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Abstract

This paper contains the formal proofs of the lemmas and theorems

that are reported in "Defensive Marketing Strategies: An Equilibrium

Analysis Based on Decoupled Response Function Models" by Kumar and

Sudharshan (1987).





DEFENSIVE MARKETING STRATEGIES: AN EQUILIBRIUM
ANALYSIS BASED ON DECOUPLED RESPONSE FUNCTION MODELS

Lemma 1: All existing products adjacent to the attacker will lose

some finite portion of their before entry unadjusted market demand to

a viable attacker.

Proof : Viability of all products in the market dictates that the

following conditions be satisfied (shown in Lane 1980, Appendix 1).

If one or more of these conditions is not satisfied, then it is

possible for a product to be dominated by its competitors and hence

capture _no part of the market (Lane (1980)).

Viability conditions:

Condition 1: z. (Y-p.) > z, (Y-p, ) for all k > j (1)
j j k k

Condition 2: w. (Y-p.) < w (Y-p, ) for all k > j (2)
j j k k

Condition 3: for all i and k s.t. i < j < k, there exists a

customer a who is indifferent between products i and k,

that is U_(v , z^ p
i

) = U_(w
k

, z
k

, pk
) (3)

which implies U_(w. , z , p.) > U_(w , z , p.) (4)
a J J J a*-*- 1

(with z > z, , w < w, , f < f, for all j < k)
j k j k j k

Let the attacker [product (N+l)] enter the market and be viable

after all competitive adjustments have been made. The new product

(N+l) can be positioned either (i) between two existing products, or

(ii) at either extreme. We consider each of these cases separately.
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Case 1

For attack at this position to be viable, the attacker's price is

governed by Equation (4) with i=L, j = L + 1 and k being the index

for the attacker.

The Cobb-Douglas utility function form provides unique indifferent

customers (1) a between brands L and L + 1 before entry, (2) a
l_l Li 1

between brands L and (N+l), (3) cl_ between (N+l) and (L+l). Clearly,

a . * a * a and Condition 3 of viability implies ou. < a < a -

proving the lemma.

Case 2

In this case, viability equations (1) and (2) dictate that the

consumers whose taste parameters lie between the attacker and its

closest edge of the taste distribution domain (either to N+l, or N+l

to 1), prefer the attacker. This completes the proof of Lemma 1.

Note that this loss in share by the defenders upon viable attack

is in terms of unadjusted demand and does not consider the effects of

advertising and distribution.

*
Lemma 2 : Let p., i = 1, 2, ..., N be the optimal Nash price equi-

*
librium prices of N brands. Let 8 , i = 1 , 2, . . . , N be their cor-

responding unadjusted market shares. Let another brand enter this

market. In the ensuing equilibrium let p., i = 1, 2, ..., N be the

optimal Nash equilibrium prices, and 8. » i = 1. 2,...,N be the

corresponding unadjusted market shares for the incumbent brands. For

any existing brand j
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pj >pj

implies that

*
8. > 6..
J - J

Proof :

The first order condition (for profit maximization) for any

existing product j with respect to its price is given by

3tt. 30.

T-1 - (B + (p.'-c) T--1 ) MA(k .)D(k .) =
3p. J J 3p. aj dj

(5)

* *
The pre-entry optimal price and market share for product j (p. and 8.

respectively) must satisfy

36.

8. + (p.-c) t—J

J J 3P,
= (6)

j

Notice that this equation assumes that the prices of all the other

brands are at their pre-entry Nash equilibrium levels.

We know (from Lane 1980, Equations (4)-(8)) that

3 Pj R Vl
>< Y-p.

j=2,3,...,N-l (7)

38.

3Pi

36,

3p,

f-
Y"P

1

ln(~)
1

1—
<-yV>

N-l

(8)

(9)
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f ... f.

where R ln(-J—-) InC-p1-)

J j-1

j=2,3,...,N-l (10)

f. --L
, j-1, 2,.. . ,N (11)

and f

j
>

f
J-l'

j-2,3,... ,N (12)

Similarly the post-entry optimal price and market share for product j

(p. and 8. respectively) satisify

36.

i, + (p.-c) t—L

2 J 3 P
= (13)

p
j

Note that this assumes that the prices of all the other brands are at

their post-entry Nash equilibrium levels, p and 8. also satisfy

Equations (7) to (9) with a total of (N+l) products in the market, the

attacker denoted as brand (N+l), and for any incumbent brand j, j 1,

2, ..., N, one of its immediate neighbors j - 1 or j + 1 could be brand

N + l.

