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Abstrak 

 

Analisis diskriminan linear (LDA) merupakan salah satu teknik pengelasan berselia 

(supervised) yang bersabit  dengan  hubungan antara satu pembolehubah berkategori 

dengan satu set pembolehubah selanjar. Objektif utama LDA adalah untuk 

menghasilkan satu fungsi bagi membezakan antara kumpulan dan mengkelaskan 

cerapan baharu kepada kumpulan yang telah dikenalpasti. Di bawah andaian 

kenormalan dan homoskedastisiti, LDA dapat menghasilkan peraturan diskriminan 

(LDR) yang optimum antara dua atau lebih kumpulan. Walau bagaimanapun, 

keoptimuman LDA amat bergantung kepada min sampel dan matriks kovarians 

sampel yang sedia diketahui sensitif tehadap data terpencil. Bagi mengurangkan 

masalah ini, penganggar teguh bagi ukuran lokasi dan serakan menerusi pendekatan 

berkoordinat dan berasakan jarak telah digunakan untuk mendapatkan LDA teguh 

yang baharu. Penganggar teguh tersebut telah digunakan untuk menggantikan min 

sampel klasik dan matriks kovarians sampel klasik untuk membentuk peraturan 

diskrimanan yang teguh (RLDR). Sejumlah enam RLDR iaitu empat pendekatan 

secara berkoordinat (RLDRM, RLDRMw, RLDRW, RLDRWw) dan dua pendekatan 

berasaskan jarak (RLDRV, RLDRT) telah diperkenal dan dilaksanakan dalam kajian 

ini. Kajian simulasi dan data sebenar telah dijalankan untuk menyiasat prestasi 

RLDR yang diperkenalkan, diukur melalui kadar ralat salah mengklasifikasi dan 

masa pengkomputeran. Beberapa keadaan data seperti ketidak-normalan, 

heteroskedastisiti, set data seimbang dan tidak seimbang telah dimanipulasi dalam 

kajian simulasi untuk menilai prestasi RLDR yang diperkenalkan. Dalam kajian data 

sebenar, satu set data diabetes digunakan. Set data tersebut melanggari andaian 

kenormalan serta homoskedastisiti. Hasil kajian menunjukkan bahawa RLDRV yang 

baharu ini adalah RLDR terbaik yang diperkenalkan untuk menyelesaikan masalah 

klasifikasi kerana ia telah menghasilkan sebanyak 91.03% ketepatan dalam 

pengelasan seperti yang ditunjukkan dalam kajian data sebenar. RLDR yang 

diperkenalkan merupakan alternatif yang baik untuk LDR klasik serta RLDR yang 

sedia ada kerana RLDR ini berprestasi baik walaupun pada data tercemar. 

 

Kata Kunci: Analisis diskriminan linear, Penganggar teguh berkoordinat, 

Penganggar teguh berasaskan jarak, Kadar ralat salah klasifikasi 
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Abstract 

 

Linear discriminant analysis (LDA) is one of the supervised classification techniques 

to deal with relationship between a categorical variable and a set of continuous 

variables. The main objective of LDA is to create a function to distinguish between 

groups and allocating future observations to previously defined groups. Under the 

assumptions of normality and homoscedasticity, the LDA yields optimal linear 

discriminant rule (LDR) between two or more groups. However, the optimality of 

LDA highly relies on the sample mean and sample covariance matrix which are 

known to be sensitive to outliers. To abate these conflicts, robust location and scale 

estimators via coordinatewise and distance based approaches have been applied in 

constructing new robust LDA. These robust estimators were used to replace the 

classical sample mean and sample covariance to form robust linear discriminant rules 

(RLDR). A total of six RLDR, namely four coordinatewise (RLDRM, RLDRMw, 

RLDRW, RLDRWw) and two distance based (RLDRV, RLDRT) approaches have been 

proposed and implemented in this study. Simulation and real data study were 

conducted to investigate on the performance of the proposed RLDR, measured in 

terms of misclassification error rates and computational time. Several data conditions 

such as non-normality, heteroscedasticity, balanced and unbalanced data set were 

manipulated in the simulation study to evaluate the performance of these proposed 

RLDR. In real data study, a set of diabetes data was used. This data set violated the 

assumptions of normality as well as homoscedasticity. The results showed that the 

novel RLDRV is the best proposed RLDR to solve classification problem since it 

provides as much as 91.03% accuracy in classification as shown in the real data 

study. The proposed RLDR are good alternatives to the classical LDR as well as 

existing RLDR since these RLDR perform well in classification problems even under 

contaminated data. 

 

Keywords: Linear discriminant analysis, Coordinatewise based robust estimators, 

Distance based robust estimators, Misclassification error rates 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

Classification is a statistical process that aims to allocate observations into pre-

determined classes or groups. Classification can be divided into two kinds which are 

unsupervised classification and supervised classification. Unsupervised classification 

is a technique that aims to search for hidden structures or groups in the data. The 

interest of unsupervised classification is to create groups of observations such that 

within-variation in a group is small and between–variations among population are 

large. The common techniques of unsupervised classification include cluster analysis, 

unsupervised neural network such as Donald Hebb’s principle, multidimensional 

analysis, principle component analysis and factor analysis. Conversely, supervised 

classification is a technique that aims to identify a function for distinguishing 

between groups and allocating future observations into a correct group. The main 

difference feature between unsupervised and supervised classification is the prior 

groups’ information for supervised classification is known while prior groups’ 

information is unknown for unsupervised classification. The focus of supervised 

classification is to construct a concise and precise allocation rule that can assign 

future observation into its own groups (Kotsiantis, 2007). The common techniques 

used in supervised classification are discriminant analysis, supervised neural network 

such as multilayer perceptron, classification tree, support vector machines and 

memory based learning.  

 

Discriminant analysis is a statistical techniques concerned with the relationship 

between a categorical variable and a set of continuous data (Maharaj & Alonso, 
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2014). It focuses on separating distinct sets of objects into two or more groups and 

allocating new observations to previously defined groups (Lachenbruch & Goldstein, 

1979). The purpose of discriminant analysis is to determine which variable 

discriminates between two or more groups, and to construct a discriminant rule for 

predicting the group membership of new observations. In short, discriminant analysis 

aims for a reliable group allocation of new observations based on a discriminant rule 

which is developed from a training data set with known group memberships. 

 

Since discriminant analysis can solve classification problems that involving 

categorical dependent variables, many researchers from different fields such as 

business, medical, education, ecology, sociology, finance and others were attracted in 

this area (Dechaume-Moncharmont, Monceau & Cezilly, 2011; Feinberg, 2010; 

Huang, Quan, He & Zhou, 2009; Khattree & Naik, 2000; Kočišová & Mišanková, 

2014; Li, Lin & Tang; 2009). For example, marketing researchers typically wish to 

use discriminant analysis to study the market segmentation (Feinberg, 2010). The 

marketing researchers wish to determine linear combinations of the predictor 

variables that help best discriminate among know groups. They also would like to 

classify the unknown observations into the pre-established groups. For instance, the 

marketing researchers want to predict which customers will renew their contracts in 

the coming year by using the identified variables. Kočišová and Mišanková (2014) 

stated that discriminant analysis can be as a tool for forecasting company’s financial 

health. The financial researchers have a great interest on prediction of company’s 

financial distress and bankruptcy. Altman (1968) applied discriminant analysis on a 

sample of 33 bankrupt and 33 non-bankrupts companies in the period of years 1946-

1965. He used five variables which were the most relevant in predicting financial 
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distressed of company. Besides, a bank’s lending decision (accepts or rejects) also 

can be solved by discriminant analysis based on the customer profile. Huang et al. 

(2009) employed linear discriminant analysis for the classification of cancer based on 

six public cancer gene expression data sets. Also, discriminant analysis has been 

used for sex determination in field studies on cryptically monomorphic bird species 

(Dechaume-Moncharmont et al., 2011). Discriminant analysis can be used for spam 

filters of an email engine by distinguishing useful email and dangerous email. Face 

recognition (Li et al., 2009) or sound recognition from several persons also could be 

identified by discriminant analysis.  

 

Generally, discriminant analysis is the processes of constructing rules to assign a new 

individual observation point into one of the known populations via discriminant rules. 

This discriminant rules are constructed based on information (such as variables and 

groups) in the training data set. Classification is done by allocating new observations 

using the constructed discriminant rule and obtaining the group membership to which 

the new observation belongs. A good discriminant rule is when it can provide low a 

misclassification error rate. The first linear discriminant rule (LDR) was introduced 

by Fisher in 1936 and known as Fisher parametric rule. This rule performs well for 

the data that follows normal distribution with identical population covariance matrix. 

The Fisher’s technique created a linear discriminant function which minimized the 

possibly of misclassifying observations into their respectively groups or populations. 

However, this rule becomes unstable when any of the two assumptions is violated 

(Croux, Filzmoser & Joossens, 2008). If the training data is non-normal, which 

commonly caused by outliers, the estimators i.e. mean and covariance can be 

dramatically affected (Sajobi, Lix, Dansu, Laverty & Li, 2012). This directly can 
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degrade the performance of the constructed discriminant rule due to the fact that the 

classical estimators, the mean and covariance, are known to be sensitive to deviation 

from the assumptions. Therefore, many researches in the field of classification put 

much effort to develop discriminant rules that are robust, which are not sensitive to 

the violations of certain assumptions.  

 

Several robust discriminant analysis have been proposed by many researchers and 

conducted by replacing the classical estimators with robust estimators such as M-

estimators (Campbell, 1982; Randles, Broffitt, Ramberg & Hogg, 1978a), S-

estimators (Croux & Dehon, 2001; He & Fung, 2000; Lim, Syed-Yahaya, Idris, Ali 

& Omar, 2014), minimum covariance determinant (MCD) estimators (Alrawashdeh, 

Sabri & Ismail, 2012; Hubert & Van Driessen, 2004; Lim et al., 2014), minimum 

volume ellipsoid (MVE) estimators (Chork & Rousseeuw, 1992), estimators based 

on trimmed Mahalanobis distance (M-distance) (Ahmed & Lachenbruch, 1977), 

coordinatewise trimming estimators (Sajobi et al., 2012), feasible solution algorithm 

(FSA) (Wina, Herwindiati & Isa, 2014) to alleviate the sensitivity problem of 

discrimination analysis rules. However, these robust estimators cannot guarantee the 

precision and good performance of rules in various kinds of situation. For example, 

M-estimators that was proposed by Randles et al. (1978a) are able to reduce the 

influence of outliers in LDR but it has very low breakdown point when faced with 

larger dimensions data (Maronna 1976; Hawkins & McLachlan, 1997). Another 

example is the simulation study that was conducted by Sajobi et al. (2012) which 

only considered identical group covariance. 
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In this study, the primary focus would be the two-group discrimination problem with 

LDR using coordinatewise based and distance based robust estimators. These two 

approaches, coordinatewise based and distance based, are introduced to develop 

several robust linear discriminant rules (RLDRs) for alleviating the sensitivity 

problem of classical estimators, which often be the cause of misclassification 

(Alrawashdeh et al., 2012; Croux & Dehon, 2001; Sajobi et al., 2012; Todorov & 

Pires, 2007). A total of six new RLDRs are proposed in this study, by which four will 

be adopting coordinatewise based approach, while the other two will be using 

distance based approach. The intention is to find good robust estimators to replace 

the classical estimators in the traditional LDR. The choice of estimators is important 

as good estimators will improve the performance of the constructed LDR as could 

reduce the misclassification error. Thus, good robust estimators have been identified 

for such purposes. The robust estimators were proposed and applied in this study due 

to their great performance in other robust procedures such as in the construction of 

robust Hotelling’s T2 control chart and robust analysis of variance (ANOVA) (Abu-

Shawiesh, 2008; Abu-Shawiesh & Abdullah, 2001; Ali, Syed Yahaya & Omar, 2015; 

Alloway & Raghavachari, 1990; Haddad, 2013; Haddad, Syed-Yahaya & Alfaro, 

2013; Wilcox & Keselman, 2003; Yahaya, Ali & Omar, 2011).  

 

The first proposed RLDR will involve modified one step M-estimator (MOM) and its 

corresponding winsorized covariance for location and scale measures respectively. 

The second set of parameters will still be estimated using MOM as location estimator 

but the scale estimator will be the product of Spearman correlation coefficient and 

rescaled median absolute deviation (MADn). Alternatively, the estimation of the 

third and fourth location parameter for the proposed RLDR will involve winsorized 
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modified one step M-estimator (WMOM). Meanwhile, for the scale estimator, the 

third RLDR will be adopting the corresponding winsorized (WMOM) covariance, 

and the scale estimator for the fourth RLDR will be the product of Spearman 

correlation coefficient and MADn. For the other two RLDR which using distance 

based approach, the estimators for the fifth and sixth RLDR are the minimum vector 

variance (MVV) estimator and α-trimmed mean with its corresponding winsorized 

covariance respectively. In this study, these robust estimators replace the classical 

estimators to form new some RLDR which denoted as RLDRMw, RLDRM, RLDRWw, 

RLDRW, RLDRV and RLDRT, respectively. A summary of proposed RLDRs with 

their corresponding estimators is listed in Table 1.1. 

 

Table 1.1  

Summary of Proposed RLDRs 

RLDR Location Estimator Scale Estimator 

RLDRMw Trimmed mean of MOM Covariance of winsorized sample 

RLDRM Trimmed mean of MOM Product of Spearman correlation 

coefficient and MADn 

RLDRWw Winsorized mean of WMOM Covariance of winsorized sample 

RLDRW Winsorized mean of WMOM Product of Spearman correlation 

coefficient and MADn 

RLDRV Mean of MVV Covariance of MVV 

RLDRT α-trimmed mean Winsorized covariance 

 

To check on the strength and weakness of the proposed RLDRs, simulation study 

was conducted, followed by real life application on the six new RLDRs. The 
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simulation study was conducted using several data distributions such as different 

combinations of sample sizes, number of dimensions and contamination levels for 

equal and unequal covariance matrices which are commonly encountered in real life. 

Real life data was used to investigate the performance of the proposed RLDRs. The 

proposed RLDRs were compared to Fisher LDR which is also known as classical 

LDR (CLDR), as well as the existing RLDR with MCD estimators (RLDRD) in order 

to evaluate their performances. The MCD estimator is selected due to its accessibility 

ease and high breakdown of 0.5 on location as well as scale estimators (Hubert & 

Driessen, 2004; Rousseeuw & Hubert, 2011). The validation of the RLDRs 

predictive accuracy will be based on misclassification error rates. The performance 

of each rule will depend on how good its discriminant rule can correctly classify the 

observations into pre-determined groups in which smaller misclassification rate will 

be the better.    

 

1.2 Existing of Classification Techniques 

They are many types of classification rules such as LDR, quadratic discriminant rule 

(QDR), logistic discriminant rule, decision trees, Bayes discriminant rule, regularized 

discriminant rule, neural network, support vector machines, kernel classification rule, 

k-nearest neighbor classification rule and others. These classification rules can be 

categorized as three approaches such are parametric, semi-parametric and 

nonparametric. However, each rule has its strengths and weakness in dealing with 

various distributions of the data.  

 

This study focuses on the investigation of LDR due to its analytical simplicity and 

computational reasons such as fast convergence and portable. Besides, LDR is the 
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most widely used and classic approach in statistical classification. LDR also is an 

efficient approach which could generate good performance when its assumptions are 

met. On contrary, LDR become sensitive with deviations from their underlying 

assumptions. Due to existence of outliers or extreme values, the assumptions of LDR 

could be violated. Therefore, the performance of LDR could be affected when facing 

with outliers. It is a known fact that the common mean, which possesses zero 

breakdown point, is very sensitive to outliers.  

 

1.3 Challenges Facing with Outliers 

An outlier is an observation which appears to be out of line, that is, inconsistent with 

the other observations (Woolley, 2013). The mean and standard deviation of a 

variable are strongly affected due to existence of outliers. Therefore, many statistical 

analyses as well as discriminant analysis are influenced by outliers. Due to careless 

mistake such as incorrectly recorded or included the outliers during data entry might 

be a reason to have outliers in a data set. However, simply disregarding the outliers 

would degrade the estimation especially the parametric statistical methods are used. 

The existence of outliers may foster the identification of important characteristics of 

the population. Therefore, data screening and filtering would be the first step before 

doing any statistical analysis. Nowadays, there are many analytical calculation and 

graphical display to detect the outliers. Nonetheless, multivariate outliers can be hard 

to detect especially when the dimension exceeds 2 due to graphical display no longer 

to rely on (Rousseeuw & Van Zomeren, 1990). Some outliers might be masked since 

the outlier detection methods are based on the sample mean and covariance matrix. 

The masking phenomenon can break the initiation of any consecutive testing 

procedure. 
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Unreliable result will be generated from the contaminated data, that is, data with 

outlier. Outliers could have huge impact on the rule’s construction. For example, a 

completely different discriminant classifier would be constructed by a slightly 

different value in a data set. Therefore, bias estimators will be estimated if such 

outlier problem is going unnoticed. Such bias estimators will constructed different 

discriminant rule and then cause a future observations could be misclassified into 

incorrect group. This is the possible challenge that discriminant analysis need to face 

when dealing with outliers. 

 

In this study, trimming and winsorizing process were used to detect outliers in 

datasets for coordinatewise approach while distance based approach used 

Mahalanobis square distance for outlier detection. 

 

1.4 Problem Statement 

In LDR, the parameters can be easily estimated from the sample mean and pooled 

sample covariance matrix. Due to the sensitivity of these estimators toward  

non-normality, the calculation of these estimators should not be overlooked. The 

overlooking of these estimators will have negative impact on the discriminant rule. 

Previous studies (Ashikaga & Chang, 1981; Barön, 1991; Lachenbruch, Sneeringer 

& Revo, 1973) cautioned that LDR might result in smaller misclassification error 

rates for predicting group membership in multivariate non-normal as compared to 

normal data, but this LDR will also frequently produce incorrect variable rank for 

describing group separation under non-normal situation (McLachlan, 2004). 

Therefore, further deterioration on the performance of the discriminant rule may 

occur when the assumptions of LDR are violated.  



10 

 

In real life situation, ideal data set which having normal distribution with 

homoscedasticity (equal covariance matrix) is hardly attainable and violation of these 

assumptions will cause the performance of the LDR to be in jeopardy. Thus, many 

researchers seek for alternative to solve the sensitivity problem of classical 

estimators in LDR. In fact, the sensitivity problem of heteroscedasticity in training 

data can be solved by quadratic discriminant rule (QDR) but the optimal of QDR is 

still affected with the existence of outliers. Due to this, nonparametric discriminant 

methods such as kernel method, nearest neighbor method, farthest neighbor method 

and centroid method have been used. These nonparametric discriminant methods 

have different properties and they are alternatives to LDR. However, there are some 

limitations from these nonparametric methods. For example, each group in kernel 

discriminant analysis follows unimodal distributions so kernel discriminant analysis 

is limited on its model complexity (You, Hamsici & Martinez, 2011). Besides, the 

computation of kernel discriminant analysis could be an issue when dealing with 

high dimensional data (Zhou & Tang, 2010). The high dimensional data also will 

cause bias in k-nearest neighbor method (Hastie & Tibshirani, 1996). Moreover, Kim, 

Choi, Moon and Mun (2011) stressed that the accuracy of the k-nearest neighbor can 

be severely degraded by the presence of noisy or irrelevant features.  

 

 To alleviate the problems, numerous works have been explored in the field of 

classification especially those related with the robustness towards violations of 

assumptions (Todorov & Pires, 2007). Randles et al. (1978a) managed to reduce the 

influence of outliers in LDR by using M-estimators for the mean and the covariance. 

However, they discovered that M-estimator has very low breakdown point when 

dealing with high dimensional data (Maronna 1976; Hawkins & McLachlan, 1997). 



11 

 

Besides, Campbell (1982) discovered that the estimators based on trimmed M-

distances are sensitive to multivariate outliers. The main disadvantage of MVE 

estimators is not convergent compared to MCD estimators (Davies, 1992). However, 

the MCD as well as MVE estimators are lack of efficiency especially under the 

normal model (Fekri & Ruiz-Gazen, 2015). Therefore, Hubert and Van Driessen 

(2004) used the reweighted MCD estimators of multivariate location and covariance 

in discriminant model, but the computational time for estimating the parameters is 

highly inefficient (Ali & Yahaya, 2013). The drawback of S-estimators and MCD 

estimators is that they are computed based on objection functions that may cause the 

computation trap at local optima point (Fekri & Ruiz-Gazen, 2015). Thus, 

approximate algorithms which use random subsampling need to be applied in the 

computation (Rousseeuw & Leroy, 1987). Sajobi et al. (2012) examined repeated 

measures discriminant analysis procedures based on maximum likelihood and 

coordinatewise trimming estimation methods but they only considered equal group 

covariance in their simulation study. 

 

There is no denying that most of the real data have a small proportion of data 

contaminations. Therefore, it seems essential to choose estimators having high 

efficiency and strong robustness properties under the LDA for solving classification 

problem. Nevertheless, the two properties of normality and homoscedasticity are 

hardly attained simultaneously. To abate these conflicts, this study identifies six 

different robust estimators where four will use coordinatewise based and two will 

utilize distance based estimators, in constructing new RLDRs. These estimators 

replace the classical estimators which known to be sensitive to non-normality and 

heterogeneity of the covariance in the LDA. 
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To identify the objectives of the study, several research questions have been 

addressed below: 

(i) will the coordinatewise approach be able to increase the performance of LDR? 

(ii) will the distance approach be able to increase the performance of LDR? 

(iii) can the coordinatewise and distance based approach save the computational 

time of LDR? 

(iv) can the proposed RLDRs perform well in real data application? 

 

1.5 Objective of the Study 

The primary goal of this study is to search for robust alternatives in LDA that can 

minimize misclassification error rates under non-normality and heteroscedasticity. 

To achieve this primary goal, the following objectives need to be accomplished as: 

(i) to construct four RLDRs via coordinatewise based approach which are 

RLDRMw, RLDRM, RLDRWw and RLDRW. 

(ii) to construct two RLDRs via distance based approach which are RLDRV and 

RLDRT. 

(iii) to evaluate the misclassification error rates of six proposed RLDRs, CLDR 

and existing RLDRD using simulated data. 

(iv) to evaluate the computational time of six proposed RLDRs, CLDR and 

existing RLDRD using simulated data. 

(v) to validate the performance of six proposed RLDRs with CLDR and existing 

RLDRD in real data application. 
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1.6 Significance of the Study 

The contribution of this study is to introduce and construct six new RLDRs to 

improve the performance of LDA. With such proposed RLDRs, it is able to provide 

at least one good alternative in solving classification problems. Thus, the implication 

of the proposed RLDRs is towards knowledge development in the supervised 

classification problems. LDA is widely used when dealing with categorical variables 

and the quality of performance of LDA is important for allocating future objects to 

the correct groups. This study will have impact upon those who are doing projects 

related classification by ensuring that accurate and appropriate classification rules are 

readily available to them. Besides, the researchers will not be constrained to the 

assumption of normality and can work with the original data without considering 

about the shape of the distributions and still be able to achieve accurate and 

appropriate classification rule. Thus, there is safeguarding the quality of their end 

results. 

 

1.7 Scope of the Study 

This study focuses on the problem of linear discriminant analysis for classifying 

observations into one of two groups. This study concerns on evaluating the 

performance of the proposed RLDRs measured in terms of misclassification error 

rates and provides at least one good alternative which can generating optimal or  

near-optimal result even under contaminated data. The misclassification cost for both 

groups are assumed identical in this study due to the related expertise knowledge is 

hard to achieve. Meanwhile, the prior information for each group is obtained based 

on the training sample sizes. The proposed RLDRs will be implemented using 

MATLAB R2009a. 
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This study uses simulation and real data. In the simulation study, three different sets 

of balanced sample sizes (n1, n2) are generated as training data classified as small 

sample sizes (20, 20), moderate sample sizes (50, 50) and large sample sizes (100, 

100). Another three sets of unbalanced sample sizes are also generated to study on 

the effect of unbalanced sample sizes on LDR, which are classified as small 

discrepancy (n1 = 50, n2 = 20), moderate discrepancy (n1 = 100, n2 = 50) and large 

discrepancy (n1 = 100, n2 = 20) in group sizes. These balanced and unbalanced 

sample sizes are applied into different dimensions, d = 2, 6, 10. Generally, the 

suggested training data for both uncontaminated and contaminated data are randomly 

generated and used to construct the discriminant rule. In this study, only 

uncontaminated test data are used to validate the constructed discriminant rule. These 

process are repeated for 2000 times. The average and computational time for 

misclassification error rates are computed to access the performance of LDR. 

 

In the real data application, secondary data on glucose level to distinguish the normal 

and diabetic patients are used. Three independent variables namely X1 (plasma 

glucose response to oral glucose), X2 (plasma insulin response to oral glucose) and X3 

(degree of insulin resistance) are used to classify the subjects into groups of no 

diabetes (normal) or diabetes. These diabetes data can be considered as low 

dimension data. 

 

1.8 Outline of the Study 

The first chapter provides an introduction of the study which includes the 

background of the study, the challenge and problem that arises when the assumptions 

of LDA are violated. Besides, the weaknesses of LDA as well as the existence robust 
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estimators in LDA are mentioned. It also includes the objectives of the study, the 

significance, the scope and outline of the study. 

 

Chapter Two mainly presents the theory and concept related to LDA. These 

fundamental theory and concept will help us in exploring and understanding LDA 

more deeply.  Besides, this chapter also describes and explains the benefits and 

drawbacks among classical estimators and robust estimators. Previous researches 

which are related to LDA and robust estimators will also be reviewed in Chapter 

Two. 

 

Chapter Three is mainly concerned on the methodology of the six proposed RLDRs 

for this study which are RLDRMw, RLDRM, RLDRWw, RLDRW, RLDRV and RLDRT. 

The procedures and flow charts are discussed in more detail in this chapter, followed 

by the discussion on the simulation study conditions. 

 

The results and discussion of the simulation study of the proposed RLDRs via 

coordinatewise and distance based approaches are presented in Chapter Four and 

Chapter Five respectively. A comparative study of the proposed RLDRs with the 

CLDR and RLDRD will be conducted in order to evaluate the performance of these 

rules. Finally the real life problem implementation on the proposed RLDR also will 

be reported in Chapter Five. 

 

Last but not least, Chapter Six will provide a brief conclusion of this study and 

recommendations for further studies. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Chapter Two discusses about the literature review on the discriminant analysis and 

robust estimators. These elementary theory and concept will help us to understand 

more on linear discriminant analysis. The objective and assumption of linear 

discriminant analysis are shown in this chapter. Various estimators such as classical 

estimates and robustness estimates that have been developed for linear discriminant 

analysis will be presented in this chapter. Moreover, some previous researches 

related to the linear discriminant analysis and robust estimators will be considered in 

this chapter.   

 

2.2 Discriminant Analysis 

There is a vast literature on discriminant analysis. The general theory of discriminant 

analysis is described in Anderson (1984) and McLachlan (2004). The linear 

discriminant analysis (LDA) was introduced by Fisher (1936) and the optimal 

discriminant rule was formulated by Welch (1939). Since then, the field of 

discriminant analysis has grown rapidly. Many methods have been invented such as 

quadratic discriminant analysis (QDA) (Ghojogh & Crowley, 2019), Bayes quadratic 

discriminant analysis (BQDA) (Srivastava, Gupta & Frigyik, 2007), logistic 

discriminant analysis (LoDA) (Kurita, Watanabe & Otsu, 2009), regularized 

discriminant analysis (RDA) (Friedman, 1989; Guo, Hastie & Tibshirani, 2005), 

penalized discriminant analysis (PDA) (Witten & Tibshirani, 2011) and several 

nonparametric procedures such as kernel discriminant analysis (You et al., 2011; 
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Zhou & Tang, 2010) and k-nearest neighbor method (Hastie & Tibshirani, 1996; Kim 

et al., 2011). 

 

LDA is typically carried out using Fisher’s method and the development of linear 

classification rules which the rule associated with linear boundaries between the 

groups is most appropriate through LDA. LDA can be used to determine the variable 

separates between two or more groups and to derive a classification rule for 

predicting the group membership of new observations. The more detail about LDA 

will be discussed in the following section.  

 

2.3 Linear Discriminant Analysis (LDA) 

LDA is a statistical techniques concerned with distinguishing distinct sets of 

observations from the two or more populations and with allocating new observations 

into one of the known populations via discriminant rules. The simplest LDA has two 

groups. This LDA creates a linear discriminant function through the centroids of the 

two groups to discriminate between them.  

 

In short, LDA is a multivariate technique which is apt when the dependent variable is 

a categorical variable and the predictor variables are numerical variables. Therefore, 

LDA is suitable to be implemented to any research question with the purpose of 

understanding group membership, whether the groups comprise of persons (e.g., 

cancer patients versus non-cancer patients), company (e.g., distress versus non-

distress), products (e.g., good selling versus bad selling), or any other entity that can 

be measured on a series of predictor variables.   
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In LDA, the populations are known a priori and its primary objective is to construct 

discriminant rule which can allocate previously unclassified observations or 

individuals into these populations in an optimal condition. More precisely, suppose 

there is a finite number, g, of distinct populations, categories, classes or groups, 

which we shall denote as groups, 𝜋1, … , 𝜋𝑔. An entity of interest is assumed mutually 

exclusive to one of the groups and the group membership of the entity is the 

nonmetric variable, z where 𝑧 = 𝑖 implies that it belongs to group 𝜋𝑖(𝑖 = 1,2, … , 𝑔). 

There is also the d-dimensional vector which is independent variables 𝐱 =

(𝑥1, … , 𝑥𝑑)′ containing the measurements on d characteristics of the entity. In this 

framework, the association between the group membership z and the vector x major 

concern that need to be looked upon. 

 

For instance, a two-group discrimination problem where 𝐱 ∈ 𝜋1 ∪ 𝜋2  is a new 

observation that we would like to classify in either 𝜋1  or 𝜋2  and we have a 

discriminant rule F such that x is classified in 𝜋1  if 𝐹(𝐳; 𝜋1, 𝜋2) > 0 . Basically, 

classification or discriminant rules are usually constructed from training samples.  

Measured characteristics of randomly selected observations known to come from 

each of the two populations are examined for differences. Essentially, the set of all 

possible observations is divided into two regions which are 𝑅1 and 𝑅2 such that if a 

new observation falls in 𝑅1, it is classified to 𝜋1, or it belongs to 𝜋2 if it falls in 𝑅2. 

 

To ensure that classification is done with upmost precision, the users of LDA need to 

emphasize on two aspects, prior probabilities and misclassification costs. A prior 

probability is the probability that an observation belongs to one of the groups 

(Lachenbruch & Goldstein, 1979). To get some insight on prior probabilities, let us 
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take an example on financial institutions. As expected, there tend to be more non-

distressed than distressed financial institutions. Since the probability of a financially 

distressed and ultimately bankrupted institution is very low, therefore a randomly 

selected financial institution should be classified as non-bankrupt unless the data 

tremendously favours distressed. A good classification should take these “prior 

probabilities of occurrence” into consideration. It may be that one of the two 

populations has a lower possibility of occurrence than the other, since one of the two 

populations is relatively smaller or vice versa. Usually, the prior probability of group 

is estimated simply by empirical frequencies of the training samples. 

 

On the other hand, misclassification cost also play a big role in the development of 

classification rule. Misclassification cost is the cost of assigning an observation to the 

group 𝜋2 when the observation actually belongs to the group 𝜋1  (Lachenbruch & 

Goldstein, 1979). Suppose that classifying a 𝜋1 observation into 𝜋2 represents a more 

serious subsequence than classifying a 𝜋2 observation into 𝜋1. For instance, failing to 

diagnose a potentially fatal illness is significantly more “costly” than judging that the 

disease exist, when in fact, it is not. Unfortunately, the misclassification cost is 

difficult to be defined unless expert opinions are obtained. However, the 

misclassification cost also should, whenever possible, consider in the development of 

good classification rule. Most of the time, the misclassification cost are assumed 

equal. 

 

The conditional probability of an observation from 𝜋1 being misclassified in 𝜋2 is 

𝑃2|1
𝐹 = 𝑃{𝐹(𝐱; 𝜋1, 𝜋2) < 0|𝐱~𝜋1} and the conditional probability of classifying an 

observation as 𝜋1 when, in fact it is from 𝜋2  is 𝑃1|2
𝐹 = 𝑃{𝐹(𝐱; 𝜋1, 𝜋2) > 0|𝐱~𝜋2}. 
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These conditional probabilities can be obtained through their probability density 

functions. Figure 2.1 presents the misclassification probabilities for hypothetical 

classification regions when univariate case, d = 1. The expected cost of 

misclassification (ECM) is 𝑝1𝐶1𝑃2|1
𝐹 + 𝑝2𝐶2𝑃1|2

𝐹  where 𝑝1  and 𝑝2  are the prior 

probability that an observation comes from 𝜋1 and 𝜋2, respectively with 𝑝1 + 𝑝2 =

1.  Meanwhile, 𝐶1 and 𝐶2 are the cost of misclassification of an observation from 𝜋2 

in 𝜋1 and from 𝜋1 in 𝜋2, respectively. A result of small or nearly as small as possible 

in ECM means that the classification or discriminant rule is acceptable. Therefore, 

minimize ECM is one of criteria to determine “good” classification or discriminant 

rule, since ECM will be zero when all observations are correctly classified (Johnson 

& Wichern, 2002; Lachenbruch & Goldstein, 1979). 

 

 

 

 

Figure 2.1. Misclassification probabilities for hypothetical classification regions 

when d = 1. 

 

It is a common practice to assume that the prior probabilities are equal and that the 

misclassification costs are also equal for the two populations where 𝐶1/𝐶2  = 1 for 

classification. The ECM in this case is 
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chosen to minimize the total probability of misclassification (TPM) as Equation 2.1 

(Johnson & Wichern, 2002; Lachenbruch & Goldstein, 1979).  

TPM = 𝑃𝐹 = 𝑝1𝑃2|1
𝐹 + 𝑝2𝑃1|2

𝐹     (2.1) 

 

Generally, in the framework of discriminant analysis, a discriminant rule F* is said 

to be optimal if 𝑃𝐹∗
≤ 𝑃𝐹  for any other discriminant rule F. Moreover, a 

discriminant rule F* is noted to be more robust to a deviation from distribution 

property 𝜀 than discriminant rule F**, if F* is more optimal than F** under the 

particular deviation from 𝜀 . In order to obtain the optimal LDA, there are some 

assumptions that need to be fulfilled. Any violation on these assumptions will cause 

the accuracy of LDA to be in jeopardy. 

 

The main assumptions for LDA are multivariate normality of the independent 

variable and homoscedasticity for the groups. Data which not fulfilled the 

multivariate normality assumption will give large impact on the estimation of the 

discriminant function (Anyanwu Paul, Dan & Sidney, 2015; Glèlè Kakaï, Pelz & 

Rudy, 2010; Lei & Koehly, 2003; Rausch & Kelly; 2009). The classification process 

will be negatively affected by unequal covariance matrices (Anyanwu Paul et al., 

2015; Glèlè Kakaï et al., 2010; Klecka, 1975). The statistical significance of the 

estimation process is adversely affected when the sample sizes are small and the 

covariance matrices are not identical (Glèlè Kakaï et al., 2010). The more likely case 

is that of unequal covariance among groups of adequate sample size, whereby 

observations are overclassified into the groups with larger covariance matrices. 
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Beside those aforementioned issues, existence of outliers has a significant impact on 

the classification accuracy of LDA results (Acuña & Rodríguez, 2005; Croux et al., 

2008; Pai et al., 2012; Zhou & Kamata, 2013). The experimental results from Acuña 

and Rodríguez (2005) shown that the performance of LDA is affected by the 

presence of outliers. It is because outliers have impact to mean and cause variability 

increased. In addition, Croux et al. (2008) also presented that the robust method such 

as S-estimators and reweighted MCD (RMCD) estimators completely outperform the 

classical rule based on sample means and covariance in the presence of outliers. 

Therefore, action for elimination of outliers is needed in LDA. 

 

The discriminant rule is built to be optimal in classifying the new observation x 

under the assumptions that 𝜋1 and 𝜋2 are both multivariate normal distribution with 

different location but identical covariance matrix (Croux et al., 2008; Gyamfi, 

Brusey, Hunt & Gaura, 2017). In particular, 𝜋1  and 𝜋2  are 𝑁𝑑(𝛍1, 𝚺1)  and 

𝑁𝑑(𝛍2, 𝚺2)  respectively and under the assumption that 𝚺1 = 𝚺2 = 𝚺 . The 

discriminant rule is based on a linear discriminant function as Equation 2.2 when 

parameters are known. 

𝐹(𝐱; 𝜋1, 𝜋2) = (𝛍1 − 𝛍2)𝑡𝚺pooled
−1 {𝐱 −

1

2
(𝛍1 + 𝛍2)}                               (2.2) 

However, in most practical situations, the population mean and covariance matrix are 

unknown. These population parameters will be replaced by their estimators, classical 

mean and covariance matrix, respectively. Therefore, the linear discriminant function 

will be shown as Equation 2.3 (Wald, 1944; Anderson, 1951). 

𝐹(𝐱; 𝜋1, 𝜋2) = (�̅�1 − �̅�2)𝑡𝐒pooled
−1 {𝐱 −

1

2
(�̅�1 + �̅�2)}                               (2.3) 

where 
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𝐒pooled =
(𝑛1 − 1)𝐒1 + (𝑛2 − 1)𝐒2

𝑛1 + 𝑛2 − 2
 

 

The Wald-Anderson discriminant rule is then defined as Equation 2.4. 

   Allocate x to 𝜋1 if 

𝐹(𝐱; 𝜋1, 𝜋2) ≥ ln [(
𝐶1

𝐶2
) (

𝑝2

𝑝1
)]                                                                (2.4) 

Allocate x to 𝜋2, otherwise. 

The term with “ln” in Equation 2.3 and Equation 2.4 is the cut-off point for the 

discriminant rule. It is a common practice to use zero as a cut-off point in LDA. 

However, Wald-Anderson discriminant rule is only asymptotically optimal. This 

Wald-Anderson will not be optimal unless the populations are normal distributions 

with common covariance matrix and the sample sizes tend to infinity (Timm, 2002; 

Vlachonikolis, 1986). Alternatively, the linear discriminant function can be 

calculated as Equation 2.5 (Hubert & Van Driessen, 2004). 

𝑑𝑠𝑖(𝐱) = �̅�𝑖
𝑡𝐒pooled

−1 𝐱 −
1

2
�̅�𝑖

𝑡𝐒pooled
−1 �̅� + ln (𝑝𝑖)      𝑖 = 1,2                        (2.5) 

 

Therefore, the discriminant rule in the case of two d-variate normal populations can 

be defined as Equation 2.6. 

  Allocate x to 𝜋1 if 

𝑑𝑠𝑖(𝐱) = max{𝑑𝑠1(𝐱), 𝑑𝑠2(𝐱)}                                                            (2.6) 

Allocate x to 𝜋2, otherwise. 

By using Equation 2.6, a generalization discriminant rule to several groups is easily 

to be obtained. The discriminant rule for several groups is assign x to the population 

𝜋𝑖 for which 𝑑𝑠𝑖(𝐱) is largest. 
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However, the use of these classical estimators namely the mean and covariance 

matrix without considering the underlying distribution will have negative impact on 

the discriminant rule (Glèlè Kakaï et al., 2010). This is due to the fact that these 

classical estimators are known to be sensitive to deviation from the assumptions. 

LDA will not achieve its optimal solution if deviations from the normality or 

homoscedasticity occur (Timm, 2002). The LDA will be more sensitive and 

deteriorate easily with the occurrence of serious and/or numerous deviations 

(Anyanwu Paul et al., 2015; Glèlè Kakaï et al., 2010; Klecka, 1975; Lei & Koehly, 

2003; Pai et al., 2012; Rausch & Kelly; 2009).  

 

To circumvent these problems, some works that are related to the robustness issues 

of LDA are addressed by several authors. Lachenbruch et al. (1973) investigated the 

performance of LDA under certain non-normality conditions which are log normal, 

logit normal and the inverse hyperbolic sine normal distributions. With these non-

normality conditions, the effect of non-normality on LDA can be examined. Optimal 

misclassification probabilities in these cases are calculated by taking an appropriate 

inverse transformation. In such cases, finding the cut-off point theoretically using a 

minimal rule is a very difficult problem. So Lachenbruch et al. (1973) determined the 

value of cut-off point, approximately, by using 25 different discrete points. They also 

found that transformation makes the two populations heteroscedastic and provided 

some theoretical results in addition to presenting a Monte Carlo study. Their work 

and the work of others who extended this research, found that LDA is greatly 

affected by these types of non-normality. Fisher linear classification rule applied by 

Glèlè Kakaï et al. (2010) proved that non-normality and/or heteroscedasticity will 

negatively impacted the performance of the allocation rule for LDA. 
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As a solution to the sensitivity problem of the classical estimators in LDR, several 

authors have proposed alternative procedures for performing classification in an 

optimal and robust manner. Some nonparametric methods, which are proposed in 

literature, like kernel-based classification rule (Mojirsheibani, 2000), k-nearest 

neighbour classification rule (Hellman, 1970), decision trees (Ting, 2002), neural 

networks (Pao, 1989), logistic regression (Brzezinski & Knafl, 1999), support vector 

machines (Furey et al., 2000; Gunn, 1998) and combined classifiers (LeBlanc & 

Tibshirani, 1996; Mojirsheibani, 1999). Various robust estimators using 

coordinatewise based and distance based approaches also have also been proposed to 

construct the robust linear discriminant rules. These robust estimators such as 

modified maximum likelihood estimators (Tiku & Balakrishnan, 1984), M-estimators 

(Wang & Romagnoli, 2005), S-estimators (Croux & Dehon, 2001; He & Fung, 2000), 

minimum volume ellipsoid (MVE) estimators (Chork & Rousseeuw, 1992), 

coordinatewise trimming estimators (Sajobi et al., 2012), minimum covariance 

determinant (MCD) estimators (Alrawashdeh et al., 2012; Hubert & Van Driessen, 

2004; Rousseeuw & Van Driessen, 1999), feasible solution algorithm (Wina et al., 

2014), local neighborhood search algorithm (Gyamfi et al., 2017), Laplacian 

assumption (Yu, Cao & Jiang, 2017), Tyler’s Estimator (Auguin, Morales-Jimenez & 

McKay, 2019) and Ratio Minimization of ℓ1,2 – Norms (Nie, Wang, Wang & Huang, 

2019; Wen et al., 2019; Zhao, Wang & Nie, 2019). 

 

2.4 Apparent Error Rate (APER) 

One important way of measuring the performance of any classification or 

discriminant rule is to calculate its misclassification error rates. In working with 

LDA, there should be enough data available to split the sample into two groups in 
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order to validate the discriminant rule. One of the group treated as the training 

sample is used to compute and then form the discriminant rule while the other group 

as validation sample is reserved to evaluate its performance. When the population 

density functions are known, the minimum TPM can be calculated as Equation 2.1. 

However, it is a common practice that most of the population parameters used in the 

discriminant rules usually estimated from the sample; therefore the evaluation of 

misclassification error rates is not a straightforward process. Nevertheless, there is a 

method of evaluation that does not depend on any density form of the parent 

populations and that can be computed for any classification procedure, known as 

apparent error rate (APER). APER is defined as the fraction of observations in the 

training sample that are misclassified by the sample classification function. It is 

easily obtained from classification matrix as shown in Table 2.1, which shows actual 

group versus predicted group membership (Johnson & Wichern, 2002). 

 

Table 2.1 

A Classification Matrix 

  Predicted membership 

  𝜋1 𝜋2 

Actual  Membership 

𝜋1 𝑛1𝑐 𝑛1𝑀 = 𝑛1 − 𝑛1𝑐 

𝜋2 𝑛2𝑀 = 𝑛2 − 𝑛2𝑐  𝑛2𝑐 

 

The notations on the diagonal of the matrix represent the number of correct 

classifications where 𝑛1𝑐 is the number of observations from population 1 which are 

correctly classified as population 1, while 𝑛2𝑐  is the number of observations from 

population 2, correctly classified as population 2. Conversely, the off-diagonal of the 
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matrix shows the misclassification which mean 𝑛1𝑀  and 𝑛2𝑀  are the number of 

population 1 observation misclassified as belongs to population 2 and number of 

population 2 observation misclassified as belongs to population 1, respectively. 

Therefore, the computation of APER is presented as in Equation 2.7. 

APER =
𝑛1𝑀 + 𝑛2𝑀

𝑛1 + 𝑛2
                                                            (2.7) 

where 𝑛1  and 𝑛2  are the sample sizes from population 1 and population 2, 

respectively. 

 

The APER can be identified as the probability of misclassified observations in the 

training sample.  The formula is simple and easy to calculate. However, it tends to 

underestimate the actual misclassification error rate and this problem could be 

mitigated if very large sample sizes 𝑛1 and 𝑛2 for each group is used. This is because 

the same data are used to both develop and evaluate the discriminant rule. Therefore, 

APER also called as highly optimistic estimate.  

 

2.4.1 Approaches to Improve APER 

Various ways such as data splitting, cross-validation, re-substitution and bootstrap 

approaches can be applied to improve the estimate of the misclassification error rate 

of a discriminant rule (Hand, 1986). The advantages of these improved 

misclassification error rate approaches are easy to calculate and do not require 

distributional assumptions. Besides, these approaches also can eliminate the bias in 

the APER.  Data splitting approach is to split the total sample into a training sample 

and a validation sample. Through this approach, the training sample is used to 

develop the discriminant rule and the validation sample is used to measure its 

performance. The misclassification error rate is obtained by the probability 
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misclassified in the validation sample. Although this approach solves the bias 

problem of APER but unfortunately, this approach has two main disadvantages. It 

requires large sample sizes, and the function evaluated is not the function of interest, 

because the construction of classification rule requires the use of almost all the data 

to avoid missing any valuable information (Timm, 2002). 

 

Another approach is via a method known as ‘leaving-one-out cross validation’. For 

this approach, the discriminant function is derived from just N – 1 where 𝑁 = 𝑛1 +

𝑛2  and classify the “holdout” observation based on the discriminant function 

developed. Repeat these steps until all the observations are classified. Therefore, the 

total probability misclassified, the estimated APER can be computed as Equation 2.8. 

Estimated APER =
𝑛1𝑀

(𝐻)
+ 𝑛2𝑀

(𝐻)

𝑛1 + 𝑛2
                                                         (2.8) 

where 𝑛1𝑀
(𝐻)

 and 𝑛2𝑀
(𝐻)

 be the number of holdout (H) observation misclassified into 𝜋1 

and 𝜋2, respectively. This estimated APER is nearly an unbiased estimator of the 

expected actual error rate (Johnson & Wichern, 2002; Timm, 2002). 

 

2.4.2 Hit Ratio 

Based on the confusion matrix, a hit ratio which is the overall predictive accuracy of 

the discriminant function can be calculated. Hit ratio is a contradictory saying from 

percentage of misclassification error. For example, the percentage of 

misclassification error is 16.7% then hit ratio can be defined as 83.3%  

(100% –16.7%). The acceptable hit ratio that is recommended by most researchers is 

25% higher than that due to chance (Ramayah, Ahmad, Halim, Zainal & Lo, 2010). 

For example, the chance ratio obtained in a two-group discrimination problem is 
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70%, and then the acceptance hit ratio would be at least 87.5% to indicate the 

classification accuracy of the analysis is satisfactory. Maximum chance criterion 

(MCC) and proportional chance criterion (PCC) are the two chance ratios usually 

used as the benchmark of hit ratio. MCC is based on sample size of largest group 

while PCC is computed by squaring and summing the proportion of cases in each 

group based on the prior probabilities for groups. These two chance criterion can be 

computed as formula 2.9 and 2.10. 

MCC = max {
𝑛𝑖

𝑁
}        𝑖 = 1,2                                                   (2.9) 

PCC = 𝑝1
2 + 𝑝2

2                                                                         (2.10) 

where 𝑛𝑖 be the number of observations for group i, N be the total observations, 𝑝1 

and 𝑝2 are the prior probability that an observation comes from 𝜋1 and 𝜋2. 

 

Moreover, a statistical test called Press’s Q statistic can be used for the 

discriminatory power of the classification matrix when compared with a chance 

model (Johnson & Wichern, 2002). By using Press’s Q statistic, the predictive 

accuracy of variable classification can be determined. It is a comparison of correct 

classifications with the total sample size and the number of groups. Press’s Q statistic 

will be compared with the chi-square value for one degree of freedom. If the statistic 

value exceeds the chi-square value, the classification matrix can be concluded that 

statistically better than chance model. However, a lower classification rate is 

expected to be achieve as the sample sizes increase. The computation of Press’s Q 

statistics is as Equation 2.11. 

Press's Q =
[𝑁 − 𝑛𝑐𝑔]2

𝑁(𝑔 − 1)
                                                        (2.11) 
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where N is the total sample sizes, nc is the number of observations correctly 

classified and g is the number of group. This calculated statistic value is compared 

with the chi-square value for 1 degree of freedom. 

 

In general, a good classification scheme should have satisfactory discriminatory 

power and also minimum misclassification error rates. These could be achieved with 

the integration of robust statistics into LDA for constructing a robust discriminant 

rule (LDR) to solve the sensitive problems of LDA. 

 

2.5 Robust Statistics 

The study of robust statistics is very important since theoretical models rarely fit 

perfectly in real life situation. Huber (1964) developed a robust location estimator 

known as M-estimator, and this robust estimator was expanded to the multivariate 

case by Maronna (1976), Huber (1977) and Collins (1982). Further studies and 

modifications on this estimator are continuously conducted by other researchers 

(Collins & Wiens, 1985; Wiens & Zheng, 1986). A general overview of the concept 

of robustness has been discussed comprehensively by Huber (1981) and Hampel, 

Ronchetti, Rousseeuw and Stahel (1986). In short, robust statistics can be stated as 

the stability theory in statistical procedures because it systematically studies the 

deviation effects from modeling assumptions on parametric procedures and, if 

obligatory, develops new or better procedures to overcome sensitive problems of 

parametric procedures. 
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2.5.1 Robust Estimators 

From the literature, robust estimators are well known to be more effective and 

efficient when dealing with data which do not conform to the assumptions, as 

compared to the classical estimators. In multivariate settings, two commonly used 

and investigated robust approaches are coordinatewise based and distance based 

(Fekri & Ruiz-Gazen, 2015).    

 

The coordinatewise based is the simplest and straightforward approach. It considered 

the one-dimensional robust estimation to each coordinate and then combines the 

results into a d-dimensional estimate. The robust estimators will replace the classical 

estimators to obtain the good results (Rousseeuw & Hubert, 2011). For distance 

based approach, the robust estimation is performed through Mahalanobis distance for 

outlier detection. In this approach, the outliers will be identified and removed then 

the remaining good data set will be used for estimation using the default classical 

estimators. Since this approach does not require any probability distribution and also 

computing the probabilistic distribution to the high-dimensional data is difficult, 

hence, the distance based approach is well-known in detecting outliers.  

 

2.6 Coordinatewise Based Robust Estimators 

Several coordinatewise based robust location estimator are introduced in this section. 

