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Abstract

In this paper, the problem of clustering observations into

homogeneous groups based on given characteristics of the observations is

analyzed. Three distinct integer programming formulations covering

important variations of the clustering problem are developed. These

variations include finding natural clusters, constraining the number of

clusters and restricting the size of clusters. Efficient heuristic techniques

employing Lagrangian and eigenvector based methods are developed to

solve these problems.
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1. INTRODUCTION

Classification has a rich history, but numerical methods used for the

purpose of classification are fairly recent. The major developments have

occurred in the last two decades. Sokal and Sneath (1963) published one of

the first books on this subject.

Classification (or typology) is concerned with the identification of an

observation and its placement into a homogeneous group based on some

characteristics. The pursuit of classification can be seen in all fields. For

example, in judical science, the Supreme Court judges may be grouped on the

basis of their legal opinions on a sample of cases. In psychology and

consumer behaviour, people may be clasified according to their personality

and taste characteristics. In international marketing, the world markets can

be classified into segments based on cultural, socio-economical and political

characteristics. In strategic management, firms in industries are classifed

according to the production, financial and marketing strategies used. In

engineering design, parts produced are classified according to the

geometrical, tolerance and machining characteristics they possess.

Classification and cluster analysis has been applied in the following areas:

biology (Everitt, 1980), data reorganization (McCormick et al., 1972),

medicine (Klastorin, 1982). pattern recognition (Tou and Gonzalez.

1974), part selection in automated systems (Kusiak. 1985a).

production flow analysis (King. 1980). race mixture study (Rao. 1977).

task selection (Nagai et al., 1980). control engineering (Siljak, 1984).
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In the cases, where it is possible to specify groups a priori, statistical

techniques such as multiple discriminant analysis provide an analytical

method to define topology functions (Green, 1978). But when it is not

possible to specify these groups, one needs to resort to various combinatorial

algorithms and heuristics to aid in constructing the clusters.

An assumption underlying the use of clustering techniques is that

homogeneous clusters actually exist in the data. The basic problem in cluster

analysis is to devise algorithms and heuristics that group entities into

clusters based on observed attributes. The development of these heuristics

and algorithms have typically depended on conceptual representation of the

process of clustering. These representations have been largely visual and

can be of two distinct types, matrix representations and graph

representations.

Matrix representations have usually been used in the domain of social

sciences. One of the first applications in marketing segmentation and

selection was by Green et al. (1967) who desired to match representative

test market with larger product markets. Here, a variety of market

characteristics were gathered for a number of potential test markets and

arranged in a matrix-type representation with rows representing cities and

columns, the market characteristics. The object was to rearrange all those

rows, which were "similar", such that they were adjacent in the permuted

matrix. As is often the case, the market characteristics were measured in

different scales, and therefore, had to be normalised (re-scaled to have a

mean of and a standard deviation of 1) before similarity measurements

using weighted Euclidean distances were used.
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Another application of the matrix representation is in the area or

group technology, which concerns itself with grouping machines (and

consequently, the parts that can be produced on the machines) so as to form

independent manufacturing cells (Burbidge, 1975 and King. 1980). In this

application, rows represent the machines and columns represent the parts

produced. The matrix entries are binary, 1 representing the use of the

machine for the part and otherwise. The object is to permute the rows and

columns so as to obtain a block diagonal representation of the original

matrix, with each block representing a cluster.

Graph representations have usually been used in the engineering

sciences field, particularly electrical engineering. One application arises in

the design and monitoring of power system operations (Stagg et al., 1970

and Bills. 1970). Here, a weighted graph representation is used to depict the

network of power grid buses, with the nodes representing the machines,

such as transformers, and the edges (or arcs) representing the interlinking

connections between these buses. The admittance between these buses is

taken as the weight on (or capacity of) the edges. The object is to decompose

the graph into sub-graphs (by deleting edges) such that there are minimal

interconnections between the sub-graphs (and hence maximal connections

within the sub-graphs).



-4-

Another application arises in the design of very large scale integration

(VLSI) circuits (Kernighan and Lin. 1970). The circuits are represented as

graphs with the electrical elements, such as resistors, being the nodes of the

graph and the wiring between these elements representing the edges. The

purpose of this representation is to find a way to partition this graph so as to

maximize the number of circuits that can be packed into the chips.

In this paper, we describe three, distinct interger programming

formulations which cover important variations of these two representations.

We characterize the integer programming formulations by two constraints:

( 1

)

fixed number of clusters

(2) restriction on the number of elements within each cluster.

