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ABSTRACT   

Slurry Infiltrated Fiber Concrete (SIFCON) is a cementitious composite with outstanding durability and 

mechanical characteristics. Accordingly, the current research studies the behavior of continuous unbonded 

post-tensioned HSC beams that were flexural strengthened with precast SIFCON laminates. Four 

prestressed concrete beams with dimensions (200x300) mm and 4300 mm length were fabricated have been 

strengthened with 30 mm thick precast SIFCON laminates gluing with epoxy and were tested to understand 

the influence of their strengthening with using the various length of the laminates. The results showed that 

the use of precast SIFCON laminates is an effective method in enhancing the capacity of load-carrying and 

stiffness of continuous unbonded post-tensioned HSC beams. Used various lengths of precast SIFCON 

laminates in hogging and sagging regions led to positively affected by delaying the first crack appearance 

time of the tested beams between (56.1%-60%), Increased the ultimate flexural capacity of the test beams 

(36.9%-43.6%), and improving in stiffness about (153.7%-243.6%). When comparing specimens 

unstrengthened and strengthened, the strengthening generally leads to a reduction in the crack width in 

central support and mid-span regions. In other words, the crack behavior was enhanced.” 

Keywords:  Strengthening, SIFCON laminates, Unbonded Post -Tensioned, HSC. 

Corresponding Author: 

Mustafa B Dawood  

Civil Engineering Department, College of Engineering 

University of Babylon 

 Babylon, Iraq 

eng.mustafa.balasum@uobabylon.edu.iq 

1. Introduction 

Civil infrastructure construction and maintenance consume a large portion of the budgets of many countries 

around the world. Many infrastructure projects, such as bridges, harbours, structures for water or sewers or 

parking garages, schools, and airports, are built to last for decades. Numerous precast prestressed concrete 

members have been used in the development and construction of these structures. Several factors, including as 

environmental attacks, prestressing loss, corrosion damage, collision and ever-increasing applied loads, 

influence the load-carrying capability of these parts over time. It's not always practical to demolish and rebuild 

structures that have structural issues. Rather, because of limited funds, strengthening and upgrading these 

structures might be the best option. Local damage and cracks produced in the manufacturing facility owing to 

poor storage, as well as incorrect shipping and handling, are other causes of girder deficiency. It is necessary 

to replace girders due to transportation and handling damage that occurs to girders during construction. This 

increases the cost. Instead of sending the girders back to the factory, a dependable and less expensive option is 

presented here for retrofitting them on the construction site. Various strengthening techniques are available 

and can be utilized to improve the serviceability and strength of an existing reinforced concrete structure [1, 

2]. 

Structural defects must be repaired or replaced to keep structures functional. The favored means of 
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strengthening are externally-bonded carbon fiber-reinforced polymer (CFRP), external post-tensioning, 

epoxy-bonded steel plates, and reinforced concrete jacketing. These techniques, on the other hand, have a 

number of drawbacks, including the installation difficulty, the weight of the reinforcing material used, and the 

disruption they cause to the household during implementation (lack of fire resistance, corrosion risk). 

Therefore, researchers try to find new processes and materials that are simple to use while also being strong in 

the long term for example, SIFCON is a novel cementitious composite made possible by advances in 

construction material technology. It is necessary to have a dense matrix as well as tailored fiber and aggregate 

phases in order to achieve exceptional performance much above traditional concrete. Concrete is a common 

building material in civil engineering that is used to build much of the infrastructure [3, 4] .The most common 

building material in the world is concrete. Construction and design of RCS are geared toward long-term use. 

