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Smoothing River Discharge Time Series Computed 
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Abstract

Early warning systems for flood disaster mitigation involves hydrological and hydraulic models. These models 
require the discharge series as input and calibration. The indirect measurement of discharge, derived using the 
velocity-area method, presents errors, and thus, uncertainty. The associated uncertainty is mainly caused by the 
error in estimation since the direct measurement of discharge is neither feasible nor cost-efficient. Smoothing 
is employed to address the issue. Three smoothing techniques are proposed, i.e. Fourier smoothing, kernel 
smoothing using the Gaussian Density function, and LOESS Curve Fitting. Two river basins located in Davao del 
Sur, Lipadas and Padada, were evaluated. The Nash-Sutcliffe Efficiency (NSE) and RMSE-Observations Standard 
Deviation Ratio (RSR) were used to evaluate smoothing performance. Results showed that the Gaussian kernel 
smoothing technique outperformed both Fourier method and LOESS for both river discharge series. The values 
for both NSE and RSR indicated that the technique produced very good performances. The quality of smoothed 
discharge series was studied using two quality functions, Quality of Discharge (QOD) and BALANCE. Results 
showed that a more appropriate method would result in a better discharge quality regardless of the smoothing 
parameter chosen. Therefore, the smoothed discharge series is affected by the choice of smoothing technique and 
the method of choice is crucial. This study suggests that Gaussian kernel smoothing is a promising technique 
in smoothing discharge, with bandwidth at around 2 to 10. A very good quality of smoothed discharge is to be 
expected when the Gaussian kernel technique gives a very good smoothing performance.
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Introduction

Flood disasters inf lict billions worth of 
infrastructural damages and millions of 
casualties. To cope with this, developing countries 
opt for nonstructural early warning systems in 
mitigating damages caused by flood disasters 
versus its expensive structural alternative 
(Jayawardena et al. 2014). 

The basic technical component of an early 
warning system involves simulations formulated 
from hydrological and hydraulic mathematical 
models (Domeneghetti et al. 2012) that can be 
computed automatically, e.g. by use of software 
programs like HEC-HMS (HEC 2000) and HEC-
RAS (HEC 2001). Discharge, the volume or flow 
of water passing a gauging station in a river at 
a particular time (Bowen and Pallister 2000), 
is important as input (boundary and initial 
conditions) and as calibration data for these 
kinds of models (Di Baldassarre 2012).  However, 
directly measuring the continuous discharge 
record needed for these models is neither feasible 
nor cost-efficient (U.S. Geological Survey 2015).

An alternate practice is to make use of stage 
data, the height of the water surface above an 
established altitude. The direct measurement of 
water stage on a continuous basis is more feasible 
and cost-efficient than the direct measurement 
of discharge (ISO 1100–2 2010; Di Baldassarre 
2012; U.S. Geological Survey 2015). Stage data is 
converted into discharge using a stage-discharge 
relationship, also known as the rating curve (Di 
Baldassarre 2012; U.S. Geological Survey 2015). 
The rating curve is commonly computed as:

   (1)

where Q is the discharge or flow rate, H is the 
water stage, C and β are the calibration coefficients 
and α is the offset value for stage-of-zero flow 
(ISO 1100–2 2010).

To empirically derive the rating curve, 
discharge is manually estimated using alternative 
techniques. The most used is the velocity area 
method given by:

(2)

where x is the river chainage, t is the sampling 
time, Q' (x,t)  is the measured river discharge, 
A(x,t)  is the cross sectional area, and V(x,t) is the 
average flow velocity at that certain cross section 
(ISO 748 2007; U.S. Geological Survey 2015).

