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Description and Purpose

Some slight modifications of the well-known Barrodale and Roberts (1974) algo-

rithm for least absolute error estimation of the linear regression model are described.

The modified algorithm computes the regression quantile statistics of Koenker and

Bassett (1978) and the associated empirical quantile (and distribution) functions.

These methods have applications to robust estimation and inference for the linear

model.
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Theory

The €
1
-estimator in the linear model,

Y{
= s,p + «;, «,- - ltd Fu , (1.1)

which solves over b€H p
,

a

R(b) = E\Vi ~ xi b \
=«»»!

(1.2)

provides a natural generalization of the sample median to the general linear regression

model. This observation raises the question: Are there equally natural analogues of the

rest of the sample quantiles for the linear model?

An affirmative answer is offered in Koenker and Bassett(1978) where p-

dimensional "regression quantiles" are defined as solutions to

#e(&) = 27Pe(y.- - x
i
b

) = ™" ! (1.3)
1=1

where 0€(O,1) and

(Qu u ^
Pe(») = j(e-l)ii u <0

In the one-sample (location) problem, solutions to (1.3) are simply the Q
tfl sample quan-

tiles from the sample (y 1? ,y„).

The asymptotic theory of the ordinary sample quantiles extends in a straightfor-

ward way to the joint asymptotic behavior of finitely many regression quantiles. See

Koenker and Bassett(1978), Ruppert and Carroll(1980) and the recent work of

Jureckova (1983). Thus, the theory of linear combinations of sample quantiles, or L-

estimators, is available to construct robust estimators of linear models based upon

regression quantiles. Perhaps more significantly, it is possible to construct trimmed

least squares estimators for the linear model whose asymptotic behavior mimics the

theory of the trimmed mean, see Ruupert and Carroll (1980). Recently, Jureckova

(1983) has demonstrated the close connection between these trimmed least squares esti-

mators and Huber's M-estimators for the linear model. Dejongh and DeWet(1984a,b)

have also investigated this approach.

Estimates of the conditional quantile, and distribution, functions of Y given x

may also be constructed based on these methods. For the model (1.1) we may define

the conditional quantile function of Y at x as

Qy{t\x) = z,p + F-«(8)

.And the conditional distribution function of Y is simply,

Fy(Y\x) » suMQM*) * Vl

Clearly, Fy{-) is simply a translation of Fu (-) under the iid error hypothesis.



Bassett and Koenker(1982) propose the estimate

QY{Q) inJ{xb\R B{b) = mini}.

For reasons developed there, interest focuses on Qy at the mean of the design, that is,

on Qy{9) — §y(9|*)- The corresponding estimate of the conditional distribution func-

tion is simply,

Fyivlx) = *«rfe|gy<ei*) * y)

and we will write Fy(y) for Fy(y\x)>

In Bassett and Koenker(1982) it is shown that Qy{') is a proper quantile function

— a monotone jump function on the interval [0,1], and under mild regularity condi-

tions, that the random function,

z,(e)=V^Vy<QV{e))-e)

has finite dimensional distributions which converge to those of the Brownian Bridge.

Portnoy (1S83) has recently shown that the process Zn (Q) is tight and consequently

converges weakly to the Brownian Bridge.

Thus, Fyi') provides a reasonable alternative to estimates based on residuals

(from some preliminary estimate of the vector p) for diagnostic checking of distribu-

tional hypotheses and also perhaps for implementing recent proposals for bootstrap-

ping and adaptive estimation of linear models which rely on estimates of the shape of

the error distribution.

Method

Barrcdale and Roberts) 1073) proposed a modified simplex algorithm for the t
x
-

estimation problem (1.1) which substantially improves upon earlier algorithms in speed

and simplicity. Trivial modifications are required to adapt the Barrodale and Roberts

algorithm to solve the "regression quantile" problem (1.3) for a fixed value of 8. One
simply adds the scalar THETA to the calling sequence, declares it real, and replaces

the statement immediately preceeding the statement labeled 50 with the statements:

WGT=SIGN(1.0,A(I,N2))
SUM=SUM + A(I,J) *(2.0 * THETA * WGT + 1.0 - WGT)

However, to compute Qy(') ~nd Fyi') one must solve (1.3) for all values of 8€ [0,1].

This is slightly more complex, requiring the solution to a parametric linear program.

See Gal(1979) for comprehensive treatment of this general class of problems.