From Equations (6) and (13),

!i
_<P£!

)

36
1

3p.

1± (14)
* , * x 36

[ (P -c) _
J J

3p
j

P
J

k^ ( Pl -c) (Y-?1 )

k* (p*-c )(Y-Pl )

(15)
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*
where k. and k. are parameters dependent on the position of brand i

3 2

and its immediate neighbor(s) after and before attack, respectively.

To prove this lemma, we need to consider four cases of the rela-

tive positioning between brand j and the attacker. For any given

incumbent product j, it can be:

Case A : It is not an immediate neighbor of (N+l). That is, its

immediate neighbors remain unchanged after entry.

Case B : j = 1 and its left immediate neighbor is brand N+l after

entry.

Case C : j = N and its right immediate neighbor is brand N+l after

entry.

Case D : The attacker (N+l) is adjacent to j and to one other incumbent

brand.

Case A :

* i Vi
k = k - - ln(^—

)

j = 2, 3, ..., N - 1

J J j_i

* 1

lnC-^)
r

l

* 1

and k, = k. = -
i = N

InC-jA-)
N-l

From Equation (15), if p > p it follows that 6. > 6. and if

J - p* then B = 8*.
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Case B:

f
2

lnCj^—

)

N+l
k, =
1 f f

lnC-r1)' InC-—-)
1 N+l

* 1

and k, =
1 f

2
ln(-^)

*1

By assumption of the position of brand (N+l) to the left of brand 1,

f
N+ l <

C
l

< f 2-

This implies that —; > 1.

k
i

From Equation (15), if p > p it follows that 8. > 8

Case C :

f

ln(-p )

N-l

k.,
N

i rfg±Li i / N nln(^ ) ln(^ )

N N-l

* 1

and k
N f

Nln(-^—

)

N-l

By assumption of the position of brand (N+l) to the right of brand

N
- Vi <

£
N < £

N+r
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This implies that -5- > 1.

k
N

From Equation (15), if pN
_> PN

then 6
N

> 8
N<

Case D ; Since the attacker has two immediate neighbors j and j + 1, we

consider:

i) Brand j, j=l , 2, . . . , N-l

ln(-^ )

j-l
k. = - - j-2,3,...,N-l

j j" 1

1

k -—— j=i

f

J

in(^)
j" 1*

k. = j-2, 3,.. . ,N-1

lnC-1^) in(-i—

)

* 1

ln(—

)

f

.

J

By assumption of the position of brand (N+l ) between brands j and j + 1,
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f. < f. < f < f
j-1 j N+l j+1

j=2,3,...,N-l

and f. < f M ,, < f.,,
J N+l j+1

j-1

Therefore for j 1,

> 1.

For j = 2,3,...,N-1

ln(-s )

k. j-1
.J. = -
* f

k
j

i»(-KL)

m(Jii)

£
j-l

1
/n+1 j+1 j+1

ln(- ) + ln(jJ
) ln(jJ )

j+1 j-1 j

lB(£fiti, + ln(Ji±i) ln(!i±i)

j+i j j-i

Note that ln(-r^) < 0, ln(-~^) + ln(-r^-) > 0, and

j+1 J+1 j

f. f.

lnC-r1^) > lnC-t-1^) > 0.

j-1 j

\Therefore, —£ > 1.

From Equation (15), if p. > p. then 6. > 6..
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ii) Brand J + 1, j = 1,2,...,N-1

f
3
+ 2

ln(T )

N+l

k
4 .,

=
f f

j=l,2,..,N-2

f
j+l

£
N+1

£«*i
-—

r

1—
J - n-1

lnH-^)
f
N+l

in(^)
*

k
j+i

—

rrz r— 3
" 1,2 N " 2

lnC_jji) ln(-i±i)

lnC-1^)
f

.

J

By assumption of the position of brand (N+l) between brands j and j + 1

fj < f
N+1 < Vl < f

j
+2 J"' 2 N"2

and f < f„ , < f , j-N-1.
j N+l j+1 J

Therefore for j = N-l,

-*— > 1,

k
j+l

and for j=l, 2, . . . ,N-2
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f
J+ 2 f.

,1+1

k
- + ,

N+l j

k
j + l In(^) In(^)

f., 9
f. f.,,

lnC-r1^) + lnC-r1—

)

lnC-r1^)
j N+l j

f. +1
f. f. +9

•

InH—^ + InC-J ) lnC-1^)
f
J

f
N+ l

f
J

f. f.., f.

