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A B S T R A C T 

The present article focuses on the investigations of electromechanical thermo-magnetic 

coupled effects on the nonlinear vibration of single-walled carbon nanobeam embedded 

in Winkler, Pasternak, quadratic and cubic nonlinear elastic media for simply supported 

and clamped boundary conditions are investigated. From the parametric studies, it is 

shown that the frequency of the nanobeam increases at low temperature but decreases at 

the high temperatures. The nonlocal parameter decreases the frequencies of the 

piezoelectric nanobeam. An increase in the quadratic nonlinear elastic medium stiffness 

causes a decrease in the first mode of the nanobeam with clamped-clamped supports and 

an increase in all modes of the simply supported nanobeam at both low and high 

temperature. When the magnetic force, cubic nonlinear elastic medium stiffness, and 

amplitude increase, there is an increase in all mode frequency of the nanobeam. A 

decrease in Winkler and Pasternak elastic media constants and increase in the nonlinear 

parameters of elastic medium results in an increase in the frequency ratio. The frequency 

ratio increases as the values of the dimensionless nonlocal, quadratic and cubic elastic 

medium stiffness parameters increase. However, the frequency ratio decreases as the 

values of the temperature change, magnetic force, Winkler and Pasternak layer stiffness 

parameters increase. An increase in the temperature change at high temperature reduces 

the frequency ratio but at low or room temperature, increase in temperature change, 

increases the frequency ratio of the structure nanotube. This work will greatly benefit in 

the design and applications of nanobeams in thermal and magnetic environments. 

1 Introduction  

Following the discovery of the novel nanostructure materials by Iijima [1], there have been tremedious applications of 

nanomaterials for the developments of nanoelectronics, nanodevices, nanomechanical systems, 

nanobiological,nanocomposites due to its excellent properties and high strength to weight ratio. However, the carbon 
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nanotubes (Fig.1) undergo large deformations within the elastic limit and vibrate at frequency in the order of GHz and THz. 

Consequently, there have been large volumes of research studies that investigated or provided physical insight into the 

dynamic behaviours of the novel structures [2-9].   

Sears and Batra [10] studied the buckling behaviour of carbon nanotubes subjected to axial compression. Yoon et al. 

[11] explored the noncoaxial resonance of an isolated carbon nanotube with multiple walls while Wang and Cai[12] 

presented an extended study on the same work with the consideration of the effects of initial stress on the nanostructure. 

Wang et al. [13] analyzed the dynamic behaviour of carbon nanotube with multiple walls using Timoshenko beam model. 

Zhang et al. [14] examined the impact of compressive axial load on the transverse vibrations of carbon nanotube with 

double walls. Elishakoff and Pentaras[15] presented the fundamental natural frequencies of carbon nanotube with double 

walls. Buks and Yurke[16] accessed the nonlinear nanomechanical resonator of mass detection while Postma et al. 

[17]determined the dynamic range of carbon nanostructure. Fu et al. [18] submitted nonlinear vibration analysis of 

embedded nanotubes. Vibration of carbon nanotube with electrical actuator was studied by some authors[19-24].  The 

nonlinear vibrations of the carbon nanotube with double walls was submitted by Hawwa and Al-Qahtani[24]. Hajnayeb and 

Khadem[25] studied the nonlinear dynamic behaviour and stability of the double-walled nanotube subjected to electrostatic 

actuation. Xu et al. [26] considers nonlinear intertube van der Waals forces on the dynamic response of carbon nanotube 

with double walls.  With the aids of nonlocal Timoshenko beam model. Lei et al. [27] explored surface effects on the 

frequency of vibration of carbon nanotube with double walls. Ghorbanpour et al. [28] used shell model to analyze nonlinear 

nonlocal vibration of fluid-conveying embedded carbon nanotubes with double walls. The analyses of the carbon nanotubes 

were extended to multi-walled carbon nanotubes (MWCNTs) [11, 13, 29-32]. Sobamowo[33-35], Sobamowo et al. [36] as 

well as Arefi and Nahvi[37] studied nonlinear vibration in nano-structures with slightly and initial curvature 

whileCigeroglu and Samandari[38]analyzed the dynamic behaviour of curved nanobeams.  