For any 8 €(0,1) , there exist solutions to the problem (1.3) of the form,

t* = Vs» (2.1)

where the subscript h denotes a p-element subset of the first n integers, X^ is the pXp
submatrix of „Y consisting of the rows indexed by h, and y^ denotes the corresponding

subvector of y. Indeed the set of the solutions to (1.3) is a polytope with extreme

points of this form. In the terminology of linear programming 6A is a "basic" solution.



Such a solution is optimal at O if and only if, it satisfies the subgradient condition,

where l
p
denotes a p-vector of ones. Thus, for ¥= 6 , bh remains optimal until these

p double inequalities are violated. So, starting from , we have 2p inequalities in

(0-1) :S aj + rf
y
6 =S ;=l,...,p (2.3)

with the a
;
's and ay's defined in the obvious way from (2.2). This decomposition of the

"gradient"' is stored in two new rows of the Barrodale and Roberts simplex tableau. To
compute the next value of 8 i.e. the value of at which bk ceases to be optimal, we
find

0! =min{ay/{l-a
,

y),(ay + l)/tl-a
,

y), ;=l,...,p}.
(2 .4)

At 1?
we make one simplex pivot from 6 A to a new basic solution 6/, which differs in

only one element of h, recompute the a's and o"s, and continue the iteration.

In practice we use instead,

»,'= », + (e + e/|l+,«*|)ll*ll

where € is a tolerance parameter specified below, d is the value the a*,- at which the

minimum occurs in (2.4) and
|
\X\

|
is a norm of the design matrix. We use,

||X||=max£|* |.

This insures a distinct new solution with h'i^h. Also, the user may specify values O

and 0£ at which to begin and end the iterations. The natural choice here is O = 1/n

and 0£ = 1-1/n. Koenker and Bassett (1978) note that the residuals «,(&) = yt
- - j,&

from any solution £, to the problem (1.3) satisfy the inequalities,

Nm # [i\ui(fi) <0}=S n0^#{f|if
l-(p) =S0}^, N+Z

Since N = at = 0, and X = 1 at the first jump, say 1? it follows that 0j ^ 1/n.

Similarly, the last jump 0£ ^ 1 - 1/n.

Our modified algorithm returns an array dimensioned £X2 whose first column

contains a vector of quantiles and whose second column contains the mass associated

with each quantile. Of course in the one sample problem, with -Y = l n , the second

column is simply an n-vector with i
tfl element i/n. However, in general the mass asso-

ciated with the quantiles is variable. The storage allocation for this array is somewhat
problematic. For problems of modest size, say p <10 and n <500 we have found

2n<£<3n an adequate rule-of-thumb. However, for larger problems k may increase

quite rapidly. Indeed, it is known, see Murty(1983), that there are worst-case

parametric linear programs for which p=n/2 and k=2 p
. Whether these examples can

be adapted to the special structure of problem (1.3) is an open question, but their

existence suggests that there may be no polynomial upper bound in p and n for k.



Implementation

The principle modification of the Barrodale and Roberts routine is the addition of

three new rows of the array A which contains the simplex tableau. The three new
rows of the tableau contain the decomposition of the marginal cost row: a's and 6's

appear in A(M+2,-) and A(M+3,*) respectively, and the vector x is stored in

A(M+4,-) The only substantive change in the code is the addition of the section

labeled "compute next theta". Further modifications along the lines suggested by

Bloomfield and Steiger(1980) may improve the efficiency of the algorithm somewhat.

The recent work of Karmarker(1984) may lead to further improvements especially for

large problems. The tolerance parameter € referred to above is chosen to be the smal-

lest safely detectable value of |x-?/|/r, see for example the routine RlMACH in

Fox(1976).

<

Structure

CALLRQ(N,P,N5,P2,X,Y,T,TOLER,B,E,S,\VX,\VY,NSOL,SOLP,SOLQ,LSOL)

Formal Parameters

N Integer Input:

P Integer Input:

N5 Integer Input:

P2 Integer Input:

X Real(N,P) Input:

Y Reai(N) Input:

T Real Input:

TOLER Real Input:

NSOL Integer Input.

S Integer(N) Work
wx Real(N5,P2) Work
WY Real(N) Work
B Real(P) Output

E Real(N) Output

WX(N+1,P+1) Output

WX(N+l,P+2) Output

WX(N+S*,P+1) Outpiit

Number of observations.

