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Abstract

New Theoretical work in urban economics suggests that urban
population density contours are inherently discontinuous. This
result calls into question the standard practice of estimating
smooth density contours and points to the need for an estimation
technique capable of capturing discontinuities. The paper applies
such a technique (Quandt's switching regression method) to the

estimation problem. Density contours with marked discontinuities
emerge from the empirical work.





A Switching Regression Analysis of

Urban Population Densities

by

Jan K. Brueckner*

No empirical relationship in urban economics has been studied more

thoroughly than the relationship between population density and dis-

tance to the city center. While the pioneering paper of Clark (1951)

did not rely on an explicit theoretical framework, recent studies have

been designed to test the Muth (1969)-Mills (1972) model of urban spa-

tial structure, which predicts an inverse relationship between density

and distance. A representative group of recent studies includes Muth

(1969), Mills (1970), Kau and Lee (1976), McDonald and Bowman (1976),

Glickman and Oguri (1978), and Anderson (1982). A common practice is

to fit a negative exponential function to the data, although some

papers experiment with other specifications.

While past studies have generally estimated smooth population

density contours, a new body of theoretical work in urban economics

suggests that density contours are inherently discontinuous. The

new theoretical literature (see, for example, Anas (1978), Brueckner

(1980), Brueckner and von Rabenau (1981), and Wheaton (1982)) focuses

on an aspect of urban structure entirely omitted in the Muth-Mills

analysis: the durability of housing capital. Rather than invoking

the Muth-Mills assumption that housing capital is perfectly malleable,

which allows the city to be reconstructed each period as underlying

conditions change, the new literature recognizes that the replacement

of buildings is costly and infrequent. A key insight afforded by the
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new analysis is that since population density (which depends on

building heights and dwelling sizes) will reflect economic conditions

(rents, land values, etc.) prevailing at a neighborhood's construction

date, the spatial pattern of building ages in a city will be an impor-

tant determinant of the pattern of densities. In particular, when the

age pattern exhibits the discontinuities which result from spatial re-

development waves (with old neighborhoods adjacent to brand new ones),

the age-density link will generate a corresponding discontinuity in the

population density contour. Given that discontinuous age patterns will

be a typical outcome of the redevelopment process, the existence of

density discontinuities becomes an inescapable implication of the

theory.

As should be clear from the above discussion, the new urban models

call into question the accepted practice of estimating smooth population

density contours. While such a procedure will capture the overall spa-

tial trend of densities in an urban area, it may mask great irregular-

ity. To capture the discontinuous density patterns predicted by the new

literature, an estimation technique capable of handling discontinuities

is clearly required. The purpose of the present paper is to apply such

a technique (Quandt's (1958) switching regression technique) to the esti-

2
mation problem. Density contours are estimated for 77 city samples

using data compiled by Kau and Lee (1976) and Anderson (1982).

Application of the switching regression technique requires formula-

tion of a criterion for choosing the number of "switches" (the number

of potential discontinuities in the estimated contour). A novel feature

of the present approach is that this choice is viewed as a problem in
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model selection. The model selection criteria recently introduced by

Hannan and Quinn (1979), Akaike (1977), and Risannen (1978), which

modify the Information Criterion of Akaike (1973), are used to deter-

mine the number of switches in the estimated density contours.

The plan of the paper is as follows. The next section presents

a more detailed discussion of how discontinuous density contours are

generated in an urban model. The third section of the paper discusses

the switching regression technique and explains the model selection

criteria. The fourth section presents selected empirical results,

while the fifth section investigates the effect of joint estimation of

population density and building age contours. The last section offers

conclusions.

2. Building Age Variation and Density Discontinuities

To better grasp how discontinuous population density contours

emerge as a result of spatial variation in building ages, it is help-

ful to consider a concrete example based on the model of Brueckner

(1980). By assuming that producers are myopic with regard to future

housing prices (current prices are expected to last forever) and by

imposing Cobb-Douglas utility and production functions, the analysis

yields an especially simple theoretical result: the lifespan of

buildings (the length of the interval between construction and re-

placement) is the same regardless of location and initial construction

date. This result leads to a very simple evolutionary process for a

growing city, as seen in the following example.

