,49,54,99,109,117-

122. IL-4 stimulation of naïve T cells promote Th2 differentiation (via pSTAT6 and 

GATA-3) 117.  

 

 

 

 

 

  

Figure 7. Factors influencing differentiation of 
T cells. (A) Differentiation of T cell subsets 
requires stimulation by DCs. Key cytokines and 
transcription factors are depicted above the 
respective T cell type, while their function is 
indicated below. (B) The differentiation of Th17 
cells is embedded in a complex regulatory 
network. Figure and text adapted from 
Frontiers in Immunology, The Interleukin-
23/Interleukin-17 Axis Links Adaptive and 
Innate Immunity in Psoriasis, Schön M. P. et al, 
49. © 2018. Reprint with permission. 
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Cytokines from Th1 (TNF, IFN-γ, IL-2,), Th17 (IL-17A/F, IL-22, IL-9) and 

Th22 (IL-22, IL-13, TNF) are crucial in the pathogenesis of psoriasis 51,117,123-126. IL-

17, IFN-γ, IL-22, and TNF cause KC proliferation and production of chemokines, 

cytokines, and AMPs, which act back on DCs, T cells, and neutrophils to perpetuate 

the cutaneous inflammatory process creating self-amplification loops 44. IL-17 and 

TNF work in a synergistic manner 49,127. IL-17A/F also act on endothelial cells, 

fibroblasts (increased IL-6 production), chondrocytes, synovial cells and monocytes 

(MC) 55,103,128. TNF, secreted by T cells and APCs in psoriatic skin, induce adhesion 

molecules on vascular endothelial cells, facilitating entry of inflammatory cells to the 

skin 129. In addition, neutrophils also produce pro-inflammatory cytokines (IL-17, IL-

8, IL-12, IL-22 and TNF) 130,131. 

 

Establishment of site-specific disease memory 

After recognizion of autoantigens, some T cells possibly progress toward 

differentiation into tissue-resident memory CD8+ T cells (Trm) 132,133. Trm cells are 

detected also in resolved psoriasis and constitute a potential mechanism of site-

specific disease memory 115,117,132,134,135. In clinically healed psoriasis, epidermal Tc17 

and Th22 cells are thought to form a localized disease memory 124,132,134,136. 

Keratinocytes, in addition to production of innate immune mediators, may act as non-

professional APCs and can induce recall immune responses in antigen-experienced 

Th and Tc memory T cells, leading to functional response like cytokine production or 

cytotoxic effect 79,137. 

 

The establishment of plaques and maintenance of chronic inflammation  

The dynamic interplay between KCs, DCs, neutrophils and T cell subsets differ in 

early and chronic psoriasis 44,84,138-141. It has been hypotesized that polyclonal 

Th17/Tc17 cells proliferate in dermis and contribute to inflammation through IL-17A 

secretion 138,142. Endothelial cells are activated in psoriasis lesions and lymphocytes, 
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monocytes and neutrophils can transmigrate through reactive vessels 44,143. As a later 

step, polyclonal Th1/Tc1 cells (CXCR3+ T cells) from the blood are recruited, 

induced by chemokines (CXCL9, CXCL10, CXCL11 induced by IFNγ), amplifying 

the pro-inflammatory cascade 124,138,144,145. These T cells have a complex interplay 

that results in chronic inflammation. It has been suggested that IFNγ from Th1 cells 

might program mDCs to produce CCL20, ligand of CCR6, and to secrete IL-23 138 

which favor recruitment and expansion of IL-17A producing cells amplifying 

inflammation (Figure 8) 49,79,146,147. 

 

Figure 8. Environmental factors trigger psoriasis in genetically predisposed individuals. In 
the initiation phase, KCs release self DNA that forms complexes with LL37, and activate 
pDCs to produce IFNa, stimulating dermal DCs to migrate to the lymph nodes and promote 
differentiation into Th1 and Th17 cells that migrate via lymphatic and blood vessels into 
psoriatic dermis, attracted by chemokines. Th17 cells secrete IL-17A, IL-17F and IL-22, 
which stimulate KC proliferation and the release of AMPs.  

Reprinted by permission from Springer Nature, Nature Reviews Immunology, Skin immune 
sentinels in health and disease, Nestle, F. O. et al, 79. Text adapted. Originally modified with 
permission from 51, Massachusetts Medical Society © 2009. 
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 In addition, impaired Treg function plays a role in psoriatic inflammation 80,148. 

Tregs, which usually maintain immune tolerance through release of inhibitory 

cytokines, induction of apoptosis, and inhibition of IL-2 secretion, are dysfunctional 

with reduced suppressive capacity in psoriasis 44,149,150. Pro-inflammatory cytokines in 

psoriatic lesions (like IL-6 from DCs, endothelial and Th17 cells), inhibit Treg 

suppression which leads to increased proliferation of pathogenic T cells 80,149,151. The 

balance between effector T cells and Tregs is dependent on the cytokine milieu and 

the priming of DCs 152,153. 

 

Recirculation of T cells from the skin; “The psoriatic march” 

A majority of patients with moderate/severe psoriasis have LL37-specific Th/Tc cells 

in their blood 103,154. These autoreactive T cells and the finding of antibodies against 

LL37 in plasma from psoriasis patients, provide evidence of autoimmunity and 

systemic inflammation in psoriasis 17,155,156. Tc cells and LL37 antibodies have also 

been detected in synovial fluid in PsA 155,157,158. Recirculation of T cells from the skin 

to the blood has the potential to spread inflammation to distant sites and may be 

related to PsA and comorbidities like cardiovascular disease (CVD), a concept called 

the “The psoriatic march” (Figure 9) 44,50,138,144,159-164. 
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Figure 9. T cell-mediated events in the psoriatic inflammatory cascade. (A) Activation of 
autoreactive T cells by self-antigens. Establishment of CD8+ TRM cells as central autoimmune 
component of disease pathogenesis and potential mechanisms of site-specific disease memory. 
(B) Polyclonal T cell proliferation and Th17/Tc17-mediated inflammation around the IL-23/IL-
17A axis. (C) Recruitment of Th1/Tc1 cells, from the blood. Recirculation of T cells from the 
skin to the blood can spread inflammation at systemic level and to distant sites. Reprint with 
permission from Frontiers in Immunology, T Cell Hierarchy in the Pathogenesis of Psoriasis 
and Associated Cardiovascular Comorbidities, Casciano, F. et al, 138, © 2018. Text adapted. 
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1.3 Risk of cardiovascular disease in psoriasis 

It has been 40 years since a report showed that rates of occlusive vascular diseases 

were significantly higher in patients with psoriasis than controls 165. Since then, 

multiple epidemiologic studies of psoriasis have confirmed the association to CVD 

and diseases that represent risk factors for atherosclerosis 166-176, although examples 

of the opposite also exist164,177. Meta-analyses have shown that patients with psoriasis 

have an increased odds ratio for myocardial infarction (OR 1.32) and stroke (OR 

1.26), increased 10 year risk of coronary artery disease (28%) and stroke (12%), and 

the risk increases with severity and duration of psoriasis 164,167,176,178-181. The causes of 

increased risk of CVD in psoriasis are complex and not fully elucidated 164,182. 

An indirect link exsists because both psoriasis and CVD are associated with 

metabolic syndrome 169,182. Individuals with psoriasis have increased risk of obesity 

(OR 1.66), hypertension (OR 1.58), diabetes mellitus (OR 1.76) and dyslipidemia 

(OR 1.5) 39,171,183-195. Psoriasis severity appeares to be associated with higher 

prevalence of dyslipidemi 196,197. In addition, smoking is a common risk factor for the 

development of both CVD and  psoriasis 198. 

A direct link between psoriasis and CVD is increasingly accepted as more of 

the immunopathogenesis of the two diseases has become elucidated 199. The 

attributable risk of severe psoriasis on major CVD has been estimated to be 6% over 

10 years 200. Further, studies that quantified coronary artery calcification by CT or 

PET scan estimate the risk contribution from severe psoriasis to be highly significant 

after controlling for confounding factors 201-203. 

Genes associated with psoriasis are almost completely independent from those 

linked with metabolic syndrome and atherosclerosis 204,205. However, there may be 

some shared susceptibility loci between psoriasis and comorbidities like hypertension 

and diabetes mellitus 206.  

Psoriasis patients may have signs of systemic inflammation. Increased 

abundance of Th1, Th17 and Th22 cells and elevated levels of chemokines and 
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cytokines have been detected 207-209. In some patients C-reactive protein, erythrocyte 

sedimentation rate, platelet activation marker P-selectin and other serum biomarkers 

have been shown to correlate with psoriasis severity 207,210-213.  

Mechanistic pathways in atherosclerosis and psoriasis have multiple 

similarities 20,44,212,214-218. Studies indicate that Th1 cells, also involved in psoriasis, 

contribute in the formation of atherosclerotic plaques primary through IFN-γ 216,219. 

Treg cells play an anti-inflammatory role in atherosclerosis and a Th17/Treg 

imbalance has been shown in acute coronary syndrome with decreased levels of 

circulating Tregs with reduced efficacy 220-223. However, studies of Th17 lymphocytes 

and IL-17A in atherosclerosis are contradictory 128. Most evidence in humans now 

point at a pro-atherogenic effect of IL-17A, however it might exert both anti- and 

pro-atherogenic effects, depending on the inflammatory context 224,225. Balance 

between IL-17 and IL-10 can influence plaque stabilization 199,226,227. IL-

17A/neutrophil axis is another important link between atherogenesis and psoriasis 228. 

Th17 stimulate DC to propagate the inflammatory response and increased production 

of angiogenic inflammatory mediators, and IL-23 drives inflammation in the aortic 

root through activation of T lymphocytes 138,222,229,230. Neutrophils are important in 

atherosclerosis through interaction with damaged endothelium, recruitement of 

leukocytes, and development of foam cells driving atherosclerosis 130,164,231. 

Monocytes and macrophages infiltrate psoriatic and atherosclerotic plaques 232-237. 

Chronic skin inflammation accelerates macrophage cholesterol crystal formation and 

atherosclerosis 238.  

Another pathogenetic link between psoriasis and CVD exists through insulin 

resistance and endothelial dysfunction 160,222,239,240. Insulin resistance correlate with 

PASI score 241. Insulin resistance and psoriasis share common inflammatory profiles 

through TNF, IL-6, CRP, IL-17 and IL-22 242. Inflammatory cytokines such as TNF 

induce insulin resistance in endothelial cells, leading to reduced production of 

vasodilating NO and thereby vascular stiffness 243,244. Anti-inflammatory adiponect 

correlates with BMI and metabolic syndrome and has been shown to be reduced in 

psoriasis patients 245. Insulin resistance is, however, also associated with other 
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adipokines, resistin and leptin, that upregulate endothelial adhesion molecules 241,246-

250 251. Insulin resistance may lead to endothelial dysfunction and atherosclerosis 

(Figure 10) 49,222,252,253. 

 

 

 

 

 

 

 

 

 

Figure 10. Increased atherosclerosis due to low-grade inflammation in psoriasis. (A) 
Psoriasis is a low-grade chronic, systemic inflammatory disease associated with increased 
circulating pro-inflammatory cytokines. (B) Adipose tissue dysfunction is characterized 
by pro-inflammatory cytokines and adipokines associated with endothelial dysfunction. 
(C) Psoriasis exhibits a deranged lipid profile and impaired HDL function, which in 
combination with chronic inflammation accelerate atherosclerotic vascular disease. (D) 
The vessel wall is infiltrated through a complex interplay of pro-inflammatory cellular 
components, cholesterol crystals, and various lipoproteins contributing to atherosclerosis 
(E) Psoriasis upregulate T-cell, neutrophil chemotaxis, and KC activation and endothelial 
dysfunction leading to increased atherosclerosis.  

Reprint with permission from Frontiers in Immunology, Potential Immunological Links 
Between Psoriasis and Cardiovascular Disease, Sajja, A. P. et al, 222. © 2018. Text 
adapted. 
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1.4 Other comorbidities in psoriasis 

Psoriasis can severely impact quality of life 24,254-258. Frequency of depression is 

increased in psoriasis and biochemical link exists, however treatment can improve 

quality of life 184,259-261. Several studies have revealed increased risk of Mb. Crohn in 

psoriasis 165,262,263. Psoriasis has been shown to be an independent risk factor for non-

alcoholic fatty liver disease 264. A low increased risk of Hodgkin’s lymphoma (HL), 

non-HL and cutaneous T cell lymphoma is debated 265,266. In addition, some evidence 

of increased risk of bone and cartilage cancer exist 267. Psoriasis patients may have an 

increased risk of skin cancer related to immunosuppressive treatment and light 

exposure 268,269. 

 

1.5 Treatment 

The need for treatment of psoriasis may vary trough life and is aimed at controlling 

symptoms as there is no complete cure of psoriasis. Guidelines, treatment goals and 

algorithms have been defined (Figure 11) 270-274. 

 

 
Figure 11. Concept of psoriasis management. Reprint with permission from John Wiley 
and Sons, Experimental Dermatology, Psoriasis: to treat or to manage?, Mrowietz, U. et 
al, 274. © 2014. Text adapted. 
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1.5.1 Topical treatment 

Corticosteroids, vitamin D3 analogues, and keratolytic agents (salicylic acid, urea) 

are used for local treatment of psoriasis and come in different combinations and 

formulations (creams, ointments, solutions) 275,276. Coal tar (called Goeckerman in 

combination with UV-light) and tazaroten (topical retinoid) are also options. Earlier, 

arsenic and dithranol were used to treat psoriasis 276,277. 

 

1.5.2 Phototherapy and photochemotherapy 

Ultra violet (UV) light 311 nm (narrowband UVB) has been found to be the ideal 

wavelength for psoriasis treatment, and 70% of patients reache PASI75 response 6,278-

281. PUVA is the combination of UVA light (320-400 nm) with local or systemic 

psoralen and up to 90% achieve PASI75 response 6,282. Grenz rays are low energy 

radiation in the zone between X-rays and short wavelength ultra violet radiation 

sometimes used for severe plaques of limited size 283. 

 

1.5.3 Conventional systemic therapy 

Methotrexate (MTX) is a folic acid antagonist that inhibits DNA synthesis, cell 

replication and has specific T cell suppressive effects 276. Around 50-60% of patients 

experience PASI75 with MTX treatment, but it can have serious side effects that can 

limit use, including teratogenicity and bone marrow suppression 6,276. 

Fumaric acid esters influence cytokine profile and recruitment and apoptosis of T 

cells 276,284-286. 50% of patients reach PASI75, but the use is often limited by 

gastrointestinal side effects 6. 

Retinoids are synthetic substances similar to vitamin A, not immunosuppressive, but 

bind to nuclear retinoid receptors, normalizing gene transcription in KCs 276,287. 

Around 15% of patients treated with retinoids reach PASI75, however, systemic 

retinoids are especially effective in the treatment of erythrodermic and pustular 
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variants of psoriasis 6,276. Side effects include teratogenicity, skin dryness and 

hyperlipidaemia  276. 

Ciclosporine (CyA) is a macrocyclic immunosuppressant that binds immunophilin 

and inhibits the calcineurin phosphatase-initiated activation of T cells and has a direct 

effect on KCs 276,288. 45-60% of patients treated with CyA experience PASI75 6,276. 

CyA treatment has to be carefully monitored due to side effects including 

nephrotoxicity 276.  

 

1.5.4 Biological treatment 

Biological drugs consist of large and highly complex molecular enteties, often 

designed on the basis of genetic sequences, derived from living cells cultured in a 

laboratory 289. They include fusion proteins, recombinant proteins (e.g. cytokines, 

selective receptors), and monoclonal antibodies. Biological drugs are more costly 

than conventional therapy and given when a patient fulfills certain criteria. However, 

biological drugs tend to have higher efficacy and more limited side effects than 

conventional treatment, although risk of infections can be increased, especially 

tuberculosis in TNF inhibition. After patent expiry, cheaper biosimilar drugs have 

been launched for the TNF inhibitors, increasing the access of patients to these 

treatments 290. A biosimilar drug is a copy version of an already authorized biological 

medicinal product with demonstrated similarity in physicochemical characteristics, 

efficacy and safety 289,291,292. Due to risk of immunogenicity and relatively scarce 

documentation on effect and side effects of biosimilars, research in this field is 

required. In the studies included in this thesis, etanercept (anti-TNF), secukinumab 

(anti-IL-17), ustekinumab (anti-IL-12/23), original and biosimilar infliximab (anti-

TNF) were investigated. 
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TNF inhibitors  

Etanercept is a human recombinant TNF receptor p75 protein that binds to TNF and 

lymphotoxin, administered subcutaneously (s.c.) 293. Etanercept breaks the self-

sustaining cycle of DCs and subsequent T cell activation, and cytokine, growth 

factor, and chemokine production by multiple cell types 145. Depending on dose, up to 

50% of patients achieve PASI75 276. TNF inhibitors in general have effect also 

against PsA 276. 

Infliximab is a chimeric monoclonal antibody, given as intravenous infusion, that 

binds to and neutralises the activity of TNF 294. 80% of patients achieve PASI 75 at 

week 10. Immunogenicity occurs frequently, especially if comedication with MTX is 

not given 295,296. 

Adalimumab is a fully human, anti-TNF monoclonal antibody, self-administered    

s.c. 297. 54-70% of patients achieve PASI75 6,298,299. 

 

IL-12/23 inhibitors 

Ustekinumab is an interleukin-12/23 monoclonal antibody for s.c. injection that 

inhibits the p40 subunit found in both IL-12 and the more pathogenically relevant IL-

23 300-303. 70% of patients reach PASI75 and it is associated with longer drug survival 

than TNF inhibitors 6,304. Patients using IL-12/23 blockers may have increased risk of 

infections. 

Guselkumab is a monoclonal antibody that blocks the p19 subunit of IL-23, approved 

for s.c. injection with high efficacy in psoriasis 305,306. 70% of patients have been 

reported to reach PASI90 307. 
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IL-17 inhibitors 

Secukinumab is a human monoclonal antibody blocking IL-17A for s.c. injection 

with low immunogenicity and high efficacy against psoriasis, 80% PASI75 6,308-310. 

Ixekizumab and the IL-17 receptorblocker Brodalumab have also proven to be very 

effective in psoriasis 311,312. Blocking of IL-17 involves increased risk of infections 

and deterioration of inflammatory bowel disease. 

In addition to the above mentioned biological treatments, new classes of 

specifically targeted, orally administered drugs with rather high costs have recently 

been introduced. Apremilast is a phosphodiesterase 4 inhibitor that diminishes the 

production of IL-23, IL-12, TNF and IFN-γ and increases IL-10 313,314. PASI75 is 

reached in 30% of patients 315. Tofacitinib is a small molecule Janus kinase inhibitor 

that is given orally 316,317. Inhibition of JAK/STAT3 signalling normalizes 

differentiation of and cytokine production from KCs and Th17 cells 120,318.  

 Treatment response and outcome in patients with psoriasis might be influenced 

by many aspects, both genetic and non-genetic 319. Factors associated with low effect 

of biological therapy are severity, duration of psoriasis, earlier biological treatment, 

male gender, PsA, high age and BMI 319. Subtypes of psoriasis might also respond 

differently to treatment 111. Optimizing of treatment could maybe be aided by 

systemic biomarkers reflecting individual inflammatory signature.  

 

1.5.5 Immunogenicity  

Psoriasis patients responding to biological treatment may experience loss of effect, 

sometimes after a pause in medication or if concomitant MTX is not used 320. 

Antidrug-antibodies (ADA) and decline of serum drug levels are sometimes detected, 

with concomitant loss of response despite dose increase and risk of allergic or 

infusion reactions 321-324. Algorithms for use and interpretation of measurements of 

drug level and ADAs have been outlined for clinical use 323. The different biologicals 

have various risk of immunogenicity 323. 
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1.6 Literature search 

Literature studies were completed on June 21st, 2019. 
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2. Aims 

The overall aim of this thesis was to study the systemic immune system in severe 

psoriasis during active inflammation and treatment with biological therapy. The 

specific research aim of each study were: 

Study I 

• To investigate if serum cytokine levels in patients with psoriasis reflect skin 

inflammation and thus could be used as biomarkers for evaluation of disease severity 

and treatment effect. 

Study II 

• To compare switch from original infliximab to biosimilar CT-P13 in psoriasis 

patients, evaluating both clinical parameters and effect on peripheral blood cells and 

intracellular signalling. 

Study III 

• To explore single cell analysis of peripheral blood mononuclear cells by mass 

cytometry, and search for psoriasis specific systemic immune signatures and 

biomarkers for treatment effect. 
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3. Materials and methods    

3.1 Materials 

3.1.1 Study population 

The biobank used for these studies was initiated and organized by Silje M. Solberg 

(SMS). 101 patients diagnosed with psoriasis and found egliable for biological 

treatment at the Department of Dermatology, Haukeland University Hospital, Bergen, 

Norway were included from April 2015 to September 2018. Inclusion criteria were 

age >18 years, moderate-severe psoriasis and prescription of biological treatment. 

SMS kept track of patients from regular hospital visits, with help from Lene F. 

Sandvik. Around half of the cohort gave the first blood sample prior to starting 

current biological drug and the other half were already on biological treatment when 

they were included in the biobank. Samples from healthy controls (HC) without 

psoriasis were collected from the Blood bank at the Haukeland University Hospital, 

Bergen, Norway spread through the year. In addition, healthy volunteers in the lab, 

without psoriasis, gave blood at three timepoints as longituidal controls. All patients 

and controls signed written informed consent. 

 

3.1.2 Sample collection, handling and storage 

The blood samples were collected at the laboratory of the Dept. of Dermatology, 

HUS, and further processing and storing were done at the Broegelmann Research 

Laboratory, UIB, in general by one dedicated technician (M. Eidsheim) or SMS. 

Patients gave blood at inclusion, after approximately 4 and 12 months (daytime). 

Variation in sampling processing (e.g. time on bench, temperature etc.) was keept to a 

minimum with few and dedicated persons involved.  

The biobank included serum with and without clotactivator, PBMCs and 

plasma from Li-Heparin tubes. Cryopreservation was used for storage since samples 

collected over time were to be analysed together.  
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Serum tubes were left 30-60 min on bench, centrifuged, divided in cryotubes 

(0.5-1.5ml) and stored at -70 °C. Li-Heparin tubes were turned gently x 10 and 

transported directly to the cell lab for immediate density gradient centrifugation. 