Number of parameters.

N+5
P+2
The problem design matrix.

The response variable.

The desired quantile.

If Tis not in [0,1], the

problem is solved for all T in [0,1].

A small positive constant.

Dimension of the solution array.

Optimal parameters at last t.

Optimal residuals at last t.

Objective function at last t.

Rank of design matrix.

Exit code:

= Solution nonunique.

1 =a Solution OK.

(



WX(N+2 P+21 Output:

SOLP Reai(NSOL) Output:

SOLQ Real(NSOL) Output:

LSOL Integer Output:

2 = Premature end.

3 = N5 != N+ 5.

4 = P2 != P+2.
Number cf simplex iterations.

A solution vector which

contains the cumulative probabilit;

mass for each quantile.

A solution vector of

(monotone increasing) quantiles.

Actual length of the

solution vectors.
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EXAMPLE: THE STACKLOSS DATA

PROGRAM MAIN
REALX(21.3),\\

r

X(28
) 6) 5

Y{21),\VY(21),E(21),B(4),SOLP(42)
>
SOLQ(42)

INTEGER S(21),LSOL

DATA TOLER/1.2E-7/
DO 1 1=1,21

X(I,1)=1.0

1 CONTINUE
READ (5,*) ((X(U),J=2,4),Y(I),I=1,21)

CALLRQ(21,4,26,6,X,Y,2.,TOLER,B,E,S,\VX,\VY,42,SOLP,SOLQ
;
LSOL)

WRITE(6,10)WX(23,5)

10 FORMAT("EXIT CODE=",F5.0)
WRITE(6,20)(SOLP(I),SOLQ(I),I=1,LSOL)

20 F0RMAT(2F16.3)
STOP
END



Stackloss Data

xl x2 x3 y

80 27

80 27

75 25

62 24

62 22

62 23

62 21

62 24

58 23

58 18

58 18

58 17

58 18

58 19

50 18

50 18

50 19

50 19

50 20

56 20

70 20

89 42

88 37

SO 37

87 28

87 18

87 18

93 19

93 20

87 15

80 14

89 14

88 13

82 11

93 12

8

7

8

8

9

82 15

91 15

89

86

72

79

80



Output from a VAX- 11/780

exit code

0.12411803

0.13007915

0.13038845

0.14944933

0.16074213

0.22314128

0.25359303

0.27513024

0.33102346

0.37501332

0.39190131

0.40951341

0.4S986971

0.56481242

0.59239787

0X0424811

0.62C01455

0.65115529

0.6S975174

0.76212549

0.76345610

0.77394605

0.77770203

0.81431276

0.83394426

0.91308522

1.00C0C0C0

= 1.

13.45404339

13.99367046

15.30951786

15.30952358

15.30952358

15.30952072

15.30952168

15.30952549

16.16141319

16.44413567

16.80134010

16.95934868

17.42150523

17.43436623

17.44517708

17.45659256

19.13624954

19.13750839

19.14842606

19.15640259

19.19204221

19.71523857

19.98903847

20.12132454

20.16070366

20.20633698

21.70072937



SUBROUTINE RQ(M,N,M5,N2AB,T,TOLER.X,E.S
I
\VA,\VB.NSOL,

•SOLP.SOLO.LSOL)
DOL"BLE PRECISION SOI
REAL .\flN,.\L\XA(M.N).X(N).WA(M5,N2),\N*BfM),E(M)

REAL EIM),SOLP(NSOL),SOLC(NbOL)
INTEGER OUT, S(M)
LOGICAL STAGE, TEST,INIT,IEND
DATA BIG/1.E37/

c
c INITIALIZATION
c

Ml = M+l
Nl — N+l
M2 = M+2
M3 = M+3
M4 = M+4
DO 2 I=1.M
SUM — 0.0

\YB(I)=B(I)

DO 1 J=1.N
\VA(I,J)=A(I,J)

SUM = SUM + ABS(A(I,J))

1 CONTINUE
IF(SUM .GT. AMGJAMG - SUM

2 CONTINUE
IF(M5 .NE. M+5)WA(M2,N1) = 3.

IF(N2 .NE. N+2)\VA(M2,Nl) = 4.

IFiWA(M+2,N+lj .GT. 2.)RETURN
DW = 0.0

END = .TRUE.
IF(T .GE. 0.0 AND. T .LE. 1.01GOTO
TO — l./FLOAT(M)-TOLER
Tl = 1. - TO
T = TO
END = .FALSE.