First, suppose for purposes of illustration that the uniform life-

span of buildings is three years (time and distance are measured in
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discrete units). Next, assume that the city grows spatially by one

block each year, starting from a diraensionless point at time zero.

Table 1 shows the city's age-distance profiles for t=3,4,8 under these

assumptions (blocks are numbered moving outward from the city center).

The cyclical nature of the age pattern emerging from the model is high-

lighted in the upper panel of Figure 1, which shows the pattern for

t=8.

-
Table

Building Age

1

Contours

(t=3) (t==4) (t-=8)

Block // Age Block // Age Block # Age
1 2 1 1 1

2 1 2 2 2

3 3 1 3 2

4 4

5

6

7

8

1

2

1

To deduce the implications of a cyclical building age pattern for

the spatial behavior of population densities, the separate effects of

age and distance on density must be considered. First, an implication

of the model is that holding building age fixed, density declines with

distance to the city center. Referring to Table 1, this result implies

that density will be lower, for example, in block 6 than in block 3 at

t=3. The model, however, is ambiguous about the partial effect of age

on density. Whether density is an increasing or decreasing function of

a block's construction date depends on the growth rates of the various

exogenous variables in the model. For certain parameter values, density
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is a decreasing function of the construction date for any given loca-

tion, while for other values the relationship is reversed.

Consider the implications of the first case by referring to the

upper panel of Figure 1. Within each of the three segments of blocks,

1-2, 3-5, and 6-8, age declines with distance, so that more distant

blocks have more recent construction dates. When density is a decreas-

ing function of the construction date, it follows that the negative

pure distance effect on density felt within each block segment is rein-

forced by the negative effect of lower ages at greater distances, "and

density declines unambiguously within the segment. Between block seg-

ments, however, age increases discontinuously from zero to 2, and the

negative distance effect is swamped by a much larger positive effect

due to a higher age. The result is a discontinuous increase in popula-

tion density between blocks 2 and 3 and blocks 5 and 6. The implied

3
spatial pattern of densities is shown in the second panel of Figure 1.

When density is an increasing function of a block's construction

date, the outcome is quite different. Within block segments, the nega-

tive pure distance effect is offset by the positive effect of lower

ages at greater distances, and the net change in population density is

ambiguous (density may even increase with distance within segments).

Between segments, however, the discontinuous increase in age leads to

a discontinuous decrease in density, with the negative pure distance

effect reinforced by a large negative age effect. The implied spatial

pattern of densities is shown in the bottom panel of Figure 1 (density

• v • ^
*

is assumed to increase within segments).



age

density

block

density

3 4 7 8 block

Figure 1.
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A previous paper (Brueckner (1981)) applied Quandt's (1958)

switching regression technique to the estimation of discontinuous age

contours like the one shovm in Figure 1 for several U.S. cities. Al-

though the estimated contours did not exhibit the orderly cyclical

pattern shown in the Figure, marked discontinuities emerged neverthe-

less. The remainder of the present paper shifts attention to the lower

panels of Figure 1 and the estimation of density contours. The next

section describes the estimation technique.

3. Estimation Technique

The basic elements of the estimation technique are simply described.

The data, which consist of observations on census tract population

densities and tract distances from the city center, are arranged in

ascending order of distance. To estimate a density contour with, say,

one switch, a pair of semi-log regressions is computed for each pos-

sible location of the switchpoint (one regression for each segment of

the contour) . The switchpoint location and associated segment para-

meters which yield the highest value of the likelihood function are

chosen. Assuming that errors are i.i.d. normal and that segments one

and two have n and n = T-n observations respectively (T is the sample

size) , the maximized likelihood function equals

-(n log^ + n
2
loga

9
) + c, (1)