Thereafter, plasma was collected, aliquoted in 1ml and frozen at -70 °C before 

isolation of PBMCs. Cells were frozen in a chemically defined freeze medium, 

Profreeze™ CDM (47.5%), mixed with serum free cell media X vivo-20™ (50%) 

and cryoprotectant dimethyl sulfoxide (DMSO) (7.5%). PBMC samples were then 

put in a CoolCell® freezing chamber (consistent and reproducible -1°C/min cell 

freezing rate 325) at -70 °C overnight and then moved to -150 °C for long time 

storage. Controlled temperature reduction and the use of DMSO minimize damage to 

the cells by increasing permeability and disrupting the formation of ice crystals 326.  

 

3.1.3 Data collection and storage 

DLQI was filed out by the patients, however clinical evaluation including PASI was 

accomplished by doctors as part of scheduled hospital visits. Since PASI estimation 

can be prone to interindividual varability, one patient was in general evaluated by the 

same doctor at all visits. Information about sex, BMI and age was registered. 

Collected data were then stored «non-identifiable» on the «Forskningsserver» from 

Helse Vest with oportunity for identification of patients through a «digital key», as 

required by regional ethics committee.  

 

3.2 Methods 

3.2.1 Luminex® Technology 

The Luminex® Technology allows for simultaneously measurement of up to 80 

different analytes from a single well on the microplate, using very small sample 

volumes. This bead-based multiplex immunoassay is a multistep procedure, 

illustrated in Figure 12 327. 
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Beads are pre-labeled with red and infrared dye in different concentrations to ensure 

detection of distinct beads coated with antibody against one type of cytokine. 

Cytokine bound to the cytokine-specific antibody of that bead is detected by a 

biotinylated secondary antibody labeled with a fluorochrome phycoerythrin (PE) 

attached via streptavidin 328. The Luminex 200™ machin has two lasers. The 532 nm 

green laser is for excitation of PE and fluorescence intensity indicates amount of 

cytokine. The 635 nm red laser is for detection of type of bead. We used a 96 well 

plate, where the first 16 wells were used for standards and the remaining 80 wells for 

patient samples. We included 40 patients with severe psoriasis and analysed samples 

collected before and 4 months after starting on biological therapy, capturing all 25 

cytokines from one sample at a time.  

Cytokines were measured by Luminex 200™ by using a ProcartaPlex™ 

Human Cytokine Panel 1B 25plex kit (EPX250-12166-901) (Invitrogen Thermo 

Fisher, MA USA), designed to detect granulocyte-macrophage colony-stimulating 

Figure 12. Overview of bead-based immunoassays. Different color-coded beads with dyes 
that fluoresce either red or green are used. The instrument measures the bead color intensity 
and the mean fluorescence intensity of the labeled detection antibody which is typically 
labeled with a streptavidin/phycoerythrin (PE) conjugate.   

Reprint with permission from Analytica Chimica Acta, Bioanalytical chemistry of cytokines--
a review, Stenkel, J. et al, 327. © 2015. Text adapted. 
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factor (GM-CSF), IFN-α (2 a,b,c), IFN-γ, TNF, lymphotoxin, IL-1α, IL-1β, IL-1RA, 

IL-2, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12 p70, IL-13, IL-15, IL-17A, IL-18, IL-

21, IL-22, IL-23, IL-27 and IL-31. 

 

3.2.2 Phosphoflow cytometry 

Flow cytometry is a laser-based technology capable of performing multiple 

quantitative measurements on a particle or cell in a fluid. Cells are hydrodynamically 

focused to separate from each other and the fluid stream passes through one or more 

lasers 329. Fluorochrome coupled monoclonal antibodies are excited by a specific 

wavelength of laserlight. The emitted light from the fluorochrome is of specific 

wavelength and can be discriminated by optical filters before detection. Fluorescent 

and scattering light are detected by photomultiplier tubes. This signal is amplified and 

converted to a voltage pulse and digital value allowing identification of individual 

cells and their characteristics (Figure 13) 330. Flow cytometry can be used to measure 

relative cellular abundances of cell subtypes in peripheral blood 331.  

 

Figure 13. A typical flow cytometry experiment. Sample preparation from blood often 
involves Ficoll gradient separation of PBMCs, sometimes cryopreservation, before staining 
with fluorescent antibody conjugates. Instrument setup involves setting voltage gains for 
the photomultiplier tubes (PMTs) to achieve optimal sensitivity. Data acquisition involves 
passing the stained cells through a laser beam and recording the fluorescence emission 
from the bound antibody conjugates. This is followed by data analysis, in which cell 
populations of interest are defined and reported on. Ref., reference; SD, standard deviation. 
Reprint with permision from Springer Nature, Nature Reviews Immunology, Standardizing 
immunophenotyping for the Human Immunology Project, Maecker, H.T. et al, 330. © 2012. 
Text adapted. 
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Phosphoflow cytometry combines identification of individual cells and sub-

types by surface markers, with the evaluation of intracellular signalling pathways 

(Figure 14) 332,333. This methodology has been used to investigate different 

conditions, including hematopoietic malignancies and autoimmune diseases, and 

responses to treatment, e.g. intracellular phosphorylation in T cell subsets in 

rheumatoid arthritis after biological treatment 334-336.  

 

 

 

 Figure 14. General phospho-protein staining technique for flow cytometry. (Step 1) A 

heterogeneous sample of cells is treated with two different stimuli, A and B (i.e., 

cytokines), to induce distinct signaling cascades and phosphorylation of two target proteins. 

A third sample is treated with both stimuli simultaneously to induce phosphorylation of 

both proteins of interest. (Step 2) The cells are then fixed, permeabilized, and stained with 

fluorophore-conjugated phospho-specific antibodies to the phosphorylated forms of the two 

proteins. (Step 3) The cells are analyzed on a flow cytometer with two or more 

fluorescence channels. Reprint with permission from Elsevier, Clinical Immunology, 

Analysis of protein phosphorylation and cellular signaling events by flow cytometry: 

techniques and clinical application, Krutzik, 333. © 2004. Text adapted. 
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By phosphoflow cytometry we investigated abundance and intracellular 

phoshphorylation of PBMC subpopulations from psoriasis patients and healthy 

controls. Samples from patients and healthy controls were stimulated with TNF in X 

vivo-20™ in vitro in sterile conditions after a 2 hour resting period after thawing 337. 

Following fixation (PFA) and permeabilization (methanol), PBMCs were stained 

according to a 2 x 4 barcoding (BC) grid using 4 levels of pacific orange and 2 

concentrations of pacific blue succinimidyl ester dyes before combing the 8 samples 

together, adapted from Krutzik et al, prior to acquisition on a LSRI Fortessa flow 

cytometer with BDFACSDiVaTM Software (both BD Biosciences) 338. 

 

3.2.3 Mass cytometry 

Mass cytometry is a relatively new technological platform, described in 2009, that 

couples flow cytometry with mass spectrometry 339,340. Mass cytometry has expanded 

the number of detectable targets to >40 on the single cell level 341,342. 

  

Figure 15. Schematic of mass cytometry analysis of cellular markers. An antibody tagged 
with a specific element binds to the cellular epitope. The cell is vaporized in the 
nebulization, atomized, ionized and the elemental composition of remaining heavy 
elements is determined. Signals corresponding to each elemental tag represent the 
presence of the respective marker and analyzed using conventional cytometry platforms. 
Reprint with permission from Trends in immunology, A deep profiler's guide to cytometry, 
Bendall, S.C. et al, 344. © 2012. Text adapted. 



 47

Metal tagged antibodies serve as surrogate markers for extra- and intracellular 

epitopes 341. Stained cells in suspension travel through a nebulizer to create a mist of 

droplets with single cells that pass through a spray chamber and injector, where the 

water evaporates (Figure 15) 343,344. Thereafter, cells enter the argon plasma, where 

they are completely atomized and ionized 343. The resulting ion cloud is then passed 

through a quadrupole, removing the lighter elements of biological material, retaining 

only the rare-earth metal isotopes. This cloud is sampled (termed a push) in the 

channels of the detector. The velocity of lighter ions is higher and they reach the 

detector first, followed by heavier (and slower) ions, in the sequence of increasing ion 

mass 339,343. Daily tuning is important for accurate results, as well as monitoring of 

pressure and signal drift 345,346. All data in these pushes are integrated over time and 

subsequently recorded as dual counts (of atoms) for each channel and recorded in the 

.fsc format (Figure 16) 343,347.  

 

Figure 16. Computer screen shot during mass cytometric analysis of PBMCs stained with a 

panel consisting of 27 antibodies. Each antibody was labeled with a different stable isotope 

(given in the table at the top of the figure: the antigen is indicated, followed by the isotope tag). 

Reprint with permission from Springer Nature, Cancer Immunology, Immunotherapy, An 

introduction to mass cytometry: fundamentals and applications, Tanner S.D. et al, 343. © 2013. 

Text adapted. 



 48

Isotopes with different atomic masses can be identified by the detector with 

minimal signal spillover between «mass channels». Additionally, the limitation of 

spectral overlap is abolished by use of heavy metal-tagged antibodies 348. In addition 

to cell surface markers, Cisplatin (195Pt) is used as dead cell marker and iridium as 

cell-identifier (cross-links DNA) 343,349,350. Other cell features can be investigated with 

mass cytometry, like phosphoepitopes in signalling pathways, cytokines, cell cycle 

markers and RNA 351,352. Multiplexing of samples by BC of cells has been adapted to 

mass cytometry by the use of unique combinations of palladium isotopes for labeling 

of fixed and permeabilized cells that can be de-convoluted after acquisition 353,354. In 

mass cytometry, investigation of a high number of markers with single cell resolution 

yields multi dimensional data with minimal experimental artefacts 342. Mass 

cytometry has proven to be a valuable tool for discription of immune cell subsets and 

signatures in autoimmune diseases and cancer 355-362. By mass cytometry we 

investigated PBMCs from 32 patients with severe psoriasis before, 4 and 12 months 

after initiation of biological therapy. Samples were acquired on a Helios™ Mass 

Cytometer with WB injector in the Flow Cytometry Core Facility, UIB. 

 

3.2.4 Data processing and statistical analysis 

Initial visualization and processing of single cell data was done in FlowJo (Tree Star).  

For flow cytometry experiment, compensation was done with beads and barcoded 

samples were deconvoluted by gating on relevant combinations of barcoding dyes. 

Identification of immune cell populations was based on light scatter properties or 

relative expression of CD markers and manual gates were tailored to identify PBMC 

subpopulations for each patient. Further analysis of patient data were based on 

median fluorescence intensity (MFI) in Cytobank Cellmass v7 363.  

In the mass cytometry study, normalization to beads followed by 

deconvolution of barcodes were done by use of Fluidigm software. Clean-up of data 

removing beads, doublets and cell debris was done in FlowJo by manually tailoring 
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gates, before these new .fsc files were imported to Cytobank for further data analysis 

of cell subsets and phosphomarkers.  

Because of the complexity of mass cytometry data, dedicated computational 

tools for dimensionality reduction and cell clustering have been developed 364.  

Dimensionality reduction algorithms aim to retain the single cell resolution 

by projecting the high dimensional space to lower dimensionality that can be more 

easily interpreted. The t-distributed stochastic neighbour embedding (t-SNE) 

algorithm initially measures the pairwise distances between all cells in the high-

dimensional space to generalte a matrix, allowing for cell to be distributed in a two-

dimensional dot plot as a function of t-SNE vectors (dimensions) 365,366. By iteratively 

adjusting the position of cells, the algorithm minimizes discrepancy between high and 

low dimensions. In this way, expression of cell markers can be visualize in a ViSNE 

plot to identify immune subsets with single cell resolution.  

Clustering algorithms segregate similar cells into groups that can be 

evaluated as one entity (loosing singel cell resolution) in a two dimensional plot. The 

clustering is un-supervised to achieve reproducible and unibiased assignment. 

However, number of desired clusters must be determined by the analyser. FlowSOM 

is an algorithm which uses Self-Organizing Maps (SOMs) that can reveal how all 

markers are behaving on all cells. It clusters cells based on chosen markers, generates 

a SOM of clusters, produces a Minimum Spanning Tree (MST) of the clusters, and 

assigns each cluster to a metacluster/population. 

Data from all three studies were transferred to the statistical package for social 

science (SPSS) Statistics 24 for statistical analysis. Since cytokine, phosphoflow and 

mass cytometry data in general were not normally distributed, non-parametric tests 

were used for comparison; Mann-Whitney U test for independent, unpaired data 

(group-to-group comparison), and Wilcoxon signed-rank test for paired data (between 

inclusion and follow-up).  
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For correlation analyses in paper I and III, the strength of correlations revealed 

by Spearman’s rank order test were interpreted according to the recommendation 

from British Journal of Medicine (https://www.bmj.com/about-bmj/resources-

readers/publications/statistics-square-one/11-correlation-and-regression), with rho 

0.00-0.19 regarded as very weak, 0.20-0.39 as weak, 0.40-0.59 as moderate, 0.60-

0.79 as strong and 0.80-1.00 as very strong correlation.   

Linear regression was used in paper I to explore if different cytokines could 

predict disease severity. To evaluate the effect of change in serum cytokines on 

improvement of PASI 272, logistic regression was applied.  

To overcome intra-assay differences, fold changes (FC) of MFI and median 

signal intensities (MSI) for samples at inclusion relative to corresponding internal 

control (IC) was used in study II and III. To compare individual variation over time, 

FC of follow-up samples relative to corresponding inclusion value (T2/T1 or T3/T1) 

were used in all three studies. A p-value ≤ 0.05 was considered statistically 

significant. 

In all three studies, a large number of features from relatively small patient 

cohorts were analysed with the risk of false positive results due to multiple 

comparisons 367-369. Since studies presented here were hypothesis-generating, no 

correction for multiple comparison or power calculations were done a priori. These 

studies aimed to assess clinically relevant differences in cytokines and PBMCs and 

thus should show statistical significance despite low power. 

Figures were made in GraphPad Prism v8.0 and Cytobank Cellmass v7. 

 

3.3 Legal and ethical aspects 

The studies presented here and the biobank were approved by the regional ethics 

committee (2014/1489 and 2014/1373). All patients and controls signed a written 
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informed consent. External funding sources did not influence planned methods, data 

analyses or presentation of results. 
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4. Results 

4.1 Study I 

Serum cytokine measurements and biological therapy of psoriasis - Prospects for 

personalized treatment?  

Since pro-inflammatory cytokines are a prominent feature in psoriasis pathogenesis, 

we measured serum cytokines in patients before and 4 months after initiation of 

biological therapy. Change of PASI correlated positively with fold change (follow-

up/inclusion) of IL-2 and IL-12. Change in DLQI correlated with fold change of IL-2. 

An increase of IL-10, IL-5 and IL-15 at follow-up gave higher chance of achieving 

PASI90. Logistic regression revealed increasing risk of having severe psoriasis with 

increase of IL-17A, corrected for other pro-inflammatory cytokines. 

By linear regression, we investigated impact of cytokines upstream of T cells 

in psoriasis pathogenesis and found that variation in TNF seemed to be influence by 

IL-1β, variation in IL-2 influenced by TNF, while variation in IL-17 and IFN-γ 

influenced by IL-1β, IFN-α and TNF. BMI was correlated to inclusion values of 

TNF, IL-22 and IL-1RA. 

 

4.2 Study II 

Psoriasis patients on infliximab have increased phosphorylation of intracellular 

signalling molecules in peripheral blood cells. 

Phosphoflow cytometry was used to evaluate PBMCs from psoriasis patients on 

infliximab who either continued or switched to biosimilar IFX. The basal 

phosphorylation of NF-κB, ERK1/2, p38 and STAT3 was significantly higher in 

patients at inclusion compared to healthy controls in almost all cell populations 

analyzed, despite the fact that all patients were in clinical remission on treatment with 

originator IFX. Twelve months later, patients still displayed significantly higher basal 
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phosphorylation levels than HC, but the number of epitopes with significant differences 

was decreased. 

After TNF stimulation of PBMCs, the level of phosphoylation relative to basal 

level was significantly lower for pSTAT3 in monocytes, T-, B- and NK cells, pERK in 

T cells and pNF-κB in NK cells from patients at inclusion compared to HC. After 12 

months, only fold change of pNF-κB in monocytes and NK cells in addition to pSTAT3 

in monocytes were decreased in patients compared to HC. 

Comparing patients continuing on originator IFX to patients who switched to 

CT-P13, no difference in basal phosphorylation of NF-κB, ERK, p38 and STAT3 was 

detected. However, fold change of pSTAT3 in B cells was increased in patients on 

biosimilar relative to originator IFX after 3 months, but not 12 months after switch.  

 

4.3 Study III 

Mass cytometry analysis of blood immune cells from psoriasis patients on 

biological therapy 

PBMCs from 32 patients with severe psoriasis were analysed by mass cytometry at 

inclusion, 4 and 12 months after initiation of infliximab, etanercept, ustekinumab or 

secukinumab. Mass cytometry analysis detected a shift in the Th1/Th2 balance of 

circulating CD4 population in psoriasis patients after receiving biological therapy. At 

inclusion, patients had lower abundance of Th2 cells and a tendency of higher 

abundance of Th1 cells compared to HC and follow-up. Further, patients had higher 

abundance of Th22 and Th9 at inclusion compared to 1 year follow-up. Contrary, 

Tregs had a tendency of lower abundance in patients at inclusion compared to HC, 

but after 1 year the level was more similar. There was a shift from naïve/effector 

(CD45RA+) to memory (CD45RO+) predominance in the CD4 population, 

specifically Tregs, from patients during biological treatment. Also of interest, patients 

had higher abundance of epithelial homing B and memory Tc cells (CCR10+) at 

inclusion than HC. 
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PD-1 has an inhibitory function on immune cell activation. PD-1 expression on 

Th2 cells was higher and on CD8 cells lower in patients with active disease than in 

HC. After 1 year, the expression of PD-1 on CD4 cells and Tregs in patients was 

increased. Responders had higher increase of inhibitory PD-1 on CD4 cells after 4 

months and on NK cells after 1 year than non-responders. 

Abundance of classical and intermediate MC and basal phosphorylation of 

STAT1 and p38 in classical MC were reduced after 4 months of biological treatment. 

After 1 year, responders had higher increase of intracellular phosphorylation (pNF-

κB, pSTAT1 and pp38) in non-classical MC compared to non-responders. 

Patients with severe psoriasis had elevated intracellular phosphorylation in 

PBMCs that decreased, but not necessarily normalized, with biological treatment. At 

inclusion, patients had increased levels of pp38 in CD4 cells and Tregs, pSTAT1 in 

classical MC and pERK in CD4 cells compared to HC, which was still higher after 1 

year. However, phosphorylation of pSTAT1 in Th17 cells from patients was 

decreased after 1 year. 

In responders, PASI improvement negatively correlated with FC of Th17 after 

4 months and with FC of CD8 after 1 year. Of predictive value for later response to 

treatment, was the notion that responders had relatively more CD45RO+ Tregs 

compared to CD45RA+ at inclusion than non-responders. Intracellular 

phosphorylation also had predictive value regarding later treatment response. At 

inclusion, non-responders had higher pSTAT1 in Th17 cells, pp38 in classical MC, in 

addition to pp38 and pNF-κB in intermediate MC than responders.  
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5. Discussion 

5.1 Novelty 

The last two decades have provided new knowledge about 

immunopathogenesis in psoriasis, resulting in targeted therapies directed against 

immunological aberrancies. However, clinicians do not tailor treatment individually 

according to this, but choose systemic medication based on stepwise algorithms, 

empiri and cost. In addition, knowledge about mechanistic association between 

psoriasis and comorbidities like CVD has been scarce until now, resulting in little 

attention and few consequences with respect to follow-up and treatment. Optimizing 

treatment can benefit patients both short-term, through reduced skin inflammation 

and improved qulity of life with positive implications on relations and career, but also 

long-term by directing individuals to a healthier immunological trajectory with 

potentially lower risk of comorbidities later in life. 

Luminex® Technology has earlier been used for detection of cytokines as 

biomarkers in patients with psoriasis and PsA 208,209. However, the majority of papers 

on cytokines in psoriasis focus on comparison to healthy controls with only a few 

reports investigating effect of treatment and individual variation over time 370. Thus, 

our investigations of cytokines in serum from severe psoriasis patients during 

treatment with biological drugs represent a new approach. 

Flow cytometry is a well established and validated method for investigation of 

blood cells and the addition of intracellular targets increases the possibility for more 

functional analyses. In psoriasis, flow cytometry has been used to investigate 

abundances of e.g. T cell subsets in patients on TNF inhibitors and to evaluate 

phosphorylation of T cell subsets 67,148,158,207,371-373. Since biosimilars raise questions 

regarding efficacy, safety and immunogenicity, we wanted to investigate the effect of 

switching from original to biosimilar IFX in PBMC subsets from psoriasis patients. 

Mass cytometry has been used for biomarker discovery related to treatment of 

rheumatic diseases and recently this technology was applied on a limited number of 
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psoriasis patients 356,374. We explored mass cytometry in a longitudinal comparative 

study to comprehensively characterize PBMCs with special emphasis on T cell 

subsets and intracellular phosphorylation in psoriasis patients before and after 

treatment with biologicals. Since psoriasis is a complex disease, a simultaneous and 

broad description of interacting PBMC subpopulations was desirable. 

 

5.2 Methodological considerations 

5.2.1 Cytokine analysis 

Cytokine level measured can be influenced by many factors. When processing 

samples for storage, time duration until cryopreservation is important and it is 

recommended to centrifuge within 2-4 hours 375. Storage duration and temperature 

can influence final measurements 376,377. Collection media (serum, plasma) can impact 

on detection of cytokines, as can anticoagulant (heparin, EDTA, citrat) in plasma 

tubes 378,379. Some recommendations favour plasma because coagulation might impact 

on cytokine release from cells 375. In spite of this, we chose serum with no additive 

because it was not recommended to use plasma anticoagulated with more than 10 

IU/ml of heparin and our Li-Hep tubes had 17 IU/ml heparin. Serum samples were 

thawed slowly on ice, overnight in 4 °C, to maintain protein stability and avoid 

enzyme activation. Matrix effect denotes inhibition of readout due to specific or non-

specific factors and varies by both cytokine and donor 380. Serum tend to cause 

greater inhibition than plasma, however, serum measurements of some cytokines can 

yield higher levels than plasma due to the coagulation process.  

Biological variability of cytokines is related to both intra- (like circadian 

rhythm, infections etc.) and inter-individual factors 381,382. If samples are analysed in a 

random order on the plate, intra-assay variability related to technical procedure can 

be decreased. Based on earlier experience with the kit, we did some minor 

adjustments to the manufacturer’s instructions including an extra dilution of standard 
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in the lowest range to be able to discriminate levels in the lowest end of the scale. In 

addition, we optimized incubation of beads in serum and detection antibody.  