Concrete, instead, has high compressive strength and low tensile strength. Fibers have been added to reinforce 

concrete to help with its brittleness. Fiber-reinforced concrete is widely utilized for a wide range of 

applications and has a wide range of strength and stiffness characteristics. This concrete category was 

developed to strengthen the strength of an unusual sort of steel FRC "fiber reinforced concrete" in current 

times. It's made up of a steel fiber matrix with strong tensile qualities that gives the composite matrix its 

strength. SIFCON offers better ductility and energy absorption properties because to its high percentage of 

steel fiber. Steel fiber volume fraction differences were added to the primary distinctions between FRC and 

SIFCON (VF). Additionally, SIFCON's uneven mortar aggregates are absent from the synthesis step. Because 

coarse aggregates prevent mortar from penetrating the steel fiber network, they can be used. SIFCON, on the 

other hand, has more cement than FRC or regular concrete. Because of the larger percentage of steel fibers, 

the SIFCON production procedure is modified. Modern concrete is made by first pouring steel fibers into a 

mold that is completely filled. Afterwards, cement-based slurry infiltrates and aids SIFCON's steel fiber 

network. Steel fibers are warmly mixed with wet concrete in FRC before being sprinkled onto forms, as 

opposed to FRC. There are several parameters that affect the steel fiber volume (Vf), such as the degree of 

vibration, the placement technique, the size of mould, and their orientation. The aspect ratio, diameter, and 

shape of steel fibers can be used in the steel fiber placement process when using external vibration  [5, 6]... It's 

possible to think of SIFCON as a subset of steel fiber-reinforced cement. Fiber volume fractions ranging from 

5 to 30 percent are used to make these items. Fibers will be inserted into the shapes using this approach. The 

sheets are then filled with fine-aggregate and cement-rich flowable slurry that has been poured or pumped in. 

There are more massively powerful mechanical properties in SIFCON than in other materials, such as steel, 

such as flexural strength, shear, tensile, and compressive strength. SIFCON specimens have been shown to 

have compressive strains more than 10% but no discernible deterioration in strength. Type fiber alignment, 

fiber volume, and slurry strength are all important design elements to consider in the SIFCON manufacturing 

process. Modulus of elasticity of hardened slurry, compressive strength, tensile strength, and have an effect on 

the SIFCON composite [7, 8]. Steel fibers of various types are used in the manufacture of SIFCON. The most 

widely used types are those with crimped or hooked ends. Deformed and straight fibers were both used, as 

well. However, only a small percentage of the population makes use of these two sorts. In SIFCON, the fibers 

used must be loose (discreet or single) for fiber bed penetration, with no honeycombing or clogging. This is 

because shorter or smaller fibers may be packed more densely than longer ones, and a bigger volume of fiber 

can be obtained with tolerable vibration. As a result, agglutinant fibers must be separated before being placed 

in the molds, and the most usually used type is crimped fiber. Deformed and straight fibers are used in the 

same way, but they are not as common. As a result, the agglutinant fibers must be dissolved and separated 

before being placed in the molds [9-11].” 

2. Production of SIFCON 

Several preliminary tests were carried out so as to generate a matrix of high strength with appropriate 

workability to penetrate rise volumes of fibers. When making SIFCON laminates, the needed fiber volume 

was first taken into account when selecting a matrix. After that, you'll need to figure out what volumetric ratio 

of steel fibers you're going to utilize. Cement (type I) and “silica fume” (SF), fly ash (FA) were employed as 

binder resources in the SIFCON mix, which included very fine sand with a maximum particle size of 600 m. 

Sika ViscoCrete® 5930-L, a new SP generation, was used in this investigation. Volume fractions of a hook 

steel fiber with a (0.5mm) diameter and 30mm length (11 percent), To obtain a homogenous SIFCON matrix, 

a unique mixing approach was used. To begin with, binders, sand, and other ingredients were mixed together 

in a large bowl. After that, 50% of SP mixed water has been included to dry ingredients. The balance of SP 

has been added-on to the wet mixture once the premixing was completed. With a duration of 10 minutes, 
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high-speed spinning was used to mix the final product. The first stage was to place the steel fibers in molds, 

and the second was to pour the slurry on top of it while vibrating. The mechanical properties of Concrete 

mixes in table (1), Figure (1) shown the steps of SIFCON production. 