Studies on vibrations of nanotubes as presented in literatures using experimental measurements, density functional 

theory, molecular dynamics simulations, and classical continuum theories and non-classical continuum theories such as 

nonlocal stress theory, modified couple stress theory, gradient strain theory, and surface elasticity theory.  There are some 

difficulties in the experiment investigations at the nanoscale level. Therefore, majority of the past works are based on 

theoretical investigations using classical continuum models (which do not consider the small-scale effects). However, due 

to their scale-free models as they cannot incorporate the small-scale effects in their formulations, the classical continuum 

theories are inadequate for the accurate predictions of the dynamic behaviours of the nanotubes. Such inadequacy in the 

classical continuum models is corrected in the works of Eringen [39, 40] and that of Erigen and Edelen [41], where the 

author developed nonlocal continuum mechanics based on nonlocal elasticity theory. Although, some studies in literature 

have used the nonlocal continuum mechanics to present some theoretical investigations [42-63].  Simsek [64] as well as 

Murmu and Pradhan [54] adopted nonlocal elasticity theory to study the nonlinear vibration of a carbon nanotube 

embedded in an elastic medium. In a recent study, Abdullah et al. [65] presented effects of temperature, magnetic field and 

elastic media on the nonlinear vibration of nanobeams. The authors present very good work and results. However, the 

dynamic response of the nanobeam was not explored and the effect of electric field on the vibration characteristics of the 

nanobeam was not studied. Moreover, to the best of the authors knowledge, a study on the effects of electromechanical and 

thermomagnetic loadingson the nonlinear vibration of nanobeams embedded in Winkler, Pasternak, quadratic and cubic 

nonlinear elastic media has not been presented in literature. Therefore, with the aid of variational iteration method, the 

present work focusses on such study. With the considerations of Von Karman geometric nonlinearity effect and with the 

aids of nonlocal elasticity theory and Euler–Bernoulli beam model, the equation of motion for the nanobeam is derived 

using Hamilton’s principle. Also, the present analysis used four layers (Winkler, Pasternak, and quadratic and cubic 

nonlinear layers) which generate nonlinearities in the developed dynamic models. Additionally, the impacts of nonlocal 

parameter, electromechanical parameter, magnetic force, elastic media, temperature and amplitude on the dynamic 

behaviour of the nanotube are investigated.  

2 Model Development for the Single-walled Nanotube 

Consider a nanobeamembedded in linear and nonlinear elastic media as shown in Fig. 1. The nanobeam is subjected to 

stretching effects and resting on Winkler, Pasternak and nonlinear elastic media in a thermo-magnetic environment as 

depicted in the figure.  
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Fig. 1 – A piezoelectric nanobeam embedded in linear and nonlinear elastic media(Note: only the bottom side of the 

elastic media is shown) 

Following the nonlocal theory presented by Erigen[39-41] and that of  Erigen and Edelen[41], the relationship between 

the nonlocal stress–tensor  ij  at point x of an isotropic and homogenousnanobeam and the local stress–tensor  ijt is 

      
2 22 2

01 1ij ij ije a l E x t            
   

 (1) 

Algebraically, Eq. (1) can be written as 

  
2

2

0 2

xx

xx xx xxe a E t
x


 


  


 (2) 

Neglecting the damping of the nanobeam and the damping induced by the surrounding medium. Also, assuming that 

vibration is independent of time axial forces. Based on Euler-Bernoulli theory, the displacements in the nanobeam are 

given as 

    1 2 3, ; , ; 0.
w

u u x t z u w x t u
x


   


 (3) 

3 0,u  since, there is not any motion along the third direction.  

Also, the strain in the longitudinal direction is given as  

 1

xx

u

x






 (4) 

The strain in the longitudinal direction is related to the extension and bending strains as  

 
0 ;xx xx zk    (5) 

where extension and bending strains are respectively given as  

 
2

0

2
; .xx

u w
k

x x


 
  
 

 (6) 

On substituting Eq. (6) into Eq. (5), we have  



376 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 8 (2021) 373–402 

 

 
2

2xx

u w
z

x x


 
 
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 (7) 

Considering the Von Karman geometric nonlinearity effect, the extension strain is given as 

 

2

0 1

2
xx

u w

x x


  
   
  

 (8) 

Substitution of the nonlinear extension strain in Eq. (8) and the bending strain in Eq. (5), provides geometric 

nonlinearity in the longitudinal strain as 

 

2 2

2

1

2
xx

u w w
z

x x x


   
   
   

 (9) 

Introducing the following stress resultants: 

 2; ; ; ;

c c c c

xx c xx c xz c c

A A A A

N dA M zdA V dA I z dA          (10) 

The required equation of motion for the nanobeam can be derived after taking the variation of the relation  

 W K U     (11) 

where 

  
0

L

W fu pw dx   (12) 

 

22 2 2

0 2

0
2 2

L
m mu w w

K dx
t t x t

         
                    
  (13) 

  

2
2 2

2

0

1 1

2 2 2

L

xx xx

V A

E u w w
U dV z dAdx

x x x
 

    
     

     
    (14) 

Applying Hamilton’s principle, the variation of Eq. (11) is obtained as 

    
0

0

T

W K U dt       (15) 

Expansion of the RHS of Eq. (15), gives 

        
0 0 0

0

T T T

W dt K dt U dt           (16) 

For the first term at the RHS of Eq. (16), i.e. the variation of the work done by the external forces, substitution of Eq. 