Missing values were denoted as 0.0001 when comparing absolute numbers of 

MFI, but excluded in analyses of fold changes. When conducting non-parametric 

analyses, setting non-detected values to close to 0 will have no effect on the results, 

as the rank-sum test was used and therefore these values will be ranked below the 

others. Setting missing values close to 0 would have greater impact on the results 

when executing logistic regression and correlations, and hence it will be a matter of 

debate which values were most appropriate to use. Values above the detection range 

were a minor problem. 

Measurement of cytokine levels will be influenced by the sensitivity of 

methodology used, e.g. electrochemiluminescence and enzyme-linked 

immunosorbent assay (ELISA) may yield different results than Luminex® 

Technology 383-386. Different approaches for cytokine investigations exsist, e.g.  

analysis of supernatant by enzyme immune assay after stimulation of PBMCs or 

intracellular staining after brefeldin A 387. Thus, many factors complicate directe 

comparison of cytokine levels from different studies.  

 

5.2.2 Advantages and drawbacks of flow and mass cytometry 

Both single cell analysis methods, flow and mass cytometry have different 

advantages and drawbacks 348. The greates advantage of mass cytometry is the high 

number of markers that can be investigated at single cell level. For flow cytometry, 

panels encompassing near to 17 markers are seldom 388. However, detection of > 40 

targets using a single panel is possible with mass cytometry enabeling broad 

characterization of the immune system 342.  

Other advantages of mass cytometry include low level of noise, e.g. signal 

spillover compared to flow cytometry, which deals with autofluorescense and spectral 

overlap 340,348. The difference in signal intensity of each metal isotope is fairly equal 
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in mass cytometry (3-4 fold difference) while fluorophores in flow cytometry have a 

larger range of brightness (50-fold) 341,344. For flow cytometry, this can complicate 

design of antibody pannels, but also be useful for detection of low abundance 

antigens, compared to mass cytometry.  

One disadvantage of mass cytometry is that biological material vanishes before 

analysis, precluding the ability to sort cells after analysis. Further, detection limit of 

molecules per cell is 40 for the best fluorochromes, while 400-500 for mass 

cytometry 343,348. The acquisition rate is lower in mass cytometry (400 events/sec.) 

compared to flow cytometry (several thousands of events/sec.) 344,345. At the moment, 

availability of mass cytometers is considerably lower and the cost higher than for 

flow cytometers.  

 

5.2.3 Phosphoflow cytometry: special considerations 

Panel design. Antibodies for detection of surface molecules were selected based on 

their ability to differentiate PBMC subsets 389. Phosphorylation potential of 

immunologically relevant signaling pathways after TNF stimulation was considered 

when chosing antibodies for intracellular epitopes. Choice of fluorophores was a 

compromise between wavelength of available lasers, filters on the flow cytometer 

(ideally bright fluorophores used for rare antigens and dim for common antigens), 

simultaneously as minimizing spillover into important and sensitive channels (low 

abundance markers and phospho-antigens) reducing the need for compensation.  

Flow cytometric controls. BD cytometer setup and tracking beads were used for 

determining minimum baseline PMT voltages and monitoring cytometer setup and 

performance (laser alignment, laser time delay, sensitivity) 390. In addition, we used 

single fluorescent stained compensation beads for the measurement and removal of 

fluorescent spillover.  
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5.2.4 Mass cytometry: special considerations 

Panel design with mass tagged antibodies is easier than for flow cytometry, but 

spillover from channel +/-1 or +16 mass, which corresponds to oxidated metals, 

should be considered 391. In addition, purity of isotopes, abundance of marker and 

sensitivity of different channels of the machine can influence signal detection 391. A 

general ruel is to asign low abundance markers to sensitive metals/channels and avoid 

spillover from abundant into low abundant neighboring channel. DVS panel designer 

is a helpful tool that can calculate spillover and marker tolerance (for spillover) for 

metal tagged antibodies assigned to different sensitivity areas of the machine. When 

designing the panel, we included antibodies for detection of PBMC subpopulations 

and for different T cell subsets, in addition to co-inhibitory/stimulatory, 

naive/effector-memory and skin-homing markers 330,331,350,392,393 (Figure 17, Table 1). 

In addition, phosphoepitopes were selected based on relevant signalling pathways in 

different celltypes of interest. 

 

 

Figure 17. DVS panel designer. Each channel tile is arrayed counterclockwise on the wheel 
in order of ascending tolerance values: low, medium, or high. The channel tile height is 
proportional to the sensitivity area of the machine (optimal delivery of metals in 153-176). 
The tile is heat-mapped (green-orange) to indicate the signal overlap into the channel (% of 
tolerance value for the target in that channel). Printed with permission from Fluidigm. 
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 Some epitopes were sensitive to fixation/permeabilization (CXCR3, CCR4, 

CCR6 and CD127), and these were added to live cells before barcoding 346. As 

illustrated, a few markers in our panel were prone to some signal overlap. Much 

effort was put in to optimizing the panel, but due to availability of antibodies, some 

compremises had to be done. CCR4 (175Lu) and pSTAT3 (158Gd) had medium 

tolerance, were in the medium sensitivity area of the machine and had medium 

overlap. PD-1 (155Gd), CCR10 (164Dy), pERK (167Er), CD45RA (143Nd) and 

pNF-kB (166Er) all have low tolerance for spillover, however, except for CD45RA 

these markers were assigned to relatively sensitive channels and we did not 

experience any obvious problems with CD45RA. We did in general detect low levels 

of basal intracellular phosphorylation, and therefore spillover into these mentioned 

channels can have occluded small differences. 

Contamination/Background noise. Rare-earth metal isotopes should not occur in 

biological material, thus making the endogenous cellular background zero. Some 

Marker Metal  

CCR6 141Pr CD14 160Gd 

CD19 142Nd CXCR3 163Dy 

CD45RA 143Nd CCR10 164Dy 

CD4 145Nd CD45RO 165Ho 

CD8a 146Nd p-NFkB 166Er 

pSTAT5(Y694) 147Sm pERK 167Er 

CD56 149Sm CD25 169Tm 

ICOS 151Eu CD3 170Er 

pSTAT1(Y701) 153Eu CXCR5 171Yb 

PD-1 155Gd pSTAT4(Y693)  174Yb 

p-p38 156Gd CCR4 175Lu 

pSTAT3(Y705) 158Gd CD127 176Yb 

CD161 159Tb CD16 209Bi 

Table 1. List of epitopes and metal conjugated to antibody for Study III. 
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environmental sources exist, i.e. iodine (127I), tin (120Sn) and lead (209Pb), and 

these can be found in insufficiently purified water but are outside the analytical 

window (141Pr to 176Yb, 89Y and 209Bi) 391. However, Barium (137-138 Ba) from 

soaps and gloves can contaminate samples and interfere with nearby channels. In 

addition, Ba contribute to accelerated detector aging.  

 

5.2.5 Common considerations for single cell analyses 

Selection of phosphoepitiopes. Phosphoepitopes in study II and III were selected 

based on relevant signalling pathways in PBMC subsets. IL-12 phosphorylates 

STAT4 (involving pSTAT1/3/5) promoting differentiation of Th1 cells, IL-23 

phosphorylates STAT3 (and NF-κB) leading to Th17 differentiation, and TGF-β 

induces phosphorylation of STAT5, promoting differentiation of Tregs (Figure 7) 

(44, 49, 119, 120). In addition, TNF stimulation leads to phoshorylation of p38 and 

NF-κB, and IL-17 stimulation leads to phosphorylation of p38, ERK, and NF-κB in 

different cells. Other upstream activators may well be IFNs for STAT1, and IL-1 for 

NF-κB, but more recently discovered cytokines such as IL-20 and IL-22 also have the 

ability to activate STAT and NF-κB pathways (402, 403). Based on this, 

phosphorylation of p38, ERK, NF-κB and different STATs were selected for 

analyses. 

Antibody titration. Antibodies were titrated to find optimal staining for surface and 

phospho-antigens for that specific protocol, aiming at clear separation between 

positive and negative cells and, at the same time, minimizing spillover 346. 

Fixation and permeabilization. Signal transduction and transcripton of genes in cells 

are dependent on intracellular phosphorylation of proteins, and measurement of such 

phosphoepitopes can therefore describe activity in the cell 332. Cells must be fixed to 

stabilize/cross-link the phosphoproteins and then permeabilized to allow for entry of 

the phospho-specific antibodies 332. Both extra- and intracellular epitopes and 

antibodies can be sensitive to fixation and permeabilization reagents, so testing of 

antibody performance for individual protocols is important 394.  
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Barcoding; advantages and obstacles. Barcoding allows for antibody staining and 

data acquisition of multiple samples together, reducing antibody consumption and 

variation related to experimental conditions 353,395. The different samples are 

separated later based on their signal intensity of the barcoding dyes. If sensitive 

epitopes that are affected by fixation/permeabilization are included in the panel, BC 

of live cells is an option. This is possible in mass cytometry through labeling with 

antibodies conjugated to combinations of CD45 isotopes or by targeting MHC class I 

complex (beta-2-microglobulin) and a broadly expressed sodium-potassium ATPase-

subunit 395-398. Acquisition of multiple BC samples increases running time (which is 

higher in mass than flow cytometry) and a temporal stable mass cytometer and 

cellular staining integrety during long acquisitions are important 353,354,399. 

Adjustments related to detector sensitivity of the mass cytometer can be 

accomplished by use of normalization beads that contain a blend of different metal 

salts (140/142Ce, 151/153Eu, 165Ho, 175/176Lu) that are mixed into the cell 

suspension before acquisition 399. 

Internal controls. Cryopreserved PBMCs from a single donor was processed with 

each experimental run as an internal control for monitoration and adjustment of inter-

assay variation in Study II and III. 

Effect of freezing and thawing on cells. Due to collection of many patient samples 

and the wish to stain and acquire samples together by use of barcoding, PBMCs had 

to be frozen in liquid nitrogen, as earlier described. The chemicals and stress on cells 

by this process might impact on epitopes and signalling detected. Thawing of PBMCs 

was accomplished rapidly (37 °C) (to avoid osmotic stress and recrystallization) 

according to recommendations in the literature 325. A resting period of 2 hours was 

included after thawing, to let cells recover 337,400,401. For the mass cytometry study, 

samples were refrozen after fixation and barcoding and later thawed for further 

staining. However, this should have low impact on final results, according to the 

literature 346,394,402,403. 
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5.3 Biological and clinical implications of the results 

Psoriasis is a chronic autoimmune skin disease that involves a complex interplay 

between many cell types and cytokines creating self-perpetuating amplification   

loops 44. The literature provides convincing support for systemic inflammation and 

increased risk of comorbidities like CVD in psoriasis 164,404. The era of biological 

therapy has provided new and effective treatments of immunologically mediated 

diseases like psoriasis. In our studies, the clinical effect of all four biological drugs, 

measured by disease severity (PASI) and life quality (DLQI), was excellent. 

Biological interpretations of findings related to immune cells and cytokines in 

addition to clinical implications, will be described in the following. 

 

5.3.1 Abberant abundance of PBMCs in psoriasis patients 
improves with treatment 

Circulating immune cells can travel from bone marrow to lymphnodes or distant sites 

of infection or inflammation, but also recirculate back to blood from peripheral 

organs, like skin 117,161. In psoriasis, recirculation of T cells is hypothesized to play a 

role in amplification of cutaneous manifestations and in the development of 

comorbidities 124. 

          By mass cytometry we detected a shift in the Th1-Th2 cell balance in the blood 

from psoriasis patients during successful treatment, which is in agreement with earlier 

reports 52,55,159,336,372. During active disease, increased amounts of Th1 cells have been 

detected in blood from psoriatic patients and it is known that these CXCR3+CD4+ 

cells are recruited from blood to skin in psoriasis 138,405. This is underlined by the fact 

that blocking of T cell invasion from blood to skin ameliorates psoriasis, supporting 

importance of recruitment of circulating T cells in psoriasis pathogenesis 406. On the 

contrary, others have found circulating Th1 subsets to be reduced in active psoriasis, 

but they used slightly different markers, and the cohorts differed in disease activity 

and size 159,407. During follow-up, we detected a tendency of the Th1 fraction 

(CXCR3+ CD4 cells) to decrease in patients on biological treatment and a significant 
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increase in the Th2 fraction (CCR4+ CD4 cells), also in agreement with the   

literature 358,372.  

         The pathogenic subsets Th17, Th22 and Th9 have been shown to be associated 

with active psoriasis in patients 124. In addition to raised blood levels of Th22 cells 

being associated with psoriasis, it has been proposed that Th22 together with Tc17 

cells constitute a repository of disease memory in skin in recurrent psoriasis 132,207,408. 

As such, these cell subsets can constitute interesting treatment targets to avoid 

chronicity of the disease. 

Patients with active psoriasis in our study displayed reduced levels of Tregs, 

which normalized with treatment. In psoriasis, Tregs are deficient in suppressor 

activity and relatively decreased compared to T effector cells in the skin, combined 

leading to insufficient peripheral tolerance against autoreactive T cells 149. In 

addition, propensity for differentiation into IL-17 producing Tregs probably 

contribute to chronic inflammation 149,152,409. Others have also detected 

downregulation of Tregs in blood from psoriasis patients and upregulation of Treg 

subsets with biological treatment has been shown 372. Interestingly, Tregs are also 

known to be decreased and dysfunctional in coronary artery disease 222. 

In light of recently discovered antibodies against the autoantigen LL37, the 

mass cytometry detection of elevated levels of skin-homing B cells (CCR10+) at 

inclusion compared to HC is highly relevant 118,155. It is tempting to speculate if these 

cells are involved in an autoimmune response against skin autoantigens, which in that 

case could constitute a new treatment target. 

Increased levels of CD8 cells in blood from patients with active psoriasis has 

been detected by others 374,410. We found that reduction of circulating CD8 cells 

during biological treatment correlated with improvement of skin disease. Of special 

interest in the CD8 subset is the Tc17 phenotype (CD8+CCR6+CD161+) that 

probably is involved in the early stages of psoriasis with detection of autoantigens 

and production of IL-17, and as such is a potential treatment target 411-413. We 

detected a circulating Tc17 population, but differences between groups did not reach 
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statistical significance 138,411. Another interesting population that we detected in the 

CD8 subset, the CD8+CCR4+ memory cells, have also been shown by others to be 

elevated in psoriasis 374. It has been postulated that in chronically inflammed tissue, a 

fraction of resident CD8 memory cells can be released to the circulation, contributing 

to systemic inflammation associated with severe psoriasis 414.  

Activation of T cells requires interaction between T cell receptor and major 

histocompatibility complex (MHC) on APCs, which have strong genetic association 

to psoriasis 44. In addition, co-stimulatory or co-inhibitory signals are required. Of 

these,  PD-1 plays a role in normal immune response silencing and the power of this 

mechanism has been shown with the success of check-point inhibitors in cancer 

treatment 415. In psoriasis there might be a failure of the feedback mechanism which 

normally would prevent the immune overstimulation, as downregulation of PD-1 on 

immune cells has been observed. It has been postulated that impaired interaction of 

PD-1 on T cells with its ligand on APCs can be responsible for an up-regulated 

immune response in psoriasis 416. Interestingly, it has been shown that blockade of 

PD-1 augments Th1 and Th17 responses but suppresses Th2 responses 417. In line 

with this, the psoriasis patients in Study III had lower expression of PD-1 on CD8 

cells at inclusion than HC, however, the opposite was detected for PD-1 expression 

on Th2 cells, which is in line with earlier studies 416. After 1 year with biological 

therapy, the expression of PD-1 on CD4 cells and Tregs was increased. Further 

reinforcing the evidence for involvement of PD-1/PD-L1 interaction in psoriasis 

pathogenesis, responders had significantly larger FC of PD-1 on CD4 and NK cells at 

follow-up than non-responders. If this potent check-point mechanism can be of use in 

immune profiling or as a treatment target in psoriasis is too early to say. 

Intriguingly, a shift in favor of increased memory cells compared to 

naïve/effector CD4 cells, and more specifically Tregs, was detected, in congruence 

with the findings of others 159. Interestingly, responders had relatively more memory 

Tregs than non-responders at inclusion, indicating that prospectively stratifying of 

response to future treatment might be possible.  
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5.3.2 Psoriasis patients have increased intracellular 
phosphorylation of blood immune cells  

Patients in Study III had higher levels of intracellular phosphorylation at inclusion 

compared to healthy controls in CD4 cells (pERK, pp38), Tregs (pp38) and classical 

monocytes (pSTAT1), all important in the immunopathogenesis. Guo et al. also 

found increased phosphorylation in CD4 cells from psoriasis patients and earlier 

studies of inflammatory disorders have shown that activation levels in PBMCs 

decreases with treatment 356,372,374,418. In addition, we detected by mass cytometry that 

intracellular phosphorylation was still higher in CD4 cells at follow-up, but with a 

decreasing trend.  

In the Study II we found increased basal phosphorylation in almost all immune 

cell subsets analysed from patients compared to HC, even though patients had been 

treated with original IFX for a minimum of 18 months and were in remission. This 

might indicate that systemic inflammation takes longer time to cease than skin 

lesions, which might be a possible link to comorbidities. The published results from 

this study was commented in British Journal of Dermatology 419. No correlation 

between intracellular phosphorylation and trough level (drug measured in blood) nor 

the length of IFX treatment prior to inclusion were detected. 

 One reason for this elevated intracellular phosphorylation in PBMCs can be 

stimulation from inflammatory cells and cytokines other than those targeted by the 

biological drug 15,356. In addition, constitutive activation of intracellular signaling 

pathways due to genetic susceptibility loci, like mutations in genes encoding NF-κB 

and MAPK or “the breaks” of NF-κB might explain increased phosphorylation 

despite years on treatment 54. If so, therapies targeted against this increased 

intracellular activity could be of interest, but would have to overcome obstacles 

related to adverse events as these signaling cascades are involved in general cell 

processes. This reduction, but not complete normalization, underlines the chronicity 

of psoriasis and the need for long-term targeted treatment 49,132. Systemic 

inflammation promotes cardiovascular disease. Reduction of systemic inflammation 

might have positive implications on comorbidities of psoriasis. 
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5.3.3 Prediction of severity of psoriasis and response to biological 
treatment by immune profiling 

In addition to the immune signatures so fare described, some predictive potential for 

disease severity and treatment effect was detected. 

IL-2 at follow-up positively correlated with PASI and DLQI, which might 

reflect its role as facilitator of differentiation of immature T cells into regulatory T 

cells and antigen exposed T cells into effector and memory cells 370. IL-17A is a key 

cytokine in psoriasis pathogenesis 420. We found that a level of serum IL-17A was 

associated with increased severity of psoriasis. 

IL-12 from DCs favour differentiation of naïve T cells towards Th1 lineage. 

Increase of IL-12p70 was positively associated with improvement of psoriasis. This 

finding is therefore somewhat surprising, although Th1 cells role in psoriasis is less 

prominent than that of Th17 cells. This finding of increased IL-12 might be due to 

low number of samples with detectable cytokine or that this cytokine mostly exerts its 

effect locally and that blood level does not reflect DCs priming of naïve T cells. 

Reports on serum level of IL-12 in psoriasis are conflicting, possibly because of 

different methodologies used and detection of different subunits 383,384. However, with 

support in the literature, our mass cytometry results indicated a reduction of 

circulating Th1 cells with treatment 207. The Th2 cell-associated IL-5 correlated 

positively with a good clinical response, possibly reflecting restorement of the Th1-

Th2 balance, confirmed by the mass cytometry experiment. 

The anti-inflammatory cytokine IL-10 executes important regulatory functions, 

and in psoriasis, different genetic variants and reduced levels of IL-10 have been 

reported 384,421,422. Our cytokine analysis showed that increased level of IL-10 at 

follow-up was associated with good treatment response. IL-10 can be produced by 

monocytes upon PD-1 triggering 423. In line with this, the responders in the mass 

cytometry study had an upregulation of PD-1on non-classical MCs at follow-up. 

At inclusion, patients that later turned out to have low treatment response had 

higher intracellular phosphorylation in Th17 cells and in classical and intermediate 
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MCs than responders, indicating that early stratification based on immune-profile 

may predict future treatment response. Larger studies are needed to confirm if 

intracellular phosphorylation of PBMCs have a predictive value in terms of response 

to different treatments. 

Decreased levels of circulating NK and NKT cells have been reported in 

psoriasis 424-426. Responders had higher increase in number of NK and NKT cells at 

follow-up than non-responders and for NKT cells this increase correlated with PASI 

improvement. By mass cytometry, we also detected higher expression of epithelial-

homing CCR10 on CD4, Th2, Th17, CD8, B and NK cells in responders compared to 

non-responders at follow-up. Possible explanations for this can be sustained 

production of skin-homing PBMCs despite diminished expression of ligands in the 

skin or efflux from healed skin 159,414.  

 

5.3.4 Implications of findings in relation to comorbidities 

Since psoriasis is a systemic immune-mediated disease with mechanistic similarities 

to CVD, the question whether biological treatments can lower risk of comorbidities 

has arosen 160,427. 

Inflammation is central in CVD and anti-inflammatory therapies such as 

aspirin, colchicine and canakinumab lower CVD risk 164,428-430. In addition, 

observational studies have reported reduction of myocardial infarction in patients 

treated with MTX and TNF inhibitors, while results for IL-12/23 and IL-17 remains 

to be clarified 431-433. Register data are conflicting regarding impact of biologicals on 

CVD risk and systematic reviews the latest years have stated that data for psoriasis 

were insufficient to reach definitive conclusions due to small sample size and short 

duration of follow-up 222,431,434-438. Studies on other inflammatory diseases like 

rheumatoid arthritis have indicated that systemic treatment impact positively on 

lowering CVD risk 439. 
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Imaging studies using PET-CT are mostly in favour of decreased vascular 

inflammation in the asscending aorta and carotid arteries in psoriasis patients treated 

with biologicals 440-442. Carotid intima/media thickness has been shown to decline 

with systemic treatment of moderate to severe psoriasis 443. 

Psoriasis and atherosclerosis have overlapping pathogenic mechanisms in 

terms of inflammatory cytokines and cells. Patients with acute coronary syndrome 

have increased levels of Th17-related cytokines and decreased levels of Treg 

mediators demonstrating a cytokine and cellular milieu reminiscent of psoriasis 404. 