The expected associated uncertainty caused 
by the errors in the estimation are often not stated 
in the accompanied predictions even though only 
estimates of the unknown true discharge values 
are used (Herschy 2002). These uncertainties are 
quite alarming and are reported to be as high 
as 30% of the observed values (Di Baldassarre 
and Montanari 2009). Numerous studies were 
conducted to explore quantitative measurement 
of the uncertainty of these hydrological models 
(Di Baldassarre and Montanari 2009; Booij et al. 
2011; Domeneghetti et al. 2012; Guerrero et al. 
2012; Birgand et al. 2013). A significant portion 
of this uncertainty is caused by the error in 
velocity measurement. In total, river discharge 
measurement used to calibrate the rating curve 
at the 95% confidence level is affected by an 
uncertainty of about 5% (ISO 748 2007). 

Smoothing is usually employed to address 
data with known measurement errors, also 
called noise. This method removes noise allowing 
important patterns to stand out so that more 
important information is extracted from the data 
set. While smoothing techniques were employed 
on hydrological flood models (Xiong 2005), no 
study is reported evaluating its effects on the 
rating curve (Di Baldassarre and Montanari 2009; 
Domeneghetti et al. 2012). This study evaluated 
three smoothing techniques, all varying in its 
complexity and power in extracting important 
information depending on type and the state of 
the target data. 
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Fourier Smoothing Method
The Fourier series decomposes a periodic 

function or signal into the sum of the set of 
trigonometric functions, sine and cosine. 
Applications of the Fourier series to smoothing 
extend to hydrological models (Xiong et al. 2005). 
One main justification for the use of Fourier 
smoothing is the periodicity of the target time 
series (Takezawa 2005; Pekarova et al. 2006; 
Esomba 2015). It is especially applied to discharge 
models because of the inherent periodicity of the 
discharge series (Takezawa 2005). The method is 
used to reduce the high frequency components 
of the time series in favor of the low frequency 
components so that the more important trend is 
reflected (Kimball 1974). 

To smooth the data series using the Fourier 
series method, a Fourier series representation 
was utilized by using a property of the harmonic 
function given by:

 (3)

where  is the smooth discharge for time t, N  is 
the number of points in the data set smoothed, a0 
is the mean of the original discharge computation, 
Aj  and Bj  are the Fourier coefficient, j is the 
order of the harmonic, and p is the number 
of harmonics retained (Xiong et al. 2005). To 
estimate the values of a0, Aj, and Bj, the following 
equations were used:

          (4)

(5)                           

(6)

The values obtained from  is the new 
smoothed discharge series. 

Kernel Smoothing Method
Kernel smoothing is a nonparametric 

statistical technique that uses noisy observations 
to represent an irregular data set as a smooth line 
or surface (Li and Racine 2007).	 There are 
numerous kernel methods used for smoothing 
and one of the popular ones is the Gaussian 

Kernel expressed as:

 (7)

where K(u)  is the kernel function at point u (Vert 
et al. 2004).

Nadaraya-Watson estimator. In 1964, 
Nadaraya and Watson proposed, in separate 
studies, a linear smoother that aims to estimate a 
variable by locally weighted average using a kernel 
as a density function (Li and Racine 2007). The 
Nadaraya-Watson estimator, , is given by:

(8)                         

where W is the weight function defined by:

(9)

and K is a kernel with a bandwidth, v, and (xi,yi) 
are the original points at i = 1,2,…,N where N 
is the total number of original points. 
is the weighting term with sum equal to 1, that 
is  (Nadaraya 1994; Watson 
1964).

The method is used in numerous smoothing 
problems, including hydrological models (Xiong 
et al. 2005). It is famous for its amenability in 
routine and automatic applications (Faucher et 
al. 2001).

In performing the Kernel smoothing 
method, the Nadaraya-Watson Estimator in 
Eq. [8] was used to smooth the discharge. The 
Gaussian kernel expressed in Eq. [7] was used, 
which represents how the weight among the 
neighboring data points is determined. Values for 
the smoothing parameter or bandwidth, v, were 
chosen based on the study by Xiong et al. (2005). 
The result obtained using Eq. [8] was recorded as 
the Gaussian Kernel smoothed discharge series.