A 2
where c is a constant and a. = SSR./n., with SSR. being the sum of

l l l ' l

squared residuals for segment i. The switchpoint location (the value

of n ) is chosen to maximize (1). For higher numbers of switches, the
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procedure is similar except that the number of possible joint switch-

point locations rises dramatically (the expression analogous to (1)
s+1 a6

is -£ n.loga. + c, where s is the number of switches)..,11
i=l

Although estimation of the density contour for a given number of

switches s is straightforward, the problem posed by the fact that the

correct value for s is unknown is a source of difficulty. In esti-

mating age contours, Brueckner (1981) solved this problem by applying

an ad hoc method based on a suggestion of Quandt (1958). The method

exploits Quandt' s observation that the distribution of -21ogL /L
s s+1

2
will be approximately x with four degrees of freedom, where L and

s

L ., give the likelihood function values with s and s+1 switches re-
s+1 tJ

spectively. Under the method, the null hypothesis of zero switches

2
is first tested against the alternative of one switch using the x

statistic with s=0. If the null hypothesis is rejected, a new null

hypothesis of one switch is tested against an alternative of two. The

process continues until the null hypothesis of s* switches cannot be

rejected in favor of the alternative of s*+l (s* is then identified as

the optimal number of switches).

While this method has the appealing feature that an extra switch

is justifiable only if the resulting increase in the log likelihood

is large enough, its drawbacks are that the distribution of the test

2
statistic may not be close to x because of the discrete nature of the

2
switchpoint location and that the individual x tests are not indepen-

p

dent. In view of these difficulties, the present paper views the

choice of s as a problem in model selection. Under Akaike's (1973)

Information Criterion for model selection (denoted AIC) , the quantity
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21ogL 2K

„, +^r~ (2)

is computed for each model specification r, where L is the maximized

value of the likelihood function for specification r, K is the number
r

of unknown parameters in specification r, and T is the number of obser-

vations. The model specification is chosen to minimize (2). Note that

as the number of parameters increases, the second term in (2) rises

while the increase in the likelihood value reduces the first term. The

model size which minimizes (2) thus strikes a balance between complexity

and goodness of fit.

Recognizing that the criterion (2) is inconsistent, tending to

favor excessively large models, Hannan and Quinn (1979), Akaike (1977),

and Risannen (1978) have proposed consistent modifications of it.

Hannan and Quinn (hereafter HQ) propose replacing the last term in (2)

by

2K loglogT
r

= (3)

while Akaike and Risannen propose replacing the last term by

K logT
r

= (4)

(the resulting criterion has been denoted BIC)

.

While the HQ and BIC criteria have been applied mainly in the

context of times series models, they offer an attractive method for

choosing the number of switches in the present problem. In computing
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the number of parameters in a contour with s switches, the location of

each switchpoint is counted as a parameter, with each regression adding

three additional parameters. A contour with s switches thus contains

3(s+l) + s = 4s + 3 parameters. Substituting for L and K in the
r r

modified versions of (2), the model selection criteria can be written

(8s+6)loglogT
(HQ)

2(.Z. n.logo\-c)
i=l l l

(5)

I4S+3212SI (BIC)

In the next section, these criteria are applied to the problem at hand.

4. Basic Results

Since presentation of all the estimation results would consume a

great deal of space, attention in what follows is restricted to

Illustrative highlights. Before viewing summary results for the two

data sets, it will be helpful to consider the case of a selected city,

Birmingham, Alabama, using results from the Kau-Lee data set. Table 2

shows the values of the HQ and BIC criteria from (5), as well as the

value of the log likelihood function, for zero up through five switches.

Table 2

9

Criterion Values for Birmingham
(Kau-Lee Data)

s_ log likelihood HQ BIC

-49.28 2.53 2.61

1 -38.21 2.26 2.44

2 -30.36 2.14 2.42
3 -22.61 2.02 2.41

4 -18.18 2.06 2.56

5 -15.73 2.19 2.80
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The Table shows that the HQ and BIC criteria are both minimized at s=3,

indicating the optiraality of three switches in each case. Under the

likelihood ratio approach, adding a switch is justified as long as the

2
log likelihood increases by at least one half the x critical point, a

value equal to 6.64 at the 99 percent confidence level. Referring to

Table 2, it is clear that the likelihood ratio approach also indicates

the optimality of three switches, so that the three methods yield the

same answer in this instance.

