
Journal Techno, Vol. 7, No. 2, 2021, pp. 151 - 162  
ISSN. 2461-1484 
 

 

[151] 

MULTI CRITERION PRIORITY ON KRIGING OF GOLD 
RESOURCES PREDICTION 

 
 

Nur Ali Amri, Waterman Sulistyana Bargawa, Tedy Agung Cahyadi  
Universitas Pembangunan Nasional Veteran Yogyakarta 

Corresponding author: nuraliamri@upnyk.ac.id 
 
 

ABSTRACT 

This paper describes of three things. First, the Kriging estimation on gold grade which 
is distributed in the vein. The empirical variogram method based on Matheron classical 
and robust of Cressie-Hawkins. The two empirical fitting on variogram theory of 
spherical and exponential equations of weighted least squares and ordinary least 
squares used. The predictions of six sizes block-Kriging respectively, 15×15, 25×25, 
35×35, 50×50, 75×75 and 100×100 based on four variographic models. Second, 
determine the priority of 24 prediction combinations based on TOPSIS method. Finally, 
the multiple criterion decision making method namely, 15×15 block Kriging based on 
a robust empirical variogram of exponential weighted least squares model represents 
as the best result. 
Keywords: Variogram, fitting, block Kriging, TOPSIS. 
 

 
 
INTRODUCTION 

Gold ores in the vein are formed through the process of mineralization and are 

strongly influenced by hydrothermal processes [1, 2]. In geology, a vein is a distinct 

sheet like body of crystallized minerals within a rock. Veins form when minerals 

constituents carried by an aqueous solution within the rock mass are deposited 

through precipitation [3]. The hydraulic flow is involved due to hydrothermal 

circulation [4]. Veins are of prime importance for minerals deposits, because they 

are the source of mineralization either in or proximal to the veins. Ores is related to 

hydrothermal mineralization [5], which is associated with vein material, may be 

composed of vein material and / or the rock in which the vein is hosted [6]. 

Physically the vein of the study area is elongated, hundreds to thousands of meters 

long, with a thickness of several hundred meters [7].  

The importance of this study is to estimate the distribution of gold deposits 

in ore veins and values of grade averages and error variances. The results of the 

kriging estimation based on various models resulting from variogram fittings, where 

the choice of the best alternative uses multi criteria determination. Because the 

distribution of gold content is part of the spatial process [8-11], the grade estimation 
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process uses the geostatistics method. Kriging is a technique in geostatistics that is 

widely used in spatial cases [12-17], especially in the mining industry [18-20]. 

 

MATERIALS AND METHODS 

Location 

The research location is a mountainous area in the Pongkor gold ore field. 

Administratively, it is located in the Bayah sub-district, Lebak district, Banten 

province Indonesia with an elevation of 1,110-1,250m above sea level. Pongkor 

mineralization has a veins system with the main sub-parallel, quartz-calcite. Vein in 

this area extends around 700 to 2,500m. Vein thickness is several meters and a 

depth of more than 200m in the direction of the Northwest-Southeast. Most of this 

area is widespread weathering which results in gold ore mineralization. The data of 

this study are the results of assaying 128 random samples derived from core drilling 

in the Ciurug vein with an area of about 1,500×370m2. 

Variogram 

The occurrence of gold ore, which is distributed in the vein model, allows the 

occurrence of spatial properties, namely the nature of correlating between data in 

an area. Therefore, tracing of this behavior is constructed through a variogram 

model approach [21]. Two empirical variograms [22, 23] using the term variance 

used in this approach are the Matheron’s variogram [24] and Cressie-Hawkins 

model known as the robust method [10, 11]. Empirical variogram is a formula used 

to determine spatial correlation between data in an area. Mathematically presents 

as follows: 

γ̂(h)=
1

2|N(h)|
∑ (Z(si)-Z(sj))

2

N(h) ; h∈Rd.                     (1) 

While the robust method is presented as, 

γ̅(h)=
(

1

2|𝑁(𝒉)|
∑ (𝑍(𝒔𝑖)−𝑍(𝒔𝑗))

1/2

𝑁(𝒉) )
4

(0.457+
0.494

|N(h)|
)

; h∈Rd                                   (2) 

N(h)={(si,sj):‖si-sj‖=h; i,j=1,…,n} dan |N(h)| is the number of pairs of points with 

lag h. 

Fitting  

Practically the formulas (1) and (2) are empirical equations that produce discrete 

points. To obtain good graphics, refining with fittings is very necessary. The two 

fitting processes used in this paper are ordinary least squares (OLS) and weighted 

least squares (WLS) methods [25, 26]. The theoretical formula of variogram used to 

obtain variogram parameters is spherical and exponential models, as shown in 

Table 1. Co is the nugget value, Co + C is sill, while the range is denoted as a. Spherical 
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models are mathematical formulas for fitting processes that are often used in the 

mining industry [27, 28], while the exponential model is a comparison. 