LOESS Curve Fitting
LOESS, or local regression, is a later 

generalization of LOWESS, or locally weighted 
scatterplot smoothing, a non-parametric 
statistical smoothing technique that is based on 
a combination of multiple regression models in a 
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k-nearest-neighbor-based meta-model (Fox 2002).  
The method is nonparametric because the 

linearity assumptions of conventional regression 
methods have been relaxed. Instead of estimating 
a general regression function in the form of y=mx 
+ c, a low degree polynomial is fitted for a subset 
of the data. This subset comprises of some point 
x, whose response is being estimated, and other 
points nearest to x. An estimate is computed for 
every point in the data set. The local polynomial 
is fitted using weighted least squares, giving 
more weight to points near the response than the 
point far away. For this reason, the method is also 
called a locally weighted polynomial regression. 
The commonly used weighting function, which 
is used in this study, is the tri-cube weighting 
function given by:

(10)

where w(x)  is the weighting function at x, the 
smoothing parameter, such that |x| < 1 (Altman 
1992). A smoothing parameter, α, is predefined 
as input by the data analyst, which value ranges 
from  to 1, with λ denoting the degree of the 
polynomial. The bandwidth value, α, represents 
the proportion of data used in each fit. 

The smaller the value of α, the closer the 
polynomial regression function conforms to 
the data. However, if values for α are too small, 
insufficient data near the point x are used for 
estimation, which results in a large variance. If 
the values for α used are too large, then there will 
be over smoothing, which causes bias. Hence, a 
tradeoff between bias and variance is realized by 
choosing the value for the smoothing parameter. 
Useful values typically lie in the range of 0.25 to 
0.5 for most LOESS applications (Cleveland 1981).

Materials and Methods

Three techniques were implemented in this study 
to evaluate the effect of smoothing the computed 
discharge to the discharge series quality. The steps 
followed are summarized in a flow chart shown 
in Figure 1.

Data Gathering
River discharge series computed using the 

FIGURE 1   Flow chart of the research design

velocity-area method of two river basins, Padada 
and Lipadas, were gathered for this study. These 
are lifted from the Phil-LiDAR 1 program, an 
expansion of the DREAM program that aims to 
produce 3D flood and hazard maps for the 2/3 
of the Philippine river systems (UP DREAM 
Program 2014). For each river basin, a discharge 

value in cubic meters per second was recorded 
every 10 minutes for a period of 15 days. The data 
series were derived from the product of the cross-
sectional area and the average velocity gathered 
and pre-computed by the LiDAR 1 team.

The Lipadas River Basin is located in Toril, 
Davao City, while the Padada River Basin is 
located in Davao del Sur. For Lipadas River, data 
were gathered from 10 August 2015 at 16:30 to 
25 August 2015 at 16:30. For Padada River, data 
were gathered from 24 September 2015 16:30 to 9 
October 2015 at 3:00. A total of 2,161 data values 
were recorded for the Lipadas River Basin, and 
2,073 data values for the Padada River Basin.

Evaluating the Smoothing Techniques
To evaluate the accuracy of our modeling 

techniques and to assess their predictive power 
as hydrological models, we use the RMSE-
Observations Standard Deviation Ratio and 
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Nash-Sutcliffe Efficiency, respectively. 
RMSE-Observations Standard Deviation 

Ratio (RSR). The root-mean-square error 
(RMSE), also known as the root-mean-square 
deviation (RMSD), is a widely used model 
accuracy measurement because of its technique 
that aggregates the magnitude of the errors in 
predictions (Willmott and Matsuura 2005). 
The RMSE has numerous applications and is 
used extensively especially in model calibration 
(Anderson and Woessner 1992; Nyarusanda 2011; 
Birgand et al. 2013). 

In a method developed by Moriasi et al. 
(2007), the  RMSE is standardized using the 
observations standard deviation (STDEVobs). 
This method is the RMSE-observations standard 
deviation ratio (RSR) computed as the ratio of 
RMSE and STDEVobs, and is given by the equation:

(11)

where Ymean  is the mean of the observed 
discharges,   is the modeled (simulated) 
discharge, and  is the observed discharge at 
time i for i = 1,2,3,…,n and n is the number of 
data points.