They are median, trimmed mean, winsorized mean, M-estimator, modified one step 

M-estimator (MOM) and winsorized modified one step M-estimator (WMOM). 

Besides, several robust scale estimators such as MADn, Sn, Qn, Tn and robust 

covariance also presented here. 
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2.6.1 Location Estimators 

In this section, the location estimation of a distribution in ℝ𝑑  is considered. It is 

known that location estimate is a measurement that describes a distribution. Suppose 

that a multivariate random sample 𝑌 = 𝐘1𝑑 , … , 𝐘𝑛𝑑 such that the sample consists of n 

data points for each of d dimensions. Then 𝐭𝑛(𝑌) can be defined as an approximation 

of the location of the distribution. Besides, 𝐭𝑛(𝑌) have four conditions need to be 

fulfilled as a qualified measure of location. The four conditions are listed as follows: 

i. Location equivariance: 𝐭𝑛(𝑌 + 𝐛) = 𝐭𝑛(𝑌) + 𝐛 for all constant vector b 

ii. 𝐭𝑛(−𝑌) = −𝐭𝑛(𝑌) 

iii. 𝑌 ≥ 0 implies that 𝐭𝑛(𝑌) > 0 

iv. Scale equivaraince: 𝐭𝑛(𝑌𝐀) = 𝐭𝑛(𝑌)𝐀 for all diagonal 𝑑 × 𝑑 matrices A 

 

2.6.1.1 Median 

Bickel (1964) discovered that the median is one of the robust alternatives of the 

sample mean. The median is unaffected by the gross error even up to 50% of gross 

error, while the arithmetic mean give no space for any errors in the data. That is what 

makes the arithmetic mean to have breakdown point (BP) of 0%, where BP is a 

global robustness measure and it is stated as the minimum proportion or 

contamination (with respect to sample size) which is affecting the estimates to 

become useless. Other robust univariate location statistics such as the M-estimator 

was extended from the median.  Apart from having the highest BP of 50%, median is 

simple and easy to calculate, thus be the main reason to why the median is selected 

as robust location estimator in the past. 
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However, there is a problem of median in the multivariate case which is this location 

estimator does not necessarily lie within the general data cloud (Rousseeuw & Leroy, 

1987). Although the median is robust but lacks of the affine equivariance property, 

that is, the data linear translations are not paralleled with the similar translation of the 

estimator. 

 

2.6.1.2 Trimmed Mean and Winsorized Mean 

Tukey (1960) introduced the idea of trimming and winsorizing in univariate case and 

then also extended by Bickel (1965) to higher dimensions. Bickel developed the 

metrically trimmed and winsorized means in the multivariate scenario. Definitely, 

these trimmed and winsorized estimators are robust especially dealing with outliers 

and contaminated data. Nevertheless, these estimators are lack of the desired affine 

equivariance. Fortunately, the further discussion by Huber (1972) on a “peeling" 

procedure for location parameters and a similar procedure based on iterative 

trimming was proposed by Gnanadesikan and Kettenring (1972) which resulted in 

the location estimators to become affine equivariance. 

 

A trimmed mean is the arithmetic mean of remaining data after deleting the bottom 

k-th observations and the top k-th observations from the original ordered set of 

observations. The concept of trimmed mean is discarding the extreme observations 

with a fixed proportion 𝛼% trimming from each end. Wilcox (2005) recommended 

that a fixed proportion of 20% is the suitable amount of trimming process. 

Nevertheless, some particular circumstances such as small sample sizes might cause 

less trimming percentage are required. In univariate case, trimmed mean is well 

known relatively insensitive to outliers and it provides better estimates of the typical 
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individual score in a skewed distribution or outliers’ existence in the data (Keselman 

et al., 1998). 

 

In the univariate case, the concept of trimming process is straightforward and well-

studied in many fields such as hypothesis testing. But this process is neither unique 

nor very explicit in the multivariate case. Although there are various ideas of 

multivariate trimmings in theoretical sceneries but most of them are lack of practical 

and applied considerations. Coordinatewise trimming approach is a straightforward 

and easy way application in multivariate sample. Since this approach considered the 

one-dimensional by one-dimensional, hence there is possibility that not all 

components of a “suspected outlier” are completely removed from the sample and 

the information of “clean data” components is still existent in the sample (Srivastava 

& Mudholkar, 2001). 

 

The winsorized mean is another robust estimator of location measure. The 

winsorized mean follows the same procedures as trimmed mean to eliminate the 

outliers at both ends. But the only different between trimmed mean and winsorized 

mean, rather than discarding observations, the winsorized mean substitutes the 

outliers with the largest and smallest remaining observed values. Thus, the 

winsorized mean still remains the original sample sizes. In winsorizing process, each 

of the k smallest values are substituted by the (k + 1)-th smallest value meanwhile the 

k largest values are substituted by the (k – 1)-th largest value. Then, the winsorized 

mean is the average of the “clean” data set. 
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2.6.1.3 M-estimators 

Huber (1964) pioneered the work on robust maximum likelihood estimators denoted 

as M-estimators, to eliminate the outliers in univariate case. M-estimators used 

reweighted formulas to reduce the effect of outliers. An iterative procedure for a 

covariance matrix which is proposed by Hample (1973) was resulting M-estimators 

to be affine equivariance. Maronna (1976) extended the idea of Huber’s univariate 

M-estimators of (Huber, 1964) to multivariate M-estimators. Affine equivaraince M-

estimators are the earliest robust estimators’ analogues to the classical sample mean 

and sample covariance matrix. The basic equations defining the M-estimators of 

multivariate location, �̅�M, and of covariance matrix, SM, are as Equation 2.12 and 

2.13, respectively. 

�̅�M = ∑{𝑤1(𝑓𝑖)𝐲𝑖}

𝑛

𝑖=1

∑ 𝑤1(𝑓𝑖)

𝑛

𝑖=1

⁄                                              (2.12) 

𝐒M =
1

𝑛
∑ 𝑤2(𝑓𝑖

2)

𝑛

𝑖=1

(𝐲𝑖 − 𝐲)(𝐲𝑖 − 𝐲)𝑡                                        (2.13) 

where n is the sample size, 𝑤1(𝑓𝑖) and 𝑤2(𝑓𝑖
2) are the weight functions to satisfy 

some conditions (Huber, 1964; Mannora, 1976). 

 

If small perturbations exist in a data set would not influence the performance of 

multivariate M-estimators. Besides, M-estimators have reasonably good efficiencies 

over a wide range of population theoretical models (Zuo, 2006). Nevertheless, M-

estimators have very low breakdown point when dealing with high dimensions data 

and this is the main reason that M-estimators are not among the first choices for 

location and scale estimation in the multivariate case (Maronna, 1976; Zuo, 2006). 
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Randles, Broffitt, Ramberg and Hogg (1978b) considered robust versions of the 

normal-based LDR in the two-group discrimination problem. When the normality of 

the LDR is violated, the misclassification error rates are not well-balanced which 

means that the misclassification rate of group 1 differs significantly than the 

misclassification rate of group 2. Randles’ method is intended to give a well-

balanced misclassification and the LDR is formed by using Huber-type M-estimates 

in conjunction with a rank-cutoff point. This estimate provides an extra robustness 

degree and at the same time produces some control over the relative size of the two 

unconditional error rates. Randles et al. (1978a) considered using M-estimators to 

plug in for the sample mean and covariance matrix, which use weight functions that 

place less weight on those observations which are far from the overlapping regions of 

the two populations. The results indicate that the proposed method is more robust 

than the classical method.  

 

Wang and Romagnoli (2005) applied an M-estimate winsorization method in 

discriminant analysis for process fault diagnosis. The effects of outliers in the 

training samples are eliminated, while the effectiveness as well as the robustness is 

retained. The case study from Wang and Romagnoli (2005) also shown that the 

proposed method can obtain a more accurate model and has better performance than 

the conventional discriminant analysis by decreasing the misclassification error rates.  

 

2.6.1.4 Modified One Step M-estimator (MOM) 

One step M-estimator is a strategy similar to the fully iterated M-estimator but it is 

slightly easier to calculate (Huber, 1981). In contrast to the usual trimmed mean 

which used a fixed percentage to discard the observation symmetrically; the one step 
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M-estimator trims asymmetrically. Trimmed mean is known to have low BP and 

used fixed trimming percentage in data analysis (Md Yusof, Syed Yahaya & 

Abdullah, 2014). To determine the most appropriate trimming percentage would be 

the main issue in calculation of trimmed mean. One step M-estimator used a fraction 

of the observations as the trimming amount. The one-step M-estimator empirically 

employed the trimming process by taking consideration on the shape of data 

distribution (Wilcox & Keselman, 2003). For instances, more trimming is required 

on the skewed tail while the trimming process is done on both tails for symmetric 

with heavy-tailed distribution. The one step M-estimator for location, �̅�M∗ , can be 

defined in Equation 2.14. 

�̅�M∗𝑗 = 1.28MADn𝑗(𝑟2 − 𝑟1) + ∑ 𝐲(𝑖)𝑗

𝑛𝑗−𝑟2

𝑖=𝑟1+1

𝑛𝑗 − 𝑟1 − 𝑟2⁄      𝑗 = 1,2, … . 𝑑         (2.14) 

where 

𝑟1, 𝑟2 = total number of trimmed observations for the both end of data 

𝑟1 = total number of observations 𝑦(𝑖)𝑗 ∋  (𝑦(𝑖)𝑗 − �̂�𝑗) < −1.28(MADn𝑗) 

𝑟2 = total number of observations 𝑦(𝑖)𝑗 ∋  (𝑦(𝑖)𝑗 − �̂�𝑗) > 1.28(MADn𝑗) 

�̂�𝑗 = median in dimension j 

𝐲(𝑖)𝑗 = i-th ordered observations in dimension j  

𝑛𝑗 = total number of observations in dimension j 

MADn𝑗 = 1.4826 MAD  

MAD =  Median{|𝑦(1)𝑗 − �̂�𝑗|, … , |𝑦(𝑛)𝑗 − �̂�𝑗| } 

Median absolute deviation (MAD) used in the Equation 2.14 is one of the scale 

estimators and detail discussion on MAD will be presented in the Section 2.6.2.1. 
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The one step M-estimator shows unsatisfactory performance under small sample 

sizes (Wilcox & Keselman, 2003). Therefore, modification on one step M-estimator 

has been made by Wilcox and Keselman (2003) to produce the highest BP of 

univariate location measure and also performs well with small sample sizes. Denoted 

as modified one-step M-estimator (MOM), it is calculated by detecting and 

discarding outliers from the data, and then averaging the observations left. By using 

coordinatewise approach, the MOM estimator, �̅�MOM , for multivariate case can be 

stated as Equation 2.15. 

�̅�MOM𝑗 = ∑ 𝐲(𝑖)𝑗

𝑛𝑗−𝑟2

𝑖=𝑟1+1

𝑛𝑗 − 𝑟1 − 𝑟2⁄         𝑗 = 1,2, … 𝑑                      (2.15) 

where 

𝑟1 = total number of observations 𝑦(𝑖)𝑗 ∋  (𝑦(𝑖)𝑗 − �̂�𝑗) < −2.24(MADn𝑗) 

𝑟2 = total number of observations 𝑦(𝑖)𝑗 ∋  (𝑦(𝑖)𝑗 − �̂�𝑗) > 2.24(MADn𝑗) 

Besides the term containing MADn in Equation 2.14 is dropped, the constant 2.24 is 

used rather than 1.28 to detect outliers in the MOM estimator. 

 

As shown in Equation 2.14 and 2.15, the number of extreme observations can be 

determined by the following criteria: 

𝑟1 = total number of observations 𝑦(𝑖)𝑗 ∋  (𝑦(𝑖)𝑗 − �̂�𝑗) < −𝐾(MADn𝑗)              (2.16) 

𝑟2 = total number of observations 𝑦(𝑖)𝑗 ∋  (𝑦(𝑖)𝑗 − �̂�𝑗) > 𝐾(MADn𝑗)                 (2.17) 

where K is the constant value, 𝑟1 and 𝑟2 are the total number of outliers in the left and 

right tail, respectively. The MOM estimator is identical to the arithmetic mean if no 

extreme observations exist. The typical choice of constant K = 1.28 for the one step 

M-estimator was adjusted to 2.24 in the MOM case. The constant K = 2.24 was 

chosen to obtain a reasonably good efficiency under normal distribution, even in 
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small sample sizes scenarios (Haddad et al., 2013; Othman, Keselman, Padmanabhan, 

Wilcox & Fradette 2004; Syed Yahaya, Othman & Keselman, 2006; Wilcox & 

Keselman, 2003). Moreover, Rousseeuw and Van Zomeren (1990) introduced a 

special case of a multivariate outlier detection approach by using K = 2.24 as the 

criterion for choosing the sample values. Rousseeuw and Van Zomeren (1990) used 

MVE estimator in calculating robust distance and they employed√𝜒𝑑,0.975
2   as a cut-

off value to identify the exceptional observations. The corresponding cut-off value 

will be approximately to 2.24 if one-dimensional feature (d = 1) applied.  

 

2.6.1.5 Winsorized Modified One Step M-estimator (WMOM) 

Winsorization approach is another common way to deal with outliers. Winsorization 

approach pays more attention to the central portion of a distribution by transforming 

the tails.  Winsorized mean is a remedy for the information loss due to trimming 

process in the calculation of trimmed mean. However, like trimmed mean, the usual 

winsorized mean used the fixed symmetric trimming percentage, by which 

winsorization of the observations is done symmetrically even for the skewed 

distribution data. Consequently, winsorized MOM (WMOM) estimators are 

proposed to overcome the problems (Haddad et al., 2013). 

 

Basically, WMOM follows an automatic trimming approach which takes into 

consideration the shape of data distribution during the trimming process, same as 

MOM. Only outliers will be trimmed away through this automatic trimming 

approach.  However, the trimmed values will be replaced by the remaining lowest 

and highest end of the data rather than just omit them (Tukey & McLaughlin, 1963; 
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Dixon & Tukey, 1968). The problem of losing information due to trimming process 

can be reduced since winsorization always retain the original sample size. 

 

The winsorization process recommended by Wilcox (2012) is used to construct the 

winsorized sample. The winsorized sample can be obtained through Equation 2.18. 

𝐲new(𝑖)𝑗 = {

𝑦(𝑟1+1)𝑗 , if (𝑦𝑖𝑗 − �̂�𝑗) < −2.24 (MADn𝑗)

𝑦(𝑖)𝑗 , if − 2.24 (MADn𝑗) ≤ (𝑦𝑖𝑗 − �̂�𝑗) ≤ 2.24 (MADn𝑗)

𝑦(𝑛𝑗−𝑟2)𝑗  , if (𝑦𝑖𝑗 − �̂�𝑗) > 2.24 (MADn𝑗)

 

(2.18) 

where 𝐲new(𝑖)𝑗  be the i-th ordered observations in dimension j after the replacement 

of trimmed values. This winsorized sample can be used to estimate WMOM, �̅�WM, 

and the corresponding winsorized covariance matrix, SWM as defined in Equation 

2.19 and 2.20, respectively. 

�̅�WM = ∑ 𝐲new(𝑖)𝑗

𝑛𝑗

𝑖=1

𝑛𝑗⁄               𝑗 = 1,2, … , 𝑑                                        (2.19) 

𝐒WM =
1

𝑛 − 1
∑(𝐲WM𝑖 − �̅�WM)(𝐲WM𝑖 − �̅�WM)𝑡

𝑛

𝑖=1

                                 (2.20) 

 

Sajobi et al. (2012) used the coordinatewise trimming estimation methods in repeated 

measure discriminant analysis (RMDA). They used trimmed means and winsorized 

covariance to replace the classical mean and covariance in descriptive discriminant 

analysis. The performance of the proposed robust procedure in terms of bias and root 

mean square error (RMSE) in discriminant function coefficients is compared with the 

conventional maximum likelihood procedure. The computational results revealed 

that maximum likelihood estimators are more sensitive to the shape of distribution 

compared with coordinatewise trimming estimators for non-normal data. Therefore, 
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if the data follow skewed or heavy-tailed distributions, the proposed estimators can 

be applied to detect the outliers. Nonetheless, the efficiency of coordinatewise 

trimming estimators may not be achieved in non-normal data when the structure of 

means and covariance are stated wrongly. 

 

Haddad, Alfaro & Alsmadi (2015) proposed winsorized mean and winsorized 

covariance matrix in constructing robust Hotelling’s T2 control chart. The 

computational results exhibited that the robust control charts are in control of false 

alarm probabilities but tend to be out of control when increasing the sample sizes. 

Besides, the performance of the robust control charts are better than the conventional 

control chart for non-normal data in generating high probability of detecting the out 

of control observations.  

 

2.6.2 Scale Estimators 

Scale estimate is a measurement that describes the scale of a distribution. Like 

location estimators, scale estimators also have the properties of affine equivariance. 

Suppose that a multivariate random sample 𝑌 = 𝐘1𝑑 , … , 𝐘𝑛𝑑  such that the sample 

consists of n data points for each of d dimensions and R as any nonnegative function, 

the properties are as followed: 

i. Scale equivariance: 𝑅(𝑌𝐀) = 𝐀𝑅(𝑌) for all diagonal 𝑑 × 𝑑 matrices A 

ii. 𝑅(𝑌 + 𝐛) = 𝑅(𝑌) for all constant vector b 

iii. 𝑅(𝑌) = 𝑅(−𝑌) 
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The well-known scale estimator, the standard deviation, 𝜎, is not robust and easily 

affected due to outliers. Another familiar scale estimator is MADn which is least 

perturbed by outliers. 

 

2.6.2.1 MADn 

MAD is a popular and robust scale estimator. However, MAD does not estimate the 

standard deviation, 𝜎  when the observations follow a normal distribution. 

Alternatively, MAD estimates 75% quantile of the standard normal distribution, 

𝑧0.75𝜎 which is approximately the value of 0.6745 or 1.4826 (reciprocal of 0.6745). 

Therefore, by rescaling MAD Wilcox (2012) proposed MADn, which is used to 

estimate 𝜎 for normal distribution observations. MADn is the simplest and easiest to 

calculate, given in Equation 2.21. 

MADn𝑗 = 1.4826 Median{|𝑦(1)𝑗 − �̂�𝑗|, … , |𝑦(𝑛)𝑗 − �̂�𝑗| }    𝑗 = 1, 2, . . . , 𝑑    (2.21)  

where 1.4826 =
1

0.6745
. 

 

MADn was identified as the most useful ancillary estimate of scale (Huber, 1981). 

MADn also has the high BP with bounded influence function (IF) (Rousseeuw & 

Croux, 1993), where IF is a local measure of the robustness for the statistical 

functional and it tells what happens when one more observation with value x is added 

to a very large sample. Nevertheless, MADn has low efficiency at approximation of 

37% for Gaussian distributions and it is not an appropriate approach for asymmetric 

distributions since MADn considers a symmetric view on dispersion (Rousseeuw & 

Croux, 1993).  
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2.6.2.2 Sn 

Some alternatives of MADn have been recommended by Rousseeuw and Croux 

(1993) and one of the proposed scale estimators is Sn. Sn is quite similar to MADn 

but it is not biased towards symmetric distribution. Sn can be defined as in Equation 

2.22. 

Sn = 𝑐Median{Median𝑘|𝑦𝑖 − 𝑦𝑘|}        𝑖, 𝑘 =  1,2, … . , 𝑛      𝑖 < 𝑘         (2.22) 

where c is the consistency factor. Sn considers typical distance among the 

observations rather than measures the observation deviation from the central value. 

This made Sn free from location estimator. Rousseeuw and Croux (1993) proved that 

Sn has the highest BP and noticed that Sn was unbiased estimator for finite samples 

when c = 1.1926 from a simulation study. Besides its explicit formula, Sn is more 

efficient (58.23%) than MADn (36.74%) for Gaussian distributions. 

 

2.6.2.3 Qn 

Wilcox (2012) stated that continuity of a scale estimate is required. Continuity leads 

to the issue of how the difference between distributions should be measured. MADn 

and Sn have discontinuities although they have bounded IFs. Rousseeuw and Croux 

(1993) proposed a robust and efficient scale estimator with no discontinuity, Qn, as 

defined in Equation 2.23. 

Qn = 𝑎{|𝑦𝑖 − 𝑦𝑘|;  𝑖 < 𝑘}𝑞       𝑖, 𝑘 =  1,2, … . , 𝑛                         (2.23) 

where 𝑎 is a constant factor and 𝑞 = (𝑠
2
) with 𝑠 = (

𝑛

2
) + 1. Qn considers the lower 

quartile of pairwise distances and retains the same attractive properties of Sn. It also 

has the asymptotic efficiency of 82.3% for Gaussian distribution. A serious drawback 

of Qn is its large computational complexity since the pairwise differences are 

involved. Nevertheless, Sn performed better than Qn at small sample sizes. 
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2.6.2.4 Tn 

Another scale estimator which preserved the attractive properties of a robust scale 

estimator is Tn, defined as in Equation 2.24 (Rousseeuw & Croux, 1993). 

Tn =
1.381

𝑠
∑ {Median

𝑖≠𝑘
|𝑦𝑖 − 𝑦𝑘|}

𝑞

𝑠

𝑞=1

      𝑖, 𝑘 =  1,2, … . , 𝑛             (2.24) 

Tn shares the advantages of Sn and Qn which has a simple and explicit formula with 

the highest BP of 50% and a continuous IF. Moreover, Tn is also applicable in the 

asymmetric distributions. It was demonstrated that Tn is more efficient (52%) than 

MADn for Gaussian distributions (Rousseeuw & Croux, 1992).  

 

Across section 2.6.2.1 to 2.6.2.4, these estimators can be treated as robust scale 

estimators for estimating the population standard deviation by taking the properties 

such as BP, continuous IF and efficiency into account.  

 

2.6.2.5 Robust Covariance 

In the multivariate case, covariance matrix used for the scale estimator and it is well-

known that classical covariance matrix is sensitive to outliers. The classical 

covariance matrix can be calculated as Equation 2.25 (Abu-Shawiesh & Abdullah, 

2001). 

Cov(𝑦𝑖 , 𝑦𝑗) = 𝜌𝑖𝑗𝜎𝑖𝜎𝑗                   𝑖, 𝑗 = 1, 2, … , 𝑑                      (2.25) 

where 𝜌 is the coefficient of correlation and 𝜎 is the standard deviation. Therefore, a 

robust covariance matrix can be obtained through the multiplication of Spearman 

correlation coefficient (𝜌𝑆) and MADn. This calculation is chosen because Spearman 

correlation is the nonparametric counterpart of the Pearson correlation while MADn 
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is a robust scale estimator in place of standard deviation. The robust covariance 

matrix, 𝐒𝑅  is represented by Equation 2.26. 

 (2.26)                   
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Abu-Shawiesh and Abdullah (2001) developed a robust Shewhart-type control chart 

based on the Hodges-Lehmann and Shamos-Bickel-Lehmann estimators for 

monitoring the location of a bivariate process. The Shamos-Bickel-Lehmann is a 

scale estimator while Hodges-Lehmann is a location estimator. Abu-Shawiesh and 

Abdullah used the multiplication of Spearman correlation coefficient and Shamos-

Bickel-Lehmann estimator to obtain the covariance matrix. The simulation study of 

Abu-Shawiesh and Abdullah showed that their proposed robust method is superior as 

the tail weight increases. 

 

The importance of robust covariance matrix estimators in LDA has been stressed by 

Croux & Dehon (2001). They stated that the using of a robust covariance matrix does 

not necessary reflected into misclassification error rates for low contaminated data, 

but it tends to be important for high contaminated data (Croux & Dehon, 2001). 

Therefore, it is recommended to use a robust scale estimator paired with the robust 

location estimator to solve the sensitivity problem of classical estimators. 

 

2.7 Distance Based Robust Estimators 

In this section, some distance based robust estimators such as S-estimators, MVE 

estimators, MCD estimators, MVV estimators and α-trimmed mean with its 
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covariance are discussed. All these estimators have one thing in common; they used 

the Mahalanobis square distance to identify outliers among the observations. 

 

2.7.1 S-estimators 

Rousseeuw and Yohai (1984) first defined S-estimators in the context of regression. 

Later, S-estimators are applied in the discriminant analysis problem (Croux & Dehon, 

2001; He & Fung, 2000). Suppose ∆(𝐲; �̅�, 𝐒) = √(𝐲 − �̅�)𝑡𝐒−1(𝐲 − �̅�)  over all 

possible pairs (�̅�, 𝐒)  where �̅� ∈ ℝ𝑑  and S is a 𝑑 × 𝑑  symmetric positive definite 

matrix. Assume 𝑠(�̅�, 𝐒) be the solution of Equation 2.27 

1

𝑛
∑ 𝜌

𝑛

𝑖=1

{
∆(𝐲; �̅�, 𝐒)

𝑠(�̅�, 𝐒)
} = 𝐸 {𝜌√‖𝑦‖}                                   (2.27) 

where 𝜌 function must satisfy the conditions such that 𝜌 is symmetric about 0 and 

non-decreasing on [0, ∞). Equation 2.27 is the expectation taken at the standard d-

variate normal distribution. The 𝜌  function is the biweight function and can be 

expressed as in Equation 2.28.  

(2.28)                                      

for                           
6

for       
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where c is a tuning constant to achieve the BP.  

 

Let the pair (�̅�∗, 𝐒∗) be the minimizer of 𝑠(�̅�, 𝐒) subject to determinant of 𝐒 is equal 

to 1. Then, the S-estimator of location, �̅�S, and covariance matrix, 𝐒S can be stated as 

Equation 2.29 and 2.30 respectively. 

�̅�S = �̅�∗                                                                                     (2.29) 

𝐒S = 𝑠(�̅�∗, 𝐒∗)𝐒∗                                                                     (2.30) 
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S-estimators are known to have bounded IF and high efficiency for normal 

distributions (Lopuhaä, 1989; Rocke, 1996; Zuo, 2006). The efficiency of S-

estimators will tend to 100% if the dimension of data tends to infinity (Rocke, 1996). 

However, there is an issue of S-estimators on BP for high dimensional data.  In 

addition, a high efficiency with a high BP for normal distribution cannot be achieved 

simultaneously by S-estimators. Lopuhaä (1992) presented modified estimators to 

alleviate the drawback of S-estimators. Ruppert (1992) also provided a fast algorithm 

in S-estimators calculation. 

 

He and Fung (2000) considered the two S-estimators for multivariate location and 

covariance parameters in multiple populations in discriminant analysis procedures. A 

simple and natural idea has been used to estimate the common covariance matrix. 

The both proposed estimators by He and Fung (2000) possessed high BP. They 

employed two methods in constructing S-estimators. For method 1, the common 

covariance matrix of S-estimator is computed by centering the observations 

individually while the method 2 is an extension from the one-sample S-estimator to 

the two-sample problems. With or without outliers’ consideration, the S-estimator of 

method 1 tends to borrow strength from the larger sample when the other has a small 

sample sizes is the main advantage. The S-estimator of method 2 seems to be more 

sensitive to the violation of identical covariance assumption in discriminant analysis 

procedures.   

 

Rousseeuw (1982) stated that a most B-robust estimator is an estimator which can 

minimizes the gross-error sensitivity. In 2001, the most B-robust estimator is 

determined within the class of multivariate S-estimators was proposed by Croux and 
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Dehon. The pooled covariance estimator was used to yield the common covariance 

matrix. The proposed estimator minimizes the gross-error sensitivity of the total 

misclassification probability and the location part of the S-estimator. The most B-

robust estimator when compared to the S-estimator with biweight function, revealed 

that S-estimator with biweight function was more suitable in practical applications. 

The results showed that the most B-robust estimators have good performance for low 

contamination data only, but they do not perform well in other contamination 

situations. Besides, the computational results are limited to the Fisher LDR. 

 

2.7.2 MVE Estimators 

Rousseeuw (1985) recommended the MVE estimators for detecting outliers in 

multidimensional data. MVE estimators are commonly used to construct the robust 

Mahanalobis distance. By giving the minimum volume of ellipsoid among all 

possible subsets of ℎ = ⌊(𝑛 + 𝑑 + 1) 2⁄ ⌋ where ⌊. ⌋ is the greatest integer function, 

MVE estimators are able to produce robust location and covariance estimator for the 

data (Rousseeuw & Van Zomeren, 1990). MVE estimators have around 50% high 

BP and also affine equivariance are strengthens of using its (Lopuhaä & Rousseeuw, 

1991).  

 

However the difficulty of implementing MVE estimators becomes clear when there 

is an increase in the sample size. Even though the computation cost is very expensive 

for MVE estimators, it does not guarantee can provide feasible solution (Hadi, 1992). 

Since MVE has poor convergence rate and fail to deal with the large sample size 

especially which are more than 30, there is no fast algorithm are developed to solve 
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the computational problems arise (Davies, 1992; Rousseeuw & Van Driessen, 1999). 

Therefore, the MVE estimators are not suggested in robustifying LDR.  

 

Chork and Rousseeuw (1992) applied the MVE estimators in discriminant analysis 

for exploration geochemistry. The implementation of the robust discriminant method 

is simple and straightforward. The results revealed that the MVE estimator is capable 

of safeguarding against up to 50% of extreme observations. The MVE-based robust 

discriminant method improves recognition rates and enhances posterior probabilities 

of group membership so that a greater confidence of classification data was achieved. 

The proposed approach outperformed classical discriminant analysis in terms of 

recognition rates. 

 

2.7.3 MCD Estimators 

MCD estimator is developed to overcome the complexity of MVE (Rousseeuw, 

1984; 1985). The estimator also has high BP and affine equivariance properties as 

MVE estimator (Rousseeuw & Leroy, 1987). If MVE estimator minimizes the 

volume of ellipsoid on h data to generate the robust location and covariance 

estimators, the MCD estimator minimizes the covariance matrix determinant on h 

data to produce the robust estimators. However, MCD estimator has better 

convergence rate (𝑛−
1

2)  than MVE estimator (𝑛−
1

3), which indicates that MCD has 

higher efficiency compared to MVE (Butler, Davies & Jhun, 1993; Davies, 1992; 

Rousseeuw & Leroy, 1987; Woodruff & Rocke, 1994). Thus, the MCD estimator is a 

better choice of producing robust location and covariance matrix compared to MVE 

estimator. 
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Like MVE estimator, the estimation process of exact MCD estimator is 

computationally intensive or almost impossible to compute for high dimensions large 

sample sizes (Woodruff & Rocke, 1994). The difficulty of estimation process for 

MCD estimator increases if the sample sizes increase. To improve the efficiency of 

MCD estimator, several algorithms such as feasible solution algorithm (FSA) 

(Hawkins, 1994), improved FSA (Hawkins & Olive, 1999), Fast MCD algorithm 

(Rousseeuw & Van Driessen, 1999) and improved Fast MCD algorithm (Hubert, 

Rousseeuw & Vanden Branden, 2005) have been introduced to gain an approximate 

value for MCD estimator. Nowadays, Fast MCD algorithm is accessible in many 

statistical packages, for instance, Matlab, SAS, S-Plus and R which shows that Fast 

MCD algorithm is the most acceptable algorithm to approximate value for exact 

MCD estimators. Rousseeuw and Van Driessen (1999) constructed the Fast MCD 

algorithm and used the MSD as Equation 2.31 in the MCD estimation process. 

𝐷𝑖
2 = (𝐲𝑖 − 𝛍)𝑡𝚺−1(𝐲𝑖 − 𝛍)            𝑖 = 1,2, … 𝑛                    (2.31)      

The Fast MCD algorithm can be described as follows: 

Step 1:  Set k = 1. 

Step 2:  Randomly select a subset of size ℎ = ⌊
𝑛+𝑑+1

2
⌋ observations, Hk. 

Step 3:  Determine the mean, �̅�𝐻𝑘
  and covariance matrix, 𝐒𝐻𝑘

. 

 Compute the MSDs of data based on �̅�𝐻𝑘
 and 𝐒𝐻𝑘

. 

  Arrange these MSDs in ascending order. 

Step 4: Choose the shortest MSDs of h observations as the new subset, Hk + 1. 

Step 5: Stop if det(𝐒𝐻𝑘+1
) = det(𝐒𝐻𝑘

) 

  Then �̅�𝐻𝑘
= �̅�MCD  , 𝐒𝐻𝑘

= 𝐒MCD   

 Else if det(𝐒𝐻𝑘+1
) < det(𝐒𝐻𝑘

)   

  Set k = k + 1 and go to step 3. 
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 Else if det(𝐒𝐻𝑘+1
) = 0 

  Repeat the process, go to step 1. 

Therefore, the MCD estimators for location and covariance can be defined as 

Equation 2.32 and 2.33 respectively. 

�̅�MCD =
1

ℎ
∑ 𝐲𝑖

ℎ

𝑖=1

                                                             (2.32) 

𝐒MCD =
𝑐(ℎ)𝑠(ℎ, 𝑛, 𝑑)

ℎ − 1
∑(𝐲𝑖 − �̅�MCD

ℎ

𝑖=1

)(𝐲𝑖 − �̅�MCD)𝑡                    (2.33) 

 

Two proportionality constants are added into Equation 2.33 to stabilize the MCD 

scatter matrix. The first proportionality constant, c(h), is the consistent factor 

coefficient in order to make the MCD scatter, 𝐒MCD, Fisher consistent. There are two 

approaches, theoretical and empirical approach, to determine the consistency factor 

for 𝐒MCD  (Fauconnier & Haesbroeck, 2009). The theoretical consistency factor, 𝑐1, is 

defined based on the functional form of the MCD estimator (Croux & Haesbroeck, 

1999). Suppose y is a normal distribution with 𝛍 and 𝚺, 𝑐1 can be determined by 

Equation 2.34. 

𝑐1 =
ℎ/𝑛

𝑃(𝜒𝑑+2
2 < 𝜒

𝑑,1−ℎ
𝑛⁄

2 )
                                                        (2.34) 

where 𝜒𝑑+2
2  is the 𝛼  cut-off point of the 𝜒𝑑

2  distribution. On the other hand, the 

empirical consistency factor or known as a scaling factor, 𝑐2, is based on the data at 

hand and can be determined by Equation 2.35 (Rousseeuw & Van Driessen, 1999).  

𝑐2 =
𝑀𝑒𝑑𝑖𝑑(𝐲MCD,𝐒MCD)

2 (𝑖)

𝜒𝑑;0.5
2             𝑖 = 1,2, … , 𝑛                          (2.35) 

where �̅�MCD and 𝐒MCD  are obtained from the optimal subset of data. When the exact 

functional form is unknown, 𝑐2 is commonly recommended since it enhances the 
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distribution of robust distance for non-normal data (Fauconnier & Haesbroeck, 

2009).  The second proportionality constant, 𝑠(ℎ, 𝑛, 𝑑), is also known as a finite 

sample correction factor. This factor is to reduce the small sample bias of scatter 

matrix and the actual value can be obtained based on n and d through a combination 

of Monte Carlo simulation and parametric interpolation (Pison, Van Aelst & Willems, 

2002).  

 

However, the MCD estimators are not very efficient for normal models. Croux and 

Haesbroeck (1999) proved that there is an inverse relationship between efficiency 

and BP especially in high dimensional data.  In alleviating the problem, Rousseeuw 

and Van Zomeren (1990) used a weighted method in MCD estimations, known as 

reweighted MCD (RMCD) estimators. The RMCD estimators also use Fast MCD 

algorithm to obtain the location and covariance matrix. Based on the MSD, a weight 

for each observation is given as Equation 2.36 (Croux & Haesbroeck, 1999; Pison & 

Van Aelst, 2004; Rousseeuw & Van Driessen, 1999). 

𝑤𝑖 = {
1      𝐷MCD

2 (𝐲𝑖, �̅�MCD) ≤ 𝜒𝑑,0.975
2       

0             otherwise                            
                              (2.36) 

 

This weighting method can also be used to detect outliers of the data. The RMCD 

estimators for location and covariance are defined as Equation 2.37 and 2.38 

respectively. 

�̅�RMCD =
1

𝑚
∑ 𝑤𝑖𝐲𝑖

𝑛

𝑖=1

                                                             (2.37) 

𝐒RMCD =
𝑐(𝑚)𝑠(𝑚, 𝑛, 𝑑)

𝑚 − 1
∑ 𝑤𝑖(𝐲𝑖 − �̅�RMCD

𝑛

𝑖=1

)(𝐲𝑖 − �̅�RMCD)𝑡                    (2.38) 
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where m is the sums of the weights, 𝑐(𝑚) and 𝑠(𝑚, 𝑛, 𝑑)  are the proportionality 

constants as mentioned in MCD estimation process. 

 

Croux and Haesbroeck (1999) showed that the BP of the RMCD initial estimators is 

preserved with better efficiency. Since MCD and RMCD are non-adaptive methods, 

hence the higher efficiency of these methods can be achieved by tuning the 

parameter but the bias was affected under data contamination (Croux & Haesbroeck, 

1999). From simulation study on finite-sample robustness, they showed that the 

Gaussian efficiency of the RMCD with 0.25 BP is better than RMCD with 0.5 BP 

under contaminated data. Therefore, RMCD with BP of 0.25 is acceptable and has 

been employed in the LIBRA package in MATLAB 7.8.0 (R2009a). 

 

Hubert and Van Driessen (2004) used the RMCD estimator of multivariate location 

and covariance to construct RLDR and robust quadratic discriminant rule (RQDR). 

The initial estimates of the mean and common covariance matrix need to be 

calculated in constructing LDR. They used three different approaches to find the 

initial covariance estimate. The first approach is just by pooling the individual 

covariance matrices to obtain the common covariance matrix. This approach is 

easiest and straightforward method, and has been employed by Chork and 

Rousseeuw (1992) using MVE estimator, while Croux and Dehon (2001) use S-

estimator. Besides pooling the individual covariance matrices, they also adapt He and 

Fung (2000) idea which is pooling the observations as the second approach to obtain 

the common covariance matrix. For the third approach, they combined the two 

previous approaches in order to obtain a fast approximation to the Minimum Within-

group Covariance Determinant criterion of Hawkins and McLachlan (1997). Hubert 
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and Van Driessen (2004) showed that the fast approximation for two groups is much 

faster than the algorithm given in Hawkins and McLachlan (1997).  However, this 

algorithm might fail under small sample sizes due to the possibility of singularity of 

covariance matrices which occurs when the final subset h does not have enough d + 1 

observations. The simulation study showed that the performance of all the three 

approaches were similar and only slightly lower than the S-estimators method which 

was employed by He and Fung (2000), but these three approaches saved more 

computation time than S-estimators especially for large data sets. Besides simulation 

study, these three approaches for constructing LDR also performed well in real data 

applications. 

 

Similar to Hubert and Van Driessen (2004), Alrawashdeh et al. (2012) presented 

three approaches to construct RLDR and investigated on the performance through 

simulation study and real data of financial ratio. The simulation data were generated 

based on means and covariance matrices in special interval [0,1] since almost all of 

the data on financial ratio fall in this interval. Raw and reweighted version of MCD 

estimators were considered for each of the approaches. The simulation study and real 

data revealed that the performance of reweighted versions is better than the raw 

versions for all the three approaches.  

 

2.7.4 MVV Estimators 

The computational efficiency is one of important issues need to be considered in 

estimating an effective estimator (Angiulli & Pizzuti, 2005). As discussed in Section 

2.7.3, MCD estimators searched for a subset whose covariance matrix produced 

minimum determinant. When dealing with high dimensional data, the use of 
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covariance determinant in data concentration process increases computational times 

dramatically (Hubert & Debruyne, 2010). Moreover, Fauconnier and Haesbroeck 

(2009) stated that the Fast MCD algorithm may yield different results when ran 

repeatedly irrespective whether in the same or different statistical packages. The 

result of Fast MCD algorithm could be more critical when 𝑛 𝑑⁄  is small (Rousseeuw 

& Van Driessen, 1999). Herwindiati, Djauhari and Mashuri (2007) used variance 

vector (VV) instead of covariance determinant in data concentration process to 

alleviate the limitation of Fast MCD algorithm. Generally, the covariance 

determinant is more complicated to be computed for high dimensional data.  

 

To improve the computational efficiency of Fast MCD algorithm, VV can be served 

as alternative measure in data concentration. Herwindiati et al. (2007) introduced 

minimum vector variance (MVV) to obtain robust location and covariance 

estimators. MVV estimators possess affine equivariance with high BP and good 

computational efficiency (Ali et al., 2015; Djauhari, Mashuri & Herwindiati, 2008; 

Herwindiati et al., 2007). MVV and Fast MCD algorithm share the same structures 

but different in their objective functions in the data concentration process 

(Herwindiati et al., 2007). In short, MVV estimators are one of the recent 

contributions in the study of multivariate analysis.  

 

Two famous multivariate dispersion measures, total variance (TV) and generalized 

variance (GV), are commonly used in the applications. GV also can be defined as 

covariance determinant. The calculation of TV is easy and simple since its 

calculations are just variances involved without considering covariance structure. 

Meanwhile the calculation of GV involves both the variance and covariance 
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structure; hence GV has wider application than TV (Djauhari, 2005). However, GV 

also has a limitation such that the covariance matrix must be non-singular (Alt & 

Smith, 1988). Moreover, the computational efficiency of GV for high dimensional 

data is questionable. Djauhari (2005; 2007) and Herwindiati et al. (2007) presented 

an alternative multivariate dispersion measure based on TV, denoted as vector 

variance (VV) due to these limitations. Sharif, Wan Yussof, Omar and Ismail (2014) 

discovered that the computational efficiency of VV outperforms GV, especially 

when data is of high dimensional through the mathematical derivation and simulation 

study.  In short, VV is the sum of squared of all elements in the covariance matrix, 𝚺 

and defined as 𝑇𝑟(𝚺𝟐). 

 

The estimation process of MVV estimators is quite similar to MCD estimators as 

discussed in Section 2.7.3, except that the computation of covariance determinant is 

substituted by the VV. For the MVV estimation process, a finite number of iterations 

are needed until convergence is met in searching a lowest VV for each H subset. 

However, there is no assurance that the final value 𝑇𝑟(𝐒MVV
2 ) is the global optimum 

value, which is the most minimum value. This is the main drawback of MVV 

estimators and can be used random subsampling to obtain an approximate algorithm 

(Rousseeuw & Leroy, 1987). Therefore, by taking at least 500 initial H subsets and 

select a specific number of subsets, for instance 10 subsets that generate the lowest 

VV from the 500 initial subsets to approximate a good MVV solution. Next, repeat 

the searching process until the convergence is met for each of the 10 subsets and 

select the smallest value in vector variance as the final subset to obtain the location 

and scatter matrix. By the way, MSD in Equation 2.31 is used in MVV estimation 



57 

 

process. The location and covariance matrix via MVV algorithm can be described as 

follows: 

Step 1:  Set k = 0. 

Step 2:  Randomly select a subset of size ℎ1 = 𝑑 + 1 observations, Hk. 

Step 3:  Determine mean, �̅�𝐻𝑘
, covariance matrix, 𝐒𝐻𝑘

 and VV, 𝑇𝑟(𝐒𝐻𝑘

2 ). 

 Calculate MSDs of data based on �̅�𝐻𝑘
 and 𝐒𝐻𝑘

. 

  Arrange these MSDs in ascending order. 

Step 4: Choose the shortest MSDs of ℎ2 observations as the new subset, Hk + 1. 

where breakdown point of 0.50: ℎ2 = ⌊
𝑛+𝑑+1

2
⌋ 

Step 5: Set k = k + 1. 

Repeat step 3 and 4 until k-th iteration are met where k = 500. 

Step 6: Sort the 𝑇𝑟(𝐒𝐻𝑘

2 ) for 𝑘 = 1,2, … 500 in ascending order.  

Choose the 10 subsets with have lowest 𝑇𝑟(𝐒𝐻𝑘

2 ) as initial subsets.  

The following steps are repeatedly for each initial subset until convergence is met.  

Step 7: Set l = 1. 

Step 8: Determine mean, �̅�𝐻𝑙
, covariance matrix, 𝐒𝐻𝑙

 and VV, 𝑇𝑟(𝐒𝐻𝑙

2 ). 

Compute the MSDs of data based on �̅�𝐻𝑙
 and 𝐒𝐻𝑙

. 

 Arrange these MSDs in ascending order.  

Step 9: Choose the shortest MSDs of ℎ2 observations as the new subset, Hl + 1 and  

              repeat step 8. 

Step 10: Stop if 𝑇𝑟(𝐒𝐻𝑙+1

2 ) = 𝑇𝑟(𝐒𝐻𝑙

2 )  

    Else if 𝑇𝑟(𝐒𝐻𝑙+1

2 ) < 𝑇𝑟(𝐒𝐻𝑙

2 )    

  Set l = l +1 and go to step 8. 
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Step 7 to step 10 are repeated for all the 10 initial subsets until convergence is met. 

After that, the subset that produces the lowest value in VV is selected. The MVV 

estimator for location and covariance matrix can be obtained from the corresponding 

subset and defined as Equation 2.39 and 2.40 respectively. 

�̅�V =
1

ℎ2
∑ 𝐲𝑖

ℎ

𝑖=1

                                                                             (2.39) 

𝐒V =
1

ℎ2
∑(𝐲𝑖 − �̅�V

ℎ

𝑖=1

)(𝐲𝑖 − �̅�V)𝑡                                              (2.40) 

 

Herwindiati and Isa (2009) used MVV in principle component analysis (PCA) to 

improve the result. They discovered that MVV is not limited to small or low 

dimensional data. Moreover, MVV also not affected to the singularity problem of 

covariance matrix. The performance of PCA using MVV compared with Fast MCD 

algorithm showed that the proposed algorithm has a lower computational complexity 

and also provide promising results for several d-dimensions data. Thus, MVV can be 

considered as an effective and efficient method to detect outliers in large dimensional 

data. Finally, their finding showed that robust PCA with MVV is an impressive 

method in interpreting the PCA application.  

 

Ali and Yahaya (2013) applied the MVV estimators in constructing the robust 

Hotelling 𝑇2  control chart and compared its performance with MCD estimators. 

They revealed that the proposed estimators are more effective in outlier detection and 

in controlling Type I error. However, continuous study on MVV estimators by Ali, 

Syed Yahaya and Omar (2015) exposed that MVV estimators have bias for small 

sample sizes and inconsistency problem under normal distribution. Therefore, they 
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enhanced the MVV estimators by multiplying the consistency and correction factors 

into MVV scatter estimator to alleviate the discovered drawbacks. The numerical 

results showed an excellent improvement in the control limit values. Furthermore, 

the good performance of the enhanced MVV estimators is still preserved. The works 

by the aforementioned researchers on MVV could reflect that MVV is a method that 

should be considered in solving multivariate problems.   

 

2.7.5 α-trimmed Mean and Winsorized Covariance 

The discussion on univariate trimmed mean was previously presented in Section 

2.6.1.2. In this section, the multivariate version of trimmed mean, the α-trimmed 

mean will be demonstrated based on the trimming process suggested by Alloway and 

Raghavachavari (1990). They suggested the method that used MSD as in Equation 

2.31 to detect the outliers of the observations. In this method, the MSD is used to 

select the data pairs of observations to be trimmed and winsorized. The detail 

procedures of this method are described as follows (Alloway & Raghavachavari, 

1990): 

Step 1: Determine mean, �̅� and covariance matrix, 𝐒. 

Calculate MSDs of data based on �̅� and 𝐒. 

Arrange these MSDs in ascending order. 

Discard the observation pairs that have largest and second largest values of 

MSD. 

Step 2: Estimate trimmed mean, �̅�t based on remaining observations. 

Step 3: Form the winsorized sample by replacing pair observations that have third 

and fourth largest values of MSD. 

Step 4: Calculate winsorized covariance matrix, 𝐒w based on winsorized sample. 
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Step 5: Estimate trimmed winsorized covariance matrix, 𝐒t as Equation 2.41. 

𝐒t =
𝑛 − 1

𝑛𝑡 − 1
𝐒w                                                                     (2.41) 

where n is the number of sample and nt is the number of the data after the 

trimming process. 

Alloway and Raghavachavari (1990) implemented the MSD method on subgroup 

data to detect and eliminate outliers. Then, a robust Hotelling 𝑇2 control chart is 

constructed. The simulation results proven that the proposed method is reasonably 

robust in the case of symmetrical contamination. Besides, the performance of 

proposed method is superior for very heavy tails.  

 

2.8 Summary 

This chapter discussed the theory of the LDA and robust estimators in general. Two 

different approaches of robust estimators which are coordinatewise based and 

distance based were presented for solving LDA. Previous works done by other 

researchers were also discussed in this chapter.  In the next chapter, we will 

thoroughly discuss on the implementation of the aforementioned estimators to 

improve LDA using simulation data as well as real data. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Introduction 

In this chapter, the classical and robust LDRs are presented. The classical LDR is 

constructed using parametric estimators which are the sample mean and sample 

covariance matrix. Meanwhile, the robust LDRs are constructed using 

coordinatewise and distance based robust estimators. The conditions of the 

simulation study also are discussed in this chapter. The description of real data set is 

given at the end of the chapter.  

 

Briefly, two approaches are used to construct RLDRs in solving classification 

problem. In total, there are four coordinatewise RLDRs and two distance based 

RLDRs. Simulation and real data study are applied on these constructed RLDRs and 

two established LDR, CLDR and RLDRD, for comparison and evaluation purpose. 

After that, the best RLDR will be selected for solving classification problem. Figure 

3.1 shows the framework of the study. 
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Figure 3.1. Framework of the study. 

 

3.2 Classical Linear Discriminant Rule (CLDR) 

In this study, we focus on two-group discrimination problem and the costs of 

misclassification for two populations are assumed to be equal. In a two-group 

discrimination problem, suppose that n observations of a training data with d-

dimensional features where the n observations are obtained from two different 

populations, π1 and π2, with the corresponding sample sizes of n1 and n2. As stated in 

Chapter Two, the CLDR is given as Equation 3.1.  
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  Allocate x to 𝜋1 if 

(𝛍1 − 𝛍2)𝑡𝚺pooled
−1 {𝐱0 −

1

2
(𝛍1 + 𝛍2)} ≥ ln [(

𝐶1

𝐶2
) (

𝑝2

𝑝1
)]                (3.1) 

Allocate x to 𝜋2, otherwise. 

Since the costs of misclassification, 𝐶1 and 𝐶2, are assumed identical, then CLDR for 

this study is defined as Equation 3.2. 

(𝛍1 − 𝛍2)𝑡𝚺pooled
−1 {𝐱0 −

1

2
(𝛍1 + 𝛍2)} ≥ ln (

𝑝2

𝑝1
),                                (3.2) 

where p1 and p2 are the prior probability that an observation comes from population 

π1 and π2 respectively. The population parameters can be replaced by their sample 

statistics when these parameters are unknown. Figure 3.2 presents the procedures 

involve in constructing CLDR (Johnson & Wichern, 2002). 



64 

 

 

Figure 3.2. Procedures involve in constructing CLDR. 
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al., 2008). In particular, π1 and π2 are Nd(µ1, Σ1) and Nd(µ2, Σ2) respectively and 

under the assumption Σ1 = Σ2 = Σ. It is a known fact that this CLDR is not robust 

(Glèlè Kakaï et al., 2010; Gyamfi et al., 2017). If there are outliers in the training 

data, then the estimators of mean (µ) and covariance (Σ) can be dramatically 

affected. To alleviate this problem, a robust linear discriminant rule (RLDR) is 

constructed by replacing the classical mean and covariance with robust estimators 

which are discussed in the following section. 

