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In order to describe an aspect of holistic reality we have to ignore certain factors such that the remainder separates into facts. 

Inevitably, such a description is true only within the adopted partition of the world, that is, within the chosen context.”   
Hans Primas, Chemistry, Quantum Mechanics and Reductionism[1] 

 
Unless you try to do something beyond what you have 

already mastered, you will never grow. 
Ralph Waldo Emerson 

 
Abstract: In this chapter, we review our QSAR research in the prediction of toxicities, bioactivities and properties of chemicals using computed 
mathematical descriptors. Robust statistical methods have been used to develop high quality predictive quantitative structure-activity 
relationship (QSAR) models for the prediction of mutagenicity and BBB (blood-brain barrier) entry of two large and diverse sets chemicals. 
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INTRODUCTION 
 large part of biological and toxicological processes is 
guided by the interaction of small molecules with 

their appropriate biological targets. For example, many 
drugs are small molecules that interact with specialized 
enzymes/receptors in appropriate compartments and 
thereby produce effect(s) that bring a pathologically 
perturbed biological system back to a healthy state.[2,3] In 
toxicology and ecotoxicology, chemicals generated by 

natural and anthropogenic processes enter the phys-
iological or environmental milieu and precipitate undes-
irable effects. Such biological properties of molecules, 
beneficial or deleterious, can be looked upon as the result 
of ligand-biotarget interactions and may be expressed by 
the relationship:[3,4] 

 BR = f (S,B) (1) 

where BR represents the normal biological or pathological/ 
toxicological response produced by the biological system, 
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and B represents the relevant biochemical part of the 
target system which is perturbed by ligand to produce the 
measurable effect. It is believed that a major determinant 
of BR is the nature or structure (S) of the ligand. The 
structure becomes the sole determinant of the variation of 
BR from chemical to chemical when the biological system, 
B, is practically the same and there is alternation only in the 
structure of the ligand. Under such conditions Eq.(1) 
approximates to: 

 BR = f (S) (2) 

 

MATHEMATICAL  
CHARACTERIZATION OF STRUCTURE 
 

Computers are incredibly fast, accurate, and stupid. 
Human beings are incredibly slow, inaccurate, and brilliant. 

Together they are powerful beyond imagination.” 
Albert Einstein 

 
Molecular structure can be represented and quantified by 
various methods, e.g., topological, three-dimensional (3D) 
or geometrical and quantum chemical approaches, to name 
just a few. In this article, the majority of descriptors used to 
the formulation quantitative structure-activity relationship 
(QSAR) models are based on topological or graph theoretic 
formalism. We also used some 3D and quantum chemicals 
descriptors which will be described below. 

Graph Theoretical Formalism 
A graph, G, is defined as an ordered pair consisting of two 
sets V and R, G = [V(G), R], where V(G) represents a finite 
nonempty set of points, and R is a binary relation defined 
on the set V(G). The elements of V are called vertices and 
the elements of R, also symbolized by E(G) or E, are called 
edges. When representing molecular structures as graphs, 
V represents the set of atoms and E represents the set of 
bonds present in the molecule. The set E is not limited only 
to covalent bonds, and may symbolize any type of bonds, 
viz., covalent, ionic, or hydrogen bonds. Basak et al.[5] 
emphasized that weighted pseudographs constitute a 
versatile class of models for the representation of a wide 
range of chemical species. In depicting a molecule by a 
connected graph G = [V(G), E(G)], V(G) may contain either 
all atoms present in the empirical formula or only non-
hydrogen atoms. Hydrogen-filled graphs are preferable to 
hydrogen-suppressed graphs when hydrogen atoms are 
involved in critical steric or electronic interactions 
intramolecularly or intermolecularly or when hydrogen 
atoms have different physicochemical properties due to 
differences in their bonding neighborhoods. Most stable 
chemical species can be represented by simple graphs or 
multigraphs. The structural formula, labeled hydrogen-

filled and the labeled hydrogen-suppressed graphs for 
acetamide are shown in Figure 1. 

