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1. Introduction 

The blast furnace is a metallurgical reactor that operates countercurrent with the descending metallic 
charge and ascending gases. Cast iron is the product formed by reducing metal oxides that react 
chemically with reducing elements such as carbon monoxide (CO) and hydrogen gas (H2). In this 
process, the air is preheated and then blown through the tuyeres, producing carbon dioxide (CO2), 
which reacts with the coal to form carbon monoxide. The moisture in the air reacts with the coke and 
PCI to form carbon monoxide and hydrogen [1]-[4]. 

Monitoring the blast furnace is of utmost importance for producing a quality product. The reactor 
uses metallic feedstocks (sinter, pellets, granulated ore) and solid fuels (coke metallurgical) as basic raw 
materials, as well as fluxes (limestone and dolomite) and auxiliary injections (pulverized coal, natural gas, 
and biomethane) [5]-[8]. 

The behavior of the leading chemical elements composing the metallic charge has been studied in 
detail. The elements affecting the final quality of the steel can be limited to carbon, silicon, manganese, 
phosphorus, and sulfur. Of these elements, silicon has received the most attention as it is often 
considered detrimental to the process. Control of silicon content is essential in the production of cast 
iron, as this impurity is detrimental to most steels [9][10].  

The silicon content in cast iron is an essential indicator of the thermal condition of a blast furnace 
and can therefore reflect the quality of the steel. High values of silicon content indicate increased heat 
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input into the furnace and, in some cases, may indicate excess coke in the furnace. Since coke costs 
predominate in the production of cast iron, tighter control of silicon content has economic advantages. 
In order to improve production conditions, several models have been proposed in the field of technology 
and modeling to simulate blast furnaces and predict the effects of changes in production parameters 
[11]-[14].  

The application of solutions based on neural networks has become very popular due to their versatility 
and the possibility of developing answers and making them more reliable, as the neural network receives 
new data during the training process. The application of the neural network technique in steel 
production is new, and there are few works on this topic, mainly for the control of impurities such as 
silicon [17]-[19].  

In this context, the main objective of this work was to build the source code of a Bayesian artificial 
neural network to determine the number of neurons with the best results for predicting the silicon 
content in cast iron, varying the number of neurons in the hidden layer by 10, 20, 25, 30, 40, 50, 75 and 
100 neurons. 

2. Method 

The database consists of 75 variables (divided into 7 groups) corresponding to 3.5 years or 1150 
operating days and 86,250 cells. According to the literature, the input variables were selected based on 
the influence of silicon incorporation in hot metal. The silicon prediction model uses variables such as 
theoretical flame temperature, blowing pressure, slag rate, coke rate, and PCI rate. These variables were 
the most important variables considered in the construction of the model, but the blast furnace has a 
large number of process variables that affect the silicon content. 

The selection of variables for the construction of a database is not an easy and trivial task since 
including too many secondary variables can make the training and learning of the neural network 
difficult. On the other hand, the accuracy of the artificial neural network may deteriorate if important 
variables are omitted when training the model, which may lead to overestimating the data. The variables 
selected for the database were defined based on the experience of operators, technicians and engineers 
in the metallurgical sector. Thus, the selected database considered seven groups that affect the operation 
of the blast furnace and the incorporation of silicon into the hot metal. The considered division was (1) 
blowing air; (2) blast furnace gas; (3) thermal control; (4) fuels; (5) iron ore; (6) hot metal; (7) blast 
furnace slag. 

Blowing air, control of blowing air (pressure, velocity, volume), is essential for process control as it 
provides information on deviations in reactor operation. Blast furnace gas, control of blast furnace gas, 
is important to control carbon consumption (coal and PCI), specific airflow, and permeability. Thermal 
control, this group of variables is essential to control the reactor performance, and the quality of the hot 
metal since the dissolved silicon in the cast iron is directly proportional to the reactor's operating 
temperature and the quality of the metallic charge fed through the blast furnace head. Fuels: 
Metallurgical coke and PCI combine with oxygen to allow the reactor to reach temperatures of about 
1,500º Celsius to smelt iron ore. Iron ore: quality control of the iron ore and fluxes is important to 
reduce unwanted impurities such as silicon. Hot metal and slag: Blast furnace slag is obtained by melting 
and separating metal slags and mainly consists of stable oxides such as (MgO), (CaO), (Al2O3) and (SiO2), 
which account for up to 95% by weight. Hot metal/slag control is important as impurities should 
preferably be part of the chemical composition of blast furnace slag [15]. 