(12) into the first term at the RHS of Eq. (16), provides 

    
0 0 0

T T L

W dt f u p w dxdt       (17) 
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Also, for the second term at the RHS of Eq. (16), i.e. the variation of the kinetic energy, substitution of Eq. (13) into 

the second term at the RHS of Eq. (16), gives  

  
2 2

0 2

0 0 0

T T L
u u w w w w

K dt m m dxdt
t t t t x t x t

  


         
      

            
    (18) 

Furthermore, for the third term at the RHS of Eq. (16), i.e. the variation of the strain energy, substitution of Eq. (14) 

into the third term at the RHS of Eq. (16), results in  

        2

0 0 0 0

1 1 1

2 2 2

T T T T

xx xx xx xx xx

V V V

U dt dVdt E dVdt dVdt        
     

       
     

        (19) 

Which gives 

  
2

2

0 0

T T

xx

V

u w w w
U dt z dVdt

x x x x

  
 

    
   
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    (20) 

On substituting Eq. (10), one can write Eq. (20) as 

  
2

2

0 0 0

T T L
u w w w

U dt N M dxdt
x x x x

  


     
    
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On substituting Eqs. (17), (18), and (21) into Eq. (16), we have  
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   

 

 (22) 

According to Euler–Lagrange, the following equations are obtained 

  
2

0 2
, 0

u N
m f x t

xt

 
   


 (23) 

  
2 4 2 2

0 22 2 2 2 2
, 0

w w M w
m m p x t N

t x t x x

   
     
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 (24) 

The nonlocal axial force (nonlinear stretching force)and bending moment are given by 

  
22

2

0 2

1
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c z c

c

N u w N
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x x EAx

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After differentiating Eq. (23) wrtx, on arrives at 
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Also, from Eq. (24), we have 

  
2 2 2 4

0 22 2 2 2 2
,

M w w w
p x t N m m

x x t x t

   
    
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 (28) 

Substitution of Eqs. (27) and (28) into Eqs. (25) and (26), gives the nonlocal axial force and bending moment as 
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x x t x t

      
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The first derivative of Eq. (29) is given as  
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While the second derivative of Eq. (30) provides 
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Substituting Eq. (31) into Eq. (23), one arrives at the horizontal equation of motion as 
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Which can also be written as  
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where 
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Then Eq. (29) becomes 
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 (36) 

Substitution of Eq. (35) into Eq. (34), givesthe horizontal equation of motion of the nanobeam as 
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Also, substitution of Eqs. (32) and (36) into Eq. (24), provides the vertical equation of motion as  
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Which can be written as 
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where  
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Substitution of Eq. (36) into Eq. (35), gives    
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Therefore, the vertical equation of motion of the nanobeam is 
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Taking 0 cm A , neglecting the rotary inertial 2(i.e. 0)m  with no axial distributed force (i.e. ( , ) 0)f x t   

and zero axial displacements (i.e. 0)u  . After some mathematical processes of Integrating the nonlinear stretching 

force, Nbetween the limits 0 and L and applying the boundary conditions (0, )u t and ( , )u L t makes the axial normal 

force in Eq. (36) to become 
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Therefore, Eq. (37) and (43) reduce to 
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It is assumed that the midpoint of the nanobeam is subjected to the following initial conditions 
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The following boundary conditions for the multi-walled nanotubes are considered in this work: 

Table 1 – The basic functions corresponding to the above boundary conditions  

Cases Mode shape,  ( )x  Value of 𝛽 for the first 

mode 
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x
sin

L

 
 
 

   
 

2. Clamped-Clamped support 

 

 

 

sinh sin
cosh cos sinh sin

cosh cos

x x x x

L L L L

     

 

           
             

           
 

4.730041 

or 
1

1
2

x
cos

L

  
  

  
 2  



382 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 8 (2021) 373–402 

 

For simply supported (S-S) nanotube, 
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For clamped-clamped supported (C-C) nanotube, 
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Using the following adimensional constants and variables  
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The adimensional form of the governing equation of motion for the nanobeam is given as  
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And the boundary conditions become: 

  For simply supported (S-S) nanotube, 
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 For clamped-clamped supported (C-C) nanotube, 
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3 Solution Methodology: Galerkin Decomposition and Variational Iteration Methods. 

The method of solution for the governing equation include Galerkin decomposition and variational iteration method. 

As the name implies the Galerkin decomposition method is used to decompose the governing partial differential equation 

of motion can beseparated into spatial and temporal parts. The resulting temporal equations are solved using variational 

iteration method. 

The procedures for the analysis of the equations are given in the proceeding sections as follows: 

3.1 Galerkin Decomposition Method 

With the application of Galerkin decomposition procedure, the governing partial differential equations of motion can 

beseparated into spatial and temporal parts of the lateral displacement function as 
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Using one-parameter Galerkin decomposition procedure, one arrives at 
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where  x is the basis or trial or comparison function or normal function, which must satisfy the kinetic boundary 

conditions in Eq. (52) and (53), and  q t is the temporal part (time-dependent function). It should be clearly stated that the 

function  x are given in Table 1.  