Th1 and Th17 cells produce inflammatory mediators attracting MCs, neutrophils and 

Tc cells 222. Monocyte recruitment to vessel wall is an early event in atherosclerosis 

and these cells can be polarized toward pro-atherosclerotic phenotype by skin-

inflammation in psoriasis 218,238. Interestingly, elevated levels of intermediate MCs 

have been shown to be associated with CVD in multiple studies 232,235. We detected 

higher levels of intermediate MCs in blood from psoriasis patients at inclusion 

compared to healthy controls, and the level decreased during the first 4 months of 

treatment. Further, we detected higher phosphorylation in intermediate MCs of non-

responders compared to responders at inclusion, which could indicate a larger risk of 

CVD 233. 

Classical MCs are also associated with atherosclerosis. Classical MCs from 

patients at inclusion had lower abundance in blood with higher intracellular 

phosphorylation than healthy controls. One hypotezis can be that monocytes were 

recruited to places of inflammation, like vessel wall, in patients with active psoriatic 

disease 444.  After 1 year, the abundance of classical monocytes was equal to HC.  

Contrary, non-classical MCs have been postulated to exert an atheroprotective 

effect 444. Responders had higher intracellular phosphorylation in non-classical MCs 

after 1 year than non-responders. The distribution of subtypes in the monocyte 

compartment may indicate that systemic treatment of psoriasis may lower CVD risk. 

Biological treatment reduces inflammatory cells and cytokines in the blood, 

also supported by our findings of normalization of Th1-Th2 balance and abundance 
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of Th17, Th22, Th9, Tc cells and Tregs with treatment 158,372. Some epidemiologic 

studies point at lower CVD risk in psoriasis patients on systemic treatment opposed 

to other treatments 435. In addition, it has been demonstrated that successful 

continuous systemic treatment of psoriasis reduces insulin resistance and ameliorates 

biomarkers for cardiovascular risk, including cytokines, adipokines and endothelial 

cell dysfunction (Figure 18) 164,385,445-448.  

 

 

In light of this, our results from cytokine and single cell analysis might 

indicate that use of systemic rather than local treatment in psoriasis patients at risk of 

cardiovascular disease might be beneficial. 

Figure 18. The concept of the “psoriatic march.” This hypothesis suggests that psoriasis is a 
systemic inflammatory condition. Functional consequences are insulin resistance, and endothelial 
dysfunction, resulting in increased vascular stiffness. This provides the basis for atherosclerosis 
(red, bold). Insulin resistance has been shown to alter epidermal homeostasis (red, fine). Obesity, 
causing a state of systemic inflammation is a known risk factor for psoriasis (orange, bold). 
Systemic anti-inflammatory therapy may reduce the patients’ cardiovascular risk (green).  

Reprint with permission from Frontiers in Immunology, Systemic Inflammation and 
Cardiovascular Comorbidity in Psoriasis Patients: Causes and Consequences, Boehncke W.H. et 
al 164. © 2018. Text adapted. 
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5.3.5 Biosimilar infliximab equals original in treatment of psoriasis 

Phosphoflow cytometry and clinical examination in Study II did not uncover clinical 

differences between psoriasis patients continuing treatment with original infliximab 

compared to those who switched. The NOR-SWITCH trial also showed that 

switching from infliximab originator to CT-P13 was not inferior to continued 

treatment with infliximab originator 449. Later, similar discontinuation risk has been 

found for original and biosimilar infliximab and etanercept 450. 

We noted a tendency for intracellular phosphorylation to be decreased in more 

immune cell subsets and epitopes in the CT-P13 group compared to originator IFX 

group at follow-up, but this must be interpreted with caution, as sample size was 

limited. 

A modest increase of pSTAT3 in B cells from patients who switched to 

biosimilar IFX was detected after 3 months compared to those who continued on 

originator IFX. However, we did not detect anti-drug antibodies 418. As patients 

remained in remission, it is not likely that this increase of B cell activation was 

related to renewed response towards autoantigens either. The transient raise in B cell 

activity might therefore represent coincidence due to low sample size or multiple 

comparison, and no difference in B cell activity was detected after 12 months. During 

the 12 months follow-up, patients on original and biosimilar IFX were doing equally 

well, so switching did not result in loss of response or adverse events in this group. 

 

5.4 Limitations of the study 

In all three studies, sample size was a compromise between chance of detecting 

differences between groups and feasibility (use of relatively expencive and work 

laborious methods). In Study II and III patients were subdivided in 4 treatment 

groups, mainly due to eligible patients in the biobank, but also to have the 

opportunity for investigation of different therapeutic strategies. As all biologicals 

were highly effective, clinical and biochemical differences of significance between 
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groups were scarce and the cohort therefore analysed as one group. The approach of 

including all PBMC subsets in the FlowSOM analysis might have failed to identify 

small subpopulations and a relatively large population of CD4 cells were not 

identifiable as any of the T cell subsets with certainty. To detect differences in 

cytokines, intracellular signalling and PBMC subsets between groups of psoriasis 

patients receiving different treatments, larger sample size is necessary.  

Since blood samples were collected during rutine controls with no extra visits 

for the patient, and we wanted to analyse them simultaneously, 

cryopreservation/freezing of samples was required. This could possibly impact on 

cytokines, cell recovery and intracellular signalling. However, the same procedure 

was used for all patient and control samples, which in that case would be a systematic 

error. Although many patient samples were cryopreserved a few months longer than 

HC samples, there was broad inter-individual variation regarding duration of storage 

in liquid nitrogen without having an obvious effect on phosphorylation levels. 

A limitation of Study I was low sensitivity of the cytokine assay. Some 

cytokines were detected in most serum samples (i.e. IL-22, IL-1RA, IL-7, IL-18 and 

IFN-γ), while others (i.e. GM-CSF, IL-2 and IL-21) were detected in around ¼ of the 

samples and the remaining cytokines were detected in less than 25 of the 80 samples. 

Other techniques or kits might be more sensitive with regards to detection of 

cytokines in blood. Serum measurements might not be a sensitive enough method for 

investigation of cytokines that exert their effect mostly in local tissue with 

predominant paracrine and autocrine release. Other tissues, like skin, synovia or 

lymph glands might be more informative. Since the levels of cytokines detected were 

low, changes between groups and timepoints were difficult to uncover. 

Concomitant medication might have impacted on levels of blood cells and 

cytokines. Some of the patients were already on methotrexate at inclusion or were 

prescribed MTX after starting on TNF inhibitor, but concomitant use did not seem to 

have a major impact on their cytokine levels. Samples from patients on IFX were 
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taken just before next infusion, and many of samples from patients on biological 

agents for s.c. injection were taken just prior to next injection, with some variation. 

 Healthy controls were not included in Study I, as the aim was to evaluate 

intra-individual changes of cytokine levels in the light of disease severity and 

biological treatment. In Study II, healthy controls with one timepoint were included, 

but not pre-treatment samples from patients. However, in Study III we included pre-

treatment samples and matched healthy controls, some of which had multiple 

timepoints. 

Adipokines, CRP, SR, S100-proteins and clinical examination to discover 

metabolic syndrome could have added extra value to the studies. Further optimization 

of panels for flow and mass cytometry could be possible, e.g. with self-conjugation of 

desired metal to specific antibodies. For Study III, we could have included more 

markers in the panel, like CD45 (lymphocytes), CCR7 (central versus effector 

memory, naïve versus terminal effector), HLA-DR (activated cells), CD69- and 103+ 

cells (recirculating memory T cells) and DC markers. In Study III antibodies for 

CXCR3, CCR4, CCR6 and CD127 were added to live cells before BC because they 

were sensitive to fixation, introducing risk of intersample variability of staining. In 

addition, Barcode Perm Buffer likely interfered with detection of chemokine 

reseptors as some were increased (CCR10 and CD161) compared to expression in test 

runs without BC. Live barcoding might interfere less with sensitive epitopes and is 

probably better for detection of chemokine receptors. However, live staining 

introduces the possibility of initiation of phosphorylation cascades inside cells by 

antibodies binding to receptors. The basal phosphorylation was in general low and 

pSTAT3/4/5 barely detected despite reports in the literature 358,374. Basal levels might 

have been below detection limits, and differences between groups might have been 

abolished by spillover from nearby channels. Measurement of phosphorylation levels 

after cytokine stimulation was not possible due to live staining of some markers. 
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6. Conclusions 

The three studies included in this thesis identify blood cytokines and single cell 

analyses as useful methods for describing the complex immunological interplay in 

psoriasis. Also highlighted by these studies is the fact that psoriasis patients have 

systemic inflammation potentially associated with comorbidities. Patient stratification 

based on immune-signatures, may enable personalized treatment that have the 

potential to alter the chronic course of psoriasis with positive implications on long-

term comorbidities.  

6.1 Study I 

Increase of serum IL-2 is associated with both improvement of disease severity and 

quality of life in psoriasis. Serum level of IL-17A is associated with disease severity. 

In addition, in this study increase of IL-5, IL-10, IL-12, IL-22 and GM-CSF levels 

correlate with clinical response to treatment.  

6.2 Study II 

Psoriasis patients have higher phosphorylation levels in PBMCs than healthy 

controls. This increased intracellular signalling does not completely normalize with 

anti-TNF treatment. Switching from original to biosimilar infliximab does not affect 

biochemical or clinical parameters. 

6.3 Study III 

Biological therapy facilitate shift in Th1-Th2 balance, transition from naïve/effector 

to memory predominance, reduce circulating Th17 and CD8 cells and increase PD-1 

expression on T cells. In addition, efflux of epithelial-homing lymphocytes from skin 

is likely. In the monocyte compartment, changes in favor of reduced CVD risk were 

observed. Results show that intracellular phosphorylation of PBMCs is higher in 
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psoriasis patients than healthy controls and in non-responders than responders to 

treatment. 
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7. Future perspectives 

The skin is an easily accessible organ and it has therefore been possible to study its 

cellular and genomic features in detail 15. Despite this, unanswered questions in the 

psoriasis pathogenesis still remain, including the mechanisms involved in the 

initiation, the characterization of the autoimmune and autoinflammatory responses, as 

well as the link to extra-cutaneous manifestations 451-453. In addition, therapeutic 

strategies can be optimized. Research during the two last decades has resulted in 

novel treatment concepts, however, selection of patients for these specific immune-

modulatory treatments, based on the immunological aberrancy and has not been 

implemented. Laboratory tests to evaluate severity and treatment effect are also 

lacking 454.  

 

Stratification of patients and optimizing treatment 

PBMCs and cytokines are promising biomarkers for estimating systemic 

inflammation in psoriasis and treatment response, and they constitute potential new 

drug-targets 356,455. Cell analysis by mass cytometry is particularly advantageous in 

dermatological research since this methodology can be applied on both blood and 

tissue 456,457. Imaging Mass Cytometry enables visualization of many markers 

simultaneously and therefore can reveal more of the interplay among the many cell 

subsets involved in psoriasis plaques. For clinical analyses of PBMCs, flow 

cytometry may be more feasible than mass cytometry. Another potential mechanism 

for evaluating response to treatment, can be transcriptome analyses; mRNA 

expression of cytokines 458. Th1, Th2 and Th17 chemokins in serum have also been 

found to be potential biomarkers in psoriasis 208. Other soluble biomarkers of interest 

are S-100 proteins (like psoriasin), immune receptors and e-selectin 208,213,459-461. 

MicroRNAs (miRNAs) from PBMCs have also shown promissing results as psoriasis 

biomarkers 462. 
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Theranostics refers to the combination of diagnostics and therapy, like 

monitoring of functional drug levels and neutralizing ADA in the circulation 463,464. 

Objective measurements rather than empirical dose-escalation may provide more 

cost-effective treatment strategies, tailored according to individual requirements 464. 

As immunological infiltrate may vary in acute versus chronic psoriasis and in 

different subtypes of psoriasis (plaque versus pustular), therapeutic choice adapted to 

these concerns also makes sence 465.  

Pharmacogenetic studies identify variations in the genome that can be 

predictive for treatment response or adverse effects of a given drug 431,466. Genetic 

polymorphism might predict response to and side-effects from methotrexate and 

retinoids, in addition to biological treatment of psoriasis (etanercept, ustekinumab and 

TNF inhibitors) 111,276,466-471.  

 

Holistic approach; comorbidities and quality of life 

Psoriasis is currently an incurable disease, therefore follow-up with long-term safe 

treatments with concern for quality-of-life is important 199,276. In Germany significant 

improvements on both the clinical level and quality of life, including indirect costs 

and days of work lost, have been achieved by implementing a national program on 

psoriasis care 472. 

Identification of comorbidities, including PsA, depression and metabolic 

syndrome in psoriasis patients, should gain increased attention among   

dermatologists 473,474. In patients with severe and longstanding psoriasis, screening for 

metabolic and cardiovascular disease should include blood pressure, BMI, waist 

circumference, fasting blood glucose, transaminases and lipids 6,475. In most cases, 

however, patients should be referred for specialist management if other comorbidities 

are detected 164,268,476. Biological treatment reduces systemic inflammation opposed to 

local treatment, a notion that should be taken into account when choosing treatment 

for psoriasis patients with metabolic syndrome 213.  
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Emerging therapies 

Future research will hopefully enlighten more of the psoriasis puzzle and enable us to 

apply new knowledge for precision medicine and development of improved 

therapeutic strategies. A large number of new anti-psoriatic drugs are currently being 

developed 111,477. New treatments should be safe with low risk of infections, 

malignancies and development of auto-immune diseases 111. Potential research areas 

and treatment targets can be cytokines, receptors, signalling pathways, transcription 

of genes, cell interaction, cell recruitment etc. Among cytokines and their receptors, 

other members of the IL-17 family, IL-22, IL-6, IL-9, IL-36, IL-1, IFN-α and IFN-γ 

are candidates 111,123,199. One recent advance in the field of therapeutic modalities, has 

been the design of multispecific antibodies 111. Bispecific antibodies that block both 

TNF and IL-17 have been developed and trispecific antibodies are on their way. 

Since biological drugs are costly, require injections, and some patients 

experience tacaphylaxis, the development of orally available, small-molecule 

inhibitors is desirable. Directly attacking intracellular signalling pathways can inhibit 

stimulation from diverse extracellular sources and could therefore ameliorate 

different immune axes. The selective JAK inhibitors can be given as oral treatment, 

but it remains to be seen whether the potential risks of infections with this treatment 

will limit the broad systemic use of JAK inhibitors 478. Topical formulas of JAK 

inhibitors are in development 479. Another target is mTORCI, which, when activated 

by IL-17A or TNF results in epidermal hyperproliferation 480. 

Given the importance of IL-23/IL-17 axis in psoriasis and the expression of the 

transcription factor RORγt in Th17 cells, blockade of RORγt with orally administered 

drugs is also aimed at 481,482. The development of other inhibitory technologies such 

as siRNA, antisense nucleotides, aptamers (oligonucleotide or peptide molecules that 

bind to a specific target molecule) are possible scenarios for the future 111. 

Tregs are potential treatment targets for both psoriasis and atherosclerosis 222. 

Reversing dysfunction, augmenting activity and amplification are possible ways for 

modulation of Tregs 483. Curative and preventive strategies will have to eliminate or 
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dampen pathogenic autoimmune T cells. This could potentially be achieved via 

tolerogenic vaccines that induce autoantigen-specific Tregs to control activation of 

pathogenic cells in psoriasis 111. Restorement of immune regulation or tolerance and 

prevention of specific antigen triggers, e.g. by blocking antigen presentation by APCs 

to effector cells, targeting LL37 autoantibody production by B cells or preventing 

differentiation and maintenance of resident memory T cells, could result in treatments 

without long-term immune suppression 44,484.  

Genetic variants that predispose for or protect from psoriasis have been 

identified 67. Persons at risk of developing severe psoriasis could potentially be 

identified early through combination of several gene varaiants, allowing for 

calculation of a predictive genetic risk score 77,111,485,486. If "early intervention” that 

blocks inflammatory mediators in the initial disease stages can prevent the psoriatic 

march remains for the future to reveal 487. 

Immunological and genetic profiling applied in a systematic way, are 

promising avenues for optimization of personalized treatment in psoriasis, which 

might lead to a healtier trajectory with improved quality of life and reduced risk of 

comorbidities. 
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Abstract
Psoriasis is an immune‐mediated disease where the IL‐23/Th17 axis as well as

TNF comprise main targets of biological therapy. Immune profiling has so far not

been embraced as a clinical tool. We aimed to investigate relationships between

individual serum cytokine levels in 40 psoriasis patients before and after receiving

biological therapy and Psoriasis Area and Severity Index (PASI) and Dermatolog-

ical Life Quality Index (DLQI). Serum concentration of 25 cytokines was deter-

mined by Luminex technology. Mean PASI and DLQI decreased by 71% and

65%, respectively. Increase of IL‐2 positively correlated with improvement of

PASI and DLQI. Moreover, increase of IL‐5, IL‐10, IL‐12, IL‐22 and GM‐CSF
correlated with treatment effect. Notably, logistic regression revealed four times

higher risk of having severe psoriasis when IL‐17A increased by 1 pg/mL (OR:

4.06, P < 0.05). Selected serum cytokines might constitute useful biomarkers for

monitoring disease activity and optimizing therapeutic strategies in psoriasis

patients.

1 | INTRODUCTION

Cytokine targeted therapy is a rapidly evolving field of
treatment for many immune‐mediated diseases. How-
ever, mapping of an individual's cytokine profile before
initiating biological treatment is not in routine clinical
use. The decisions of which drugs to choose are often
based on economical or practical reasons and
preferences.

Psoriasis is a chronic inflammatory immune‐mediated
skin disease associated with increased risk of arthritis, car-
diovascular disease, obesity and diabetes.1,2 Living with
severe skin disease and comorbidities can impact quality of
life. Physical trauma, certain infections, stress or medica-
tions can trigger and subsequently maintain an eruption of
psoriasis in genetically predisposed individuals.3 Skin dam-
age may induce keratinocyte‐derived antimicrobial pep-
tides, which have chemoattractant and immunomodulatory
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effects on dendritic cells (DCs) and T cells.4 Macrophages
located along the basement membrane exhibit a dual role
as antigen presenting cells and producers of cytokines, for
example, TNF.5 Plasmacytoid DCs (pDCs) produce IFN‐α
and are upregulated in early psoriasis plaques.6,7 Further-
more, myeloid DCs (mDCs) are markedly increased in pso-
riatic skin and can release nitric oxide, a vasodilating agent
affecting skin vasculature. More importantly, when mDCs
are stimulated by IFN‐α, TNF‐α, IL‐1 β and IL‐6, they
secrete IL‐12 and IL‐23. These cytokines are instrumental
in the activation and differentiation of naïve T cells into T
helper cells (Th)1 and Th17 cells, respectively, in the
draining lymphnode.8,9 Th1 cells in turn secrete TNF,
IFN‐γ and IL‐2, while IL‐17A, IL‐17F and IL‐22 are pro-
duced by Th17 and Th22 cells.10 In addition, chemotactic
cytokines, (ie, chemokines, eg, CXCL8, CXCL9, CXCL10,
CXCL11 and CCL20 11) and S100 proteins from ker-
atinocytes also take part in the pathogenesis, together with
complementary TNF and IFN‐α from natural killer T
(NKT) cells.12,13 The inflammatory cytokines IL‐22 (from
Th cells) and IL‐20 (from keratinocytes, DC and macro-
phages) are increased in psoriatic skin lesions and induce
keratinocyte hyper‐proliferation.14 A vicious cycle can
ensue where inflammatory cytokines from activated ker-
atinocytes act on innate and adaptive immune cells and
sustain the inflammatory cascade.3 Neutrophils gathered in
epidermal microabscesses contain IL‐17A and are a charac-
teristic feature of psoriasis. It has been shown that they are
numerically dominant in the skin compared to IL‐17A‐con-
taining T cells in active psoriasis.15 From the complex
interplay between immune cells and cytokines in the patho-
genesis of psoriasis, TNF‐α, IL‐12/23 and IL‐17 stand out
as key cytokines and serve as targets for biological drugs.9

The aim of this study was to investigate putative rela-
tionships between serum cytokines in psoriasis patients
before and after initiating biological (anti‐cytokine) therapy,
with focus on intra‐individual changes, and relate this to
disease severity and quality of life. In this way, we wanted
to explore whether cytokine measurements could be of
value in a clinical setting for evaluation of disease activity
and treatment effects, thereby enabling individually tailored
therapy.

2 | MATERIALS AND METHODS

Serum samples were collected at the Department of Derma-
tology, Haukeland University Hospital from April 2015
until August 2017. Inclusion criteria were severe psoriasis,
age above 18 years and need of biological treatment. A
total of 40 psoriasis vulgaris patients were included, with
10 consecutive patients each prescribed infliximab (anti‐
TNF‐α antibody), ustekinumab (anti‐IL12/23 antibody),

secukinumab (anti‐IL17A antibody) or etanercept (TNF‐
receptor blocker). The patients’ characteristics are displayed
in Table 1 and previous and co‐medication in Table S1.
All patients were naïve to the biological drug they were
prescribed at inclusion, and blood was collected prior to
initiation of this treatment but after the recommended
washout period of any previous biological drug. At the first
time point, patients had active psoriasis with extensive skin
inflammation. The follow‐up sample was taken after
approximately 16 weeks, preferably before a scheduled
infusion or injection. Blood was drawn in the morning in
5 mL serum tubes with no additive (BD Vacutainer
367614). The tubes were carefully inverted six times and
rested in room temperature (RT) for 60 minutes for coagu-
lation before centrifugation at 2000× g for 10 minutes
(RT). Serum was aliquoted and stored at −70°C until anal-
ysis. Psoriasis Area and Severity Index and body mass
index (BMI) were measured by the treating dermatologist,
and Dermatological Life Quality Index questionnaire was
completed on the same day. Patients gave written informed
consent (Regional ethical committee approvals 2014/1373
and 2014/1489).

2.1 | Cytokine analysis

Cytokines were measured using a ProcartaPlex™ Human
Cytokine Panel 1B 25plex (EPX250‐12166‐901) kit (Invit-
rogen Thermo Fisher, MA) according to the manufacturer's
instructions with the following adjustments: (a) one addi-
tional standard was included in the four‐fold serial dilution,
making the standard range from 1:4 to 1:16.384; (b) the
total volume of diluted beads were transferred to a 96‐well
plate with equal volume in each well; (c) sample incuba-
tion was performed for 20 hours at 6°C with dark lid and
gentle agitation (450 rpm); (d) detection antibody and
streptavidin‐PE were incubated for 60 minutes; (e) beads
were resuspended in 90 μL reading buffer on a plate shaker
with a dark lid for 10 minutes before data were acquired
on a Luminex® 100/200™, counting 2500 beads per well.
The five‐parameter logistic algorithm (weighted by 1/y,
(V2.4)) and raw median fluorescence intensity values were
used for the creation of standard curves.