Ordinary Kriging 

One of several gold grade estimation techniques is ordinary kriging [29] as the best 

linear unbiased predictor (BLUP). OK method is a data interpolation technique, by 

estimating the spatial value around the data [30]. This technique uses the stationary 

concept, which is considered as a stochastic process because it tries to select the 

weights optimally by minimizing estimation error variance [10, 11].  

Suppose there are n sample data z(si) located at several locations si (the value 

siRd, d in this case having dimension of 2, i=1, …, n) and s0 are the position of the 

points to be estimated, then the estimation value, Ẑ(𝐬0) can be written as [11]: 

Ẑ(s0)=∑wi

n

i=1

z(si). 
 

(3) 

where the sum of the total weights wi is one.  

Based on γ̃ = ∑ (𝐬0 − 𝐬𝑖)
n
i=1 and Γ = ∑ ∑ γ(si-sj)

n
j=1 ,n

i=1  in matrix the weight w̃ can be 

obtained. The weight matrix is: 

w̃=Γ-1γ̃ (4) 

The estimation results are used to determine the distribution of values in the 

mining application to meet the cut-off grade [31]. While error variance is defined by 

[11, 32, 33]. The gold ore grade estimation uses the geoR library of R package and 

several other libraries [34]. 

 

TOPSIS 

Techniques for order preference by similarity to ideal solution (TOPSIS) is a 

multicriteria decision-making techniques [35-39]. In 1981 Yoon and Kim introduced 

the TOPSIS method [40]. The main principle of this method is to choose the points 

with the shortest distance as positive ideal solutions and the farthest distance as the 

ideal negative solution. Several stages in the completion of this method have been 

carried out by [41]. These stages are. These stages are: 

1. Preparation of a ranking matrix (mn), whose elements are the values of scoring. 

Elements Xij is a measure of alternative choices, i and j-criteria in the matrix and 

use the following formula: 

D=∑ Xij

m

i=1

; j=1, …, n. 
(5) 

2. Make a normalized decision matrix, where the elements i.e., rij are derived from: 

𝑟𝑖𝑗 =
𝑋𝑖𝑗

√∑ 𝑋𝑖𝑗
2𝑚

𝑖=1

; j=1, …, n. 
(6) 
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3. Normalized weight matrix elements (Vij) are arranged based on the results of the 

normalized decision matrix multiplication with the weight matrix, as follows: 

Vij=∑wirij

m

i=1

; j=1,…, n. 
 

(7) 

4. Determining the value of positive ideal solutions and negative ideal solutions. 

The ideal solution is denoted as A+, when the negative ideal solution is denoted 

as A–. The equation for determining the ideal solution using formula: 

 

A+={(maxVij |j∈J),(minVij |j∈J')}={v1
+,v2

+,…,vm
+ } 

A-={(max Vij |j∈J),(minVij |j∈J')}={v1
- ,v2

- ,…,vm
- } 

J = {j=1, …, n} associated with benefit criteria 

       J’= {j=1, …, n} associated with cost criteria. 

 

(8) 

5. Calculate separation measure. Separation measure is a measurement of distance 

from an alternative to a positive ideal solution and a negative ideal solution. 

Calculation of positive ideal solutions is: 

Si
+=√∑ (Vij-vj

+)
2n

i=1 ;  j=1,…, m. 
 

(9) 

While the calculation of negative ideal solutions is: 

Si
-=√∑ (Vij-vj

-)
2n

i=1 ;  j=1,…, m 
 

(10) 

6. Calculate preference values for each alternative. Value of preference calculation 

for each alternative is carried out to determine the ranking of each alternative. 

Calculation of this preference value is: 

Ci
+=

Si
-

Si
-+Si

+ ;    0<Ci
+ < 1 and i=1, …, m  

Ci
-=

Si
+

Si
-+Si

+ ;    0<Ci
- < 1 and i=1, …, m (11) 

Alternative values are ranked according to sequence. From the results of the 

ranking, it can be concluded that the best alternative is the one that has the shortest 

distance from the position of the positive ideal solution and the furthest from the 

negative ideal solution. 

 

RESULT AND DISCUSSION 

Geostatistics 

This method begins by making an empirical variogram construction as in formula 

(1) and (2), by first determining the lag distance sequentially, starting from the first 

lag where, h = 17.5m. The maximum lag distance is 500m, and this is the maximum 

one-third span (x-axis) of the study area. Both distances are simulation products 
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that are closest to the basic characteristics of variogram. Both empirical variograms 

(classical and robust) and error values (root mean square error, RMSE) are based 

on the exponential theoretical approaches of the WLS and OLS models shown by 

TABLE 1. 