3 CONTINUE
INTT = .FALSE.
LSOL = 1

KOUNT =
DO 9 K=1,N
WA(M5.K) =• 0.0

DO 8 I=1,M
WA(Mo.K) = WA(M5,K) + WA(I,K)

8 CONTINUE
WAfMS.K) = WA(M5,K)/FLOAT(M)

9 CONTINUE
DO 10 J=1,N
WA(M4,J) = J

X(J) = 0.

10 CONTINUE
DO 40 I=1.M
WA(I.N2) = N+I
WA(I,N1) = \VE(I)

IF(\VTi(I).GE.0.)GOTO 30

DO 20 J=1,N2
WA(I.J) = -WA(I,J)

20 CONTINUE
30 E(I) =- 0.

40 CONTINUE
DO 42 J=1,N
WA(M2.J) = 0.0

VVAJM3.J) = 0.0

DO 41 I=1.M
AUX = SIGN(1.0,WA(M4,J)) » WA(I,J)



WA(M2,J) = WA(M2,J) + AUX * (1.0 - SIGN(1.0.WA(I,N2)))

WA(M3,J) = WA(M3,J) + AUX * SIGN(1.0,\VA(I,N2))

41 CONTINUE
WA(M3,J) - 2.0 * WA(M3.J)

42 CONTINUE
GO TO 48

43 CONTINUE
LSOL = LSOL + 1

DO 44 I=1,M
S(I) = 0.0

44 CONTINUE
DO 45 J=1,N
X(J) - 0.0

45 CONTINUE
C
C COMPUTE NEXT T
C

SMAX = 2.0

DO 47 J=l,N
Bl = WA(M3,J)
Al - (-2.00 - WA(M2,J))/B1
Bl = -WA(M2,J)/B1
IF(A1 .LT. T)GO TO 46

IF(A1 .GE. SMAX) GO TO 40

SMAX = Al
DIF = (Bl - Al )/2.00

46 IF(B1 .LE. T) GO TO 47

IF(B1 .GE. SMAXJGO TO 47

SMAX = Bl
DIF — (Bl - A1J/2.00

47 CONTINUE
TNT - SMAX + TOLER * (1.00 + ABS(DIF)) * AMG
EF(TNT .GE. Tl + TOLERJIEND = .TRUE.
T = TNT
IF{IEND)T = Tl

48 CONTINUE
C
C COMPUTE NEW MARGINAL COSTS
C

DO 49 J=1,N
WA(MU) = WA(M2,J) + WA(M3,J) * T

49 CONTINUE
IF(INIT) GO TO 265

C
C STAGE 1

C
C DETERMINE THE VECTOR TO ENTER THE BASIS
C

STAGE=.TRUE.
KR=1
KL=1

70 MAX=-1.
DO 80 J=KR,N
IF(ABS(WA(M4,J)).GT.N)GOTO 80

D=ABS(\VA(MU))
EF(D.LE.MAX)GOTO 80

MAX=D
IN=J

80 CONTINUE
IF(WA(Ml,IN).GE.0.)GOTO 100

DO 90 I=1.M4
WA(UN)=-WA(I,IN)

00 CONTINUE
C



C DETER-NONE THE VECTOR TO LEAVE THE BASIS
C
100 K=0

DO 110 I=KL,M
D=WA(I,IN)
IF(D.LE.TOLER)GOTO 110

K=K+1
WB(Ki=WA(I,Nl)/D
S(K)=I
TEST=.TRUE.

110 CONTINUE
120 IF(K.GT.0)GOTO 130

TEST=.FALSE.
GOTO 150

130 ML\=BIG
DO 140 I=1,K
IF(WB(I).GE.MIN)GOTO 140

J=I
MIN=WB(I)
OUT=S(I)

140 CONTINUE
WB(J)=\YB(K)
S(J)-S(K)
K=K-1

C
C CHECK FOR LINEAR DEPENDENCE IN STAGE 1

C
150 IF(TEST.OR..NOT.STAGE)GOTO 170

DO 160 I=I,M4
D=WA(I,KR)
WA(I,KR)=WA(I,IN)
WA(I,IN)=D

160 CONTINUE
KR=KR+1
GOTO 260

170 IF(TEST)GOTO 180

WA(M2,N1)=2.
GOTO 390

180 PIVOT=WA(OUTJN)
IF(WA(Ml,IN)-PIVOT-PIVOT.LE.TOLER)GOTO 200
DO 190 J=KR,N1
D=WA(OUT,J)
\VA(M1,J)=WA(M1,J)-D-D
WA(M2.J)=WA(M2,J)-D-D
WA(OUT.J)=.D