Topological Indices (Set # 1) 
Graphs can be characterized by graph invariants. Numerical 
invariants of graphs are called topological indices.[6] Many 
topological indices can be conveniently derived from 
various matrices including the adjacency matrix A(G) and 
the distance matrix D(G) of a chemical graph G. These 
matrices are usually constructed from labeled graphs of 
hydrogen-suppressed molecular skeletons[6–8] (see Sup-
plementary material for details). Dr. Harry Wiener[9] was 
the first to put forward the idea of a structural index 
(topological index) for the estimation of properties of 
molecules from their structure. Other indices derived from 
the adjacency matrix include the Hosoya index Z[10] the zero 
order connectivity index, 0χ,[11] Randić’s connectivity index, 
1χ,[12] and the generalized connectivity index hχ and its 
variants derived by Kier, Murray, Randić, and Hall.[11] As a 
further extension, electrotopological state indices are 
calculated using the method of Kier and Hall.[13] This class 
of indices combines the electronic nature and the 
topological neighborhood of each skeletal atom in the 
molecule. 
 In many cases, invariants have been used to answer 
a specific structural question or to “quantify” a hitherto 
“qualitative” concept.[14] For example, in developing the 
branching index, 1χ, Randić[12] asked the question: Which of 
a given collection of molecules is the most branched? 1χ 
puts the molecules in a numerical scale and answers this 
question. In developing the various information theoretic 
indices, Basak and coworkers[14–17] asked the question: 
Which of a collection of chemicals is the most complex? The 
answer to this question came from the different infor-
mation theoretic indices, ICr, SICr, and CICr, which provide 
quantitative scales for molecular complexity. Of course, 
complexity of a molecule is not uniquely defined; it varies 
with the order, r, of neighborhood of atoms considered (vide 
infra), and the specific equivalence relation used to decom-
pose the set of atoms into disjoint subsets. 
 Information-theoretic topological indices are 
calculated by the application of information theory to 
chemical graphs. It is to be noted that information content 
of a graph G is not uniquely defined. It depends on the way 

 

Figure 1. Structural formula (G0), labeled hydrogen-filled 
graph (G1), and labeled hydrogen-suppressed graph (G2) of 
acetamide. 
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the set A is derived from the molecular graph G as well as 
on the equivalence relation which partitions A into disjoint 
subsets Ai. For example, when A constitutes the vertex set 
of a chemical graph G, two methods of partitioning have 
been widely used: (a) chromatic-number coloring of G, 
where two vertices of the same color are considered 
equivalent, and (b) determination of the orbits of the 
automorphism group of G where after vertices belonging to 
the same orbit are considered equivalent. 
 Based on an equivalent relation the information 
content of a molecular graph can be computed by  
Shannon’s relation:[18] 

 
=

= −∑ 2
1

log
h

i i
i

IC p p  (3) 

 ICr (r = 0, 1, 2, …, ρ; ρ is the radius of the graph G) can 
be calculated for different order of neighborhood of the 
vertices of G.[16] 
 Basak, et al.[15] defined another information-
theoretic measure, structural information content (SICr), 
which is calculated as in Eq. (4): 

 = 2/ logr rSIC IC n  (4) 

where ICr is calculated from Eq. (3) and n is the total 
number of vertices of the graph. 
 Another information-theoretic invariant, complement-
ary information content (CICr) is defined as in Eq. (4):[17] 

 = −2logr rCIC n IC  (4) 

CICr represents the difference between maximum possible 
complexity of a graph (where each vertex belongs to a 
separate equivalence class) and the realized topological 
information of a chemical species as defined by ICr. 
Bonchev[19] has pointed out that, in many cases, equivalent 
vertices in the neighborhood symmetry formalism belong 
to the same orbits of the automorphism group of the graph. 
A review of the information-theoretic indices, ICr, SICr, and 
CICr, and their application in QSPR/QSAR/QSTR and QMSA 
studies is available by Basak.[3] 
 The information-theoretic index on graph distance 

W
DI  is calculated from the distance matrix D(G) of a chemical 

graph G as follows:[20] 

 = − ⋅∑2 2log logW
D hI W W g h h  (5) 

The mean information index, W
DI , is found by dividing the 

information index, by W. 
 The triplet indices, developed by Balaban and 
coworkers[21] result from a matrix, a main diagonal column 
vector, and a free term column vector, converting the 
matrix into a system of linear equations whose solutions 
are the local vertex invariants. These local vertex invariants 
are then used in the following operations in order to obtain 

the triplet descriptors: 
1. Summation, ∑ixi; 
2. Summation of squares, ∑ixi2; 
3. Summation of square roots, ∑ixi1/2; 
4. Sum of inverse square root of cross-product over 

edges ij, ∑ij(xixj) –1/2; 
5. Product, N(∑ixi)1/N. 
Basak et al.[3] have divided the topological indices (TIs) 

into two major groups: topostructural indices (TSIs) and 
topochemical indices (TCIs). TSIs are topostructural indices 
which are calculated from skeletal graph models of 
molecules which do not distinguish among different types 
of atoms in a molecule or the various types of chemical 
bonds, e.g., single bond, double bond, triplet bond, etc. 
Thus, TSIs quantify information regarding the connectivity, 
adjacency and distances between vertices, ignoring their 
distinct chemical nature. Topochemical indices (TCIs), on 
the other hand, are sensitive to both the pattern of 
connectedness of the vertices (atoms), as well as their 
chemical/bonding characteristics. Therefore, the TCIs are 
more complex than the TSIs. 
 