Nash-Sutcliffe Efficiency (NSE). The Nash-
Sutcliffe efficiency (NSE) is a normalized statistic 
that determines relative magnitude of residual 
variance compared to measured data variances. 
It is defined as:

   (12)

where  is the mean of the observed discharges,   
 is the modeled (simulated) discharge, and  

is the observed discharge at time t (Nash and 
Sutcliffe 1970).

The Nash-Sutcliffe efficiency takes value of 
less than or equal 1, such that an efficiency of 1 
denotes a perfect match of modeled to observed 
discharge. Essentially, the closer the value of NSE 
to 1, the better the model (Nash and Sutcliffe 
1970). A negative value or a zero denotes an 
unacceptable performance. NSE is proposed for 
use mainly for assessing efficiency of discharge 
simulation models (Nash and Sutcliffe 1970; 
Xiong et al. 2005; Akhtar et al. 2009).

TABLE 1    	General performance ratings for RSR and NSE    
	(Lifted from Moriasi et al. 2007; UP DREAM Phil 	
LIDAR 2014)

Performance 
rating RSR NSE

Very good (VG) 0.00 < RSR < 0.50 0.75 < NSE < 1.00

Good (G) 0.50 < RSR < 0.60 0.65 < NSE < 0.75

Satisfactory (S) 0.60 < RSR < 0.70 0.50 < NSE < 0.65

Unsatisfactory (U) RSR < 0.70 NSE < 0.50

Use of QOD and BALANCE to Quantify 
Discharge Series Quality

To assess the quality of the smoothed 
discharge series, we used two quality functions, 
Quality of Discharge (QOD) and BALANCE 
(Booij et al. 2011). 

QOD considers the slope of the hydrograph, 
a graph showing discharge rate versus time. This 
function is comparable to the NSE, and has strong 
similarity in the model (Booij et al. 2011). 

The QOD is defined as:

(13)

where Qa  is the adapted discharge, Qo  is the 
original discharge, i is the time step and N is the 
total number of time steps. Like the NSE, the 
optimal value is 1 (Andréassian et al. 2001).

The second function, called BALANCE 
(Booij et al. 2011), considers the water BALANCE 
between the original and adapted discharge 
series. It is given by:

(14)                          

where Qa  is the adapted discharge, Qo  is the 
original discharge, i is the time step and N is the 
total number of time steps. The closer the value 
for BALANCE to zero is obtained, the better the 
model (Andréassian et al. 2001).

The quality functions QOD and BALANCE 
were applied to assess the quality of modeled 
discharge series and rainfall time series. It is 
usually compared to an objective function Y, 
defined to evaluate the power of the adapted 
model (Booij et al. 2011; Andréassian et al. 2001). 

Table 1 summarizes the performance rating 
for the RSR and the NSE.
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The objective function Y combines the NSE and 
the relative volume error (RVE), and defined as:

(15)

where NSE is given in Eq. [12], and RVE is defined 
as:

(16)

where Qs  is the smoothed discharge at i, Qo  is the 
original discharge at i, and N is the total number 
of time steps (Akhtar et al. 2009). 

The methods Fourier smoothing, Kernel 
smoothing, NSE, RSR, QOD and BALANCE 
were implemented using Scilab, an open source 
software for numerical computations (SAS 2015), 
while LOESS Curve Fitting was implemented 
using Paleontological Statistics, or PAST, an 
open source statistical software for scientific data 
analysis (Hammer 2015).

Results and Discussion

River Basins
The discharge values are relatively smaller 

in Lipadas than that of the Padada as shown on 
Figures 2 and 3. This is attributed to the difference 
in the size of the river basins with Lipadas river 
having a cross section area of 1.98 sq. m. while 
Padada is at 44.15 sq. m. The major hydrological 
characteristics of the two river basins are listed 
in Table 2. 