Substituting Eqs. (56) into (55), then multiplying both sides of the resulting equation by ( )x and integrating it for the 

domain of (0,1) 
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Substitution of Eq. (54) into Eq. (57), gives 
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Therefore, Eq. (61) can be written as 
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Furthermore, we can express Eq. (58) as  
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The initial conditions are given as 

  
(0)

(0) , 0
dq

q A
dt

   (67) 

A is the maximum vibration amplitude of the structure. 

It can be seen from the above procedures that the apart from the fact that the Galerkin decomposition method 

decomposes governing equation of motion into spatial and temporal parts, it also helps in converting the space- and time-

dependentpartial differential equation to a time-dependent ordinary differential equation. The nonlinear ordinary 

differential equation easily be solved using numerical methods or approximate analytical methods. In this work, 

variationaliteration method is adopted due to its simplicity and high level of accuracy. 

4 Method of solution: Variational iteration method 

In order to solve the nonlinear model in Eq. (63), variational iteration method is adopted in the present study.  The 

basic definitions of the method are as follows 

The nonlinear differential equation in Eq. (63)can be written as 

  ( )Lu Nu g t   (70) 

where: L is a linear operator,N is a nonlinear operator and g(t) is an inhomogeneous term in the differential equation. 

Based on the VIM procedure, the correction functional can be written as  

   1

0

( ) ( ) ( ) ( ) ( )

t

n n nq t q t Lq Nq g t d         (71) 

where:  is a general Lagrange multiplier, the subscript n is the nth approximation and q  is a restricted variation 0q   

The correction functional in Eq. (71) is made stationary and also, considering 
1 0nu   , gives 
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Where its stationary conditions can be obtained as  
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The solution of Eq. (73), gives the Lagrange multiplier as  
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We can now write Eq. (71) as  
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The equations in the integral of Eq. (75) are grouped into linear and nonlinear parts based on the definition of VIM.  

With the purpose of finding the periodic solution of Eq. (63), an initial approximation for zero-order deformation is 

assumed as   
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Substituting Eq. (76) into the nonlinear part of Eq. (75), gives  
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After applying trigonometric identities, Eq. (77) can be written as  
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On collecting the like terms at the RHS of Eq. (78), one arrives at  
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Eliminatethe secular term requires that the coefficient of  cos   must be equal to zero. Consequently 

  

3

2 3

1

3
0

4

A
A A


 
 

   
 

 (80) 

Therefore, the zero-order nonlinear natural frequency is given as 
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Therefore, the ratio of the zero-order nonlinear natural frequency, ωo to the linear frequency, ωb 
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where 1b   

Similarly, for the first-order nonlinear natural frequency, we have 
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The ratio of the first-order nonlinear frequency, ω1 to the linear frequency, ωb 
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    From Eqs. (82) and (84), the following facts are established:   

  
0

1o

A
b

lim



  (85) 

and  

  1

A
b

lim



   (86) 

In order to find the first iteration, we can write Eq. (75) as   

 
 

         
2
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d q
q q q q q
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
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 
        

  
 (87) 

Substituting Eqs. (76) into Eq. (87), we have 

     
    

    

2
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1
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q q sin t A cos Acos d
Acos Acos

   
      

    

                  

  (88) 

Which reduces to   

            2 32

1 0 1 2 3

0

1
t

q q sin t A cos Acos Acos Acos d          


        (89) 

With the aids of trigonometric identities, Eq. (89) can be written as  
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  (90) 

Evaluation of the above Eq. (88) provides the first-order approximation as  
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 (91) 

Eq. (91) can be written as  
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 (92) 

Substitute the equations in Table 1 and Eq. (92) into Eq. (54), one arrives at 

For simple supported nanobeam 
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 (93) 

For clamped-clamped nanobeam 
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 (94) 

where
2 2 2 42 2 2

3 1 3 31 1 2
3 3 19 5

2 8 4 8 128 12

A A A A     


 
      

 
 

5 Results and Discussion  

The developed solutions are simulated in MATLAB and the results are verified with the results of previous studies as 

presented in Tables 3 and 4.  The tables show that the results of the present study agree very well with the results of the 

previous studies in literatures. Also, this establishes the accuracy of the analytical solutions.  
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Table 2 – Table of Parameters used for the simulations 