2.2 | Statistics

The statistical package for social science (SPSS) Statistics 24
(IBM, Armonk, NY, USA) was used for data analysis. Wil-
coxon signed rank test for paired samples was applied to
investigate the differences in parameters between inclusion
and follow‐up. The strength of correlations, revealed by
Spearman's rank‐order test, were interpreted according to
the recommendation from British Journal of Medicine
(https://www.bmj.com/about-bmj/resources-readers/publica
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tions/statistics-square-one/11-correlation-and-regression),
with ρ: 0.00‐0.19 regarded as very weak, 0.20‐0.39 as
weak, 0.40‐0.59 as moderate, 0.60‐0.79 as strong and 0.80‐
1.00 as very strong correlation. Linear regression was used
to explore whether the different cytokines could predict
disease severity. To evaluate the effect of cytokines on
50%, 75% or 90% improvement of PASI (PASI50, PASI75,
PASI90), logistic regression was applied. Δ value was cal-
culated by substracting cytokine value at follow‐up from
value at inclusion. Fold change (FC) was calculated by
dividing cytokine value at follow‐up by value at inclusion.
Analyses were done on the whole patient group, adjusted
for age, gender, BMI and one outlier for IFN‐γ, IL‐1β, IL‐
18 and IL‐21. A P‐value ≤0.05 was considered statistically
significant. As the analyses were exploratory, no correction
for multiple comparisons was made. Figures were made in
GraphPad Prism 7.

3 | RESULTS

3.1 | Disease severity and treatment effect

The clinical measures PASI and DLQI both decreased dur-
ing treatment, with 71% and 65% reduction of mean values,
respectively, for the whole group. 35 of 40 patients
achieved at least PASI50, 20 patients PASI75 and eight
patients reached PASI90 response. Patients receiving inflix-
imab or secukinumab had the largest improvement of clini-
cal parameters (PASI 80.2% and 75.3%, DLQI 81.8% and
73.1%, respectively), while the amelioration for patients on
etanercept and ustekinumab was slightly inferior (PASI
62.5% and 66.2%, DLQI 67.4% and 37.2%, respectively)
(Table 1, Figure 1). Treatment effect of etanercept can
increase for up to 24 weeks16 implying that further
improvement in this group could be anticipated.

3.2 | Cytokine levels at inclusion and follow‐up
Further analyses encompassed serum levels of cytokines
before and approximately 16 weeks after introduction of

biological therapy, their interrelationship and fold changes
(FC). Serum cytokine levels at inclusion and follow‐up are
displayed in Figure 2. Some cytokines were detected in
most serum samples (ie, IL‐22, IL‐1RA, IL‐7, IL‐18 and
IFN‐γ), while others (ie, granulocyte‐macrophage colony‐
stimulating factor (GM‐CSF), IL‐2 and IL‐21) were
detected in around ¼ of the samples, and the remaining
cytokines were detected in less than 25 of the 80 samples.
Three cytokines (ie, IL‐23, IL‐31 and lymphotoxin) were
not detected by this assay. Wilcoxon signed rank test
revealed significant increases in cytokine level at follow‐up
for IL‐5 (P < 0.05) and IL‐15 (P < 0.05), but only a few
patients contributed to this increase. Concomitant use of
methotrexate did not seem to have a major impact on cyto-
kine levels (Figure S1). Subgroup analysis of cytokines
was not robust due to limited number of patients included.
The mean TNF, IL‐12 and IL‐17A at inclusion and follow‐
up for the four treatment groups are displayed in Figure S2
but should be interpreted with caution due to low number
of values for each condition.

3.3 | Cytokines as potential biomarkers in
psoriasis

A logistic regression model with pro‐inflammatory markers
(IL‐1α/β, IL‐6, IL‐12, IL‐17A, IL‐18, IL‐22, TNF‐α, IFN‐γ
and IFN‐α) revealed four times increased risk of having sev-
ere psoriasis, PASI > 10, with increases of IL‐17A by 1 pg/
mL (Odds Ratio (OR): 4.06, 95% CI: 1.01‐16.38, P < 0.05).

Spearman correlation revealed that percentage change of
PASI correlated very strongly with FC of IL‐2 and IL‐12,
while moderately with IL‐5 (Table S2). Change in DLQI
was very strongly correlated to FC of IL‐2 (ρ: 0.82,
P < 0.05). Logistic regression detected a reduced chance
of achieving remission (PASI90) with decline in cytokine
level at follow‐up for ΔIL‐12 (OR: 0.03), ΔIL‐5 (OR:
0.66), ΔGM‐CSF (OR: 0.59) and ΔIL‐22 (OR: 0.88). On
the other hand, an increase of IL‐10 at follow‐up
gave higher chance of achieving PASI90 (OR: 1.26)
(Figure S3).

TABLE 1 Characteristics of all patients (n = 40) and the four treatment subgroups (n = 10 in each) at inclusion and follow‐up,
approximately 16 wk after starting biological treatment

Group
Sex
(M/F) Age BMI

PASI
inclusion

PASI
follow‐up

% PASI
change

DLQI
inclusion

DLQI
follow‐up

% DLQI
change

All 28/12 42.08 (14.94) 29.96 (5.37) 9.76 (6.28) 2.65 (2.83) 71.03 (24.47) 14.68 (6.94) 3.98 (3.61) 64.87 (40.12)

Infliximab 5/5 41.40 (16.56) 32.07 (6.40) 10.16 (3.91) 2.02 (1.70) 80.16 (17.31) 16.20 (6.37) 2.20 (2.30) 81.81 (26.21)

Ustekinumab 6/4 38.20 (16.48) 27.33 (2.52) 10.11 (9.09) 3.58 (4.72) 66.17 (30.53) 11.80 (6.75) 4.13 (2.96) 37.22 (61.80)

Secukinumab 9/1 50.40 (9.96) 32.55 (4.21) 9.36 (6.79) 1.87 (1.38) 75.31 (18.45) 13.00 (8.01) 4.40 (4.65) 73.10 (23.12)

Etanercept 8/2 38.30 (14.55) 27.87 (5.91) 9.42 (5.13) 3.14 (2.28) 62.48 (28.31) 17.70 (5.77) 5.20 (3.93) 67.36 (26.14)

BMI, body mass index; DLQI, Dermatological Life Quality Index; PASI, Psoriasis Area and Severity Index.
Values are listed as mean (SD).
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Body mass index was correlated to inclusion values of
TNF‐α (ρ: 0.38, P < 0.05), IL‐22 (ρ: 0.38, P < 0.05) and
IL‐1 RA(ρ: 0.44, P < 0.001).

3.4 | Relationship between different cytokines

In order to investigate putative relationships between pro‐
and anti‐inflammatory cytokines, Spearman correlation was

FIGURE 1 Clinical parameters at inclusion and after approximately 16 wk for the four treatment groups (10 patients in each). A, Change in
Psoriasis Area and Severity Index from inclusion to follow‐up. B, Change in Dermatological Life Quality Index from inclusion to follow‐up.
Infliximab: red, ustekinumab: green, secukinumab: blue, etanercept: black. Wilcoxon signed rank test. * = P ≤ 0.05, ** = P ≤ 0.01

FIGURE 2 Cytokine values at inclusion and follow‐up for all patients. One outlier was removed for IL‐21. Wilcoxon signed rank test.
* = P ≤ 0.05, ** = P ≤ 0.01

4 of 7 | SOLBERG ET AL.



performed. Inclusion values of cytokines showed very
strong correlation between pro‐inflammatory IFN‐γ and
IL‐18. In addition, IL‐17A and IL‐15 had very strong cor-
relations with IL‐2 (Table S3). FC of pro‐inflammatory
cytokines revealed very strong correlations between IFN‐γ/
IL‐18, IL‐4/TNF‐α and IL‐5 with IL‐4, IL‐10, IL‐22 and
TNF (Table S4).

To shed light on the pathogenic mechanisms in psoriasis,
linear regression was used to investigate whether inclusion
levels of cytokines from Th1 cells (TNF, IFN‐γ and IL‐2)
and Th17 (IL‐17) could be predicted by levels of cytokines
that are considered to be upstream in the cytokine cascades
(Table S5). The model included IL‐1β, IL‐6, IL‐12, TNF and
IFN‐α as independent variables. Variation in TNF could to a
strong degree be explained by this model (R2 = 0.97) with
significant influence from IL‐1β. Less of the variation of
IFN‐γ could be explained (R2 = 0.69), with IL‐1β, IFN‐α
and TNF contributing to different degrees. For IL‐2, the
model could explain much of the variation (R2 = 0.89) with
TNF as the only significant contributor. The same model
could also predict level of IL‐17A (R2 = 0.97) with signifi-
cant contributions from IL‐1β, TNF and IFN‐α.

4 | DISCUSSION

Finding the most effective treatment for patients with
immune‐mediated diseases can be challenging and often
entails multiple treatment attempts resulting in prolonged
suffering and unnecessary medication costs. From a clinical
perspective, it is often observed that some patients with
severe psoriasis benefit from a TNF inhibitor and others
from drugs targeting the IL23/Th17 axis. The effect of cer-
tain drugs can decline with time, possibly reflecting a shift
in the underlying immune profile or immunogenicity. The
majority of papers investigating cytokine levels in psoriasis
focus on patients as a group with comparison to healthy
controls. Only a few reports investigate treatment effects
on cytokine levels17 and the intra‐individual variability
over time. This paper is, however, focused on cytokine
levels in individuals over time, in the light of disease activ-
ity and treatment effect. The expanding knowledge regard-
ing immune‐mediated diseases makes the search for new
biomarkers highly relevant.

A recent meta‐analysis concluded that levels of TNF‐α,
IFN‐γ, IL‐2, IL‐6, IL‐8, IL‐18, IL‐22 were higher in psoria-
sis patients than in healthy controls, but this was not the
case for IL‐1β, IL‐4, IL‐10, IL‐12, IL‐17, IL‐21, IL‐23.18

Regarding disease severity, PASI has been found to be cor-
related with IL‐6, IL‐8, IL‐12, IL‐17, IL‐18, TNF‐α and
IFN‐γ in some studies, but not in others.12,19-27 Differences
in sample collection, storage and assessment methodologies
may influence in part explain conflicting results.

It is well established that IL‐17A is a key cytokine in pso-
riasis pathogenesis.2 Pharmaceuticals targeting the IL‐23/
Th17 axis are highly effective.28 Congruently, we found that
an increase of serum IL‐17A by 1 pg/mL was associated
with four times increased risk of severe psoriasis, PASI >
10. Furthermore, the pro‐inflammatory cytokines IL‐1β, IL‐
6, IL‐12, IL‐23, TNF and IFN‐α induce, at different steps,
the differentiation of Th1 and Th17 cells.3 Our linear regres-
sion analyses indicated that the levels of TNF, IFN‐γ and IL‐
2, and IL‐17A could be predicted from the level of these
mentioned cytokines upstream in the pathogenesis.

The interaction between T cells and IL‐2 is important for
both tolerance and immunity. We found that improvement of
PASI positively correlated with a fold change of IL‐2. This
is supported by a recent study which found that IL‐2 was
negatively correlated with active psoriasis.17 Our data also
revealed a correlation between IL‐2 and IL‐17A at inclusion,
which reflect that both the Th1 and Th17 pathways are acti-
vated. One role of IL‐2 in psoriasis may be differentiation of
immature T cells into regulatory T cells. Further, IL‐2 also
facilitate the differentiation of antigen exposed T cells into
effector and memory cells. In our cohort, levels of IL‐2 cor-
related with improvement of quality of life. However, the
role of IL‐2 in depression is currently debated.29,30

IL‐12 and IL‐23 are instrumental in the differentiation of
naïve T cells into Th1 and Th17 cells, respectively, and they
share a common subunit, p40 (targeted by ustekinumab).
The active IL‐12 is the heterodimeric p70, comprised of p40
and the unique subunit p35. Surprisingly, decrease of IL‐
12p70 at follow‐up was associated with reduced chance of
achieving PASI90 and FC of IL‐12p70 positively correlated
with PASI improvement. The literature provides reports on
both elevated (IL‐12p40)12 and reduced (subunit not speci-
fied)24 levels of IL‐12 compared to healthy controls. Differ-
ent methodologies and detection of distinct subunits of IL‐12
might explain these discrepancies.

Noteworthy, the Th2 associated IL‐5 correlated posi-
tively with a good clinical response, possibly reflecting
restitution of the Th1/Th2 balance. A decrease in the
immune regulatory cytokine IL‐22 was associated with
lower chance of achieving PASI90. IL‐22 has been shown
to correlate with psoriasis, but can have diverse biological
activity resulting in protective or pathogenic effects.31 Fur-
ther, reduction of GM‐CSF during treatment was also asso-
ciated with poor clinical response. GM‐CSF has the ability
to inhibit neutrophil migration and induce anti‐apoptotic
signalling pathways, both of which might be of importance
in psoriasis. These functions can be influenced by IL‐17.32

The anti‐inflammatory cytokine IL‐10 executes impor-
tant regulatory functions and can be involved in auto‐
immune diseases.33 In psoriasis, genetic variants and
reduced levels of IL‐10 have been reported.24,34 To this
end, our data show that increased levels of IL‐10 at follow‐
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up was associated with good treatment response (PASI90).
Even though low‐dose IL‐10 administration can be benefi-
cial in psoriasis, clinical use has been halted because of
adverse events.35

Psoriasis is associated with adiposity, and the patients
in our study had high BMI.36 Adipose tissue is one source
of TNF, and we found a correlation between BMI and
TNF, in congruence with reports in obese individuals.37

Moreover, TNF inhibition is associated with weight gain,
while drugs targeting the IL‐23/Th17 axis are not.38 In
addition, high BMI has been associated with poor treatment
response.39 Further, we found that IL‐22 and IL‐1RA cor-
related with BMI. It was recently discovered that IL‐22 is
associated with obesity and type 2 diabetes.40 Variants in
the gene encoding IL‐1RA have also been linked to adipos-
ity.41

The clinical effect of all four biological drugs in this
study, measured by PASI and DLQI, was excellent. Since
the levels of cytokines detected were low, changes at fol-
low‐up were difficult to uncover. We were not able to
show decrease of TNF in patients receiving anti‐TNF treat-
ment or reduction of IL‐12 or IL‐17 in patients receiving
ustekinumab or secukinumab, respectively.

Limitations of the study are low patient numbers for
subgroup analyses and detection mode of cytokines by the
assay. Serum measurements might not be the most sensi-
tive way to monitor levels of cytokines that exert their
effect mostly in local tissue. Some of the patients were
already on methotrexate at inclusion or were prescribed the
drug after starting on infliximab, but concomitant use did
not seem to have a major impact on their cytokine levels.
Healthy age‐matched controls were not included in this
study, as the aim was to evaluate intra‐individual changes
of cytokine levels in the light of disease severity and bio-
logical treatment.

Treatment of inflammatory diseases has improved
tremendously over the last two decades. Still, clinicians
often struggle to optimize individualized therapy of psoria-
sis vulgaris. There is currently no laboratory test to evalu-
ate severity of or treatment effect in psoriasis, but
inflammation markers (CRP, SR), trough levels and anti-
drug antibodies are used to some extent.42 Our results indi-
cate that increase of serum IL‐2 is associated with both
improvement of disease severity and quality of life and
confirm that the serum level of IL‐17A is associated with
disease severity. In addition, the data unveiled that
increases in IL‐5, IL‐10, IL‐12, IL‐22 and GM‐CSF levels
correlated with clinical response to treatment. Future stud-
ies using more sensitive methodologies, including patient
groups where treatment choice is based on individual
immune profile, might shed light on the usefulness of
serum cytokines as biomarkers in treatment algorithms aim-
ing at optimizing therapeutic strategies in psoriasis patients.
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Suppl. table 1. Characteristics of all 40 patients in the four treatment subgroups (n= 10 
in each). 
 
Group Mean number of 

previous biological drugs
Use of methotrexate 
at inclusion

Concomitant methotrexate 
during follow-up 

Infliximab 0.4 1 10
Ustekinumab  0.9 1 1
Secukinumab 1.9 4 4
Etanercept 0 0 0
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Suppl. fig. 1. Cytokine levels in psoriasis patients taking concomitant methotrexate 
compared to those who did not take methotrexate. Patients using methotrexate at inclusion 
or follow-up are marked with colors. Infliximab: red (1), ustekinumab: green (1), 
secukinumab: blue (4). Patients not using methotrexate are black. One outlier was removed 
for IL-21. 
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Suppl. fig. 2: Level of the cytokines targeted by treatment (TNF, IL-12 and IL-17A) at 
inclusion and follow-up. a: Intra-individual change in TNF, IL-12 and IL-17A from 
inclusion to follow-up for the four treatment groups. One type of symbol is used for the same 
patient in each group displaying TNF: yellow; IL-12: purple; IL-17A: orange. b: Mean level 
of TNF, IL-12 and IL-17A displayed for the four treatment groups (n=10 in each group). 
Infliximab: red, ustekinumab: green, secukinumab: blue, etanercept: black. 
 
 
 
 
 
 
 

 
 
Suppl. fig 3: Odds ratio (OR) of achieving PASI 90 for Δ IL-12, Δ IL-5, Δ IL-22, Δ GM-
CSF and FC IL-10. Δ: cytokine value at inclusion minus value at follow-up. FC: cytokine 
value at follow-up divided by value at inclusion. Logistic regression, with 95% confidence 
interval of OR. *= p ≤ 0.05 

 
 
 
 
 



 

 

 

Suppl. table 2. Spearman`s rank correlation coefficients between cytokine fold changes 
and percentage improvement of PASI in addition to categories of PASI improvement. 

 PASI improvement  
(%) 

PASI improvement 
category 

FC IL-2 .820* .718 
FC IL-12 .657 .845* 
FC IL-5 .536* .412 

 
* = p ≤ 0.05 
 
PASI improvement category includes the following categories: 1: <50, 2: 50.00-74.99, 3: 75.00-89.99, 4: 90.00-99.99, 5: 100 

 
 
 

 

 

  



 
Suppl. table 3. Spearman`s rank correlation coefficients between cytokines at inclusion. 
Cytokines with very strong (0.80-1.00) correlations are included in the table.  

 
 
 
 
 
 
 
 
  

 
* = p ≤ 0.05 
** =p ≤ 0.01 
 

 
 
Suppl. table 4. Spearman`s rank correlation coefficients between fold change of 
cytokines with very strong (0.80-1.00) correlations. 

 
 
 
 

 
 

 
 
 
 
 
 

 
* = p ≤ 0.05 
** =p ≤ 0.01 
 
 
 

Suppl. table 5. Linear regression of IL-17A, TNF, IFN-γ and IL-2 with cytokines 
situated upstream in the psoriasis pathogenesis (IL-1β, IL-6, IL-12, IFN-α and TNF) as 
independent variables. 
 

*= ≤ 0.05 
**= ≤ 0.01 
***= ≤ 0.001 
B= unstandardized coefficient of the regression equation 
C.I.= confidence interval 

Spearman`s 
rho 

IFN-γ IL-18 IL-2 IL-17A IL-15 

IFN-γ 1.000 .809** .104 .134 .063
IL-18  1.000 -.105 -.001 -.090
IL-2   1.000 .838** .833**

IL-17A   1.000 .630**

IL-15   1.000

Spearman`s 
rho 

IFN-γ IL-18 IL-4 IL-5  TNF-α IL-10 IL-22 

IFN-γ 1.000 .861** .220 .744** .301 .582** .190
IL-18  1.000 .331 .674** .237 .429* .438
IL-4   1.000 .812** .854** .000 .112
IL-5    1.000 .869** .809** .850**
TNF-α    1.000 .283 .136
IL-10    1.000 .642
IL-22    1.000

 TNF  IFN-γ IL-2 IL-17A   

 

 
B 95% C.I. Sig (p) B 95% C.I. Sig. (p) B 95% C.I. Sig. (p) B 95% C.I. Sig. (p) 

IL-1β 2.13 1.32, 2.93 .001*** -23.34 -36.45, -10.24 .001*** 1.03 -0.91, 2.97 .288 1.12 0.28 , 1.96 .010** 

IL-6 0.09 -0.10, 0.28 .334 -0.80 -3.14, 1.54 .492 -0.30 -0.65, 0.04 .085 -0.03 -0.18, 0.12 .715 

IL-12 0.64 -0.77, 2.06 .364 4.38 -12.88, 21.64 .609 -0.46 -3.02, 2.09 .716 -0.46 -1.56, 0.65 .407 

IFN-α -0.97 -2.03, 0.09 .072 23.83 10.45, 37.21 .001*** -1.72 -3.70, 0.26 .086 -1.18 -2.03, -0.32 .008** 

TNF    8.99 4.86, 13.13 .001 *** 0.92 0.31, 1.53 .004** 0.45 0.28, 1.96 .002** 
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Summary

Background Psoriasis vulgaris is a chronic, inflammatory skin disease characterized
by a dysregulated immune response and it is associated with substantial systemic
comorbidities. Biological drugs such as tumour necrosis factor (TNF)-a inhibitors
can ameliorate the disease but are expensive. Biosimilar drugs have the same
amino-acid sequence as the originator, but differences in manufacturing can
affect biological activity, efficacy and tolerability.
Objectives To explore potential differences in intracellular phosphorylation of sig-
nalling molecules in peripheral blood cells from patients with psoriasis treated
with the TNF-a inhibitor infliximab compared with healthy controls, and to
investigate if the phosphorylation pattern was influenced by switching from the
originator infliximab to the biosimilar CT-P13.
Methods By flow cytometry, we measured phosphorylation of nuclear factor kappa
B, extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase
and signal transducer and activator of transcription 3, before and after TNF-a
stimulation in monocytes and T, B, natural killer and CD3+ CD56+ cells from 25
patients with psoriasis treated with infliximab and 19 healthy controls.
Results At inclusion, phosphorylation levels of peripheral blood mononuclear cells
(PBMCs) were increased in patients with psoriasis compared with healthy con-
trols, even though clinical remission had already been achieved. Phosphorylation
levels declined in patients on both originator infliximab and biosimilar during
continued treatment. No significant differences were detected between the two
medications after 12 months.
Conclusions Patients with psoriasis on infliximab have higher activation levels of
PBMCs than do healthy controls, possibly reflecting systemic inflammation.
Switching from the originator infliximab to biosimilar CT-P13 did not affect
phosphorylation levels or clinical parameters, suggesting that CT-P13 is a non-
inferior treatment alternative to the originator infliximab.