The three integer programming formulations presented allow one to

deal with these two constraints. The first formulation (PI) does not

incorporate any of these constraints: that is, we allow the algorithm to

generate natural clusters. Since many clusters could be generated by the

first formulation, a second formulation (P2) is developed which restricts the

number of clusters. Finally, we consider a model which allows one to deal

with restrictions on the number of clusters and cluster size.

The paper is divided into five sections. In Section 2, we discuss a

clustering problem with no restrictions on the number of clusters and cluster

sizes. A clustering problem with a fixed number of clusters is presented in

Section 3. A Lagrangian relaxation approach is used to solve this problem.

In Section 4, we formulate and solve a clustering problem with a fixed

number of clusters and cluster sizes. An eigenvector based approach is used

in the subsequent analysis. Conclusions are presented in Section 5.



-5-

Z. A CLUSTERING PROBLEM WITHOUT ANT CONSTRAINTS

2.1 Prob lem Formulation

Typically, one first formulates a clustering problem, where there is no

a priori information regarding the number of clusters and cluster sizes. In

this case the resulting clusters are usually generated by visual inspection.

Before formulating a clustering problem that does not restrict the

number of clusters and cluster sizes, let us consider a 0-1 matrii A =[ajj]mxn .

For any two row vectors a
i
=lai

|,...,aik ain] and a^la^ ajk ,...,ajn] of matrix A,

define a distance

n (la)

<V 2 S(aik , ajk )

k-1

where

5(aik , ajk )-

1 ifaik -ajk-l

(lb)

otherwise
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In this clustering problem, we attempt to permute rows and columns

of matrix A to maximize the sum of the distances djj(djj) between any two

adjacent rows (columns), respectively. It can be formulated as follows:

m-1 m n-1 n

I I dy I I
i-1 j-i+1 i=l j-i+1

(PI) maiD= I I dq+ I I d
q

(2)

for all n!m! possible matrices obtained permuting rows and columns of the

initial matrix A.

Lenstra (1974) has shown that problem (PI) is equivalent to two

travelling salesman problems. Based on this fact the following two

conclusions can be drawn:

(1) this clustering problem is an NP-complete problem

(2) a travelling salesman algorithm can be applied to solve the clustering

problem.

2.2 Algorithms for solving problem (PI

)

To date a large number of algorithms for solving problem (PI) have

been developed by researchers working in many different areas. Some of

the must efficient heuristic algorithms have been discussed in Kusiak (1985),

namely:

(1) McCormicketal. (1972)

(2) Bhat and Haupt (1976)

(3) King (1980, 1982)

(4) rank energy (Kusiak, 1985).
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All of these algorithms are based on rearranging rows and columns of matrix

A to produce some visible clusters. The difference between them is in the

way this rearrangement is performed.

Computational complexity of each of these algorithms is shown in

Table 1.

Table 1. Computational Complexities of Clustering Algorithms

McCormick Bhat and Haupt King (1982) Rank Energy

etal(1972) (1976)

0jyj(nm2+n2m) Ogdn^n2
) OK(mnlogmn) 0n(m+n)2

One can notice that the following inequality holds Og < R < K < M .

3. A CLUSTERING PROBLEM WITH FIXED NUMBER OF CLUSTERS

3.1 Problem Formulation

In order to formulate this problem let us introduce the following

notation:

n number of elements

m required number of clusters

djj distance from element i to element j(djj >• 0), Vi* j-1 n and

dir0. Vi-j-1 n).

x ij= <

1 if I
th element belongs to

I

th cluster

otherwise



-8-

The objective function minimizes the total sum of distances in a cluster to

the cluster median:

n n

Zx = minZ(x) = I I d^ (3)

i-1 j-l

n
s.t. Z iij-1 ¥i-l,...,n (4)

j-l

(P2)

n

I ijj-m (5)

H
Xij^ijj Vi-i,...,n Vj-1 n (6)

x
M
= 0,1 Vi-1 n ¥j-l,...,n (7)

Constraint (4) ensures that each element belongs to exactly one cluster.

Constraint (5) specifies a required number of clusters. Constraint (6)

ensures that a cluster j is formed when a corresponding element is a

median. The last constraint (7) imposes integrality.

3 2 A Subgradient Algorithm

Problem (P2) has been solved by Mulvey and Crowder (1979) but a

more efficient subgradient algorithm is presented here. The main

difference between the proposed algorithm and that of Mulvey and

Crowder (1979) is in the procedure of computing lower bounds. The

algorithm of Mulvey and Crowder (1979) computes the lower bounds based
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upon a heuristic algorithm developed by Ward (1963). The presented

subgradient algorithm is based on a simple procedure of computing lower

bounds shown in Arthanari and Dodge (1981).