 

3.3 Robust Linear Discriminant Rules (RLDRs) 

Two proposed approaches, coordinatewise and distance based, are used in 

constructing the most applicable RLDRs in the classification problems. For the 

coordinatewise based approach, the robust location of MOM paired with winsorized 

covariance matrix as well as robust covariance matrix will be used to construct two 

new RLDRs. On contrary, the location of WMOM also combined with winsorized 

covariance matrix as well as robust covariance matrix to construct the other two new 

coordinatewise based RLDRs. Meanwhile, MVV estimators and α-trimmed mean 

with their corresponding covariance will be used to construct two new distance based 

RLDRs. Figure 3.3 presents the process of CLDR to robust RLDR and Figure 3.4 

displays the procedures that involve in developing RLDRs by using these robust 

estimators. 

 

A total of six robust RLDRs will be proposed in this study. Four of them will be 

developed through coordinatesewise based approach while the rest two RLDRs will 

be constructed based on distance based approach. The proposed RLDRs will then be 

investigated and compared in terms of performance based on misclassification error 
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rates under various data distributions which are capable of affecting the performance 

of LDA. For the purpose of comparison, the classical estimators and some existing 

robust estimators will be used in this study. 

 

Figure 3.3. Process of CLDR to robust RLDR. 
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Figure 3.4. Procedures involve in constructing the proposed RLDRs. 
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3.3.1 Coordinatewise Based Approach 

Four robust RLDRs via coordinatewise based approach will be developed where two 

of the RLDRs will use MOM as the location measure, while the other two RLDRs 

will employ WMOM as their location measures. The two corresponding robust 

covariance matrix that will be used alongside MOM are winsorized covariance, and 

the covariance from the product of 𝜌𝑆 and MADn denoted as SR. These robust scales 

estimators also paired with the location estimator of WMOM, respectively.  

Figure 3.5 shows the combinations of the robust location estimators with their 

corresponding robust covariance matrix that will be used in this study to replace the 

classical mean and classical covariance matrix in constructing the new proposed 

RLDRs. 

 

Figure 3.5. The combinations of the robust location with the corresponding robust 

covariance matrix. 

 

Generally, trimming and winsoring process are commonly used in dealing with 

outliers. The trimming process employed in this work is not similar as usual 

trimming. It takes into consideration the shape of data distribution. The proposed 
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data will be trimmed and removed, the remaining data can be considered as a good 

data set. It is known that, this estimator is highly robust with highest breakdown 

point (Lim, Syed Yahaya & Ali 2016, Syed Yahaya, Lim, Ali & Omar 2016a, Syed 

Yahaya, Lim, Ali & Omar 2016b). 

 

On the other hand, winsorization is a strategy that pays more attention to the central 

portion of a distribution by transforming the tails (Haddad et al., 2013). Basically, 

winsorization follows an automatic trimming approach which takes into 

consideration the shape of data distribution during the trimming process. However, 

the trimmed values will be replaced by the remaining lowest and highest of the data 

rather than just omit them. The problem of losing information due to trimming 

process can be reduced since winsorization always retain the original sample size 

(Lim et al., 2016). 

 

Following are the four proposed RLDRs based on coordinatewise based approach: 

i. MOM and winsorized covariance (RLDRMw) 

ii. MOM and 𝐒𝑅  (RLDRM) 

iii. WMOM and winsorized covariance (RLDRWw) 

iv. WMOM and 𝐒𝑅  (RLDRW) 

 

3.3.1.1 MOM and Winsorized Covariance (RLDRMw) 

Let d-dimensional feature vectors 𝐱𝑖𝑗𝑔  come from multivariate normal population 𝜋𝑔 

such that 𝐱𝑖𝑗𝑔 = 𝜋𝑔~𝑁𝑑(𝛍𝑔, 𝚺𝑔), 𝑖 = 1, … , 𝑛𝑔; 𝑗 = 1, … , 𝑑; 𝑔 = 1,2, where 𝑛𝑔  is the 

sample size from population g. Figure 3.6 illustrates the procedures of MOM in order 

to obtain the location estimator. 
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Figure 3.6. Procedures involves in estimating the location of MOM. 
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From the flow chart that is given in Figure 3.6, the procedures involves in estimating 

the location estimator of MOM are described step by step as below where for each 

population g: 

Step 1: Set j = 1.  

Step 2: Obtain the order statistics, 𝑥(𝑖)𝑗 for dimension j where i =1,2,…,nj. 

Calculate the median, �̂�𝑗 for dimension j. 

Calculate the MADn𝑗 for dimension j  

Step 3: Trim the observations which fulfill the following condition as   

𝑥(𝑖)𝑗 − �̂�𝑗 < −2.24(MADn𝑗) or 𝑥(𝑖)𝑗 − �̂�𝑗 > 2.24(MADn𝑗) 

Step 4: Calculate �̅�𝑗 based on the remaining observations. 

Step 5: Stop if j = d. 

  Combine all the �̅�𝑗 to obtain �̅�MOM. 

 Else set j + 1 and go back to step 2. 

 

The location estimator of MOM for each population g can be estimated through 

�̅�MOM𝑗
= ∑ 𝐱(𝑖)𝑗

𝑛𝑗−𝑟2

𝑖=𝑟1+1

𝑛𝑗 − 𝑟1 − 𝑟2⁄         𝑗 = 1,2, … 𝑑                      (3.3) 

where 

𝑟1 = total number of observations 𝑥(𝑖)𝑗 ∋  (𝑥(𝑖)𝑗 − �̂�𝑗) < −2.24(MADn𝑗) 

𝑟2 = total number of observations 𝑥(𝑖)𝑗 ∋  (𝑥(𝑖)𝑗 − �̂�𝑗) > 2.24(MADn𝑗) 

𝐱(𝑖)𝑗 = i-th ordered observations in dimension j  

𝑛𝑗 = total number of observation in dimension j 
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The next step is to calculate trimmed covariance matrix. However, there is a high 

possibility that unbalance observations across dimensions can be occurred due to the 

trimming process. It is known that the calculation of covariance is between each pair 

values of dimensions. To solve this problem, an alternative method to obtain the 

covariance matrix is by using winsorized covariance matrix instead of trimmed 

covariance matrix. The procedures to estimate winsorized covariance matrix are 

summarized as follows where for each population g: 

Step 1: Perform an automatic trimming process following MOM procedure. 

Step2: Obtain the winsorized sample, 𝐱new(𝑖)𝑗 by replacing the remaining lowest and 

highest of the data with 

𝐱new(𝑖)𝑗 = {

𝑥(𝑟1+1)𝑗 , if (𝑥𝑖𝑗 − �̂�𝑗) < −2.24 (MADn𝑗)

𝑥(𝑖)𝑗 , if − 2.24 (MADn𝑗) ≤ (𝑥𝑖𝑗 − �̂�𝑗) ≤ 2.24 (MADn𝑗)

𝑥(𝑛𝑗−𝑟2)𝑗 , if (𝑥𝑖𝑗 − �̂�𝑗) > 2.24 (MADn𝑗)

 

Step 3: Estimate the winsorized covariance matrix based on the winsorized sample in 

step 2. 

 

The winsorized covariance matrix can be obtained in the same way as classical 

covariance matrix, but use the winsorized sample. Equation 3.4 displays the 

winsorized covariance matrix for each population g. 

𝐒WM =
1

𝑛 − 1
∑(𝐱𝑖 − �̅�WM)(𝐱𝑖 − �̅�WM)

𝑛

𝑖=1

                                     (3.4) 

where 

�̅�WM = ∑
𝐱new(i)𝑗

𝑛

𝑛

𝑖=1

                       𝑗 = 1,2, … , 𝑑                     (3.5) 
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By substituting the robust location from Equation 3.3 and scale estimator from 

Equation 3.4 into Equation 3.2, then the new RLDRMw is defined as Equation 3.6. 

 (�̅�MOM1
− �̅�MOM2

)
𝑡
𝐒WMpooled

−1 {𝐱0 −
1

2
(�̅�MOM1

+ �̅�MOM2
)} ≥ ln (

𝑝2

𝑝1
)     (3.6)  

where 

𝐒WMpooled
=

(𝑛1 − 1)𝐒WM1
+ (𝑛2 − 1)𝐒WM2

𝑛1 + 𝑛2 − 2
 

 

3.3.1.2 MOM and SR (RLDRM) 

Another new RLDR can be defined as 

(�̅�MOM1
− �̅�MOM2

)
𝑡
𝐒𝑅pooled

−1 {𝐱0 −
1

2
(�̅�MOM1

+ �̅�MOM2
)} ≥ ln (

𝑝2

𝑝1
)        (3.7) 

and this rule denote as RLDRM.  

 

The different between RLDRMw and RLDRM is only in the calculation on the robust 

covariance matrix. Instead of using winsorized covariance, RLDRM will use 𝐒𝑅  

which is the product of Spearman correlation coefficient (𝜌𝑆) and MADn. The matrix 

for SR is as in the Equation 3.8 (Haddad, 2013). 

(3.8)                   

MADnMADnMADn

MADnMADnMADn

MADnMADnMADn

2
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22

2

22121

111212

2

1
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3.3.1.3 WMOM and Winsorized Covariance (RLDRWw) 

The location estimator of WMOM is calculated using winsorized sample for each 

population g and is defined as Equation 3.5. Meanwhile, the winsorized covariance 

matrix is as Equation 3.4.  
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Thus the new RLDRWw is defined as 

(�̅�WM1
− �̅�WM2

)
𝑡
𝐒WMpooled

−1 {𝐱0 −
1

2
(�̅�WM1

+ �̅�WM2
)} ≥ ln (

𝑝2

𝑝1
)           (3.9) 

 

3.3.1.4 WMOM and SR (RLDRW) 

In this section, the location estimator of WMOM will be paired with the product of 

𝜌𝑆 and MADn to construct a new RLDR name as RLDRW. The location estimator of 

WMOM for each population g, �̅�WM  as in the Equation 3.5 with the robust 

covariance matrix, SR is as in the Equation 3.8 are used to form the new RLDRW 

which can be written as 

(�̅�WM1
− �̅�WM2

)
𝑡
𝐒𝑅pooled

−1 {𝐱0 −
1

2
(�̅�WM1

+ �̅�WM2
)} ≥ ln (

𝑝2

𝑝1
)           (3.10) 

 

3.3.2 Distance Based Approach 

This section will be highlighting on another two new RLDRs via distance based 

approach, namely RLDRV and RLDRT.  RLDRV is constructed by robust location 

and covariance matrix of MVV algorithm while RLDRT is constructed by α-trimmed 

mean and trimmed winsorized covariance matrix. These two RLDRs used 

Mahalanobis square distance (MSD) to detect outliers among the observations. MSD 

can be determined using following Equation 3.11 for each population g. 

𝐷𝑖
2 = (𝐱𝑖 − 𝛍)𝑡𝚺−1(𝐱𝑖 − 𝛍)            𝑖 = 1,2, … 𝑛                    (3.11)      

 

3.3.2.1 MVV (RLDRV) 

As discussed in Chapter Two, variance vector (VV) is the sum of squared of all 

elements in the covariance matrix, 𝚺 and defined as 𝑇𝑟(𝚺2). In the MVV estimation 

process, a finite number of iterations are required to achieve convergence in search 
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of a minimum VV for each H subset. In fact, there is no assurance that the final value 

of the 𝑇𝑟(𝐒V
2 ) is the global optimum value where SV is the covariance matrix of the 

MVV and 𝑇𝑟(𝐒V
2) is the sum of squared of all elements in the SV. Hence, many 

initial H subsets need to be considered in order to approximate a good MVV 

solution. In this study, H = 500 initial subsets are considered and 10 initial subsets 

that produce the lowest VV are taken to achieve convergence individually. Then, the 

convergence subset that generates the lowest value in VV will be the final subsets to 

estimate the location and the covariance matrix of the MVV. Figure 3.7 shows the 

procedures of obtaining initial subsets while Figure 3.8 displays the procedures of the 

MVV algorithm. 

 

Figure 3.7. The detail procedures in finding initial subsets. 

No 

Yes 

Start 

Randomly generate a subset of size ℎ1 = 𝑑 + 1 

500 subsets? 

𝑘 = 𝑘 + 1 

End 

Determine mean and covariance matrix of subset 

Calculate MSDs of data. 

 

Obtain a new subset with the shortest MSDs of size ℎ2 

where breakdown point of 0.50: ℎ2 = ⌊
𝑛+𝑑+1

2
⌋  

Determine mean, covariance matrix and VV. 

Calculate MSDs of data. 

 

From 500 subsets, select 10 subsets with the 

smallest VV as initial subsets. 
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Figure 3.8. Flow chart of the MVV algorithm. 
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Generate 500 subsets 

If 

  𝑇𝑟(𝐒𝐻𝑙+1

2 ) < 𝑇𝑟(𝐒𝐻𝑙

2 ) 

𝑙 = 𝑙 + 1 

End 

Select 10 initial subsets that have lowest VV 

Determine mean and covariance matrix of subset 

Calculate VV, 𝑇𝑟(𝐒𝐻𝑙

2 ) of subset 

Calculate MSDs of data. 

 

Obtain a new subset with the shortest MSDs of size ℎ2 

Determine mean and covariance matrix of subset 

Calculate VV, 𝑇𝑟(𝐒𝐻𝑙+1

2 ) of subset 

Calculate MSDs of data 

If 

  𝑇𝑟(𝑺𝐻𝑙+1

2 ) = 𝑇𝑟(𝑺𝐻𝑙

2 ) 

From the 10 subsets, select a subset with 

smallest VV as final subset. 

Based on the final subset, obtain  �̅�V and 𝐒V. 
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The algorithm of MVV can be separated to two stages which are initial subsets 

generation process and data concentration process. The algorithm of MVV is 

simplified as follows: 

Stage 1: Initial subsets generation process 

Step 1: Let Hk be an arbitrary subset of size h1 = d + 1 observations. 

Step 2: Determine mean, covariance matrix and VV of subset.  

Calculate MSD of data.  

Arrange these MSDs in ascending order. 

Step 3: Choose the shortest MSDs of h2 observations as the new subset, Hk+1, where 

breakdown point of 0.50: ℎ2 = ⌊
𝑛+𝑑+1

2
⌋  

Step 4: Repeat step 2 and 3 as much as 500 times. 

Step5: Choose the 10 subsets with lowest VV among 500 subsets as initial subsets 

for stage 2. 

Stage 2: Data concentration process 

For each initial subset; 

Step 1: Determine mean, covariance matrix and VV of subset.  

Calculate Mahalanobis square distance (MSD) of data.  

Arrange these MSDs in ascending order. 

Step 2: Choose the shortest MSDs of h2 observations as the new subset, Hl+1 and  

              repeat step 1. 

Step 3: Stop the process if 𝑇𝑟(𝑺𝐻𝑙+1

2 ) = 𝑇𝑟(𝑺𝐻𝑙

2 ) 

Otherwise, the process is continued until convergence is met. 

After that, the convergence subset that produces the lowest VV is selected as final 

subset and such final subset is used to estimate the location and covariance matrix of 
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MVV. For each population g, the location and covariance matrix via MVV algorithm 

are given in Equations 3.12 and 3.13, respectively. 

�̅�V =
1

ℎ2
∑ 𝐱𝑖

ℎ2

𝑖=1

                                                                                  (3.12) 

𝐒V =
1

ℎ2
∑(𝐱𝑖 − �̅�V

ℎ2

𝑖=1

)(𝐱𝑖 − �̅�V)𝑡                                                   (3.13) 

Therefore, the new RLDRV is defined as 

(�̅�V1
− �̅�V2

)
𝑡
𝐒Vpooled

−1 {𝐱0 −
1

2
(�̅�V1

− �̅�V2
)} ≥ ln (

𝑝2

𝑝1
)                   (3.14) 

 

3.3.2.2 α-trimmed Mean and Trimmed Winsorized Covariance (RLDRT) 

In this section, trimming and winsorizing processes are combined with the MSD to 

obtain the robust location and covariance matrix for another new RLDR. In the usual 

trimming process, the acceptance trimming percentage from each tail of the ordered 

observations is 20% or a total 40% of the total observations (Rosenberger & Gasko, 

1983; Wilcox, 1995; Wu, 2007). Therefore, this study will adopt 40% amount to 

perform trimming. Therefore, MSD is used to detect the outliers of data and trimmed 

out 40% of data that have largest value of MSD to find the robust location estimator. 

Then, form the winsorized sample by replacing observation pairs follows their 

corresponding order statistics of MSD. The concept of winsorizing used in this 

section is different from usual winsorizing process. The winsorizing process used in 

this section, namely modified winsorizing process is replacing the observation pairs 

based on their order statistics of MSD rather than just replace the observation pair 

that has the largest value of MSD. For example, suppose a sample size of 10 is used 

and their order statistics of MSD are obtained. Then 40% of data which is 4 

observation pairs that have largest MSD value will be discarded and replaced by 
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another 4 observation pairs that across 3rd order to 6th order of MSD. The concept of 

modified trimming and winsorizing process is illustrated in Figure 3.9.  

 
Figure 3.9. Modified trimming and winsorizing process. 

 

The trimming procedure of α-trimmed mean and trimmed winsorized covariance 

matrix for multivariate aspect follows Alloway and Raghavachari (1990) with some 

modifications as described below. For each population g: 

Step 1: Determine mean, �̅�, covariance matrix, 𝐒 and MSDs of data. 

Arrange these MSDs in ascending order. 

Step 2: Trimmed 40% of observation pairs that have largest MSD. 

Step 3: Estimate trimmed mean, �̅�t using remaining observations as 

�̅�t =
1

𝑛𝑡
∑ 𝐱𝑖

𝑛𝑡

𝑖=1

                                                                               (3.15) 

where nt is the number of the data after the trimming process. 

Step 4: Form winsorized sample using modified winsorizing process. 
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Step 5: Calculate winsorized covariance matrix, 𝐒w in the same way as the usual 

covariance matrix, but using the winsorized sample. 

𝐒w =
1

𝑛 − 1
∑(𝐱𝑖(new) − �̅�w

𝑛

𝑖=1

)(𝐱𝑖(new) − �̅�w)
𝑡
                         (3.16) 

where 

�̅�w =
1

𝑛
∑ 𝐱𝑖(new)

𝑛

𝑖=1

                                

Step 6: Estimate trimmed winsorized covariance matrix, 𝐒t as 

𝐒t =
𝑛 − 1

𝑛𝑡 − 1
𝐒w                                                                       (3.17) 

With the estimated �̅�t and 𝐒t, the new robust linear discriminant rule via α-trimmed 

mean and trimmed winsorized covariance (RLDRT) then can be defined as Equation 

3.18. 

(�̅�t1
− �̅�t2

)
𝑡
𝐒tpooled

−1 {𝐱0 −
1

2
(�̅�t1

+ �̅�t2
)} ≥ ln (

𝑝2

𝑝1
)                                (3.18) 

 

3.4 Data Item Manipulated 

Due to the main assumptions of LDA are normality and homoscedasticity, therefore 

manipulating some data items that influence the two assumptions is a good way to 

investigate on the optimality of the proposed RLDRs against the CLDR and the 

existing RLDR. The optimality of the proposed RLDRs is measured in term of 

misclassification error rates. With the smallest misclassification error rate, such 

LDRs can be defined as optimal or best performance. Several data items will be 

manipulated to create various distributions that usually encountered in real life 

application and it is discussed in the following subsections. 
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3.4.1 Number of Dimensions 

This study will focus on a few dimensions representing small, medium and large 

denoted by 𝑑 = 2, 6, 10 respectively following Todorov and Pires (2007). This data 

item needs to be considered since it is known to have impact on classification 

performance (Lu & Liang, 2016; Sharma & Paliwal, 2015; Gündüz & Fokoué, 2014).  

 

3.4.2 Balanced and Unbalanced Sample Sizes 

Discrepancy in group sizes is one of data characteristics that can give impact to 

classification (Bolin & Finch; 2014). Moreover, Holden, Finch and Kelley (2011) 

indicated that sample size can greatly influence the effectiveness of the classification. 

This study will be focusing on two-groups discrimination problem as it is the most 

frequently applied among the users of discriminant analysis. To test on the effect of 

sample sizes on the new constructed discriminant rules, both, balanced and 

unbalanced of training sample sizes will be considered. Various sizes of the training 

samples that will be generated are listed in Table 3.1. The balance training sample 

sizes used in this study are referred from Todorov and Pires (2007). The unbalance 

training sample sizes are motivated through the balance training sample sizes. 

 

Table 3.1  

Different Training Sample Sizes for Both Groups 

Balance Training Sample Sizes 

(n1, n2) 

Unbalance Training Sample Sizes 

(n1, n2) 

(20,20), (50,50), (100,100) (50,20), (100,20), (100,50) 
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3.4.3 Contamination Level 

When normality is violated, the distribution will have negative impact on the 

achievement of classification (Anyanwu et al., 2015; Glèlè Kakaï et al., 2010). In 

checking the strength and weakness of the proposed procedure with respect to  

non-normality, the distributions which are initially multivariate normal will be 

contaminated as defined in Equation 3.19. The various combinations of parameters 

are motivated by the studies performed by previous researches such as Croux and 

Dehon (2001), He and Fung (2000), Hubert and Van Driessen (2004) as well as by 

Todorov and Pires (2007). 

𝜋1: (1 − 𝜀)𝑛1𝑁𝑑(0, 𝐼𝑑) + 𝜀𝑛1𝑁𝑑(0 + 𝜇, 𝜔𝐼𝑑) 

π2: (1 − 𝜀)𝑛2𝑁𝑑(1, 𝐼𝑑) + 𝜀𝑛2𝑁𝑑(1 − 𝜇, 𝜔𝐼𝑑)                        (3.19) 

where 𝜀 is the proportion of contamination, 𝜇 is the location contamination with shift 

in the mean and 𝜔  is the shape contamination with scale inflation factor in the 

covariance structure. To examine the contamination effect on the discriminant rules, 

different contamination levels suggested by Todorov and Pires (2007) are considered 

in this study as presented in Table 3.2. 

 

Table 3.2  

Different Contamination Levels 

Manipulated Parameters Values 

𝜀 0, 0.1, 0.2, 0.4 

𝜇 0, 3, 5 

𝜔 1, 9, 25, 100 
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3.4.4 Heterogeneous Covariance 

Heterogeneous covariance is another main issue which usually encountered by 

researchers in statistical analysis. Since the performance of the discriminant rule can 

be affected by heterogeneity of covariance (Anyanwu et al., 2015; Glèlè Kakaï et al., 

2010), hence unequal covariance matrix is another good data item to be manipulated. 

Therefore, this study consider each group has a different covariance matrices, 𝑔𝐼𝑑. 

By referring to Todorov and Pires (2007), the first group uses the identity matrix, 𝐼𝑑 

as covariance matrix while the second group will be using a multiple of the 𝐼𝑑 with 

the inflation factor equal to the number of the group which is 2𝐼𝑑 as the covariance 

matrix. With this, the covariance matrices are spherical and proportional. The data 

distributions for unequal covariance will follow Equation 3.20. 

𝜋1: (1 − 𝜀)𝑛1𝑁𝑑(0, 𝐼𝑑) + 𝜀𝑛1𝑁𝑑(0 + 𝜇, 𝜔1𝐼𝑑) 

π2: (1 − 𝜀)𝑛2𝑁𝑑(1, 2𝐼𝑑) + 𝜀𝑛2𝑁𝑑(1 − 𝜇, 𝜔2𝐼𝑑)                    (3.20) 

where the values of 𝜀, 𝜇 and 𝜔1 = 𝜔 are same settings as Table 3.2 while the values 

of 𝜔2 = 2, 9, 25, 100  respectively. Due to the case of heterogeneous covariance, 

𝜔2 = 2 are used to manipulate the unequal covariance matrix between group 1 and 

group 2 in the simulation study (Todorov & Pires, 2007). 

 

3.5 Simulation Design Specification 

Different combinations of sample sizes, number of dimensions and contamination 

levels for equal and unequal covariance matrices are suggested to create various data 

distributions which are capable of highlighting the strengths and weaknesses of the 

new proposed discriminant rule. In this study, six new discriminant rules will be 

constructed and their performance will be compared with CLDR as well as the 

existing RLDR using MCD estimators (RLDRD). Therefore, the manipulation of all 
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data items will produce a total of 9792 different data distributions as shown in  

Table 3.3. 

 

Table 3.3  

Different Types of Data Distributions 

Types of Data 

Number of Data Distributions 

Homoscedasticity Heteroscedasticity 

Uncontaminated 144 144 

Location Contaminated 864 864 

Shape Contaminated 1296 1296 

Mixed Location and Shape Contaminated 2592 2592 

 

The procedures to execute the simulation study using MATLAB R2009a are 

described as follows. 

Step 1: The training sample are randomly generated based on multivariate normal 

distribution with several contamination levels, different dimensions for 

balanced and unbalanced samples, with homogeneous and heterogeneous 

covariance which is discussed in Section 3.4. 

Step 2: The generated training sample for the suggested sizes with the data 

distributions from each population to formulate the new proposed 

discriminant rule.  

Step 3: Generate another random test sample of size 2000 from each uncontaminated 

population, 𝜋1 and 𝜋2, to validate the corresponding discriminant rule. 

Step 4: Determine the misclassification error rates by calculating the proportion of 

misclassified test sample observations in both populations. 
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Step 5:  Repeat step 1 to step 3 for 2000 times. 

Step 6: Compute the average and computational time for misclassification error rates. 

 

3.6 Real Data 

Real data are also considered in the evaluation of the optimality of the new proposed 

RLDRs. All the discriminant rules proposed by this study are tested using real data 

sets namely diabetes data to classify normal and diabetes subjects among 145 non-

obese adults subjects. The diabetes data was analysed by Reaven and Miller (1979) 

in the area of multidimensional analysis, then further analysed by Hakwins and 

McLachlan (1997) as well as Todorov and Pires (2007) in the area of discriminant 

analysis. The data is from a total of 145 non-obese adult, whereby 76 of them are 

classified as subjects with no diabetes (normal), while 69 are classified as subjects 

with diabetes. This classification is based on the basis of their plasma glucose levels.  

 

A total of three primary variables namely X1 (plasma glucose response to oral 

glucose), X2 (plasma insulin response to oral glucose) and X3 (degree of insulin 

resistance) are used to capture variation in plasma glucose levels. Therefore, this real 

data is considered as low dimension dataset. For the purpose of comparison, this data 

set is applied into the CLDR and the existing RLDRD as well as to the new proposed 

RLDRs. Their classification performances are evaluated via two common 

misclassification error rates which are APER and estimated APER using leave-one-

out cross-validation (CV). 
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3.7 Summary 

This chapter discussed the methodology which will be used to construct the new 

proposed discriminant rules. The algorithms and flow charts of each proposed 

discriminant rule are presented. The simulation conditions and real data sets that will 

be used in this study are also explained. 
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CHAPTER FOUR  

ROBUST LINEAR DISCRIMINANT ANALYSIS USING  

COORDINATEWISE BASED APPROACH 

4.1 Introduction 

The simulation results of RLDRs via coordinatewise based approach are presented 

and discussed in Chapter Four. A total of four new proposed RLDRs are tested in the 

simulation study under different data distributions in order to investigate on their 

strengths and weaknesses. The four types of data distribution are uncontaminated 

data, location contaminated data, shape contaminated data as well as mixed location 

and shape contaminated data. In addition, several data characteristics such as number 

of dimensions, balanced and unbalanced sample sizes, contamination level and 

heterogeneity of covariance are manipulated to create the various data distributions.  

 

The proposed RLDRs are compared to CLDR to assess their performance in 

classification problems measured in terms of misclassification error rates as well as 

computational efficiency (in terms of time). The detail procedure for computing the 

performance of LDRs is explained in Chapter Three. The simulation results are then 

being compared between each other with the purpose to identify the more effective 

RLDRs using coordinatewise approach in solving classification problems. 

 

4.2 Simulation Study for Homogeneous Covariance 

In this section, the data distributions are simulated on the basis of homogeneous 

covariance. More precisely, the data sets are generated from the considered  

d-dimensional normal distribution, where each population, π1 and π2, has a different 

location but both of them have the identical covariance matrix Id. To obtain the 
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contamination data, these data sets are contaminated as shown in Equation 3.19. For 

comparison purposes, balanced and unbalanced sample sizes of homogeneous 

covariance populations are employed and discussed in the following subsections. 

 

4.2.1 Results for Groups with Balanced Sample Sizes 

In this section, three sets of balanced sample sizes populations (n1, n2) are considered 

as training data and used them to construct the corresponding discriminant rule. They 

are small sample sizes (20, 20), moderate sample sizes (50, 50) and large sample 

sizes (100, 100). These suggested sample sizes of training data are applied into 

different number of dimensions, d = 2, 6, 10, respectively. 

 

As mentioned earlier, a total of four data distributions namely uncontaminated data, 

location contaminated data, shape contaminated data as well as mixed location and 

shape contaminated data are implemented in this study. Uncontaminated data is the 

clean data, such that 𝜀 = 0, 𝜇 = 0 and 𝜔 = 1. Several proportions of contamination, 

𝜀 = 0.1, 0.2, 0.4 are used to create the contaminated data. Location contaminated data 

is the clean data contaminated on location with shift in the mean, 𝜇  = 3, 5 but 

constant in shape, 𝜔  = 1 while the shape contamination data is the clean data 

contaminated on the shape with scale inflation factor, 𝜔 = 9, 25, 100 but constant in 

location, 𝜇  = 0. Mixed location and shape contaminated data is the clean data 

contaminated on location with shift in the mean, 𝜇 = 3, 5 as well as on the shape with 

scale inflation factor, 𝜔 = 9, 25, 100 respectively. A summary of the settings of 

simulation data distributions is shown in Table 4.1.  
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Table 4.1 

Settings of Simulation Data with Homogeneous Covariance 

Distribution settings 𝜀 𝜇 𝜔 

Uncontaminated data 0 0 1 

Location contaminated data 0.1, 0.2, 0.4 3, 5 1 

Shape contaminated data 0.1, 0.2, 0.4 0 9, 25, 100 

Mixed location and shape contaminated data 0.1, 0.2, 0.4 3, 5 9, 25, 100 

 

As a start in the simulation study, investigations on clean data in different 

dimensions and balanced sample sizes for each LDR are considered. The results of 

the uncontaminated data for each LDR under balanced sample sizes are displayed in 

Figure 4.1. 

 

Figure 4.1. Average misclassification error rates under uncontaminated data for 

different dimensions and balanced sample sizes, (d x n). 

2 x  20 6 x  20 10 x 20 2 x 50 6 x 50 10 x 50 2 x 100 6 x 100 10 x 100
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0.2562 0.1514 0.1082 0.2465 0.1257 0.0745 0.2432 0.1178 0.0653

0.2527 0.1439 0.1006 0.2446 0.1222 0.0714 0.2421 0.1159 0.0637

0.2543 0.1481 0.1049 0.2458 0.1246 0.0734 0.2429 0.1173 0.0649
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Theoretically, the optimal performance (lowest misclassification error rates) of 

CLDR can be achieved once the assumptions of LDA are met (in the case of clean 

data). The results in Figure 4.1 concur with this theory where CLDR always provide 

the lowest misclassification error rates in various sample sizes and dimensions. 

Nevertheless, the performances of RLDRs via coordinatewise approach are close to 

CLDR in the case of clean data. The misclassification error rates of the proposed 

RLDRs are almost similar compared to the CLDR across various sample sizes and 

dimensions especially the results of RLDRWw.  

 

Figure 4.1 also reveals that the misclassification error rates of each LDR are affected 

by number of sample sizes and dimensions. There is an inverse relationship between 

misclassification error rates and dimensions (d) of variable as well as sample sizes 

(n1, n2), respectively. With more information gathered in training sample sizes, the 

test sample sizes can be more correctly classified. As the number of dimensions 

increases the misclassification error rates of each LDR decreases. The 

misclassification error rates also can be reduced by increasing the number of sample 

sizes. These inverse relationships signify that a good discriminant rule can be 

constructed if more information is obtained (large sample sizes and high dimension). 

In short, the performances of the proposed RLDRs are on par to the CLDR in the 

case of clean data with minute (at 3 decimal places) differences in terms of 

misclassification error rates as the number of sample sizes and dimensions increases. 

 

Next, the performance of each LDR in different simulation conditions and different 

types of distributions is being scrutinized. Table 4.2 shows the average 

misclassification error rates in the case of location contamination. 
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Table 4.2 

Average Misclassification Error Rates under Location Contaminated Data for Balanced Sample Sizes 

ε (μ, 𝜔) d 
n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

0.1 

(3, 1) 

2 0.3389 0.2822 0.2803 0.2894 0.2866 0.2960 0.2621 0.2590 0.2693 0.2646 0.2741 0.2530 0.2506 0.2581 0.2542 

6 0.3915 0.2700 0.2594 0.2841 0.2733 0.3286 0.2184 0.1930 0.2420 0.2123 0.2740 0.1837 0.1598 0.2074 0.1759 

10 0.4202 0.2976 0.2879 0.3124 0.3042 0.3629 0.2363 0.1941 0.2649 0.2214 0.3102 0.1848 0.1411 0.2197 0.1675 

(5, 1) 

2 0.4987 0.2690 0.2703 0.2849 0.2862 0.4986 0.2547 0.2534 0.2691 0.2658 0.5010 0.2489 0.2567 0.2616 0.2566 

6 0.4998 0.2337 0.2405 0.2690 0.2758 0.5004 0.1880 0.1740 0.2375 0.2184 0.4991 0.1639 0.1452 0.2174 0.1855 

10 0.4996 0.2570 0.2679 0.2951 0.3076 0.5003 0.1944 0.1683 0.2577 0.2321 0.4995 0.1557 0.1194 0.2316 0.1829 
                  

0.2 

(3, 1) 

2 0.5770 0.3894 0.3795 0.4748 0.4753 0.6202 0.3602 0.3420 0.5263 0.5297 0.6542 0.3364 0.3166 0.5674 0.5772 

6 0.5365 0.4174 0.4036 0.4628 0.4659 0.5611 0.4155 0.3786 0.5035 0.5070 0.5866 0.3987 0.3526 0.5280 0.5399 

10 0.5237 0.4254 0.4190 0.4564 0.4643 0.5436 0.4320 0.3973 0.4958 0.4967 0.5616 0.4203 0.3738 0.5160 0.5231 

(5, 1) 

2 0.6530 0.3145 0.3129 0.4313 0.4442 0.6911 0.2969 0.2800 0.5015 0.5179 0.7124 0.2835 0.2635 0.5753 0.6010 

6 0.5668 0.3298 0.3492 0.4019 0.4436 0.6101 0.3212 0.2872 0.4493 0.4896 0.6526 0.3097 0.2381 0.4972 0.5459 

10 0.5432 0.3370 0.3795 0.3863 0.4431 0.5787 0.3337 0.3187 0.4258 0.4777 0.6115 0.3299 0.2615 0.4687 0.5220 
                  

0.4 

(3, 1) 

2 0.7061 0.6911 0.6999 0.7030 0.7088 0.7328 0.7284 0.7309 0.7321 0.7317 0.7442 0.7424 0.7431 0.7439 0.7428 

6 0.6433 0.6139 0.6330 0.6360 0.6556 0.7165 0.7001 0.7151 0.7133 0.7214 0.7677 0.7578 0.7660 0.7660 0.7666 

10 0.6018 0.5782 0.5934 0.5962 0.6182 0.6742 0.6560 0.6728 0.6709 0.6830 0.7323 0.7198 0.7325 0.7301 0.7348 

(5, 1) 

2 0.6955 0.6366 0.6916 0.6855 0.7182 0.7252 0.6885 0.7332 0.7226 0.7384 0.7389 0.7210 0.7480 0.7378 0.7465 

6 0.6137 0.5371 0.6033 0.5930 0.6784 0.6793 0.6005 0.7219 0.6702 0.7508 0.7300 0.6651 0.7942 0.7251 0.7868 

10 0.5769 0.5133 0.5505 0.5573 0.6350 0.6354 0.5649 0.6730 0.6263 0.7186 0.6864 0.6187 0.7688 0.6806 0.7650 

Performance (%)  55.56 44.44    33.33 66.67    38.89 61.11   
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The performance (%) as displayed in Table 4.2 represent the percentage of the 

RLDR which provided the least misclassification error rate for each data condition 

(represented by each row). Table 4.2 discloses that in most conditions, RLDRM 

outperforms other RLDRs, not to mention the CLDR at 𝜀  = 0.1, 0.2, while the 

performance of RLDRMw is the best at 40% contaminated data. At low contamination 

proportion ( 𝜀  = 0.1), all the proposed RLDRs are able to produce acceptable 

discriminant rules and their performances improve when sample sizes increase. At 

high contamination proportion ( 𝜀  = 0.4), the performance of two RLDRs via 

winsorized covariance estimator (RLDRMw and RLDRWw) are slightly better than 

CLDR while the performance of another two RLDRs via robust covariance estimator 

(RLDRM and RLDRW) are comparable with CLDR especially when the data location 

is highly shifted (𝜇 = 5). 

 

Generally, in the case of location contamination, the performance of the proposed 

RLDRs is still manageable under low contamination proportion (𝜀 = 0.1). However, 

as the proportion of contamination increases ( 𝜀  = 0.2, 0.4), their performance 

dwindle. At 𝜀 = 0.1, the inverse relationship between misclassification error rates and 

sample sizes still holds for all RLDRs. Nevertheless, such relationship does not 

happen on other contamination proportions. Overall, two RLDRs using MOM as 

location estimator (RLDRMw and RLDRM) are good alternatives in solving 

classification problems especially at low proportion of contaminated data. These two 

proposed RLDRs have better performance in all the cases of location contamination 

regardless of contamination level. Table 4.3 presents the average misclassification 

error rates in the case of shape contamination at different contamination proportions 

for balanced sample sizes. 
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Table 4.3 

Average Misclassification Error Rates under Shape Contaminated Data for Balanced Sample Sizes 

ε (μ, 𝜔) d 
n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

0.1 

(0, 9) 

2 0.3178 0.2558 0.2572 0.2563 0.2579 0.2759 0.2461 0.2468 0.2464 0.2472 0.2587 0.2428 0.2433 0.2433 0.2438 

6 0.2108 0.1505 0.1542 0.1493 0.1529 0.1812 0.1261 0.1271 0.1264 0.1276 0.1505 0.1181 0.1184 0.1186 0.1189 

10 0.1421 0.1070 0.1106 0.1055 0.1089 0.1426 0.0758 0.0764 0.0758 0.0765 0.1078 0.0663 0.0662 0.0666 0.0666 

(0, 25) 

2 0.4205 0.2553 0.2568 0.2564 0.2579 0.3863 0.2458 0.2467 0.2466 0.2474 0.3447 0.2427 0.2433 0.2434 0.2439 

6 0.2543 0.1500 0.1540 0.1498 0.1535 0.2696 0.1260 0.1271 0.1269 0.1280 0.2252 0.1182 0.1184 0.1189 0.1192 

10 0.1521 0.1066 0.1106 0.1056 0.1095 0.2256 0.0760 0.0765 0.0763 0.0769 0.1745 0.0665 0.0662 0.0670 0.0668 

(0,100) 

2 0.4903 0.2552 0.2567 0.2564 0.2579 0.4842 0.2457 0.2466 0.2466 0.2475 0.4800 0.2427 0.2432 0.2434 0.2439 

6 0.2725 0.1498 0.1539 0.1498 0.1537 0.4413 0.1260 0.1271 0.1269 0.1281 0.4310 0.1182 0.1184 0.1190 0.1193 
10 0.1540 0.1063 0.1104 0.1056 0.1096 0.3263 0.0760 0.0765 0.0764 0.0770 0.3968 0.0666 0.0663 0.0672 0.0670 

                  

0.2 

(0, 9) 
2 0.3624 0.2584 0.2592 0.2619 0.2628 0.3055 0.2470 0.2474 0.2494 0.2499 0.2745 0.2434 0.2436 0.2450 0.2451 
6 0.2514 0.1557 0.1580 0.1577 0.1603 0.1980 0.1292 0.1289 0.1321 0.1321 0.1587 0.1194 0.1192 0.1214 0.1212 

10 0.1977 0.1146 0.1169 0.1145 0.1175 0.1470 0.0788 0.0783 0.0806 0.0806 0.1083 0.0683 0.0674 0.0700 0.0692 

(0, 25) 

2 0.4637 0.2567 0.2578 0.2612 0.2622 0.4277 0.2462 0.2469 0.2492 0.2499 0.3929 0.2432 0.2434 0.2452 0.2454 

6 0.3613 0.1534 0.1571 0.1569 0.1607 0.3534 0.1283 0.1286 0.1322 0.1327 0.2921 0.1192 0.1191 0.1219 0.1218 

10 0.2575 0.1123 0.1162 0.1136 0.1180 0.2858 0.0785 0.0782 0.0810 0.0814 0.2469 0.0683 0.0673 0.0704 0.0698 

(0,100) 

2 0.4995 0.2559 0.2570 0.2607 0.2617 0.4911 0.2461 0.2467 0.2492 0.2497 0.4896 0.2431 0.2433 0.2452 0.2454 

6 0.4694 0.1520 0.1567 0.1560 0.1607 0.4871 0.1275 0.1282 0.1316 0.1324 0.4684 0.1190 0.1189 0.1218 0.1218 

10 0.2864 0.1113 0.1160 0.1133 0.1182 0.4678 0.0780 0.0782 0.0808 0.0813 0.4671 0.0680 0.0673 0.0703 0.0698 
                  

0.4 

(0, 9) 

2 0.4100 0.2800 0.2784 0.3043 0.3052 0.3491 0.2546 0.2534 0.2708 0.2706 0.3063 0.2473 0.2467 0.2564 0.2559 

6 0.3240 0.1800 0.1774 0.1927 0.1975 0.2487 0.1417 0.1381 0.1575 0.1566 0.1893 0.1252 0.1235 0.1354 0.1339 

10 0.2639 0.1420 0.1385 0.1451 0.1510 0.1886 0.0907 0.0858 0.1017 0.1002 0.1346 0.0736 0.0711 0.0819 0.0801 

(0, 25) 

2 0.4804 0.2716 0.2708 0.2988 0.3036 0.4571 0.2535 0.2511 0.2792 0.2797 0.4346 0.2469 0.2455 0.2648 0.2643 

6 0.4563 0.1740 0.1725 0.1904 0.2034 0.4247 0.1403 0.1351 0.1638 0.1666 0.3682 0.1264 0.1223 0.1448 0.1435 
10 0.4187 0.1326 0.1331 0.1401 0.1556 0.3927 0.0900 0.0844 0.1051 0.1094 0.3367 0.0744 0.0701 0.0895 0.0890 

(0,100) 

2 0.4975 0.2640 0.2638 0.2819 0.2862 0.4965 0.2508 0.2488 0.2677 0.2685 0.4940 0.2465 0.2444 0.2605 0.2605 

6 0.4991 0.1630 0.1657 0.1768 0.1875 0.4949 0.1354 0.1321 0.1524 0.1564 0.4853 0.1254 0.1210 0.1404 0.1410 

10 0.4956 0.1213 0.1277 0.1295 0.1447 0.4915 0.0846 0.0819 0.0957 0.1013 0.4865 0.0729 0.0690 0.0852 0.0870 

Performance (%)  53.71 22.22 24.07   53.71 44.44 1.85   33.33 66.67   
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Similar to the case of clean data, the misclassification error rates of the proposed 

RLDRs under shape contaminated data has an inverse relationship with the sample 

sizes as well as number of dimensions, respectively. Low misclassification error rates 

can be obtained through the increased in sample sizes or number of dimensions. 

However, this pattern does not always reveal on the CLDR. In the case of shape 

contamination, all the proposed RLDRs outperform the CLDR. 

 

At ε = 0.1, 0.2, irrespective of the number of scale inflation factor, the 

misclassification error rates of the proposed RLDRs are quite similar within same 

dimensions, but this situation does not apply in high contamination proportion 

(ε = 0.4). As observed in Table 4.3, most of the conditions under RLDRMw produce 

lowest misclassification error rates for small (n1 = n2 = 20) as well as moderate 

sample sizes (n1 = n2 = 50). On the other hand, under large sample sizes  

(n1 = n2 = 100), among the proposed RLDRs, optimality in classification is achieved 

by RLDRM. In addition, RLDRM can withstand the high contamination (ε = 0.4) as 

proven in Table 4.3 where it surpasses the other RLDRs. Generally, all proposed 

RLDRs using coordinatewise approach have outstanding performance in the case of 

shape contamination. Indeed, RLDRMw is an acceptable alternative in solving the 

classification problems at ε = 0.1, 0.2 while RLDRM is the choice at ε = 0.4. 

 

Meanwhile, the performances of all the investigated LDRs in the case of mixed 

location and shape contamination for balanced sample sizes at different 

contamination proportions (ε = 0.1, 0.2, 0.4) are reported in Table 4.4 to Table 4.6. 

The performances are summarized in the form of average misclassification error 

rates. 
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Table 4.4 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Balanced Sample Sizes at 𝜀 = 0.1 

(μ, 𝜔) d 
n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

(3, 9) 

2 0.3884 0.2565 0.2578 0.2588 0.2602 0.3610 0.2462 0.2470 0.2479 0.2487 0.3270 0.2430 0.2435 0.2442 0.2446 

6 0.2679 0.1559 0.1595 0.1597 0.1631 0.2757 0.1293 0.1297 0.1336 0.1338 0.2414 0.1199 0.1197 0.1229 0.1224 

10 0.1979 0.1177 0.1219 0.1213 0.1256 0.2392 0.0819 0.0812 0.0866 0.0856 0.2223 0.0701 0.0687 0.0741 0.0720 

(5, 9) 

2 0.4548 0.2579 0.2595 0.2618 0.2631 0.4732 0.2468 0.2476 0.2496 0.2502 0.4804 0.2435 0.2438 0.2454 0.2455 

6 0.3253 0.1637 0.1680 0.1715 0.1754 0.3809 0.1341 0.1337 0.1424 0.1412 0.4000 0.1228 0.1217 0.1289 0.1267 

10 0.2581 0.1330 0.1379 0.1410 0.1460 0.3294 0.0918 0.0892 0.1018 0.0982 0.3637 0.0766 0.0729 0.0854 0.0799 
                 

(3, 25) 

2 0.4527 0.2556 0.2570 0.2573 0.2587 0.4441 0.2458 0.2467 0.2469 0.2479 0.4234 0.2428 0.2432 0.2437 0.2441 

6 0.2655 0.1506 0.1545 0.1520 0.1557 0.3288 0.1267 0.1276 0.1289 0.1298 0.3142 0.1183 0.1186 0.1199 0.1201 

10 0.1616 0.1084 0.1124 0.1092 0.1132 0.2563 0.0767 0.0771 0.0786 0.0789 0.2549 0.0670 0.0666 0.0686 0.0681 

(5, 25) 

2 0.4755 0.2557 0.2570 0.2580 0.2593 0.4870 0.2458 0.2467 0.2473 0.2483 0.4917 0.2429 0.2433 0.2439 0.2444 

6 0.2783 0.1518 0.1557 0.1544 0.1581 0.3812 0.1273 0.1282 0.1306 0.1313 0.4072 0.1187 0.1189 0.1210 0.1210 

10 0.1747 0.1105 0.1148 0.1128 0.1171 0.2869 0.0779 0.0781 0.0810 0.0810 0.3404 0.0677 0.0671 0.0703 0.0694 
                 

(3, 100) 

2 0.4937 0.2552 0.2567 0.2566 0.2581 0.4916 0.2457 0.2466 0.2467 0.2476 0.4929 0.2427 0.2432 0.2435 0.2440 

6 0.2733 0.1499 0.1540 0.1503 0.1543 0.4572 0.1260 0.1271 0.1273 0.1285 0.4562 0.1182 0.1184 0.1192 0.1195 

10 0.1547 0.1065 0.1107 0.1062 0.1102 0.3348 0.0759 0.0764 0.0768 0.0774 0.4292 0.0666 0.0663 0.0675 0.0672 

(5, 100) 

2 0.4961 0.2552 0.2566 0.2568 0.2582 0.4963 0.2457 0.2466 0.2468 0.2477 0.5012 0.2427 0.2432 0.2436 0.2440 

6 0.2742 0.1499 0.1541 0.1507 0.1546 0.4675 0.1261 0.1272 0.1276 0.1287 0.4736 0.1182 0.1185 0.1194 0.1196 

10 0.1558 0.1066 0.1108 0.1067 0.1108 0.3412 0.0761 0.0766 0.0772 0.0777 0.4520 0.0666 0.0663 0.0677 0.0674 

Performance 

(%) 
 94.44  5.56   83.33 16.67    55.56 44.44   
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Table 4.5 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Balanced Sample Sizes at 𝜀 = 0.2 

(μ, 𝜔) d 
n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

(3, 9) 

2 0.5083 0.2605 0.2612 0.2727 0.2735 0.5334 0.2482 0.2483 0.2561 0.2561 0.5678 0.2440 0.2441 0.2491 0.2489 

6 0.3933 0.1656 0.1679 0.1807 0.1842 0.4948 0.1362 0.1346 0.1527 0.1507 0.5381 0.1236 0.1223 0.1357 0.1330 

10 0.3049 0.1336 0.1380 0.1473 0.1535 0.4063 0.0924 0.0891 0.1098 0.1067 0.4972 0.0769 0.0733 0.0918 0.0865 

(5, 9) 

2 0.6039 0.2639 0.2642 0.2853 0.2865 0.6795 0.2497 0.2495 0.2672 0.2665 0.7158 0.2451 0.2449 0.2578 0.2565 

6 0.4956 0.1816 0.1852 0.2105 0.2167 0.6776 0.1476 0.1438 0.1850 0.1805 0.7669 0.1309 0.1272 0.1631 0.1554 

10 0.3826 0.1640 0.1705 0.1907 0.2003 0.5863 0.1145 0.1072 0.1561 0.1501 0.7423 0.0922 0.0835 0.1357 0.1219 
                 

(3, 25) 

2 0.5041 0.2572 0.2581 0.2643 0.2652 0.5062 0.2467 0.2471 0.2511 0.2515 0.5237 0.2432 0.2433 0.2460 0.2461 

6 0.4204 0.1540 0.1579 0.1616 0.1657 0.4977 0.1291 0.1293 0.1364 0.1366 0.5044 0.1196 0.1194 0.1247 0.1242 

10 0.2798 0.1143 0.1186 0.1200 0.1252 0.4314 0.0802 0.0798 0.0867 0.0866 0.4937 0.0692 0.0681 0.0743 0.0731 

(5, 25) 

2 0.5310 0.2576 0.2584 0.2667 0.2678 0.5590 0.2467 0.2472 0.2526 0.2530 0.6061 0.2434 0.2435 0.2469 0.2469 

6 0.4625 0.1561 0.1601 0.1664 0.1711 0.5911 0.1302 0.1303 0.1405 0.1407 0.6490 0.1204 0.1199 0.1274 0.1266 

10 0.3030 0.1188 0.1239 0.1276 0.1338 0.5366 0.0824 0.0818 0.0924 0.0920 0.6630 0.0708 0.0694 0.0789 0.0770 
                 

(3, 100) 

2 0.5027 0.2560 0.2571 0.2613 0.2621 0.4993 0.2460 0.2467 0.2494 0.2500 0.5042 0.2431 0.2433 0.2453 0.2455 

6 0.4780 0.1521 0.1568 0.1572 0.1618 0.5036 0.1277 0.1284 0.1325 0.1334 0.4960 0.1191 0.1190 0.1223 0.1223 

10 0.2879 0.1113 0.1160 0.1145 0.1194 0.4884 0.0781 0.0783 0.0817 0.0823 0.5017 0.0681 0.0673 0.0710 0.0704 

(5, 100) 

2 0.5053 0.2560 0.2572 0.2618 0.2628 0.5048 0.2460 0.2467 0.2495 0.2501 0.5144 0.2430 0.2432 0.2530 0.2455 

6 0.4846 0.1519 0.1566 0.1577 0.1624 0.5146 0.1279 0.1285 0.1333 0.1341 0.5147 0.1191 0.1190 0.1227 0.1226 

10 0.2897 0.1111 0.1160 0.1150 0.1201 0.5027 0.0783 0.0785 0.0825 0.0830 0.5242 0.0681 0.0674 0.0715 0.0709 

Performance 

(%) 
 100     61.11 38.89    27.78 72.22   
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Table 4.6 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Balanced Sample Sizes at 𝜀 = 0.4 

(μ, 𝜔) d 
n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

(3, 9) 

2 0.6106 0.2981 0.2970 0.3960 0.4032 0.6767 0.2623 0.2604 0.4074 0.4102 0.7162 0.2517 0.2506 0.4187 0.4195 

6 0.6382 0.2184 0.2171 0.2938 0.3185 0.7623 0.1716 0.1624 0.3286 0.3432 0.8194 0.1423 0.1369 0.3376 0.3423 

10 0.5762 0.1875 0.1913 0.2388 0.2720 0.7777 0.1348 0.1223 0.2685 0.2899 0.8609 0.1011 0.0918 0.3001 0.3098 

(5, 9) 

2 0.6693 0.3167 0.3174 0.4813 0.4919 0.7172 0.2754 0.2718 0.5804 0.5869 0.7372 0.2590 0.2567 0.6601 0.6640 

6 0.7232 0.2583 0.2649 0.3860 0.4323 0.8173 0.2187 0.2029 0.5401 0.5790 0.8526 0.1785 0.1644 0.6743 0.6998 

10 0.6744 0.2418 0.2558 0.3254 0.3832 0.8497 0.2011 0.1834 0.4688 0.5281 0.8995 0.1599 0.1376 0.6344 0.6794 
                 

(3, 25) 

2 0.5174 0.2749 0.2735 0.3186 0.3260 0.5499 0.2541 0.2517 0.3014 0.3036 0.5867 0.2473 0.2456 0.2844 0.2843 

6 0.5355 0.1782 0.1775 0.2092 0.2288 0.5995 0.1449 0.1378 0.1904 0.1967 0.6495 0.1287 0.1236 0.1708 0.1706 

10 0.5214 0.1387 0.1410 0.1582 0.1807 0.6076 0.0952 0.0883 0.1306 0.1396 0.6915 0.0777 0.0722 0.1161 0.1171 

(5, 25) 

2 0.5446 0.2764 0.2751 0.3369 0.3450 0.5992 0.2551 0.2526 0.3259 0.3292 0.6453 0.2477 0.2462 0.3159 0.3164 

6 0.5805 0.1826 0.1833 0.2247 0.2487 0.6701 0.1484 0.1411 0.2182 0.2320 0.7379 0.1316 0.1256 0.2087 0.2131 

10 0.5792 0.1450 0.1514 0.1741 0.2061 0.6973 0.1020 0.0938 0.1575 0.1776 0.7897 0.0827 0.0750 0.1544 0.1622 
                 

(3, 100) 

2 0.5005 0.2646 0.2641 0.2861 0.2902 0.5035 0.2510 0.2488 0.2694 0.2705 0.5076 0.2462 0.2443 0.2621 0.2621 

6 0.5035 0.1628 0.1656 0.1792 0.1900 0.5101 0.1356 0.1323 0.1549 0.1593 0.5128 0.1253 0.1210 0.1434 0.1442 

10 0.5050 0.1217 0.1281 0.1319 0.1477 0.5087 0.0848 0.0820 0.0991 0.1051 0.5222 0.0730 0.0690 0.0873 0.0890 

(5, 100) 

2 0.5023 0.2643 0.2643 0.2871 0.2918 0.5080 0.2514 0.2489 0.2712 0.2725 0.5159 0.2465 0.2444 0.2646 0.2649 

6 0.5070 0.1631 0.1664 0.1817 0.1944 0.5195 0.1361 0.1323 0.1569 0.1619 0.5306 0.1256 0.1210 0.1455 0.1466 

10 0.5116 0.1226 0.1284 0.1346 0.1506 0.5208 0.0851 0.0823 0.1010 0.1079 0.5448 0.0733 0.0691 0.0902 0.0924 

Performance 

(%) 
 63.89 36.11     100     100   
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Across Table 4.4 to Table 4.6, the inverse relationship still can be observed between 

the misclassification error rates and sample sizes. Besides, the misclassification error 

rates also hold an inverse relationship with the number of dimensions. Nonetheless, 

such inverse relationships do not occur on the CLDR. As compared to the CLDR, all 

the proposed RLDRs are able to produce lower misclassification error rates in the 

case of mixed location and shape contamination. Briefly, the proposed RLDRs are 

good discriminant rule even under contaminated data, unlike CLDR. 