A graph of the estimated density contour for Birmingham is shown

in Figure 2 along with the underlying point scatter (to save space,

parameter estimates are not presented). LogD, with density measured

in people per acre, is on the vertical axis, while distance x, measured

in miles, is on the horizontal axis. The dramatic discontinuities in

the estimated contour, as well as the underlying density variations

generating them, are clear from the Figure. Note that the pattern of

discontinuities for Birmingham does not bear close resemblance to either

of the patterns shown in Figure 1. Given that the orderly patterns of

Figure 1 follow from the uniform-lifespan property of the model, which

is unlikely to hold exactly in the real world, the divergence between

Figures 1 and 2 should not be viewed as disconf irmation of the hypothe-

sis that building age variation affects the density contour. Erratic

building age patterns, consistent perhaps, with a richer model, could

generate a contour like the one shown in Figure 2 (joint estimation of

age and density contours is carried out in Section 5).

Tables 3 and 4 show the optimal numbers of switches under the three

different criteria for the cities in the Kau-Lee and Anderson data sets
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Table 3

Estimated Number of Switches for

Cities in Kau-Lee Data Set*

S
LR

S
HQ

S
BIC

S
LR

S
H0

S
BIC

Akron 1 1 1 New Orleans 2

Baltimore 1 1 1 Oklahoma City 2 3 1

Birmingham 3 3 3 Omaha 1 3

Boston 1 1 Philadelphia
Buffalo 2 Phoenix 2 2 2

Chicago Pittsburgh 2

Cincinnati 2 Portland 4

Cleveland 1 1 Providence
Dallas 1 2 1 Richmond 1 1 1

Dayton 1 1 1 Rochester 1 1

Denver Sacramento
Detroit 3 4 2 Salt Lake City 3

Flint 2 San Antonio 2

Ft. Worth 1 2 1 San Diego
Houston 2 2 2 San Jose 4 4 3

Jacksonville 2 2 Seattle 1 1

Kansas City Spokane 1 3 1

Los Angeles St. Louis
Louisville ' Syracuse 2 2 2

Memphis 3 3 2 Tacoma 1 2 1

Miami Toledo
Milwaukee Utica 2 2 2

Nashville 4 Wichita 1 1 1

New Haven 2 3 Washington 1 1

*Most cities have 43 observations; the remainder have either
42 or 41.
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Table 4

Estimated Number of Switches for

Cities in Anderson Data Set

Akron
Birmingham
Buffalo
Cincinnati
Cleveland
Columbus (OH)

Denver
Des Moines
Evansville
Flint
Fort Wayne
Grand Rapids
Indianapolis
Kalamazoo
Kansas City
Lansing
Memphis
Milwaukee
New Haven
New Orleans
Richmond
Rochester
Rockf ord
Spokane
St. Louis
Syracuse*
Toledo
Topeka
Wichita

*The HQ criterion value for Syracuse is essentially constant from
four through seven switches, with seven giving the lowest value.

Results for higher numbers of switches were not computed.

S
LR

S
H0

s
BIC obs

2 65

1 1 1 50

2 2 1 56

2 2 2 58

2 2 1 51

2 2 1 62

1 1 58

1 49

1 3 38

47

2 3 2 45

1 1 72

1 1 1 60
1 1 1 24

54

2 54

1 1 54

3 3 2 124

2 35

1 2 1 69

2 5 2 55

2 5 2 57

2 2 1 46

1 5 3 49

5 5 1 65

2 7 2 59

1 50
30

3 4 3 55
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(note that many cities are common to both data sets). The results of

the likelihood ratio approach are contained in the first column of each

Table; s subscripts are self explanatory. The number of census tract

observations for each Anderson city is also listed (Kau-Lee cities all

have around 40 observations; see the note to Table 3). A number of

features of the results deserve note. First, inspection of the Tables

shows that agreement among the three criteria is the exception rather

than the rule. However, it is interesting to note that a strong pattern

characterizes the results in that the inequalities s,,- > s T D > sDTr,

rly — LK — dIL

hold in almost every city (the only exceptions are Jacksonville in

Table 3 and Spokane in Table 4). Thus, in the vast majority of cases,

the HQ criterion yields at least as many switches as the likelihood

ratio approach, which in turn yields at least as many switches as the

BIC criterion. Another feature of the Tables is that there is little

correspondence between the results for those cities appearing in both

data sets. This tendency, which at first appears quite disturbing,

seems to be largely a consequence of the fact that the spatial coverage

of the data sets is different, with the Kau-Lee data typically extend-

ing much farther out from the center in a given city than the Anderson

data. In addition, the number of observations for each common city

differs between the data sets.