Dualizing on constraint (4) the objective function (3) is transformed

as follows (for Uj >/ 0, Vi-l,...,n)

n n n n

Z„- minZ(ui)» Z I d^ + I UjO-I x^) (8)

i«l j-1 i-1 j-1

Reordering (8) the following relaxed problem is obtained

n n n

Zu - minZ(Ui)- I I (d^ - u^x^ + I Ui (9)

i-1 j-1 i-1

(Pu)

s.t. (5), (6) and (7).

The best choice of u is an optimal solution to the dual problem

ZD = max Z, (10)

u
(D)

s.t. (5), (6) and (7).



-10-

Framework of the Subgradient Algorithm

In the subgradient algorithm one specifies initial values of Lagrangian

multipliers u°
t
and in each iteration k+1 an updated sequence u

t
k+1 is

generated as follows:

u.k+i-u.k + akg.k (11)

where: ak is a positive scalar step size

gi
k is a subgrdient; in the case of the problem (P2)

gi-l-I x*ij, (12)

J

where x*^ is an optimal solution to the problem (P„)

The most commonly used step size is

ak. yk (uBk - zk
u ) , (13)

llg'll

where: Yk is a scalar statisfying 0<Yk <2 (see Motzkin, 1954)

UBk is an upper bound on ZD

II • II is an Euclidean norm.

To compute UBk in our subgradient algorithm a simple heuristic, generating a

feasible solution to the problem (P2) is used.

In order to solve the dual problem (D) the following general

framework of a subgradient algorithm is applied:
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Step 0. Set iteration number k=0 and choose initial values of Lagrangian

multipliers uk
j, i=l n.

Step 1. Solve problem (P ) for all uk j. The value obtained ZB is a lower

bound on the value of the objective function Zp in (D).

Step 2. Generate a feasible solution to problem (P2). The value Zx is an

upper bound on the value of the objective function Zq in (D).

Step 3. If the current solution to the problem (D) satisfies a given stopping

criterion, stop; otherwise go to Step 1.

Lower Bounds Procedure

A procedure for computing the lower bounds given in Arthanari and

Dodge (1981) will be applied. Let us denote:

sjj - min (djj - Uj.O) (14)

and let Sj - I Sjj

i=l

To minimize (10) let us arrange the first m values of Sj in an

increasing order Sj(u s< Sj(2 )v< ... * S)(B) and let the set (j( 1 ), j(2),...j(m)) = L.

The optimal solution to the problem (Pu ) is then

*v
1 ifi»j€L

otherwise

(15)

and

»v
1 if i n jeL

otherwise

(16)
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Substituting x*jj of (15) and (16) into (9) a lower bound for the problem

(D) is obtained.

Upper Bounds Procedure

A feasible solution to the problem (P2) can be computed in the way

shown in Arthanari and Dodge ( 198 1 ), namely:

x
ii

=

and

xij"

1 ifi-jeL

otherwise

1 if i*j and d^ - min d„.

reL

otherwise

(17)

(18)

One can easily see the above solutions satisfy all constraints of

problem (P2).

Substituting all i^ to ( 1 ) an upper bound to the problem (D) is

obtained.

Suberadient Algorithm

. The algorithm for solving the problem (D) is as follows:

Step 0. Set k-1, Uj >,0, Z
{
> 0, C 2 > 0. *° > 0. UB° - +«», LB - -~ where:

u,° initial value of the Lagrangian multipliers

Cj, C 2 .
precision values

Y° initial value on the scalar (0<Y°<2)

UB° initial upper bound on (10)

LB initial lower bound on (10)
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Step 1. Compute a feasible solution for (P2)from (17) and (18) in order

to obtain a value Z,k of (3).

Compute an upper bound on (9)

UBk-mindJBk-U,*}.

Step 2. Compute the values of i'jj from (15) and (16) and substitute

into (9) to obtain a value Z*k for updated values of ujk , i=l,...,n.

Compute a lower bound on (Zq)

LBk = mai(LBk-i,Z.k ).

If z»k < LBk
, then reduce Yk .

If Yk < Z[ , stop; otherwise continue.

If (UBk - LBk )/UBk < Z 2 , stop; otherwise go to step 3.

Step 3. Compute the following:

(a) subgradients gj
k at x*^

n

gi
k - 1 - I X'ij

H
(b) step size

ak - p(UBk - zf)

llg.MI

(c) updated values of Lagrangian multipliers

u .k*l , u .k +

!lgj
k

ll

Set k = k + 1 and go to Step 1.
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3.3 Computational Results

The subgradient algorithm described has been applied to solve a

number of problems. For each problem the distances djj were generated by

a uniform, continuous random number generator. Different values of initial

parameters Uj° and Y° have been tested. The algorithm performed well for

Uj = 1.1 mai (djj) and Y° = 0.75 which were determined experimentally.