What’s already known about this topic?

• The pathogenesis of psoriasis encompasses interactions between dendritic cells,

T cells, keratinocytes and neutrophils. Certain cytokines, including tumour necrosis

factor (TNF)-a, from these cells activate intracellular signalling cascades, which can

be measured using phospho flow cytometry.

• Infliximab and the biosimilar CT-P13, both effective in psoriasis, act by binding

TNF-a.

© 2017 The Authors. British Journal of Dermatology
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What does this study add?

• Peripheral blood mononuclear cells (PBMCs) from patients with psoriasis are more

activated with higher intracellular signalling activity than PBMCs from healthy

controls.

• This elevated activation level declines during infliximab treatment with no signifi-

cant differences between originator and biosimilar infliximab.

What is the translational message?

• Higher activation levels of PBMCs implies an ongoing systemic inflammation, pos-

sibly related to cardiovascular disease and obesity associated with psoriasis.

• Long-term infliximab treatment may be beneficial in preventing such comorbidi-

ties.

• Switching from originator to biosimilar infliximab does not seem to influence

intracellular signalling activity of PBMCs.

The pathogenesis of psoriasis encompasses interactions

between dendritic cells, T cells, keratinocytes and neu-

trophils.1–3 Cytokines released from these cells initiate and

perpetuate the inflammation that is characteristic of psoriasis.4

Patients have increased risk of cardiovascular disease and dia-

betes,5–7 indicating systemic inflammation. This is supported

by higher numbers of circulating lymphocytes8,9 and

increased gene expression of transcription factors and cytoki-

nes involved in differentiation of T helper (Th)1, Th17 and

Th22 cells.10,11 Furthermore, patients with psoriasis display

elevated levels of inflammatory cytokines in blood.12,13

Among the cytokines involved in psoriasis pathogenesis,

tumour necrosis factor (TNF)-a is regarded as one of the most

predominant.4 Levels of TNF-a are elevated in lesional psori-

atic skin and plasma, and peripheral blood mononuclear cells

(PBMCs) express high levels of TNF-a mRNA. Moreover,

patients with psoriatic arthritis have increased synovial TNF-

a.14 TNF-a signals via TNF-receptor 1 and 2, which are

expressed on all nucleated cells,14 and induces phosphoryla-

tion of nuclear factor kappa B (NF-jB), a transcription factor,

and p38 mitogen-activated protein kinase (MAPK). TNF-a sig-

nalling can result in phosphorylation of signal transducer and

activator of transcription 3 (STAT3), another transcription fac-

tor, and extracellular signal-regulated kinases (ERKs).15,16 NF-

jB regulates genes involved in inflammation, cell survival and

proliferation. It promotes expression of cytokines involved in

the pathogenesis of psoriasis, and NFKB1 and NFKBIL1 gene

variants are associated with severe psoriasis.17,18

The targets of STAT3 are mainly genes that are anti-apopto-

tic or pro-proliferative, or which regulate angiogenesis and

cytokine production.19 TNF-a induces activation of STAT3 via

phosphorylation of two of its residues, tyrosine (Y705) and

serine (S727).15,20 STAT3 is required for the development of

Th17 cells.21 Phospho flow cytometry has been used to show

that phosphorylation of STAT3 (at Y705) is increased in

regulatory T cells of patients with psoriasis, resulting in

impaired suppressive function.22 The Janus kinase–STAT path-

way is considered a promising drug target in psoriasis.23,24

Phosphorylated p38 MAPK can lead to activation of promoters

of genes involved in inflammation and production of inflam-

matory cytokines such as interleukin (IL)-6, IL-8 and IL-12.25

Fumaric acid esters, used in the treatment of psoriasis,

effectively inhibit the activity of p38 MAPK, decreasing pro-

inflammatory cytokine production.26 ERKs are MAPKs with

substrates that include transcription factors and immediate

early gene products involved in gene expression and cell func-

tion. Hyperactivity of this pathway is associated with unregu-

lated cell proliferation.27 Phosphorylation of the

abovementioned intracellular epitopes can be quantified by

phospho flow cytometry, potentially serving as a measure of

cytokine stimulation.28 Hence, this method can also gauge the

cytokine-blocking effect of biological drugs.

Biological drugs aimed at the cytokines TNF-a, IL-12/23

and IL-17A have revolutionized the treatment of psoriasis.29,30

Infliximab is a monoclonal antibody against TNF-a and CT-

P13 is a more recently licensed, cheaper biosimilar assumed

to have comparable efficacy and safety.31–33 However, despite

the same amino-acid sequence of the originator infliximab

and its biosimilar, differences in levels of afucosylated glycans

and binding affinity for FccRIIIa and FccRIIIb have been

detected, implying a potential difference in natural killer (NK)

cell activation.34 This might influence biological activity, toler-

ability and efficacy.35,36

The aim of the present study was to compare phospho-

rylation levels of intracellular epitopes in PBMCs from

patients with psoriasis treated with infliximab and healthy

controls using phospho flow cytometry, and to investigate

if switching from originator infliximab to biosimilar CT-

P13 affected clinical parameters and intracellular phosphory-

lation patterns.
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Materials and methods

Patient characteristics

In this observational study, at the Department of Dermatology,

Haukeland University Hospital, we included 25 patients with

psoriasis vulgaris who had all been diagnosed with severe pso-

riasis [Psoriasis Area and Severity Index (PASI) > 10] at an

earlier time point but were now in or close to remission (PASI

0–4) with frequent infusions of originator infliximab. In total,

22 patients were randomized either to continue infliximab or

to switch to the biosimilar CT-P13 as part of another study31

and therefore these samples were analysed double blinded.

The final three patients all continued on infliximab. Patients

gave written informed consent at the Department of Dermatol-

ogy, Helse Bergen (regional ethics committee approvals

2014/1373 and 2014/1489). There were 19 healthy controls

(age-, sex- and body mass index-matched, Table 1) included,

and samples were collected from the blood bank at the Hauke-

land University Hospital.

Blood sampling

Blood was collected at inclusion and after approximately 3

and 12 months, just before patients were to receive the next

infusion. The samples were collected between April 2015 and

September 2016 in lithium-heparin tubes (BD 367526, Becton

Dickinson Ltd., Reading, U.K.). PBMCs were isolated by den-

sity gradient centrifugation with Lymphoprep (Axis-Shield

Ltd, Dundee, Scotland) and cryopreserved in liquid nitrogen

until use, as described previously.37 Trough level and antidrug

antibodies were measured with immunofluorometric assay as

a routine analysis.37 The therapeutic range of the trough level

is above 2–3 mg L�1.

Cell culture and stimulation

PBMC samples were thawed and rested in serum-free media (X-

vivo-20TM, Lonza, Basel, Switzerland) for 2 h at 37 °C, 5% CO2.

Cells were divided and either stimulated for 15 min with TNF-a
(50 ng mL�1; Immunotools, Friesoythe, Germany) or left

unstimulated. Next, samples were fixed with 1�5%
paraformaldehyde (37 °C) incubated for 10 min at room tem-

perature and permeabilized with ice cold 100% methanol for

30 min on ice, as described previously.36,38 The cells were

washed with phosphate-buffered saline (PBS), then stained

according to a 4 9 2 fluorescence cell barcoding (FCB) grid

(three time points and one internal control with two stimulation

conditions) with different concentrations of Pacific Blue (100,

25, 6�3 and 0 ng mL�1) and Pacific Orange (70 and

0 ng mL�1; both Life Technologies, Grand Island, NY,

U.S.A.),40 then incubated in the dark at 4 °C. Further, cells were
washed and resuspended in fluorescence activated cell sorter

(FACS) buffer (PBS with 1% bovine serum albumin) before

combining the eight FCB combinations. FcR blocking reagent

(1 : 21) (Miltenyi Biotec, Bergisch Gladbach, Germany) was

added, cells were divided into two panels followed by staining

with titrated amounts of fluorochrome-conjugated antibodies

for 30 min in the dark at room temperature. Cells were then

washed with FACS buffer and resuspended in 200 lL FACS

buffer + 2 mmol L�1 ethylenediamimetetraacetic acid.

Antibodies used for flow cytometry

The following monoclonal antibodies were used: PE conju-

gated anti-CD56 (clone N901, Beckmann Coulter, CA,

U.S.A.), BV786 conjugated anti-CD3 (clone SK7), Alexa Fluor

488 conjugated anti-CD20 [clone H1(FB1)], PE-Cy7 conju-

gated anti-NF-jB p65 (pS529, clone K10-895�12�50) and

Table 1 Characteristics of patients and healthy controls at inclusion

Originator infliximab CT-P13 Healthy controls

Sex, n

Women 2 3 3
Men 10 10 16

Age, years
Mean � SD 50�83 � 11�14 51�53 � 15�98 47�32 � 14�64
Range 28–65 29–79 24–70
BMI kg m�2

Mean � SD 27�67 � 4�62 28�15 � 4�41 26�27 � 3�91
Range 21–38 23–40 20–38
Duration of psoriasis, years
Mean � SD 27�91 � 10�55 25�61 � 10�15 NA

Range 11–49 8–38 NA
Psoriatic arthritis, n 5 3 NA

Duration of originator infliximab treatment before inclusion, months
Mean � SD 86�83 � 39�35 68�92 � 45�75 NA

Range 40–177 18–175 NA

NA, not applicable.
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anti-p38 (pT180/pY182, clone 36/p38), Alexa Fluor 647

conjugated anti-ERK1/2 [(pT202/pY204),20A,RUO –
612593] and anti-STAT3 (S727; clone 49/p-STAT3) and Per-

CP-Cy5.5 conjugated anti-STAT3 (Y705; clone 4/p-STAT3)

(all from BD Biosciences, San Jose, CA, U.S.A.).

Data acquisition

All samples from the same patient were stimulated, stained

and analysed under the same conditions on the same day. An

internal control, buffy coat from one healthy donor, was used

for every experiment, to account for interassay variation. All

the experiments were performed by one person within

2 weeks in July 2016 to minimize inter- and intra-assay varia-

tion in the laboratory and on the flow cytometer. Samples

were acquired on a LSRI Fortessa flow cytometer with

BDFACSDiVaTM Software (both BD Biosciences). The flow

cytometer was equipped with 407, 488, 561 and 635 nm

lasers. Further specifications are given in Table S1 (see Sup-

porting Information). A minimum of 200 000 events was

acquired in the intact cell gate. A representative gating strategy

is shown in Figure S1 (see Supporting Information).

Phosphorylation of NF-jB, ERK, p38, STAT3 (S727) and

STAT3 (Y705) were quantified in immune cell subsets. Beads

were used for compensation, which was performed in FlowJo

version 10.2. Cells within each subtype were analysed in Cyto-

bank40 in each stimulation condition. Basal phosphorylation

was defined as raw median fluorescence intensity (MFI) of the

inspected phosphoprotein in unstimulated cells, divided by

raw MFI of the corresponding phosphoprotein in unstimulated

internal control cells. The fold change was defined as raw MFI

of the inspected phosphoprotein in TNF-a-stimulated cells,

divided by raw MFI of the corresponding phosphoprotein in

unstimulated cells. The viability of the cells was above 98% in

the lymphocyte gate and 95% in the monocyte gate as deter-

mined by 7-aminoactinomycin D staining (data not shown).

Statistical analysis was carried out using SPSS Statistics 23/

24 (IBM, Armonk, NY, U.S.A.) with the Mann–Whitney U-test

for independent, unpaired data and the Wilcoxon signed-rank

test for paired data.

Results

In total, 12 of the 25 patients continued on the originator inflix-

imab and 13 switched to the biosimilar CT-P13. Duration of

psoriasis, incidence of psoriatic arthritis, dose of infliximab and

concomitant methotrexate were comparable between the two

treatment groups (Table 1). There were no significant differ-

ences between the groups regarding sex, age and body mass

index, PASI, Dermatology Life Quality Index (DLQI; Table 2) or

routine laboratory analysis at inclusion, after 3 and 12 months

(Table S2; see Supporting Information). One patient had anti-

drug antibodies at inclusion (originator infliximab group) and

no patients developed antidrug antibodies during the study.

Increased basal phosphorylation in peripheral blood

mononuclear cells from patients with psoriasis treated

with infliximab

The basal phosphorylation of NF-jB (S529), ERK1/2 (T202/

Y204), p38 (T180/Y182) and STAT3 (S727 and Y705) was

significantly higher in patients at inclusion than in the healthy

Table 2 Clinical parameters, treatment doses and intervals of the patients included in the study

Originator infliximab CT-P13

Inclusion 3 months 12 months Inclusion 3 months 12 months

Psoriasis Area and Severity Index
Mean � SD 1�36 � 0�69 1�02 � 0�88 1�20 � 0�99 2�28 � 1�11 1�68 � 1�22 1�38 � 0�83
Range 0�00–2�20 0�00–2�40 0�00–3�00 0�80–4�20 0�00–3�60 0�00–2�90
Dermatology Life Quality Index

Mean � SD 1�08 � 1�73 1�25 � 1�71 0�6 � 0�89 1�12 � 2�04 1�92 � 2�78 1�17 � 2�59
Range 0–5 0–6 0–3 0–6 0–10 0–9
Infliximab dose, mg
Mean � SD 590 � 104 590 � 104 590 � 104 638 � 296 638 � 296 638 � 296

Range 400–700 – – 300–1500 – –
Interval, weeks

Mean � SD 7�82 � 1�08 – – 6�54 � 1�13 – –
Range 6–10 – – 5–9 – –
Methotrexate mg
Mean � SD 10�00 � 5�11 10�00 � 5�11 10�00 � 5�11 14�38 � 5�44 14�38 � 6�23 14�38 � 6�23
Range 0�00–20�00 0�00–20�00 0�00–20�00 7�50–25 7�50–25 7�50–25
Antidrug antibodies 1 1 1 – – –
Prior use of other biological, n

Adalimumab and etanercept 1 – – 0 – –
Adalimumab 1 – – 1 – –
Etanercept 2 – – 7 – –
Efalizumab 0 – – 1 – –
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controls in almost all cell populations analysed. Twelve

months after inclusion, patients still displayed significantly

higher basal phosphorylation levels than healthy controls, but

the number of epitopes with significant differences was

decreased (Fig. 1).

Further, we analysed phosphorylation patterns upon TNF-a
stimulation, relative to a corresponding unstimulated sample;

the fold change. As anticipated, because of the higher basal

phosphorylation levels at inclusion, the fold change of

pSTAT3 (Y705) upon stimulation was significantly lower in

monocytes and T, B and NK cells from patients at inclusion

compared with healthy controls. Fold changes of pERK in T

cells and pNF-jB in NK cells were also significantly lower

for patients than healthy controls. After 12 months, there

were fewer significant differences in fold change between

patients and healthy controls compared with at inclusion

(Fig. S2; see Supporting Information). Only fold changes of

pNF-jB in monocytes and NK cells in addition to pSTAT3 in

monocytes were decreased in patients compared with healthy

controls.
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Fig 1. Phosphorylation of intracellular epitopes in unstimulated peripheral blood mononuclear cells from the psoriasis and healthy control groups

at inclusion and after 12 months. Basal median fluorescence intensity (MFI) is shown as a ratio of raw MFI of unstimulated cells relative to raw

MFI of unstimulated internal control for phosphorylated nuclear factor kappa B (pNF-jB), phosphorylated extracellular signal-regulated kinase
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Patients treated with CT-P13 displayed similar basal

phosphorylation and fold change to those treated with

the originator infliximab after 3 and 12 months

Next, we compared phosphorylation levels in patients contin-

uing on the originator infliximab to those who switched to

CT-P13. The basal phosphorylation of NF-jB, ERK, p38 and

STAT3 (S727 and Y705) showed no significant differences at

inclusion, after 3 or 12 months. The only exception was

lower levels at inclusion of pSTAT3 (Y705) in NK cells

(Fig. S3a; see Supporting Information) and pSTAT3 (S727) in

CD3+ CD56+ cells (data not shown) from patients who con-

tinued treatment with the originator infliximab compared with

those who switched. Although no significant difference was

detected in basal phosphorylation, fold change of pSTAT3

(Y705) in B cells was significantly increased in patients on

CT-P13 relative to the originator infliximab 3 months after

switch (Fig. 2a, b). After 12 months, this difference was no

longer significant (Fig. 2c).

The phosphorylation of peripheral blood mononuclear

cells from patients with psoriasis on infliximab and CT-

P13 decreased during the study period

All patients were in clinical remission and treated with the

originator infliximab when included in the study. Neverthe-

less, when investigating the change of phosphorylation over

time separately for the originator infliximab and the biosimilar

CT-P13, there were significantly lower basal pSTAT3 (Y705)

levels in T, B and NK cells (Fig. 3a, Fig. S3a; see Supporting

Information) and pERK in all cell types 1 year after inclusion

in both treatment groups (Fig. 3b, Fig. S3b–f).
As the phosphorylation levels decreased over time for all epi-

topes except STAT3 (S727) (Figs 1 and 3), we questioned if

infliximab treatment length prior to inclusion had an effect. We

therefore analysed basal and stimulated pSTAT3 (Y705) levels

in T cells in relation to duration of infliximab treatment before

inclusion for individual patients in the two treatment groups.

No obvious correlation between the length of infliximab treat-

ment prior to inclusion and basal phosphorylation levels was

detected (Figs S4a, b, d and e; see Supporting Information). In

order to exclude ex vivo effects of the medication, drug trough

levels were compared with basal and TNF-a stimulated levels of

pSTAT3 (Y705) in T cells in both patient groups at three time

points. All patients had trough levels within the recommended

range, and trough levels did not correlate with phosphorylation

levels (Figs S4c and f, Table S2).

Discussion

To the best of our knowledge, phospho flow cytometry has

not been used previously on a broad panel of intracellular epi-

topes in PBMCs comparing patients with psoriasis and healthy

controls. Neither has it been used to monitor patients on bio-

logical drugs over time, including switching from an origina-
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Fig 2. Significant difference in phosphorylation of signal transducer

and activator of transcription 3 (STAT3) (Y705) in B cells between

patients on infliximab and CT-P13 3 months after switch. (a) Fold

change of pSTAT3 (Y705) in immune cell subsets 3 months after

inclusion. (b) Basal median fluorescence intensity (MFI) ratio, TNF-a-
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tor to a biosimilar. Whereas there were significant differences

in intracellular phosphorylation of PBMCs between patients

with psoriasis and healthy controls, switching of patients from

the originator infliximab to the biosimilar CT-P13 did not

cause any major differences.

The basal phosphorylation levels in PBMCs from the psoria-

sis group were significantly increased in almost all analysed

phospho-epitopes and immune cell subsets at inclusion com-

pared with healthy controls, even though patients had been

treated with the originator infliximab for a minimum of

18 months and had no or low-grade skin inflammation. This

may indicate that systemic inflammation takes a longer time

to cease than skin lesions or that signalling through the inves-

tigated pathways is maintained, at least in blood, by cytokines

besides TNF-a. Basal levels of pSTAT3 (Y705) in patients with

psoriasis have been reported to be similar to those observed in

healthy volunteers.42 The discrepancy between these findings

and ours may be explained by different methodological

approaches (enzyme-linked immunosorbent assay was used in

the study by Punwani et al.42) and differences in patient char-

acteristics.

Our study would have benefitted from evaluation of phos-

phorylation levels and corresponding clinical parameters

before the patients started treatment. As the clinical effect was

sustained throughout the study period, PASI and DLQI were

of little value when interpreting how the phosphorylation

levels of PBMCs related to clinical parameters. Moreover, it

would have been advantageous to have follow-up samples of
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Fig 3. Basal phosphorylation over time for both patient groups, exemplified with T cells. (a) Phosphorylated signal transducer and activator of

transcription 3 (pSTAT3, Y705); (b) phosphorylated extracellular signal-regulated kinase (pERK); (c) phosphorylated nuclear factor kappa B (pNF-

jB); (d) phosphorylated p38 (pp38); (e) pSTAT3 (S727). The basal median fluorescence intensity (MFI) ratio is defined as raw MFI of measured

phosphoprotein in unstimulated sample cells relative to unstimulated internal control cells. IFX, originator infliximab, blue; CT-P13, orange; IC,

internal control. Each symbol represents one individual, the bar shows the median. *P ≤ 0�05, **P ≤ 0�01.
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healthy controls to evaluate normal variation over time. Most

of the patient samples at inclusion were collected almost a

year before the healthy controls samples, thereby increasing

duration of cryopreservation. At the same time, there was

broad interindividual variation for each time point regarding

duration of storage in liquid nitrogen without having an obvi-

ous effect on phosphorylation levels. Our findings of gradual

decreases in PBMC phosphorylation during treatment merit

further longitudinal studies including pretreatment samples.

In vitro inhibition of NF-jB or STAT3 (with parthenolide or

Stattic) blocks cytokine production by both Th1 and Th17

cells from patients with psoriasis. The same study also found

that infliximab reduced the number of Th1 and Th17 cells

in vivo.13 The psoriasis group in our study had increased pNF-

jB and pSTAT3 levels in addition to p38 and pERK in T cells

compared with healthy controls even though they were treated

with infliximab at inclusion. However, patients had a reduc-

tion of activated epitopes during the follow-up period. The

phosphorylation level of STAT3 (Y705) in T cells did not

seem to be influenced by drug trough level, most probably

because all of our patients had trough levels in or above the

recommended range. As infliximab treatment reduced levels of

pNF-jB and pSTAT3 in T cells over time, a gradual reduction

in Th1- and Th17-associated cytokines is plausible.

Our findings of elevated phosphorylation levels in distinct

immune cells support that systemic inflammation is increased

in psoriasis and may persist upon treatment even after resolu-

tion of skin manifestation. Systemic inflammation promotes

cardiovascular disease. The extent to which systemic treatment

reduces this risk is currently debated. Investigation of inflam-

mation in aortic and carotid arteries with positron emission

tomography revealed no differences after 16 weeks between

patients with psoriasis treated with TNF-a inhibitor adali-

mumab or placebo, and a small increase of inflammation in

the carotids after 1 year.43 Contrarily, another recent study

found decreased aortic inflammation in patients with severe

psoriasis who had at least 75% improvement of skin lesions

1 year after commencing biological drugs.44 In these studies

patients were treated differently, making it difficult to reach

conclusions. Our study supports the notion that use of sys-

temic rather than local treatment in patients with psoriasis at

risk of cardiovascular disease might be beneficial.