S/N Parameter Symbol Value 

1.  Diameter of armchair single-walled nanotube d 0.678 nm 

2.  Length of the nanotube L 6.78 nm 

3.  Aspect ratio L/h 10, 20, 50 

4.  Height of the nanotube h 0, 0.1, 0.3 nm 

5.  Thickness of the nanotube t 0.066 nm 

6.  Density of the nanotube ρ 2300 kg/m3 

7.  Young Modulus E 5.5 TPa 

8.  Poisson’s ratio υ 0.19 

9.  Cross-sectional area A 0.1406 nm2 

10.  Thermal expansion coefficient for room and low Temperatures αx -1.6×10-6 K-1 

11.  Thermal expansion coefficient for high Temperatures αx 1.1×10-6K-1 

12.  Second moment of inertia I 8.155×10-3 nm4 

13.  Nonlocal parameter (eoa)2 0, 1, 2, 3, 4 nm2 

14.  Dimensionless Winkler elastic medium stiffness Kw 0 – 50 

15.  Dimensionless Pasternak elastic medium stiffness Kp 0 – 100 

16.  Dimensionless quadratic nonlinear elastic medium stiffness K1 0 – 100 

17.  Dimensionless cubic nonlinear elastic medium stiffness K2’ 0 – 100 

18.  Magnetic field permeability η 103-108 N/A2 

19.  Longitudinal magnetic field Hx 104-109 A/m 

20.  Change in temperature ΔT 0 – 300 K 

21.  One dimensional piezoelectric constant ζ 0.95 

22.  Electric field Ez 1.7 ×107 

 

Table 5 shows the comparison of the results of linear fundamental frequency of the simply-supported nanobeam for 

various values of aspect ratio and nonlocal parameter and aspect ratio. It is shown in the results that the method is valid for 

a wide range of vibration amplitudes. Also, the method is relatively simple and cost effective as compared to the other 

approximate analytical methods.   

Table 3: Comparison of results of nonlinear frequency ratio for simply supported when 

1 2 0d d

w p m t eHa             

 h=0.1 h=0.3 

A Simsek[64] Abdullah et al. [65] Present Simsek[64] Abdullah et al. [65] Present 

0.5 1.02542 1.0254 1.0254 1.04331 1.0433 1.0433 

1.5 1.20975 1.2098 1.2098 1.34037 1.3404 1.3404 

3.5 1.51245 1.5125 1.5125 1.79243 1.7924 1.7924 

Fig. 2 shows the comparison of results of numerical method using Fourth-order Runge-Kutta and the results of the 

present study using homotopy perturbation method. The results show that excellent agreement between the resents of the 

two methods.  
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Having verified the correctness and the high level of accuracy of the developed approximate analytical solutions, 

parametric studies are carried out as presented as follows: 

Table 4: Comparison of results of nonlinear frequency ratio for clamped-clamped supported when 

1 2 0d d

w p m t eHa             

 h=0.1 h=0.3 

A Simsek[64] Abdullah et al. [65] Present Simsek[64] Abdullah et al. [65] Present 

0.5 1.01974 1.0197 1.0197 1.04331 1.0433 1.0433 

1.5 1.16572 1.1672 1.1672 1.34037 1.3404 1.3404 

3.5 1.4132 1.4132 1.4132 2.07455 2.0746 2.0746 

Table 5: Comparison of results of linear frequency ratio for simply-supported when 
1 2 0d d

w p m tHa           

(eoa)2 (nm2) 0.0 1.0 2.0 3.0 4.0 

L/d = 10 

Simsek[64] 9.8696 9.4158 9.0194 8.6692 8.3569 

Murmu and Pradhan [63] 9.8696 9.4124 9.0133 8.6611 8.3472 

Present 9.8696 9.4157 9.0193 8.6690 8.3568 

L/d = 20 

Simsek[64] 9.8696 9.7500 9.6747 9.5234 9.4158 

Murmu and Pradhan [63] 9.8696 9.7498 9.6343 9.5228 9.4150 

Present 9.8696 9.7501 9.6745 9.5234 9.4157 

L/d = 50 

Simsek[64] 9.8696 9.8501 9. 8308 9.8116 9.7926 

Murmu and Pradhan [63] 9.8696 9.8501 9.8308 9.8117 9.7925 

Present 9.8696 9.8501 9.8308 9.8116 9.7926 

 

Fig. 2 – Comparison of results for the normalized deflection parameter vs dimensionless time 

5.1 Different buckled and mode shapes of thenanobeam 

Figs. 3 and 4 show the first-five normalized mode shapes of the beams for the nanotube with simple-simple and 

clamped-clamped supports. These figures show the deflections of the beams along the beams’ span at five different buckled 

and mode shapes. 
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5.2 Effects of nonlocal parameter, temperature and aspect ratio on the linear frequency 

Effects of nonlocal parameter, change in temperature and aspect ratio on the linear frequencies of the simply and 

clamped-clamped supported nanotubes are shown in Figs. 5-9. It is shown in the figures that the linear frequencies of the 

simply and clamped-clamped supported nanotubes decrease at the high temperatures. However, the linear frequencies of 

the nanotubes under the two types of supports increase at the low temperatures as shown in Figs. 5-8.  This is because of 

the damping effect of temperature which decreases the stiffness of the nanotube at high temperature. Also, it is found that 

the as the nonlocal parameter increases, the linear frequencies of the nanotubes with simply and clamped-clamped supports 

decrease at both low and high temperatures.  