The first column presents lag distance, the second and third columns are a 

collection of values resulting from classical variogram calculations (γ̂(h)) and robust 

( γ̅(h) ). The last four columns show error values based on each fitting model. 

Notation C on CWLSE (Classical Weighted Least Squares Exponential) refers to a 

classical variogram. The letter E at the last denotation describes a theoretical 

variogram, which is an exponential function.  

TABLE 1 Classical and robust variogram with RMSE value 

Lag 
RMSE 

CWLSE COLSE RWLSE ROLSE 
1 0.754 1.032 0.700 0.453 
2 0.547 0.137 0.838 0.453 
3 1.846 2.299 2.424 2.875 
4 1.165 0.719 0.591 0.122 
5 0.466 0.876 0.244 0.701 
6 1.079 0.717 0.174 0.254 
7 0.440 0.129 0.831 0.442 
8 0.555 0.815 1.470 1.817 
9 0.318 0.533 0.144 0.162 

10 1.672 1.012 1.573 1.308 
11 0.176 0.187 0.314 0.542 
12 1.084 1.073 0.509 0.175 
13 0.229 0.240 1.013 1.007 
14 0.453 0.464 0.438 0.432 
15 0.137 0.126 0.066 0.060 
16 0.308 0.297 0.921 0.927 
17 0.227 0.216 0.362 0.368 
18 0.337 0.348 1.004 0.998 
19 1.061 1.072 1.542 1.536 
20 1.854 1.865 2.591 2.585 
21 0.803 0.814 1.454 1.448 
22 0.847 0.836 0.487 0.493 
23 0.898 0.887 0.817 0.823 
24 0.081 0.070 0.693 0.699 
25 1.581 1.592 0.594 0.588 
26 2.134 2.123 1.147 1.153 
27 4.442 4.431 3.585 3.591 
28 5.987 5.976 7.012 7.018 

Mean 1.124 1.103 1.198 1.179 
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TABLE 2. List of variogram models as mathematics formula 

Fitting 

base 

Practical exponential variogram 

 

CWLSE {
11.743 [1-exp (-

|h|

173.169
)] ; 0≤|h|≤173.169

11.743; |h|>173.169

 

 

COLSE {
11.754 [1-exp (-

|h|

192.706
)] ; 0≤|h|≤192.706 

11.754;                                |h|>192.706

 

 

RWLSE {
11.611 [1-exp (-

|h|

209.176
)] ; 0≤|h|≤209.176

11.611;                               h>209.176

 

 

ROLSE {
11.605 [1-exp (-

|h|

233.228
)] ; 0≤|h|≤233.228

11.605;                               h>233.228

 

The letter R on ROLSE (Robust Ordinary Least Squares Exponential) states 

that fittings are based on robust empirical variogram with ordinary least squares 

model. The calculation results of the average RMSE are in the final line, where the 

smallest value is produced by COLSE (Classical Ordinary Least Squares Exponential) 

fitting, which is 1.103 and the largest is RWLSE (Robust Weighted Least Squares 

Exponential) with an average value of 1.198 (TABLE 1). 

TABLE 2 shows the variogram parameters obtained from the fitting results. 

Variogram parameters (nugget, sill, range) are used for Kriging estimation. The 

mathematical formula of practical exponential variogram showed in column two. 

 

 
FIGURE 1. The graph of exponential semivariogram base 
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TABLE 3. Block kriging estimation includes average, variance and validation index 

for various fitting bases 

Block Mean-Kriging 
 Fitting based  

CWLSE COLSE RWLSE ROLSE 

1515 Prediction 4.611 4.586 4.568 4.548 
 Variance 3.763 3.446 3.359 3.075 
 Validation Index 0.190 0.249 0.265 0.324 

2525 Prediction 4.618 4.592 4.574 4.554 
 Variance 3.774 3.482 3.396 3.110 
 Validation Index 0.183 0.242 0.257 0.317 

3535 Prediction 4.590 4.564 4.546 4.525 
 Variance 3.838 3.544 3.458 3.169 
 Validation Index 0.164 0.233 0.239 0.300 

5050 Prediction 4.580 4.553 4.534 4.513 
 Variance 3.955 3.653 3.565 3.268 
 Validation Index 0.136 0.198 0.214 0.276 

7575 Prediction 4.673 4.645 4.627 4.605 
 Variance 4.030 3.730 3.645 3.347 
 Validation Index 0.138 0.197 0.212 0.273 

100100 Prediction 4.570 4.543 4.524 4.502 
 Variance 4.233 3.919 3.820 3.520 
 Validation Index 0.074 0.137 0.156 0.218 

 

FIGURE 1 displayed empirical variogram visualization as equation (1) and (2) 

and fitting results as TABLE 2 (exponential). Because the RMSE value of the 

spherical model is greater than the exponential model, this paper does not show the 

fitting of the spherical variogram model. Overall, the results of fitting the variogram 

model in FIGURE 2 show that the nugget value is zero (C0=0). 