2.1. Outliers and probabilistic reasoning 

In this work, two techniques were used to identify and remove outliers to create a database 
corresponding to the normal operation of the blast furnace. The first technique considered the 
maintenance events and operational instabilities as "technical outliers", since these events do not 
represent the "normal operation" of the reactor and would affect the learning of the neural network. 
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The second technique used the principle of exploratory data analysis, which consisted of locating the 
variables classified as severe outliers. A Gaussian normal distribution of all input variables was performed 
and all localized data (-3σ and -4σ) and (3σ and 4σ). There were 345 classified as severe outliers and 
removed from the database. Fig. 1 illustrates the region of severe outliers [16]. 

Measures of central tendency include mean, median, and mode, while measures of variability include 
standard deviation, maximum, and minimum values. Table 1 to Table 7 present the descriptive statistics 
of the input variables, while Table 8 presents the descriptive statistics of the output variables (silicon). 

 

Fig. 1.  Identification of outliers 

Table 1.  Blast Furnace Gas 

Variable Mean Std_dev Minimum Median Maximum 

CO 23.8 0.74 21.1 23.91 26.71 

CO2 24.3 0.66 21.9 24.41 26.1 

N2 47.2 1.39 44.8 46.83 53.87 

H2 4.5 0.43 3 4.53 5.85 

CO + CO2 47.9 0.6 44 48.1 48.1 

CO efficiency 49.5 0.85 46.07 49.51 52.36 

H2 efficiency 40.7 3.25 12.8 40.8 51.64 

Table 2.  Blow air 

Variable Mean Std_Dev Minimum Median Maximum 

Volume 4852.9 148.6 4251.2 4854.1 5395 

Pressure 3.87 0.1 3.44 3.89 4.1 

Moisture 19.81 3.73 12.07 19.8 27.93 

O2 enrichment 5.27 0.95 2.91 5.27 6.89 

Steam 1.51 1.01 0.1 1.39 6.63 

Comsumption 7030.3 213.6 6112.8 7030.3 7824.4 
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Table 3.  Hot metal 