  

Fig. 3– The first five normalized mode shaped of the under 

simple-simple supports 

Fig. 4– The first five normalized mode shaped of the 

beamsunder clamped-clamped supports beams 

The effects of aspect ratio (ratio of the length of the beam to its diameter, L/d). The figure reveals that the frequency 

increases as the aspect increases.  Also, the figure re-establishes that the linear frequency decreases as the nonlocal 

parameter increases. However, this impact reduces significantly as the aspect ratio increases 

  

Fig. 5– Effect of nonlocal parameter on the fundamental 

linear frequency of the simply supported nanobeam at 

high temperature 

Fig. 6– Effect of nonlocal parameter on the fundamental 

linear frequency of the simply supported nanobeam at 

low temperature 

5.3 Effects of nonlocal parameter, temperature, elastic medium stiffness on the nonlinear frequency  

Figs. 10-15 Effects of nonlocal parameter, change in temperature, Winkler, Pasternak, quadratic and cubic stiffnesses 

on the nonlinear frequencies of the simply and clamped-clamped supported nanotubes. As before, it is also shown in the 

figures that the nonlinear frequencies of the simply and clamped-clamped supported nanotubes decrease at the high 
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temperatures. However, the nonlinear frequencies of the nanotubes under the two types of supports increase at the low 

temperatures.  This is because of the damping effect on temperature which decreases the stiffness at a high temperature and 

increases nanobeam stiffness at a low temperature.  

  

Fig. 7 Effect of nonlocal parameter on the fundamental 

linear frequency of the clamped-clamped supported 

nanobeam at high temperature 

Fig. 8 Effect of nonlocal parameter on the fundamental 

linear frequency of the clamped-clamped supported 

nanobeam at low temperature 

 

Fig. 9 Effect of aspect ratio and nonlocal parameter on the fundamental frequency of the nanobeam 

Figs. 10-13 shows that the nonlinear frequency increases as the Winkler stiffness (Kw) and Pasternak stiffness (Kp) for 

both low and high temperatures. This is due to the fact that increase in Pasternak stiffness causes an additional induced 

stiffness to the elastic medium of the nanotube. It was also shown that the Pasternak stiffness (Kp) has more significant 

effect on the nonlinear frequencies than the effect of Winkler stiffness (Kw). This is because of the shearing layer of 

Pasternak medium which bends and moves vertically as compared to the Winkler medium which moves only vertically 

during the vibration.  

Effects of the Hartmann number, quadratic (K1) and cubic (K2) nonlinear elastic medium constants on the nonlinear 

frequencies of the nanobeam for both low and high temperatures in Fig. 14 and 15. The results illustrate that when 

Hartmann number and cubic (K2) nonlinear elastic medium constants increase, the nonlinear frequency of the nanobeam 

increases for both low and high temperatures. However, when the Hartmann number and the quadratic (K1) nonlinear 

elastic medium constants increase, the nonlinear frequency of the nanobeam decreases for clamped-clamped beam at both 

low and high temperatures. Also, the nonlinear frequency of the nanobeam increases as the amplitude of the vibration 

increases. The nonlinear frequency of the nanobeam increases as the as the magnetic field parameter (Hartmann number) 

increases because the magnetic field intensity increases the rigidity of the nanobeams. However, it should be stated that it is 

the quadratic (K1) nonlinear elastic medium constants that reduces the nonlinear frequency of the nanobeam. 
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Fig. 10– Effect of nonlocal parameter and Winkler 

elastic medium stiffness on the nonlinear natural 

frequency of the clamped-clamped supported nanobeam 

at low temperature 

Fig. 11– Effect of nonlocal parameter and Winkler 

elastic medium stiffness on the nonlinear natural 

frequency of the clamped-clamped supported nanobeam 

at high temperature 

  
Fig. 12– Effect of nonlocal parameter and Pasternak 

elastic medium stiffness on the nonlinear natural 

frequency of the clamped-clamped supported nanobeam 

at low temperature 

Fig. 13 – Effect of nonlocal parameter and Pasternak 

elastic medium stiffness on the nonlinear natural 

frequency of the clamped-clamped supported nanobeam 

at high temperature 

  

Fig. 14 – Effect of nonlinear elastic medium stiffness 

parameters and Hartmann number (magnetic force 

parameter) on the nonlinear natural frequency of the 

simply supported nanobeam 

Fig. 15 – Effect of nonlinear elastic medium stiffness 

parameters and Hartmann number (magnetic force 

parameter) on the nonlinear natural frequency of the 

clamped-clamped supported nanobeam 
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5.4 Effects of mode number, temperature, elastic medium stiffness on the nonlinear frequency  