Computation. In summary, a general approach in devel-
oping chemodescripors and biodescriptors is as follows: 

a) Define a structural model, 
b) Associate a graph or matrix to the structural 

model, 
c) Calculate invariants for use as chemo- or 

biodescriptors. 
The generic procedure of developing such descriptors and 
their application in QSAR is summarized in Figure 2. 
 Software used by Basak and coworkers group for the 
calculation of molecular descriptors includes POLLY,[22] 
MolConnZ-Z,[23] and Triplet.[24] Supplementary Table S1 
gives a more detailed background of the mathematical 
basis and the list of descriptors most often used by Basak 
et al. 
 For both the mutagenicity data sets the following  
3D and quantum chemical indices were also calculated: Vw 
(Van der Waals’ volume), 3DW (3D Wiener number based 
on the hydrogen-suppressed geometric distance matrix), 
3DWH (3D Wiener number based on the hydrogen-filled 
geometric distance matrix), EHOMO (Energy of the highest 
occupied molecular orbital), EHOMO–1 (Energy of the second 

 

 

Figure 2. Schematic of the use of topological indices in QSAR. 
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highest occupied molecular), ELUMO (Energy of the lowest 
unoccupied molecular orbital), ELUMO+1 (Energy of the 
second lowest unoccupied molecular orbital, Heat of 
formation, and Dipole moment. Please see Table S1 in the 
supplementary material for details. 

Topological Indices: Cluj Descriptors 
Based on Graph-Theoretic Properties 

Apart from the adjacency matrix, a number of other 
matrices may be constructed from the topological structure 
of atoms and bonds inside a molecule. The Cluj set of 
chemical descriptors, utilized by Diudea and co-workers in 
several studies,[25–32] are based on a number of such 
matrices. Below we provide brief descriptions of such 
matrices, details of which can be found in the 
supplementary material. 
 In cycle-containing graphs, when the shortest path is 
replaced by the longest path between two vertices, the 
maximum path matrix, or the Detour matrix, can be 
constructed: 

 [ ]
≠

=  =

if 
Δ

0  if 
ij

ij

δ i j
i j

  

The 3D distance matrices (D3D), in a full analogy with the 
construction of distance matrices, D, from the topological 
distances: the entries in 3D are the actual 3D distances 
between the vertices of a graph which was geometrically 
optimized (i.e., by a MMX calculus). The Cluj matrices CJDu 
and CJ3Du have been recently proposed by Diudea,[31] 
both of which are square but non-symmetric matrices. 
Variants of these include the Cluj Fragmental Distance 
matrix and Cluj Fragmental Detour matrix, which are 
useful when descriptors are meant to represent real 
(connected) chemical fragments. These graph-theoretical 
Cluj matrices are calculable as "basic matrices" by 
TOPOCLUJ.[33] 
 Given a property of a specific atom (vertex of the 
molecular graph), the layer matrix (LM) and shell matrix 
(SM) summarize the properties of atoms situated at or 
within a certain distance k from an atom. Thus, layer/shell 
matrices are specific to the molecular property, and can be 
constructed given some vertex property pi, or a square info 
matrix M supplying local/vertex properties as row sum RS, 
column sum CS or diagonal entries given by the Walk matrix 
(see below). The novel shell matrix provides a partitioning 
of the entries in a square matrix according to the vertex 
(distance) partitions in the graph. It means a true 
decomposition of the property collected in the square 
matrix in contributions brought by vertices pertaining to 
shells located at distance k around each vertex. However, 
the property depends on the vertex-pair relationship. Both 
layer and shell matrices can be constructed from symmetric 

and non-symmetric matrices, including the adjacency 
matrix and the above Cluj matrices.  
 Layer matrices are used to derive two topological 
indices: (i) indices of centrality C(LM) and (ii) indices of 
centrocomplexity X(LM). Indices of centrality C(LM) look for 
the center of a graph and are defined as 

( )
−

=

 
 = =
  
∑ ∑

2 1
1/( )

2

1

( ) [ ] ( ) ( )
eccecc

k
i ik i

k i

C LM C LM w C LMLM  

where ecc is the maximal distance in G (i.e., maxmax d(i,k)) 
and w is a weighting factor. 
 Indices of centrocomplexity express the location vs. 
a vertex of high complexity (e.g., a vertex of high degree or 
a heteroatom), and are defined as: 

−

=

= =∑ ∑
0

( ) [ ] 10 ( ) ( )
ecc

k
i ik i

k i

X LM X LM w X LMLM  

In Supplementary Table S2, we list the Cluj descriptors 
calculated using the above matrices that are used in the 
case studies. 
 In the QSAR of the two properties reported in this 
paper we also used descriptors calculated by the Software 
Schrodinger. Please see the Supplementary material for 
details. 
 