Variable Mean Std_Dev Minimum Median Maximum 

Estim. production 7789.5 314.5 7014.4 7856.8 8526.8 

Real production 7787.2 324.5 324.5 7836.1 8563.9 

Carbon 4.635 0.169 3.788 4.625 5.173 

Chrome 0.025 0.002 0.019 0.025 0.042 

Copper 0.007 0.001 0.004 0.007 0.009 

Manganese 0.29 0.03 0.22 0.29 0.36 

Mn ratio 0.13 0.22 0.09 0.16 0.7 

Table 4.  Thermal control 

Variable Mean Std_Dev Minimum Median Maximum 

Hot metal 1508.3 12.2 1470.4 1508.7 1542.7 

Blowing air 1243.3 13.9 1200.8 1238.3 1249.8 

Top gas  121,35 10,34 90,98 120,98 179,25 

Flame temp. 2177.6 2108 2071.8 2178.6 2243.2 

Slag 1508.3 12.2 1470.4 1508.7 1542.7 

Thermal index 504.7 54.03 364.77 516.41 659 

Table 5.  Slag 

Variable Mean Std_Dev Minimum Median Maximum 

Slag rate 246.99 13.74 206.2 247.95 295.72 

B2 basicity 1.2 0.04 1.04 1.2 1.3 

B4 basicity 1.07 0.04 0.91 1.07 1.16 

Al2O3 10.71 0.62 6.92 10.69 12.54 

CaO 43.06 1.55 32.5 43.25 45.42 

Sulfur 1.15 0.14 0.7 1.14 1.8 

FeO 0.42 0.04 0.32 0.42 0.5 

MgO 6.83 0.86 4.44 7.05 8.65 

MnO 0.31 0.1 0.06 0.3 0.8 

SIO2 36.05 1.36 27.3 36.21 39.6 

TIO2 0.58 0.05 0.43 0.58 0.72 

Production 1980.6 190.8 1494.9 1974.1 2466.3 

Mn ratio 0.87 0.22 0.3 0.84 0.91 

Table 6.  Minerals 

Variable Mean Std_Dev Minimum Median Maximum 

Ore/Coque 5.1 0.31 3.82 5.15 6.27 

Sinter 
4536.3 884.2 190.2 4709.3 5983 

1697.2 1326.2 50.6 1354.8 5297 

Pellet 
5132 1898.3 13.9 5790.7 7803.6 

4813.7 2183.1 53.7 5696 7626.7 

Total metal load 12312 670 10010 12238 13506 

Raw material rate 1578.8 15.1 1528.6 1577.9 1618.5 

Ore (%) 8.9 4.5 0.6 9 18 

Sinter  (%) 39.6 2.8 32.9 40 49 

Pellet  (%) 51.5 5.1 42 51.4 65 

Ore (day) 12747 703 10170 12845 14093 
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Table 7.  Fuel 

Variable Mean Std_dev Minimum Median Maximum 

Injection PCI 58.99 6.16 41.89 57.88 72.29 

Gas rate - - - - - 

Coal/O2 tax 755.27 75.57 562.99 745.94 933.38 

Coal/air tax 170.03 74.12 2.15 191.76 265.25 

PCI rate 175.98 15.61 132.16 176.17 219.74 

Direct reduction 23.38 12.41 3.11 29.58 35.21 

PCI tax 1078.3 540.9 12.2 1297.9 1845.6 

Coke total 1932.2 911.7 23.2 2348 3365.2 

Small coke 294.63 134.86 3.63 334.93 672.1 

Coke 

210.7 259.8 1 137.5 2133 

742 716 22 219 1769 

946 956 39 265 2597 

1878 143 1777 1878 1979 

1327.5 847.6 15.9 1822 2649.6 

Moisture 6.4 1.41 1.29 6.48 13.74 

Coke/load 11.89 9.56 2.11 2.96 42.44 

Small coke total 4.28 0.03 4.26 4.26 4.32 

PCI/load 174.74 14.32 16.73 175.3 212.27 

Fuel rate/load 484.08 18.14 362.91 482.35 599.5 

Coke total/load 24.52 0.89 22.25 24.24 27.8 

PCI/day 1214.4 44.9 1136.6 1222.1 1299.2 

Coke rate 319.68 25.98 272.82 318.84 417.68 

Table 8.  Output variable 

Variable Mean Std_Dev Minimum Median Maximum 
Silicon (%) 0.337 0.100 0.107 0.315 0.727 

 

2.2. Neural network architecture 

According to the literature, it is ideal to use 85% of the data to train and validate the neural network's 
learning process and use the remaining 15% only when the network shows performance considered 
satisfactory in the initial phase. Test data is used in the mission to evaluate the generalization and learning 
ability of the neural network. It is important to test the neural network to ensure that the results 
obtained are consistent with the training steps [17]-[22]. The training phase consists in presenting ANN 
a set of data for learning and processing the synaptic weights and subjecting them to the activation 
functions of the neurons. The database was divided into 3 groups: Training, Testing, and Cross 
Validation. Table 9 illustrates the division of the database. 

Table 9.  Division of variables 

Step Variables 

Training 850 

Test 150 

Cross-validation 150 

TOTAL 1150 

 

In this study, feedforward-type artificial neural networks were used. The signal always propagates 
forward from input to output, and the neurons of one layer are not connected to the neurons of the 
previous layer. It does not feedback the output information to the network's inputs [23]. Artificial neural 
networks have 10, 20, 25, 30, 40, 50, 75, and 100 neurons in each layer. Fig. 2 illustrates the architecture 
of the artificial neural network. 
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Fig. 2.  Neural network architecture 

In this study, Bayesian regularization algorithm was used because elaborating a neural network to 
predict the silicon content in hot metal is a difficult task. It is necessary to structure hierarchical models 
and control the complexity of learning. In other words, it is necessary to know how many parameters 
and hyperparameters are needed to obtain an adequate representation of the algorithm that generates 
the data [24]. 

This problem becomes complicated when we have limited training data. A complex model usually 
fits the training data very well, but this does not necessarily mean that the error in testing the algorithm 
will be small. Very simple or very complex models give poor approximations. In this sense, it is necessary 
to establish a measure (based on a principle) of the neural models' complexity to have a criterion that 
allows the preference of certain models [25]. 