Although the results in Fig. 2-15 present behaviour of the nanobeam at the first mode of vibration, further 

investigations as presented in Figs. 16-19 reveal that, at the high values of Winkler stiffness (Kw) and all the values of 

amplitude as well as Pasternak layer stiffness (Kp), the quantity of increase in the nonlinear frequencies is more significant 

in simply supported nanobeam than the clamped-clamped nanobeam. This means that simply supported nanobeam is more 

influenced by the high quantity of the Winkler stiffness than the clamped-clamped. Also, at any value of nonlocal 

parameter, the change in the first mode is higher than the second mode for the change in temperature. The simply supported 

nanobeam is more susceptible to the temperature change than the clamped-clamped nanobeam for all the modes. Such 

behaviour is due to the stiffer nature of the clamped-clamped nanobeam than the simply supported nanobeam. 

  

Fig. 16 –Effect of mode number and elastic medium 

stiffness on the nonlinear natural frequency of the 

simply supported nanobeam at high temperature and low 

Winkler stiffness 

Fig. 17 –Effect of mode number and elastic medium 

stiffness on the nonlinear natural frequency of the 

simply supported nanobeam at high temperature and 

high Winkler stiffness 

  

Fig. 18 – Effect of mode number and elastic medium 

stiffness on the nonlinearnatural frequency of the simply 

supported nanobeam at low temperature and low Winkler 

stiffness 

Fig. 19 –Effect of mode number and elastic medium 

stiffness on the nonlinear natural frequency of the 

simply supported nanobeam at low temperature and low 

Winkler stiffness 

Additionally, it is observed that when the amplitude increases, the nonlinear frequencies of the all modes increase for 

the simply supported nanobeam. The nonlinear frequency decreases and increases at high and low temperatures, 

respectively. The low temperatures increase the third mode frequency for both simply supported and clamped-clamped 

nanobeams. The first mode nonlinear frequency increases with an increase in the nonlocal parameter. However, at any high 

values of Pasternak layer stiffness, the second and the third modes nonlinear frequencies decrease with an increase in the 
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nonlocal parameter. It means that the high values of the Pasternak layer stiffness decrease the effect of the nonlocal 

parameter on the first mode. It could be stated that the first mode is more influenced by low values of the Pasternak layer 

stiffness while the second and the third modes are significantly influenced by the high values of Pasternak layer 

stiffness.Furthermore, it was found that the nonlocal parameter increases, the frequencies for all modes decrease. The 

impact of change in temperature on the nonlinear frequencies rises as the nonlocal parameter rises for all modes for both 

simply supported and clamped-clamped nanobeam. 

 

Fig. 20 –Effect of electric field and vibration amplitude on nonlinear natural frequency of the simply supported 

nanobeam at low temperature 

Fig. 20 presents the effect of electric field, Ez on the nonlinear frequency of the nanobeam. The figure shows that the 

nonlinear frequency of the beam decreases as the electric field and nonlocal parameter increase.  However, the decrease in 

nonlinear frequency as nonlocal parameter increases is marginal.  

5.5 Effects of nonlocal parameter, temperature, elastic medium stiffness on the frequency ratio 

Figs. 21-35 present the impacts of nonlocal parameter, temperature, elastic medium stiffness on the nonlinear 

frequency to the linear frequency ratio for both simply and clamped-clamped supported nanobeams.  In all the results, it is 

demonstrated that as the dimensionless amplitude increasesthe frequency ratio increases due to the“hardening spring” 

behaviour of the nanobeam. Such behaviour in response to theincrease in the dimensionless amplitude is caused by the 

increase in the axial stretching due to the large deflection which leads to a stiffer structure and a larger nonlinear frequency.  

  

Fig. 21 Effects of dimensionless nonlocal parameter on 

the frequency ratio for simply supported nanobeam 

Fig. 22 Effects of dimensionless nonlocal parameter on 

the frequency ratio for clamped-clamped nanobeam 
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The results show that the at any given dimensionless amplitude, frequency ratio increases as the values of the 

dimensionless nonlocal, quadratic and cubic elastic medium stiffness parameters increase as shown in Figs. 21-26. 

However, at any given dimensionless amplitude, the frequency ratio decreases as the values of the temperature change, 

magnetic force, one dimensional piezoelectric constant, Winkler and Pasternak layer stiffness parameters increase. 

 as shown in Figs. 27-35. It is shown in all the figures that the impact of the dimensionless nonlocal, quadratic, cubic 

elastic medium stiffness, temperature change, one dimensional piezoelectric constant, magnetic force, Winkler and 

Pasternak layer stiffness parameters on the nonlinear frequency ratio becomessignificant as the dimensionless amplitude 

increase.  