QSAR USING CALCULATED INDICES 
 

The most fundamental and lasting objective of synthesis is not 
production of new compounds, but production of properties. 

Norris Award Lecture, 1968 
George S. Hammond 

Background of QSARs 
Use of molecular descriptors and experimental properties 
in QSAR may be clearly understood through a formal 
exposition of the structure-property similarity principle—
the central paradigm of SAR.[3,34] Figure 3 represents an 
empirical property as a function α: C → R which maps the 
set C of compounds into the real line R. A non-empirical SAR 
may be looked upon as a composition of a description 
function ϐ1:C → D mapping each chemical structure of C 
into a space of non-empirical structural descriptors (D) and 
a prediction function ϐ2:D → R which maps the descriptors 
into the real line. When [α(C) – ϐ2 ϐ1(C)] is within the range 
of experimental errors, we say that we have a good non- 
empirical predictive model. On the other hand, the 
property-activity relationship (PAR) is the composition of 
ϑ1: C → M which maps the set C into the molecular property 
space M and ϑ2: M → R mapping those molecular properties 
into the real line R. PAR seeks to predict one property 
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(usually a complex property) of a molecule in terms of 
another (usually simpler) property.[35] The latter group of 
properties may consist either of a number of experim-
entally determined quantities (e.g. melting point, boiling 
point, vapor pressure, partition coefficient) or substituent 
constants or solvatochromic parameters (e.g. steric, 
electronic, hydrophobic, charge transfer substituent 
constants, hydrogen bond donor acidity, hydrogen bond 
acceptor basicity). 
 PAR using a calculated property (e.g. calculated 
partition coefficient, log P, octanol-water) may be looked 
upon as a mapping of ϑ2 o γ1 o ϐ1: C → R, which is a 
composition of ϐ1, γ1: D → M mapping the descriptor space 
into the molecular property space (e.g. calculation of log P 
from fragments using the additivity rule), and ϑ2, as 
described above.  
 Both in drug design and predictive toxicology, SAR 
can be used to manage a combinatorial explosion. In drug 
design, one can synthesize many derivatives from a “lead” 
structure. It is not unusual that one must test 200,000 or 
more chemicals to discover a molecule that is marketable. 
The TSCA Inventory contains approximately 86,000 
chemicals.[36] These substances and their possible meta-
bolites together may result in many thousands of 
chemical structures. We need to know many properties 
and activities (or endpoints) of these chemicals to perform 
a reasonable risk assessment. Table 1 provides a partial list 
of endpoints necessary for pharmacological/ toxicological 
evaluation of chemicals. Although many of the properties 
listed in Table 4 can be determined experimentally, the 
combination of these properties and the number of 
candidate chemicals is a combinatoric explosion! Cost and 
time limitations will not allow us to test a large fraction of 
existing chemicals in a rigorous way. Therefore, there is a 
need to develop procedures which can rapidly screen 
chemicals for their toxicological properties and allow us to 
focus scarce resources on chemicals with the greatest 
potential risk. 

 In the sections that follows, we describe the utility of 
our hierarchical QSAR (HiQSAR) approach[3] in the predic-
tion of bioactivity/toxicity of chemicals at the levels of 
enzymes, receptors, cells, and whole animal, as well as 
properties related to drug action and environmental pollut-
ants from calculated descriptors. 
 The approach in HiQSAR is to include the more 
complex and resource intensive descriptors only if they 
result in significant improvement in the quality of the 
predictive model. We begin by building a model using only 
the TS descriptors, followed by the creation of additional 
models based on the successive inclusion of the 
hierarchically ranked descriptor classes. In comparing the 
resulting models, the contribution of each descriptor class 
is elucidated. In addition, the hierarchical approach enables 
us to determine whether the higher-level descriptors are 
necessary in predicting the property or activity under 
consideration. In situations where these complex descrip-
tors are not useful, we can avoid spending the time required 
for their calculation. A general scheme for the use of easily 
calculated molecular descriptors is shown in Figure 4. 

Methods for Model Development 
 

To call in the statistician after the experiment is done may be no 
more than asking him to perform a post-mortem examination: 

he may be able to say what the experiment died of. 
Ronald Fisher 

 

 

Figure 3. Composition functions for structure-activity relat-
ionship (SAR) and property-activity relationship (PAR). 
 

Table 1. Important SAR endpoints. 