Since the information on the training error does not provide information on which neural model 
provides the best generalization, the complexity problem was first solved by dividing the available data 
into 3 sets, the so-called training set and 2 other sets used for testing and validation to solve the neural 
model complexity problem [26-29]. 

The Bayesian regularization approach is suitable for complex problems such as the blast furnace 
simulation because it deals with the complexity problem in a very different way and, among other things, 
it allows more efficient use of the available data since the validation data set is not needed and can be 
used as part of the training set [30]. 

In summary, the Bayesian method allows data modeling at two levels of inference. The first level of 
inference involves the computation of the neural network parameters and hyperparameters, which is 
typically one of the tasks in fitting the model to the training data, and the second level of inference 
involves the task of model comparison, which basically favors certain models based on their complexity, 
as described in Fig. 3. 

 

Fig. 3. General diagram of data modeling 
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The figure above illustrates the parts involved in processing the collected and modeled data. The two 
red boxes denote two steps involved in the Bayesian inference process. The first box involves the 
inference of parameters and hyperparameters of the neural model based on the data. The second level of 
inference involves the task of comparing models. Occam's razor principle is used to generalize complex 
models [31]. 

2.3. Model validation  

 The usual method for evaluating a neural network model is to use the MSE (mean square error) 
results, because the lower the values found, the better the predictive capacity. Equation (1) illustrates 
the MSE between the actual and predicted values [32]. 

Pearson's correlation coefficient (R) is also used to validate the model. However, this parameter evaluates 
the linear relationship between input and output variables, i.e., the correlation coefficient R does not 
evaluate the quality of the neural model, but the mathematical correlation between the neural network 
response and the target values of the database [33]. Pearson's correlation coefficient (R) is presented in 
Equation (2). 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝐶𝑛𝑒𝑢𝑟𝑎𝑙 − 𝐶𝑟𝑒𝑎𝑙 )

2𝑛
𝑖=1              (1) 

𝑅 = √[∑ (𝑌𝑛𝑒𝑢𝑟𝑎𝑙 − 𝑌𝑟𝑒𝑎𝑙 )
2𝑛

𝑖=1 ] [∑ (𝑌𝑟𝑒𝑎𝑙 − 𝑌𝑛𝑒𝑢𝑟𝑎𝑙 )
2𝑛

𝑖=1 ]⁄   (2) 

Where (n) is the number of observations, (Yneural) is the value calculated by the artificial neural network, 
and (Yreal) is the value measured during the blast furnace operation. Pearson's correlation coefficient 
(R) varies from 0 to 1. The closer it is to 1, the greater the correlation between the input and output 
variables. The correlation classification as a function of the obtained coefficient is shown in Table 10. 

Table 10.  Pearson's correlation coefficient scale 

Correlation coefficient Variables 
0.0 < R ≤ 0.1 Very poor correlation 

0.1 < R ≤ 0.3 Poor correlation 

0.3 < R ≤ 0.5 Moderate correlation 

0.5 < R ≤ 0.7 Strong correlation 

0.7 < R ≤ 0.9 Very strong correlation 

0.9 < R ≤ 1.0 Extremely strong correlation 

3. Results and discussions 

It was found that the larger the number of neurons in the hidden layer, the lower the Pearson 
correlation coefficient. However, it was found that the neural networks with 50, 75, and 100 neurons 
showed better performance in predicting silicon when the content of this element was higher than 0.5%, 
despite a lower mathematical correlation (1% on average). Table 11 shows that the neural networks gave 
similar results to the dataset. It is noticeable that the treatment and removal of outliers before modeling 
the neural networks was crucial for the performance of the results. 

Table 11.  Descriptive statistics 

Silicon (%) 

10 neurons 20 neurons 25 neurons 30 neurons 

0.339 ± 0.103 0.339 ± 0.102 0.338 ± 0.103 0.339 ± 0.102 

40 neurons 50 neurons 75 neurons 100 neurons 

0.340 ± 0.102 0.335 ± 0.103 0.338 ± 0.101 0.338 ± 0.102 

DATASET 
0.102 

 

The models working in isolation show good and converging results for predicting silicon content in 
hot metal. When analyzing Fig. 4 in terms of MSE values during training, testing and cross-validation, 
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no differences were found that could indicate the presence of overfitting, i.e. when the model has a small 
error during training, or underfitting, i.e. when the model cannot generalize the problem and has high 
MSE values during training and testing, or difficulties in convergence when training the model. 
Although all neural networks converged and presented reliable results, neural networks with 20, 25 and 
30 neurons showed the best overall results; 