Smoothing the Discharge Series
For the Fourier smoothing method, the 

number of harmonics p applied were 1, 2, 3, 4, 
6, and 10. This was based on the study by Xiong 
et al. (2005) with a little adjustment of adding a 
p value of 10. The value of 10 was added to assess 
the sensitivity of the results to extreme values. 
Also based from the same study, a bandwidth v 
of 2, 5, 10, 20, 30, and 50 were applied for the 
Kernel smoothing using the Gaussian density 
function. The bandwidth v in units takes the 
number of ten-minute intervals accounted per 
run. Lastly, for the LOESS method, the values of  
α considered were 0.1, 0.25, 0.3, 0.4, 0.5, and 0.75. 
As a rule of thumb, favorable results are found 

from considering the values in the closed interval 
[0.25, 0.5] (Cleveland 1981), so the investigations 
were focused on that interval. To arrive with a 
more conclusive result, values of α outside that 
interval were also investigated. Tables 3 to 5 show 
the result of smoothing the discharge series of 
both rivers evaluated using NSE and RSR. Figures 
4 to 9 display the plots of the smoothed discharge 
series.

Figure 4 and 5 shows that as the harmonics 
order p increases, the smooth curve produced 
by the Fourier Series becomes less smooth and 
the shape follows more closely to the shape of the 
original series. It seems that the local variations 
in the original series are reflected more as the 
order of the harmonics retained increases. This is 
accompanied with the increase in the value of NSE 
and decrease in the value of RSR, which indicates 
improving performance as seen in Table 3. This 
result coincides with that of the study by Xiong et 
al. (2005). However, Table 3 also shows that this 
method recorded unsatisfactory performances for 
the Lipadas dataset, only reaching a satisfactory 
performance when the harmonics p was set 
at p=10. These results indicate that the Fourier 
Smoothing may not be a favorable method for this 
type of dataset. 

Figures 6 and 7 show that the smoothed 
discharge with a bandwidth v of lesser value 
follows more closely the shape of the original 
series. The graph of the smoothed series becomes 
smoother as the value of the bandwidth v 
increases. It follows that the increase in bandwidth 
v is accompanied with a gradual decrease in NSE 
and increase in RSR as seen in Table 4 indicating 
a decline in performance. The kernel method 
displayed better performance than the Fourier 
method. The curves resulting using the Gaussian 
kernel method imitate the original series more 
closely than the Fourier series method. 

The LOESS Curve Fitting displayed the 
poorest performance when applied to the Lipadas 
dataset as seen in Figure 8. The values in Table 
5 show unsatisfactory performances for all 
smoothing parameters explored, which indicate  
the poor choice of LOESS technique to smooth 
the Lipadas discharge series. However, the LOESS 
Curves for the Padada series shown in Figure 9 
produced better results, even performing better 
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FIGURE 2   Discharge series of Lipadas River Basin FIGURE 3   Discharge series of Padada River Basin

FIGURE 4   Smoothed discharge series  of Lipadas River  
using Fourier Method

FIGURE 5   Smoothed discharge series of Padada River 
using Fourier Method

FIGURE 6   Smoothed discharge series of Lipadas River    
                   using Gaussian Kernel Method

FIGURE 7   Smoothed discharge series of Padada River 
                   using Gaussian Kernel Method



8 ojs.upmin.edu.phBANWA B (2021) 16: art049

Bandwidth v
Lipadas River Padada River

NSE RSR NSE RSR

2 0.93 (VG) 0.26 (VG) 0.9997 (VG) 0.02 (VG)

5 0.85 (VG) 0.39 (VG) 0.9979 (VG) 0.05 (VG)

10 0.75 (G) 0.50 (VG) 0.9918 (VG) 0.09 (VG)

20 0.63 (S) 0.61 (S) 0.9738 (VG) 0.16 (VG)

30 0.58 (S) 0.65 (S) 0.95199 (VG) 0.22 (VG)