To give a more complete idea of the nature of the results, Figure

3 presents graphs of the HO density contours for Dallas, Detroit, Fort

Worth, New Haven, Utica, and Milwaukee and of the BIC contours for

Rochester and Spokane (the first five are Kau-Lee cities; the last

three are from the Anderson data set). These contours, which are per-

haps more dramatic than average, indicate the striking nature of the
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discontinuities which can result from application of the switching

regression method. Note that in the cases of Dallas, Detroit, Fort

Worth, Utica and Milwaukee, each discontinuity involves a decrease in

density (as in the bottom panel of Figure 1), while in the cases of

New Haven and Rochester, discontinuities involve an increase in den-

sity (as in the middle panel of Figure 1). Spokane, like Birmingham

in Figure 2, has a mixture of these two patterns. A complete set of

figures showing the estimated contours for all cities is available on

request.

Returning to the results of Tables 3 and 4, a natural question is

whether the estimated numbers of switches for the various cities are

related in a systematic way to underlying city characteristics. First,

it seems plausible that for cities of a given population, the switching

regression method would isolate greater detail (and hence show more

discontinuities) the greater the number of census tract observations.

For the same reason, the number of switches should fall with popula-

tion, holding the number of observations fixed. This suggests that

the estimated number of switches should be positively influenced by

a variable such as observations per capita. In addition, since the

number of different generations of buildings coexisting in a city will

rise with the city's overall age, and since under the simple example

of Section 2, density discontinuities occur at generational boundaries

(see Figure 1), the number of switches should increase with a city's

age. Finally, the absolute magnitude of a city's population might be

expected to affect the number of switches in a positive direction.

To test these hypotheses, a cross section regression was computed
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relating the number of segments (s+1) in the estimated contours to

OBSPOP (observations per ten thousand 1970 urbanized area population),

POP (1970 urbanized area population in thousands), and YEARS (the

number of years between 1970 and the decade the city first achieved 10

percent of its 1970 population). From the above discussion, positive

signs were expected for all the coefficients. Since the nearly iden-

tical sample sizes for the Kau-Lee cities (see the note to Table 3)

result in OBSPOP and POP being almost exactly inversely proportional,

the regression was computed for the Anderson data set alone (Syracuse

was deleted; see Table 4). The results using the number of HQ segments

as the dependent variable are as follows (variables are in log form; t-

ratios are in parentheses):

Constant OBSPOP POP YEARS R

-8.031 0.883 0.636 1.116 .2747

(-2.66) (2.16) (1.97) (2.43)

Expectations are nicely confirmed by the regression; all coefficients

are significant with the correct sign at nearly the 5 percent level.

Results using the BIC dependent variable are poorer, however, with posi-

tive but insignificant coefficients. This is not surprising given that

the BIC criterion yields less dispersion in the dependent variable.

5. Joint Estimation of Age and Density Contours

While the empirical results summarized in Section 4 appear to con-

firm the hypothesis that real-world density contours exhibit discon-

tinuities, the present section offers a more stringent evaluation of

the underlying theory by testing the hypothesis that density discon-

tinuities occur in the same locations as discontinuities in the contour
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of building ages. Recall from Section 2 that abrupt changes in building

ages were responsible for density discontinuities. The test involves

simultaneously estimating density and age contours with and without

the constraint that the switchpoints occur in the same locations. The

building age measure is average age of structures based on six age

classes, a variable used in Brueckner (1981). The cities chosen for

12
study were Milwaukee and Baltimore.

Before proceeding to the results of the joint estimation, it is

possible to use the data to validate a main premise of the underlying

theory: that building age and distance have important partial effects

on density. Table 5 presents the results of OLS regressions of log

density on distance and age for the two samples.

Table 5

Regressions of log D on Distance and Age

2
Constant Distance Age R Obs

Baltimore 9.702 -0.142 0.019 .3643 152

(34.30) (-4.43) (3.33)

Milwaukee 9.944 -0.268 0.010 .6601 124

(28.74) (-9.18) (1.39)

*t-ratios in parentheses

As can be seen, distance has the expected negative effect on density

while age has a positive effect, indicating higher densities in older

neighborhoods at a given distance (the Milwaukee age coefficient,

however, is not significantly different from zero). Recalling the

idealized model of Section 2, these results suggest that the middle

panel of Figure 1, which exhibits upward density discontinuities, is
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relevant (as noted earlier, it would be surprising if the data con-

formed exactly to this pattern).