190 CONTINUE
\VA(OUT,N2)=-WA(OUT,N2)
GOTO 120

C
C Pr/OT ON WA(OUT,IN)
C
200 DO 210 J=KR,N1

IF(J.EO.IN)GOTO 210

WA(OUT,J)=WA(OUT,J1/Pr/OT
210 CONTINUE

DO 230 I=1.M3
IF(I.EO.OUT)GOTO 230

D=WA(I,IN)
DO 220 J=KR.N1
IF(J.EO.IN)GOTO 220

WA(I.J)-WA(I,J)-D*WA(OUT
1
J)

220 CONTINUE
230 CONTINUE

DO 240 1=1,M3



IF(I.EQ.OUT)GOTO 240

WA(UN)=-WA(I.IN)/FIVOT
240 CONTINUE

WA(OUT,IN)=l./PIVOT
D=WA(OUT,N2)
WA(OUT,N2)=WA(M4,IN)
WA(M4,IN)=D
KOUNT=KOUNT+l
IF(.NOT.STAGE)GOTO 270

C
C INTERCHANGE ROWS IN STAGE 1

C
KL=KL+1
DO 250 J=KR,N2
D=WA(OUT,J)
WA(OUT,J)=WA(KOUNT,J)
\VA(KOUNT,J)=D

250 CONTINUE
250 EF(KOUNT+KR.NE.Nl)GOTO 70

C
C STAGE 2

C
255 STAGE=.FALSE.
C
C DETERMINE TIIE \rECTOR TO ENTER TIE BASIS
C
270 MAX=-BIG

DO 220 J=KR,N
D—WA(MU)
IF(D.GE.0.)GOTO 280

IF(D.GT.(-2.))GOTO 290

D=-D-2.
280 IF(D.LE.MAX]GOTO 290

MAX=D
IN=J

290 CONTINUE
IF(MAX.LE.TOLER)COTO 310

IF(WA(Ml,IN).GT.0.)GOTO 100

DO 300 I=1,M4
WA(I,IN)=-WA(I,IN)

300 CONTINUE
WA(MUN)=WA(Ml,IN)-2.
WA(M2,IN)=VVA(M2,IN)-2.
GOTO 100

C
C COMPUTE QUANTILES
c
310 CONTINUE

DO 320 I=1.KL-1
K=WA(I,N2)*SIGN(1.0,WA(I.N2))
X(K) = WA(I,N1) * SIGN(1.0,WA(I,N2))

320 CONTINUE
SUM=0.0
DO 330 I=1,N
SUM=SUM + X(I) • WA(M5,I)

330 CONTINUE
SOLP(LSOL) = T
SOLO(LSOL) = SUM
IFiIEND)GO TO 340

INIT = .TRUE.
GO TO 43

340 CONTINUE
DO 350 I = 2,LSOL
SOLP(M)=SOLP(I)



S50 CONTINUE
LSOL=LSOL-l
SOLP(LSOL)=l.
L =KL-1
DO 370 I=1,L
IF(WA(I,Nl).GE.0.)GOTO 370

DO 360 J=KR,N2
WA(I,J)=-WA(I,J)

360 CONTINUE
370 CONTINUE

WA(M2,N1)=0.
EF(KR.NE.l)GOTO 390

DO 380 J=1,N
D=ABS(WA(Ml,J))
IF(D.LE.TOLER.OR.2.-D.LE.TOLER)GOTO 390

380 CONTINUE
\VA(M2,N1)=1.

390 DO 400 I=KL,M
K - \YA(I.N2) * SIGN(1.0,VVA(I.N2))

D - WA(I,N1) * SIGN(1.0,WA(I,N2))

K=K-N
E(K)=D

400 CONTINUE
\VA(M2,N2)=KOUNT
WA(M1,N2)=N1-KR
SUM = 0.0

DO 410 I—1,M
SUM = SUM + E(I)*(.5 + SIGN(1.0,E(I))*(T-.S))

410 CONTINUE
WA(M1,N1) = SUM
RETURN
END
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