Physicochemical Pharmacological / Toxicological 
Molar volume Macromolecule level 
Boiling point    :  Receptor binding (KD) 
Melting point    :  Michaelis constant (Km) 
Vapor pressure    :  Inhibitor constant (Ki) 
Water solubility    :  DNA alkylation 
Dissociation constant (pKa)    :  Unscheduled DNA synthesis 
Partition coefficient Cell level 
   :  Octanol-water (log P)    :  Salmonella mutagenicity 
   :  Air-water    :  Mammalian cell transformation 
   :  Sediment-water Organism level (acute) 
Reactivity (electrophile)    :  Algae 
    :  Invertebrates 
    :  Fish 
    :  Birds 
    :  Mammals 
 Organism level (chronic) 
    :  Bioconcentration 
    :  Carcinogenicity 
    :  Reproductive toxicity 
    :  Delayed neurotoxicity 
    :  Biodegradation 
 Ecosystem level 
    :  ?? 
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In much of our earlier work, we developed ordinary least 
squares (OLS) regression models using the REG procedure 
of the SAS statistical program. The single goal of OLS 
regression is to minimize the sample response prediction 
error, seeking linear functions of the predictors that explain 
as much variation in each response as possible. However, 
OLS should never be used in situations where the number 
of independent variables (descriptors) available to the 
regression procedure is large with respect to the number of 
observations (chemicals), which is often the case in the field 
of computational chemistry. Using OLS under these 
circumstances can result in chance correlations wherein 
the predictive quality of the resulting model is vastly 
overestimated. One approach in circumventing this 
problem is to reduce the number of independent variables 
prior to the regression process. We have used the SAS 
VARCLUS procedure to accomplish this. With this 
procedure, a set of n descriptors is reduced by dividing 
them into disjoint clusters which are essentially uni-
dimensional. From each cluster, we select the descriptor 
that is most correlated with the cluster, as well as any which 
are poorly correlated with the cluster (R < 0.70). This 
reduced set of descriptors, then, is used with the REG 
procedure to produce predictive models. 
 Studies have shown, however, that subsetting of 
available descriptors followed by OLS regression is inferior 
to using alternative regression methodologies that retain 
all available descriptors and deal with rank deficiency in 
another way.[37–40] Ridge regression (RR), principal 
components regression (PCR), and partial least squares 
(PLS) regression all accomplish this. We have used these 
three methods, comparatively, in much of our recent 
work and have found that RR generally outperforms both 
PLS and PCR.  

 RR, like PCR, transforms the descriptors to their 
principal components (PCs) and uses the PCs as descriptors. 
However, unlike PCR, RR retains all the PCs, and ‘shrinks’ 
them differentially according to their eigenvalues. As with 
PCR and RR, PLS also involves new axes in predictor space, 
however, they are based on the dependent variable as well 
as the independent.  
 
Validation. For the sake of brevity, we do not report the 
highly parameterized RR, PCR, and PLS models. Rather, we 
have reported summary statistics for the models, including 
the cross-validated R2 and the prediction sum of squares 
(PRESS). The cross-validated R2 is calculated using the leave-
one-out approach wherein each compound is removed, in 
turn, from the data set and the regression is fitted based on 
the remaining n-1 compounds. The cross-validated R2 
mimics the results of applying the final regression to a 
future compound; large values can be interpreted 
unequivocally and without regard to the number of 
compounds or descriptors as indicating that the model will 
accurately predict the activity of a compound of the same 
chemical type as those used to calibrate the regression. 
Although some QSAR proponents routinely recommend 
partitioning the available data into training and test sets, 
where the model is developed based on the training set 
compounds and the activity of the test compounds is then 
predicted by the model, this is unnecessary and wasteful 
when one is working with small data sets, and the leave-
one-out cross-validation approach should be used. The 
cross-validated R2 is defined by: 

 = −2 1cv
PRESSR

SSTotal
 (13) 

where SSTotal is the total sum of squares. Unlike the 
conventional R2, the cross-validated R2 may be negative if 
the model is very poor. It should be stressed that the 
conventional R2 is unreliable in assessing modeling 
predictability when rank deficiency is an issue. In fact, the 
R2 value will increase upon the addition of any descriptor, 
even the irrelevant. In contrast, the cross-validated R2 will 
decrease upon the addition of irrelevant descriptors, 
providing a reliable measure of model quality. 
 Another statistical metric often utilized in 
conjunction with our ridge regression studies is the 
absolute value of t, where t represents the model 
coefficient divided by its standard error. Those descriptors 
with large |t| values are known to be important in the 
model under consideration. Therefore, we use this metric 
in hopes of gaining some mechanistic insight. It should be 
noted, however, the no conclusions can be drawn with 
respect to descriptors associate with small |t| values. 
 