Note that ln(r]
) < 0, InOr1—1

) + lnC-r1
) > and

N+l j N+l

ln(!i±2) > in(fl±l).

j J

ViTherefore, -»— > 1.

Vi
* *

From Equation (15), if p. > p. then 8. > 6..
J ~ J J J

This completes the proof of Lemma 2.

D
Lemma 3 : Holding all other prices fixed, the unadjusted market share

of any existing product decreases (increases) with the decrease

(increase) in the price of any of its immediate neighbors and de-

creases (increases) with an increase (decrease) in its own price,

i.e.,

36
JL

Vi > 0, j=2,...,N (16)
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as.

t—J- > 0, j=l,...,N-l (17)
3 P

J+ 1

g g

^-j < 0, j-1 N (18)
9p

j

Proof : From Lane (1980) Equations (4) - (8)

3 8 f

• ln(-4% S-: > 0, j=2,...,N-l (19)
3p

j-i
R V y"pj-i

3 8 f

J-4ln(rL)v^ > 0» j=2,...,N-l (20)
Pj+1 j-1 H

j+1

36
1 1 1

ln(—

)

f
i

"
H l l

> (22)
3
?N-1 . ,

£
N ,

"T S-l>
ln( )

f
N-l

38.

From Equations (7) - (9) we can see J < 0, j=l,2,...,N.

This completes the proof of Lemma 3.

Theorem 1 : The optimal defensive pricing, for any product in a

N-product market in equilibrium and in which consumer tastes are

uniformly distributed, is the reduction of price.

Proof : The positioning of the attacker can occur as per one of the

following two cases: (1) between any two existing products L and L+l

,

or (2) at either extreme, i.e., to the left of product 1 or to the

right of product N.
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Casel: Given the attacker's entry strategies as fixed, the defensive

reactions of products 1 through L are independent of those of products

L+l through N.

For products 1 through L, the defensive price change part of

Theorem 1 will be disproved only if any of the two following scenarios

occur: (A) Product L's optimal price is increased or remains

unchanged and (B) The prices of products L, L-l, ...., L-m+1 are

decreased (1 <_ m _< L-l) and product L-m's optimal price is increased

or remains unchanged.

The change in share of any product j can be written as the sum of

the changes in its share caused by the change in the strategy of each

of its immediate neighbors and that caused by the change in its own

strategy. More specifically,

36 88.

dB. =
J-

1 dp. + —L dp._
1

+ Y. for j=2,3,...,N-l (23)

3 B

dB
i "i77 dp

i

+
,r

i
£or J"1 (24>

where y is the change in 8. due to a change in the strategy of product

J+l.

3B
and Yj-i

= "Tp—^Pj-r (25)

Scenario A :

Consider product L. After attack its right adjacent product is

(N+l). Further, from Lemma 1, if (N+l) is viable then y < 0.
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Let the after entry price, p T
of product L be greater than or equal

* * *
to its before entry price p , i.e. , dp = p - p _> 0. Since p _> p ,

*
from Lemma 2 (Case D), 8 T

> 8. •

Or d8
L

= 6
L

- B* > 0.

In Equation (23) with j=L, we know that d8 > 0, dp _> 0, y <

96
L

36
L

and from Lemma 3, > and -r— < 0.
3 PL-1 3P

L

*
Therefore dp, , > 0. Or, p , > P

T
_,« It follows from Lemma 2 that

*
6
L-1 >

B
L-1

or d6
L-l

> 0#

From Equation (25), Y
T
_, < 0* Therefore from Equation (23), wi th

j=L-l, dp
L_ 2

> 0.

Following this line of reasoning, for product 1, dp. > 0. There-

fore, from Lemma 2, d8 , > 0. But from Equation (25) y < 0. Therefore,

Equation (24) is violated; thus, product L's price could not have

increased.

Scenario B : For some 1 <^ m j< L-l,

j
=L~m+ 1 , . . . ,

L

*

Pj <pr

and
v *

PL-m ^ PL-m

Since pL_m+1
< pL-n+1

, i.e., dp
L_m+1

< 0, and p^ > p^, it is

*
implied that Y T < 0* Since pT > p T , i.e., dp. > 0, Lemma 2

L—

m

h—m — L—

m

L—m —
*

implies that 8 T
> 8. , i.e., d6 T

> 0.
L—m L-m L—

m
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In Equation (23) with i=L-m, dp T
> 0, d6

T
> 0, y T

< implies
L—m — L—m L—

m

*

that dp T ,
> 0, i.e., p T

. > p T
..r L-m-l L-m-1 L-m-1

Continuing this, brand 1 must have increased price, and this creates

the contradiction as in Case A.