Table 1.  Concrete mixes mechanical properties 

Mix Name 

Compressive 

Strength (fc΄) 

(MPa) 

Tensile Strength 

(MPa) 

Modulus of 

Elasticity** 

(GPa) 

28days 90 days 28 days 28 days 

                   

SIFCON mix 139.611 151.951 23.87 39.29 56.00 

HSC mix 76.638 87.781 5.34 5.91 32.895 

 

 

 

 

Figure 1. The steps of SIFCON production 

3. Description of specimens 

Four prestressed high strength concrete beams, one unstrengthened beam serves as a control beam for the 

other three strengthened beams in the sagging and hogging zones, with a variable length of precast SIFCON 

laminates. under two focused point loading in the middle of each span, and measuring (4.3) meters in length 

with a rectangular cross section of (200 x 300 mm). The 1860 MPa ultimate strength prestressing steel was 

made up of seven low relaxation strands with a 141.9 mm2 surface area. The diameter of the deformed steel 

bars used was 10mm. The compression zone was reinforced with two 10 mm diameter bars, and the tensile 

zone should be reinforced with two 10 mm diameter bars. A sufficient amount of steel was used for shear 

reinforcement to prevent shear failure before flexural failure. Bars with a diameter of 10 mm were employed 

in the shear span of flexural beams as closed stirrups with a 100 mm c/c spacing to ensure shear failure. The 

stirrups, on the other hand, were removed from the zone of greatest shear stress. As may be observed in Figure 

(2), the beam's cross-section and Figure (3), the strand profile and steel arrangement (3). PC manual and 

ACI318-19 were used to create these trusses [12, 13]. Tested specimen details in table (2). 
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a- at sagging region                                      b - at hogging region 

Figure 2. Cross section dimensions 

 

Figure 3. Reinforcement and tendon profile of beams  

 

Table 2. Tested Specimen Details 

 

*L=Span length 

4. Techniques for strengthening in the workplace 

It was critical to keep the beam surface dust-free prior to applying the SIFCON laminate. The rough surface of 

the beam was smoothed with the use of a hand grinding machine. Additionally, the SIFCON laminate's 

surface was buffed to remove any roughness. The beam and SIFCON laminate had their surfaces smoothed 

down, and then they were carefully cleaned. The beams and laminates needed to be cleaned because epoxy 

can only work correctly if the surfaces are clear of pollutants such as dust, debris, water (if necessary), oil, and 

grease. The bonding faces were then coated with a thin layer of sika-331 epoxy paste and held together with 

weights. The epoxy has been allowed to cure for 14 days on the composite beam. Epoxy reinforcement 

technique for sturdiness. 

 

 
Figure 4. Preparation SIFCON laminate to strengthening 
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5. Experimental setup 

A continuous beam was tested by applying two focused point loads in the middle of each span on all 

specimens and real-size laminates. The beam clear span of 2000 meters for each span. All tests were carried 

out by seeing and documenting the loads, vertical displacements on the beams and laminates to see how they 

performed structurally. To ensure that the loading speed was consistent throughout all tests, a loading control 

system was used. The specimens had their loads increased to the point of failure. The displacements were 

tracked using two LVDTs at mid of each span. It's important to know where the LVTDs are in relation to each 

other since they calculate the opposite-direction displacements depending on how much load is applied to 

each span. 

6. Results and discussion 

FB1 beam is a control beam (without strengthening) for the other test specimens that are designed to fail in 

flexure. The first apparent flexural crack located at the highest moment area at the cracking load (247.1kN). 