Pre-processing. Routinely, prior to model development, 
any descriptor with a constant value for all compounds is 

 

Figure 4. Development and use of topological indices in 
QSAR and QMSA models. 
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omitted. In addition, only one descriptor of any perfectly 
correlated pair (i.e., r = 1.0), as identified by the CORR 
procedure of the SAS statistical package, is retained. 
Because the variable scales differ from one another by 
many orders of magnitude, they are typically scaled by the 
natural logarithm prior to modeling. Some methodological 
papers[40] on the proper use of descriptors provide good 
guidance in the proper use of indices in the formulation of 
robust QSAR models. 
 
Two-deep validation. A number of statistical and machine 
learning (ML) methods used frequently in large-scale data 
analytic applications involve the selection of one or more 
tuning parameter(s). For example, results from PCR or PLS 
depends on the selection of a number of top descriptor 
projections, and RR and sparse methods like LASSO, 
SCAD[41] depends on the value of shrinkage parameter. 
While an intuitive method to select the tuning parameters 
may be to use performance on the test set, this is wrong 
and overestimates predictive performance. Since for the 
evaluation phase the information from test set is being 
used, the final cross-validation metric values do not, in 
principle, remain out-of-sample. Instead of this naïve 
procedure, a two-layer process should be undertaken. 
After a train-test split, tuning parameters or any iterations 
in the training phase should be performed only using the 
training data, and the resulting model should be used to 
evaluate the test data.[37,42] Figure 5 details and contrasts 
this two-step process with the naïve, single-step process. 

QSARs for Chemical Mutagens 
We report here formulation of QSARS on sets of mutagens: 
a) A congeneric set of 95 aromatic and heteroaromatic 
amines originally collated by the group of Corwin Hansch[43] 
and b) A structurally diverse data set of 260 mutagens and 
260 non-mutagens collated by Basak et al.[44] from the CRC 

Handbook of Identified Carcinogens and Non-carcinogens 
and consisted of those compounds that had a positive or 
negative response to the Ames mutagenicity test.[45] The 
distribution of chemical classes of the compounds (non-
exclusive) in Table 2 summarizes the vast diversity in this 
dataset and the complexity of the underlying prediction 
problem. 
 In one of our past papers with Prof. Diudea,[46] we 
explored the use of structural descriptors in toxicity/ 
mutagenicity prediction, the points mentioned above. The 
two datasets analyzed come from two different repres-
entative situations: 

1. Mutagenic activity of 95 congeneric amines, 
measured as the log number of revertants per 
nmol when a sample compound is applied to S. 
typhimurium cultures. 

2. Binary mutagen/non-mutagen status, determined 
by the Ames mutagenicity test, of 508 diverse 
chemical compounds belonging to broad array of 
structural classes. 

 For the compounds in each sample we calculated 
two sets of descriptors, one each to the Basak and Cluj set 
described earlier. We applied a number of statistical and 
ML techniques to evaluate the comparative performance of 
these descriptor sets separately and combined, as well as 
obtain some possible mechanistic interpretations behind 
the observed chemical activity. 

 

Figure 5. Schematic of naïve vs. two-deep cross-validation. 
 

 
Table 2. Chemical classes of samples in the 508 compound 
diverse dataset 

Chemical class 
Number of 
compounds 

Aliphatic alkanes, alkenes, alkynes 124 
Monocyclic compounds 260 
        Monocyclic carbocycles 186 
        Monocyclic heterocycles 74 
Polycyclic compounds 192 
        Polycyclic carbocycles 119 
        Polycyclic heterocycles 73 
Nitro compounds 47 
Nitroso compounds 30 
Alkyl halides 55 
Alcohols, thiols 93 
Ethers, sulfides 38 
Ketones, ketenes, imines, quinones 39 
Carboxylic acids, peroxy acids 34 
Esters, lactones 34 
Amides, imides, lactams 36 
Carbamates, ureas, thioureas, guanidines 41 
Amines, hydroxylamines 143 
Hydrazines, hydrazides, hydrazones, traizines 55 
Oxygenated sulfur and phosphorus 53 
Epoxides, peroxides, aziridines 25 
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 As we see in the results in Table 3, contrary to the 
common and intuitive view that novel or more descriptors 
will help in developing better QSAR models do not always 
hold. This is the case for the smaller set of compounds, but 
not for the diverse, larger set. As further observation, both 
the sparsity based methods — LASSO, SCAD — perform 
poorly on both datasets. This result indicates the potential 
presence of high collinearity and lower-dimensional 
subspaces in the predictor space than individual predictors. 
These subspaces also encode significant information about 
the corresponding response variables, as the good 
performances of PLS indicate. 