Given that Scenarios A and B are impossible, the optimal prices of

products 1,2,...,L must decrease.

Following the same logic it can be seen that the optimal prices of

all the products L+l,L+2, . . . ,N must decrease. This concludes the

proof of decrease of optimal defensive prices when the attacker enters

between any pair of existing products.

Case 2 : In this case the attacker can either enter to the right of

product N, or to the left of product 1. If it enters to the right of

product N with a fixed entry strategy, this situation is analogous to

considering the defensive reactions of products 1 through L in Case 1,

proving that the optimal prices of all the N existing products must

decrease in this situation.

Entry to the left of product 1 is analogous to considering the

defensive reactions of products L+l through N in Case 1, proving that

the optimal prices of all the N existing products must decrease in

this situation also.

This concludes the proof that the optimal defensive price strategy

is the reduction of price by every existing product.

Theorem 2 : For any existing product j under conditions of Theorem 1,

its optimal advertising and/or distribution expenditures must decrease
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if the market size, M, does not increase. Otherwise, its advertising

and/or distribution expenditures must increase.

The intuition behind this theorem is simple. Because the response

functions are decoupled and concave, advertising and distribution will

decrease if the revenue, (p -c)8 M, decreases. Theorem 1 and Lemma 1

J j

cause both (p -c) and 6. to decrease hence revenue decreases. This
J J

argument and the formal proof follow that of Hauser and Shugan (1980,

Theorem 7). Our contribution is to extend the results to the case

where all defenders respond to the attacher and one another until an

equilibrium is reached.

Proof : With respect to optimal defensive advertising and distribution

strategies the following first order conditions have to be satisfied:

3*.
s

.—-1- = (p -c) 8 M D(k ) -J? 1-0 (26)
3k . j j dj 3k

aj J J aj

3tt.

J— = ( n -r) 8 M ACk ) -P—-rr-i- = (p.-c) 8 M A(k .)
-f3k r

j j aj 3k
-1=0 (27)

dj ""dj

(Note that by choice of concave response functions the second order

conditions for a maximum are satisfied, i.e., the Hessian is negative

definite.) As shown above, upon attack, the optimal p. must decrease

(to, say, p.), as must the corresponding 8. (to 8.).

Case 1 : If (p,~c) 8.M decreases after entry, then from (26), it

follows that

3tt
.

3k
< (28)

** * * .
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3tt.

1
3k

dj

< (29)

** * *
(p.,k ,»k , A

)

* *
where k . and k. are the optimal pre-entry advertising and distribution

aj dj

expenditures, respectively.

This implies that if we maintain pre-entry advertising (distribu-

tion) expenditures after attack, then the distribution (advertising)

expenditures must necessarily decrease.

To analyze the effects of joint changes in advertising and distri-

bution expenditures, we note that the total derivative of tt . is given by

3tt

du

** * * x

(p.,k .,k )

J aj dj

3k
aj

3tt

dk
aj 3k

'dj

dk
dj

(p,,k .,k )

j aj dj
(30)

* *
From equations (28) and (29), we know that (k .

,k . ) is suboptimal
aj dj

** ~*
Therefore, we seek (k ,,k ) such that

aj dj

dTT .* * * > °« (31)

This condition (31) cannot be satisfied if both dk > and dk > 0,
aj dj

i.e., the post-entry expenditures on both advertising and distribution

cannot be higher than their pre-entry levels.

Case li : If M increases after entry and (p ~c) 6 M has increased, then

from (26) and (27), it is obvious that the inequalities in (28 and (30)
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are reversed. The same logic as in case i applies and the result

follows.

Other formulations of response functions would not vitiate Theorem

1. But Theorem 2 would have to incorporate additional conditions

depending on the specific nature of the response functions. For example

if A(k ) = k /Ek . (us/everyone), then the optimal advertising and
31 31,31

i

distribution expenditures upon attack, will have to be found by solving

2(N+1) equations in 2(N+1) unknowns for all N + 1 products as compared

to 2 equations in 2 unknowns for each of the (N+l ) products in response

function models.

D/330A
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