Comparing the two patient groups receiving the originator

infliximab or the biosimilar CT-P13, there were no significant

differences in basal phosphorylation after 3 and 12 months. Sur-

prisingly, fold change of pSTAT3 (Y705) in B cells was modestly

increased after 3 months in patients who switched to CT-P13

compared with those continuing on the originator infliximab.

However, no difference was detected after 12 months.

There was a notable tendency that basal- and TNF-a-stimu-

lated phosphorylation were decreased in more immune cell

subsets and epitopes in the CT-P13 group compared with the

originator infliximab group 3 and 12 months after inclusion.

This might reflect differences in the structure and effect of the

two drugs. Notably, this was not exclusively observed in NK

cells, which could have been predicted because of differences

in afucosylated glycans and affinity for FccRIIIa and FccRIIIb.
Studies with greater numbers of patients are needed to ascer-

tain potential differences in intracellular phosphorylation of

PBMCs between the two drugs.

Evaluation of immune-mediated diseases such as psoriasis

should ideally aim at the molecular aberrancy in each patient

for personalized treatment.45–49 To this end, assays capable of

predicting which treatments are most likely to be beneficial

for each individual are required, before commencing ther-

apy.50 Phospho flow cytometry may be a promising tool for

estimating systemic disease activity and treatment response of

people with psoriasis in the future51,52 and might be helpful

in the quest for new potential drug targets.53

In conclusion, relative to healthy controls, patients with

psoriasis displayed higher activation levels of PBMCs, and this

systemic inflammation decreased gradually with time on

infliximab treatment. Switching from infliximab to CT-P13

did not worsen clinical parameters or increase intracellular

phosphorylation of NF-jB, ERK, p38 or STAT3. Our data indi-

cate that phospho flow cytometry might represent a promising

tool for monitoring disease activity and treatment efficacy.
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cytometry data.
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blood mononuclear cells from the healthy control and psoria-

sis group at inclusion and after 12 months.

Fig S3. Significant changes in basal phosphorylation of

intracellular epitopes with time in both treatment groups.
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change for signal transducer and activator of transcription 3

(STAT3, Y705) in T cells from the originator infliximab and
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Figure S1: Representative gating strategy used for the flow cytometry data. Intact cells 
were gated based on forward scatter area (FSC-A) and side scatter area (SSC-A) followed by 
single cell gating. The different samples were then identified through the intensities of their 
pacific blue (PB) and pacific orange (PO) stains. Cell subtypes were identified based on their 
FSC-A and SSC-A scatter properties as either monocytes or lymphocytes. Lymphocytes were 
then subtyped as B cells (CD20+), T cells (CD3+/CD56-), NK cells (CD3-/CD56+) or 
CD3+/CD56+ cells based on surface antigen expression. 
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Figure S2: Fold change of intracellular epitopes in PBMC from healthy controls and 
psoriasis patients at inclusion and after 12 months. Fold change was defined as raw MFI 
of measured phosphoprotein in TNF stimulated cell subset relative to raw MFI of 
corresponding phosphoprotein in unstimulated cell subset. Immune cell subsets with 
corresponding pNF-κB, pERK, pp38, pSTAT3 (Y705) and pSTAT3 (S727) are shown. HC = 
healthy controls, green. Ps = psoriasis patients, red. Each symbol represents one individual, 
the bar shows the median. * = P ≤ 0.05, **=P ≤ 0.01 
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Figure S3: Significant changes in basal phosphorylation of intracellular epitopes with 
time in both treatment groups. a: pSTAT3 (Y705) in T, B and NK cells at inclusion and 
after 12 months. b-f: pERK in immune cell subsets at inclusion, after 3 and 12 months 
follow-up. b: monocytes, c: T cells, d: B cells, e: NK cells, f: CD3+CD56+ cells. IFX= 
originator infliximab, blue. CT-P13 = orange. * = P ≤ 0.05, ** = P ≤ 0.01 
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Figure	S4:	Basal	MFI	ratio	and	fold	change	for	STAT3	(Y705)	in	T	cells	from	
originator	infliximab	(IFX)	and	CT‐P13	patients	compared	to	duration	of	
treatment	before	inclusion	and	trough	level.		a	and	d:	Basal	MFI	and	duration	
of	IFX	treatment	before	inclusion	(months;	shown	at	the	right	side	of	graph);	a:	
IFX	and	d:	CT‐P13.		b	and	e:	MFI	fold	change;	b:	IFX	and	e:	CT‐P13.	c	and	f:	
Trough	levels;	c:	IFX	and	f:	CT‐P13.	Each	patient	represented	by	a	single	color	
and	symbol.	
 



Table S1: Specifications of the LSRI Fortessa flow cytometer 
 

Fluorochrome   Emission filters

PerCP‐Cy5.5   LP: 685, BP: 695/40

Alexa fluor‐488  LP: 505, BP: 530/30

PE‐Cy7  LP: 750, BP: 780/60

PE  LP: −, BP: 582/15

APC  LP: −, BP: 670/14 

Pacific blue  LP: −, BP:450/50 

Pacific orange  LP: 570, BP: 585/42 

BV 786  LP: 750, BP: 780/60 

 
 



Table S2: Laboratory analysis: Laboratory values from patients at inclusion, 3 and 
12 months. 

	
Originator infliximab CT-P13 

Inclusion 3 months 12 months Inclusion 3 months 12 months 

CRP a 1-25 
3,83±6,79 

1-5 
1,91±1,37 

1-27 
3,83±7,42 

1-67 
6,61±18,17 

1-7 
1,92±1,66 

1-4 
1,53±0,88 

Sedimentation 
Rate b 

2-110 
22,80±31,70 

3-64 
17,83±18,21 

3-60 
18,33±17,01 

2-67 
20,00±21,08 

2-33 
10,45±10,13 

2-36 
10,75±10,20 

Leukocyte 
Count c 

4,00-13,60 
6,81±2,59 

3,70-8,20 
6,28±1,32 

0,80-8,60 
5,45±1,96 

3,60-10,80 
7,40±2,00 

3,70-9,10 
6,96±1,71 

3,00-10,00 
6,81±1,69 

Lymphocytesc 1,40-3,30 
2,15±0,49 

1,60-3,20 
2,20±0,55 

1,5-3,4 
2,27±0,56 

0,90-3,90 
2,16±0,78 

0,90-3,60 
2,06±0,66 

0,80-3,60 
2,13±0,76 

Monocytesc 0,32-1,09 
0,58±0,21 

0,16-0,80 
0,52±0,20 

0,33-0,95 
0,62±0,18 

0,32-1,16 
0,66±0,26 

0,29-1,02 
0,59±0,20 

0,37-0,86 
0,58±0,18 

Eosinophilesc 0,10-0,50 
0,20±0,13 

0,00-0,30 
0,16±0,09 

0,00-0,60 
0,20 ±0,18 

0,10-0,40 
0,16±0,10 

0,10-0,30 
0,15±0,07 

0,00-0,30 
0,16±0,09 

Basophilesc 0,00-0,10 
0,04±0,05 

0,00-0,10 
0,05±0,05 

0,00-0,10 
0,05±0,05 

0,00-0,10 
0,04±0,05 

0,00-0,20 
0,07±0,05 

0,00-0,20 
0,06±0,05 

Trough levela 2,50-16,10 
9,31±3,99 

4,50-14,30 
9,14±3,13 

6,10-16,90 
9,70±3,00 

4,10-28,80 
14,20±8,31 

3,90-26,70 
13,72±6,86 

5,50-25,50 
13,23±5,49 

 
Values are listed as range and mean ± SD. a: mg/L, b: mm/h, c: 109/L 
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Key Points 

Question: Can PBMC subset analysis utilizing mass cytometry be used to determine disease 

activity in psoriasis patients and predict responders and non-responders? 

Findings: In this longitudinal comparative study with 32 psoriasis patients and 10 healthy 

controls, number of circulating Th17, Th22, Th9 and cytotoxic T cells were increased in 

severe psoriasis. Treatment with biologics resulted in changes in T cell subsets and monocyte 

compartment. Responders had relatively more memory than naive/effector Tregs compared to 

non-responders.  

Meaning: These changes indicated amelioration of systemic inflammation, with favorable 

implications on psoriatic comorbidities. Prospective stratification of patients regarding future 

treatment response might be possible.  
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ABSTRACT  

Importance.  

Psoriasis is an immune-mediated skin disease with different phenotypes, initiated by 

autoantigens in susceptible individuals and accompanied by systemic inflammation. Dendritic 

cells, Tc and Th subsets are involved in plaque formation, creating self-amplification loops. 

Inflammatory cells and cytokines can recirculate, possibly contributing to comorbidities. 

Biological therapy is effective, but not prescribed based on individual immune signature. 

 

Objective. 

The aim of this study was to characterize PBMC subsets in the search for immune signatures 

and biomarkers related to psoriasis severity and treatment effect.  

 

Design.  

This was a longitudinal comparative study using 26-parameter mass cytometry to analyze 

cryopreserved peripheral blood mononuclear cells (PBMCs), regarding cell subsets and 

phosphorylation state. 

Setting: population-based 

Participants 

PBMCs from 32 patients with severe psoriasis vulgaris before and after initiation of biological 

therapy (etanercept, infliximab, ustekinumab and secukinumab) were included. 

 

Results. 

A shift in Th1-Th2 balance and transition from naïve/effector to memory predominance was 

detected in patients after initiation of biological therapy. Abundance of circulating Th17, 

Th22, Th9 and cytotoxic T (Tc) cells was increased in severe psoriasis but normalized with 
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treatment. Intracellular pp38 and pERK in Th cells were associated with disease severity. PD-

1 expression on Tc cells was reduced at inclusion but increased for Treg and Th cells during 

treatment. Systemic treatment of psoriasis reduced number of classical monocytes and their 

STAT1 phosphorylation. 

 

Conclusions and Relevance. 

Mass cytometry identified aberrancies in abundance and intracellular phosphorylation of 

PBMC subsets in psoriasis patients. Improvement was observed with biological treatment, but 

intracellular phosphorylation did not completely normalize, which might reflect constitutively 

activated pathways. In addition, biological treatment induced memory cells and restored 

inhibitory function of T cells. Together with reduction of proatherogenic profile in 

monocytes, these changes ameliorate systemic inflammation, possibly with favorable 

implications on psoriatic comorbidities. 
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INTRODUCTION 

The recent years’ advances in the characterization of psoriasis immuno-pathogenesis have 

revealed that the complexity of this systemic inflammatory disease reaches beyond chronic 

skin lesions 1-5. Crosstalk between components from innate and adaptive immune system 

leads to self-sustaining inflammatory loops with the TNF/IL-23/IL-17 axis playing a central 

role 6,7. Participants in these cycles are keratinocytes, dendritic cells, T cells and neutrophils, 

which undergo activation, amplification, dysregulation and decreased suppression at different 

levels 8,9. Furthermore, psoriasis pathogenesis has an autoimmune component mediated by 

autoreactive tissue-resident CD8 cells, and autoantibodies against LL37 were recently 

discovered 7,10,11. The vast majority of T cells in psoriatic skin are polyclonal CD4+ T cells, 

which are capable of plasticity and pathogenic polarization, with recirculating potential 7. Th1 

cells are involved in the initiation of psoriasis, while Th17 and Th22 cells predominate in later 

chronic phases 6. Comorbidities like cardiovascular disease (CVD), metabolic syndrome, Mb. 

Crohn and depression share susceptibility genes with psoriasis, and mechanistic links through 

systemic inflammation exist 3,4,12-14.  

Cytokine production and transcription factors can define immune cell subsets of the 

blood. However, surface markers, including chemokine receptors, can also be used for cell 

characterization 15-18. Flow cytometry is traditionally applied for immuno-phenotyping of 

peripheral blood mononuclear cells (PBMCs), but a limited number of markers can be used at 

a time partly because of overlapping fluorescence spectra 16. As an increasing number of 

defining molecules are used to describe cell subtypes, a need for technologies that can 

characterize multiple epitopes simultaneously has arisen. Mass cytometry has expanded the 

number of detectable targets to 40 at a single cell level 19,20. Furthermore, the limitation of 

spectral overlap is almost abolished by use of heavy metal-tagged antibodies 21. Extra- and 

intracellular molecules are labeled before single cells are passed through argon plasma, which 
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evaporates all biological material, leaving only ions to be identified depending on their time 

of flight as a function of atomic mass 19. Mass cytometry has facilitated broader 

characterization of immune cells in health and disease, and through biomarker discovery 

given new insights to immunopathology in both cancer and inflammatory diseases 22-27. This 

methodology may be particularly advantageous in dermatological research since mass 

cytometry can be applied on both blood and tissue 28-30. 

Patient stratification based on immune-profiling may be useful in the clinic for 

individualizing therapeutic strategies 31,32. Cytokines and immune cells in blood are possible 

biomarkers for psoriasis severity 33. Targeting systemic inflammation might alter the course of 

chronic psoriasis and have positive implications on comorbidities like CVD. The purpose of 

this study was to extensively characterize PBMC subsets by use of mass cytometry, in the 

search for immune signatures and systemic biomarkers related to psoriasis severity and 

treatment effect. 

 

 



7 
 

MATERIAL AND METHODS 

Characteristics of patients and healthy controls 

32 patients with severe psoriasis vulgaris were included from the Department of Dermatology, 

Haukeland University Hospital, Norway. They were prescribed infliximab (anti-TNF-α 

antibody, n=8), ustekinumab (anti-IL12/23 antibody, n=8), secukinumab (anti-IL17A 

antibody, n=8) or etanercept (TNF-receptor blocker, n=8). Blood samples and clinical data 

were collected at inclusion, before initiation of biological therapy, and after 4 (range 2-9) and 

12 months (8-20) follow-up. 

10 age, sex and body mass index (BMI) matched healthy controls without psoriasis 

(HC) were included. Of these, four volunteers gave blood at three time points. The rest were 

collected from the Blood bank at the Haukeland University Hospital. The study was approved 

by the regional ethics committee (approvals 2014/1373 and 2014/1489). Written informed 

consent was obtained from patients and HC before entering the study. Demographic 

characteristics are summarized in Table 1. 

 

Blood sampling and set-up 

Blood was collected in Lithium-heparin tubes (Becton Dickinson Ltd., UK) and PBMCs were 

cryopreserved in liquid nitrogen following density gradient centrifugation, as previously 

described 34. The study encompassed 120 samples (96 patient samples, 18 HC samples and 6 

internal controls (IC)), divided in six 20-plex barcodes (BC). One PBMC sample from the 

same donor (buffy coat) was included in every BC and used as IC. Each BC was a mixture of 

patients and HC, but included all the time points from the same individual. 
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Sample preparation and viability staining 

Cells were thawed in a water bath (37°C) and washed in 9 ml serum-free medium X-VIVO-

20TM (Lonza, Switzerland) (37°C), containing 250 U endonuclease (PierceTM Universal 

Nuclease for Cell Lysis; Thermo Fisher Scientific, MA, USA), followed by resuspension in  

X-VIVO-20™ medium at room temperature (RT) before 120 min incubation in an incubator 

(37°C, 5% CO2). Equal number of cells from each sample was transferred to a MegaBlock® 

96 deep well plate (Sarstedt, Germany). After centrifugation, cells were resuspended in 

RPMI-1640 without additives (Lonza, Switzerland) before 5 min incubation, 37°C, with 

live/dead marker Cell-IDTM Cisplatin (Fluidigm, California, USA, 35) at a final concentration 

of 2.5 μM.  

 

Antibody staining and barcoding 

Epitopes sensitive to fixation (CXCR3, CCR4, CCR6 and CD127) were stained on live cells. 

After washing with X-vivo-20TM, cells were resuspended in Maxpar Cell Staining Buffer 

(CSB), containing FcR Blocking Reagent (Miltenyi Biotec, Germany) (2 μl per 1 million 

cells) in a total volume of 50 μl per well and incubated 30 min on ice with 50 μl per well of 

Antibody Mix 1 (Suppl. Table S1). Cells were washed twice with CSB followed by 10 min 

fixation with 1ml Fix I Buffer from Fluidigm (RT). Barcoding was conducted in accordance 

with Fluidigm protocol for Cell-ID 20-Plex Pd Barcoding kit. After that, the 20 samples were 

combined in a 5 ml Polystyrene Round-bottom Tube (BD Biosciences, MA, USA), and cells 

were counted.  

A mix of 9 million barcoded cells was either further processed the same day or frozen 

down in 90% Fetal Bovin Serum Gold, (PAA Laboratories, Austria) with 10% dimethyl 

sulphoxide (DMSO) (Merck, Germany) in -70°C, as recommended 36. The frozen samples 
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were thawed on ice after 6 weeks, diluted in 3 ml CSB with 250 U endonuclease. Further 

processing was the same for all the six barcodes.  

For additional surface staining, the 9 million barcoded cells were washed and 

resuspended in 150 μl CSB followed by incubation with 150 μl Antibody Mix 2 (Suppl. 

Table S1) for 30 min (RT). After two washes and 10 min rest on ice, permeabilization with 

ice-cold Methanol (Merck, Germany) was performed for 15 min on ice. For intracellular 

staining, volume was adjusted to 150 μl with CSB after washes, followed by incubation with 

150 μl Antibody Mix 3 (Suppl. Table S1) for 30 min on ice. Between additional washes, the 

samples were fixed in 1.6% Formaldehyde solution (Methanol-free, Pierce™, diluted in PBS, 

RT, 10 min). Samples were then stored over night at 4°C in Cell-ID™ Intercalator–Ir diluted 

in Maxpar Fix and Perm buffer (final concentration 66.7 nM). 

The following day cells were centrifuged and washed prior to resuspension in Maxpar 

Cell Acquisition Solution (CAS), before final wash. Cells were left pelleted until acquisition. 

Unless otherwise stated, all products were from Fluidigm (California, USA) and washes done 

in CSB for 5 min (453g/RT before, 800g/4°C after fixation). 

 

Mass cytometry acquisition, normalization and debarcoding 

Prior to acquisition, cells were suspended in 0.5 ml CAS solution with a 1:10 concentration of 

EQ™ Four Element Calibration Beads 37. Samples were then passed through a 35 µm cell-

strainer (Falcon®, New York, USA) and analyzed on a Helios™ Mass Cytometer with WB 

injector (Fluidigm Corporation, California, USA) at a speed of 300-500 events per second. 

The resulting FCS files were normalized to EQ beads (140Ce, 151Eu, 153Eu, 165Ho, 175Lu), 

concatenated per barcode and debarcoded (Fluidigm softwear) (Suppl. Fig. S1).  
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Gating, clustering and dimensionality reduction 

FlowJo 10.2 was used to check each antibody conjugated metal against time. In addition, 

clean-up gates for live single cells and elimination of beads were drawn prior to further 

analysis (Suppl. Fig. S2). The consistency of staining with the 26 marker panel for each of 

the six barcodes is displayed in Suppl. Fig. S3 as viSNE plots (dimensionality reduction 

method) 38. 

Defining markers used for identification of PBMC subpopulations are listed in Table 

2 15-18. Manual gates were tailored per file and population according to gating strategy shown 

in Suppl. Fig. S4. In addition, FlowSOM analysis including 20.000 events (randomly 

subsampled) from each sample, was conducted 39. Adjusted meta-clusters were tailored from 

the resulting 100 FlowSOM clusters by use of Star plots and Minimum Spanning Tree (MST), 

identifying defining markers for each population (Fig. 1). Event counts and surface marker 

expression of PBMC subsets are displayed in Suppl. Table S4 and Suppl. Fig. S5. 

 

Statistical analyses  

Statistical analyses were conducted in SPSS version 24. Wilcoxon test was used for 

investigation of individual patients at different time points. Mann-Whitney U test was applied 

for comparison of patients with HC, or non-responders (< 75 % improvement) with 

responders (≥ 75% improvement: PASI 75). Fold changes (FC) of MSI (Median Signal 

Intensity) at inclusion relative to corresponding IC was used to compare samples from 

different barcodes to overcome inter-assay differences. To compare individual variation over 

time, FC of follow-up samples relative to corresponding inclusion values (T2/T1 or T3/T1) 

were used. The relationship between PASI improvement and FC of marker expression was 

investigated with Spearman’s correlation coefficient. A p value less than 0.05 was considered 
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statistically significant. GraphPad Prism v8.0 and Cytobank Cellmass v7.0 were used to 

generate the figures 40.
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RESULTS 

Psoriasis and life quality improved with biological treatment 

At inclusion all patients had severe psoriasis with impact on quality of life. Psoriasis Area and 

Severity Index (PASI) and Dermatological Life Quality Index (DLQI) were significantly 

improved at follow-up (Table 3). However, 15 of 32 patients reached PASI75 and were 

denoted as responders, while the 17 non-responders improved moderately, but did not reach 

PASI75 (Suppl. Table S2).  

 

Pathogenic PBMC subsets normalize with biological treatment  

Abundance of Th2 cells was significantly lower at inclusion than at follow-up, and Th1 cells 

tended to decline to level of HC during treatment (Fig. 2 a-b). Abundance of Th22 and Th9 

was higher in patients at inclusion compared to those at 1 year follow-up (Fig. 2 c-d). At 

inclusion, abundance of CD4 cells expressing CD45RA was significantly higher, and CD4 

cell expressing CD45RO significantly lower compared to both follow-up time points (Fig. 2 

e-f). Further, patients at inclusion had higher abundance of memory Tc cells (CCR4+) than 

HC (Suppl. Fig. S6). Regression analyses after clustering (CITRUS 41), indicated that the 

most prominent stratifying cell populations to differentiate psoriasis patients from HC 

belonged to the CD8 population (data not shown). However, these analyses did not give 

significant results for the different treatment groups. 

Patients tended to have lower abundance of Tregs than healthy controls at inclusion 

and 4 months, however, after 1 year it was more similar to HC (Fig. 2 g). Two different 

clusters of Tregs were identified; CD45RA+ CCR4low and CD45RO+ CCR4high (Suppl. 

Table S3). At inclusion, Treg CD45RA expression was higher and CD45RO expression 

lower than at follow-up (Fig. 2 h). 
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Abundance of classical and intermediate monocytes (MC) decreased during the first 4 

months of treatment. Both reached similar levels as HC after 1 year (Fig. 2 i-j).  

 

Expression of inhibitory PD-1 on T cells was influenced by biological treatment 

At inclusion, PD-1 expression on Th2 cells was higher and on CD8 cells lower in patients 

compared to HC (Suppl. Fig. S7 a). After 1 year, the expression of PD-1 on CD4 cells and 

Tregs in patients had increased (Suppl. Fig. S7 b).  