Turning now to the joint estimation problem, the procedure is as

follows. First, it is assumed that the covariance between the age and

density error terras for the same census tract equals zero, which means

that the joint log likelihood is just the sum of the individual age

13
and density log likelihoods. Next, it is assumed that the age and

density contours have the same number of switches and that the switch-

points occur in the same locations for both contours. Under these re-

quirements, the joint log likelihood is maximized for each value of s,

and the optimal value s* is chosen using either the HQ or BIC criterion

(with s switches, the number of parameters is 6(s+l) + s = 7s + 6). To

test for the effect of the identical switchpoint constraint, switch-

point locations are found which separately maximize the individual age

and density log likelihoods, holding the number of switches for each

contour at s* . The sum of the individual log likelihoods is then com-

pared to the joint log likelihood. If the difference exceeds one-half

2
the appropriate x critical point, the null hypothesis of equal switch-

point locations is rejected. Note that this procedure involves an

asymptotic likelihood ratio test conditional on the number of switches

for the individual contours equalling the optimal number for the joint

problem. Since the number of elements in the parameter space rises by

s* when the identical-switchpoint constraint is relaxed, s* is the

2
appropriate number of degrees of freedom for the x test.

Table 6 shows the results of applying the above procedure to the

Baltimore and Milwaukee data. With joint estimation, the optimal
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Table 6

Re suits of Joint Estimation Procedure

Baltimore
log likelihood switchpoints

Joint: -521.47 1.47, 2.38

Age:
Density:

Total:

-444.97
-70.57
-515.54

1.47, 2.38
1.42, 1.92

Difference: 5.93 —

Milwaukee

Joint: -491.86 2.98, 6.72

2.65, 6.72

2.98, 8.24
Age: -395.96

Density: -90.81
Total: -486.77

f ference

:

5.09
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number of switches equals two for both cities under both the HQ and

BIC criteria. The second column of the Table shows the switchpoint

locations (in miles from the city center) for the jointly and indivi-

dually estimated contours (note the changes which occur when the

identical-switchpoint constraint is relaxed). The first column shows

the jointly maximized log likelihood, the sura of the individually maxi-

mized log likelihoods, and the difference between these two quantities.

2
Unfortunately, this difference exceeds 4.605 (one half the x critical

value with two degrees of freedom) for both cities, indicating rejec-

tion of the null hypothesis of identical switchpoints in both cases.

The discrepancy, however, is not great; the null hypothesis can in fact

be accepted at the (admittedly stringent) 99.5 percent level in the

case of Milwaukee. The upshot is that while the test is unfavorable

to a strict interpretation of the theory, the verdict is not a resound-

16mg one.

6. Conclusion

The main contribution of this paper has been to show that popula-

tion density contours in real-world cities are highly irregular.

Tables 3 and 4 indicate that contours with zero switches are the excep-

tion rather than the rule, and the graphs in Figures 2 and 3 establish

that when switches occur, they often involve striking discontinuities.

These conclusions confirm the predictions of the new durable housing

literature, which implies that density contours are inherently discon-

tinuous. A principal lesson of the results is that while estimation of

a smooth Muth-Mills density contour may be acceptable as a technique
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for isolating an overall spatial trend, the procedure will mask con-

siderable irregularity in the spatial structures of many cities.

The paper also makes an important methodological contribution in

that the number of switches is chosen by model selection criteria. Use

of the HQ and BIG criteria circumvents difficulties associated with the

ad hoc likelihood ratio method, yielding a simple and intuitively

appealing solution to the choice problem. Application of this approach

in other econometric problems involving structural change could no

doubt prove fruitful.
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research. Any errors, however, are ray own.

See the references in the third or fourth papers above for a more
complete list of studies in this area.

2
Kau, et al. (1983) estimate discontinuous density contours using

a restrictive method which requires a discontinuity to occur between
each pair of adjacent observations.

3
Note that when attention is restricted in Figure 1 to locations

with the same age buildings, density falls with distance.