It is clearly seen that increase in temperature change at high temperature reduces the frequency ratio as shown in Figs.  

31 and 32. Such response is due to the fact that the Young modulus and the flexural rigidity of the nanobeam are functions 

of temperature. These parameters (Young modulus and the flexural rigidity) increase at high temperature and such causes 

the nanobeam to become increasingly rigid as the temperature change increases, which consequently decreases the 

frequency ratio of the vibration of the structure. However, at low or room temperature, increase in temperature change, 

increases the frequency ratio of the structure nanotube. 

  

 Fig. 23 – Effects of dimensionless quadratic 

elastic medium stiffness on the frequency ratio for 

simply supported nanobeam 

Fig. 24 – Effects of dimensionless quadratic elastic 

medium stiffness on the frequency ratio for clamped-

clamped supported nanobeam 

  

Fig. 25 – Effects of dimensionless cubic nonlinear 

elastic medium stiffness on the frequency ratio for 

simply supported nanobeam 

Fig. 26 – Effects of dimensionless cubic elastic 

medium stiffness on the frequency ratio for clamped-

clamped supported nanobeam 
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Fig. 27 – Effects of dimensionless Pasternak elastic 

medium stiffness on the frequency ratio for simply 

supported nanobeam 

Fig. 28 – Effects of dimensionless Pasternak elastic 

medium stiffness on the frequency ratio for clamped-

clamped supported nanobeam 

  

Fig. 29 – Effects of dimensionless Winkler elastic 

medium stiffness on the frequency ratio for simply 

supported nanobeam 

 Fig. 30 – Effects of dimensionless Winkler 

elastic medium stiffness on the frequency ratio for 

clamped-clamped supported nanobeam 

  

Fig. 31 – Effects of temperature change on the 

frequency ratio for simply supported nanobeam 

Fig. 32 – Effects of temperature change on the 

frequency ratio for clamped-clamped nanobeam 
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Fig. 33 – Effects of magnetic force parameter on the 

frequency ratio for simply supported nanobeam 

Fig. 34 – Effects of magnetic force parameter on the 

frequency ratio for clamped-clamped nanobeam 

 

Fig. 34 – Effects of one-dimensional piezoelectric constant on the frequency ratio for clamped-clamped nanobeam 

6 Conclusions 

In this present work, thermos-magneto-mechanical coupled effects on the nonlinear vibration of single-walled carbon 

nanotube embedded in Winkler, Pasternak, and nonlinear elastic media have been investigated in this work with the aids of 
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 When the magnetic force, cubic nonlinear elastic medium stiffness, and amplitude increase, there is an increase in 

all mode frequency of the nanobeam. 

 A decrease in Winkler and Pasternak elastic media constants and increase in the nonlinear parameters of elastic 

medium results in an increase in the frequency ratio.   

 The frequency ratio increases as the values of the dimensionless nonlocal, quadratic and cubic elastic medium 

stiffness parameters increase. The dimensionless amplitude increases the frequency ratio increases.  

 The frequency ratio decreases as the values of the temperature change, magnetic force, one dimensional 

piezoelectric constant Winkler and Pasternak layer stiffness parameters increase.  

 An increase in the temperature change at high temperature reduces the frequency ratio but at low or room 

temperature, increase in temperature change, increases the frequency ratio of the structure nanotube.  

 The impact of the dimensionless nonlocal, quadratic, cubic elastic medium stiffness, temperature change, 

magnetic force, Winkler and Pasternak layer stiffness parameters on the nonlinear frequency ratio becomes 

significant as the dimensionless amplitude increase. 

 This work will greatly benefit in the design and applications of nanotube in thermal and magnetic environments. 

NOMENCLATURE 

A     adimensional maximum amplitude of the nanobeam. Nt      axial thermal load 

E     elastic modulus P       transverse distributed force 

E     Young Modulus of Elasticity r        radius of the nanobeam 

EI    bending rigidity ΔT     change in temperature.  

f      axial distributed force t         time coordinate 

Hxmagnetic field strength U      strain energy 

I      moment of area u       axial displacement of the nanobeam. 

k     bending strain (curvature) w      transverse displacement/deflection of the nanobeam 

K    kinetic energy W     work done by the external forces 

N    axial force x       axial coordinate 

M   bending moment  wo       initial displacement of nanobeam 

kw  Winkler elastic medium stiffness  ϕ(x)   trial/comparison function 

kp   Pasternak elastic medium stiffness αx     coefficient of thermal expansion  

k2 quadratic nonlinear elastic medium stiffness.  η       magnetic field permeability  

k3  cubic nonlinear elastic medium stiffness 
xx  nonlocal normal stresses  

L       length of the nanotube (eoa)2 nonlocal parameter, 

mo   mass of the beam per unit length  
xx  local strain  

N       axial/Longitudinal force 0

xx is the extensional strain  
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