  

Intracellular phosphorylation of PBMCs improved, but did not completely normalize, 

during biological treatment 

At inclusion patients had higher pp38 in CD4 cells, Th2 and Tregs, pERK in CD4 and 

pSTAT1 in classical MC than HC (Fig. 3 a-d). The phosphorylation was still higher at both 

follow-up time points for Th2 cells and after 1 year for pERK in CD4 cells.  

 Basal intracellular phosphorylation of STAT1 and p38 decreased in classical MC from 

patients during the first 4 months of treatment (Suppl. Fig. S8 a). The level of pSTAT1 was 

reduced in Th17 cells after 1 year, and pNF-κB in NKT cells increased during the first year of 

treatment (Suppl. Fig. S8 b). Increased intracellular phosphorylation is exemplified with one 

HC and one patient at inclusion in Suppl. Fig. S9. 

 

Stratification of responders and non-responders based on PBMC features 

In responders, there was a negative correlation between PASI improvement and fold change 

(FC) of Th17 abundance after 4 months (T2/T1) (p ≤ 0.04, rho -0.535) and FC of CD8 cells 

after 1 year (T3/T1) (p ≤ 0.04, rho -0.545) (data not shown).  

A positive correlation between PASI improvement and FC of NKT cells after 4 

months was detected in the patient population (T2/T1) (p ≤ 0.023, rho 0.40) (data not shown). 
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Non-responders had decrease of NK and NKT cells after 4 months relative to inclusion (Fig. 

4 a). Further, CD45RA/RO ratio in Tregs at inclusion was lower in those that turned out to 

have good treatment response compared with those who did not reach PASI75 (Fig. 4 b). 

 Responders had higher FC of PD-1 on CD4 cells after 4 months and on NK cells after 

1 year (Suppl. Fig. S10). 

 The expression of the epithelial-homing marker CCR10 on B cells was higher in 

patients than HC at inclusion (Fig. 4 c). Interestingly, responders had higher FC of epithelial-

homing CCR10 on CD4-, CD8- and B cells after 4 months and on Th17 cells and NK cells 

after 1 year with treatment compared to non-responders (Fig. 4 d).  

At inclusion non-responders had higher pSTAT1 in Th17 cells, pp38 in classical MC, 

and pp38 and pNF-κB in intermediate MC than responders (Fig. 4 e). Responders had higher 

FC of pNF-κB, pSTAT1 and pp38 in non-classical MC compared to non-responders after 1 

year (Suppl. Fig. S11 a). On the other hand, non-responders had larger FC of pSTAT3 after1 

year in intermediate MC (Suppl. Fig. S11 b).  



15 
 

DISCUSSION 

By using mass cytometry in this longitudinal comparative study, we get a novel, in-depth 

characterization of blood immune signatures in psoriasis patients on biological treatment. A 

relative increase in the Th2 fraction and a tendency of reduction in the Th1 fraction were 

detected during follow-up. This shift in the Th1-Th2 balance is in agreement with earlier 

reports 4,42,43. During active psoriasis, elevated amounts of Th1 cells in blood are found and 

these can be recruited to the skin 7,44,45.  

Reduction in Th17 and CD8 subsets, two main players in the pathogenesis of 

psoriasis, correlated with improvement of skin disease. Increased level of CD8 in active 

psoriasis has been shown earlier, including memory CD8 cells (CCR4+) 22,46,47, which we 

found to be elevated in psoriasis patients compared to HC. It has been postulated that in 

chronically inflamed tissue, a fraction of resident CD8 memory cells can be released into the 

circulation, contributing to systemic inflammation associated with severe psoriasis 48. 

Although the Tc17 phenotype (CD8+CCR6+CD161+) is of pathogenic interest in psoriasis 

7,49-51, we did not detect significant differences between groups for this subset. 

Elevated levels of circulating Th22 and Th9 were associated with active disease. 

Raised blood levels of Th22 has earlier been detected in psoriasis, and Th22 is proposed, 

together with Tc17 cells, to constitute disease memory in recurrent psoriatic plaques 8,52,53. 

Th9 is thought to exert a role in the induction and maintenance of cutaneous inflammation 54. 

In psoriasis, Tregs have deficient suppressor activity and are relatively decreased, 

leading to insufficient peripheral tolerance against autoreactive T cells 55. In addition, 

differentiation into IL-17 producing Tregs probably contribute to chronic inflammation 55-57. 

At inclusion, patients had lower levels of Tregs than HC, however, after 1 year with 

biological treatment, the level was normalized, in accordance with findings of others 42. In 

coronary artery disease, where Tregs also are known to be decreased and dysfunctional 13. 
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A shift from naïve/effector to memory predominance for CD4 cells was detected, in 

concordance with the findings of others 43. Interestingly, responders had relatively more 

memory than naive/effector Tregs compared to non-responders, reinforcing that prospective 

stratification of patients regarding future treatment response might be possible. 

Activation of T cells requires interaction between T cell receptor and major 

histocompatibility complex on antigen presenting cells, in addition to co-stimulatory or co-

inhibitory signals. PD-1 that normally plays a role in immune response silencing, has in 

psoriasis been shown to be downregulated, resulting in immune overstimulation 58,59. 

Blockade of PD-1 augments Th1 and Th17 responses, but suppresses Th2 responses 60. 

Patients had reduced expression of PD-1 on CD8 cells at inclusion, however, the opposite was 

detected for Th2 cells. After 1 year with biological therapy, the expression of PD-1 on CD4 

cells and Tregs was increased. Further, responders had significantly larger increase of PD-1 

on CD4 and NK cells at follow-up than non-responders. 

NK cells have increased cytotoxic potential in psoriasis and NKT cells are potent IL-

17 and IFN-γ producers 5,61. Decreased levels of circulating NK and NKT cells have been 

reported in psoriasis 62-64. Responders had higher increase in number of NK and NKT cells at 

follow-up than non-responders and the change of NKT cells correlated with PASI 

improvement, which could indicate efflux from healed skin.  

In light of the recently discovered autoantibodies against LL37, a main trigger in 

psoriasis, the higher expression of CCR10 on B cells in patients with severe psoriasis is 

especially interesting 10,65. It is tempting to speculate if these epithelial directed B cells reflect 

an autoimmune response. We detected higher expression of epithelial-homing factor CCR10 

on CD4-, Th2, Th17, CD8-, B- and NK cells in responders compared to non-responders at 

follow-up, which might reflect sustained production of skin-homing PBMCs despite 

diminished expression of ligands in the skin or efflux from healed skin 43,48.  
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The immuno-pathogenesis of psoriasis consists of a complex interplay between cells 

and cytokines creating inflammatory amplification loops 6,7,12,61,66. Upon cell activation, 

intracellular signalling molecules will be phosphorylated before the signal reaches e.g. the 

nucleus 6,67. We found that psoriasis patients with severe disease had higher levels of 

intracellular phosphorylation compared to healthy controls in CD4 (p38, ERK), Th2 and 

Tregs (p38), in addition to classical monocytes (pSTAT1). Further, intracellular 

phosphorylation was still higher in CD4 and Th2 cells after several months on biological 

treatment, but with a decreasing trend. This reduction, but not complete normalization, might 

be related to genetic susceptibility associated with signalling pathways in psoriasis, 

underlining the chronicity of psoriasis and need for long-term treatment 6,53,68,69. Recently, 

Guo et al. found increased phosphorylation in CD4 cells in a limited number of psoriasis 

patients, by use of mass cytometry 46. Earlier studies of inflammatory diseases using other 

techniques have shown that activation levels in PBMCs decrease with treatment 22,42,70. 

Interestingly, a recent study has shown increased ROS production in activated memory CD4+ 

T cells 71. Further, our patients had a significant reduction of intracellular phosphorylation in 

classical monocytes after 4 months and in Th17 after 1 year. We also detected higher 

intracellular phosphorylation in Th17 cells, classical and intermediate monocytes from non-

responders than responders at inclusion, indicating that early stratification based on immune-

profile may predict future treatment response. 

Cardiovascular risk is linked to psoriatic disease by mechanistic pathways 13,66,72. It is 

hypothesized that recirculation of T cells contribute to amplification of inflammation and 

comorbidities associated with psoriasis 54,73. For instance, Th1 and Th17 produce 

inflammatory mediators attracting monocytes, neutrophils and CD8+ T cells 13. Monocyte 

recruitment to vessel walls is an early event in atherosclerosis and these cells can be polarized 

towards pro-atherosclerotic phenotype by skin-inflammation in psoriasis 74,75. Interestingly, 



18 
 

elevated levels of classical and intermediate monocytes have been shown to be associated 

with CVD 76,77. Psoriasis patients had a tendency of lower level of classical monocytes with 

higher intracellular phosphorylation than HC during the first 4 months of follow-up, maybe 

because they were recruited to places of inflammation, like vessel walls 78. After 1 year, the 

abundance of classical monocytes was normalized to HC. Patients at inclusion had elevated 

levels of intermediate monocytes, which decreased during the first 4 months of treatment. 

Further, intracellular phosphorylation in intermediate monocytes was higher in non-

responders than responders at inclusion. Non-classical MC, however, have been postulated to 

exert an atheroprotective effect 78. Responders had higher intracellular phosphorylation in 

non-classical MC after 1 year than non-responders. The distribution of subtypes in the 

monocyte compartment may indicate that systemic treatment of psoriasis may lower CVD 

risk 79. 

Although this study is unique in exploring a large quantity of PBMC subsets 

simultaneously in psoriasis, it could have been possible to include even more markers in the 

panel. Since CXCR3, CCR4, CCR6 and CD127 are sensitive to fixation, these antibodies 

were added to live cells before barcoding, potentially introducing inter-sample staining 

variability 36,80,81. Some authors also recommend staining with CD161 before fixation 36,80. 

However, barcoding reduces staining variability, saves time and reagents 82-85. Live barcoding 

might interfere less with sensitive epitopes 25,86. The basal phosphorylation was in general 

lower than expected and pSTAT3/4/5 barely detected. Future experiments could include 

cytokine stimulation of PBMCs. Although the largest mass cytometry study on psoriasis so 

far, the number of included patients was relatively limited. In addition, some patients were 

using MTX as co-medication. Those that were not naïve to biological treatment underwent the 

recommended wash-out period before inclusion.  
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Conclusions 

Through mass cytometry analysis of immune cell lineages in blood and their intracellular 

phosphorylation, we have given a comprehensive description of systemic disease 

characteristics and possible biomarkers of treatment effect in psoriasis. A shift in Th1-Th2 

and naïve/effector-memory balance during treatment fit well with psoriasis immuno-

pathogenesis. Circulating CD8-, Th17, Th9 and Th22 cells were found to correlate with 

disease activity. Expression of PD-1 on lymphocytes might be involved in psoriasis 

pathogenesis and could potentially constitute a new treatment target. Findings in the 

monocyte compartment are possibly linked to development of cardiovascular disease in 

psoriasis. Further, intracellular phosphorylation of PBMCs was higher in psoriasis patients 

than HC and in non-responders relative to responders. Hopefully, future research will provide 

promising avenues for patient stratification based on immune-profiling, enabling personalized 

treatment that can alter the chronic course of psoriasis with positive implications on long-term 

comorbidities.  
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FIGURE LEGENDS 

 

Figure 1. Clustering and dimensionality reduction methods used in analysis. a: Star plot 

generated from FlowSOM. Mean signal intensity of all clustering markers for cells in each 

cluster is shown. Height of tile corresponds to intensity. Clusters have relative size. b: 

Channel colored Minimum Spanning Tree displaying clusters from FlowSOM analysis, 

exemplified with CD4 expression on cells; red indicates high expression, and color specter 

down to blue indicates progressively lower expression. c: Colored cluster overlay showing the 

13 tailored meta-clusters in FlowSOM based on clinically relevant PBMC subsets. 

 

Figure 2. Significant differences in abundance of PBMC subpopulations between 

healthy controls and psoriasis patients at inclusion and follow-up. Displayed is percentage 

of CD4 cells a: Th2, b: Th1, c: Th22, d: Th9, e: CD45RA expression, f: CD45RO expression 

and g: Tregs. h: Treg expression of CD45RA and CD45RO. i: classical and j: intermediate 

monocytes (MC) out of total PBMCs. Box and whisker plots show quartiles with median, 

ends of whiskers represent min-max. HC: healthy controls. Psoriasis patients at inclusion: PS-

1, after 4 months on biological therapy: PS-2 and after 1 year: PS-3. 

 

Figure 3. Comparison of intracellular phosphorylation in PBMCs from healthy controls 

(HC) and psoriasis patients (PS). Values are displayed as fold change (FC) of median signal 

intensity (MSI) from HC or PS normalized against MSI from corresponding internal control. 

a: pp38 in Th2 cells; b: pp38 in Treg cells; c: pERK in CD4 cells; d: pSTAT1 in classical 
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monocytes. Box and whisker plots show quartiles with median, ends of whiskers represent 

min-max. Psoriasis patients at inclusion: PS-1, after 4 months on biological therapy: PS-2 and 

after 1 year: PS-3. 

 

Fig. 4. Comparison of different features detected by mass cytometry in responders (R) 

versus non-responders (NR). a: Fold change (FC) of NK and NKT cell abundance after 4 

months; b: Treg CD45RA/RO inclusion ratio for healthy controls (HC), R and NR; c: 

expression of CCR10 on B cells at inclusion for HC and patients, d: FC of CCR10 in PBMCs 

during follow-up; e: Intracellular phosphorylation at inclusion. Box and whisker plots show 

quartiles with median, ends of whiskers represent min-max. Psoriasis patients at inclusion: 

T1, after 4 months on biological therapy: T2 and after 1 year: T3 
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Table 1. Characteristics of patients and controls at inclusion: sex, age, weight, body mass 

index (BMI), psoriatic arthritis (PsA) and methotrexate (MTX) use; values are listed as min-

max and mean. 

 Patients Controls 

Sex 24 ♂     8 ♀ 7 ♂     3 ♀ 

Age, years 18-74 (43)  29-58 (41) 

Weight, kg 61-133 (96) 65-122 (94) 

BMI 21-42 (30) 23-38 (30) 

PsA 13 0 

MTX (dose) 12/32 (12mg/week) 0/10 
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Table 2. Defining markers for identification of PBMC subpopulations. 

Population Defining markers 

T cells CD3+CD19- 

CD4 CD3+CD19-CD4+CD8- 

CD8 CD3+CD19-CD4-CD8+ 

B cells CD19+CD3- 

Monocytes 

     -Classical 

     -Non-classical 

     -Intermediate 

CD3-CD19-CD56- 

CD14++CD16- 

CD14+CD16++ 

CD14++CD16+ 
 

NK CD3-CD19-CD14-CD16+CD56+CD161+ 

NKT-like CD3+CD56+ 

Tfh CD3+CD19-CD4+CD8-CXCR3-CXCR5+ 

PD-1+/-ICOS+/- 

Treg CD3+CD19-CD4+CD8-CD25+CD127- 

Th1 CD3+CD19-CD4+CD8-CXCR3+CCR4-CCR6- 

Th2 CD3+CD19-CD4+CD8-CXCR3-CCR4+CCR6- 

Th9 CD3+CD19-CD4+CD8-CCR4-CCR6+ 

Th22 CD3+CD19-CD4+CD8-

CCR4+CCR6+CCR10+CXCR3+/- 

Th17 CD3+CD19-CD4+CD8-CXCR3+/-CCR4+/-

CCR6+CCR10-CD161+ 
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Table 3. PASI and DLQI at inclusion, 4 and 12 months after starting biological 

treatment, mean ± S.E. 

 PASI incl. PASI 4M PASI 12M DLQI incl. DLQI 4M DLQI 12M 

Infliximab 11.7 ±1.1 2.2 ±0.6 1.4 ±0.5 15.3 ±2.3 1.5 ±0.5 1.9 ±0.5 

Ustekinumab 11.1 ±3.4 4.3 ±1.8 2.9 ±1.1 10.0 ±2.2 3.1 ±0.8 2.5 ±0.8 

Secukinumab 8.0 ±1.8 1.9 ±0.5 1.9 ±0.4 13.3 ±3.1 4.6 ±1.8 4.1 ±2.0 

Etanercept 9.5 ±1.5 3.5 ±0.8 2.9 ±0.7 16.0 ±1.6 4.9 ±1.3 3.8 ±1.3 

All patients 10.1 2.0 3.0* 0.9 2.3* 0.7 13.7 2.3 3.5* 1.1 3.1* 1.2 

  *= p ≤ 0.001 

  4M= 4 months, 12M= 12months 
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SUPPLEMENTARY TABLES AND FIGURES 

Suppl. Table S1. List of antibody target, clone and conjugated metal. 

 Antibody Clone            Metal tag 

Antibody Mix 1 CCR4 L291H4 175Lu 

CXCR3 G025H7 163Dy 

CCR6 G034E3 141Pr 

CD127 A019D5 176Yb 

Antibody Mix 2 CD8a RPA-T8 146Nd 

CD19 HIB19 142Nd 

CD45RA HI100 143Nd 

CD45RO UCHL1 165Ho 

CD3 UCHT1 170Er 

CD4 RPA-T4 145Nd 

PD-1 EH12 2 H7 155Gd 

CD14 M5E2 160Gd 

CXCR5 RF8B2 171Yb 

CD25 2A3 169Tm 

ICOS C398.4A 151Eu 

CCR10 314305 164Dy 

CD161 HP-3G10 159Tb 

CD16 3G8 209Bi 

CD56 NCAM16.2 149Sm 

Antibody Mix 3 p-NFkB K10x 166Er 

p-p38 D3F9 156Gd 

pERK D1314.4E 167Er 

pSTAT1(Y701) 58DG 153Eu 

pSTAT3(Y705) 4/PStat3 158Gd 

pSTAT4 (Y693) 38/p-Stat4 174Yb 

pSTAT5 (Y694) 47 147Sm 
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Suppl. Table S2. Improvement of PASI relative to inclusion value for non-responders 
(NR) and responders (R) after 4 and 12 months. 

  % improvement from inclusion Min-max 

4 months NR 52 43-62 

R 90 84-95 

12 months  NR 57 46-67 

R 92 89-96 
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Suppl.Table S3. Marker expression on the two Treg clusters. Mean abundance relative to 
total PBMCs (SD) and Median Signal Intensity of selected markers are shown. 

 Abundance  CD3 CD4 CD8 CD14 CD19 CD25 CD127 CCR4 CD45RA CD45RO 

Naive/effector 
Tregs 

1.01 (0.70) 396.12 111.15 4.50 3.41 0.42 58.03 2.59 0.11 50.45 12.20 

Memory 
Tregs 

0.71 (0.39) 308.63 110.97 4.65 3.55 0.17 62.29 1.05 33.40 3.97 97.85 
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Suppl. Table S4: Event counts for PBMC subsets from FlowSOM analysis; mean of 119 
samples and S.E. of mean. 

 CD4 CD8 Th1 Th2 Th17 Treg Tfh B NK NKT Cl. MC Non-cl. 
MC

Intermed. 
MC

Mean 7149 3930 472 1002 180 343 299 1293 1257 639 1819 443 210
S.E. 210 177 31 55 15 19 19 58 59 98 90 26 24
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Suppl. Fig. S1: Debarcoded samples showing event yield for each of the 120 samples 
distributed on six barcodes. D1: day 1 of experiment, containing 20 samples in the first 
barcode. D2: day 2 of experiment, containing the next 20 samples in the second barcode. 
Likewise for D3, D4, D5 and D6: they all contain 20 samples in one barcode. 
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Suppl. Fig. S2: Example of clean-up gates made in FlowJo. The gates were tailored per file 
to identify live single cells 191Ir-193Ir (DNA1-DNA2); 191Ir-Event length; 191Ir-195Pt 
(cisplatin) and eliminate beads (140Ce-151Eu). 
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Suppl. Fig. S3. ViSNE plots for all markers in PBMCs displayed for the six internal 
controls included; one in each barcode.  

 

 

  

  CD3     CD8       CD4    CXCR3   CCR4    CCR6    CD16    CCR10   CD25    CD127  CXCR5   PD-1      ICOS    CD19 

CD14      CD16       CD56     CD45RA CD45RO pSTAT1 pSTAT3  pSTAT4  pSTAT5   pNF-κB   pERK    pp38
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Suppl. Fig. S4: Representative gating strategy from FlowJo for cell populations 
identified by the panel consisting of 19 surface markers. Cl. Mc: classical monocytes, Itr. 
Mc: intermediate monocytes, Ncl. Mc: non-classical monocytes. Epith. mem.: epithelial 
memory cells. Tfh: T follicular helper cells. 
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Suppl. Fig. S5: Heatmap showing expression of surface markers in subpopulations, 
exemplified with the internal control. Cl. Mc: classical monocytes. Ncl. Mc: non-classical 
monocytes. Tfh: T follicular helper cells. 
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Suppl. Fig. S6. Abundance of memory CD8 (CCR4+) cells in healthy controls (HC) and 
psoriasis patients (Ps) at inclusion. Box and whisker plots show quartiles with median, ends 
of whiskers represent min-max. 
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Suppl. Fig. S7. PD-1 expression. a: Th2 and CD8 cells at inclusion, b: CD4 cells and 
Tregs at inclusion and after 1 year of treatment. Box and whisker plots show quartiles with 
median, ends of whiskers represent min-max. HC: healthy controls. Ps: psoriasis patients. 
12M: 12 months follow-up. FC T1/IC: fold change timepoint 1/internal control. MSI: median 
signal intensity. 
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Suppl. Fig. S8. Intracellular phosphorylation during follow-up of patients; a: classical 
monocytes (MC), b: Th17 and NKT cells. Box and whisker plots show quartiles with median, 
ends of whiskers represent min-max. T1: inclusion. T2: 4 months follow-up. T3: 1 year 
follow-up. MSI: median signal intensity. 
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Suppl. Fig. S9. Heatmap of basal level of intracellular phosphomarkers, exemplified 
with one healthy control (left) and one patient (right). Cl. Mc: classical monocytes. Ncl. 
Mc: non-classical monocytes. Tfh: T follicular helper cells. 
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Suppl. Fig. S10. Change in PD-1 expression for responders (R) and non-responders 
(NR), fold change after 4 months for CD4 cells and fold change after 1 year for NK cells. 
Box and whisker plots show quartiles with median, ends of whiskers represent min-max. T1: 
inclusion. T2: 4 months follow-up. T3: 1 year follow-up. 
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Suppl. Fig. S11. Differences in intracellular phosphorylation after 1 year follow-up 
between responders (R) and non-responders (NR). a: non-classical monocytes (Non-cl. 
MC), b: intermediate monocytes (interm. MC). Box and whisker plots show quartiles with 
median, ends of whiskers represent min-max. 
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