50 0.48 (U) 0.72 (U) 0.9115 (VG) 0.30 (VG)

Smoothing 
Parameter α

Lipadas River Padada River

NSE RSR NSE RSR

0.1 0.28 (U) 0.85 (U) 0.90 (VG) 0.32 (VG)

0.25 0.15 (U) 0.92 (U) 0.83 (VG) 0.42 (VG)

0.3 0.13 (U) 0.93 (U) 0.81 (VG) 0.44 (VG)

0.4 0.07 (U) 0.96 (U) 0.80 (VG) 0.45 (VG)

0.5 0.03 (U) 0.98 (U) 0.79 (VG) 0.45 (VG)

0.75 -0.02 (U) 1.01 (U) 0.80 (VG) 0.45 (VG)

TABLE 5   Results of smoothing Lipadas River and Padada River discharge series using LOESS Curve Fitting method

Order p
Lipadas River Padada River

NSE RSR NSE RSR

1 0.14 (U) 0.93 (U) 0.58 (S) 0.65 (S)

2 0.23 (U) 0.88 (U) 0.67 (G) 0.57 (G)

3 0.24 (U) 0.87 (U) 0.70 (G) 0.55 (G)

4 0.25 (U) 0.87 (U) 0.73 (G) 0.52 (G)

6 0.30 (U) 0.84 (U) 0.84 (VG) 0.40 (VG)

10 0.54 (S) 0.68 (S) 0.87 (VG) 0.37 (VG)

TABLE 4   Results of smoothing Lipadas River and Padada River discharge series using Gaussian Kernel 
                 Smoothing method

TABLE 2   Summary of the hydrological data for Lipadas River Basin and Padada River Basin

TABLE 3   Results of smoothing Lipadas River and Padada River discharge series using Fourier Smoothing method

River Basin Rain Fall 
(mm/10 mins)

Velocity 
(m/sec)

Cross Section/
Area 

(sq.m)

Water Level/
Stage 
(m)

Discharge 
(cu. m/sec)

Lipadas 0.03165 0.61724   1.98304 2.30680     1.41302
Padada 0.05625 2.33302 44.14714 2.98311 175.98135
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than the Fourier smoothing technique based 
on the values of NSE and RSR as seen in Table 
5. Still, the kernel smoothing technique resulted
in better performance than both Fourier and 
LOESS techniques. The stark difference in the 
results between the two datasets indicate the 
sensitivity of this smoothing technique to the 
pattern in the dataset to be smoothed, which 
warrant attentiveness in using this method.  
In general, increasing the proportion of data 
used in each fit, as represented by the value of 
α, resulted in a decline in performance. As the 
value of α increases, the plot becomes smoother 
and eventually neglects the shape of the original 
series. After all, the polynomial regression 
function is closer to the data when α is smaller 
(Cleveland 1981). 

Discharge Quality of the Smoothed Series
The three best performances for each method 

were evaluated. Figures 10 and 11 plot the result 
for the Lipadas and Padada discharge series, 
respectively. The ideal fit, taking the shape of 

"*",  is plotted where the values of NSE and the 
objective function Y is set to 1, and the value of 
BALANCE is set to 0.

Figure 10 shows that the power of the 
smoothing technique greatly affects the discharge 
quality for the Lipadas Series. The extent of its 
effect is considerably lesser in the Padada Series 
where the results are clumped together as seen in 
Figure 11. It is, therefore, important to study the 
pattern of the data to better extract information 
from the series when applying a smoothing 
technique. Both Figures 10 and 11 indicate 
that models that give better performances also 
produce a higher quality of discharge and vice 
versa. 