 Looking at the descriptors that have highest loading 
in Principal Component Analysis (PCA) of the combined 
feature matrix reveal some interesting observations (Table 
4). Contrary to the poor performance of PCR, the top 4 PCs 
explain high proportions of overall variability (37 % for 95 
amines, 50 % for 508 compounds). The top loadings are 
dominated by the Diudea set of graph connectivity 
descriptors. Specifically, a few descriptors with high 
loadings across multiple PCs include E_ele, E_tor, 
vsurf_DW23, density, and GCUT_SlogP_0. Looking at their 
mechanistic roles, E_ele is a measure of the stored 
potential energy in the 3D structure of the chemical 
compound, and the others are absorption–distribution–
metabolism–excretion (ADME) features. However, the 
comparative poor predictive performance of the PCR 
model indicates that the effect of these features on the 
specific mutagenic activity being modeled is limited. This 
analysis underlines the importance of using such deeper 
statistical reasoning while interpreting outputs of QSAR 
models. 

QSAR of Blood-Brain Entry of Chemicals 
Continuing our collaboration with Prof. Diudea,[37] in a 
subsequent paper we focused on the important problem of 
developing QSAR models for measuring Blood-Brain Barrier 
(BBB) permeability of chemicals, the collection of BBB data 
on a diverse set of 415 chemicals taken from Li et al.[47] The 
binary dependent variable was whether a compound is 
BBB-permeable or not. A schematic representation of the 
BBB with its luminal and abluminal sides is shown in Figure 6 
below. Building up on our work on obtaining parsimonious 
representation of chemical spaces, in this work we 
attempted to see if it is possible to use state-of-the-art ML 
methods in tandem with a subset of descriptors can 
provide to develop well-performing models. 

Table 3. Average and standard deviations (in brackets) of 
performance measures over 100 random splits for different 
methods applied on the 508 compound heterogeneous 
dataset. PCR = RF = Random Forest, GBM = Gradient 
Boosting Machine 

508 compounds data (Area Under Curve) 

Method 
Descriptor set used 

Combined Basak set Cluj set 
PCR 0.59 (0.055) 0.78 (0.038) 0.58 (0.057) 
PLS 0.86 (0.035) 0.58 (0.057) 0.79 (0.038) 

Lasso 0.72 (0.048) 0.75 (0.045) 0.63 (0.06) 
SCAD 0.57 (0.061) 0.58 (0.059) 0.62 (0.063) 

RF 0.81 (0.036) 0.80 (0.042) 0.79 (0.040) 
GBM 0.80 (0.04) 0.82 (0.04) 0.75 (0.042) 

95 amines data (Mean Squared Prediction Error) 

Method 
Descriptor set used 

Combined Basak set Cluj set 
PCR 29.1 (13.79) 57.1 (93.83) 76.0 (24.72) 
PLS 18.9 (6.03) 19.9 (7.46) 75.7 (24.69) 

Lasso 26.9 (9.05) 28.7 (8.83) 72.8 (18.0) 
SCAD 25.8 (8.96) 31.8 (21.44) 74.9 (18.32) 

RF 17.3 (6.50) 19.0 (6.59) 84.6 (21.74) 
GBM 14.8 (5.84) 18.0 (6.30) 74.8 (17.43)  

Table 4. Top 5 PCs and their loadings (in brackets) for each dataset. Brackets in the headings indicate the percentage of variance 
explained by each PC 

95 amines data 
PC1 (15 %) PC2 (14.1 %) PC3 (12 %) PC4 (9.3 %) 

E_tor (0.96) vsurf_DW23 (0.95) density (–0.93) GCUT_SlogP_0 (0.96) 
vsurf_DW23 (–0.25) E_tor (0.23) GCUT_SlogP_0 (–0.19) density (–0.19) 

GCUT_SlogP_0 (0.06) GCUT_SlogP_0 (0.15) vsurf_ID2 (0.12) vsurf_DW23 (–0.14) 
vsurf_ID3 (–0.04) density (–0.07) vsurf_ID3 (0.12) E_tor (–0.09) 
vsurf_ID4 (–0.04) vsurf_ID2 (–0.06) vsurf_ID4 (0.11) vsurf_CP (0.05) 

508 compounds data 
PC1 (12.5 %) PC2 (10.3 %) PC3 (7.1 %) PC4 (6.9 %) 
E_ele (–0.42) E_ele (–0.42) E_ele (–0.35) E_vdw (–0.73) 