Mathematical equations of two variograms, namely spherical and 

exponential, results in fitting equation (as in TABLE 2). The sill is in the range of 

11.605 (for robust fittings based on OLS exponential function) to 11.754 (for 

classical fittings OLS, based on exponential functions). Two areas of influence are 

generated by each robust fitting, RWLSE = 209.176 and ROLSE = 233.228. Fitting 

models based on classical variogram produce shorter spacing of influences, namely 

173.169 (for CWLSE) and 192.706 (for COLSE). 

TABLE 3 displays the variogram parameters obtained from the fitting results, 

where the first column is the category or basis used; the second and third columns, 

respectively, are a collection of sill and range values, namely variogram parameters 

which will later be used as the basis for Kriging predictions. From several blocks 

Kriging prediction produces an unpatterned value, but the predictive variance gets 

smaller as the block size gets smaller. 
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TOPSIS 

The ranking score is based on validation index with 5 weighting scales. The 

assessment criteria (score) predictions are better if the index is getting bigger. The 

validation scoring results are shown in TABLE 4. As in columns 2 to 5, it is clear that 

the increase in the index of decision-matrix occurred in CWLSE, COLSE, RWLSE and 

ROLSE, respectively. This increase in value applies to each prediction block. 

TABLE 4. Decision matrix states of the attributes and criteria for each block based 

on four fittings 

Kriging 

Block size 

 Score value  

CWLSE COLSE RWLSE RWLSE 

1515 0.346 0.462 0.577 0.577 

2525 0.369 0.492 0.492 0.615 

3535 0.369 0.492 0.492 0.615 

5050 0.391 0.391 0.521 0.651 

7575 0.369 0.492 0.492 0.615 

100100 0.169 0.507 0.507 0.676 

 

The normalized decision matrix values (successively for the four scores of 

each fitting result) as in TABLE 5 also increased proportionally to the values as in 

the attribute of decision matrix and as in the criteria of each block Kriging. 

TABLE 5. Normalized decision matrix for each block based on four fitting models 

Kriging 

block 

 Score  

CWLSE COLSE RWLSE RWLSE 

1515 1.477 1.963 2.454 2.454 

2525 1.477 1.969 1.969 2.462 

3535 1.477 1.969 1.969 2.462 

5050 1.465 1.465 1.953 2.441 

7575 1.477 1.969 1.969 2.462 

100100 0.465 1.395 1.395 1.859 

 

Referring to TABLE 6 where the ideal-closeness occurs in 15×15 block 

Kriging, a distribution of predicted values can be shown. 

Separation measure is a measurement of the distance from the alternative to 

a positive ideal solution and a negative ideal solution. Calculation of the ideal 

solution (positive and negative) is presented by TABLE 6. Column 2 is generated by 

formula (9). While column 3 is the result of calculations using formula (10). The 

relative proximity of the ideal solution is shown in columns 4 and 5 (TABLE 6). 
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TABLE 6. Separation value 

i Si
+ Si

- Ci
+ Ci

- 

1 1.0973 1.4722 0.573 0.427 

2 1.2060 1.2060 0.500 0.500 

3 1.2060 1.2060 0.500 0.500 

4 1.6912 0.9764 0.366 0.634 

5 1.2060 1.2060 0.500 0.500 

6 1.5417 1.9166 0.554 0.446 

 

FIGURE 2 illustrates the distribution of gold ore based on 1515 block 

Kriging RWLSE base. The darker colour (black) indicates of high grade (in gram/ton 

Au) of ore distribution. Towards the higher of abscissa, the grade appears to be 

smaller. Even in any area it seems that the distribution of gold is no longer found. 

 
FIGURE 2. Distribution of gold predictive values based on 15×15 block Kriging of 

ROLSE model 

 

CONCLUSION 

Many conclusions of this research are, 

1. Empirical variogram is a representation of spatial correlation between the 

samples. Therefore, the determination of lag distance becomes important as a 

fundamental construction of variogram models.  

2. Variogram fittings produce parameters which are one of the determinants in 

Kriging estimation. 

3. Block kriging estimation that refers to empirical variogram fitting with 

determination of regular lag distance (17.5 m), resulting in values where there 

is an increase in validation index starting from CWLSE, COLSE, RWLSE and 

ROLSE. An increase in the index value occurs in the estimation for each block 

size. 

4. Based on ROLSE fitting, the most ideal proximity values of two criteria (positive 

and negative) occur in block kriging size of 15×15. 
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