With tiny increasing in the load, the few number of cracks increased wider. Formerly, on higher load, the 

cracks existed at the mid-span (at the load of 261.9 kN), as an individual crack in each span. The flexural 

cracks at the mid of the span changed their direction and propagated towards the loading point (flexure shear 

crack) FB1 beam arrived at an ultimate load at (438.2 kN) with flexure mode of failure (crushing of concrete) 

as shown in figure (5-a). FB3 was strengthened with precast SIFCON laminates glued by epoxy that have a 

length to span ratio (0.8L) at the hogging region and (0.9L) at sagging regions. The first crack happened at the 

mid support at the cracking load (395.3kN) by increasing the load, the first crack happened at the mid-span (at 

the load of 401.1 kN). The cracking load at the mid support and the mid-span increased compared to FB1. The 

number of cracks increased at mid-span more than FB1beam and reduce their number at the mid-support. 

With the increased loads, the separation initiated at the end of the SIFCON laminate then extended inward at 

the hogging region. Then, a rupture in the SIFCON laminate happened in the mid span region. The FB3 beam 

reached a final load at (629.3 kN) with cracking concrete, rupture SIFCON laminate in the mid-span, and 

debonding on the SIFCON laminate at the hogging region, as shown in figure (5-b). FB9 beam is a specimen 

that is strengthened with precast SIFCON laminates glued by epoxy that have a length to span ratio (0.8L) at 

the hogging region and (0.7L) at sagging regions. The initial crack occurred at the mid support at the cracking 

load (385.9kN). by increased load, the first crack occurred at the mid-span (at the load of 399.2 kN). The 

cracking load at the mid-span and the central support significantly increased comparing with to FB1 but less 

than FB3. Beam FB9 reached an ultimate load at (600.6kN) with the mode of failure crushing of concrete, 

rupture of SIFCON laminate at central support region, and laminate debonding initiated at the end of the 

laminate at sagging region as shown in figure (5. c).  FB10 beam specimen was strengthened with precast 

SIFCON laminates glued by epoxy that have a length to span ratio (0.6L) at the hogging region and (0.9L) at 

sagging regions. The first crack occurred at the mid support at the cracking load (392.3kN) by increased load, 

the first crack occurred at the mid-span (at the load of 406.6 kN). The cracking load at the central support and 

the mid-span increased significantly compared to FB1but less than FB3 at the central support. Beam FB10 

reached an ultimate load at (600kN) with the mode of failure crushing of concrete, rupture of SIFCON 

laminate at mid-span, and debonding laminate initiated at the end of the laminate as shown in figure (5.d) 

.Figure (6) compares the applied load to midspan deflection curves of beams FB1, FB3, FB9and FB10. 

 

a 
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Figure 5. Tested beams 

 

 
Figure 6. Load - midspan deflection curves of tested beams 
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7. Conclusion 

This research reports the findings of an experimental study to explore flexural strengthening of the continuous 

unbonded post -tensioned HSC beams by precast SIFCON laminates. Accordingly, the following are 

observed: 

 “The production method of full-scaled SIFCON laminate is not complicated. The most essential advantage 

of prefabrication is having the chance to decide its properties such as length, height. In that approach, the 

standards of quality that leads behavior will be high, and the cost is predicted to be low compared to certain 

other techniques of strengthening.” 

 The findings of the experiment show that prestressed concrete continuous beams can be strengthened by 

employing externally bonded precast SIFCON laminates bound with epoxy resin. In the hogging and 

sagging regions, epoxy resin-glued precast SIFCON laminates of various lengths delayed the first crack 

appearance time by 56.1%-60%, increased test beam ultimate flexural capacity by 36.9%-43.61%, and 

improved stiffness by 153.7%-243.6%, and the mid-span deflection was reduced at ultimate load due to the 

application 46% -58.2%. 

 With regards to the effect of laminate length, increasing the length of laminates increases stiffness and 

flexural strength. 

 Although strengthening was successful in preventing the sudden failure, it resulted in separate failures of 

the Epoxy resin that was used to bind the precast SIFCON laminate at the ends of the structure. 

 Generally, when comparing specimens that have been unstrengthened and those that have been 

strengthened, the strengthening results in a reduction in crack width in the central support and mid-span 

regions. To put it another way, the crack behavior was improved. 
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