 

Table 4.4 shows that most of the RLDRMw (more than 80%) have superior 

performance under small (n1 = n2 = 20) as well as moderate sample sizes  

(n1 = n2 = 50). For large sample sizes (n1 = n2 = 100), the performance of the 

RLDRMw still hold the best at majority (55.56%) and then follows by the RLDRM 

(44.44%). Table 4.5 reveals that optimality (lowest misclassification error rates) of 

the RLDRMw are obtained under small sample sizes (n1 = n2 = 20), and continue to be 

optimal when the sample sizes increase to n1 = n2 = 50. As the sample sizes are 

increased to n1 = n2 = 100, the optimality no longer holds. For n1 = n2 = 100, RLDRM 

provide lowest misclassification error rates. At ε = 0.4, the performance of RLDRMw 

under n1 = n2 = 20 bounced back as shown in Table 4.6. For larger sample sizes  

(n1 = n2 = 50, 100), RLDRM overshadow the others with lowest misclassification 

error rates. 

 

Across Table 4.4 to Table 4.6, although the two RLDRs using WMOM as location 

estimator (RLDRWw and RLDRW) outperform CLDR, their performances are not as 

good as the other two RLDRs which use MOM as location estimator (RLDRMw and 

RLDRM). Furthermore, the disparity between RLDRMw and RLDRM in terms of 
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misclassification error rates are very small, not more than 0.005, 0.009, 0.025 at  

ε = 0.1, 0.2, 0.4, respectively. Therefore, the RLDRs using MOM as location 

estimator (RLDRMw and RLDRM) are good alternatives in solving the classification 

problems under mixed location and shape contaminated data regardless of the 

contamination levels. 

 

4.2.2 Results for Groups with Unbalanced Sample Sizes 

As mentioned in Chapter Three, discrepancy (inequality) in group sizes is one of the 

data characteristics that can influence the classification performance. Therefore, the 

performances of the proposed RLDRs and CLDR with respect to three chosen sets of 

unbalanced sample sizes are discussed in this section. The three sets are denoted as 

small discrepancy (n1 = 50, n2 = 20), moderate discrepancy (n1 = 100, n2 = 50) and 

large discrepancy in group sizes (n1 = 100, n2 = 20). Again, these chosen sample 

sizes of training data are employed into different number of dimensions, d = 2, 6, 10. 

 

For comparison purposes, the same settings of data distributions as in Table 4.1 are 

also used for unbalanced sample sizes. To study the effect of unbalanced sample 

sizes on homogeneous covariance populations, the simulation started with the case of 

uncontaminated data (clean data). The analysis results of the clean data for each LDR 

under unbalanced sample sizes are shown in Figure 4.2.  
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Figure 4.2. Average misclassification error rates under uncontaminated data for 

different dimensions and unbalanced sample sizes, d x (n1, n2).   

 

Similar to the results in Section 4.2.1, the misclassification error rates of each LDR 

seems to decrease as the number of dimensions increases as illustrated in Figure 4.2. 

Thus, the inverse relationship still exists between the misclassification error rates and 

dimensions. Obviously, the sample sizes also give an impact to classification. 

However, the impact does not only rely on the discrepancy in group sizes, but also on 

the number of sample sizes involved in the training data. Irrespective of the 

dimensions, the misclassification error rates of each LDR for large discrepancy in 

group sizes (n1 = 100, n2 = 20) are the highest, followed by small discrepancy in 

group sizes (n1 = 50, n2 = 20) and the least is from moderate discrepancy in group 

sizes (n1 = 100, n2 = 50). It is shown that the involvement of small sample sizes  
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(n = 20) are affect the performance of LDR as compared to the involvement of other 

sample sizes (n = 50, 100). 

 

In the case of clean data with unbalanced sample sizes, the optimality in performance 

(lowest misclassification error rates) no longer belongs to CLDR. The results of the 

CLDR shown in Figure 4.2 proved that the performance is influenced by the 

unbalanced sample sizes. In contrast, RLDRs using winsorized covariance as scale 

estimator (RLDRMw and RLDRWw) show excellent performance as compared to 

CLDR. Moreover, the RLDRWw manage to handle the effect of unbalanced sample 

sizes, thus providing the lowest misclassification error rates among the LDRs. For 

large discrepancy in group sizes (n1 = 100, n2 = 20), all the proposed RLDRs using 

coordinatewise approach outperform CLDR at d = 2 and also at d = 6, but not 

including the RLDRM. 

 

In short, RLDRWw has the best performance in the case of clean data regardless of 

the discrepancy in group sizes as well as dimensions. RLDRMw also perform better 

than CLDR at d = 2, 6 as well as for large discrepancy in group sizes  

(n1 = 100, n2 = 20). Thus, for the case of unbalanced sample sizes with clean data, 

RLDRs using winsorized covariance as scale estimator (RLDRMw and RLDRWw) are 

the better alternatives to solve classification problems. 

 

The study on contamination data also considered for the unbalanced sample sizes 

with homogeneous covariance. The results for the case of location contamination 

with unbalanced sample sizes are presented in Table 4.7. 
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Table 4.7 

Average Misclassification Error Rates under Location Contaminated Data for Unbalanced Sample Sizes 

ε (μ,𝜔) d 
n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

0.1 

(3, 1) 

2 0.4885 0.3796 0.3727 0.4115 0.4159 0.4836 0.3468 0.3322 0.4002 0.3893 0.4997 0.4675 0.4559 0.4892 0.4840 

6 0.4609 0.3214 0.2975 0.3367 0.3443 0.4511 0.2826 0.2427 0.3288 0.3046 0.4955 0.4278 0.3978 0.4642 0.4488 

10 0.4478 0.3196 0.2910 0.3256 0.3297 0.4323 0.2757 0.2243 0.3072 0.2827 0.4880 0.4085 0.3749 0.4440 0.4256 

(5, 1) 

2 0.5000 0.3472 0.3511 0.3994 0.4143 0.5000 0.3196 0.3118 0.3932 0.3909 0.5000 0.4478 0.4398 0.4865 0.4841 

6 0.5000 0.2802 0.2758 0.3197 0.3458 0.4998 0.2461 0.2194 0.3194 0.3116 0.5000 0.3991 0.3776 0.4556 0.4499 

10 0.5003 0.2781 0.2699 0.3100 0.3339 0.4998 0.2358 0.1981 0.3004 0.2925 0.4999 0.3804 0.3573 0.4338 0.4278 
                  

0.2 

(3, 1) 

2 0.5017 0.4796 0.4744 0.4966 0.4974 0.5015 0.4805 0.4721 0.5002 0.4999 0.5001 0.4978 0.4969 0.4999 0.4998 

6 0.5104 0.4557 0.4431 0.4890 0.4914 0.5110 0.4551 0.4365 0.5025 0.5016 0.5010 0.4877 0.4844 0.4990 0.4990 

10 0.5149 0.4512 0.4360 0.4821 0.4869 0.5182 0.4512 0.4261 0.5014 0.5015 0.5030 0.4810 0.4741 0.4978 0.4976 

(5, 1) 

2 0.5040 0.4231 0.4330 0.4846 0.4935 0.5050 0.4162 0.3994 0.4973 0.5005 0.5002 0.4867 0.4891 0.4987 0.4997 

6 0.5212 0.3763 0.3957 0.4459 0.4797 0.5238 0.3753 0.3585 0.4799 0.5026 0.5022 0.4535 0.4669 0.4892 0.4970 

10 0.5283 0.3644 0.3930 0.4186 0.4709 0.5358 0.3664 0.3544 0.4563 0.4965 0.5060 0.4321 0.4514 0.4771 0.4934 
                  

0.4 

(3, 1) 

2 0.5333 0.5319 0.5135 0.5400 0.5163 0.5667 0.5643 0.5279 0.5700 0.5312 0.5015 0.5018 0.5003 0.5016 0.5004 

6 0.5637 0.5606 0.5387 0.5811 0.5450 0.5861 0.5847 0.5476 0.5983 0.5527 0.5088 0.5109 0.5031 0.5096 0.5031 

10 0.5749 0.5661 0.5545 0.5933 0.5649 0.5998 0.5965 0.5669 0.6153 0.5733 0.5192 0.5206 0.5081 0.5202 0.5087 

(5, 1) 

2 0.5226 0.5246 0.5116 0.5294 0.5210 0.5485 0.5480 0.5337 0.5518 0.5448 0.5009 0.5033 0.5003 0.5014 0.5005 

6 0.5507 0.5344 0.5238 0.5638 0.5446 0.5659 0.5621 0.5393 0.5771 0.5617 0.5070 0.5127 0.5018 0.5087 0.5026 

10 0.5590 0.5261 0.5299 0.5673 0.5663 0.5788 0.5577 0.5511 0.5908 0.5836 0.5158 0.5151 0.5038 0.5161 0.5070 

Performance 

(%) 
 27.78 72.22     100    16.67 80.55  2.78 
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For this case, the misclassification error rates of the proposed RLDRs seem to 

decrease as the number of dimensions increase at 𝜀 = 0.1, 0.2, but not at 𝜀 = 0.4. The 

inverse relationship also not reflected on the CLDR. From Table 4.7, it can be 

observed that the performance of RLDRM is the best among the RLDRs, not to 

mention the CLDR. Although the misclassification error rates of RLDRM is the 

lowest among the LDRs, but its performance does not fully reflected that RLDRM is 

a good choice to solve the case of location contamination for unbalanced sample 

sizes. For n1 = 50, n2 = 20 and n1 = 100, n2 = 50, RLDRM is able to produce 

acceptable discriminant rules at 𝜀 = 0.1. Other than that, the performances of RLDRM 

are only slightly better than CLDR, especially at 𝜀 = 0.4. 

 

At 𝜀 = 0.1, 0.2, all the proposed RLDRs produce lower misclassification error rates 

than the CLDR, but this situation does not happen on RLDRMw and RLDRWw at  

𝜀 = 0.4. The performance of the two RLDRs via winsorized covariance estimator 

(RLDRMw and RLDRWw) is quite bad as compared to CLDR at high contamination 

proportion. Overall, the RLDR using coordinatewise approach perform moderately in 

the case of location contamination for unbalanced sample sizes. 

 

Table 4.8 presents simulation results of the LDRs for the shape contaminated data 

with unbalanced sample sizes. The average misclassification error rates for each 

LDR are computed and documented in Table 4.8. 
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Table 4.8 

Average Misclassification Error Rates under Shape Contaminated Data for Unbalanced Sample Sizes 

ε (μ, 𝜔) d 
n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

0.1 

(0, 9) 

2 0.4881 0.3059 0.3111 0.3045 0.3114 0.4909 0.2826 0.2818 0.2828 0.2825 0.4998 0.3912 0.3883 0.3912 0.3884 

6 0.3213 0.1540 0.1568 0.1494 0.1563 0.3474 0.1345 0.1347 0.1334 0.1351 0.4668 0.1935 0.1923 0.1925 0.1917 

10 0.1823 0.0948 0.0969 0.0909 0.0962 0.2064 0.0767 0.0766 0.0750 0.0770 0.3366 0.1115 0.1114 0.1110 0.1108 

(0, 25) 

2 0.5000 0.3076 0.3134 0.3065 0.3139 0.5000 0.2843 0.2832 0.2848 0.2841 0.5000 0.3951 0.3916 0.3954 0.3919 

6 0.4592 0.1544 0.1574 0.1502 0.1575 0.4989 0.1352 0.1351 0.1344 0.1358 0.4998 0.1960 0.1942 0.1955 0.1939 

10 0.2412 0.0951 0.0972 0.0915 0.0969 0.4644 0.0772 0.0769 0.0757 0.0775 0.4811 0.1127 0.1122 0.1130 0.1123 

(0,100) 

2 0.5000 0.3080 0.3142 0.3071 0.3149 0.5000 0.2849 0.2837 0.2855 0.2847 0.5000 0.3967 0.3930 0.3968 0.3933 

6 0.4972 0.1544 0.1576 0.1505 0.1580 0.5000 0.1354 0.1353 0.1348 0.1361 0.5000 0.1968 0.1950 0.1965 0.1948 
10 0.2609 0.0950 0.0971 0.0916 0.0972 0.5000 0.0773 0.0769 0.0759 0.0777 0.4997 0.1131 0.1125 0.1137 0.1129 

                  

0.2 

(0, 9) 
2 0.4995 0.3391 0.3406 0.3365 0.3422 0.4998 0.3135 0.3039 0.3150 0.3067 0.5000 0.4442 0.4312 0.4438 0.4313 
6 0.4684 0.1701 0.1710 0.1653 0.1744 0.4793 0.1470 0.1432 0.1468 0.1454 0.4996 0.2411 0.2278 0.2435 0.2305 

10 0.3432 0.1058 0.1061 0.1008 0.1083 0.4000 0.0843 0.0818 0.0831 0.0844 0.4913 0.1390 0.1321 0.1429 0.1360 

(0, 25) 

2 0.5000 0.3401 0.3474 0.3379 0.3493 0.5000 0.3168 0.3090 0.3187 0.3122 0.5000 0.4479 0.4390 0.4471 0.4385 

6 0.4999 0.1688 0.1728 0.1659 0.1771 0.5000 0.1477 0.1447 0.1486 0.1478 0.5000 0.2448 0.2352 0.2480 0.2385 

10 0.4933 0.1047 0.1065 0.1013 0.1100 0.5000 0.0844 0.0825 0.0839 0.0858 0.5000 0.1396 0.1348 0.1450 0.1397 

(0,100) 

2 0.5000 0.3388 0.3503 0.3376 0.3525 0.5000 0.3160 0.3110 0.3182 0.3142 0.5000 0.4475 0.4416 0.4468 0.4411 

6 0.5000 0.1670 0.1733 0.1649 0.1780 0.5000 0.1474 0.1456 0.1481 0.1487 0.5000 0.2439 0.2384 0.2470 0.2415 

10 0.5000 0.1034 0.1065 0.1006 0.1103 0.5000 0.0840 0.0827 0.0838 0.0862 0.5000 0.1383 0.1360 0.1441 0.1413 
                  

0.4 

(0, 9) 

2 0.5000 0.4513 0.4415 0.4344 0.4375 0.5000 0.4459 0.4018 0.4351 0.4039 0.5000 0.4981 0.4928 0.4972 0.4904 

6 0.4995 0.2739 0.2589 0.2481 0.2732 0.4997 0.2451 0.2012 0.2341 0.2144 0.5000 0.4370 0.3852 0.4372 0.3901 

10 0.4924 0.1694 0.1609 0.1487 0.1796 0.4970 0.1398 0.1147 0.1334 0.1310 0.5000 0.3176 0.2593 0.3321 0.2803 

(0, 25) 

2 0.5000 0.4423 0.4646 0.4253 0.4559 0.5000 0.4472 0.4325 0.4327 0.4279 0.5000 0.4976 0.4978 0.4962 0.4954 

6 0.5000 0.2577 0.2887 0.2429 0.3023 0.5000 0.2466 0.2259 0.2410 0.2430 0.5000 0.4341 0.4240 0.4320 0.4205 
10 0.5000 0.1574 0.1738 0.1456 0.1991 0.5000 0.1403 0.1277 0.1384 0.1536 0.5000 0.3123 0.2990 0.3291 0.3175 

(0,100) 

2 0.5000 0.4067 0.4740 0.3973 0.4671 0.5000 0.4062 0.4470 0.4016 0.4395 0.5000 0.4921 0.4990 0.4896 0.4974 

6 0.5000 0.2153 0.3036 0.2104 0.3095 0.5000 0.2031 0.2403 0.2052 0.2502 0.5000 0.3767 0.4414 0.3767 0.4327 

10 0.5000 0.1306 0.1778 0.1274 0.1941 0.5000 0.1145 0.1344 0.1175 0.1520 0.5000 0.2414 0.3187 0.2567 0.3241 

Performance (%)    100   7.4 66.67 25.93   9.26 51.85 5.56 33.33 
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Like in the earlier sections, an inverse relationship exists between misclassification 

error rates and number of dimensions for all RLDRs, but not for CLDR. A higher 

dimension of data seems to improve the performance of RLDRs. Therefore, the 

smallest misclassification error rates of each RLDR are obtained at d = 10. 

Regardless of the number of scale inflation factor, all RLDRs are produced almost 

identical misclassification error rates within dimension and suggested sample sizes at 

ε = 0.1, 0.2. But this pattern does not revealed at ε = 0.4. However, such scenario 

does not occurred on the CLDR. 

 

Table 4.8 observes that all the proposed RLDRs show better performance than 

CLDR, irrespective to any contamination levels as well as the discrepancy in group 

sizes. Moreover, CLDR loss its discrimination ability at ε = 0.2, 0.4. A 

misclassification error rate of 0.5 indicated that CLDR are unable to allocate the 

correct observations into their respective populations. This happens when the 

observations of small group size are classified into large group size, for example the 

discriminant rule constructed through the training sample sizes of n1 =100, n2 = 20, 

thus leading all the test sample of population 𝜋2  are wrongly classified into 𝜋1 . 

Therefore, the performance of CLDR is highly influenced by the inequality of group 

sizes.  

 

Overall, the performance of RLDRWw is excellent for n1 =50, n2 = 20 while RLDRM 

perform well for n1 = 100, n2 = 50 and n1 =100, n2 = 20. Thus, the proposed RLDRs 

can reduce the effect of unbalanced sample sizes as well as shape contamination 

simultaneously.  
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Besides investigation on the case of location contamination and shape contamination, 

the case of mixed location and shape contamination for the unbalanced sample sizes 

is also considered. The analysis results of the case at different contamination 

proportions are shown in Table 4.9 to Table 4.11. 
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Table 4.9 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Unbalanced Sample Sizes at 𝜀 = 0.1 

(μ, 𝜔) d 
n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

(3, 9) 

2 0.4949 0.3099 0.3151 0.3180 0.3276 0.4988 0.2855 0.2843 0.2952 0.2950 0.5000 0.3972 0.3940 0.4144 0.4110 

6 0.4043 0.1616 0.1639 0.1629 0.1720 0.4634 0.1402 0.1391 0.1443 0.1460 0.4946 0.2109 0.2065 0.2278 0.2231 

10 0.2785 0.1064 0.1073 0.1066 0.1135 0.3803 0.0845 0.0824 0.0875 0.0884 0.4511 0.1321 0.1276 0.1449 0.1402 

(5, 9) 

2 0.4983 0.3141 0.3192 0.3303 0.3410 0.4999 0.2894 0.2876 0.3074 0.3069 0.5000 0.4054 0.4009 0.4323 0.4280 

6 0.4547 0.1745 0.1757 0.1807 0.1920 0.4934 0.1499 0.1463 0.1603 0.1607 0.4992 0.2388 0.2285 0.2715 0.2611 

10 0.3597 0.1249 0.1242 0.1286 0.1380 0.4621 0.0985 0.0924 0.1070 0.1057 0.4872 0.1678 0.1556 0.1953 0.1829 
                 

(3, 25) 

2 0.5000 0.3081 0.3139 0.3104 0.3189 0.5000 0.2849 0.2837 0.2887 0.2880 0.5000 0.3966 0.3930 0.4031 0.3995 

6 0.4637 0.1552 0.1582 0.1534 0.1612 0.4996 0.1359 0.1357 0.1368 0.1386 0.4999 0.1985 0.1966 0.2040 0.2021 

10 0.2584 0.0965 0.0986 0.0947 0.1008 0.4775 0.0780 0.0775 0.0782 0.0800 0.4853 0.1153 0.1143 0.1196 0.1184 

(5, 25) 

2 0.5000 0.3088 0.3147 0.3136 0.3228 0.5000 0.2855 0.2843 0.2917 0.2912 0.5000 0.3979 0.3943 0.4086 0.4050 

6 0.4696 0.1569 0.1600 0.1566 0.1651 0.4999 0.1370 0.1366 0.1393 0.1411 0.5000 0.2023 0.1996 0.2123 0.2096 

10 0.2799 0.0989 0.1009 0.0983 0.1048 0.4870 0.0799 0.0789 0.0811 0.0827 0.4902 0.1200 0.1180 0.1275 0.1255 
                 

(3, 100) 

2 0.5000 0.3080 0.3141 0.3081 0.3161 0.5000 0.2849 0.2838 0.2863 0.2857 0.5000 0.3968 0.3931 0.3986 0.3950 

6 0.4969 0.1544 0.1577 0.1511 0.1588 0.5000 0.1354 0.1353 0.1353 0.1368 0.5000 0.1971 0.1953 0.1984 0.1966 

10 0.2622 0.0952 0.0973 0.0922 0.0979 0.5000 0.0774 0.0770 0.0764 0.0782 0.4994 0.1135 0.1128 0.1150 0.1142 

(5, 100) 

2 0.5000 0.3080 0.3142 0.3087 0.3168 0.5000 0.2850 0.2839 0.2869 0.2863 0.5000 0.3970 0.3933 0.3999 0.3963 

6 0.4968 0.1546 0.1578 0.1516 0.1593 0.5000 0.1355 0.1355 0.1356 0.1372 0.5000 0.1976 0.1958 0.1999 0.1981 

10 0.2638 0.0954 0.0975 0.0928 0.0985 0.5000 0.0775 0.0770 0.0768 0.0786 0.4993 0.1136 0.1130 0.1159 0.1151 

Performance 

(%) 
 50 5.56 44.44   2.78 83.33 13.89    100   
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Table 4.10 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Unbalanced Sample Sizes at 𝜀 = 0.2 

(μ, 𝜔) d 
n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

(3, 9) 

2 0.4999 0.3471 0.3500 0.3712 0.3842 0.5000 0.3223 0.3113 0.3608 0.3525 0.5000 0.4514 0.4440 0.4734 0.4663 

6 0.4972 0.1889 0.1896 0.2040 0.2227 0.4999 0.1630 0.1553 0.1864 0.1855 0.5000 0.2824 0.2637 0.3375 0.3201 

10 0.4666 0.1309 0.1302 0.1406 0.1578 0.4984 0.1037 0.0965 0.1220 0.1232 0.4999 0.1886 0.1731 0.2401 0.2255 

(5, 9) 

2 0.5000 0.3574 0.3612 0.4005 0.4166 0.5000 0.3335 0.3215 0.4034 0.3984 0.5000 0.4616 0.4521 0.4875 0.4840 

6 0.4996 0.2171 0.2188 0.2541 0.2832 0.5000 0.1892 0.1759 0.2508 0.2491 0.5000 0.3368 0.3138 0.4157 0.4019 

10 0.4921 0.1696 0.1691 0.1962 0.2258 0.5000 0.1387 0.1234 0.1907 0.1935 0.5000 0.2646 0.2409 0.3497 0.3350 
                 

(3, 25) 

2 0.5000 0.3403 0.3480 0.3480 0.3619 0.5000 0.3174 0.3096 0.3311 0.3250 0.5000 0.4483 0.4396 0.4572 0.4498 

6 0.5000 0.1712 0.1755 0.1742 0.1890 0.5000 0.1497 0.1464 0.1561 0.1568 0.5000 0.2504 0.2406 0.2717 0.2620 

10 0.4955 0.1079 0.1098 0.1089 0.1202 0.5000 0.0868 0.0844 0.0908 0.0935 0.5000 0.1456 0.1403 0.1641 0.1589 

(5, 25) 

2 0.5000 0.3422 0.3498 0.3566 0.3716 0.5000 0.3186 0.3111 0.3414 0.3359 0.5000 0.4493 0.4412 0.4639 0.4576 

6 0.5000 0.1750 0.1797 0.1823 0.1998 0.5000 0.1525 0.1488 0.1641 0.1655 0.5000 0.2578 0.2477 0.2921 0.2822 

10 0.4974 0.1130 0.1153 0.1174 0.1314 0.5000 0.0904 0.0877 0.0987 0.1022 0.5000 0.1557 0.1497 0.1853 0.1796 
                 

(3, 100) 

2 0.5000 0.3382 0.3499 0.3391 0.3548 0.5000 0.3161 0.3112 0.3209 0.3172 0.5000 0.4476 0.4420 0.4494 0.4441 

6 0.5000 0.1674 0.1737 0.1666 0.1804 0.5000 0.1476 0.1457 0.1497 0.1505 0.5000 0.2441 0.2387 0.2516 0.2462 

10 0.5000 0.1037 0.1068 0.1020 0.1122 0.5000 0.0843 0.0830 0.0850 0.0877 0.5000 0.1391 0.1365 0.1478 0.1449 

(5, 100) 

2 0.5000 0.3385 0.3500 0.3408 0.3568 0.5000 0.3162 0.3112 0.3227 0.3193 0.5000 0.4477 0.4421 0.4511 0.4459 

6 0.5000 0.1678 0.1740 0.1678 0.1822 0.5000 0.1478 0.1459 0.1508 0.1519 0.5000 0.2450 0.2396 0.2555 0.2501 

10 0.5000 0.1041 0.1071 0.1031 0.1137 0.5000 0.0844 0.0831 0.0859 0.0886 0.5000 0.1395 0.1371 0.1502 0.1476 

Performance 

(%) 
 69.44 11.11 19.45    100     100   
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Table 4.11 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Unbalanced Sample Sizes at 𝜀 = 0.4 

(μ, 𝜔) d 
n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

(3, 9) 

2 0.5000 0.4652 0.4622 0.4805 0.4869 0.5000 0.4691 0.4385 0.4931 0.4908 0.5000 0.4990 0.4972 0.4998 0.4996 

6 0.5000 0.3405 0.3338 0.3961 0.4356 0.5000 0.3360 0.2748 0.4495 0.4499 0.5000 0.4794 0.4554 0.4970 0.4934 

10 0.5000 0.2526 0.2513 0.3075 0.3815 0.5000 0.2464 0.1933 0.3873 0.4084 0.5000 0.4347 0.3908 0.4882 0.4802 

(5, 9) 

2 0.5000 0.4767 0.4787 0.4974 0.4993 0.5000 0.4852 0.4675 0.5023 0.5062 0.5000 0.4996 0.4991 0.5000 0.5000 

6 0.5000 0.3963 0.4035 0.4731 0.4909 0.5000 0.4211 0.3695 0.5095 0.5210 0.5000 0.4941 0.4881 0.4996 0.4998 

10 0.5000 0.3309 0.3456 0.4238 0.4734 0.5000 0.3641 0.3107 0.5100 0.5256 0.5000 0.4809 0.4685 0.4986 0.4989 
                 

(3, 25) 

2 0.5000 0.4408 0.4660 0.4408 0.4697 0.5000 0.4485 0.4359 0.4563 0.4573 0.5000 0.4976 0.4979 0.4979 0.4978 

6 0.5000 0.2633 0.2995 0.2728 0.3486 0.5000 0.2558 0.2366 0.2943 0.3111 0.5000 0.4397 0.4345 0.4624 0.4600 

10 0.5000 0.1647 0.1867 0.1748 0.2486 0.5000 0.1502 0.1375 0.1847 0.2151 0.5000 0.3269 0.3202 0.3877 0.3883 

(5, 25) 

2 0.5000 0.4436 0.4686 0.4523 0.4783 0.5000 0.4512 0.4412 0.4715 0.4744 0.5000 0.4977 0.4982 0.4988 0.4990 

6 0.5000 0.2708 0.3147 0.3002 0.3817 0.5000 0.2698 0.2519 0.3427 0.3677 0.5000 0.4479 0.4474 0.4778 0.4795 

10 0.5000 0.1759 0.2067 0.2022 0.2930 0.5000 0.1663 0.1541 0.2370 0.2848 0.5000 0.3482 0.3502 0.4263 0.4344 
                 

(3, 100) 

2 0.5000 0.4054 0.4733 0.3998 0.4693 0.5000 0.4056 0.4471 0.4062 0.4462 0.5000 0.4922 0.4989 0.4908 0.4978 

6 0.5000 0.2153 0.3043 0.2140 0.3196 0.5000 0.2031 0.2414 0.2119 0.2627 0.5000 0.3754 0.4422 0.3854 0.4414 

10 0.5000 0.1318 0.1793 0.1309 0.2035 0.5000 0.1151 0.1351 0.1218 0.1606 0.5000 0.2422 0.3194 0.2676 0.3361 

(5, 100) 

2 0.5000 0.4058 0.4738 0.4036 0.4703 0.5000 0.4071 0.4477 0.4117 0.4501 0.5000 0.4921 0.4990 0.4915 0.4980 

6 0.5000 0.2155 0.3048 0.2176 0.3240 0.5000 0.2044 0.2427 0.2177 0.2710 0.5000 0.3779 0.4435 0.3934 0.4465 

10 0.5000 0.1320 0.1808 0.1334 0.2078 0.5000 0.1160 0.1361 0.1258 0.1689 0.5000 0.2434 0.3217 0.2758 0.3464 

Performance 

(%) 
 58.33 16.67 25   33.33 66.67    38.89 50 11.11  
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Across the tables, it can be observed that the misclassification error rates are highly 

affected by the number of dimensions. Lower misclassification error rates can be 

obtained at high dimensions data (d = 10). As discussed earlier, CLDR loss its 

discrimination ability under unbalanced sample sizes and such situation occurred at 

almost all mixed location and shape contaminated data, especially at ε = 0.2, 0.4. 

Therefore, CLDR is not applicable into the contaminated unbalanced sample sizes 

data. 

 

In Table 4.9 RLDRM shows its good discrimination ability for large  

(n1 =100, n2 = 20) as well as moderate (n1 =100, n2 = 50) discrepancy in group sizes 

among the proposed RLDRs, not to mention CLDR. Meanwhile, for small 

discrepancy in group sizes (n1 =50, n2 = 20), the RLDRs using winsorized covariance 

estimator (RLDRMw and RLDRWw) perform excellently. These same situations also 

occurred at ε = 0.2, 0.4 as shown in Table 4.10 and Table 4.11. 

 

Table 4.11 presents that the performances of proposed RLDRs are only slightly 

better than CLDR under n1 =100, n2 = 20 and small number of scale inflation factor 

(𝜔 = 9). Besides, two RLDRs using WMOM estimator (RLDRWw and RLDRW) have 

poor performance than CLDR under conditions such are ε = 0.4, (𝜇, 𝜔) = (5, 9) and  

n1 =100, n2 = 50. 

 

Generally, the proposed RLDRs outperform CLDR in the case of mixed location and 

shape contamination for unbalanced sample sizes. To obtain smaller 

misclassification error rates, RLDRM is found to be suitable for n1 =100, n2 = 50 as 

well as n1 =100, n2 = 20 while RLDRMw is more suitable for n1 =50, n2 = 20. 
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Therefore, the two RLDRs using MOM as location estimators are the acceptable 

alternative in solving classification problems under mixed location and shape 

contaminated data for unbalanced sample sizes. 

 

4.3 Simulation Study for Heterogeneous Covariance 

Since one of the assumptions of LDR is homoscedasticity for the groups, thus the 

data conditions are generated on the basis of covariance heterogeneity to investigate 

on the discrimination ability of the proposed RLDRs under violation of the 

assumption. The data sets were generated from the suggested d-dimensional normal 

distribution for population π1 and π2, where each population has a different mean 

with corresponding covariance matrices. The covariance matrix for the first 

population is the identity matrix Id, while the second population used 2Id as the 

covariance matrix. The inflation factor, 2, is selected due to the number of 

populations considered in this study. The data sets are contaminated according to 

Equation 3.20 to obtain the different types of data conditions. The effect of 

heteroscedasticity combined with balanced and unbalanced sample sizes on LDRs is 

discussed in the following subsections. 

 

4.3.1 Results for Groups with Balanced Sample Sizes 

Three sets of balanced sample sizes as in Section 4.2.1 are considered for the 

investigation. Different number of dimensions (d = 2, 6, 10) are applied on these 

suggested samples sizes. The settings of simulation data conditions for 

heterogeneous covariance are summarized in Table 4.12. 
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Table 4.12 

Settings of Simulation Data with Heterogeneous Covariance 

Distribution settings 𝜀 𝜇 (𝜔1, 𝜔2) 

Uncontaminated data 0 0 (1, 2) 

Location contaminated data 0.1, 0.2, 0.4 3, 5 (1, 2) 

Shape contaminated data 0.1, 0.2, 0.4 0 (9, 9), (25, 25), (100, 100) 

Mixed location and shape 

contaminated data 

0.1, 0.2, 0.4 3, 5 (9, 9), (25, 25), (100, 100) 

 

The following Figure 4.3 presents the analysis results of uncontaminated data with 

heterogeneity of covariance at different dimensions under balanced sample sizes. 

 

 

Figure 4.3. Average misclassification error rates under uncontaminated data for 

different dimensions and balanced sample sizes, (d x n). 

2 x  20 6 x  20 10 x 20 2 x 50 6 x 50 10 x 50 2 x 100 6 x 100 10 x 100
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0.3222 0.2421 0.2086 0.3083 0.2101 0.1641 0.3044 0.1999 0.1498

0.3231 0.2450 0.2119 0.3093 0.2129 0.1666 0.3050 0.2015 0.1514

0.3187 0.2376 0.2035 0.3072 0.2080 0.1617 0.3039 0.1990 0.1487

0.3195 0.2404 0.2063 0.3083 0.2107 0.1640 0.3046 0.2006 0.1502
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The misclassification error rates of LDRs in Figure 4.1 (under homoscedasticity) are 

lower than in Figure 4.3 irrespective of dimensions and sample sizes. Thus, 

indicating that the performance of LDRs is affected by heterogeneity of covariance. 

Figure 4.3 discloses that the lowest misclassification error rates among LDRs in the 

case of uncontaminated data with unequal covariance matrix are from CLDR, but the 

disparities with RLDR is very marginal (up to 3 decimal places), which indicate that 

the performances are almost similar, especially the results of RLDRWw. 

 

The misclassification error rates of each LDR also influenced by sample sizes and 

dimensions. The more sample sizes involved are able to reduce the misclassification 

error rates, but their differences are not significant. Nevertheless, a higher dimension 

would highly improve the performance of LDRs. The misclassification errors rates of 

LDRs can reduce nearly 30% to 50% from low dimensional (d = 2) to high 

dimensional (d = 10). For example, the misclassification error rate of RLDRWw is 

0.3039 at d = 2 while reduce to 0.1487 at d = 10. 

 

The averages misclassification error rates under location contaminated data with 

heterogeneity of covariance for balanced sample sizes are presented in Table 4.13. 
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Table 4.13 

Average Misclassification Error Rates under Location Contaminated Data for Balanced Sample Sizes 

ε 
μ 

(𝜔1, 𝜔2) 
d 

n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

0.1 

3 

(1, 2) 

2 0.3863 0.3608 0.3604 0.3669 0.3661 0.3512 0.3329 0.3318 0.3383 0.3368 0.3302 0.3205 0.3199 0.3224 0.3209 

6 0.3842 0.3375 0.3338 0.3447 0.3410 0.3400 0.2908 0.2822 0.3043 0.2945 0.2980 0.2568 0.2482 0.2698 0.2583 

10 0.3985 0.3505 0.3462 0.3575 0.3538 0.3527 0.2942 0.2781 0.3102 0.2935 0.3107 0.2491 0.2316 0.2699 0.2494 

5 

(1, 2) 

2 0.4850 0.3601 0.3590 0.3872 0.3864 0.4896 0.3379 0.3353 0.3691 0.3652 0.4931 0.3277 0.3253 0.3535 0.3482 

6 0.4715 0.3509 0.3476 0.3786 0.3766 0.4817 0.3177 0.3009 0.3673 0.3508 0.4843 0.2872 0.2674 0.3485 0.3238 

10 0.4647 0.3648 0.3650 0.3891 0.3919 0.4755 0.3313 0.3081 0.3805 0.3627 0.4803 0.2959 0.2635 0.3649 0.3350 
                  

0.2 

3 

(1, 2) 

2 0.5366 0.4520 0.4507 0.4946 0.4950 0.5718 0.4416 0.4391 0.5295 0.5311 0.6024 0.4290 0.4255 0.5625 0.5653 

6 0.5067 0.4449 0.4407 0.4751 0.4773 0.5413 0.4487 0.4391 0.5111 0.5154 0.5696 0.4384 0.4257 0.5364 0.5444 

10 0.4880 0.4443 0.4412 0.4642 0.4673 0.5200 0.4512 0.4400 0.4968 0.5005 0.5461 0.4456 0.4318 0.5196 0.5270 

5 

(1, 2) 

2 0.6182 0.4443 0.4427 0.5317 0.5361 0.6546 0.4341 0.4291 0.5962 0.6038 0.6702 0.4217 0.4135 0.6297 0.6393 

6 0.5429 0.4335 0.4322 0.4886 0.4992 0.5986 0.4418 0.4305 0.5439 0.5646 0.6438 0.4408 0.4240 0.5860 0.6165 

10 0.5096 0.4268 0.4297 0.4667 0.4788 0.5615 0.4403 0.4305 0.5184 0.5382 0.6046 0.4428 0.4269 0.5551 0.5866 
                  

0.4 

3 

(1, 2) 

2 0.6568 0.6430 0.6433 0.6535 0.6535 0.6798 0.6746 0.6731 0.6787 0.6766 0.6886 0.6865 0.6853 0.6882 0.6866 

6 0.6162 0.5864 0.5890 0.6065 0.6110 0.6900 0.6694 0.6662 0.6850 0.6806 0.7341 0.7195 0.7147 0.7309 0.7244 

10 0.5684 0.5414 0.5459 0.5601 0.5696 0.6572 0.6310 0.6292 0.6507 0.6490 0.7183 0.6966 0.6908 0.7132 0.7052 

5 

(1, 2) 

2 0.6566 0.6354 0.6470 0.6511 0.6588 0.6793 0.6685 0.6747 0.6778 0.6795 0.6879 0.6829 0.6861 0.6873 0.6876 

6 0.5958 0.5714 0.5990 0.5888 0.6218 0.6664 0.6413 0.6730 0.6619 0.6820 0.7129 0.6928 0.7185 0.7103 0.7198 

10 0.5484 0.5392 0.5602 0.5433 0.5823 0.6252 0.6041 0.6381 0.6206 0.6499 0.6833 0.6603 0.6961 0.6799 0.6992 

Performance (%)  44.44 55.56    16.67 83.33    16.67 83.33   
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RLDRM provides lower misclassification error rates across most of the conditions as 

compared to the other proposed RLDRs, not to mention the CLDR as shown in  

Table 4.13. Acceptable discriminant rule can be constructed by the proposed RLDRs 

at low contamination proportion ( 𝜀  = 0.1) and their performance also can be 

improved by increasing the sample sizes. Nevertheless, the performance of RLDRs 

dwindle as the contamination proportion increase to 𝜀  = 0.2, 0.4. The inverse 

relationship between misclassification error rates and sample size still holds for all 

RLDRs at 𝜀 = 0.1, but such relationship no longer sustain at 𝜀 = 0.2, 0.4. 

 

At 𝜀  = 0.4 and 𝜇  = 5, two RLDRs via robust covariance estimator (RLDRM and 

RLDRW) are  not considered to be the suitable choice for solving classification 

problems due to their poor performance when compared to CLDR under such 

conditions. The misclassification error rates of the other two RLDRs via winsorized 

covariance estimator (RLDRMw and RLDRWw) are slightly better than CLDR.  

 

In short, all RLDRs are able to solve the classification problems for data with low 

proportion contamination (i.e. 𝜀 = 0.1) regardless of location contamination levels, 

especially RLDRM. Since the performance of the proposed RLDRs via 

coordinatewise approach are only slightly better than CLDR at 𝜀 = 0.2, 0.4, thus they 

cannot be considered as good alternatives to classification problems under the 

conditions. 

 

The average misclassification error rates under shape contaminated data with 

heteroscedasticity for balanced sample sizes is presented in Table 4.14. 
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Table 4.14 

Average Misclassification Error Rates under Shape Contaminated Data for Balanced Sample Sizes 

ε 
μ 

(𝜔1, 𝜔2) 
d 

n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

0.1 

0 
(9, 9) 

2 0.3620 0.3242 0.3252 0.3240 0.3250 0.3294 0.3093 0.3100 0.3094 0.3102 0.3152 0.3048 0.3053 0.3051 0.3056 

6 0.2722 0.2462 0.2487 0.2434 0.2459 0.2439 0.2135 0.2147 0.2135 0.2147 0.2215 0.2020 0.2025 0.2023 0.2028 

10 0.2282 0.2121 0.2148 0.2081 0.2109 0.2019 0.1673 0.1684 0.1666 0.1678 0.1776 0.1525 0.1529 0.1527 0.1531 

0 
(25, 25) 

2 0.4366 0.3232 0.3240 0.3249 0.3258 0.4106 0.3091 0.3099 0.3102 0.3109 0.3781 0.3048 0.3052 0.3054 0.3060 

6 0.3090 0.2454 0.2482 0.2441 0.2474 0.3190 0.2137 0.2147 0.2148 0.2157 0.2829 0.2021 0.2025 0.2031 0.2034 

10 0.2411 0.2112 0.2143 0.2086 0.2119 0.2697 0.1677 0.1685 0.1680 0.1691 0.2409 0.1530 0.1529 0.1540 0.1540 

0 
(100,100) 

2 0.4903 0.3227 0.3235 0.3249 0.3258 0.4865 0.3089 0.3096 0.3104 0.3110 0.4805 0.3047 0.3052 0.3056 0.3061 

6 0.3301 0.2451 0.2481 0.2443 0.2474 0.4511 0.2135 0.2144 0.2152 0.2161 0.4375 0.2022 0.2025 0.2035 0.2038 

10 0.2442 0.2105 0.2137 0.2089 0.2121 0.3618 0.1675 0.1684 0.1683 0.1695 0.4123 0.1531 0.1529 0.1546 0.1545 
                  

0.2 

0 
(9, 9) 

2 0.3917 0.3283 0.3286 0.3314 0.3320 0.3511 0.3106 0.3110 0.3134 0.3139 0.3278 0.3056 0.3059 0.3072 0.3075 

6 0.3053 0.2504 0.2515 0.2506 0.2523 0.2639 0.2175 0.2177 0.2203 0.2210 0.2311 0.2038 0.2038 0.2060 0.2061 

10 0.2593 0.2207 0.2221 0.2184 0.2206 0.2167 0.1723 0.1720 0.1738 0.1743 0.1848 0.1554 0.1548 0.1574 0.1572 

0 
(25, 25) 

2 0.4691 0.3257 0.3260 0.3313 0.3318 0.4411 0.3099 0.3103 0.3148 0.3152 0.4146 0.3056 0.3058 0.3083 0.3083 

6 0.3911 0.2488 0.2508 0.2521 0.2546 0.3828 0.2170 0.2169 0.2227 0.2232 0.3323 0.2038 0.2034 0.2080 0.2078 

10 0.3083 0.2188 0.2211 0.2191 0.2228 0.3274 0.1720 0.1716 0.1763 0.1769 0.2961 0.1558 0.1547 0.1603 0.1597 

0 
(100,100) 

2 0.4987 0.3244 0.3250 0.3307 0.3315 0.4911 0.3091 0.3096 0.3142 0.3148 0.4891 0.3053 0.3054 0.3086 0.3087 

6 0.4764 0.2464 0.2494 0.2513 0.2546 0.4878 0.2157 0.2160 0.2226 0.2235 0.4699 0.2033 0.2030 0.2081 0.2082 

10 0.3397 0.2159 0.2195 0.2184 0.2227 0.4694 0.1710 0.1711 0.1763 0.1774 0.4690 0.1555 0.1544 0.1608 0.1602 
                  

0.4 

0 
(9, 9) 

2 0.4270 0.3469 0.3460 0.3642 0.3646 0.3820 0.3207 0.3204 0.3336 0.3337 0.3495 0.3101 0.3100 0.3184 0.3183 

6 0.3590 0.2746 0.2731 0.2828 0.2855 0.3021 0.2321 0.2305 0.2448 0.2450 0.2547 0.2115 0.2106 0.2202 0.2194 

10 0.3120 0.2439 0.2424 0.2440 0.2485 0.2521 0.1884 0.1855 0.1972 0.1971 0.2075 0.1639 0.1624 0.1725 0.1717 

0 
(25, 25) 

2 0.4813 0.3453 0.3452 0.3668 0.3698 0.4662 0.3188 0.3183 0.3479 0.3487 0.4459 0.3100 0.3090 0.3312 0.3307 

6 0.4607 0.2703 0.2709 0.2866 0.2914 0.4357 0.2333 0.2295 0.2622 0.2655 0.3893 0.2131 0.2102 0.2367 0.2364 

10 0.4299 0.2418 0.2432 0.2468 0.2643 0.4074 0.1900 0.1856 0.2138 0.2216 0.3635 0.1666 0.1627 0.1923 0.1933 

0 
(100,100) 

2 0.4972 0.3345 0.3352 0.3548 0.3587 0.4975 0.3147 0.3131 0.3397 0.3416 0.4935 0.3091 0.3073 0.3321 0.3327 

6 0.4984 0.2603 0.2627 0.2769 0.2914 0.4948 0.2267 0.2232 0.2530 0.2623 0.4854 0.2122 0.2073 0.2385 0.2428 

10 0.4950 0.2286 0.2341 0.2382 0.2586 0.4899 0.1828 0.1793 0.2060 0.2227 0.4858 0.1646 0.1592 0.1941 0.2043 

Performance (%)  55.56 14.81 25.93 3.7  50 44.44 5.56   38.89 61.11   
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For shape contaminated data with heteroscedasticity, all the proposed RLDR perform 

better than CLDR as presented in Table 4.14. The inverse relationship between 

misclassification error rates and sample sizes exist for RLDRs. The misclassification 

error rates of RLDR also inversely related to the number of dimensions. Thus, as the 

sample sizes or the number of dimensions increase, the misclassification error rates 

decrease. However, such relationships do not always happen on CLDR in the case of 

shape contamination with heterogeneous covariance. The performances of the 

proposed RLDR are quite identical within the same dimensions under ε = 0.1, 0.2, 

even when the scale inflation factors increase. However, this situation does not apply 

at ε = 0.4. 