J

Tables 2 and 3 show the number of iterations and CPU time (in

seconds) for 20 different problems with the precision value Cj - 5% and £ 2

0.1% respectively.

Table 2. CPU time and number of iterations for problems solved with

UB-LB
the precision value Z 2

- 100% « 5%

UB

m\n 10 20 30 40 50 60 70 80 90 100

5 5

0.39

5

1.04

4

2.05

5

331
5

4.88

5

6.65

5

8.86

5

11.46

5

14.40

5

17.11

10 5

023
5
0.77

4

1.26

4

2 15

4

330
4

4.65

4

6.31

4

8 22

4

1028
4

12.52
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Table 3. CPU time and number of iterations for problems solved with

UB-LB
the precision value £ 2

- 1 00% « 0. 1 %

UB

m\n 10 20 30 40 50 60 70 80 90 100

5 8

052
8

1.69

8

328
8

534
8

7.94

8

10.87

8

1436
8

18.66

8

2317
13

4551

10 8

0.38

7

1.08

7

2.28

7

390
7

592
7

8.34

7

10.81

7

14.68

7

18.50

7

22.28

As one can see in Tables 2 and 3 the algorithm requires a small number of

iterations to generate a good quality feasible solution or in many cases the

optimal solution.

To show the efficiency of this algorithm we have solved five sets of

differnt problems by this algorithm and compared results obtained with

ones presented by Mulvey and Crowder (1979). Table 4 illustrates this

comparison.
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Table 4. Comparison of the Subradient Algorithm to the Algorithm

of Mulvey and Crowder (1979)

Problem Number of

Number Attributes Number of Iterations for m = 5

n Mulvey and Crowder (9179) Proposed

Algorithm Algorithm

1 25 26 6

2 50 74 7

3 70 22 7

4 80 82 7

5 100 25 7

All the above computations were performed on a CDC CYBER 170-720

computer. The algorithm presented requires on average much smaller

number of iterations than the Mulvey and Crowder (1979) algorithm to solve

a problem of the same size.
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4. A CLUSTERING PROBLEM WITH FIXED NUMBER OF CLUSTERS

AND CLUSTER SIZES

4.1. Problem Formulation

The clustering problem formulations described in the last two sections

may not necessarily generate desirable sized clusters. Very large clusters or

a large number of very small clusters may be a consequence of these

clustering algorithms. In this section, we formulate an eigenvector based

approach which allows a filed number of clusters of filed size to be

generated. We begin by introducing the following two definitions. Consider

an undirected graph G - (V,E) where djj is a distance measure between

elements v
{
and Vj.

Definition 1. A k-cluster of G(V,E) is obtained by deleting the edges

of G to obtain k disconnected subgraphs Gj = (Vj.Ej), i=l,2,...,k

k

and u Vj = V.

i=l

Definition 2. An optimal k-cluster is a k-cluster which maximizes

the sum of the intra-cluster distance of the k clusters.
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The optimal k-clustering problem is a generalization of the k- means

problem (Hartigan, 1975). The main difference is that we impose a limit on

the cluster size. We formulate the optimal k-clustering problem as a 0-1

quadratic programming (0-1 QP) problem. Since n elements are to be divided

among k clusters, we assign to each element i the variable i iit x i2 ijk

where

1 if element i is assigned to cluster
j

xii-

otherwise

Each element i is in exactly one cluster, thus

k

Z xir l, Vi-l,2,...,n (19)

H
Cluster j has exactly nij elements in it. Therefore, we add the following set

of constraints to ( 1 9)

n

I Xjj- mj, Vj- 1,2 k

i-1
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Since each edge in cluster / (/ = 1.2....k) is represented by the node

product ij/ij/ Note that the edge joining element i to element j is

included in cluster / if and only if i{J - ij/ - 1.