 

Fig. 4.  Mean Square Error 

When training the neural network, the MSE value decreased as the number of neurons increased. In 
the present study, the neural networks were configured to be trained in up to 1000 epochs. The network 
with 100 neurons required more epochs (892 epochs) to achieve convergence. Pettersson et al. [8] argue 
that neural networks for predicting silicon in hot metal have a more erratic behavior that hinders the 
convergence of results. However, this fact was not found in this study, probably because the database 
resembles a large data set and probably this large data set caused the neural network to converge and 
present excellent results. 

Complementarily, the Pearson correlation coefficient (R) was calculated for each neural network and 
it was found that the results presented are better than those predicted in the literature [2-8], and [22-
34]. The analysis of Fig. 5 shows an excellent mathematical correlation between the database (target) 
and the values predicted by the neural network. 

 

Fig. 5.  Pearson's correlation coefficient 

Based on the results found, a comparison was made with the other models mentioned in this paper 
to evaluate the neural network's performance with 30 neurons as shown in Fig. 6 and Table 12. 
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Fig. 6.  Scatterplot of actual values versus neural values of silicon content (30 neurons) 

Table 12.  Comparison between the committee machine and models reported in the literature. 

 Ge [2] 

(1999)  

Pettersson et al. [8] 

(2007) 

Dobrzaski et. al [22] 

(2015) 

Bayesian regularization 

(this paper) 

MSE 0,0098 0.0086 0.9695 0.000215 

Pearson (R) - - - 0.98864 

It can be concluded that the results of this work were superior to the models reported in the 
literature, indicating that the use of a Bayesian regularization algorithm in complex modeling situations 
is a beneficial alternative to refine the results. 

In the context of a technical discussion, can mention that silicon content in hot metal is an important 
quality parameter that needs to be monitored as it serves as a thermal indicator for the blast furnace. 
Low silicon levels indicate a possible cooling of the reactor and require countermeasures to avoid serious 
problems in the operation. Since the silicon in the process comes from the raw materials, especially from 
the coke ash and the gangue of the metallic charge, the use of raw materials with low variations in 
composition is one of the ways to control the content obtained in production and keep it as constant as 
possible at its optimal level. It is also worth noting that the excess of silicon in the hot metal requires a 
greater amount of calcium oxide (CaO) in the steel plant to perform refining, which leads to a greater 
amount of slag and higher costs. Therefore, silicon content prediction models are a useful tool to work 
with lower safety margins, optimize fuel consumption and improve the efficiency of the steelmaking 
process [35]-[39]. 

The mechanism of silicon incorporation into hot metal occurs in 2 ways. The first begins with the 
formation of silicon oxide (SiO) from the silicon in the coke ash in an area of the blast furnace known 
as the raceway. The gas [SiO(g)] formed in this area rises and is dissolved in the slag as silicon dioxide 
(SiO2) or in the hot metal as silicon. The second possibility is the reduction of silicon oxide [SiO(g)] by 
carbon dissolved in the hot metal [40]-[43]. There is also the possibility of reoxidation of silicon in the 
hot metal when the cast iron chemically interacts with iron oxide (FeO) dissolved in the slag according 
to Equation (4) and (5) and Equation (6). 

𝑆𝑖𝑂2(𝑎𝑠ℎ 𝑐𝑜𝑘𝑒) + 𝐶 → 𝑆𝑖𝑂(𝑔) + 𝐶𝑂(𝑔)  (3) 

𝑆𝑖𝑂(𝑔) + 𝐶(𝑐𝑎𝑠𝑡 𝑖𝑟𝑜𝑛) → 𝑆𝑖(𝑐𝑎𝑠𝑡 𝑖𝑟𝑜𝑛) + 𝐶𝑂(𝑔)  (4) 

𝑆𝑖𝑂(𝑐𝑎𝑠𝑡 𝑖𝑟𝑜𝑛) + 2𝐹𝑒𝑂(𝑠𝑙𝑎𝑔) → 𝑆𝑖𝑂2(𝑠𝑙𝑎𝑔) + 𝐹𝑒(𝑙)  (5) 