 

For the case of contaminated data, the two RLDRs via MOM estimator (RLDRMw 

and RLDRM) produce the lowest misclassification error rates across 70% of the 

investigated condition, especially for moderate (n1 = n2 = 50) as well as large sample 

sizes (n1 = n2 = 100). The disparities of misclassification error rates between the two 

samples sizes are very small. Having the lowest misclassification error rates, these 

RLDRs (RLDRMw and RLDRM) can be considered as the alternative procedure for 

solving classification problems under the influence of shape contamination (ω1 and 

ω2) with heterogeneous covariance.  

 

Next, the investigation continues with the performance of all the LDRs in the case of 

mixed contamination of location and shape under the influence of heteroscedasticity 

for balanced sample sizes. Table 4.15 to Table 4.17 show the average 

misclassification error rates at ε = 0.1, 0.2, 0.4. 
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Table 4.15 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Balanced Sample Sizes at 𝜀 = 0.1 

μ 

(𝜔1, 𝜔2) 
d 

n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

3 

(9, 9) 

2 0.4189 0.3262 0.3269 0.3326 0.3333 0.3969 0.3108 0.3113 0.3156 0.3159 0.3713 0.3061 0.3064 0.3096 0.3099 

6 0.3246 0.2532 0.2560 0.2576 0.2604 0.3256 0.2195 0.2198 0.2266 0.2266 0.2979 0.2052 0.2050 0.2111 0.2103 

10 0.2791 0.2250 0.2279 0.2283 0.2313 0.2883 0.1777 0.1768 0.1844 0.1833 0.2767 0.1593 0.1576 0.1661 0.1634 

5 

(9, 9) 

2 0.4693 0.3287 0.3293 0.3399 0.3405 0.4784 0.3123 0.3128 0.3215 0.3216 0.4846 0.3072 0.3074 0.3138 0.3138 

6 0.3731 0.2637 0.2659 0.2741 0.2765 0.4150 0.2275 0.2261 0.2426 0.2405 0.4266 0.2105 0.2087 0.2234 0.2201 

10 0.3286 0.2417 0.2453 0.2508 0.2546 0.3705 0.1933 0.1893 0.2094 0.2048 0.3992 0.1709 0.1654 0.1874 0.1795 
                 

3 

(25, 25) 

2 0.4623 0.3237 0.3243 0.3276 0.3284 0.4558 0.3092 0.3099 0.3120 0.3127 0.4395 0.3050 0.3054 0.3070 0.3074 

6 0.3217 0.2465 0.2494 0.2479 0.2483 0.3678 0.2147 0.2155 0.2185 0.2192 0.3542 0.2027 0.2027 0.2055 0.2055 

10 0.2505 0.2131 0.2160 0.2136 0.2165 0.3012 0.1688 0.1694 0.1718 0.1727 0.3086 0.1540 0.1536 0.1570 0.1565 

5 

(25, 25) 

2 0.4805 0.3237 0.3245 0.3294 0.3302 0.4890 0.3094 0.3100 0.3133 0.3139 0.4921 0.3051 0.3055 0.3081 0.3085 

6 0.3345 0.2483 0.2510 0.2513 0.2489 0.4110 0.2157 0.2163 0.2216 0.2221 0.4268 0.2032 0.2032 0.2077 0.2074 

10 0.2623 0.2158 0.2189 0.2180 0.2214 0.3301 0.1710 0.1713 0.1761 0.1765 0.3774 0.1554 0.1546 0.1602 0.1591 
                 

3 

(100, 100) 

2 0.4943 0.3226 0.3235 0.3254 0.3263 0.4931 0.3089 0.3097 0.3109 0.3115 0.4925 0.3048 0.3052 0.3060 0.3064 

6 0.3310 0.2453 0.2482 0.2453 0.2483 0.4650 0.2135 0.2145 0.2158 0.2169 0.4598 0.2022 0.2024 0.2039 0.2042 

10 0.2449 0.2110 0.2141 0.2099 0.2132 0.3694 0.1675 0.1683 0.1690 0.1701 0.4395 0.1532 0.1530 0.1552 0.1550 

5 

(100, 100) 

2 0.4964 0.3230 0.3238 0.3259 0.3267 0.4977 0.3090 0.3096 0.3111 0.3118 0.5008 0.3047 0.3052 0.3062 0.3067 

6 0.3320 0.2454 0.2485 0.2458 0.2489 0.4738 0.2137 0.2146 0.2164 0.2174 0.4751 0.2022 0.2025 0.2043 0.2045 

10 0.2458 0.2111 0.2143 0.2106 0.2139 0.3750 0.1676 0.1684 0.1697 0.1707 0.4585 0.1534 0.1530 0.1556 0.1553 

Performance 

(%) 
 86.11  13.89   83.33 16.67    50 50   
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Table 4.16 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Balanced Sample Sizes at 𝜀 = 0.2 

μ 

(𝜔1, 𝜔2) 
d 

n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

3 

(9, 9) 

2 0.5036 0.3337 0.3339 0.3566 0.3573 0.5231 0.3153 0.3152 0.3366 0.3364 0.5486 0.3090 0.3090 0.3244 0.3240 

6 0.4258 0.2655 0.2663 0.2856 0.2877 0.4984 0.2314 0.2291 0.2605 0.2588 0.5267 0.2121 0.2103 0.2373 0.2343 

10 0.3594 0.2431 0.2454 0.2581 0.2626 0.4358 0.1939 0.1896 0.2215 0.2184 0.5008 0.1714 0.1663 0.2011 0.1946 

5 

(9, 9) 

2 0.5772 0.3379 0.3385 0.3808 0.3822 0.6342 0.3190 0.3186 0.3701 0.3701 0.6638 0.3123 0.3117 0.3629 0.3618 

6 0.5057 0.2835 0.2847 0.3217 0.3259 0.6349 0.2494 0.2437 0.3172 0.3148 0.7026 0.2258 0.2203 0.2997 0.2920 

10 0.4235 0.2727 0.2766 0.3013 0.3083 0.5723 0.2261 0.2170 0.2889 0.2860 0.6857 0.1977 0.1856 0.2827 0.2711 
                 

3 

(25, 25) 

2 0.5016 0.3263 0.3267 0.3386 0.3394 0.5051 0.3102 0.3106 0.3201 0.3204 0.5180 0.3060 0.3061 0.3131 0.3131 

6 0.4402 0.2498 0.2519 0.2598 0.2561 0.4985 0.2187 0.2183 0.2320 0.2324 0.4995 0.2046 0.2042 0.2145 0.2141 

10 0.3330 0.2211 0.2239 0.2276 0.2317 0.4448 0.1747 0.1739 0.1858 0.1862 0.4941 0.1577 0.1560 0.1685 0.1669 

5 

(25, 25) 

2 0.5242 0.3267 0.3270 0.3438 0.3446 0.5486 0.3108 0.3110 0.3254 0.3258 0.5845 0.3063 0.3062 0.3174 0.3173 

6 0.4736 0.2525 0.2546 0.2667 0.2573 0.5733 0.2205 0.2199 0.2405 0.2406 0.6157 0.2059 0.2052 0.2215 0.2206 

10 0.3552 0.2254 0.2291 0.2362 0.2413 0.5288 0.1788 0.1774 0.1962 0.1963 0.6285 0.1607 0.1583 0.1782 0.1756 
                 

3 

(100, 100) 

2 0.5025 0.3243 0.3248 0.3320 0.3326 0.4987 0.3092 0.3096 0.3153 0.3160 0.5014 0.3053 0.3055 0.3094 0.3096 

6 0.4841 0.2468 0.2497 0.2534 0.2561 0.5034 0.2157 0.2163 0.2243 0.2253 0.4957 0.2034 0.2032 0.2094 0.2095 

10 0.3417 0.2160 0.2195 0.2201 0.2242 0.4884 0.1711 0.1713 0.1780 0.1790 0.5019 0.1554 0.1544 0.1620 0.1614 

5 

(100, 100) 

2 0.5052 0.3243 0.3247 0.3329 0.3336 0.5037 0.3091 0.3096 0.3162 0.3166 0.5115 0.3053 0.3055 0.3101 0.3103 

6 0.4899 0.2468 0.2497 0.2545 0.2573 0.5133 0.2161 0.2165 0.2257 0.2268 0.5129 0.2034 0.2031 0.2102 0.2102 

10 0.3435 0.2162 0.2198 0.2215 0.2258 0.5015 0.1715 0.1715 0.1795 0.1804 0.5230 0.1556 0.1545 0.1630 0.1624 

Performance 

(%) 
 100     41.67 58.33    19.44 80.56   
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Table 4.17 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Balanced Sample Sizes at 𝜀 = 0.4 

μ 

(𝜔1, 𝜔2) 
d 

n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

3 

(9, 9) 

2 0.5860 0.3820 0.3824 0.4542 0.4569 0.6370 0.3499 0.3491 0.4917 0.4926 0.6674 0.3319 0.3313 0.5247 0.5256 

6 0.6071 0.3192 0.3207 0.3959 0.4094 0.7038 0.2850 0.2801 0.4640 0.4741 0.7508 0.2506 0.2460 0.5114 0.5189 

10 0.5587 0.2957 0.2994 0.3518 0.3723 0.7176 0.2549 0.2464 0.4187 0.4370 0.7867 0.2194 0.2106 0.4908 0.5043 

5 

(9, 9) 

2 0.6355 0.4089 0.4108 0.5226 0.5262 0.6701 0.3864 0.3853 0.5963 0.5986 0.6842 0.3644 0.3625 0.6375 0.6391 

6 0.6737 0.3564 0.3632 0.4715 0.4914 0.7499 0.3458 0.3392 0.5969 0.6132 0.7798 0.3181 0.3077 0.6775 0.6892 

10 0.6284 0.3389 0.3481 0.4224 0.4499 0.7771 0.3295 0.3217 0.5610 0.5907 0.8220 0.3108 0.2952 0.6704 0.6940 
                 

3 

(25, 25) 

2 0.5160 0.3498 0.3502 0.3890 0.3927 0.5453 0.3232 0.3220 0.3852 0.3869 0.5727 0.3124 0.3114 0.3744 0.3746 

6 0.5315 0.2768 0.2777 0.3116 0.2943 0.5844 0.2395 0.2348 0.3052 0.3141 0.6238 0.2176 0.2139 0.2901 0.2919 

10 0.5173 0.2470 0.2513 0.2680 0.2904 0.5916 0.1981 0.1927 0.2547 0.2687 0.6572 0.1720 0.1667 0.2452 0.2499 

5 

(25, 25) 

2 0.5420 0.3519 0.3525 0.4091 0.4126 0.5858 0.3247 0.3237 0.4159 0.4178 0.6217 0.3142 0.3131 0.4278 0.4289 

6 0.5713 0.2833 0.2863 0.3323 0.2985 0.6449 0.2465 0.2415 0.3502 0.3637 0.6985 0.2227 0.2179 0.3590 0.3663 

10 0.5662 0.2546 0.2615 0.2882 0.3144 0.6692 0.2084 0.2032 0.2977 0.3206 0.7421 0.1807 0.1735 0.3190 0.3326 
                 

3 

(100, 100) 

2 0.5005 0.3348 0.3360 0.3596 0.3635 0.5039 0.3152 0.3134 0.3448 0.3470 0.5073 0.3091 0.3073 0.3379 0.3388 

6 0.5035 0.2600 0.2629 0.2804 0.2943 0.5101 0.2276 0.2237 0.2588 0.2692 0.5127 0.2123 0.2076 0.2449 0.2501 

10 0.5038 0.2300 0.2348 0.2422 0.2629 0.5078 0.1832 0.1799 0.2113 0.2292 0.5204 0.1651 0.1593 0.1993 0.2100 

5 

(100, 100) 

2 0.5023 0.3356 0.3366 0.3627 0.3669 0.5085 0.3156 0.3140 0.3505 0.3527 0.5162 0.3093 0.3077 0.3441 0.3450 

6 0.5067 0.2603 0.2633 0.2835 0.2985 0.5185 0.2281 0.2243 0.2632 0.2747 0.5294 0.2127 0.2076 0.2510 0.2568 

10 0.5100 0.2304 0.2355 0.2455 0.2663 0.5199 0.1840 0.1808 0.2160 0.2350 0.5428 0.1651 0.1597 0.2048 0.2166 

Performance 

(%) 
 100      100    5.56 94.44   
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Like the earlier discussions, the misclassification error rates of RLDRs have inverse 

relationship with the sample sizes and number of dimensions. Low misclassification 

error rates (good performance) can be obtained by increasing the sample sizes or 

dimensions. However, such relationships do not occur in CLDR, especially under 

high contamination (ε = 0.4). Across Table 4.15 to Table 4.17, all of the proposed 

RLDRs outperform CLDR in the case of mixed location and shape contamination.  

 

As observed in Table 4.15, i.e. when ε = 0.1, mostly the optimality in classification is 

achieved by RLDRMw under n1 = n2 = 20 (86.11%), n1 = n2 = 50 (83.33%) and  

n1 = n2 =100 (50%). The optimality of the RLDRMw still can be obtained even under 

small sample sizes (n1 = n2 = 20) when ε = 0.2 as shown in Table 4.16. However, as 

the sample sizes increase to n1 = n2 = 50 and 100, RLDRM become more superior to 

the rest of the LDRs, with CLDR emerges as the worst among all. The pattern in 

Table 4.16 repeats in Table 4.17 (where ε = 0.4). RLDRMw provides lowest 

misclassification error rates under n1 = n2 = 20 while the performance of RLDRM 

shows the best for larger sample sizes (n1 = n2 = 50 and 100). 

 

Briefly, all of the proposed RLDRs outperform CLDR under mixed location and 

shape contaminated data regardless of the contamination levels. Indeed, the two 

RLDRs which use MOM estimator (RLDRMw and RLDRM) are good selections in 

solving classification problems for mixed location and shape contaminated data with 

heterogeneity of covariance. 
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4.3.2 Results for Groups with Unbalanced Sample Sizes 

In this section, the effect of unbalanced sample sizes on heterogeneous covariance is 

deliberated. Like in the Section 4.2.2, three suggested sets of unbalanced sample 

sizes are applied to all investigated LDRs at different dimensions (d = 2, 6, 10) under 

four types of data distributions as shown in Table 4.12.  

 

The results of uncontaminated data with heteroscedasticity under unbalanced sample 

sizes for each LDR are displayed in Figure 4.4. 

 

 

Figure 4.4. Average misclassification error rates under uncontaminated data for 

different dimensions and unbalanced sample sizes, d x (n1, n2).   
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When the results in Figure 4.2 (homoscedasticity for unbalanced sample sizes) are 

compared with Figure 4.4 (heteroscedasticity for unbalanced sample sizes), the effect 

of heteroscedasticity on LDRs can be clearly observed. Irrespective of dimensions 

and discrepancy in group sizes, the misclassification error rates of LDRs as shown in 

Figure 4.2 are lower than in Figure 4.4. Besides, the misclassification error rates of 

the LDRs decrease as the number of dimensions increase, thus implying that the 

performance of LDRs can be improved by increasing the number of dimensions. 

 

CLDR is very much affected by the unbalanced sample sizes, as proven when it can 

no longer sustain the optimality in performance across all cases of uncontaminated 

data with heteroscedasticity for unbalanced sample sizes. As illustrated in Figure 4.4, 

RLDRMw presents excellent performance at d = 2 irrespective of the inequality in 

group sizes. However, at d = 6 the performance of RLDRMw is equivalent to CLDR. 

On the other hand, at d = 2, RLDRWw shows the worst performance among all the 

investigated LDRs, but turn out to be the best at d = 10. Therefore, the findings imply 

that RLDRMw is the best alternative at d = 2, 6 while RLDRWw is the best choice at d 

= 10 to solve classification problems in the case of uncontaminated data with 

heterogeneous covariance for the unbalanced sample sizes. 

 

Like in the previous sections, besides uncontaminated data, contaminated data with 

heterogeneous covariance are also considered for the unbalanced sample sizes case. 

Firstly, the simulation results for the location contaminated data with 

heteroscedasticity under unbalanced sample sizes are revealed in Table 4.18. 
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Table 4.18 

Average Misclassification Error Rates under Location Contaminated Data for Unbalanced Sample Sizes 

ε 
μ 

(𝜔1, 𝜔2) 
d 

n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

0.1 

3 

(1, 2) 

2 0.4571 0.3907 0.3930 0.4962 0.4174 0.4557 0.3739 0.3717 0.5004 0.4104 0.4856 0.4405 0.4374 0.5093 0.4602 

6 0.4037 0.3466 0.3396 0.4416 0.3598 0.4013 0.3217 0.3082 0.4491 0.3442 0.4440 0.3909 0.3811 0.4945 0.4062 

10 0.3914 0.3488 0.3388 0.4138 0.3526 0.3810 0.3159 0.2978 0.4156 0.3270 0.4210 0.3793 0.3677 0.4625 0.3864 

5 

(1, 2) 

2 0.4826 0.3873 0.3903 0.5043 0.4317 0.4902 0.3747 0.3683 0.5110 0.4397 0.4940 0.4347 0.4334 0.5121 0.4690 

6 0.4351 0.3488 0.3459 0.4681 0.3790 0.4477 0.3338 0.3176 0.5012 0.3802 0.4596 0.3857 0.3809 0.5086 0.4178 

10 0.4233 0.3539 0.3500 0.4395 0.3742 0.4280 0.3332 0.3140 0.4777 0.3631 0.4386 0.3781 0.3718 0.4794 0.3986 
                  

0.2 

3 

(1, 2) 

2 0.4840 0.4587 0.4599 0.5345 0.4773 0.4905 0.4697 0.4698 0.5239 0.4882 0.4936 0.4811 0.4825 0.5203 0.4908 

6 0.4436 0.4137 0.4123 0.5579 0.4362 0.4577 0.4191 0.4182 0.5768 0.4526 0.4625 0.4355 0.4391 0.5649 0.4569 

10 0.4330 0.4117 0.4070 0.5252 0.4271 0.4420 0.4082 0.4029 0.5762 0.4368 0.4438 0.4207 0.4209 0.5544 0.4384 

5 

(1, 2) 

2 0.4851 0.4474 0.4509 0.5485 0.4780 0.4887 0.4600 0.4591 0.5467 0.4867 0.4939 0.4715 0.4754 0.5292 0.4898 

6 0.4519 0.4027 0.4053 0.5628 0.4439 0.4671 0.4087 0.4067 0.6002 0.4657 0.4652 0.4207 0.4282 0.5724 0.4585 

10 0.4425 0.3996 0.4007 0.5196 0.4355 0.4560 0.4024 0.3960 0.5898 0.4571 0.4478 0.4098 0.4145 0.5488 0.4417 
                  

0.4 

3 

(1, 2) 

2 0.4855 0.4837 0.4846 0.6042 0.4862 0.4964 0.4960 0.4884 0.6265 0.4896 0.4906 0.4876 0.4934 0.5471 0.4943 

6 0.4819 0.4760 0.4716 0.6352 0.4776 0.5088 0.5051 0.4919 0.6618 0.4964 0.4730 0.4656 0.4736 0.6075 0.4775 

10 0.4762 0.4685 0.4650 0.6046 0.4731 0.5074 0.5010 0.4889 0.6660 0.4956 0.4610 0.4550 0.4607 0.6110 0.4645 

5 

(1, 2) 

2 0.4826 0.4802 0.4862 0.5959 0.4873 0.4932 0.4910 0.4888 0.6210 0.4912 0.4913 0.4878 0.4965 0.5372 0.4960 

6 0.4722 0.4693 0.4762 0.6213 0.4845 0.4941 0.4917 0.4928 0.6456 0.4982 0.4697 0.4610 0.4867 0.5980 0.4870 

10 0.4651 0.4644 0.4688 0.5901 0.4821 0.4900 0.4880 0.4909 0.6484 0.4994 0.4555 0.4491 0.4759 0.6004 0.4769 

Performance 

(%) 
 61.11 38.89    16.67 83.33    66.67 33.33   
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From Table 4.18, it can observed that the performance of RLDRWw is quite bad as 

compared to CLDR, which could imply that RLDRWw is not suitable for solving 

classification problems for location contaminated data. In contrast, the other 

proposed RLDRs (RLDRMw, RLDRM and RLDRW) have better performance than 

CLDR at 𝜀 = 0.1, 0.2, but not when 𝜀 is increased to 0.4. 

 

Overall, the two RLDRs using MOM estimator (RLDRMw and RLDRM) provide 

better performance among the LDRs in the case of location contamination with 

heterogeneity of covariance as presented in Table 4.18. However, their performances 

still cannot level them as good alternatives for the location contaminated data. For 

example, under the case of n1 = 100, n2 = 50, 𝜇 = 5, 𝜔1= 1, 𝜔2= 2 and 𝜀 = 0.1, the 

misclassification error rates of CLDR is 0.4280 while RLDRM is 0.3140. Although 

these numbers shown that RLDRM can reduce more than 10% of misclassification 

error rates from CLDR, but RLDRM still wrongly classified the test sample around 

31.40%. At 𝜀 = 0.1, the two RLDRs using MOM estimator (RLDRMw and RLDRM) 

manage to reduce around 10% of misclassification error rates as compared to CLDR 

under n1 = 50, n2 = 20 and n1 = 100, n2 = 50. Other those mentioned conditions, their 

differences in terms of misclassification are very marginal, especially at 𝜀 = 0.4. 

 

Next, the simulation results of the LDRs under the case of shape contamination with 

heteroscedasticity for unbalanced sample sizes are analyzed and discussed.  

Table 4.19 displays the average of misclassification error rates for all investigated 

LDRs.
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Table 4.19 

Average Misclassification Error Rates under Shape Contaminated Data for Unbalanced Sample Sizes 

ε 
μ 

(𝜔1, 𝜔2) 
d 

n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

0.1 

0 
(9, 9) 

2 0.4675 0.3397 0.3456 0.4300 0.3446 0.4678 0.3190 0.3197 0.4234 0.3199 0.4965 0.3825 0.3848 0.4691 0.3847 

6 0.3320 0.2485 0.2516 0.2591 0.2492 0.3360 0.2245 0.2252 0.2400 0.2250 0.4343 0.2712 0.2724 0.2846 0.2701 

10 0.2519 0.2080 0.2109 0.1920 0.2072 0.2545 0.1800 0.1805 0.1670 0.1798 0.3368 0.2237 0.2251 0.1907 0.2216 

0 
(25, 25) 

2 0.4995 0.3410 0.3482 0.4321 0.3480 0.4999 0.3218 0.3218 0.4276 0.3230 0.5000 0.3858 0.3885 0.4709 0.3887 

6 0.4439 0.2483 0.2518 0.2603 0.2514 0.4931 0.2256 0.2259 0.2429 0.2270 0.4989 0.2720 0.2734 0.2872 0.2729 

10 0.2912 0.2072 0.2104 0.1929 0.2088 0.4377 0.1805 0.1808 0.1686 0.1816 0.4639 0.2236 0.2250 0.1920 0.2239 

0 
(100,100) 

2 0.5000 0.3415 0.3494 0.4331 0.3497 0.5000 0.3226 0.3227 0.4290 0.3242 0.5000 0.3865 0.3896 0.4715 0.3900 

6 0.4949 0.2478 0.2517 0.2607 0.2522 0.5000 0.2258 0.2261 0.2440 0.2278 0.5000 0.2719 0.2735 0.2877 0.2739 

10 0.3061 0.2068 0.2100 0.1932 0.2094 0.4999 0.1808 0.1810 0.1694 0.1825 0.4991 0.2232 0.2247 0.1926 0.2247 
                  

0.2 

0 
(9, 9) 

2 0.4946 0.3655 0.3685 0.4506 0.3682 0.4958 0.3478 0.3407 0.4536 0.3429 0.4999 0.4204 0.4152 0.4869 0.4155 

6 0.4352 0.2649 0.2669 0.2779 0.2672 0.4395 0.2397 0.2363 0.2629 0.2380 0.4938 0.3024 0.2978 0.3192 0.2986 

10 0.3387 0.2216 0.2238 0.2030 0.2232 0.3621 0.1923 0.1901 0.1786 0.1925 0.4649 0.2485 0.2461 0.2091 0.2462 

0 
(25, 25) 

2 0.5000 0.3670 0.3762 0.4520 0.3773 0.5000 0.3547 0.3490 0.4584 0.3529 0.5000 0.4248 0.4239 0.4873 0.4238 

6 0.4993 0.2627 0.2680 0.2793 0.2728 0.5000 0.2422 0.2397 0.2686 0.2446 0.5000 0.3038 0.3028 0.3222 0.3070 

10 0.4812 0.2191 0.2229 0.2042 0.2275 0.4994 0.1933 0.1917 0.1818 0.1981 0.5000 0.2474 0.2474 0.2117 0.2527 

0 
(100,100) 

2 0.5000 0.3655 0.3798 0.4518 0.3814 0.5000 0.3541 0.3523 0.4588 0.3569 0.5000 0.4234 0.4269 0.4872 0.4269 

6 0.5000 0.2599 0.2682 0.2780 0.2739 0.5000 0.2412 0.2407 0.2688 0.2464 0.5000 0.3013 0.3039 0.3226 0.3094 

10 0.5000 0.2161 0.2216 0.2036 0.2279 0.5000 0.1918 0.1917 0.1819 0.1994 0.5000 0.2439 0.2462 0.2114 0.2537 
                  

0.4 

0 
(9, 9) 

2 0.4997 0.4430 0.4346 0.4894 0.4310 0.4999 0.4442 0.4144 0.4982 0.4134 0.5000 0.4865 0.4741 0.5021 0.4715 

6 0.4932 0.3401 0.3328 0.3513 0.3343 0.4938 0.3224 0.2929 0.3613 0.2965 0.5000 0.4191 0.3904 0.4272 0.3908 

10 0.4657 0.2824 0.2791 0.2491 0.2812 0.4742 0.2579 0.2368 0.2417 0.2448 0.4994 0.3598 0.3337 0.2984 0.3382 

0 
(25, 25) 

2 0.5000 0.4458 0.4608 0.4856 0.4535 0.5000 0.4606 0.4461 0.4982 0.4407 0.5000 0.4882 0.4878 0.5015 0.4834 

6 0.5000 0.3410 0.3612 0.3455 0.3731 0.5000 0.3448 0.3249 0.3739 0.3402 0.5000 0.4258 0.4215 0.4204 0.4264 

10 0.5000 0.2806 0.2990 0.2485 0.3223 0.5000 0.2730 0.2598 0.2563 0.2913 0.5000 0.3656 0.3628 0.2931 0.3839 

0 
(100,100) 

2 0.5000 0.4193 0.4728 0.4765 0.4675 0.5000 0.4350 0.4626 0.4897 0.4543 0.5000 0.4752 0.4931 0.4988 0.4897 

6 0.5000 0.3062 0.3720 0.3194 0.3829 0.5000 0.3065 0.3424 0.3392 0.3577 0.5000 0.3851 0.4353 0.3885 0.4363 

10 0.5000 0.2520 0.2977 0.2330 0.3255 0.5000 0.2421 0.2687 0.2282 0.3060 0.5000 0.3187 0.3697 0.2644 0.3886 

Performance (%)  66.67  33.33   27.78 31.48 33.33 7.41  33.33 14.815 37.04 14.815 
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The performance of RLDRs has direct relationship with the number of dimensions. 

As the number of dimensions increases, the performance of RLDRs improves. 

However, this pattern does not exist in CLDR at ε = 0.2, 0.4. At such conditions, 

CLDR produces a constant misclassification error rate of 0.5 even dimensions 

increases. Although the performance of CLDR increases as the dimensions increases 

at ε = 0.1, but the improvement is not much as compared to the proposed RLDRs. 

For instances, under n1 = 50, n2 = 20 at 𝜀 = 0.1, the misclassification error rate of 

RLDRWw is 0.4709 at d = 2 and reduce to 0.1920 at d = 10 but CLDR produces 

misclassification error rate of 0.5 at d = 2 and reduce to 0.4639 at d = 10. The 

improvement of RLDRWw is up to 59% but only 7.22% improvement occurs on 

CLDR.  

 

Regardless of the contamination levels and the discrepancy in group sizes, all of the 

proposed RLDRs outperform CLDR as shown in Table 4.19.  At ε = 0.1, 0.2, the 

misclassification error rates produced by all the RLDRs are almost equal to each 

other, within the dimension and suggested sample sizes regardless of the number of 

scale factors. For example, under n1 = 50, n2 = 20 at 𝜀  = 0.1 and d = 10, the 

misclassification error rates of RLDRM corresponding to the scale factor (in bracket) 

are 0.2109 (𝜔1 = 𝜔2 = 9), 0.2104 (𝜔1 = 𝜔2 = 25) and 0.2100 (𝜔1 = 𝜔2 = 100), 

indicating that the effect of scale factors on the rates are very minimal. Again, this 

pattern does not show in CLDR. 

 

From Table 4.19, it can be detected that CLDR loss its discrimination ability for 

shape contaminated data in the existence of heteroscedasticity with misclassification 

error rates of up to 50%. Generally, RLDRMw perform well at d = 2, 6 for  
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n1 =50, n2 = 20 while RLDRWw overshadow the others with the lowest 

misclassification error rates at d = 10 for all three suggested unbalanced sample sizes. 

Hence, it can be stated that the two RLDRs via winsorized covariance estimator 

(RLDRMw and RLDRWw) are able to mitigate the classification problems under the 

case of shape contamination with heteroscedasticity for unbalanced sample sizes. 

 

The following Table 4.20 to 4.22 show simulation results for the case of mixed 

location and shape contaminated data with heterogeneous covariance under 

unbalanced sample sizes. 
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Table 4.20 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Unbalanced Sample Sizes at 𝜀 = 0.1 

μ 

(𝜔1, 𝜔2) 
d 

n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

3 

(9, 9) 

2 0.4856 0.3441 0.3505 0.4476 0.3616 0.4929 0.3231 0.3232 0.4485 0.3377 0.4993 0.3878 0.3901 0.4821 0.4049 

6 0.3919 0.2565 0.2594 0.2861 0.2664 0.4349 0.2320 0.2311 0.2722 0.2394 0.4791 0.2836 0.2834 0.3218 0.2945 

10 0.3151 0.2220 0.2241 0.2189 0.2290 0.3671 0.1926 0.1903 0.1962 0.1978 0.4218 0.2423 0.2409 0.2257 0.2493 

5 

(9, 9) 

2 0.4934 0.3486 0.3546 0.4598 0.3746 0.4985 0.3282 0.3273 0.4660 0.3547 0.4998 0.3945 0.3963 0.4903 0.4197 

6 0.4310 0.2688 0.2711 0.3155 0.2856 0.4755 0.2438 0.2404 0.3109 0.2584 0.4922 0.3016 0.2992 0.3611 0.3204 

10 0.3631 0.2421 0.2430 0.2517 0.2545 0.4302 0.2121 0.2059 0.2379 0.2229 0.4596 0.2701 0.2651 0.2717 0.2821 
                 

3 

(25, 25) 

2 0.4996 0.3421 0.3490 0.4376 0.3534 0.5000 0.3225 0.3226 0.4361 0.3287 0.5000 0.3868 0.3893 0.4752 0.3951 

6 0.4499 0.2491 0.2527 0.2674 0.2556 0.4965 0.2265 0.2267 0.2512 0.2307 0.4995 0.2741 0.2754 0.2967 0.2796 

10 0.3033 0.2090 0.2121 0.1988 0.2136 0.4578 0.1823 0.1822 0.1754 0.1857 0.4712 0.2259 0.2270 0.1998 0.2299 

5 

(25, 25) 

2 0.4997 0.3429 0.3501 0.4414 0.3577 0.5000 0.3234 0.3232 0.4423 0.3332 0.5000 0.3873 0.3901 0.4781 0.3998 

6 0.4567 0.2511 0.2546 0.2741 0.2598 0.4983 0.2280 0.2279 0.2588 0.2340 0.4997 0.2767 0.2778 0.3057 0.2854 

10 0.3174 0.2119 0.2150 0.2050 0.2188 0.4721 0.1853 0.1845 0.1821 0.1901 0.4783 0.2305 0.2309 0.2081 0.2367 
                 

3 

(100, 100) 

2 0.5000 0.3415 0.3494 0.4344 0.3507 0.5000 0.3226 0.3228 0.4309 0.3256 0.5000 0.3865 0.3896 0.4726 0.3914 

6 0.4946 0.2478 0.2517 0.2622 0.2530 0.5000 0.2259 0.2262 0.2458 0.2285 0.5000 0.2722 0.2739 0.2900 0.2756 

10 0.3070 0.2067 0.2100 0.1944 0.2103 0.4999 0.1809 0.1811 0.1707 0.1833 0.4988 0.2233 0.2250 0.1942 0.2260 

5 

(100, 100) 

2 0.5000 0.3414 0.3492 0.4351 0.3515 0.5000 0.3228 0.3228 0.4325 0.3266 0.5000 0.3867 0.3898 0.4733 0.3925 

6 0.4946 0.2481 0.2520 0.2633 0.2537 0.5000 0.2260 0.2263 0.2472 0.2291 0.5000 0.2726 0.2742 0.2918 0.2767 

10 0.3080 0.2068 0.2102 0.1953 0.2108 0.4999 0.1810 0.1812 0.1716 0.1838 0.4988 0.2238 0.2252 0.1954 0.2269 

Performance 

(%) 
 72.22  27.78   36.11 41.67 22.22   55.55 16.67 27.78  
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Table 4.21 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Unbalanced Sample Sizes at 𝜀 = 0.2 

μ 

(𝜔1, 𝜔2) 
d 

n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

3 

(9, 9) 

2 0.4991 0.3748 0.3790 0.4776 0.4065 0.4999 0.3606 0.3521 0.4907 0.3985 0.5000 0.4295 0.4251 0.5003 0.4506 

6 0.4853 0.2814 0.2838 0.3426 0.3108 0.4975 0.2587 0.2518 0.3589 0.2880 0.4998 0.3286 0.3220 0.4018 0.3580 

10 0.4377 0.2491 0.2505 0.2678 0.2740 0.4861 0.2198 0.2125 0.2695 0.2463 0.4973 0.2844 0.2784 0.2999 0.3112 

5 

(9, 9) 

2 0.4997 0.3836 0.3886 0.4950 0.4312 0.5000 0.3739 0.3645 0.5050 0.4392 0.5000 0.4388 0.4354 0.5068 0.4695 

6 0.4940 0.3045 0.3076 0.4040 0.3530 0.4995 0.2858 0.2748 0.4484 0.3520 0.5000 0.3580 0.3510 0.4627 0.4037 

10 0.4670 0.2818 0.2841 0.3366 0.3233 0.4965 0.2588 0.2467 0.3817 0.3166 0.4992 0.3272 0.3197 0.3919 0.3690 
                 

3 

(25, 25) 

2 0.5000 0.3681 0.3779 0.4608 0.3895 0.5000 0.3558 0.3500 0.4716 0.3694 0.5000 0.4254 0.4247 0.4923 0.4349 

6 0.4997 0.2653 0.2707 0.2957 0.2842 0.5000 0.2445 0.2416 0.2924 0.2561 0.5000 0.3066 0.3056 0.3447 0.3225 

10 0.4876 0.2227 0.2270 0.2181 0.2391 0.4999 0.1967 0.1949 0.2007 0.2095 0.5000 0.2516 0.2514 0.2312 0.2680 

5 

(25, 25) 

2 0.5000 0.3694 0.3789 0.4676 0.3978 0.5000 0.3574 0.3518 0.4792 0.3824 0.5000 0.4262 0.4261 0.4953 0.4425 

6 0.4999 0.2682 0.2743 0.3096 0.2940 0.5000 0.2480 0.2447 0.3142 0.2681 0.5000 0.3116 0.3109 0.3634 0.3365 

10 0.4917 0.2282 0.2331 0.2316 0.2507 0.5000 0.2023 0.1999 0.2206 0.2226 0.5000 0.2593 0.2589 0.2514 0.2834 
                 

3 

(100, 100) 

2 0.5000 0.3651 0.3795 0.4537 0.3839 0.5000 0.3539 0.3521 0.4617 0.3603 0.5000 0.4236 0.4271 0.4885 0.4297 

6 0.5000 0.2601 0.2684 0.2818 0.2764 0.5000 0.2413 0.2409 0.2734 0.2488 0.5000 0.3018 0.3045 0.3273 0.3128 

10 0.5000 0.2164 0.2218 0.2061 0.2299 0.5000 0.1920 0.1920 0.1853 0.2016 0.5000 0.2445 0.2467 0.2154 0.2564 

5 

(100, 100) 

2 0.5000 0.3647 0.3793 0.4548 0.3856 0.5000 0.3543 0.3524 0.4640 0.3631 0.5000 0.4239 0.4274 0.4894 0.4317 

6 0.5000 0.2605 0.2687 0.2844 0.2780 0.5000 0.2415 0.2411 0.2772 0.2506 0.5000 0.3023 0.3050 0.3305 0.3153 

10 0.5000 0.2167 0.2223 0.2082 0.2316 0.5000 0.1923 0.1923 0.1881 0.2032 0.5000 0.2449 0.2472 0.2180 0.2586 

Performance 

(%) 
 83.33  16.67    88.89 11.11   22.22 55.56 22.22  
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Table 4.22 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Unbalanced Sample Sizes at 𝜀 = 0.4 

μ 

(𝜔1 , 𝜔2) 
d 

n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW CLDR RLDRMw RLDRM RLDRWw RLDRW 

3 

(9, 9) 

2 0.5000 0.4613 0.4571 0.5203 0.4781 0.5000 0.4726 0.4529 0.5119 0.4882 0.5000 0.4929 0.4866 0.5072 0.4952 

6 0.4997 0.3857 0.3820 0.5097 0.4356 0.4999 0.3944 0.3592 0.5429 0.4582 0.5000 0.4607 0.4409 0.5284 0.4779 

10 0.4981 0.3411 0.3427 0.4414 0.4066 0.4998 0.3467 0.3154 0.5417 0.4359 0.5000 0.4275 0.4050 0.5141 0.4606 

5 

(9, 9) 

2 0.5000 0.4727 0.4724 0.5434 0.4880 0.4999 0.4868 0.4756 0.5421 0.4914 0.5000 0.4963 0.4934 0.5156 0.4975 

6 0.4998 0.4152 0.4172 0.5810 0.4667 0.4998 0.4433 0.4181 0.6136 0.4890 0.5000 0.4780 0.4669 0.5644 0.4898 

10 0.4992 0.3812 0.3883 0.5360 0.4508 0.4998 0.4085 0.3848 0.6403 0.4869 0.5000 0.4573 0.4452 0.5843 0.4817 
                 

3 

(25, 25) 

2 0.5000 0.4471 0.4627 0.4991 0.4665 0.5000 0.4629 0.4507 0.5044 0.4654 0.5000 0.4889 0.4888 0.5050 0.4902 

6 0.5000 0.3453 0.3687 0.3890 0.4017 0.5000 0.3519 0.3343 0.4418 0.3895 0.5000 0.4298 0.4284 0.4611 0.4528 

10 0.5000 0.2866 0.3087 0.2892 0.3556 0.5000 0.2832 0.2709 0.3391 0.3464 0.5000 0.3727 0.3735 0.3534 0.4188 

5 

(25, 25) 

2 0.5000 0.4490 0.4651 0.5069 0.4743 0.5000 0.4653 0.4552 0.5088 0.4778 0.5000 0.4888 0.4898 0.5075 0.4933 

6 0.5000 0.3496 0.3767 0.4231 0.4196 0.5000 0.3633 0.3468 0.4855 0.4257 0.5000 0.4359 0.4373 0.4875 0.4677 

10 0.5000 0.2952 0.3220 0.3240 0.3811 0.5000 0.2984 0.2877 0.4115 0.3913 0.5000 0.3834 0.3881 0.4021 0.4420 
                 

3 

(100, 100) 

2 0.5000 0.4185 0.4722 0.4787 0.4689 0.5000 0.4348 0.4631 0.4932 0.4601 0.5000 0.4754 0.4933 0.5000 0.4907 

6 0.5000 0.3057 0.3724 0.3275 0.3884 0.5000 0.3066 0.3433 0.3502 0.3674 0.5000 0.3847 0.4359 0.3971 0.4419 

10 0.5000 0.2521 0.2987 0.2390 0.3320 0.5000 0.2422 0.2694 0.2395 0.3142 0.5000 0.3187 0.3702 0.2742 0.3942 

5 

(100, 100) 

2 0.5000 0.4185 0.4724 0.4814 0.4701 0.5000 0.4356 0.4633 0.4946 0.4634 0.5000 0.4756 0.4934 0.5004 0.4915 

6 0.5000 0.3054 0.3728 0.3332 0.3910 0.5000 0.3074 0.3444 0.3598 0.3735 0.5000 0.3859 0.4370 0.4059 0.4460 

10 0.5000 0.2525 0.2995 0.2430 0.3339 0.5000 0.2426 0.2704 0.2481 0.3206 0.5000 0.3194 0.3716 0.2815 0.3998 

Performance 

(%) 
 77.78 11.11 11.11   27.78 66.67 5.55   38.89 44.44 16.67  
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Across the tables, we can see that the performance of RLDRs can be improved by 

increasing the number of dimensions. Larger dimension can reduce the 

misclassification error rates of RLDRs. CLDR is not suitable for the contaminated 

unbalanced sample sizes data due to the high misclassification error rates of 0.5. 

 

As can be observed in Table 4.20 to Table 4.22, RLDRMw performs well when the 

difference between group sizes is small (n1 = 50, n2 = 20) while RLDRM perform 

excellently for larger difference between group sizes (n1 = 100, n2 = 50). When the 

difference is very large (n1 =100, n2 = 20), the RLDRs using MOM estimator 

(RLDRMw and RLDRM) deems to be the better choices among the other LDRs. 

Overall, the performance of RLDRs is better than CLDR, thus could imply that the 

proposed RLDRs are able to alleviate the classification problems for mixed location 

and shape contaminated data with unequal covariance. Indeed, RLDRMw and RLDRM 

are found to be acceptable alternatives due to their smaller misclassification error 

rates as compared to the other investigated LDRs. 

 

4.4 Comparison among LDRs 

Across the discussions in Section 4.2 and Section 4.3, the performance of CLDR is 

affected by the contaminated data. As the contamination occurs, the performance of 

CLDR dramatically affected, thus leading its misclassification error rates to inflate 

considerably above the other RLDRs. Therefore, the comparison of misclassification 

error rates among LDRs between uncontaminated and contaminated data under 

homogenous as well as heterogeneous covariance is emphasized in this section. The 

comparison is separated based on balanced and unbalanced sample sizes across 

Table 4.23 and Table 4.24, respectively. 
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Table 4.23 

Comparison of Misclassification Error Rates between Uncontaminated and Contaminated Data for Balanced Sample Sizes 

d LDR 

Homogeneous Covariance Heterogeneous Covariance 

n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

Clean Contam. Clean Contam. Clean Contam. Clean Contam. Clean Contam. Clean Contam. 

2 

CLDR 0.2511 05052 0.2442 0.5099 0.2420 0.5139 0.3169 0.5034 0.3069 0.5078 0.3038 0.5104 

RLDRMw 0.2547 0.2945 0.2453 0.2829 0.2424 0.2788 0.3222 0.3623 0.3083 0.3469 0.3044 0.3408 

RLDRM 0.2562 0.2965 0.2465 0.2828 0.2432 0.2783 0.3231 0.3630 0.3093 0.3467 0.3050 0.3402 

RLDRWw 0.2527 0.3204 0.2446 0.3180 0.2421 0.3200 0.3187 0.3849 0.3072 0.3799 0.3039 0.3788 

RLDRW 0.2543 0.3242 0.2458 0.3197 0.2429 0.3210 0.3195 0.3865 0.3083 0.3806 0.3046 0.3792 
              

6 

CLDR 0.1409 0.4320 0.1214 0.4832 0.1157 0.4892 0.2342 0.4470 0.2069 0.4876 0.1986 0.4920 

RLDRMw 0.1471 0.2084 0.1233 0.1863 0.1164 0.1772 0.2421 0.2974 0.2101 0.2734 0.1999 0.2607 

RLDRM 0.1514 0.2134 0.1257 0.1854 0.1178 0.1749 0.2450 0.2999 0.2129 0.2716 0.2015 0.2581 

RLDRWw 0.1439 0.2295 0.1222 0.2220 0.1159 0.2209 0.2376 0.3168 0.2080 0.3098 0.1990 0.3058 

RLDRW 0.1481 0.2412 0.1246 0.2273 0.1173 0.2234 0.2404 0.3199 0.2107 0.3129 0.2006 0.3068 
              

10 

CLDR 0.0980 0.3591 0.0707 0.4444 0.0635 0.4744 0.2005 0.3905 0.1607 0.4539 0.1483 0.4802 

RLDRMw 0.1035 0.1774 0.0724 0.1471 0.0641 0.1358 0.2086 0.2721 0.1641 0.2379 0.1498 0.2233 

RLDRM 0.1082 0.1838 0.0745 0.1450 0.0653 0.1321 0.2119 0.2756 0.1666 0.2353 0.1514 0.2189 

RLDRWw 0.1006 0.1925 0.0714 0.1773 0.0637 0.1774 0.2035 0.2850 0.1617 0.2701 0.1487 0.2687 

RLDRW 0.1049 0.2067 0.0734 0.1837 0.0649 0.1798 0.2063 0.2945 0.1640 0.2750 0.1502 0.2703 
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Table 4.24 

Comparison of Misclassification Error Rates between Uncontaminated and Contaminated Data for Unbalanced Sample Sizes 

d LDR 

Homogeneous Covariance Heterogeneous Covariance 

n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

Clean Contam. Clean Contam. Clean Contam. Clean Contam. Clean Contam. Clean Contam. 

2 

CLDR 0.2897 0.5009 0.2684 0.5029 0.3552 0.5001 0.3267 0.4944 0.3059 0.4960 0.3608 0.4983 

RLDRMw 0.2833 0.3783 0.2653 0.3660 0.3428 0.4543 0.3213 0.3948 0.3029 0.3904 0.3511 0.4391 

RLDRM 0.2908 0.3890 0.2692 0.3604 0.3535 0.4508 0.3286 0.4057 0.3070 0.3879 0.3608 0.4412 

RLDRWw 0.2815 0.3869 0.2643 0.3807 0.3416 0.4606 0.4088 0.4812 0.3940 0.4864 0.4466 0.4973 

RLDRW 0.2893 0.4020 0.2687 0.3800 0.3523 0.4579 0.3258 0.4148 0.3058 0.4030 0.3586 0.4483 
              

6 

CLDR 0.1428 0.4889 0.1268 0.4976 0.1681 0.4992 0.2362 0.4722 0.2149 0.4831 0.2512 0.4900 

RLDRMw 0.1430 0.2421 0.1267 0.2279 0.1640 0.3282 0.2380 0.3104 0.2150 0.3007 0.2499 0.3529 

RLDRM 0.1477 0.2533 0.1293 0.2186 0.1704 0.3255 0.2419 0.3206 0.2180 0.2972 0.2549 0.3573 

RLDRWw 0.1383 0.2421 0.1250 0.2505 0.1614 0.3439 0.2452 0.3657 0.2252 0.3752 0.2586 0.4045 

RLDRW 0.1452 0.2534 0.1284 0.2544 0.1678 0.3427 0.2374 0.3367 0.2161 0.3220 0.2506 0.3711 
              

10 

CLDR 0.0862 0.4331 0.0707 0.4860 0.0958 0.4925 0.1950 0.4261 0.1703 0.4679 0.2060 0.4775 

RLDRMw 0.0882 0.1847 0.0711 0.1698 0.0953 0.2495 0.2001 0.2746 0.1712 0.2593 0.2090 0.3107 

RLDRM 0.0922 0.1913 0.0731 0.1602 0.0997 0.2477 0.2038 0.2824 0.1739 0.2556 0.2132 0.3140 

RLDRWw 0.0835 0.1954 0.0692 0.1935 0.0925 0.2720 0.1849 0.2975 0.1588 0.3075 0.1794 0.3222 

RLDRW 0.0896 0.2202 0.0724 0.2006 0.0966 0.2729 0.1977 0.3007 0.1716 0.2853 0.2070 0.3314 
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The terms “Clean” and “Contam.” as displayed in Table 4.23 and Table 4.24 

represent the uncontaminated and contaminated data, respectively. Meanwhile, the 

values of contaminated data represent the average misclassification error rates of all 

three types of data contamination namely location contamination, shape 

contamination as well as mixed location and shape contamination for each 

dimension. 

 

Overall, the optimality in classification can be achieved by CLDR for 

uncontaminated data under balanced sample sizes as shown in Table 4.23. Such 

findings imply that the performance of CLDR is the best once assumptions of LDA 

(normality and homoscedasticity) are met which concurred with the theory of LDA. 

Although CLDR keeps its optimality in uncontaminated data, the performance of 

RLDRs is as good as CLDR with marginal differences of misclassification error 

rates (at 3 decimal places). Once the data is contaminated, CLDR loses its control on 

misclassification due to its sensitivity problem to contamination but not RLDRs. In 

contrast, the proposed RLDRs are still able to reduce the misclassification error rates 

even under contaminated data, thus indicating RLDRs are able to overcome the 

sensitivity problem of CLDR. 

 

Regardless of data contamination types as well as number of dimensions, RLDRMw 

performs excellently well under small sample sizes (n1 = n2 = 20). Meanwhile, the 

optimality is obtained by RLDRM under moderate sample sizes (n1 = n2 = 50), and 

continues to be optimal even when the sample sizes increase to n1 = n2 = 100. The 

proposed RLDRs have successfully reduced the misclassification error rates in the 

range of 30% to 70% as compared to CLDR under contaminated data. For example, 
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the misclassification error rates of CLDR and RLDRMw are 0.5052 and 0.2945, 

respectively under n1 = n2 = 20 with homoscedasticity, thus indicating RLDRMw can 

reduce 42% of misclassification error rates with respect to CLDR. 

 

Under unbalanced sample sizes (refer to Table 4.24), with uncontaminated data and 

homogeneous covariance, RLDRWw provides the best misclassification error rates 

among the LDRs. This scenario reveals that CLDR no longer holds its optimality 

due to the effect of unbalanced sample sizes, even for uncontaminated data. For 

contaminated data with homoscedasticity, RLDRMw perform excellently for small 

discrepancy in group sizes (n1 = 50, n2 = 20) while RLDRM overshadow the others 

with lowest misclassification error rates under moderate (n1 = 100, n2 = 50) as well 

as large (n1 = 100, n2 = 20) discrepancy in group sizes. The improvement in the 

performance achieved by RLDRs is within 10% to 65% as compared to CLDR under 

contaminated data with equal covariance. 