The values observed for the QOD are 
predictable and follow the general pattern of the 
previous observations. The value for BALANCE, 
however, deserves attention. Even though the 
Fourier method produced an unsatisfactory result 
when evaluated using NSE and QOD, excellent 
values of BALANCE are recorded to be as low as 
approximately 0%. This means that the deviation 

FIGURE 8   Smoothed discharge series of Lipadas River 
using LOESS Curve Fitting Method

FIGURE 9   Smoothed discharge series of Padada River                    
using LOESS Curve Fitting Method

FIGURE 10   Relation between quality functions Quality 
     of Discharge (QOD) and BALANCE and 

objective function Y for Lipadas discharge                 
series

FIGURE 11  Relation between quality functions Quality 
of Discharge (QOD) and BALANCE and 
objective function Y to Padada discharge 
series
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of the smoothed to the original discharge series 
relative to the volume of the original series is 
insignificant. This is reflected in most of the 
results, with the exception of LOESS Curve 
Fitting applied to Lipadas.

On another note, the values obtained using 
the same method generally fall closely together. 
This is more observable in Figure 10. Marks in 
this figure of the same shape clump together 
and are distinguishable from the other marks. 
This is evidence that even though changing the 
smoothing parameter increases the performance 
of the method, it is not enough to overpower 
a better fit method. Thus, choice of method 
is important. Specifically, it is obvious that 
the Gaussian Kernel method outdo the other 
methods, even when different extent of the 
parameters of the other methods are evaluated.

Comparing Smoothed Discharge with Discharge 
Computed using HEC-HMS

The HEC-HMS smoothed discharge series 
only accounted for the period from 13 August 
2015 at 12:00 to 14 August 2015 at 23:20. Only 
a subset of the data previously evaluated were 
used amounting to 213 data points. The values 
of NSE and RSR were evaluated for the Gaussian 
Kernel method and were compared to the 
result obtained from the HEC-HMS smoothed 
method. Table 6 shows that the HEC-HMS 
smoothed discharge only gave a satisfactory 
performance when evaluated using NSE and 
RSR while the Gaussian Kernel smoothed series 
gave a very good performance. This outcome 
is also observable in Figure 12. The plot of the 
Gaussian Kernel smoothed series follows more 
closely to the original series than the HEC-
HMS smoothed series. This result strengthens 
this study’s conclusion on the strength of the 
Gaussian kernel smoothing method applied to 
the discharge series. 

Conclusions and Recommendations
Improved performance is observed when there is 
an increase in the value of harmonics order p for 
the Fourier method, and a decrease in the value 
of bandwidth v for the Gaussian Kernel method, 
as well as the value of the smoothing parameter 
α in the LOESS method.

Table 6.   Summary of the performance of HEC-HMS 
                   smoothed vs Gaussian Kernel smoothed series 

	with evaluated using Nash-Sutcliffe Efficiency 
                (NSE) and RMSE Observations Standard  
                Deviation Ratio (RSR)

Smoothing 
method

Statistic
NSE RSR

HEC-HMS 0.60 (S) 0.64 (S)
Gaussian Kernel 
with  

v = 2 0.83 (VG) 0.41 (VG)

FIGURE 12   Smoothed discharge series obtained from 
  HEC-HMS plotted against the Gaussian    

                  Kernel smoothed discharge with for 
                  Lipadas River

The models that gave very good performances 
would also produce a higher quality of 
discharge. The weaker method would result in 
an unacceptable quality of discharge series. The 
result of the two quality functions, QOD and 
BALANCE, indicate that simply changing the 
smoothing parameter of a smoothing method 
does not outperform another better fit smoothing 
method. Therefore, the choice of method used is 
important.

Consolidating the results of all evaluation 
techniques performed, the Gaussian Kernel 
method significantly outperforms the Fourier and 
LOESS method. The choice of bandwidth v at the 
ball park is around 2 to 10. If the Gaussian Kernel 
method performs excellently, a very good quality 
of smoothed discharge is expected.

However, having considered only two river 
basins for this study, it may be argued that further 
research on more river basins may be needed to 
explore the smoothing power of the Gaussian 
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Kernel. It would also be significant to define a 
technique in identifying a more specific value of 
the smoothing parameter or bandwidth v that will 
not result in undersmoothing or over smoothing 
of the discharge series.
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