𝑆𝑖𝑂2(𝑠𝑙𝑎𝑔) + 2𝐶(𝑐𝑎𝑠𝑡 𝑖𝑟𝑜𝑛) → 𝑆𝑖(𝑐𝑎𝑠𝑡 𝑖𝑟𝑜𝑛) + 2𝐶𝑂(𝑔)  (6) 
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The main parameters affecting the SiO gasification rate and SiO reduction to silicon dissolution, and 
thus the silicon content in hot metal, are: (1) a high value of adiabatic flame temperature (RAFT), which 
produces a higher amount of gaseous silicon oxide, while low RAFT values decrease the temperature of 
the hot metal; (2) the increase of total gas pressure, which decreases the rate of formation of gaseous 
silicon oxide; (3) the wettability between coke and slag, where the decrease of wettability decreases the 
silicon incorporation rate; (4) the chemical composition of the slag: An increase in the basicity of the 
slag increases the oxidation rate of SiO to SiO2; (5) the increase in the heat flow ratio (HFR) decreases 
the location of the cohesive zone, which decreases the oxidation rate of gaseous silicon oxide [44]-[47]. 

The knowledge of neural networks is stored in the synaptic weight of neurons (w), so that the 
importance of a given variable is related to the weight high weight (w) has a greater impact on the output 
of a neuron than a neuron with a low of that neuron in the model. Thus, a weight. Therefore, the most 
important variables for each model are those with the highest weight (w). As for the silicon prediction 
model, the most important variables were sinter and blowing air. Sinter contains SiO2, which serves as 
a Si source for hot metal, explaining its influence on the model. As for blowing air, higher values favor 
more blowing and affect the thermal level of the blast furnace, which affects the silicon content in the 
hot metal [48]. 

Other variables that also affect the silicon content are the enrichment of O2, the pressure, and the 
blowing rate in the tuyeres. These variables can affect the shape, thickness, and position of the cohesive 
zone and the conditions for SiO formation and, consequently, the silicon content in the hot metal. For 
example, low permeability may indicate a thicker cohesive zone. An increase in the enrichment content 
of O2 tends to increase the temperature of the blast furnace and decrease the amount of nitrogen injected, 
thereby increasing the thermal level and favoring the permeability of the blast furnace. Thus, a high or 
thicker cohesive zone tends to increase the silicon content in the hot metal as well as a higher thermal 
level which favors the conditions for the incorporation of silicon into the hot metal, which may indeed 
be influenced by variables [49]-[51]. 

In conclusion, the silicon contained in the iron ore loaded through the upper part of the reactor is 
released into the hot metal and the slag, so that using the binary basicity (CaO/SiO2) and by calculating 
the mass balance, it is possible to determine the silicon content in the hot metal, which underlines the 
importance of controlling the conditions affecting the basicity of the slag and the quality of the cast iron 
produced. 

4. Conclusion 

Regarding simulation methods for predicting process variables, the increasing development of 
computing capacity, leading to cheaper and cheaper devices with larger capacity, is driving the 
development of more complex algorithms with better results, as is the case with neural networks. 
Therefore, it is concluded that advances in computing capacity are enabling the development of models 
to simulate complex processes. Data processing and outlier identification are essential to ensure that 
models converge. The choice of interdependent variables, such as the composition of the top gas and 
the basicity of the slag, has made the model more effective; When we apply the technique of the synaptic 
weight, we can mention that ANN confirms that the theoretical flame temperature, blowing pressure, 
and coke rate positively affect the silicon content in hot metal. This is consistent with the literature, as 
the theoretical flame temperature increases the channel's temperature and favors the rate of SiO gas 
formation, while the blowing pressure and the coke rate favor the incorporation of silicon into the cast 
iron and increase the heat input of the blast furnace. On a smaller scale, synaptic weight analysis showed 
that slag rate had a small effect on changing silicon content, suggesting that this variable does not directly 
contribute to the mechanism of silicon incorporation into cast iron. Also, on a smaller scale, the analysis 
of synaptic weights showed that the production rate of coke and hot metal (increase in daily production) 
favors an increase in the sulfur content of hot metal, while (CaO) and (MgO) vary inversely 
proportionally. Although all neural networks with 20, 25, and 30 neurons produced converged and 
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produced reliable findings; however, Bayesian neural networks can be employed in practice since the 
actual values and the values calculated by the neural network have a great correlation. 
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