 

On the other hand, under the case of uncontaminated data with heterogeneity of 

covariance, RLDRMw outperform CLDR at d = 2 as well as at d = 6 for  

(n1 = 100, n2 = 20). Nevertheless, CLDR at d = 6 under n1 = 50, n2 = 20 and  

n1 = 100, n2 = 50 leads the rest, but with only minute difference from the next best 

(refer to Table 4.24). Meanwhile, RLDRWw makes a comeback at d = 10, with the 

smallest misclassification error rates. For the contaminated data with 

heteroscedasticity, RLDRMw still earns the best performer under the conditions of  

n1 = 50, n2 = 20, n1 = 100, n2 = 20 and also at d = 10. Meanwhile, RLDRM show 

excellent performance for n1 = 100, n2 = 50 at d = 2, 6. Through RLDRs, 
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approximately 10% to 40% improvement can be attained as compared to CLDR 

under contaminated data with unequal covariance. 

 

Generally, two RLDRs using MOM estimator (RLDRMw and RLDRM) are the 

acceptable alternatives to solve the classification problems if contamination 

occurred. At least 10% of misclassification error rates can be reduced by RLDRMw 

and RLDRM as compared to CLDR under contaminated data. Another two RLDRs 

using winsorized covariance estimator (RLDRMw and RLDRWw) are able to mitigate 

the effect of unbalanced sample sizes, since they can provide lower misclassification 

error rates than CLDR for uncontaminated data. Beside the average misclassification 

rates, the range of misclassification error rates for all investigated LDRs is also 

observed. The ranges for misclassification error rates for contaminated data are 

computed and listed in Table 4.25.  

 

Table 4.25 

Misclassification Ranges of LDRs under Contaminated Data 

LDR Homogeneous Covariance Heterogeneous Covariance 

CLDR 10.78% – 89.95% 17.76% – 82.20% 

RLDRMw 6.63% – 75.78% 15.25% – 71.95% 

RLDRM 6.62% – 79.42% 15.29% – 71.85% 

RLDRWw 6.66% – 76.60% 15.27% – 73.09% 

RLDRW 6.66% – 78.68% 15.31% – 72.44% 

 

Under the case of contamination with homogeneous covariance, the misclassification 

error rates for RLDRMw ranging from 6.63% to 75.78% as compared to RLDRWw  
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(6.66% to 76.60%), RLDRW (6.66% to 78.68%) and RLDRM (6.62% to 79.42%). 

These results reveal that the ranges of misclassification error rates of the proposed 

RLDRs are narrower than CLDR i.e. 10.78% to 89.95%. For contaminated data with 

equal covariance, Table 4.25 also exposes that the ranges of RLDRMw and RLDRWw 

are on par while similar ranges could be observed between RLDRW and RLDRM. 

 

Meanwhile, under the influence of contamination data with heterogeneous 

covariance, the misclassification range of CLDR (17.76% to 82.20%) is the widest 

among the LDRs as indicated in Table 4.25. The smallest misclassification range 

belongs to RLDRM (15.29% to 71.85%), followed by RLDRW (15.25% to 71.95%), 

RLDRW (15.31% to 72.44%) and RLDRWw (15.25% to 73.09%). Hence, for 

contaminated data with unequal covariance, the ranges of misclassification error 

rates of all proposed RLDRs via coordinatewise approach are almost equal to each 

other with the highest disparity of only 0.012. 

 

4.5 Computational Time of the Misclassification Error Rates 

The efficiency in computational time is another criterion to evaluate the optimality of 

LDR. In addition to the misclassification error rates, this study also inspects on the 

computing time (in seconds) of the misclassification error rates for each procedure. 

The average computational times (in seconds) of LDRs with different dimensions 

under balanced and unbalanced sample sizes are computed and documented in Table 

4.26. The values shown in Table 4.26 are the average computing times of all the four 

types of data distribution (uncontaminated, location contamination, shape 

contamination, mixed location and shape contamination) with regards to each 

dimension. 
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Table 4.26 

Average Computational Time (in Seconds) of LDRs 

d LDR 

Homogeneous Covariance Heterogeneous Covariance 

n1 = n2 

= 20 

n1 = n2 

= 50 

n1 = n2 

= 100 

n1 = 50  

n2 = 20 

n1 =100 

n2 = 50 

n1 =100  

n2 = 20 

n1 = n2 

= 20 

n1 = n2 

= 50 

n1 = n2 

= 100 

n1 = 50  

n2 = 20 

n1 =100 

n2 = 50 

n1 =100  

n2 = 20 

2 

CLDR 2 2 2 2 2 2 2 2 2 2 2 2 

RLDRMw 4 4 5 4 4 4 3 4 5 4 4 5 

RLDRM 6 6 6 6 6 6 6 6 6 5 5 5 

RLDRWw 3 3 4 3 3 3 3 3 3 3 3 3 

RLDRW 6 6 6 6 6 5 6 6 6 6 6 6 
              

6 

CLDR 5 5 5 5 5 5 5 5 5 5 5 5 

RLDRMw 11 11 12 10 11 11 9 10 13 11 12 11 

RLDRM 18 19 21 21 22 22 20 21 23 19 20 21 

RLDRWw 8 9 9 8 9 8 9 10 8 8 9 8 

RLDRW 20 20 21 22 21 20 21 22 23 20 22 20 
              

10 

CLDR 9 9 9 8 8 8 8 8 7 8 8 8 

RLDRMw 18 17 19 18 20 19 16 18 19 18 18 18 

RLDRM 39 40 44 43 46 43 42 43 47 40 42 42 

RLDRWw 13 14 15 13 14 14 15 18 15 14 15 14 

RLDRW 40 41 42 53 44 40 45 43 44 42 47 43 
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The computational time of LDRs is influenced by the dimension as presented in  

Table 4.26. The computing time increases as the number of dimensions increases. 

Contrariwise, the computing time of LDRs is not significantly affected by covariance 

heterogeneity as indicated by the very small difference of time in seconds. The table 

also reveals that the computational time for all the LDRs is not affected by the 

number of sample sizes regardless of balanced or unbalanced cases, as shown by the 

very small disparity of seconds (time) between them. As compared among Table 

4.23, Table 4.24 and Table 4.26, the classification performance does not affected by 

the computation time. 

 

Briefly, the computing time of CLDR is the fastest among all LDRs, then followed 

by the two RLDRs using winsorized covariance estimator (RLDRMw and RLDRWw) 

and the slowest are the two RLDRs using robust covariance (RLDRM and RLDRW). 

Although the computing time of CLDR is the fastest among all LDRs, but its 

performance in terms of misclassification error rates is the worst if contaminated data 

is concerned. Therefore, the proposed RLDRs via coordinatewise based approach are 

the better alternatives to obtain lower misclassification error rates (better 

performance) with acceptable computing time. 

 

4.6 Summary 

In this chapter, all the proposed RLDRs via coordinatewise based approach are tested 

through simulation study. The simulation results between RLDRs and CLDR for data 

of various conditions are scrutinized and discussed. As a summary in simulation 

study, the findings reveal that the RLDRM and RLDRMw are able to provide 

comparable performance with acceptable computing time, regardless of the data 
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conditions. In the next chapter, the analysis of RLDRs via distance based approach 

will be considered. 
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CHAPTER FIVE 

ROBUST LINEAR DISCRIMINANT ANALYSIS USING  

DISTANCE BASED APPROACH 

5.1 Introduction 

Chapter Five deliberates on the simulation results of two newly proposed RLDRs via 

distance based approach namely RLDRV and RLDRT. Again, to investigate on the 

strengths and weaknesses of the proposed RLDRs, a simulation study under different 

data distributions are conducted. The same simulation settings as Chapter Four are 

implemented on the proposed RLDRs. The performance of all the RLDRs is 

measured in terms of misclassification error rates and computational efficiency (in 

terms of time), and then compared to CLDR as well as the existing RLDRD. From 

the comparison, the most effective RLDR using distance approach could be 

identified. Besides simulation study, the optimality of all the investigated LDRs is 

also evaluated through real data study. The performance of the proposed RLDRs is 

compared to CLDR as well as RLDRD. With real data results, the predictive accuracy 

of variable classification for the LDRs is examined and reported. 

 

At the end of this chapter, the performance of all the LDRs form Chapter Four and 

Chapter Five are compared for both simulated and real data study. 

 

5.2 Simulation Study for Homogeneous Covariance 

For the purpose of comparison, except for the approach, investigation on the distance 

based RLDRs is done using the same conditions as in coordinatewise approach 

(Chapter Four).  As discussed in Section 4.2, data with homogeneous covariance 

under balanced and unbalanced sample sizes are simulated and applied on the 
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proposed RLDRs. The detail discussions of simulation results on data with 

homogeneous covariance are presented in the following subsections.  

 

5.2.1 Results for Groups with Balanced Sample Sizes 

The same settings as presented in Table 4.1 are used for this distance based approach.  

The simulation study starts with the investigation on uncontaminated data under 

balanced sample sizes. The averages of misclassification error rates for 

uncontaminated data are illustrated in Figure 5.1. 

 

Figure 5.1. Average misclassification error rates under uncontaminated data for 

different dimensions and balanced sample sizes, (d x n). 

 

The optimal performance still holds by CLDR as displayed in Figure 5.1 which 

concurs with the theory that its performance is the best for uncontaminated data, 

regardless of sample sizes and dimensions. Figure 5.1 also shows that the number of 

dimensions highly influences the performance of LDRs. The performance of LDRs 
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can be improved by increasing the number of dimensions. The misclassification error 

rates of LDRs can be reduced about 40% to 70% from d = 2 to d = 10. Besides, 

increasing the number of sample sizes also is one of the ways to improve the 

performance of LDRs. Therefore, it can be assumed that the more information (high 

dimension and large sample) involved in the training data, the better will be the 

discriminant rule.  

 

The newly proposed RLDRV and RLDRT provide lower misclassification error rates 

than the existing RLDRD, thus indicating that the performances of the proposed 

RLDRs are better than RLDRD. In short, although none of the proposed RLDRs 

(RLDRV and RLDRT) hold optimality under uncontaminated distribution, they 

succeed to outperform the existing RLDRD, except at d = 10 under n1 = n2 = 20, 

where RLDRD has better performance than RLDRT.  

 

The investigation on distance based RLDRs then continues with data under different 

types of contamination (location contaminated, shape contaminated, mixed location 

and shape contaminated). Table 5.1 presents the average of the misclassification 

error rates for LDRs under the case of location contamination. 
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Table 5.1 

Average Misclassification Error Rates under Location Contaminated Data for Balanced Sample Sizes 

ε (μ, 𝜔) d 
n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

0.1 

(3, 1) 

2 0.3389 0.2841 0.2698 0.2863 0.2960 0.2636 0.2539 0.2602 0.2741 0.2538 0.2484 0.2501 

6 0.3915 0.1931 0.1603 0.1963 0.3286 0.1499 0.1358 0.1458 0.2740 0.1325 0.1253 0.1277 

10 0.4202 0.1970 0.1164 0.2366 0.3629 0.0961 0.0856 0.1304 0.3102 0.0784 0.0734 0.0896 

(5, 1) 

2 0.4987 0.2819 0.2687 0.2944 0.4986 0.2633 0.2534 0.2669 0.5010 0.2536 0.2484 0.2545 

6 0.4998 0.1807 0.1610 0.1913 0.5004 0.1498 0.1359 0.1419 0.4991 0.1324 0.1252 0.1258 

10 0.4996 0.1425 0.1167 0.2235 0.5003 0.0956 0.0853 0.1365 0.4995 0.0784 0.0733 0.0970 

               

0.2 

(3, 1) 

2 0.5770 0.2893 0.2700 0.3203 0.6202 0.2612 0.2531 0.2819 0.6542 0.2518 0.2478 0.2649 

6 0.5365 0.2587 0.1595 0.4283 0.5611 0.1480 0.1351 0.3749 0.5866 0.1303 0.1243 0.3176 

10 0.5237 0.4360 0.1167 0.4774 0.5436 0.1002 0.0849 0.4471 0.5616 0.0770 0.0731 0.4166 

(5, 1) 

2 0.6530 0.2765 0.2665 0.2961 0.6911 0.2597 0.2527 0.2682 0.7124 0.2514 0.2477 0.2560 

6 0.5668 0.1868 0.1603 0.4742 0.6101 0.1462 0.1349 0.4668 0.6526 0.1302 0.1246 0.4474 

10 0.5432 0.3378 0.1170 0.5047 0.5787 0.0919 0.0851 0.5077 0.6115 0.0771 0.0730 0.5089 

               

0.4 

(3, 1) 

2 0.7061 0.4594 0.2907 0.6235 0.7328 0.3697 0.2534 0.6648 0.7442 0.2886 0.2465 0.6930 

6 0.6433 0.5748 0.3433 0.5699 0.7165 0.4879 0.1319 0.6180 0.7677 0.3115 0.1225 0.6600 

10 0.6018 0.5678 0.5224 0.5511 0.6742 0.5850 0.3531 0.5957 0.7323 0.5506 0.2365 0.6357 

(5, 1) 

2 0.6955 0.3099 0.2616 0.6004 0.7252 0.2530 0.2497 0.6342 0.7389 0.2468 0.2455 0.6611 

6 0.6137 0.5573 0.4600 0.5550 0.6793 0.2017 0.1314 0.5931 0.7300 0.1255 0.1223 0.6289 

10 0.5769 0.5506 0.5374 0.5388 0.6354 0.5435 0.3917 0.5735 0.6864 0.3706 0.2428 0.6059 

Performance (%)   100    100    100  
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Across the analysis and discussions in Chapter Four, the performance of CLDR is 

dramatically affected once data are contaminated, and RLDRs with coordinatewise 

approach are able to mitigate the corresponding problems. The same happen in the 

case of distance based approach as proven in Table 5.1 whereby the distance based 

RLDRs perform wonderfully in controlling the misclassification error rates under 

contaminated data. 

 

The performance of RLDRs can be improved by increasing the sample sizes, but 

RLDRT seems to lose the grip at high contamination proportion (𝜀 = 0.4). Besides, 

increasing dimensions can also improve the performance of RLDRs especially at 

lower contamination proportion (𝜀  = 0.1). Nevertheless, when the contamination 

proportion increases, the performance pattern is changes. Respect to dimensions 

increases, the performance of RLDRD and RLDRV improves at 𝜀 = 0.2, but not at 𝜀 = 

0.4. In contrast, the performance of RLDRT improves at 𝜀 = 0.4, but not at 𝜀 = 0.2. 

 

Table 5.1 exposes the excellent performance of RLDRV among the RLDRs, which is 

contrary to CLDR under location contaminated data. At 𝜀 = 0.1, RLDRT produces 

acceptable discriminant rule as compared to CLDR, but its performance is slightly 

below the existing RLDRD. Under higher proportion of contamination (𝜀 = 0.2, 0.4) 

plus the effect of location contamination, despite being better than CLDR, the 

performance of RLDRT worsens as compared to RLDRD. RLDRD also loss its 

discrimination ability for small sample sizes (n1 = n2 = 20) at 𝜀  = 0.4. Overall, 

RLDRV performs the best among the LDRs when exposed to location contamination 

regardless of data contamination levels. The following Table 5.2 shows the results of 

LDRs in the case of shape contamination. 
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Table 5.2 

Average Misclassification Error Rates under Shape Contaminated Data for Balanced Sample Sizes 

ε (μ, 𝜔) d 
n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

0.1 

(0, 9) 

2 0.3178 0.2819 0.2687 0.2679 0.2759 0.2635 0.2533 0.2535 0.2587 0.2537 0.2485 0.2480 

6 0.2108 0.1802 0.1602 0.1725 0.1812 0.1496 0.1356 0.1344 0.1505 0.1322 0.1252 0.1233 

10 0.1421 0.1275 0.1162 0.1498 0.1426 0.0961 0.0845 0.0854 0.1078 0.0789 0.0729 0.0708 

(0, 25) 

2 0.4205 0.2820 0.2685 0.2770 0.3863 0.2635 0.2533 0.2644 0.3447 0.2537 0.2484 0.2574 

6 0.2543 0.1802 0.1603 0.1720 0.2696 0.1498 0.1354 0.1356 0.2252 0.1323 0.1252 0.1263 

10 0.1521 0.1276 0.1165 0.1495 0.2256 0.0956 0.0849 0.0852 0.1745 0.0788 0.0730 0.0716 

(0, 100) 

2 0.4903 0.2819 0.2686 0.2891 0.4842 0.2633 0.2536 0.2800 0.4800 0.2537 0.2484 0.2747 

6 0.2725 0.1805 0.1594 0.1721 0.4413 0.1499 0.1356 0.1362 0.4310 0.1323 0.1250 0.1366 
10 0.1540 0.1272 0.1161 0.1499 0.3263 0.0958 0.0846 0.0853 0.3968 0.0790 0.0729 0.0730 

               

0.2 

(0, 9) 

2 0.3624 0.2769 0.2672 0.2703 0.3055 0.2597 0.2528 0.2540 0.2745 0.2518 0.2478 0.2481 

6 0.2514 0.1750 0.1585 0.1699 0.1980 0.1465 0.1339 0.1342 0.1587 0.1304 0.1241 0.1222 

10 0.1977 0.1225 0.1166 0.1474 0.1470 0.0929 0.0832 0.0853 0.1083 0.0774 0.0721 0.0704 

(0, 25) 

2 0.4637 0.2763 0.2666 0.2780 0.4277 0.2597 0.2529 0.2622 0.3929 0.2515 0.2478 0.2565 

6 0.3613 0.1748 0.1592 0.1687 0.3534 0.1460 0.1340 0.1375 0.2921 0.1304 0.1242 0.1266 

10 0.2575 0.1221 0.1168 0.1474 0.2858 0.0930 0.0829 0.0855 0.2469 0.0773 0.0722 0.0719 

(0, 100) 

2 0.4995 0.2761 0.2665 0.2826 0.4911 0.2597 0.2529 0.2690 0.4896 0.2514 0.2477 0.2650 

6 0.4694 0.1749 0.1581 0.1689 0.4871 0.1466 0.1340 0.1431 0.4684 0.1303 0.1242 0.1330 

10 0.2864 0.1224 0.1166 0.1472 0.4678 0.0933 0.0833 0.0864 0.4671 0.0772 0.0721 0.0757 
               

0.4 

(0, 9) 

2 0.4100 0.2684 0.2635 0.2698 0.3491 0.2530 0.2503 0.2499 0.3063 0.2475 0.2459 0.2446 

6 0.3240 0.1917 0.1885 0.1675 0.2487 0.1345 0.1306 0.1310 0.1893 0.1244 0.1218 0.1205 

10 0.2639 0.1869 0.1857 0.1404 0.1886 0.0810 0.0810 0.0832 0.1346 0.0719 0.0696 0.0693 

(0, 25) 

2 0.4804 0.2650 0.2614 0.2742 0.4571 0.2519 0.2498 0.2512 0.4346 0.2469 0.2456 0.2451 

6 0.4563 0.2037 0.2028 0.1647 0.4247 0.1345 0.1307 0.1304 0.3682 0.1245 0.1217 0.1204 

10 0.4187 0.2103 0.2092 0.1396 0.3927 0.0810 0.0810 0.0825 0.3367 0.0720 0.0696 0.0691 

(0, 100) 

2 0.4975 0.2646 0.2613 0.2839 0.4965 0.2518 0.2497 0.2591 0.4940 0.2468 0.2456 0.2493 

6 0.4991 0.2068 0.2062 0.1638 0.4949 0.1345 0.1307 0.1300 0.4853 0.1245 0.1217 0.1201 

10 0.4956 0.2152 0.2146 0.1396 0.4915 0.0810 0.0810 0.0820 0.4865 0.0719 0.0696 0.0688 

Performance (%)   74.07 25.93  5.56 79.63 14.81   48.15 51.85 
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Under shape contamination, the misclassification error rates of the proposed RLDRs 

can be reduced by increasing the sample sizes or dimensions but not in the case of 

CLDR. As observed in Table 5.2, the misclassification error rates of RLDRs via 

distance approach are quite similar within their dimensions and contamination 

proportions, regardless of scale inflation factors. In general, the performances of all 

RLDRs surpass the CLDR in the case of shape contamination. Furthermore, the 

proposed RLDRs outperform the existing RLDRD, as indicated by the lowest 

misclassification error rates obtained by RLDRV or RLDRT. Precisely, RLDRV has 

better performance than RLDRD for all shape contaminated data but same situation 

does not always happen on RLDRT. 

 

Under n1 = n2 = 20, RLDRV overshadows the others with lowest misclassification 

error rates at ε = 0.1, 0.2 and continue to be optimal at ε = 0.4 with d = 2 while 

RLDRT provide lowest misclassification error rates at ε = 0.4 with d = 6, 10. RLDRV 

keeps its optimality in classification as the sample sizes increase to n1 = n2 = 50. For 

large sample sizes (n1 = n2 = 100), RLDRV provides the best performance at ε = 0.1, 

0.2 but outdone by RLDRT at ε = 0.4. 

 

In the case of shape contamination, RLDRV and RLDRT seem suitable in solving 

classification problems. Next, the investigation on the performance of the LDRs 

continues on mixed location and shape contaminated data for balanced sample sizes. 

Table 5.3 to Table 5.5 report the performances of LDRs in the form of average 

misclassification error rates at various contamination proportions (ε = 0.1, 0.2, 0.4), 

respectively. 
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Table 5.3 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Balanced Sample Sizes at 𝜀 = 0.1 

(μ, 𝜔) d 
n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

(3, 9) 

2 0.3884 0.2826 0.2684 0.2737 0.3610 0.2634 0.2536 0.2571 0.3270 0.2536 0.2484 0.2507 

6 0.2679 0.1805 0.1596 0.1748 0.2757 0.1498 0.1355 0.1365 0.2414 0.1324 0.1251 0.1243 

10 0.1979 0.1274 0.1163 0.1521 0.2392 0.0963 0.0847 0.0871 0.2223 0.0787 0.0733 0.0717 

(5, 9) 

2 0.4548 0.2823 0.2690 0.2773 0.4732 0.2634 0.2538 0.2611 0.4804 0.2537 0.2483 0.2529 

6 0.3253 0.1803 0.1602 0.1784 0.3809 0.1499 0.1356 0.1379 0.4000 0.1326 0.1249 0.1248 

10 0.2581 0.1273 0.1161 0.1543 0.3294 0.0964 0.0855 0.0884 0.3637 0.0788 0.0731 0.0720 

              

(3, 25) 

2 0.4527 0.2818 0.2688 0.2805 0.4441 0.2634 0.2536 0.2678 0.4234 0.2536 0.2484 0.2600 

6 0.2655 0.1802 0.1597 0.1727 0.3288 0.1500 0.1351 0.1359 0.3142 0.1324 0.1252 0.1262 

10 0.1616 0.1274 0.1167 0.1498 0.2563 0.0960 0.0849 0.0855 0.2549 0.0788 0.0732 0.0718 

(5, 25) 

2 0.4755 0.2820 0.2688 0.2825 0.4870 0.2635 0.2537 0.2703 0.4917 0.2536 0.2482 0.2610 

6 0.2783 0.1806 0.1598 0.1724 0.3812 0.1494 0.1356 0.1365 0.4072 0.1326 0.1249 0.1261 

10 0.1747 0.1276 0.1164 0.1504 0.2869 0.0959 0.0849 0.0859 0.3404 0.0785 0.0731 0.0719 

              

(3, 100) 

2 0.4937 0.2819 0.2690 0.2903 0.4916 0.2635 0.2536 0.2815 0.4929 0.2536 0.2482 0.2760 

6 0.2733 0.1804 0.1600 0.1725 0.4572 0.1496 0.1354 0.1362 0.4562 0.1326 0.1250 0.1363 

10 0.1547 0.1273 0.1156 0.1497 0.3348 0.0963 0.0846 0.0852 0.4292 0.0786 0.0729 0.0730 

(5, 100) 

2 0.4961 0.2818 0.2689 0.2908 0.4963 0.2633 0.2533 0.2824 0.5012 0.2536 0.2485 0.2770 

6 0.2742 0.1802 0.1598 0.1726 0.4675 0.1497 0.1354 0.1363 0.4736 0.1322 0.1250 0.1359 

10 0.1558 0.1275 0.1165 0.1500 0.3412 0.0963 0.0847 0.0852 0.4520 0.0790 0.0730 0.0730 

Performance 

(%) 
  100    100    63.89 36.11 
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Table 5.4 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Balanced Sample Sizes at 𝜀 = 0.2 

(μ, 𝜔) d 
n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

(3, 9) 

2 0.5083 0.2766 0.2668 0.2805 0.5334 0.2600 0.2531 0.2588 0.5678 0.2515 0.2478 0.2505 

6 0.3933 0.1751 0.1587 0.1731 0.4948 0.1465 0.1343 0.1353 0.5381 0.1304 0.1242 0.1223 

10 0.3049 0.1223 0.1168 0.1495 0.4063 0.0928 0.0835 0.0861 0.4972 0.0773 0.0723 0.0708 

(5, 9) 

2 0.6039 0.2768 0.2672 0.2859 0.6795 0.2597 0.2530 0.2620 0.7158 0.2514 0.2478 0.2509 

6 0.4956 0.1750 0.1584 0.1761 0.6776 0.1464 0.1340 0.1359 0.7669 0.1304 0.1242 0.1226 

10 0.3826 0.1226 0.1168 0.1520 0.5863 0.0933 0.0834 0.0865 0.7423 0.0772 0.0721 0.0711 

              

(3, 25) 

2 0.5041 0.2763 0.2665 0.2819 0.5062 0.2598 0.2530 0.2643 0.5237 0.2514 0.2478 0.2569 

6 0.4204 0.1748 0.1585 0.1695 0.4977 0.1462 0.1338 0.1369 0.5044 0.1303 0.1241 0.1246 

10 0.2798 0.1224 0.1168 0.1478 0.4314 0.0932 0.0833 0.0857 0.4937 0.0773 0.0721 0.0708 

(5, 25) 

2 0.5310 0.2762 0.2664 0.2845 0.5590 0.2597 0.2528 0.2650 0.6061 0.2514 0.2477 0.2561 

6 0.4625 0.1749 0.1584 0.1706 0.5911 0.1467 0.1339 0.1362 0.6490 0.1305 0.1304 0.1228 

10 0.3030 0.1225 0.1165 0.1483 0.5366 0.0932 0.0832 0.0857 0.6630 0.0774 0.0723 0.0702 

              

(3, 100) 

2 0.5027 0.2762 0.2665 0.2840 0.4993 0.2597 0.2529 0.2699 0.5042 0.2514 0.2477 0.2660 

6 0.4780 0.1752 0.1585 0.1689 0.5036 0.1464 0.1339 0.1424 0.4960 0.1305 0.1240 0.1323 

10 0.2879 0.1223 0.1164 0.1475 0.4884 0.0928 0.0834 0.0865 0.5017 0.0773 0.0720 0.0749 

(5, 100) 

2 0.5053 0.2762 0.2666 0.2848 0.5048 0.2596 0.2528 0.2706 0.5144 0.2514 0.2477 0.2662 

6 0.4846 0.1749 0.1584 0.1691 0.5146 0.1467 0.1338 0.1419 0.5147 0.1304 0.1241 0.1313 

10 0.2897 0.1222 0.1166 0.1478 0.5027 0.0929 0.0833 0.0866 0.5242 0.0774 0.0722 0.0743 

Performance 

(%) 
  100    100    61.11 38.89 
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Table 5.5 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Balanced Sample Sizes at 𝜀 = 0.4 

(μ, 𝜔) d 
n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

(3, 9) 

2 0.6106 0.2683 0.2627 0.2986 0.6767 0.2532 0.2504 0.2615 0.7162 0.2474 0.2458 0.2497 

6 0.6382 0.2095 0.2017 0.1682 0.7623 0.1345 0.1307 0.1296 0.8194 0.1246 0.1218 0.1196 

10 0.5762 0.2536 0.2471 0.1410 0.7777 0.0810 0.0810 0.0817 0.8609 0.0719 0.0696 0.0680 

(5, 9) 

2 0.6693 0.2676 0.2626 0.3333 0.7172 0.2529 0.2502 0.2932 0.7372 0.2471 0.2457 0.2693 

6 0.7232 0.2315 0.2222 0.1721 0.8173 0.1345 0.1307 0.1305 0.8526 0.1245 0.1219 0.1200 

10 0.6744 0.3181 0.3135 0.1417 0.8497 0.0810 0.0810 0.0813 0.8995 0.0720 0.0696 0.0678 

              

(3, 25) 

2 0.5174 0.2653 0.2615 0.2849 0.5499 0.2520 0.2499 0.2554 0.5867 0.2468 0.2456 0.2468 

6 0.5355 0.2078 0.2049 0.1644 0.5995 0.1345 0.1307 0.1298 0.6495 0.1245 0.1218 0.1198 

10 0.5214 0.2217 0.2187 0.1396 0.6076 0.0810 0.0810 0.0822 0.6915 0.0719 0.0696 0.0684 

(5, 25) 

2 0.5446 0.2654 0.2615 0.2930 0.5992 0.2520 0.2498 0.2615 0.6453 0.2469 0.2457 0.2502 

6 0.5805 0.2134 0.2091 0.1641 0.6701 0.1345 0.1307 0.1292 0.7379 0.1245 0.1219 0.1193 

10 0.5792 0.2356 0.2302 0.1394 0.6973 0.0810 0.0810 0.0816 0.7897 0.0719 0.0697 0.0679 

              

(3, 100) 

2 0.5005 0.2648 0.2614 0.2848 0.5035 0.2518 0.2497 0.2608 0.5076 0.2467 0.2455 0.2501 

6 0.5035 0.2070 0.2061 0.1638 0.5101 0.1345 0.1307 0.1300 0.5128 0.1245 0.1218 0.1201 

10 0.5050 0.2167 0.2156 0.1396 0.5087 0.0810 0.0810 0.0820 0.5222 0.0719 0.0696 0.0688 

(5, 100) 

2 0.5023 0.2648 0.2614 0.2864 0.5080 0.2519 0.2498 0.2624 0.5159 0.2468 0.2456 0.2512 

6 0.5070 0.2075 0.2065 0.1639 0.5195 0.1345 0.1307 0.1299 0.5306 0.1245 0.1218 0.1201 

10 0.5116 0.2174 0.2168 0.1396 0.5208 0.0810 0.0810 0.0820 0.5448 0.0719 0.0696 0.0687 

Performance 

(%) 
  33.33 66.67  16.67 50 33.33   33.33 66.67 



152 

 

The misclassification error rates of RLDRs show inverse relationship with sample 

sizes. As the sample sizes increase, the misclassification error rates of RLDRs 

dwindle. In addition, the inverse relationship also holds for the misclassification error 

rates of RLDRs and dimensions. However, such relationship does not exist for 

RLDRD under n1 = n2 = 20 as shown in Table 5.5.  

 

Across Table 5.3 to Table 5.5, the proposed RLDRs including the existing RLDRD 

can be considered as better discriminant rules for mixed location and shape 

contaminated data, since they produce lower misclassification error rates than 

CLDR. Again, all RLDRs using distance approach, especially RLDRV, produce 

comparable misclassification error rates within their dimensions and contamination 

proportions. Nevertheless, these misclassification error rates are not affected by the 

number of scale inflation factors. 

 

For small proportion contamination, the superior performance achieved by RLDRV 

under small (n1 = n2 = 20) as well as moderate sample sizes (n1 = n2 = 50) is 

presented in Table 5.3. The RLDRV also performs well under large sample sizes  

(n1 = n2 = 100) at d = 2 and 6 but for d = 10, RLDRT outperforms the others. From 

the results, it is observed that the performance of RLDRV surpasses the existing 

RLDRD and CLDR, except at ε = 0.4 under n1 = n2 = 50, where there are a few results 

showing that RLDRD has equivalent best performance as RLDRV. Table 5.3 and 

Table 5.4 also disclose that RLDRT produces a little bit high misclassification error 

rates as compared to RLDRD under the conditions of n1 = n2 = 20 and d = 10. 

However, such situation does not occurred at ε = 0.4. Table 5.5 presents that RLDRV 

provides the best performance at d = 2 but outdone by RLDRT at d = 6, 10. At high 
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contamination proportion (ε = 0.4), the proposed RLDRV outperforms the existing 

RLDRD for mixed location and shape contaminated data. Meanwhile, RLDRT loses 

to RLDRD at d = 2.  

 

Overall, in the case of mixed location and shape contamination, all RLDRs are good 

alternatives in solving classification problems. Indeed, RLDRV is the most suitable 

choice at ε = 0.1, 0.2 even at ε = 0.4 for n1 = n2 = 50 while RLDRT can withstand at  

ε = 0.4 for n1 = n2 = 20, 100. 

 

5.2.2 Results for Groups with Unbalanced Sample Sizes 

Like in coordinatewise approach, the same three sets of sample sizes are chosen to 

study on the effect of unbalanced sample sizes on RLDRs using distance approach. 

The performances of CLDR as well as RLDRs using distance approach are compared 

and analyzed in this section. The simulation data for unbalanced sample sizes are 

also manipulated according to the setting as in Table 4.1. The following Figure 5.2 

displays the misclassification error rates of LDRs in the case of uncontaminated data 

for unbalanced sample sizes. 
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Figure 5.2. Average misclassification error rates under uncontaminated data for 

different dimensions and unbalanced sample sizes, d x (n1, n2).   

 

In the case of unbalanced sample sizes with uncontaminated data, LDRs can improve 

their performance by increasing dimensions. Lower misclassification error rates can 

be obtained with high dimensions. Besides, sample sizes as well as the unbalanced of 

the sizes also influence the performance of LDRs. From Figure 5.2, the lowest 

misclassification error rates are produced under n1 = 100, n2 = 50, followed by  

n1 = 50, n2 = 20, while the highest rate is from n1 = 100, n2 = 20. These results reveal 

that LDRs perform excellently when involving larger sample sizes (n = 50, 100). 

When sample size is small (n = 20) combined with large difference in the group 

sizes, the performances of LDRs are affected.  

 

Even under uncontaminated data, the optimality in performance of CLDR is 

disturbed when the sample sizes are unbalanced. For example, RLDRs using distance 
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approach (RLDRD, RLDRV and RLDRT) show great performance as compared to 

CLDR at d = 2. RLDRV even outperforms CLDR at d = 6 for large discrepancy in 

group sizes (n1 = 100, n2 = 20). However, as observed in Figure 5.2, generally, the 

performances of CLDR are slightly better than RLDRs. Nevertheless, it is worth 

noting that RLDRV always provide lower misclassification error rates than the 

existing RLDRD for the case of unbalanced sample sizes with uncontaminated data. 

Therefore, RLDRV is a good alternative to solve the classification problems due to its 

providing comparable even sometimes better performance than CLDR as well as 

RLDRD. 

 

Meanwhile, the effects of contaminated data with unbalanced sample sizes under the 

influence of homoscedasticity on classification error rates of the CLDR and RLDRs 

are presented in Table 5.6. 
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Table 5.6 

Average Misclassification Error Rates under Location Contaminated Data for Unbalanced Sample Sizes 

ε (μ, 𝜔) d 
n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

0.1 

(3, 1) 

2 0.4885 0.2797 0.2683 0.3455 0.4836 0.2619 0.2552 0.3069 0.4997 0.2865 0.2772 0.4226 

6 0.4609 0.1734 0.1535 0.2029 0.4511 0.1428 0.1331 0.1626 0.4955 0.1695 0.1563 0.2641 

10 0.4478 0.1424 0.1022 0.1964 0.4323 0.0877 0.0809 0.1372 0.4880 0.1310 0.0998 0.2466 

(5, 1) 

2 0.5000 0.2780 0.2678 0.3585 0.5000 0.2616 0.2549 0.3198 0.5000 0.2848 0.2765 0.4364 

6 0.5000 0.1697 0.1529 0.1915 0.4998 0.1426 0.1327 0.1556 0.5000 0.1667 0.1561 0.2470 

10 0.5003 0.1224 0.1022 0.1884 0.4998 0.0881 0.0810 0.1480 0.4999 0.1137 0.1003 0.2273 

               

0.2 

(3, 1) 

2 0.5017 0.2835 0.2694 0.4154 0.5015 0.2607 0.2554 0.3881 0.5001 0.2931 0.2826 0.4781 

6 0.5104 0.2059 0.1522 0.4590 0.5110 0.1409 0.1329 0.4501 0.5010 0.2059 0.1575 0.4924 

10 0.5149 0.2976 0.1017 0.4791 0.5182 0.0894 0.0804 0.4713 0.5030 0.2801 0.1001 0.4947 

(5, 1) 

2 0.5040 0.2758 0.2680 0.3755 0.5050 0.2597 0.2552 0.3423 0.5002 0.2865 0.2811 0.4525 

6 0.5212 0.1712 0.1525 0.4891 0.5238 0.1404 0.1326 0.4904 0.5022 0.1708 0.1579 0.4988 

10 0.5283 0.2394 0.1021 0.5038 0.5358 0.0858 0.0807 0.5042 0.5060 0.2356 0.0999 0.5016 

               

0.4 

(3, 1) 

2 0.5333 0.4159 0.2916 0.5188 0.5667 0.3337 0.2624 0.5260 0.5015 0.4030 0.3237 0.5024 

6 0.5637 0.5404 0.2122 0.5397 0.5861 0.4101 0.1329 0.5459 0.5088 0.5051 0.2207 0.5075 

10 0.5749 0.5621 0.4642 0.5467 0.5998 0.5627 0.2919 0.5571 0.5192 0.5354 0.4234 0.5142 

(5, 1) 

2 0.5226 0.2956 0.2776 0.5132 0.5485 0.2621 0.2592 0.5167 0.5009 0.3250 0.3097 0.5023 

6 0.5507 0.5307 0.3301 0.5325 0.5659 0.1621 0.1326 0.5384 0.5070 0.5092 0.3467 0.5067 

10 0.5590 0.5469 0.5151 0.5370 0.5788 0.4913 0.3302 0.5462 0.5158 0.5222 0.5038 0.5119 

Performance (%)   100    100    100  
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As observed in Table 5.6, the proposed RLDRs outperform CLDR in the case of 

location contaminated data under unbalanced sample sizes with RLDRV as the best 

among the RLDRs. The performance of RLDRV improves as the dimensions increase 

at 𝜀 = 0.1, 0.2, but not at 𝜀 = 0.4. Meanwhile, improvement on RLDRT only occurs at 

low proportion of contamination (𝜀 = 0.1) but not at 𝜀 = 0.2, 0.4. On the other hand, 

the RLDRD shows improvement at  𝜀 = 0.1 and also at 𝜀 = 0.2 with n1 = 100, n2 = 50. 

 

RLDRV and RLDRD are able to produce acceptable discriminant rules at 𝜀 = 0.1, 0.2 

while the acceptable performance by RLDRT only available at 𝜀 = 0.1. Precisely, 

RLDRV and RLDRD are able to reduce the misclassification error rates as compared 

to CLDR by 40% to 85% at 𝜀  = 0.1, 0.2. RLDRV also can withstand the high 

contamination proportion ( 𝜀  = 0.4), with the only exception at d = 10, but its 

performance bounces back under n1 = 100, n2 = 50 as presented in Table 5.6.  

However, such scenario does not occur on RLDRD. There are quite a few instances 

where RLDRD performs worse than CLDR at 𝜀 = 0.4, especially when the sample 

sizes is small (n = 20). Through the observations on the performance given in Table 

5.6, the proposed RLDRV seems to be the best choice for solving classification 

problems for location contaminated with unbalanced sample sizes. 

 

The following section will discuss on the performance of the investigated LDRs for 

the case of shape contamination with unbalanced sample sizes. The performance of 

LDRs in the form of average misclassification error rates are computed and listed in 

Table 5.7. 
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Table 5.7 

Average Misclassification Error Rates under Shape Contaminated Data for Unbalanced Sample Sizes 

ε (μ, 𝜔) d 
n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

0.1 

(0, 9) 

2 0.4881 0.2782 0.2681 0.2990 0.4909 0.2618 0.2549 0.2732 0.4998 0.2850 0.2770 0.3495 

6 0.3213 0.1687 0.1519 0.1690 0.3474 0.1429 0.1329 0.1415 0.4668 0.1656 0.1556 0.2020 

10 0.1823 0.1144 0.1009 0.1146 0.2064 0.0882 0.0802 0.0844 0.3366 0.1072 0.0988 0.1280 

(0, 25) 

2 0.5000 0.2782 0.2675 0.3126 0.5000 0.2616 0.2549 0.2879 0.5000 0.2848 0.2766 0.3621 

6 0.4592 0.1689 0.1525 0.1719 0.4989 0.1431 0.1329 0.1434 0.4998 0.1659 0.1552 0.2046 

10 0.2412 0.1144 0.1007 0.1146 0.4644 0.0883 0.0803 0.0855 0.4811 0.1075 0.0987 0.1311 

(0, 100) 

2 0.5000 0.2781 0.2673 0.3258 0.5000 0.2616 0.2549 0.3075 0.5000 0.2849 0.2766 0.3711 

6 0.4972 0.1691 0.1522 0.1738 0.5000 0.1426 0.1327 0.1477 0.5000 0.1657 0.1553 0.2083 
10 0.2609 0.1149 0.1010 0.1145 0.5000 0.0879 0.0803 0.0864 0.4997 0.1073 0.0986 0.1328 

               

0.2 

(0, 9) 

2 0.4995 0.2763 0.2685 0.3119 0.4998 0.2599 0.2553 0.2819 0.5000 0.2865 0.2812 0.3755 

6 0.4684 0.1653 0.1512 0.1698 0.4793 0.1403 0.1324 0.1422 0.4996 0.1656 0.1569 0.2115 

10 0.3432 0.1105 0.0997 0.1154 0.4000 0.0865 0.0792 0.0842 0.4913 0.1056 0.0984 0.1298 

(0, 25) 

2 0.5000 0.2756 0.2682 0.3191 0.5000 0.2597 0.2552 0.2925 0.5000 0.2864 0.2810 0.3808 

6 0.4999 0.1652 0.1509 0.1712 0.5000 0.1405 0.1320 0.1462 0.5000 0.1655 0.1566 0.2123 

10 0.4933 0.1104 0.0991 0.1161 0.5000 0.0865 0.0792 0.0849 0.5000 0.1054 0.0986 0.1300 

(0, 100) 

2 0.5000 0.2756 0.2684 0.3250 0.5000 0.2597 0.2551 0.3012 0.5000 0.2865 0.2810 0.3804 

6 0.5000 0.1651 0.1510 0.1736 0.5000 0.1403 0.1323 0.1522 0.5000 0.1650 0.1566 0.2149 

10 0.5000 0.1105 0.0996 0.1161 0.5000 0.0864 0.0794 0.0878 0.5000 0.1054 0.0980 0.1323 
               

0.4 

(0, 9) 

2 0.5000 0.2810 0.2775 0.3646 0.5000 0.2613 0.2592 0.3183 0.5000 0.3104 0.3082 0.4487 

6 0.4995 0.1743 0.1712 0.1811 0.4997 0.1347 0.1316 0.1502 0.5000 0.1928 0.1901 0.2493 

10 0.4924 0.1406 0.1389 0.1155 0.4970 0.0797 0.0777 0.0863 0.5000 0.1594 0.1600 0.1441 

(0, 25) 

2 0.5000 0.2799 0.2773 0.3659 0.5000 0.2609 0.2593 0.3203 0.5000 0.3109 0.3091 0.4475 

6 0.5000 0.1826 0.1807 0.1764 0.5000 0.1347 0.1316 0.1479 0.5000 0.2047 0.2038 0.2397 

10 0.5000 0.1511 0.1499 0.1140 0.5000 0.0797 0.0777 0.0853 0.5000 0.1783 0.1802 0.1402 

(0, 100) 

2 0.5000 0.2797 0.2775 0.3657 0.5000 0.2609 0.2592 0.3262 0.5000 0.3110 0.3091 0.4434 

6 0.5000 0.1844 0.1831 0.1744 0.5000 0.1347 0.1316 0.1461 0.5000 0.2078 0.2072 0.2338 

10 0.5000 0.1536 0.1518 0.1132 0.5000 0.0797 0.0777 0.0845 0.5000 0.1827 0.1838 0.1378 

Performance (%)   81.48 18.52   100    88.89 11.11 
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Table 5.7 exposes the inverse relationship between misclassification error rates and 

dimensions for RLDRs. The misclassification error rates decrease as the dimensions 

increase, regardless of the discrepancy in group sizes. RLDRs provide almost equal 

performance within dimensions and the chosen unbalanced sample sizes, irrespective 

of the scale inflation factors. For example, under the case of n1 =50, n2 = 20, d = 2 

and 𝜀 = 0.1, the misclassification error rates of RLDRV are 0.2681, 0.2675, 0.2673 at 

𝜔  = 9, 25, 100, respectively. The same situations also happen at 𝜀  = 0.2, 0.4. 

Therefore, the performances of RLDRs using distance approach are quite stable 

under shape contaminated data. 

 

Overall, the performance of RLDRs surpasses the CLDR for shape contaminated 

data. The classification optimality is achieved by RLDRV as compared to RLDRT 

and RLDRD. As discussed in Chapter Four, CLDR loss its discrimination ability, 

with misclassification error rates inflate to 0.5 due to the inequality of group sizes 

under shape contaminated data. But this problem can be solved by RLDRs using 

distance approach, thus indicating that RLDRs can reduce the effect of unbalanced 

sample sizes and shape contamination as well. 

 

Next, the case of mixed location and shape contaminated data for unbalanced 

samples sizes is being investigated. The simulation results of LDRs with  

𝜀 = 0.1, 0.2 and 0.4 are reported in Table 5.8 to Table 5.10. 
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Table 5.8 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Unbalanced Sample Sizes at 𝜀 = 0.1 

(μ, 𝜔) d 
n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

(3, 9) 

2 0.4949 0.2784 0.2677 0.3214 0.4988 0.2616 0.2549 0.2949 0.5000 0.2849 0.2767 0.3903 

6 0.4043 0.1692 0.1523 0.1748 0.4634 0.1425 0.1329 0.1479 0.4946 0.1660 0.1558 0.2216 

10 0.2785 0.1149 0.1010 0.1184 0.3803 0.0885 0.0805 0.0873 0.4511 0.1081 0.0997 0.1370 

(5, 9) 

2 0.4983 0.2780 0.2674 0.3379 0.4999 0.2618 0.2549 0.3123 0.5000 0.2849 0.2766 0.4151 

6 0.4547 0.1688 0.1520 0.1796 0.4934 0.1430 0.1327 0.1512 0.4992 0.1660 0.1553 0.2324 

10 0.3597 0.1151 0.1014 0.1208 0.4621 0.0881 0.0806 0.0887 0.4872 0.1079 0.0995 0.1417 

              

(3, 25) 

2 0.5000 0.2781 0.2673 0.3249 0.5000 0.2617 0.2551 0.3029 0.5000 0.2849 0.2768 0.3860 

6 0.4637 0.1688 0.1515 0.1730 0.4996 0.1428 0.1330 0.1468 0.4999 0.1659 0.1553 0.2137 

10 0.2584 0.1139 0.1008 0.1156 0.4775 0.0883 0.0803 0.0862 0.4853 0.1073 0.0992 0.1335 

(5, 25) 

2 0.5000 0.2782 0.2675 0.3327 0.5000 0.2615 0.2551 0.3133 0.5000 0.2848 0.2764 0.4001 

6 0.4696 0.1689 0.1519 0.1736 0.4999 0.1430 0.1325 0.1489 0.5000 0.1660 0.1556 0.2195 

10 0.2799 0.1146 0.1007 0.1164 0.4870 0.0885 0.0804 0.0870 0.4902 0.1073 0.0991 0.1357 

              

(3, 100) 

2 0.5000 0.2782 0.2673 0.3296 0.5000 0.2616 0.2549 0.3126 0.5000 0.2847 0.2765 0.3786 

6 0.4969 0.1696 0.1521 0.1738 0.5000 0.1430 0.1327 0.1490 0.5000 0.1662 0.1556 0.2126 

10 0.2622 0.1149 0.1009 0.1146 0.5000 0.0884 0.0805 0.0866 0.4994 0.1068 0.0989 0.1333 

(5, 100) 

2 0.5000 0.2782 0.2672 0.3324 0.5000 0.2617 0.2548 0.3162 0.5000 0.2848 0.2766 0.3836 

6 0.4968 0.1690 0.1519 0.1737 0.5000 0.1426 0.1326 0.1499 0.5000 0.1656 0.1554 0.2152 

10 0.2638 0.1144 0.1015 0.1148 0.5000 0.0877 0.0801 0.0867 0.4993 0.1069 0.0984 0.1338 

Performance 

(%) 
  100    100    100  
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Table 5.9 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Unbalanced Sample Sizes at 𝜀 = 0.2 

(μ, 𝜔) d 
n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

(3, 9) 

2 0.4999 0.2759 0.2689 0.3509 0.5000 0.2602 0.2552 0.3199 0.5000 0.2868 0.2809 0.4300 

6 0.4972 0.1652 0.1514 0.1794 0.4999 0.1405 0.1323 0.1495 0.5000 0.1655 0.1567 0.2339 

10 0.4666 0.1106 0.0994 0.1190 0.4984 0.0864 0.0794 0.0879 0.4999 0.1058 0.0989 0.1412 

(5, 9) 

2 0.5000 0.2758 0.2682 0.3691 0.5000 0.2601 0.2553 0.3382 0.5000 0.2866 0.2810 0.4447 

6 0.4996 0.1655 0.1511 0.1820 0.5000 0.1404 0.1322 0.1512 0.5000 0.1657 0.1569 0.2391 

10 0.4921 0.1111 0.1003 0.1210 0.5000 0.0869 0.0796 0.0887 0.5000 0.1060 0.0988 0.1437 

              

(3, 25) 

2 0.5000 0.2758 0.2682 0.3371 0.5000 0.2597 0.2551 0.3116 0.5000 0.2865 0.2812 0.4094 

6 0.5000 0.1651 0.1509 0.1764 0.5000 0.1405 0.1321 0.1500 0.5000 0.1655 0.1566 0.2281 

10 0.4955 0.1106 0.1000 0.1168 0.5000 0.0866 0.0793 0.0871 0.5000 0.1055 0.0984 0.1369 

(5, 25) 

2 0.5000 0.2756 0.2682 0.3476 0.5000 0.2596 0.2552 0.3232 0.5000 0.2864 0.2810 0.4241 

6 0.5000 0.1652 0.1511 0.1784 0.5000 0.1404 0.1321 0.1506 0.5000 0.1657 0.1568 0.2315 

10 0.4974 0.1106 0.0993 0.1174 0.5000 0.0864 0.0794 0.0880 0.5000 0.1056 0.0985 0.1391 

              

(3, 100) 

2 0.5000 0.2757 0.2681 0.3298 0.5000 0.2597 0.2551 0.3068 0.5000 0.2863 0.2811 0.3892 

6 0.5000 0.1648 0.1510 0.1750 0.5000 0.1406 0.1321 0.1539 0.5000 0.1654 0.1563 0.2214 

10 0.5000 0.1103 0.0996 0.1162 0.5000 0.0867 0.0793 0.0884 0.5000 0.1057 0.0983 0.1347 

(5, 100) 

2 0.5000 0.2756 0.2680 0.3329 0.5000 0.2596 0.2553 0.3107 0.5000 0.2865 0.2811 0.3954 

6 0.5000 0.1650 0.1508 0.1760 0.5000 0.1404 0.1324 0.1545 0.5000 0.1655 0.1564 0.2250 

10 0.5000 0.1108 0.0992 0.1164 0.5000 0.0864 0.0793 0.0886 0.5000 0.1058 0.0981 0.1365 

Performance 

(%) 
  100    100    100  
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Table 5.10 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Unbalanced Sample Sizes at 𝜀 = 0.4 

(μ, 𝜔) d 
n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

(3, 9) 

2 0.5000 0.2813 0.2777 0.4074 0.5000 0.2615 0.2594 0.3747 0.5000 0.3115 0.3083 0.4730 

6 0.5000 0.1820 0.1774 0.1771 0.5000 0.1347 0.1316 0.1452 0.5000 0.2020 0.1977 0.2338 

10 0.5000 0.1774 0.1736 0.1133 0.5000 0.0798 0.0778 0.0834 0.5000 0.1992 0.1953 0.1353 

(5, 9) 

2 0.5000 0.2812 0.2777 0.4450 0.5000 0.2613 0.2593 0.4392 0.5000 0.3115 0.3086 0.4887 

6 0.5000 0.1950 0.1879 0.1791 0.5000 0.1348 0.1317 0.1465 0.5000 0.2168 0.2130 0.2356 

10 0.5000 0.2279 0.2223 0.1138 0.5000 0.0798 0.0778 0.0830 0.5000 0.2597 0.2486 0.1354 

              

(3, 25) 

2 0.5000 0.2797 0.2773 0.3746 0.5000 0.2609 0.2592 0.3345 0.5000 0.3109 0.3090 0.4524 

6 0.5000 0.1825 0.1815 0.1744 0.5000 0.1348 0.1316 0.1456 0.5000 0.2060 0.2050 0.2330 

10 0.5000 0.1568 0.1549 0.1132 0.5000 0.0796 0.0777 0.0840 0.5000 0.1831 0.1844 0.1360 

(5, 25) 

2 0.5000 0.2801 0.2777 0.3835 0.5000 0.2610 0.2593 0.3531 0.5000 0.3111 0.3090 0.4570 

6 0.5000 0.1847 0.1822 0.1731 0.5000 0.1347 0.1317 0.1437 0.5000 0.2083 0.2068 0.2267 

10 0.5000 0.1649 0.1624 0.1121 0.5000 0.0796 0.0777 0.0827 0.5000 0.1914 0.1937 0.1325 

              

(3, 100) 

2 0.5000 0.2796 0.2775 0.3665 0.5000 0.2609 0.2593 0.3286 0.5000 0.3110 0.3093 0.4440 

6 0.5000 0.1839 0.1831 0.1742 0.5000 0.1347 0.1316 0.1460 0.5000 0.2080 0.2072 0.2334 

10 0.5000 0.1541 0.1520 0.1131 0.5000 0.0797 0.0777 0.0843 0.5000 0.1829 0.1843 0.1375 

(5, 100) 

2 0.5000 0.2797 0.2775 0.3668 0.5000 0.2610 0.2592 0.3307 0.5000 0.3111 0.3092 0.4441 

6 0.5000 0.1835 0.1835 0.1740 0.5000 0.1347 0.1315 0.1458 0.5000 0.2073 0.2077 0.2325 

10 0.5000 0.1547 0.1530 0.1131 0.5000 0.0797 0.0776 0.0841 0.5000 0.1833 0.1831 0.1368 

Performance 

(%) 
  33.33 66.67   100   5.56 61.11 33.33 
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Across Table 5.8 to Table 5.10, the lowest misclassification error rates can be 

obtained by RLDRs in the case of mixed location and shape contamination. In 

contrast, CLDR continues to loss its discrimination ability, producing 

misclassification error rates of up to 0.5 under mixed location and shape 

contaminated data. Regardless of scale inflation factors, RLDRV and RLDRD can 

produce almost similar performance within dimensions, unbalanced sample sizes as 

well as contamination proportions. Meanwhile, RLDRT shows its stable performance 

at higher dimensional data (d = 6, 10). 