If djj is the distance between elements i and j, then the total

distance of all distances in all k clusters is given by

k n-1 nIII dqx^jy

M i-1 j-i+1

The 0-1 QP problem formulation of the optimal k-clustering problem is:

k n-1 n
min I I I djjij/j/ (20)

/-l i-1 j-i+1

k

s.t. I ijj - 1, V i - 1,2 n (21)

(P3) j»l

n

I ijj- mjf ¥ j- 1.2 k (22)

i=l

x^ or 1, ¥ i=l,2,...,n (23)

¥ j-1,2 k
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4.2 An Approximation Algorithm for Solving Problem (P3)

An eigenvector based approach is described for finding an

approximate solution to problem (P3). This eigenanalysis approach is a

simple extension of an approach used by Barnes (1982) and Vannelli (1984)

to partition the nodes of a graph subject to the constraints given in (P3). In

this case one is maximizing the objective function in (P3). Clearly problem

(P3) is equivalent to

k n-1 n

max III (-djjfri/jy (24)

/=1 i=l j=i+l

k

s.t. I i
y

= 1, ¥ i=l n (25)

j=l

n
(NP3) I iy - mj, ¥ j-1 k (26)

H

Xjj - or 1, V i-l,...,n (27)

V j=l k.
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Given that -djj e -D, Barnes (1982) shows that problem (NP3) can be

approximated by the linear transportation problem

k n

I I
j-1 i=l >/~m7

max I I u
ij

x
ij

( 28 ^

k

s.t. I Xjj- 1, ¥ i=l n (29)

j=l

(TP3) n

I Xy- ffij, ¥j = l,...,k (30)

i=l

Xy >, , v i-l,...,n (3D

* j=l k

where Aj >/ ... >,

k are the k largest eigenvalues of -D (k smallest eigenvalues

of D) and Uj, u2, .... uk are the corresponding eigenvectors.

The linear transportation problem can be solved in 0(n3) time

(Lawler, 1976).

4.3 A Numerical Example

We apply the approximation algorithm given in Section 4.2 on the

following food data problem given in Hartigan (1975, pp.88).
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Table 5. Clustering Problem from Hartigan (1975)

Calcium

1 13 21 1

2 5 36 1

3 5 37 2

4 11 29 1

5 8 30 1

6 12 27 1

7 6 31 2

8 4 29 1

Consider the distance measure.

dij II *i " ij Il2
2

where a
(
is the i

th food type row. For example,

d l2
= (13-5)2 + (21-36)2+ (1-D2 = 289.
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The 8x8 distance matrix D of the food data representation of Table 5 is

289 321 68 106 37 150 145

289 2 85 45 130 27 50

321 2 101 59 150 37 66

68 85 101 10 5 30 49

106 45 59 10 25 6 17

37 130 150 5 25 53 68

150 27 37 30 6 53 9

145 50 66 49 17 68 9

(32)

If we wish to find two optimal clusters of D where each group has four

elements, we find the two largest eigenvalus of -D which are 488.4 and

98.059 respectively. The corresponding eigenvectors are

u, T = [.655, -.447, -.495, .1102, -.0503, .259, -.1709, -.124]*

u 2
T = 1.363, .1658, .338, -.405, -.4737, .308, -.3798, -.315lT
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The transportation problem approximation of the optimal k-cluster problem

(P3) is

Mai 1/2 I I Uij Xij

2 8

I I
j=l i=l

S.t. X„ X| 2 - 1

x21 + x22

x81
+ x82

"

= 1

Xn + X 2 i
+ ... + X8I - 4

x
i{

»

The solution of this problem is to group elements 1, 4, 5, and 6 in one cluster

and the others in the second cluster. The resulting clusters are obtained by

permuting the rows and columns of D into

D -

10 68 5 1 30 49 85 101

10 106 25 ' 6 17 45 59

68 106 37 . 150 145 289 321

5 25 37 1 53
h —

53
|

68 130 150

30 6 150 9 27 ~37

49 17 145 68 1 9 50 66

85 45 289 130 27 50 2

101 59 321 150! 37 66 2

Note that the sum of the intra-cluster elements in D is small in this case.
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5. CONCLUSIONS

The clustering problem has been of interest to many researchers

working in different areas. In this paper, an attempt has been made to

present a uniform view of the clustering problem. Two popular

representations of this problem are matrix models and graph models. In the

matrii representation, rows are rearranged such that "similar" rows are

adjacent in the permuted matrii. In clustering problems modelled by

graphs, the object is to decompose the graph into sub-graphs such that there

are minimal interconnections betweeen the sub-graphs.

Three distinct integer programming formulations, which cover

important variations of these two representations were developed. First, we

considered the problem of finding natural clusters. The problem was shown

to be equivalent to two travelling salesman problems, which can be solved

by efficient heuristic techniques. Second, a clustering problem with a fixed

number of clusters was formulated. A Lagrangian relaxation method was

developed for solving this problem. An efficient subgradient algorithm was

developed and was shown to require a much smaller number of iterations

than the Mulvey and Crowder (1979) algorithm. Finally, a clustering

problem with a fixed number of clusters and cluster sizes was formulated.

An eigenvector approach led to an approximation of the original problem by

a linear transportation problem.
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