vsurf_EWmin1 (–0.43) vsurf_EWmin1 (–0.27) vsurf_EWmin1 (–0.33) E_nb (–0.48) 
vsurf_EWmin2 (–0.4) vsurf_EWmin2 (–0.25) E_vdw (–0.31) E_ele (0.34) 
vsurf_EWmin3 (–0.3) vsurf_DW13 (–0.21) vsurf_EWmin2 (–0.31) vsurf_EWmin1 (0.19) 
vsurf_DW13 (–0.17) vsurf_EWmin3 (–0.18) E_nb (–0.27) vsurf_EWmin2 (0.18) 
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 The results in Figure 7 plot four metrics — AUC, lift 
in percent of positive samples captured in top 20 % highest 
predicted probabilities, sensitivity, and specificity. We 
discovered that the combined and Basak set perform well 
in terms of parsimony. A random forest model composed 
of only top 5 % important descriptors perform better than 
the full model in both these cases. However this does not 
hold for the Cluj set. Taking a further look at the important 
descriptors selected by both methods (Table 5), we see that 
the top descriptors for the Cluj and combined set are very 
similar. Given the similar prediction performances of all the 
descriptor sets (see Table 2 in Ref. [37]), this suggests a high 
degree of shared information among the Basak and Cluj set 
of descriptors. 
 Analysis of mechanistic interpretation of the top 
descriptors bring up some interesting points. For example, 
most top descriptors from the Basak set relate to structural 
heterogeneity within atomic neighborhoods (IC indices), 
and presence of multiple bonds and/or heteroatoms 
(triplet descriptors). Influential indices from the Cluj set are 
related to topological distances and connectivity. A number 
of descriptors from both sets---ANZ4, AZN4, ANZ5, and 
DN2N3, ALOGP3---relate to activity properties relevant to 
BBB, such as polarity and hydrophobicity. Previous studies 
corroborate these properties as predictive of BBB 
permeability.[47,49,50] These outcomes are also in line with 
the findings of the original analysis of Li et al.[47] 

GENERAL DISCUSSION 
 

All generalizations are dangerous, even this one. 
Alexandre Dumas 

 
Prediction is very difficult, especially if it's about the future. 

Niels Bohr  
In this paper, we reviewed robust QSAR models derived 
by Basak and Diudea groups in the prediction of important 
biological properties like mutagenicity and BBB permeab-
ility of chemicals. 
 Mutagenicity testing is important for human health 
risk assessment,[51] pharmaceutical drug design[52] and 
ecological risk assessment of chemicals.[53] Therefore, 
assessment of mutagenicity of many chemicals, both in 
new drug discovery protocols and risk estimation of 
environmental pollutants, is done routinely by the 
regulatory agencies all over the world. Topological indices 
can be calculated fast for any chemical structure, real or 
hypothetical. High quality QSAR models of mutagenicity, 
particularly those on the structurally diverse set of 508 
mutagens, may find practical application in drug design and 
environmental protection. 
 The blood-brain barrier is a unique biological barrier 
critical for the protection of the brain from the entry of 
undesirable chemicals present in the blood. BBB is 

 

Figure 6. A schematic representation of the essential features 
of the blood-brain barrier (BBB) showing the two luminal  
and abluminal membranes that separate the blood from  
the brain. Shared from Ref. [48] Under Creative Commons 
Attribution License 4.0. 
 

 

Figure 7. BBB activity prediction performance comparisons 
for all-descriptor vs. partial models. First a random forest 
model is fit with all descriptors, from which descriptor 
importance behind the activity are obtained. Then a second 
set of models are trained with top x % important descriptors 
only, x = 5, 10, …, 95. 
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implicated in the design of psychoactive drugs,[54,55] asses-
sment of potential neurotoxicity of industrial chemicals and 
pollutants.[56] 
 As shown in Figure 6, the tight junctions (TJs) of 
endothelial cells control the entry and efflux of substances 
in and out of the BBB. The passage of molecules across BBB 
is based on their physicochemical properties like lipo-
philicity, ionization, polarity, etc.[54,55] Our QSAR studies on 
the BBB entry of a diverse set of chemicals (Table 5) shows 
that easily calculated topological descriptors are capable of 
quantifying aspects of molecular structure which are 
relevant for the estimation of BBB transport of chemicals. 
 It is interesting to note that for both properties, 
mutagenicity, and BBB entry, the two groups of molecular 
descriptors used by the Basak group and the Diudea team 
gave QSAR models of similar quality. When QSARs are 
developed for congeneric sets of structures, a few simple 
descriptors may suffice, But for diverse chemical sets one 
needs a diversity of descriptors for the formulation of good 
QSAR models.[57] In the case of both the two mutagenicity 
data sets and the BBB set augmentation of the number of 
descriptors by combining the Basak and Diudea set of 
descriptors did not improve the model quality. It is tempting 
to speculate that for the two biological endpoints the two 
sets of descriptors were probably qualifying very similar 
aspects of molecular structure needed for QSAR formulation. 
That is why the quality of the QSARs reached a plateau. This 
does not discourage the formulation of novel indices, but to 
be recognized as sufficiently novel such new descriptors 
must be able to quantify aspects of molecular structure not 
characterized by the already existing indices. 
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