 

From Table 5.8, it can be observed that the optimality in classification is achieved by 

RLDRV, thus indicating that RLDRV possesses excellent discrimination ability under 

unbalanced sample sizes among the RLDRs, not to mention the CLDR. Furthermore, 

RLDRV continue to be optimal at ε = 0.2 as presented in Table 5.9. At higher 

contamination proportion as shown in Table 5.10, RLDRV still among the best 

especially under n1 = 100, n2 = 50 as well as at d = 2. Good discriminant rules can 

still be obtained via RLDRV at most of the data distribution (61.11%) followed by 

RLDRT (33.33%) under n1 =100, n2 = 20. For that unbalanced sample sizes, RLDRV 

perform excellently at d = 2 and 6 while for d = 10, RLDRT is the best. In contrast, 

under n1 =50, n2 = 20, RLDRV is the best at d = 2, but at d = 6, 10, the best 

performance goes to is by RLDRT. 

 

In short, the results across Table 5.8 to Table 5.10 reveal that RLDRV overshadows 

the others with the lowest misclassification error rates for all proportions of 

contamination (ε) under n1 =100, n2 = 50 as well as n1 =100, n2 = 20, thus suggesting 

that RLDRV is the best among the other investigated LDRs. 
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5.3 Simulation Study for Heterogeneous Covariance 

The discrimination ability of RLDRs via distance approach under the influence of 

heterogeneity of covariance (heteroscedasticity) will be discussed in this section. 

Again, balanced and unbalanced sample sizes are used to study the heteroscedasticity 

effect on the proposed RLDRs. 

 

5.3.1 Results for Groups with Balanced Sample Sizes 

Data are manipulated according to the same settings as summarized in Table 4.12 for 

the chosen balanced sample sizes and dimensions. The analysis results of 

uncontaminated data with balanced sample sizes under the influence of 

heteroscedasticity are presented in Figure 5.3.  

 

Figure 5.3. Average misclassification error rates under uncontaminated data for 

different dimensions and balanced sample sizes, (d x n). 

 

Heteroscedasticity is one of the issues that influence the performance of LDRs as 

discussed earlier in section 3.4.4. The results shown in Figure 5.3 concur with this 
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notion. The misclassification error rates of LDRs in Figure 5.3 (with 

heteroscedasticity) are higher than in Figure 5.1 (with homoscedasticity). Overall, 

under uncontaminated data with unequal covariance matrix, CLDR shows better 

performance than the others as illustrated in Figure 5.3. However, the disparities in 

terms of misclassification error rates between the proposed RLDRs and the existing 

RLDRD as well as CLDR for uncontaminated data are small, such that for RLDRD, 

the highest is at 0.035, while for CLDR, the most is 0.047. Moreover, the 

performance of the proposed RLDRs is better than the existing RLDRD. Besides, 

RLDRT is able to reduce the difference of misclassification error rates from CLDR 

by increasing the sample sizes. 

 

Generally, the misclassification error rates of CLDR as well as RLDRs can be 

reduced by increasing sample sizes or dimensions. From Figure 5.3, the 

misclassification error rates dwindle as the dimensions increase, thus improving the 

performance of LDRs. The misclassification error rates of LDRs also decrease when 

more sample sizes involved in constructing the discriminant rules. The lowest 

misclassification error rates of LDRs can be found at d = 10 with n1 = n2 = 100 as 

shown in Figure 5.3. These results indicate that LDR can perform greatly with more 

information involved. 

 

Like in the case of homoscedasticity, the performance of LDR also being examined 

under contaminated data with heteroscedasticity under balanced sample sizes. The 

following Table 5.11 reports the averages of misclassification error rates for location 

contaminated data. 
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Table 5.11 

Average Misclassification Error Rates under Location Contaminated Data for Balanced Sample Sizes 

ε 
μ 

(𝜔1, 𝜔2) 
d 

n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

0.1 

3 

(1, 2) 

2 0.3863 0.3713 0.3570 0.3610 0.3512 0.3431 0.3333 0.3313 0.3302 0.3268 0.3199 0.3186 

6 0.3842 0.3123 0.2642 0.3045 0.3400 0.2572 0.2306 0.2505 0.2980 0.2266 0.2141 0.2236 

10 0.3985 0.3182 0.2272 0.3209 0.3527 0.2143 0.1856 0.2329 0.3107 0.1771 0.1654 0.1906 

5 

(1, 2) 

2 0.4850 0.3595 0.3478 0.3677 0.4896 0.3324 0.3236 0.3385 0.4931 0.3188 0.3136 0.3245 

6 0.4715 0.2870 0.2587 0.2951 0.4817 0.2447 0.2279 0.2455 0.4843 0.2220 0.2128 0.2208 

10 0.4647 0.2837 0.2234 0.3166 0.4755 0.1977 0.1844 0.2420 0.4803 0.1737 0.1653 0.1964 

               

0.2 

3 

(1, 2) 

2 0.5366 0.3907 0.3760 0.4108 0.5718 0.3642 0.3495 0.3853 0.6024 0.3448 0.3333 0.3630 

6 0.5067 0.3820 0.2713 0.4270 0.5413 0.2982 0.2321 0.3965 0.5696 0.2467 0.2151 0.3591 

10 0.4880 0.4440 0.2415 0.4494 0.5200 0.3003 0.1882 0.4299 0.5461 0.2107 0.1658 0.4089 

5 

(1, 2) 

2 0.6182 0.3654 0.3483 0.4019 0.6546 0.3322 0.3239 0.3781 0.6702 0.3191 0.3142 0.3597 

6 0.5429 0.3307 0.2558 0.4587 0.5986 0.2439 0.2263 0.4579 0.6438 0.2196 0.2117 0.4493 

10 0.5096 0.4335 0.2219 0.4704 0.5615 0.2069 0.1841 0.4806 0.6046 0.1700 0.1640 0.4896 

               

0.4 

3 

(1, 2) 

2 0.6568 0.5131 0.4436 0.6003 0.6798 0.4902 0.4297 0.6407 0.6886 0.4685 0.4218 0.6595 

6 0.6162 0.5413 0.4042 0.5407 0.6900 0.5321 0.2855 0.6022 0.7341 0.5121 0.2720 0.6484 

10 0.5684 0.5271 0.4879 0.5107 0.6572 0.5549 0.4083 0.5709 0.7183 0.5678 0.3655 0.6238 

5 

(1, 2) 

2 0.6566 0.4484 0.3700 0.5885 0.6793 0.4083 0.3389 0.6220 0.6879 0.3788 0.3229 0.6409 

6 0.5958 0.5310 0.4331 0.5288 0.6664 0.4532 0.2256 0.5802 0.7129 0.3781 0.2089 0.6219 

10 0.5484 0.5157 0.4990 0.5025 0.6252 0.5303 0.4215 0.5519 0.6833 0.5079 0.3339 0.5961 

Performance (%)   100    100    100  
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The inverse relationship between misclassification error rates and dimensions still 

exists on RLDRV at 𝜀 = 0.1, 0.2 but not at 𝜀 = 0.4. Such relationship also occurs on 

RLDRD at 𝜀 = 0.1 and 𝜀  = 0.2 with n1 = n2 = 50, 100. For RLDRT, the inverse 

relationship only happens at 𝜀 = 0.1 with n1 = n2 = 50, 100. The misclassification 

error rates of RLDRV also have inverse relationship with sample sizes in the case of 

location contamination with unequal covariance matrix. However, for RLDRD and 

RLDRT, such relationship only occur at 𝜀  = 0.1, 0.2. In addition, the inverse 

relationship on RLDRT no longer holds when the location of data distribution is 

highly shifted (𝜇 = 5) under 𝜀 = 0.1 and d = 10. At high contamination proportion  

(𝜀 = 0.4), the misclassification error rates of RLDRD and RLDRT do not seem to be 

affected by sample sizes.  

 

Overall, all RLDRs outperform CLDR for location contaminated data with 

heteroscedasticity. Indeed, RLDRV is providing the lowest misclassification error 

rates as compared to RLDRT and RLDRD as observed in Table 5.11. RLDRV is able 

to construct good discriminant rule, where its performance is improved by at most 

73% and 50% from CLDR and RLDRD, respectively. For RLDRT, its performances 

are better than CLDR but poorer than RLDRD. Therefore, RLDRV is the better 

choice to solve classification problems under the case of location contaminated data 

with balanced sample sizes.  

 

Next, the case of balanced sample sizes with shape contaminated data with 

heterogeneity of covariance is considered. The following Table 5.12 presents the 

simulation results of CLDR as well as RLDRs using distance approach, and their 

average misclassification error rates are recorded. 
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Table 5.12 

Average Misclassification Error Rates under Shape Contaminated Data for Balanced Sample Sizes 

ε 
μ 

(𝜔1, 𝜔2) 
d 

n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 
CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

0.1 

0 
(9, 9) 

2 0.3620 0.3571 0.3442 0.3354 0.3294 0.3308 0.3225 0.3152 0.3152 0.3183 0.3135 0.3087 

6 0.2722 0.2767 0.2592 0.2673 0.2439 0.2446 0.2266 0.2235 0.2215 0.2220 0.2125 0.2075 

10 0.2282 0.2347 0.2238 0.2501 0.2019 0.1979 0.1829 0.1816 0.1776 0.1732 0.1644 0.1597 

0 
(25, 25) 

2 0.4366 0.3550 0.3449 0.3462 0.4106 0.3303 0.3225 0.3278 0.3781 0.3181 0.3133 0.3185 

6 0.3090 0.2765 0.2587 0.2666 0.3190 0.2450 0.2271 0.2246 0.2829 0.2215 0.2124 0.2114 

10 0.2411 0.2338 0.2244 0.2499 0.2697 0.1986 0.1831 0.1811 0.2409 0.1738 0.1645 0.1608 

0 

(100,100) 

2 0.4903 0.3552 0.3450 0.3626 0.4865 0.3301 0.3223 0.3548 0.4805 0.3179 0.3133 0.3490 

6 0.3301 0.2764 0.2587 0.2663 0.4511 0.2434 0.2267 0.2269 0.4375 0.2221 0.2122 0.2252 
10 0.2442 0.2341 0.2233 0.2501 0.3618 0.1980 0.1831 0.1812 0.4123 0.1737 0.1648 0.1641 

               

0.2 

0 
(9, 9) 

2 0.3917 0.3503 0.3439 0.3388 0.3511 0.3284 0.3213 0.3175 0.3278 0.3172 0.3125 0.3097 

6 0.3053 0.2713 0.2547 0.2646 0.2639 0.2407 0.2252 0.2237 0.2311 0.2194 0.2113 0.2070 

10 0.2593 0.2308 0.2221 0.2487 0.2167 0.1947 0.1818 0.1817 0.1848 0.1709 0.1631 0.1598 

0 
(25, 25) 

2 0.4691 0.3489 0.3434 0.3482 0.4411 0.3270 0.3205 0.3283 0.4146 0.3164 0.3126 0.3185 

6 0.3911 0.2708 0.2543 0.2632 0.3828 0.2405 0.2252 0.2277 0.3323 0.2195 0.2112 0.2117 

10 0.3083 0.2284 0.2222 0.2484 0.3274 0.1950 0.1815 0.1824 0.2961 0.1706 0.1632 0.1618 

0 
(100,100) 

2 0.4987 0.3486 0.3426 0.3558 0.4911 0.3271 0.3209 0.3412 0.4891 0.3160 0.3123 0.3356 

6 0.4764 0.2708 0.2538 0.2630 0.4878 0.2407 0.2249 0.2371 0.4699 0.2193 0.2113 0.2243 

10 0.3397 0.2289 0.2223 0.2484 0.4694 0.1958 0.1819 0.1845 0.4690 0.1706 0.1632 0.1705 
               

0.4 

0 
(9, 9) 

2 0.4270 0.3464 0.3389 0.3398 0.3820 0.3229 0.3185 0.3150 0.3495 0.3128 0.3103 0.3081 

6 0.3590 0.2745 0.2690 0.2640 0.3021 0.2263 0.2207 0.2214 0.2547 0.2114 0.2079 0.2056 

10 0.3120 0.2645 0.2606 0.2451 0.2521 0.1774 0.1770 0.1799 0.2075 0.1628 0.1591 0.1583 

0 
(25, 25) 

2 0.4813 0.3382 0.3333 0.3419 0.4662 0.3183 0.3153 0.3149 0.4459 0.3105 0.3089 0.3075 

6 0.4607 0.2844 0.2825 0.2605 0.4357 0.2254 0.2206 0.2205 0.3893 0.2114 0.2078 0.2055 

10 0.4299 0.2862 0.2844 0.2422 0.4074 0.1770 0.1770 0.1792 0.3635 0.1627 0.1592 0.1581 

0 
(100,100) 

2 0.4972 0.3363 0.3326 0.3481 0.4975 0.3179 0.3147 0.3201 0.4935 0.3102 0.3091 0.3096 

6 0.4984 0.2882 0.2874 0.2593 0.4948 0.2254 0.2207 0.2199 0.4854 0.2114 0.2078 0.2052 

10 0.4950 0.2940 0.2924 0.2422 0.4899 0.1770 0.1770 0.1783 0.4858 0.1628 0.1592 0.1576 

Performance (%)   77.78 22.22  3.7 48.15 48.15   33.33 66.67 
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The performance of RLDRs impressively improves as their sample sizes or 

dimensions increase, thus indicating their performance are very much influenced by 

sample sizes and dimensions. As presented in Table 5.12, RLDRs using distance 

approach can produce almost similar performance within the same dimensions, 

sample sizes and contamination proportions. Therefore, RLDRs provide stable 

performance for shape contaminated data, regardless of scale inflation factors. Table 

5.12 reveals that RLDRV outperform CLDR under shape contaminated data with 

heteroscedasticity. As compared to CLDR, the slightly poor performance by RLDRD 

is at ε = 0.1 with 𝜔1= 𝜔2= 9 while RLDRT is at ε = 0.1, d = 10 for n1 = n2 = 20. 

However, their differences in terms of error rates are very marginal, at most is only 

0.025. The RLDRV always provides the better performance than RLDRD while 

RLDRT is comparable with RLDRD.  

 

In the case of n1 = n2 = 20, the superior performance is presented by RLDRV at  

ε = 0.1, 0.2 and also at ε = 0.4 with d = 2, but at ε = 0.4 with d = 6 and 10, the 

superiority goes to RLDRT. Under shape contaminated data for n1 = n2 = 50, the 

performance of RLDRV and RLDRT are on par. Meanwhile, the performance of 

RLDRT improves under n1 = n2 = 100, especially at high contamination proportion  

(ε = 0.4). Generally, all RLDRs are good alternatives in solving classification 

problems for shape contaminated data with unequal covariance. More precisely, 

RLDRV is found to be the best alternative as its performance is consistently good 

(smaller misclassification error rates), regardless of contamination conditions. The 

simulation results under mixed location and shape contaminated data with 

heteroscedasticity are scrutinized and presented in Table 5.13 to Table 5.15 

according to different contamination proportions of ε = 0.1, 0.2 and 0.4. 
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Table 5.13 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Balanced Sample Sizes at 𝜀 = 0.1 

μ 

(𝜔1, 𝜔2) 
d 

n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

3 

(9, 9) 

2 0.4189 0.3567 0.3456 0.3455 0.3969 0.3306 0.3226 0.3244 0.3713 0.3184 0.3136 0.3149 

6 0.3246 0.2765 0.2587 0.2711 0.3256 0.2438 0.2267 0.2274 0.2979 0.2220 0.2126 0.2109 

10 0.2791 0.2351 0.2237 0.2537 0.2883 0.1976 0.1829 0.1850 0.2767 0.1739 0.1646 0.1621 

5 

(9, 9) 

2 0.4693 0.3569 0.3459 0.3537 0.4784 0.3305 0.3228 0.3345 0.4846 0.3186 0.3136 0.3223 

6 0.3731 0.2767 0.2586 0.2748 0.4150 0.2444 0.2268 0.2307 0.4266 0.2219 0.2125 0.2128 

10 0.3286 0.2346 0.2237 0.2568 0.3705 0.1979 0.1831 0.1875 0.3992 0.1736 0.1648 0.1634 

              

3 

(25, 25) 

2 0.4623 0.3553 0.3452 0.3520 0.4558 0.3305 0.3222 0.3378 0.4395 0.3181 0.3133 0.3276 

6 0.3217 0.2765 0.2581 0.2674 0.3678 0.2444 0.2272 0.2259 0.3542 0.2220 0.2128 0.2125 

10 0.2505 0.2341 0.2237 0.2505 0.3012 0.1983 0.1828 0.1819 0.3086 0.1732 0.1648 0.1615 

5 

(25, 25) 

2 0.4805 0.3554 0.3448 0.3555 0.4890 0.3302 0.3221 0.3455 0.4921 0.3180 0.3132 0.3352 

6 0.3345 0.2766 0.2585 0.2679 0.4110 0.2443 0.2277 0.2269 0.4268 0.2222 0.2127 0.2133 

10 0.2623 0.2341 0.2235 0.2514 0.3301 0.1976 0.1835 0.1829 0.3774 0.1737 0.1644 0.1619 

              

3 

(100, 100) 

2 0.4943 0.3550 0.3449 0.3645 0.4931 0.3302 0.3222 0.3594 0.4925 0.3180 0.3133 0.3558 

6 0.3310 0.2760 0.2583 0.2667 0.4650 0.2444 0.2266 0.2272 0.4598 0.2217 0.2126 0.2260 

10 0.2449 0.2342 0.2241 0.2502 0.3694 0.1980 0.1832 0.1812 0.4395 0.1734 0.1645 0.1641 

5 

(100, 100) 

2 0.4964 0.3550 0.3448 0.3657 0.4977 0.3302 0.3219 0.3629 0.5008 0.3180 0.3133 0.3605 

6 0.3320 0.2763 0.2581 0.2669 0.4738 0.2436 0.2269 0.2273 0.4751 0.2218 0.2124 0.2263 

10 0.2458 0.2341 0.2232 0.2503 0.3750 0.1977 0.1834 0.1814 0.4585 0.1739 0.1648 0.1640 

Performance 

(%) 
  94.44 5.56   66.67 33.33   44.44 55.56 
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Table 5.14 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Balanced Sample Sizes at 𝜀 = 0.2 

μ 

(𝜔1, 𝜔2) 
d 

n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

3 

(9, 9) 

2 0.5036 0.3493 0.3437 0.3580 0.5231 0.3291 0.3224 0.3385 0.5486 0.3170 0.3127 0.3229 

6 0.4258 0.2713 0.2546 0.2690 0.4984 0.2403 0.2254 0.2283 0.5267 0.2193 0.2109 0.2106 

10 0.3594 0.2314 0.2224 0.2520 0.4358 0.1954 0.1817 0.1843 0.5008 0.1704 0.1630 0.1617 

5 

(9, 9) 

2 0.5772 0.3507 0.3444 0.3743 0.6342 0.3280 0.3215 0.3561 0.6638 0.3172 0.3131 0.3387 

6 0.5057 0.2717 0.2544 0.2722 0.6349 0.2404 0.2253 0.2304 0.7026 0.2194 0.2113 0.2118 

10 0.4235 0.2317 0.2222 0.2549 0.5723 0.1955 0.1825 0.1856 0.6857 0.1710 0.1633 0.1623 

              

3 

(25, 25) 

2 0.5016 0.3483 0.3422 0.3587 0.5051 0.3272 0.3208 0.3416 0.5180 0.3163 0.3123 0.3311 

6 0.4402 0.2708 0.2542 0.2635 0.4985 0.2407 0.2252 0.2293 0.4995 0.2196 0.2113 0.2132 

10 0.3330 0.2289 0.2229 0.2492 0.4448 0.1953 0.1816 0.1826 0.4941 0.1704 0.1628 0.1621 

5 

(25, 25) 

2 0.5242 0.3488 0.3421 0.3653 0.5486 0.3268 0.3210 0.3522 0.5845 0.3162 0.3123 0.3422 

6 0.4736 0.2708 0.2542 0.2650 0.5733 0.2410 0.2258 0.2305 0.6157 0.2194 0.2115 0.2135 

10 0.3552 0.2290 0.2224 0.2499 0.5288 0.1954 0.1817 0.1832 0.6285 0.1708 0.1633 0.1621 

              

3 

(100, 100) 

2 0.5025 0.3485 0.3427 0.3591 0.4987 0.3270 0.3206 0.3460 0.5014 0.3160 0.3122 0.3415 

6 0.4841 0.2707 0.2541 0.2628 0.5034 0.2405 0.2250 0.2377 0.4957 0.2194 0.2111 0.2249 

10 0.3417 0.2287 0.2216 0.2486 0.4884 0.1952 0.1818 0.1844 0.5019 0.1706 0.1630 0.1697 

5 

(100, 100) 

2 0.5052 0.3485 0.3423 0.3611 0.5037 0.3270 0.3207 0.3492 0.5115 0.3162 0.3118 0.3459 

6 0.4899 0.2705 0.2540 0.2627 0.5133 0.2407 0.2248 0.2380 0.5129 0.2197 0.2116 0.2248 

10 0.3435 0.2288 0.2223 0.2485 0.5015 0.1954 0.1818 0.1844 0.5230 0.1702 0.1632 0.1691 

Performance 

(%) 
  100    100    72.22 27.78 
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Table 5.15 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Balanced Sample Sizes at 𝜀 = 0.4 

μ 

(𝜔1, 𝜔2) 
d 

n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

3 

(9, 9) 

2 0.5860 0.3473 0.3401 0.3805 0.6370 0.3233 0.3190 0.3481 0.6674 0.3133 0.3109 0.3307 

6 0.6071 0.2908 0.2809 0.2702 0.7038 0.2262 0.2207 0.2241 0.7508 0.2115 0.2080 0.2069 

10 0.5587 0.3245 0.3178 0.2488 0.7176 0.1773 0.1770 0.1796 0.7867 0.1627 0.1593 0.1573 

5 

(9, 9) 

2 0.6355 0.3474 0.3401 0.4173 0.6701 0.3231 0.3195 0.3999 0.6842 0.3131 0.3107 0.3826 

6 0.6737 0.3089 0.2971 0.2780 0.7499 0.2259 0.2208 0.2297 0.7798 0.2115 0.2082 0.2103 

10 0.6284 0.3770 0.3709 0.2535 0.7771 0.1771 0.1770 0.1808 0.8220 0.1628 0.1593 0.1577 

              

3 

(25, 25) 

2 0.5160 0.3390 0.3341 0.3540 0.5453 0.3185 0.3154 0.3208 0.5727 0.3105 0.3089 0.3115 

6 0.5315 0.2881 0.2851 0.2604 0.5844 0.2254 0.2206 0.2198 0.6238 0.2113 0.2079 0.2049 

10 0.5173 0.2980 0.2952 0.2422 0.5916 0.1770 0.1770 0.1787 0.6572 0.1627 0.1592 0.1572 

5 

(25, 25) 

2 0.5420 0.3385 0.3336 0.3627 0.5858 0.3186 0.3154 0.3279 0.6217 0.3108 0.3091 0.3158 

6 0.5713 0.2931 0.2889 0.2599 0.6449 0.2254 0.2206 0.2191 0.6985 0.2114 0.2079 0.2041 

10 0.5662 0.3100 0.3068 0.2422 0.6692 0.1770 0.1770 0.1779 0.7421 0.1627 0.1592 0.1564 

              

3 

(100, 100) 

2 0.5005 0.3367 0.3327 0.3493 0.5039 0.3179 0.3148 0.3216 0.5073 0.3101 0.3089 0.3109 

6 0.5035 0.2887 0.2874 0.2593 0.5101 0.2254 0.2206 0.2198 0.5127 0.2113 0.2078 0.2051 

10 0.5038 0.2951 0.2924 0.2419 0.5078 0.1770 0.1770 0.1783 0.5204 0.1627 0.1591 0.1576 

5 

(100, 100) 

2 0.5023 0.3366 0.3326 0.3517 0.5085 0.3179 0.3148 0.3227 0.5162 0.3102 0.3089 0.3113 

6 0.5067 0.2892 0.2878 0.2594 0.5185 0.2254 0.2206 0.2198 0.5294 0.2114 0.2078 0.2050 

10 0.5100 0.2953 0.2937 0.2420 0.5199 0.1770 0.1770 0.1783 0.5428 0.1627 0.1591 0.1574 

Performance 

(%) 
  33.33 66.67  11.11 72.22 16.67   38.89 61.11 
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Across Table 5.13 to Table 5.15, the performances of all RLDRs are directly related 

to their sample sizes. Besides, improvement in the performance can also be observed 

on RLDRD and RLDRV as the dimensions increase, and this happens at ε = 0.1, 0.2 

and at ε = 0.4 under larger sample sizes (n1 = n2 = 50, 100). However, for RLDRT, 

such improvement occurs across all of the mixed location and shape contaminated 

data with heteroscedasticity. Generally, all RLDRs are able to reduce the 

misclassification error rates as compared to CLDR under mixed location and shape 

contaminated data, thus indicating good discriminant rules can be constructed by 

RLDR using distance approach. When compared to RLDRD, RLDRV always produce 

lower misclassification error, while RLDRT is comparable or sometimes outperforms 

RLDRD. 

 

From Table 5.13, the optimality in classification is shared by RLDRV and RLDRT 

regardless of dimensions and sample sizes. RLDRV is able to produce the lowest 

misclassification error rates under n1 = n2 = 20, 50. For n1 = n2 = 100, RLDRT has the 

best performance under most of the conditions (55.56%), followed by RLDRV 

(44.44%). At ε = 0.2, RLDRV overshadows the others with the lowest 

misclassification error rates as revealed in Table 5.14. RLDRV keep its optimality 

under n1 = n2 = 50 with ε = 0.4. Meanwhile, the performance of RLDRT bounces 

back when n1 = n2 = 20, 100 as shown in Table 5.15. The excellent performance of 

RLDRT can be detected at d = 6, 10, for n1 = n2 = 20, 100, while for RLDRV, it is at  

d = 2. Although the optimality on the performance seems to belong RLDRT for such 

condition, the disparity of misclassification error rates between RLDRV and RLDRT 

is quite small, thus indicating that their performance are almost similar. 
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In general, both RLDRV and RLDRT show high capability in solving the 

classification problems for mixed location and shape contaminated data with 

different covariance matrix. However, RLDRV is found to be more suitable as 

compared to RLDRT since the least difference of their misclassification error rates is 

happen on RLDRV. 

 

5.3.2 Results for Groups with Unbalanced Sample Sizes 

Data with heteroscedasticity for unbalanced sample sizes at different dimensions are 

manipulated as settings in Table 4.12 to investigate the capability of LDRs. The 

performances of LDRs under uncontaminated and contaminated data with 

heteroscedasticity for unbalanced sample sizes are discussed in this section. The 

following Figure 5.4 illustrates the average misclassification error rates of LDRs in 

the case of uncontaminated data. 

 

Figure 5.4. Average misclassification error rates under uncontaminated data for 

different dimensions and unbalanced sample sizes, d x (n1, n2).   
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Heteroscedasticity also influences the performance of LDRs in the case of 

unbalanced sample sizes. In comparison to Figure 5.2 (with homoscedasticity), the 

results show higher misclassification error rates in Figure 5.4. However, the inverse 

relationship between misclassification error rates and dimensions still exists on the 

LDRs.  

 

CLDR no longer keep its optimality for uncontaminated data at d = 2 due to the 

effect of unbalanced sample sizes as displayed in Figure 5.4. At d = 2, RLDRT show 

its optimal performance under n1 = 50, n2 = 20 as well as n1 = 100, n2 = 50. 

Meanwhile, RLDRV achieves optimality under n1 = 100, n2 = 20 with d = 2, 6. 

Overall, RLDRs able to provide comparable performance, even sometimes better 

than CLDR for uncontaminated data under unbalanced sample sizes. As compared to 

RLDRD, RLDRV always provide the lower misclassification error rates, while 

RLDRT such achievement only confined to n1 = 100, n2 = 50 and n1 = 50, n2 = 20 

with d = 2, 6. 

 

To study the performance of proposed RLDRs using distance approach, 

contaminated data with unequal covariance matrix for unbalanced sample sizes are 

also being investigated. Different types of contaminated data (location, shape, mixed 

location and shape) are considered. The analysis results of LDRs in the case of 

location contamination are documented in Table 5.16. 
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Table 5.16 

Average Misclassification Error Rates under Location Contaminated Data for Unbalanced Sample Sizes 

ε 
μ 

(𝜔1, 𝜔2) 
d 

n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

0.1 

3 

(1, 2) 

2 0.4571 0.3408 0.3331 0.3682 0.4557 0.3206 0.3122 0.3431 0.4856 0.3387 0.3318 0.4054 

6 0.4037 0.2797 0.2505 0.2950 0.4013 0.2412 0.2239 0.2625 0.4440 0.2749 0.2500 0.3254 

10 0.3914 0.2701 0.2119 0.2884 0.3810 0.2036 0.1830 0.2473 0.4210 0.2587 0.2134 0.3132 

5 

(1, 2) 

2 0.4826 0.3333 0.3237 0.3776 0.4902 0.3128 0.3061 0.3552 0.4940 0.3305 0.3246 0.4157 

6 0.4351 0.2663 0.2467 0.2881 0.4477 0.2324 0.2223 0.2580 0.4596 0.2614 0.2478 0.3163 

10 0.4233 0.2587 0.2098 0.2835 0.4280 0.1910 0.1822 0.2514 0.4386 0.2511 0.2105 0.3060 

               

0.2 

3 

(1, 2) 

2 0.4840 0.3589 0.3424 0.4212 0.4905 0.3326 0.3217 0.4180 0.4936 0.3566 0.3464 0.4547 

6 0.4436 0.3294 0.2558 0.4074 0.4577 0.2705 0.2254 0.4073 0.4625 0.3229 0.2579 0.4395 

10 0.4330 0.3476 0.2230 0.4133 0.4420 0.2684 0.1835 0.4085 0.4438 0.3341 0.2225 0.4302 

5 

(1, 2) 

2 0.4851 0.3400 0.3241 0.4127 0.4887 0.3137 0.3057 0.4098 0.4939 0.3395 0.3282 0.4456 

6 0.4519 0.3046 0.2465 0.4242 0.4671 0.2344 0.2219 0.4340 0.4652 0.3043 0.2491 0.4497 

10 0.4425 0.3710 0.2095 0.4264 0.4560 0.2008 0.1817 0.4294 0.4478 0.3691 0.2098 0.4375 

               

0.4 

3 

(1, 2) 

2 0.4855 0.4345 0.4018 0.4752 0.4964 0.4209 0.3882 0.4827 0.4906 0.4272 0.4036 0.4812 

6 0.4819 0.4603 0.3299 0.4560 0.5088 0.4456 0.2651 0.4710 0.4730 0.4371 0.3319 0.4581 

10 0.4762 0.4739 0.4132 0.4538 0.5074 0.4781 0.3398 0.4677 0.4610 0.4475 0.3906 0.4475 

5 

(1, 2) 

2 0.4826 0.4071 0.3516 0.4710 0.4932 0.3765 0.3185 0.4770 0.4913 0.4148 0.3652 0.4789 

6 0.4722 0.4564 0.3313 0.4506 0.4941 0.4129 0.2243 0.4633 0.4697 0.4610 0.3360 0.4552 

10 0.4651 0.4645 0.4336 0.4483 0.4900 0.4647 0.3539 0.4594 0.4555 0.4573 0.4275 0.4441 

Performance (%)   100    100    100  
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Generally, RLDRV overshadows the others with the lowest misclassification errors 

for location contaminated with unequal covariance which imply that RLDRV perform 

excellently as compared to other RLDRs, not to mention CLDR. Table 5.16 shows 

inverse relationship exists between misclassification error rates and dimensions on 

RLDRV at 𝜀 = 0.1, 0.2, but not at 𝜀 = 0.4. Such relationship also happens on RLDRD 

at 𝜀 = 0.1 and 𝜀 = 0.2 with n1 = 100, n2 = 50, while for RLDRT only occurs at 𝜀 = 0.1. 

 

The misclassification error rates of RLDRV can be smaller by at most 61% from the 

CLDR. Therefore, RLDRV is able to provide good discriminant rule for location 

contaminated data. RLDRD also has good performance but only at 𝜀 = 0.1, 0.2. The 

disparities in terms of misclassification error rates between RLDRD and CLDR 

become marginal at 𝜀 = 0.4. For RLDRT, the desired performance occurs only at  

𝜀 = 0.1. The performance of RLDRT is just slightly better than CLDR at 𝜀 = 0.2, 0.4. 

Overall, all RLDRs outperform CLDR as presented in Table 5.16. RLDRV is the best 

alternative in the case of location contamination with heteroscedasticity for 

unbalanced sample sizes. 

 

Table 5.17 presents the average misclassification error rates for CLDR and RLDRs 

using distance approach in various shape contaminated data. 
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Table 5.17 

Average Misclassification Error Rates under Shape Contaminated Data for Unbalanced Sample Sizes 

ε 
μ 

(𝜔1, 𝜔2) 
d 

n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 
CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

0.1 

0 
(9, 9) 

2 0.4675 0.3299 0.3218 0.3338 0.4678 0.3118 0.3061 0.3097 0.4965 0.3270 0.3225 0.3587 

6 0.3320 0.2568 0.2459 0.2608 0.3360 0.2325 0.2219 0.2320 0.4343 0.2530 0.2466 0.2801 

10 0.2519 0.2165 0.2086 0.2264 0.2545 0.1903 0.1808 0.1913 0.3368 0.2130 0.2092 0.2399 

0 
(25, 25) 

2 0.4995 0.3295 0.3211 0.3448 0.4999 0.3113 0.3056 0.3246 0.5000 0.3267 0.3227 0.3691 

6 0.4439 0.2564 0.2459 0.2618 0.4931 0.2325 0.2219 0.2343 0.4989 0.2529 0.2466 0.2812 

10 0.2912 0.2160 0.2088 0.2265 0.4377 0.1904 0.1811 0.1920 0.4639 0.2120 0.2089 0.2415 

0 

(100,100) 

2 0.5000 0.3292 0.3214 0.3584 0.5000 0.3112 0.3056 0.3474 0.5000 0.3263 0.3227 0.3797 

6 0.4949 0.2564 0.2456 0.2626 0.5000 0.2321 0.2218 0.2369 0.5000 0.2530 0.2470 0.2823 
10 0.3061 0.2161 0.2081 0.2264 0.4999 0.1897 0.1812 0.1922 0.4991 0.2122 0.2093 0.2423 

               

0.2 

0 
(9, 9) 

2 0.4946 0.3268 0.3207 0.3458 0.4958 0.3092 0.3041 0.3184 0.4999 0.3291 0.3240 0.3777 

6 0.4352 0.2559 0.2451 0.2644 0.4395 0.2303 0.2209 0.2351 0.4938 0.2543 0.2483 0.2882 

10 0.3387 0.2151 0.2082 0.2289 0.3621 0.1880 0.1798 0.1919 0.4649 0.2133 0.2091 0.2423 

0 
(25, 25) 

2 0.5000 0.3253 0.3195 0.3535 0.5000 0.3079 0.3031 0.3321 0.5000 0.3277 0.3232 0.3846 

6 0.4993 0.2549 0.2452 0.2643 0.5000 0.2304 0.2211 0.2386 0.5000 0.2534 0.2481 0.2879 

10 0.4812 0.2130 0.2083 0.2293 0.4994 0.1878 0.1797 0.1929 0.5000 0.2120 0.2093 0.2426 

0 
(100,100) 

2 0.5000 0.3253 0.3193 0.3595 0.5000 0.3077 0.3030 0.3436 0.5000 0.3277 0.3228 0.3862 

6 0.5000 0.2547 0.2454 0.2647 0.5000 0.2305 0.2211 0.2469 0.5000 0.2537 0.2480 0.2878 

10 0.5000 0.2128 0.2081 0.2288 0.5000 0.1880 0.1798 0.1948 0.5000 0.2116 0.2089 0.2429 
               

0.4 

0 
(9, 9) 

2 0.4997 0.3283 0.3250 0.3859 0.4999 0.3059 0.3027 0.3546 0.5000 0.3412 0.3373 0.4296 

6 0.4932 0.2613 0.2582 0.2770 0.4938 0.2250 0.2216 0.2478 0.5000 0.2696 0.2671 0.3137 

10 0.4657 0.2394 0.2376 0.2339 0.4742 0.1821 0.1811 0.1979 0.4994 0.2497 0.2501 0.2556 

0 
(25, 25) 

2 0.5000 0.3239 0.3223 0.3901 0.5000 0.3034 0.3017 0.3623 0.5000 0.3389 0.3364 0.4328 

6 0.5000 0.2653 0.2649 0.2715 0.5000 0.2246 0.2214 0.2445 0.5000 0.2755 0.2760 0.3055 

10 0.5000 0.2473 0.2461 0.2303 0.5000 0.1817 0.1811 0.1965 0.5000 0.2618 0.2643 0.2504 

0 
(100,100) 

2 0.5000 0.3231 0.3220 0.3911 0.5000 0.3029 0.3015 0.3623 0.5000 0.3379 0.3360 0.4309 

6 0.5000 0.2665 0.2663 0.2692 0.5000 0.2245 0.2214 0.2418 0.5000 0.2775 0.2783 0.3015 

10 0.5000 0.2488 0.2473 0.2295 0.5000 0.1817 0.1812 0.1950 0.5000 0.2649 0.2664 0.2488 

Performance (%)   92.59 7.41   100   11.11 81.48 7.41 
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The performance of RLDR enhances as the dimensions increase as indicated in  

Table 5.17. Therefore, low misclassification error rates of RLDR can be obtained at 

high dimensional data. Again, such improvement does not show on CLDR, 

moreover, even loss its discrimination ability (0.5 of misclassification error rates) 

due to the effect of unbalanced sample sizes in shape contaminated data. As depicted 

in Table 5.17, all RLDRs are able to provide quite stable performance since they 

produce almost similar misclassification error rates within their dimensions, the 

unbalanced sample sizes, as well as contamination proportions. 

 

Generally, at most 64% of the misclassification error rates from CLDR can be 

reduced by RLDRs, thus indicating RLDRs outperform CLDR. This reduction also 

discloses that the effect of unbalanced sample sizes as well as shape contaminated 

data can be resolved by RLDRs. RLDRV is able to provide the best performance 

among RLDR, especially at 𝜀 = 0.1, 0.2. Therefore RLDRV can be considered to be 

the best alternative for solving classification problems under the case of shape 

contamination with heteroscedasticity. 

 

The investigation on the performance of CLDR and RLDRs using distance approach 

is continued under mixed location and shape contaminated with heterogeneous 

covariance. The average misclassification error rates of LDR at various dimensions  

(𝜀 = 0.1, 0.2, 0.4) are shown in Table 5.18 to Table 5.20, respectively. 
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Table 5.18 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Unbalanced Sample Sizes at 𝜀 = 0.1 

μ 

(𝜔1, 𝜔2) 
d 

n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

3 

(9, 9) 

2 0.4856 0.3302 0.3227 0.3537 0.4929 0.3120 0.3057 0.3334 0.4993 0.3267 0.3227 0.3891 

6 0.3919 0.2572 0.2459 0.2667 0.4349 0.2322 0.2216 0.2398 0.4791 0.2534 0.2469 0.2926 

10 0.3151 0.2170 0.2085 0.2303 0.3671 0.1905 0.1814 0.1962 0.4218 0.2127 0.2094 0.2474 

5 

(9, 9) 

2 0.4934 0.3295 0.3222 0.3674 0.4985 0.3117 0.3060 0.3534 0.4998 0.3273 0.3232 0.4064 

6 0.4310 0.2568 0.2459 0.2707 0.4755 0.2322 0.2222 0.2446 0.4922 0.2533 0.2467 0.2998 

10 0.3631 0.2171 0.2083 0.2333 0.4302 0.1903 0.1813 0.1987 0.4596 0.2133 0.2099 0.2521 

              

3 

(25, 25) 

2 0.4996 0.3294 0.3217 0.3554 0.5000 0.3113 0.3054 0.3408 0.5000 0.3264 0.3228 0.3856 

6 0.4499 0.2570 0.2451 0.2625 0.4965 0.2323 0.2218 0.2380 0.4995 0.2531 0.2465 0.2874 

10 0.3033 0.2156 0.2080 0.2273 0.4578 0.1902 0.1809 0.1930 0.4712 0.2125 0.2092 0.2435 

5 

(25, 25) 

2 0.4997 0.3293 0.3216 0.3617 0.5000 0.3114 0.3057 0.3532 0.5000 0.3265 0.3228 0.3961 

6 0.4567 0.2564 0.2459 0.2629 0.4983 0.2322 0.2218 0.2405 0.4997 0.2530 0.2467 0.2909 

10 0.3174 0.2162 0.2084 0.2280 0.4721 0.1907 0.1812 0.1941 0.4783 0.2122 0.2097 0.2453 

              

3 

(100, 100) 

2 0.5000 0.3292 0.3211 0.3615 0.5000 0.3113 0.3052 0.3533 0.5000 0.3264 0.3224 0.3851 

6 0.4946 0.2564 0.2457 0.2624 0.5000 0.2318 0.2215 0.2383 0.5000 0.2531 0.2465 0.2852 

10 0.3070 0.2161 0.2086 0.2266 0.4999 0.1909 0.1809 0.1923 0.4988 0.2118 0.2101 0.2427 

5 

(100, 100) 

2 0.5000 0.3293 0.3213 0.3635 0.5000 0.3114 0.3056 0.3574 0.5000 0.3262 0.3226 0.3886 

6 0.4946 0.2567 0.2457 0.2625 0.5000 0.2327 0.2220 0.2394 0.5000 0.2531 0.2464 0.2868 

10 0.3080 0.2161 0.2085 0.2269 0.4999 0.1903 0.1811 0.1925 0.4988 0.2120 0.2094 0.2432 

Performance 

(%) 
  100    100    100  
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Table 5.19 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Unbalanced Sample Sizes at 𝜀 = 0.2 

μ 

(𝜔1, 𝜔2) 
d 

n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

3 

(9, 9) 

2 0.4991 0.3272 0.3201 0.3808 0.4999 0.3093 0.3038 0.3668 0.5000 0.3290 0.3240 0.4191 

6 0.4853 0.2553 0.2456 0.2732 0.4975 0.2307 0.2209 0.2457 0.4998 0.2544 0.2481 0.3037 

10 0.4377 0.2149 0.2091 0.2328 0.4861 0.1890 0.1801 0.1981 0.4973 0.2142 0.2091 0.2521 

5 

(9, 9) 

2 0.4997 0.3274 0.3206 0.3988 0.5000 0.3092 0.3042 0.3941 0.5000 0.3284 0.3241 0.4342 

6 0.4940 0.2555 0.2459 0.2765 0.4995 0.2305 0.2215 0.2490 0.5000 0.2542 0.2483 0.3075 

10 0.4670 0.2163 0.2088 0.2357 0.4965 0.1889 0.1809 0.1996 0.4992 0.2147 0.2097 0.2545 

              

3 

(25, 25) 

2 0.5000 0.3256 0.3199 0.3706 0.5000 0.3082 0.3034 0.3577 0.5000 0.3274 0.3231 0.4058 

6 0.4997 0.2548 0.2450 0.2690 0.5000 0.2303 0.2212 0.2448 0.5000 0.2534 0.2480 0.2985 

10 0.4876 0.2130 0.2082 0.2300 0.4999 0.1884 0.1804 0.1969 0.5000 0.2119 0.2088 0.2484 

5 

(25, 25) 

2 0.5000 0.3255 0.3196 0.3816 0.5000 0.3078 0.3031 0.3762 0.5000 0.3276 0.3227 0.4181 

6 0.4999 0.2548 0.2450 0.2711 0.5000 0.2304 0.2208 0.2476 0.5000 0.2534 0.2480 0.3018 

10 0.4917 0.2131 0.2087 0.2312 0.5000 0.1887 0.1801 0.1986 0.5000 0.2120 0.2090 0.2504 

              

3 

(100, 100) 

2 0.5000 0.3252 0.3192 0.3635 0.5000 0.3078 0.3031 0.3508 0.5000 0.3277 0.3232 0.3925 

6 0.5000 0.2549 0.2452 0.2663 0.5000 0.2304 0.2209 0.2494 0.5000 0.2535 0.2479 0.2923 

10 0.5000 0.2130 0.2079 0.2292 0.5000 0.1882 0.1800 0.1965 0.5000 0.2120 0.2088 0.2453 

5 

(100, 100) 

2 0.5000 0.3254 0.3192 0.3667 0.5000 0.3077 0.3033 0.3568 0.5000 0.3276 0.3230 0.3970 

6 0.5000 0.2547 0.2450 0.2675 0.5000 0.2304 0.2208 0.2509 0.5000 0.2533 0.2479 0.2947 

10 0.5000 0.2132 0.2082 0.2295 0.5000 0.1881 0.1801 0.1974 0.5000 0.2117 0.2092 0.2470 

Performance 

(%) 
  100    100    100  
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Table 5.20 

Average Misclassification Error Rates under Mixed Location and Shape Contaminated Data for Unbalanced Sample Sizes at 𝜀 = 0.4 

μ 

(𝜔1, 𝜔2) 
d 

n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT CLDR RLDRD RLDRV RLDRT 

3 

(9, 9) 

2 0.5000 0.3297 0.3258 0.4249 0.5000 0.3062 0.3038 0.4155 0.5000 0.3424 0.3381 0.4608 

6 0.4997 0.2661 0.2625 0.2784 0.4999 0.2249 0.2217 0.2466 0.5000 0.2754 0.2723 0.3110 

10 0.4981 0.2668 0.2627 0.2346 0.4998 0.1819 0.1813 0.1955 0.5000 0.2756 0.2730 0.2529 

5 

(9, 9) 

2 0.5000 0.3297 0.3256 0.4519 0.4999 0.3068 0.3038 0.4591 0.5000 0.3443 0.3388 0.4803 

6 0.4998 0.2749 0.2692 0.2836 0.4998 0.2247 0.2217 0.2533 0.5000 0.2840 0.2813 0.3175 

10 0.4992 0.2986 0.2948 0.2388 0.4998 0.1820 0.1813 0.1965 0.5000 0.3097 0.3044 0.2567 

              

3 

(25, 25) 

2 0.5000 0.3238 0.3225 0.3989 0.5000 0.3035 0.3018 0.3769 0.5000 0.3390 0.3363 0.4396 

6 0.5000 0.2648 0.2651 0.2700 0.5000 0.2246 0.2216 0.2424 0.5000 0.2761 0.2768 0.3024 

10 0.5000 0.2508 0.2503 0.2294 0.5000 0.1817 0.1812 0.1949 0.5000 0.2639 0.2673 0.2476 

5 

(25, 25) 

2 0.5000 0.3243 0.3228 0.4059 0.5000 0.3034 0.3018 0.3908 0.5000 0.3389 0.3364 0.4463 

6 0.5000 0.2661 0.2659 0.2693 0.5000 0.2245 0.2215 0.2402 0.5000 0.2767 0.2777 0.2994 

10 0.5000 0.2566 0.2555 0.2288 0.5000 0.1817 0.1812 0.1935 0.5000 0.2693 0.2726 0.2452 

              

3 

(100, 100) 

2 0.5000 0.3231 0.3221 0.3919 0.5000 0.3030 0.3013 0.3647 0.5000 0.3380 0.3360 0.4318 

6 0.5000 0.2659 0.2665 0.2691 0.5000 0.2245 0.2215 0.2417 0.5000 0.2774 0.2786 0.3012 

10 0.5000 0.2495 0.2477 0.2295 0.5000 0.1817 0.1812 0.1949 0.5000 0.2647 0.2668 0.2486 

5 

(100, 100) 

2 0.5000 0.3233 0.3222 0.3921 0.5000 0.3029 0.3014 0.3665 0.5000 0.3379 0.3360 0.4325 

6 0.5000 0.2657 0.2666 0.2689 0.5000 0.2245 0.2215 0.2414 0.5000 0.2772 0.2788 0.3009 

10 0.5000 0.2492 0.2483 0.2295 0.5000 0.1817 0.1812 0.1948 0.5000 0.2654 0.2670 0.2482 

Performance 

(%) 
 11.11 55.56 33.33   100   22.22 44.45 33.33 
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Under mixed location and shape contaminated data, the performance of RLDRs 

directly related to their dimensions. The performances of RLDRs can be enhanced by 

increasing their dimensions. Across the tables, the stable performances are presented 

by RLDRs where RLDRs are able to produce quite similar misclassification error 

rates within dimension, sample sizes and contamination proportions, irrespective of 

scale inflation factors. Overall, good discriminant rules can be constructed by 

RLDRs while CLDR in this case is unable do the classification job, such that it 

produces misclassification error rates consistently at 0.5, especially at ε = 0.2, 0.4. 