4
Although the model of Brueckner and von Rabenau (1981) is dif-

ferent from the one underlying the above example, it nevertheless
gives rise to similar density discontinuities. In the models of Anas
(1978) and Wheaton (1982), however, the assumption that buildings last
forever prevents the emergence of discontinuous building age patterns
and the striking density discontinuities which accompany them. The
models do generate modest density discontinuities nevertheless.

Use of the semi-log form seemed natural given the popularity of
the negative exponential density function. The convexity of the den-
sity contours in Figure 1 anticipates the use of semi-log regressions.

In the estimation process, care must be taken to avoid locating a

switchpoint between two observations with the same distance value, and

enough observations must be included in each segment to make a

regression feasible (the required number will exceed three when
distance values are repeated).

With one extra switch, four extra parameters (3 regression para-
meters plus the switchpoint location) are introduced.

Q

Another peculiarity of this method is that the log likelihood
increase in going from, say, zero switches to one may be too small to

justify the extra switch even though the null hypothesis of one switch
might be rejectable in favor of the alternative of two. In such a

case, zero switches are chosen.

9
In computing the Birmingham results and all subsequent results

where the city has fewer than 100 observations, the minimum number of
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observations per regression was set at five (this was the smallest
possible value given repeated distance observations) . For cities with
over 100 observations, the minimum was set arbitrarily at 10 obser-
vations per regression.

10
This prediction does not follow, however, from the model of

Section 2. For a given founding date, faster population growth in

one city than another (resulting in a higher final population) would
merely lengthen the segments in the Figure 1 population density con-
tour without affecting their number. However, total population seems
to be a plausible determinant of the number of switches (results were
poorer when it was deleted) .

At this point, the presence of a potentially serious measurement
problem should be noted. While the predictions of the theory sketched
in Section 2 relate to population density on residential land ("net"
density) , the empirical work uses observations on gross density
(population per unit total land area). As a result of this measure-
ment error, a new element affecting the spatial behavior of population
density is introduced: spatial variation in the fraction of land

devoted to residential uses. Although the effect of smooth variation
in this fraction would appear to be innocuous, a danger lies in the

possibility that discontinuous changes due to the presence of parks,
railroad yards, etc., could introduce spurious discontinuities into

the estimated gross density contour when the underlying net density
contour is smooth. Unfortunately, it is impossible to ascertain the

extent to which this phenomenon influences the results of the estima-
tion.

12
The Anderson Milwaukee data was used. To appraise the effect of

the measurement problem noted in footnote 11, Baltimore census tract

areas were reraeasured using detailed maps, with only the built-up sec-

tions (those with streets) contributing to tract area. Since the

resulting sample includes only tracts within the Baltimore city limits,
it has more limited spatial coverage than the Kau-Lee sample. The fact

that the density estimation results for this new sample showed no

striking divergence from the results for other cities suggests that

the consequences of the measurement problem may not be terribly serious

13
Results of the joint estimation procedure changed little when a

non-zero covariance was allowed. However, it is easy to see that the

individual maximization procedure described below cannot incorporate
this assumption.

14
To get an idea of the computational efficiency achieved in the

switching regression program, each city's joint estimation results for

zero up through five switches, which involved an enormous number of

calculations, required only about five seconds of central processor
time on a CDC Cyber 17 5 computer.
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Note that in contrast to the standard situation, acceptance of a

null hypothesis implies confirmation of the theory in the present

case.

To save space, graphs of the estimated density and age contours
are not presented. A short verbal description of the contours is use-
ful, however. In both cities, the innermost density and age segments
are upward sloping for both the jointly and individually estimated
cases. For both density and age, the two outer contours are either
flat or downward sloping for both cities in both estimation cases.
The sympathetic movements of age and density evidently reflect the

positive association between those variables shown in Table 5.

Another salient feature of the graphs is that little change occurs
when the identical switchpoint constraint is relaxed. This, of

course, reflects the relatively small likelihood differences between
joint and individual estimation. Finally, it should be pointed out

that the estimated age contours, which show a dramatic increase in

age over the inner third of both cities, with discontinuous decreases
in evidence out to the city borders, do not mimic the regular contours
shown in Figure 1.
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