Therefore, all RLDRs outperform CLDR.   

 

Across Table 5.18 to Table 5.19, RLDRV shows its superior performance on all data 

distributions producing the lowest misclassification error rates surpassing the other 

RLDRs, including RLDRD. As presented in Table 5.20, the performance of RLDRV 

continues to be optimal for all conditions when d = 2 as well as when  

n1 = 100, n2 = 50. Even RLDRV still able to provide the minimum misclassification 

error rates at majority of the data distributions (55.56%) under n1 = 50, n2 = 20 

followed by RLDRT (33.33%). In the case of n1 =100, n2 = 20, RLDRV perform 

excellently at d = 2, 6 with 𝜔1 = 𝜔2 = 9 as well as 𝜔1 = 𝜔2 = 25, 100 but only at  

d = 2. Meanwhile, the best performance holds by RLDRD under the conditions of  

n1 =100, n2 = 20 at d = 6 with 𝜔1 = 𝜔2 = 25, 100. However, their disparities in terms 

of misclassification error rates are very minute (at 3 decimal places). For RLDRT, its 

best performance occurs when the dimension is high (d = 10) while n1 = 50, n2 = 20 

and n1 = 100, n2 = 20.  
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The results in Table 5.18 to Table 5.20 show that  RLDRV is the choice for solving 

classification problems, especially at ε = 0.1, 0.2. It is also observed that RLDRV can 

withstand the high contamination (ε = 0.4) when n1 = 50, n2 = 20 and  

n1 = 100, n2 = 50 with low dimension (d = 2). Meanwhile, RLDRT is a good 

alternative when involving high dimension (d = 10) and contamination (ε = 0.4) as 

well as small sample sizes (n = 20). 

 

5.4 Comparison among LDRs 

In this section, the comparison of misclassification error rates between CLDR and 

RLDRs using distance approach for uncontaminated and contaminated data is 

simultaneously discussed. The contamination includes location contamination, shape 

contamination as well as mixed location and shape contamination. This comparison 

also considers homoscedasticity and heteroscedasticity with various suggested 

sample sizes. Table 5.21 and Table 5.22 shows the comparison results under 

balanced and unbalanced sample sizes, respectively. 
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Table 5.21 

Comparison of Misclassification Error between Uncontaminated and Contaminated Data for Balanced Sample Sizes 

d LDR 

Homogeneous Covariance Heterogeneous Covariance 

n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

Clean Contam. Clean Contam. Clean Contam. Clean Contam. Clean Contam. Clean Contam. 

2 

CLDR 0.2511 0.5052 0.2442 0.5099 0.2420 0.5139 0.3169 0.5034 0.3069 0.5078 0.3038 0.5104 

RLDRD 0.2833 0.2825 0.2653 0.2621 0.2568 0.2520 0.3581 0.3593 0.3330 0.3354 0.3223 0.3233 

RLDRV 0.2727 0.2668 0.2550 0.2522 0.2495 0.2473 0.3492 0.3471 0.3245 0.3254 0.3155 0.3165 

RLDRT 0.2602 0.3058 0.2472 0.2886 0.2437 0.2821 0.3279 0.3750 0.3108 0.3582 0.3060 0.3495 
              

6 

CLDR 0.1409 0.4320 0.1214 0.4832 0.1157 0.4892 0.2342 0.4470 0.2069 0.4876 0.1986 0.4920 

RLDRD 0.1841 0.2130 0.1518 0.1564 0.1353 0.1348 0.2802 0.3005 0.2465 0.2553 0.2256 0.2327 

RLDRV 0.1614 0.1866 0.1359 0.1335 0.1261 0.1239 0.2601 0.2748 0.2274 0.2268 0.2137 0.2127 

RLDRT 0.1746 0.2122 0.1330 0.1812 0.1213 0.1723 0.2675 0.2948 0.2222 0.2621 0.2062 0.2504 
              

10 

CLDR 0.0980 0.3591 0.0707 0.4444 0.0635 0.4744 0.2005 0.3905 0.1607 0.4539 0.1483 0.4802 

RLDRD 0.1333 0.1986 0.0979 0.1195 0.0806 0.0995 0.2390 0.2861 0.2014 0.2163 0.1761 0.1930 

RLDRV 0.1180 0.1719 0.0864 0.1008 0.0739 0.0820 0.2250 0.2615 0.1861 0.1954 0.1657 0.1740 

RLDRT 0.1552 0.1965 0.0873 0.1417 0.0709 0.1294 0.2524 0.2813 0.1841 0.2247 0.1600 0.2080 
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Table 5.22 

Comparison of Misclassification Error Rates between Uncontaminated and Contaminated Data for Unbalanced Sample Sizes 

d LDR 

Homogeneous Covariance Heterogeneous Covariance 

n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

Clean Contam. Clean Contam. Clean Contam. Clean Contam. Clean Contam. Clean Contam. 

2 

CLDR 0.2897 0.5009 0.2684 0.5029 0.3552 0.5001 0.3267 0.4944 0.3059 0.4960 0.3608 0.4983 

RLDRD 0.2772 0.2829 0.2639 0.2631 0.2819 0.2976 0.3318 0.3346 0.3149 0.3149 0.3265 0.3381 

RLDRV 0.2669 0.2716 0.2545 0.2566 0.2724 0.2894 0.3249 0.3261 0.3070 0.3077 0.3214 0.3317 

RLDRT 0.2780 0.3608 0.2600 0.3343 0.3200 0.4230 0.3196 0.3842 0.2995 0.3699 0.3395 0.4164 
              

6 

CLDR 0.1428 0.4889 0.1268 0.4976 0.1681 0.4992 0.2362 0.4722 0.2149 0.4831 0.2512 0.4900 

RLDRD 0.1719 0.1955 0.1454 0.1485 0.1676 0.1989 0.2594 0.2757 0.2352 0.2431 0.2525 0.2761 

RLDRV 0.1519 0.1670 0.1340 0.1323 0.1544 0.1770 0.2457 0.2565 0.2228 0.2231 0.2451 0.2610 

RLDRT 0.1635 0.2165 0.1368 0.1920 0.1872 0.2601 0.2571 0.2899 0.2279 0.2681 0.2695 0.3165 
              

10 

CLDR 0.0862 0.4331 0.0707 0.4860 0.0958 0.4925 0.1950 0.4261 0.1703 0.4679 0.2060 0.4775 

RLDRD 0.1165 0.1642 0.0905 0.1120 0.1109 0.1653 0.2184 0.2535 0.1918 0.2076 0.2146 0.2536 

RLDRV 0.1036 0.1410 0.0814 0.0934 0.0999 0.1460 0.2102 0.2346 0.1818 0.1911 0.2102 0.2386 

RLDRT 0.1148 0.1688 0.0830 0.1420 0.1220 0.1868 0.2249 0.2583 0.1883 0.2282 0.2358 0.2744 
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In the case of balanced sample sizes, CLDR achieves its optimality for 

uncontaminated under homoscedasticity and heteroscedasticity as well. However, 

when compared to contaminated data, its performance is totally in contrast as 

depicted in Table 5.21. It scores best for uncontaminated data while worst for 

contaminated data. For RLDRs, their performances on uncontaminated and 

contaminated data are comparable. This scenario illustrates those RLDRs using 

distance approach show great performance regardless the data, whether it is 

uncontaminated or contaminated. Even though CLDR perform optimally for 

uncontaminated data, the differences in misclassification error rates between CLDR 

and RLDRs become very minute as the sample sizes increase. Contrariwise, for 

contaminated data, when the sample sizes increase, their differences become large. 

For example, the misclassification error rate of CLDR is 0.4744 while RLDRV is 

0.0820 for contaminated data under the cases of n1 = n2 = 100 at d = 10 with equal 

covariance. Among RLDRs, the performance of RLDRV surpasses the others with 

minimum misclassification error rates as shown in Table 5.21. Indeed, RLDRV is 

able to enhance its performance up to 18% from RLDRD while 58% from RLDRT. 

 

Due to the effect of unbalanced sample sizes, the performance of CLDR is no longer 

optimal in all cases of uncontaminated data, especially at low dimension (d = 2) as 

presented in Table 5.22. At this dimension (d = 2) with uncontaminated data, 

RLDRV perform excellently under homoscedasticity. Meanwhile, under the same 

condition with heteroscedasticity, the performance of RLDRT is the best in the case 

of small (n1 = 50, n2 = 20) as well as moderate (n1 = 100, n2 = 50) discrepancy in 

group sizes, while for large discrepancy in group sizes (n1 = 100, n2 = 20), RLDRV is 

the best. Moreover, RLDRV also provides the minimum misclassification error rates 



188 

 

in the case of n1 = 100, n2 = 20 at d = 6 for uncontaminated with homoscedasticity as 

well as heteroscedasticity. Although CLDR performs better than RLDRs in other 

conditions of uncontaminated data, their disparities in misclassification error rates 

are small, not more than 0.03. 

 

As expected, the performance of CLDR dramatically affected once data 

contamination occurred. Therefore, Table 5.22 exposes that all RLDRs are able to 

provide lower misclassification than CLDR under contaminated data. Regardless of 

the nature of covariance, RLDRV show its superior performance under contaminated 

data as compared to RLDRD and RLDRT. In addition, the performances of RLDRV 

on uncontaminated and contaminated data are comparable, especially for  

n1 = 100, n2 = 50. Such situations indicated that RLDRV can withstand with the 

contaminated data, and provides similar misclassification error rates as in the case of 

uncontaminated data. Statistically, RLDRV is able to reduce its misclassification 

error rates up to 81% from CLDR, and 17% from RLDRD for contaminated data. 

 

Across Table 5.21 and Table 5.22, the results clearly show that RLDRV is a good 

alternative to solve classification problems in all kinds of data distributions. In the 

case of data contamination, RLDRV can always provide lower misclassification error 

rates among RLDRs using distance approach, not to mention CLDR. 

 

The ranges of misclassification error rates for CLDR and RLDRs are also considered 

and reported in Table 5.23. Besides the overall misclassification ranges, the ranges 

for the three types of contaminated data; location contaminated, shape contaminated, 

and mixed location and shape contaminated, are also listed and discussed. 
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Table 5.23 

Misclassification Ranges of LDRs under Contaminated Data 

Type of 

Data 

CLDR RLDRD RLDRV RLDRT 

Homogeneous Covariance 

Location 
27.40% – 

76.77% 

7.70% – 

58.50% 

7.30% – 

53.74% 

8.96% – 

69.30% 

Shape 
10.78% –  

50% 

7.19% – 

31.10% 

6.96% – 

30.91% 

6.88% – 

44.87% 

Mixed 
15.47% – 

89.95% 

7.19% – 

31.81% 

6.96% – 

31.35% 

6.78% – 

48.87% 

Overall 
10.78% – 

89.95% 

7.19% – 

58.50% 

6.96% – 

53.74% 

6.78% – 

69.30% 

 Heterogeneous Covariance 

Location 
29.80% – 

73.41% 

17% –  

56.78% 

16.40% – 

49.90% 

19.06% – 

65.95% 

Shape 
17.76% –  

50% 

16.27% – 

35.71% 

15.91% – 

34.50% 

15.76% – 

43.28% 

Mixed 
24.49% – 

82.20% 

16.27% – 

37.70% 

15.91% – 

37.09% 

15.64% – 

48.03% 

Overall 
17.76% – 

82.20% 

16.27% – 

56.78% 

15.91% – 

49.90% 

15.64% – 

65.95% 

 

Overall, the misclassification error rates for RLDRV ranges from 6.96% to 53.74% 

as compared to RLDRD (7.19% to 58.50%) and RLDRT (6.78% to 69.30%) for 

contaminated with homoscedasticity as depicted in Table 5.23. These results reveal 

that the range of RLDRV is narrower than the existing RLDRD as well as RLDRT, 

not to mention the range for the CLDR is 10.78% to 89.95%! The same situations 

happen on contaminated data with heteroscedasticity. The widest range is on CLDR 

(17.76% to 82.20%), followed by RLDRT (15.64% to 65.95%), RLDRD (16.27% to 

56.78%) and the narrowest range belongs to RLDRV (15.91% to 49.90%). 

 

For each specific type of contaminated data, Table 5.23 discloses that RLDRV 

always produce the smallest ranges compared to others regardless of the nature of 

covariance. Among the types of contamination, RLDRV has the smallest variation 
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under shape contamination, followed by mixed location and shape contamination, 

while the largest variation is under location contamination. Such pattern also 

happens on RLDRD and RLDRT, but not on CLDR. For CLDR, the largest variation 

is under mixed location and shape contamination, followed by location 

contamination, whiles the smallest variation is under shape contamination. Precisely, 

the misclassification ranges of RLDRs are quite similar between shape as well as 

mixed location and shape contaminated data. Therefore, smaller variation on 

misclassification error rates can be obtained by RLDRs using distance approach 

when shape contamination occurs in the data distributions. 

 

5.5 Computational Time of the Misclassification Error Rates 

Like in Section 4.5 (Chapter Four), the computational efficiency of RLDRs using 

distance approach is also considered in this section. Table 5.24 presents the 

computing time (in seconds) at various dimensions under the case of balanced and 

unbalanced sample sizes with homogeneous as well as heterogeneity of covariance. 
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Table 5.24 

Average Computational Time (in Seconds) of LDRs 

d LDR 

Homogeneous Covariance Heterogeneous Covariance 

n1 = n2 

= 20 

n1 = n2 

= 50 

n1 = n2 

= 100 

n1 = 50  

n2 = 20 

n1 =100 

n2 = 50 

n1 =100  

n2 = 20 

n1 = n2 

= 20 

n1 = n2 

= 50 

n1 = n2 

= 100 

n1 = 50  

n2 = 20 

n1 =100 

n2 = 50 

n1 =100  

n2 = 20 

2 

CLDR 2 2 2 2 2 2 2 2 2 2 2 2 

RLDRD 1542 2947 5341 2197 4775 3722 1534 3025 5562 2293 4603 3997 

RLDRV 1554 2969 5384 2222 4811 3743 1536 3057 5606 2277 4642 4028 

RLDRT 5 11 21 8 17 16 5 10 22 8 18 14 
              

6 

CLDR 5 5 5 5 5 5 5 5 5 5 5 5 

RLDRD 1873 3875 7309 2832 5968 4777 1864 3879 7490 3070 5790 4818 

RLDRV 1888 3899 7359 2843 5977 4816 1874 3902 7517 3095 5839 4917 

RLDRT 9 16 28 12 24 22 9 17 30 13 24 19 
              

10 

CLDR 9 9 9 8 8 8 8 8 7 8 8 8 

RLDRD 2155 4703 9016 3610 7002 5958 2291 4845 9250 3893 7172 5823 

RLDRV 2173 4720 9054 3660 7056 6070 2318 4850 9289 3918 7218 5837 

RLDRT 13 22 34 17 32 27 13 22 41 18 30 28 
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Table 5.24 exposes that the computational time of RLDRs using distance approach is 

directly proportional to dimensions as well as sample sizes. As the dimensions 

increase, the computing times dramatically increase especially on RLDRD and 

RLDRV. Besides dimensions, the computing times of RLDRs using distance 

approach also affected by their sample sizes. Longer computing times are taken by 

increasing the number of sample sizes. However, the computational time of CLDR is 

only influenced by dimensions but not sample sizes. Obviously, the effect of 

heteroscedasticity does not show any impact on computational time of LDRs, thus 

the computing times between data with homoscedasticity and heteroscedasticity do 

not show much difference. Therefore, heterogeneity of covariance is not an issue 

with regards to the computational efficiency of LDRs.   

 

As shown in Table 5.24, the computing times of CLDR, on average, are much faster 

than distance based RLDRs. However, the performance of CLDR can be in jeopardy 

once data contaminations occur. The computing time of RLDRV and RLDRD are 

comparable, but RLDTT is way above the two distance based RLDR in terms of 

computing times. Table 5.24 reveals that RLDRV is able to provide the lowest 

misclassification error with high computational time while RLDRT provides the 

acceptance misclassification error rates in a very short computational time. 

 

5.6 Real Data Study 

As discussed in Chapter Three, besides simulation study, real data study is also 

considered in evaluating the optimality of the proposed RLDRs and then compared 

to CLDR as well as the existing RLDRD. The diabetes data from Reaven and Miller 

(1979) are used in real data study. Multivariate normality statistics test and Box’s M 
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test are applied to test the normality and homoscedasticity of this real data, 

respectively. The analysis results indicates that this real data do not fulfill the 

assumptions of LDA (non-normal with heteroscedasticity) with p-value < 0.00001 

for multivariate normal statistics text and p-value < 0.00001 for Box’s M test. 

Around 5% of the outliers for each group have been identified in the dataset using 

MSD. 

 

For this real data study, the performance of LDRs are evaluated via two types of 

misclassification error rates, which are apparent error rate (APER) and estimated 

APER using leave-one-out cross-validation (CV), since these two misclassification 

error rates are commonly provided in most of the statistical tools. Table 5.25 presents 

the misclassification error rates as well as hit ratio (the percentage in bracket) as 

discussed in Section 2.4.2 of each LDR. 

 

Table 5.25 

Misclassification Error Rates of LDRs 

Error 

Rates 
CLDR 

Coordinatewise Based Approach Distance Based Approach 

RLDRMw RLDRM RLDRWw RLDRW RLDRD RLDRV RLDRT 

APER 
0.1379 

(86.21) 

0.1448 

(85.52) 
0.0828 

(91.72) 

0.1241 

(87.59) 

0.1034 

(89.66) 

0.1310 

(86.90) 
0.0897 

(91.03) 

0.1379 

(86.21) 

CV 
0.1448 

(85.52) 

0.1448 

(85.52) 
0.0966 

(90.34) 

0.1448 

(85.52) 

0.1103 

(88.97) 

0.1310 

(86.90) 
0.0897 

(91.03) 

0.1379 

(86.21) 

 

Table 5.25 reveals that most of the proposed RLDRs are able to produce smaller 

misclassification error rates as compared to CLDR. The results indicate that RLDRs 

are able to classify correctly without having to worry about the assumptions of LDA. 

Furthermore, RLDRs using robust covariance (RLDRM and RLDRW) as well as 
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RLDRV have better performance than existing RLDRD. In short, the performance of 

RLDRM is the best via APER while RLDRV overshadows the others with lowest 

misclassification error rate via CV. These two proposed RLDRs are able to correctly 

classify as much as 90% of the observations into their respective groups, improving 

nearly 5% from CLDR and 4% from RLDRD. Besides, the classification accuracy of 

LDRs is also being investigated by using two chance ratios, denoted as maximum 

chance criterion (MCC) and proportion chance criterion (PCC). These chance ratios 

of LDRs are calculated as equation 2.9 and 2.10, respectively and then documented 

in Table 5.26. 

 

Table 5.26 

Results of Chance Ratio 

Chance Ratio Percentage (%) 

MCC 52.41 

PCC 50.17 

max {MCC, PCC} = 65.51% 

 

As mentioned in Chapter Two, a LDR is stated as a satisfactory LDR if its hit ratio is 

higher than its acceptance hit ratio. The acceptable hit ratio that is recommended by 

most researchers is 25% higher than that due to chance (Ramayah et al., 2010). For 

this case, the value of MCC and PCC is as shown in Table 5.26. The acceptance hit 

ratio for MCC and PCC is 0.25(52.41%) + 52.41% = 65.51% and 0.25(50.17%) + 

50.17% = 62.71%, respectively. Thus, the acceptance hit ratio for both due chances 

(MCC, PCC) is the maximum of both acceptance that is 65.51%. Therefore, all 

LDRs are acceptable since their hit ratios are more than 65.51% via APER and CV 

as observed in Table 5.25 and Table 5.26, thus indicating that the hit ratios of all 
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LDRs are more than 25% higher than the chance ratios. The satisfactory of all 

investigated LDRs are confirmed in this real data study. For the further analysis on 

classification accuracy, a statistical test for the discriminatory power of the 

classification matrix as compared to the chance model, namely Press’s Q statistic as 

described in Equation 2.11 was applied and presented in Table 5.27. 

 

Table 5.27 

Press’s Q Statistic of LDR 

LDR 
APER CV 

Press’s Q p-value Press’s Q p-value 

CLDR 76.0345 < 0.00001 73.1655 < 0.00001 

RLDRMw 73.1655 < 0.00001 73.1655 < 0.00001 

RLDRM 100.9724 < 0.00001 94.4069 < 0.00001 

RLDRWw 81.9379 < 0.00001 73.1655 < 0.00001 

RLDRW 91.2069 < 0.00001 88.0621 < 0.00001 

RLDRD 78.9586 < 0.00001 78.9586 < 0.00001 

RLDRV 97.6621 < 0.00001 97.6621 < 0.00001 

RLDRT 76.0345 < 0.00001 76.0345 < 0.00001 

 

Table 5.27 exposes that the classification matrix of each LDR is significantly better 

than the chance model (p-value < 0.05). The results show that all investigated LDRs 

have better predictive accuracy than expected model by chance, thus indicating that 

all LDRs are valuable and support predictions by the independent variable. Although 

the results in Table 5.26 and Table 5.27 indicate that all LDRs have good predictive 

accuracy as compared to the chance model, the greatest performance (lowest 

misclassification error rate) is on RLDRM via APER while RLDRV via CV among 

the proposed RLDRs as well as the existing RLDRD, not to mention the CLDR.  
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5.7 Comparison between RLDRs using Coordinatewise and Distance 

In this study, a total of six new proposed RLDRs using coordinatewise (four RLDRs) 

and distance (two RLDRs) based approaches are tested in the simulation study. Their 

performances are examined and discussed separately according to the approach. In 

this section, the comparison between RLDRs using coordinatewise and distance 

based approaches are being scrutinized. However, not all six proposed RLDRs are 

being considered. Only some good proposed RLDRs from Chapter Four and Five are 

selected for the comparison. From Chapter Four, RLDRM and RLDRMw are the better 

choice, while RLDRV is the selected one from Chapter Five.  

 

Across the discussions in Chapter Four and Five, some similarities and dissimilarities 

between RLDRs using coordinatewise and distance approaches are revealed. For the 

similarities, RLDRs using both approaches are able to improve their performance, 

thus providing lower misclassification error rates as compared to CLDR if data 

contamination occurred. The inverse relationship between misclassification error 

rates and dimensions also occurred on RLDRs using both approaches. Besides, 

increasing the sample sizes can reduce the misclassification error rates of RLDRs for 

both approaches. On the computational efficiency, the computing time of RLDRs 

using both approaches does not affected by heteroscedasticity.  

 

Meanwhile, for the dissimilarities, the performance of distance approach and 

coordinatewise approach in regards to uncontaminated and contaminated data 

produce different scenario. The performance of RLDRs using distance approach 

under uncontaminated and contaminated data is comparable. With more sample sizes 

involve in constructing discriminant rule, the difference in misclassification error 



197 

 

rates between uncontaminated and contaminated data become very minute as 

presented in Table 5.21 and Table 5.22. However, such scenario does not happen on 

RLDRs using coordinatewise approach as depicted in Table 4.23 and Table 4.24. As 

observed in Table 4.25 and Table 5.23, the misclassification ranges RLDRs using 

distance approach have smaller variation than RLDRs using coordinatewise approach. 

Another obvious difference between RLDRs using both approaches is their 

computational time. The computational time of RLDRs using coordinatewise 

approach is only affected by dimensions as shown in Table 4.26, while for distance 

approach, Table 5.24 exposes that sample sizes as well as dimensions seem to have 

some impact on the computational time. Besides, the computing times of RLDRD and 

RLDRV, on averages, are very much slower than RLDRs using coordinatewise 

approach. 

 

The comparison on similarities and dissimilarities of the RLDRs using the two 

approaches continue with regards to homoscedasticity and heteroscedasticity and the 

results (misclassification error rates) are presented in Table 5.28. In the case of 

uncontaminated data, RLDRWw is added in the comparison since it has shown good 

performance as revealed in Chapter Four. 
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Table 5.28 

Misclassification Error Rates Comparison for Uncontaminated Data 

d LDR 

Homogeneous Covariance Heterogeneous Covariance 

n1 = n2 

= 20 

n1 = n2 

= 50 

n1 = n2 

= 100 

n1 = 50,  

n2 = 20 

n1 =100, 

n2 = 50 

n1 =100,  

n2 = 20 

n1 = n2 

= 20 

n1 = n2 

= 50 

n1 = n2 

= 100 

n1 = 50,  

n2 = 20 

n1 =100, 

n2 = 50 

n1 =100,  

n2 = 20 

2 

CLDR 0.2511 0.2442 0.2420 0.2897 0.2684 0.3552 0.3169 0.3069 0.3038 0.3267 0.3059 0.3608 

RLDRMw 0.2547 0.2453 0.2424 0.2833 0.2653 0.3428 0.3222 0.3083 0.3044 0.3213 0.3029 0.3511 

RLDRM 0.2562 0.2465 0.2432 0.2908 0.2692 0.3535 0.3231 0.3093 0.3050 0.3286 0.3070 0.3608 

RLDRWw 0.2527 0.2446 0.2421 0.2815 0.2643 0.3416 0.3187 0.3072 0.3039 0.4088 0.3940 0.4466 

RLDRD 0.2833 0.2653 0.2568 0.2772 0.2639 0.2819 0.3581 0.3330 0.3223 0.3318 0.3149 0.3265 

RLDRV 0.2727 0.2550 0.2495 0.2669 0.2545 0.2724 0.3492 0.3245 0.3155 0.3249 0.3070 0.3214 
              

6 

CLDR 0.1409 0.1214 0.1157 0.1428 0.1268 0.1681 0.2342 0.2069 0.1986 0.2362 0.2149 0.2512 

RLDRMw 0.1471 0.1233 0.1164 0.1430 0.1267 0.1640 0.2421 0.2101 0.1999 0.2380 0.2150 0.2499 

RLDRM 0.1514 0.1257 0.1178 0.1477 0.1293 0.1704 0.2450 0.2129 0.2015 0.2419 0.2180 0.2549 

RLDRWw 0.1439 0.1222 0.1159 0.1383 0.1250 0.1614 0.2376 0.2080 0.1990 0.2452 0.2252 0.2586 

RLDRD 0.1841 0.1518 0.1353 0.1719 0.1454 0.1676 0.2802 0.2465 0.2256 0.2594 0.2352 0.2525 

RLDRV 0.1614 0.1359 0.1261 0.1519 0.1340 0.1544 0.2601 0.2274 0.2137 0.2457 0.2228 0.2451 
              

10 

CLDR 0.0980 0.0707 0.0635 0.0862 0.0707 0.0958 0.2005 0.1607 0.1483 0.1950 0.1703 0.2060 

RLDRMw 0.1035 0.0724 0.0641 0.0882 0.0711 0.0953 0.2086 0.1641 0.1498 0.2001 0.1712 0.2090 

RLDRM 0.1082 0.0745 0.0653 0.0922 0.0731 0.0997 0.2119 0.1666 0.1514 0.2038 0.1739 0.2132 

RLDRWw 0.1006 0.0714 0.0637 0.0835 0.0692 0.0925 0.2035 0.1617 0.1487 0.1849 0.1588 0.1794 

RLDRD 0.1333 0.0979 0.0806 0.1165 0.0905 0.1109 0.2390 0.2014 0.1761 0.2184 0.1918 0.2146 

RLDRV 0.1180 0.0864 0.0739 0.1036 0.0814 0.0999 0.2250 0.1861 0.1657 0.2102 0.1818 0.2102 
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Table 5.28 discloses that CLDR is unbeatable in the case of uncontaminated data for 

balanced sample sizes, regardless of the heterogeneity of covariance. However, 

RLDRs using coordinatewise approach are able to provide more comparable 

performance with CLDR under same data distribution as compared to RLDRs using 

distance approach. Nevertheless, CLDR can no longer hold the optimal performance 

for unbalanced sample sizes. In contrast, RLDRs using both approaches are able to 

solve the effect of unbalanced sample sizes, thus providing lower misclassification 

error rates as compared to CLDR.  

 

The misclassification error rates comparison among selected LDR under 

contaminated data is shown in Table 5.29. The terms “Loca.”, “Shape” and “Mixed” 

as stated in Table 5.29 represent each type of contamination, namely location 

contamination, shape contamination as well as mixed location and shape 

contamination, respectively. Each type of contaminated data is considered and their 

average values are calculated as discussed in the Section 4.4. 
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Table 5.29 

Misclassification Error Rates Comparison for Contaminated Data 

LDR 

Loca. Shape Mixed Loca. Shape Mixed Loca. Shape Mixed 

Homogeneous Covariance 

n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR 0.5492 0.3485 0.4349 0.5697 0.3496 0.5137 0.5854 0.3223 0.5466 

RLDRMw 0.4107 0.1791 0.1893 0.4140 0.1535 0.1619 0.4163 0.1449 0.1505 

RLDRM 0.4234 0.1810 0.1923 0.4163 0.1527 0.1597 0.4129 0.1440 0.1481 

RLDRD 0.3380 0.2038 0.2096 0.2481 0.1640 0.1640 0.2078 0.1520 0.1519 

RLDRV 0.2555 0.1946 0.1997 0.1893 0.1561 0.1562 0.1667 0.1475 0.1476 

 n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR 0.5157 0.4536 0.4709 0.5227 0.4772 0.4956 0.5027 0.4917 0.4983 

RLDRMw 0.4289 0.2227 0.2378 0.4258 0.2044 0.2226 0.4686 0.3037 0.3226 

RLDRM 0.4225 0.2341 0.2515 0.4023 0.2005 0.2173 0.4602 0.3009 0.3220 

RLDRD 0.3073 0.1914 0.1946 0.2324 0.1616 0.1617 0.3013 0.2001 0.2039 

RLDRV 0.2324 0.1825 0.1855 0.1825 0.1559 0.1559 0.2374 0.1945 0.1979 

 Heterogeneous Covariance 

 n1 = n2 = 20 n1 = n2 = 50 n1 = n2 = 100 

CLDR 0.5241 0.3820 0.4537 0.5520 0.3790 0.5121 0.5699 0.3569 0.5376 

RLDRMw 0.4604 0.2691 0.2814 0.4695 0.2360 0.2499 0.4719 0.2235 0.2350 

RLDRM 0.4630 0.2706 0.2838 0.4666 0.2356 0.2483 0.4664 0.2227 0.2326 

RLDRD 0.4086 0.2911 0.2963 0.3502 0.2510 0.2509 0.3205 0.2339 0.2340 

RLDRV 0.3351 0.2823 0.2870 0.2833 0.2415 0.2416 0.2622 0.2282 0.2282 

 n1 = 50,  n2 = 20 n1 =100, n2 = 50 n1 =100,  n2 = 20 

CLDR 0.4554 0.4554 0.4717 0.4664 0.4724 0.4926 0.4662 0.4884 0.4962 

RLDRMw 0.4196 0.2978 0.3101 0.4219 0.2824 0.2989 0.4364 0.3437 0.3572 

RLDRM 0.4192 0.3087 0.3223 0.4151 0.2802 0.2964 0.4400 0.3458 0.3603 

RLDRD 0.3610 0.2702 0.2725 0.3178 0.2412 0.2414 0.3548 0.2732 0.2755 

RLDRV 0.3021 0.2643 0.2665 0.2644 0.2353 0.2354 0.3026 0.2700 0.2721 

 

As observed in Table 5.29, the performances of RLDRs using coordinatewise 

approach are slightly better than CLDR in the case of location contamination while 

RLDR using distance approach (RLDRV) surpasses the others with the lowest 

misclassification error rates. This indicates that RLDR using distance approach is 

more suitable in solving classification problems for location contaminated data. 
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For small balanced sample sizes (n1 = n2 = 20), the performances of RLDRs using 

coordinatewise approach are better than RLDR using distance approach in the cases 

of shape contamination as well as mixed location and shape contamination. 

However, their disparities in terms of misclassification error rates become marginal 

when the sample sizes increase to n1 = n2 = 50, 100. Regardless of the covariance 

heterogeneity, RLDRV perform excellently for contaminated data under unbalanced 

sample sizes. Therefore, RLDR using distance approach is able to provide lower 

misclassification error rates than RLDR using coordinatewise approach under 

unbalanced sample sizes.  

 

Table 5.29 also exposes that RLDR using distance approach is able to produce 

similar misclassification error rates when dealing with shape contaminated data as 

well as mixed location and shape contaminated data. Nevertheless, such pattern does 

not happen on RLDRs using coordinatewise approach, especially under unbalanced 

sample sizes. The misclassification error rates of RLDRs using coordinatewise 

approach under mixed location and shape contaminated data are slightly higher than 

the data with shape contamination. Meanwhile, the performance of RLDRs using 

coordinatewise approach deteriorates a little bit under the effect of location 

contamination, but they can compromise when location and shape contamination 

occur simultaneously. 

 

5.8 Summary 

The simulation study of all RLDR using distance based approach is implemented in 

this chapter. The simulation results among the proposed RLDRs, existing RLDRD 

and CLDR under homoscedasticity and heteroscedasticity are examined and 
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discussed. From the simulation study, the results reveal that the RLDRV is the most 

suitable choice to solve the classification problems. Regardless of any contamination 

conditions, RLDRV is able to provide excellent performance but with a trade off on 

computational time. When the LDRs were applied on the real diabetic data, the study 

reveals that the performances of RLDRM and RLDRV surpass the others. The 

conclusions and recommendations of the whole study will be provided in the next 

chapter.
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATIONS 

6.1 Introduction 

This chapter will conclude the study and some recommendations are shared at the 

end of the chapter. The entire study focuses on solving classification problems using 

robust linear discriminant rules (RLDRs) centered on coordinatewise and distance 

based approaches. The performances of these proposed RLDRs were evaluated and 

verified through simulation as well as real data study. Then, some supportive 

recommendations are provided so that the interested reader may have some 

guidelines and ideas to do further research on linear discriminant analysis or study on 

RLDRs via coordinatewise and distance based approaches. 

 

6.2 Conclusion 

Briefly, the aim of discriminant analysis is to construct a reliable discriminant rule 

that can classify observations into their own groups. Classical estimators which are 

the mean and covariance are commonly used to construct CLDR. However, the 

sensitivity problem of classical estimators can jeopardize the performance of CLDR 

if the assumptions of discriminant analysis (normal distribution with 

homoscedasticity) are violated as mentioned in Chapter Two. Therefore, the ultimate 

objective in this study is to discover at least one good alternative RLDRs in solving 

classification problems. With such alternatives, the performance of the discriminant 

rule can be improved even with violations of assumptions. To achieve the objective, 

a total of six set of robust estimators using coordinatewise and distance based 

approaches has been proposed in this study to construct new RLDRs. There are four 

RLDRs via coordinatewise based approach namely RLDRMw, RLDRM, RLDRWw and 
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RLDRW while two RLDR via distance based approach namely RLDRV and RLDRT 

have been constructed and tested in simulation as well as real data study. The 

proposed RLDRs are expected to alleviate the sensitivity problem of classical 

estimators, thus ensuring reliable performance of classification when using the 

RLDRs.  

 

In this study, misclassification error rates of all investigated LDRs (CLDR, existing 

RLDRD and proposed RLDRs) were computed and used to assess their performance 

in simulation as well as real data application. Besides the misclassification error 

rates, the computational efficiency of all investigated LDRs was also considered in 

the simulation study by averaging the computing time of each LDR. 

 

To assess on the good performance of the proposed RLDRs, a comparative study 

among the proposed RLDRs, CLDR as well as existing RLDRD had been conducted. 

The overall performances of LDRs under uncontaminated and contaminated data are 

summarized in Table 6.1 and Table 6.2, respectively. The percentages represent the 

frequency of LDRs with best performance (lowest misclassification error rate) under 

balanced and unbalanced sample sizes across the investigated conditions. The 

calculated time (in seconds) represent the average computing times of the data with 

homoscedasticity and heteroscedasticity.  
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Table 6.1  

Overall Performances of LDRs under Uncontaminated Data 

LDR 
Homogenous Covariance Heterogeneous Covariance 

Balanced Unbalanced Time Balanced Unbalanced Time 

CLDR 100% 0% 5s 100% 33.34% 5s 

RLDRMw 0% 0% 11s 0% 22.22% 11s 

RLDRWw 0% 55.56% 8s 0% 22.22% 9s 

RLDRV 0% 44.44% 4426s 0% 22.22% 4611s 

 

Table 6.1 indicates that the optimality is achieved by CLDR for uncontaminated and 

balanced data, regardless of the influence of heterogeneous covariance. The results 

concurred with theory of LDA that CLDR provides the best performance under 

normal distribution data. Although the proposed RLDRs do not produces the lowest 

misclassification error rate (best performance) at such conditions, but their 

performance is comparable to CLDR as disclosed in Table 5.28. 

 

The table also reveals that the performance of CLDR is affected by the discrepancy 

in group sizes. In the case of unbalanced sample sizes with homoscedasticity, the 

performance of the RLDRWw holds the best under most of the conditions (55.56%) 

and followed by the RLDRV (44.44%). With the influence of heteroscedasticity, the 

proposed RLDRs (RLDRMw, RLDRWw and RLDRV) provide the lowest 

misclassification error rates under most of the conditions (66.66%) for unbalanced 

and uncontaminated data. Therefore, to alleviate the effect of unbalanced sample 

sizes, coordinatewise based RLDRs via winsorized covariance (RLDRMw and 

RLDRWw) as well as distance based RLDRV are the better choice under 

uncontaminated data, regardless of the nature of covariance.  

 



206 

 

Besides misclassification error rates, the computing time of LDRs is also revealed in 

Table 6.1. The computing time is calculated across all investigated data conditions 

for balanced and unbalanced data, respectively. As observed in the table, 

heteroscedasticity shows no influence in the computing time of LDRs. On average of 

computing time, CLDR and the proposed RLDRs require similar computational 

times under uncontaminated data, regardless of the influence of heterogeneous 

covariance. Under the conditions of balanced sample sizes and uncontaminated data, 

CLDR is the choice in solving classification problem such that it provides the lowest 

misclassification error rate with the shortest time as well. Due to the effect of 

unbalanced sample sizes, the proposed RLDRs (RLDRMw, RLDRWw and RLDRV) 

are the better selections, providing lower misclassification error rates with acceptable 

time as compared to CLDR. Meanwhile, the distance based RLDRV shows lack of 

efficiency in computational aspect since it takes much longer than coordinatewise 

based RLDRMw and RLDRWw. For example, RLDRV used hours (4426 seconds) to 

solve the classification problem but RLDRMw (11 seconds) and RLDRWw (8 seconds) 

only take seconds of time. 

   

Besides the uncontaminated data, the overall performances of LDRs under 

contaminated data with homoscedasticity and heteroscedasticity are summarized in 

the Table 6.2. 
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Table 6.2  

Overall Performances of RLDRs under Contaminated Data 

LDR 
Homogenous Covariance Heterogeneous Covariance 

Balanced Unbalanced Time Balanced Unbalanced Time 

RLDRMw 37.37% 0.34% 11s 33.50% 0% 11s 

RLDRM 13.97% 0.84% 23s 15.66% 0% 23s 

RLDRWw 2.69% 6.06% 9s 4.21% 8.75% 9s 

RLDRD 1.35% 0.34% 4421s 1.01% 3.03% 4509s 

RLDRV 29.97% 84.00% 4456s 32.15% 82.83% 4538s 

RLDRT 14.65% 8.42% 19s 13.47% 5.39% 19s 

 

The proposed RLDRs outperform CLDR when data contamination occurred as 

presented in Table 6.2, thus indicating that the proposed RLDRs are robust towards 

contaminated data or outliers. Table 6.2 shows that RLDRMw provides the lowest 

misclassification error rates under most of the conditions for balanced contaminated 

data with homoscedasticity (37.37%) and heteroscedasticity (33.50%). The next 

superior performance goes to RLDRV at 29.97% and 32.15% under the conditions of 

balanced data with homogenous and heterogeneous covariance, respectively. For the 

unbalanced sample sizes, RLDRV achieves its optimality regardless of the influence 

of heterogeneous covariance. Up to 84% of the conditions, RLDRV performs 

excellently with lowest misclassification error rates among all investigated LDRs. 

 

Like in the uncontaminated data, the computing time is not affected by 

heteroscedasticity as shown in Table 6.2. Based on the average time, RLDRMw needs 

as little as 11 seconds to obtain the misclassification error rate while as much as 4456 

seconds are needed by RLDRV. The results of computational time revealed that 

RLDRs using coordinatewise approach are more efficient and can also produce low 
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misclassification error rates under balanced sample sizes. Although high 

computational time required by RLDRV for unbalanced sample sizes, RLDRV is still 

the most suitable selection since its produces the lowest misclassification error rate 

under most of the conditions as compared to others RLDRs.  

 

In short, coordinatewise based RLDRs using MOM estimators (RLDRMw and 

RLDRM) are suitable to solve the classification problems under the conditions of 

balanced sample sizes. Meanwhile, under the cases of unbalanced sample sizes, the 

appropriate choice goes to the distance based RLDRV. 

 

Besides simulation study, a diabetes data was used to verify the performance of the 

proposed RLDRs. As depicted in Table 5.25, the real data results disclose that the 

optimality performance goes to RLDRM (coordinatewise approach) and RLDRV 

(distance approach). Up to 90% of the observations are correctly classified into their 

respective groups through these two proposed RLDRs (RLDRM and RLDRV). The 

real data results also proven that RLDRV is the appropriate choice since it provides 

the best performance (lowest misclassification error rate via leave-one-out cross-

validation) for unbalanced sample sizes as discussed in the simulation study.  

 

As a conclusion, the simulation study showed that RLDRV (distance based approach) 

is able to provide a better performance in terms of minimizing the misclassification 

error rates but high computational time is required. For coordinatewise based 

approach, RLDRs using MOM estimators (RLDRM and RLDRMw) would be the 

better selections for good performance with shorter times. The results of real data 

application also proved that RLDRM and RLDRV perform well with low 
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misclassification error rates even when compared to the existing RLDRD, not to 

mention the CLDR. Across the simulation study, RLDRV can be considered as the 

best of all the investigated LDRs since it can perform well (with highest accuracy) 

under most conditions. Furthermore, the classification accuracy of RLDRV is proven 

even through real data study. 

 

With these alternatives RLDRs, the users of LDRs will not be constrained to the 

assumption of LDA and can work with the original data for classification problems. 

Therefore, the outcomes of this study may suggest that the proposed RLDRs 

(coordinatewise RLDRs using MOM estimators; RLDRM and RLDRMw as well as 

distance RLDRV) could be better alternatives to CLDR in solving the classification 

problems even under some violation of assumptions. These RLDRs are able to 

provide a more reliable discriminant rules which can alleviate the sensitivity problem 

of classical estimators in LDA. 

 

6.3 Limitations and Recommendations for Future Research 

Although this study is not a comprehensive study that fully covers all the situations 

that may be encountered in real life, but most of the conditions that affect the 

performance of LDR are considered and manipulated in the simulation study. Since 

all the conditions in simulation study were controlled, therefore the findings are 

limited to its simulation data. Nonetheless, those findings are believed to be reliable 

and applicable in real life.  

 

After studying and working on RLDRs using coordinatewise and distance based 

approaches for solving classification problems, there are some ideas or suggestions 
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that can be shared for future research. For future works, first with regards to the 

current work, a few improvements need to be look into such as in the case of 

coordinatewise estimators. These estimators are proven to be low in computational 

time as compared to distance based estimators, but some of the misclassification 

error rates are quite high especially under location contaminated data. Thus, this 

issue should be further addressed. 

 

For further investigation on discrimination ability of the proposed RLDRs, here are 

some recommendations for the interested researchers. Multiple-group discrimination 

problem could be considered since this study only focuses on the two-group linear 

discrimination problem. Through solving the multiple-group discrimination problem, 

a generalized discriminant rule via the proposed robust estimators can be obtained to 

solve the classification problems. In the simulation study, data are simulated from the 

multivariate normal distribution as in Equation 3.19 or Equation 3.20. Therefore, 

different types of distributions such as chi-square distribution, log-normal 

distribution or t-distribution could be used for simulated data. Unlike this study, 

besides same distributions are considered in simulating data for both groups, 

different distributions for the two groups could also be applied. With such simulated 

data, the discrimination ability of the proposed RLDRs can be tested. Last but not 

least, the current work can also be further continued to robust non-linear discriminant 

analysis using the latest distanced based estimator and compared with MVV 

estimators.  
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APPENDIX A: CODING OF CLDR 

  start_time = cputime; 

    [n,p] = size(datafull); 

        

    dim = p-1;       

    X1 = datafull(datafull(:,p)==1,1:dim); 

    X2 = datafull(datafull(:,p)==2,1:dim); 

     

    n1 = size(X1,1); 

    n2 = size(X2,1); 

    a = log (n2/n1); 

          

    mu1  = mean(X1); mu2  = mean(X2); 

    cov1 = cov(X1);  cov2 = cov(X2); 

 

    sigma  = ((n1-1)*cov1+(n2-1)*cov2)/(n1+n2-2); 

    linear   = (mu1-mu2)/(sigma); 

    constant = 0.5*linear*(mu1+mu2)'; 

    scores   = linear*datafull(1:n,1:dim)' - constant ; 

    group  = (scores < a) + 1; 

    miscl = mean(group ~= datafull(:,p)'); 

    end_time = cputime; 

    exec_time = end_time-start_time; 
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APPENDIX B: CODING OF RLDR 

   start_time = cputime; 

    [n,p] = size(datafull);      

    

    dim = p-1; 

    X1 = datafull(datafull(:,p)==1,1:dim); 

    X2 = datafull(datafull(:,p)==2,1:dim); 

     

    n1 = size(X1,1); 

    n2 = size(X2,1); 

    a = log (n2/n1); 

--------------------------------------------------------------------------------------------------- 

RLDRM 

    --------------------------------------------------------------------------------------------------- 

MS1 = zeros(n1,dim); 

    MS2 = zeros(n2,dim); 

    Madn_X1=zeros(1,dim); 

    Madn_X2=zeros(1,dim); 

 

 for i=1:dim 

   MS1(1:n1,i) = MOM_sample(X1(1:n1,i)); 

   MS2(1:n2,i) = MOM_sample(X2(1:n2,i)); 

   Madn_X1(i) = MADn(X1(1:n1,i)); 

   Madn_X2(i) = MADn(X2(1:n2,i));  

  end 

   

    Product_Madn_X1=Madn_X1'*Madn_X1; 

    Product_Madn_X2=Madn_X2'*Madn_X2; 

     

    mu1  = nanmean(MS1); mu2  = nanmean(MS2); 

    cov1 = corr(X1,'type','Spearman').*Product_Madn_X1(i);    

    cov2 = corr(X2,'type','Spearman').*Product_Madn_X2(i); 

--------------------------------------------------------------------------------------------------- 

RLDRMw 

    --------------------------------------------------------------------------------------------------- 

    MS1 = zeros(n1,dim); 

    MS2 = zeros(n2,dim); 

    WG1 = zeros(n1,dim); 

    WG2 = zeros(n2,dim); 

 

 for i=1:dim 

   MS1(1:n1,i) = MOM_sample(X1(1:n1,i)); 

   MS2(1:n2,i) = MOM_sample(X2(1:n2,i)); 

   WG1(1:n1,i) = WMADn_sample(X1(1:n1,i)); 

   WG2(1:n2,i) = WMADn_sample(X2(1:n2,i));  

end 

      

    mu1  = nanmean(MS1); mu2  = nanmean(MS2); 

    cov1 = cov(WG1);  cov2 = cov(WG2); 
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--------------------------------------------------------------------------------------------------- 

RLDRW 

    --------------------------------------------------------------------------------------------------- 

    WG1 = zeros(n1,dim); 

    WG2 = zeros(n2,dim); 

    Madn_X1=zeros(1,dim); 

    Madn_X2=zeros(1,dim); 

     

for i=1:dim 

   WG1(1:n1,i) = WMADn_sample(X1(1:n1,i)); 

   WG2(1:n2,i) = WMADn_sample(X2(1:n2,i));  

   Madn_X1(i) = MADn(X1(1:n1,i)); 

   Madn_X2(i) = MADn(X2(1:n2,i));  

end 

 

    Product_Madn_X1=Madn_X1'*Madn_X1; 

    Product_Madn_X2=Madn_X2'*Madn_X2; 

 

    mu1  = mean(WG1); mu2  = mean(WG2); 

    cov1 = corr(X1,'type','Spearman').*Product_Madn_X1(i);   

    cov2 = corr(X2,'type','Spearman').*Product_Madn_X2(i); 

--------------------------------------------------------------------------------------------------- 

RLDRWw 

    --------------------------------------------------------------------------------------------------- 

    WG1 = zeros(n1,dim); 

    WG2 = zeros(n2,dim); 

     

for i=1:dim 

   WG1(1:n1,i) = WMADn_sample(X1(1:n1,i)); 

   WG2(1:n2,i) = WMADn_sample(X2(1:n2,i));  

end 

 

    mu1  = mean(WG1); mu2  = mean(WG2); 

    cov1 = cov(WG1);  cov2 = cov(WG2); 

--------------------------------------------------------------------------------------------------- 

RLDRV 

    --------------------------------------------------------------------------------------------------- 

   [T1,S1]= real_MVV(X1); 

    [T2,S2]= real_MVV(X2); 

     

    mu1=T1; mu2=T2; 

    cov1 =S1; cov2 =S2; 

--------------------------------------------------------------------------------------------------- 

RLDRT 

    --------------------------------------------------------------------------------------------------- 

[T1,S1]= alpha_trimmed_mean(X1); 

[T2,S2]= alpha_trimmed_mean(X2); 

     

mu1  = T1; mu2  = T2; 

cov1 = S1;  cov2 = S2; 
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    sigma  = ((n1-1)*cov1+(n2-1)*cov2)/(n1+n2-2); 

    linear   = (mu1-mu2)/(sigma); 

    constant = 0.5*linear*(mu1+mu2)'; 

    scores   = linear*datafull(1:n,1:dim)' - constant ; 

    group  = (scores < a) + 1; 

    miscl = mean(group ~= datafull(:,p)'); 

    end_time = cputime; 

    exec_time = end_time-start_time;    
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