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ABSTRACT 
 

In this paper, a linear programming model for optimizing the fleet size and mix for a rental car company is developed 
and solved. Rental car companies depend on their fleet of vehicles for generating the entirety of their income. 
Additionally, the investments required are typically very significant due to the high cost of vehicles. Consequently, the 
composition of the fleet could significantly affect the company’s profitability and sustainability in a volatile demand 
environment. Determining the optimal fleet size and mix has been the focus of research in particular in revenue and 
yield management and VRP streams. However, most models focused on cost minimization without taking into account 
the resale value of vehicles once retired from the fleet. This paper addresses the problem from a return maximization 
perspective while taking into account resale values of vehicles. Sensitivity analysis is carried out to gain further insight 
into the problem and enable the model to support the company’s management in refining the strategic plan. 
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INTRODUCTION 
 

or most rental car companies, having the right vehicle at the right time and place will determine, not 
only their profitability, but also their survival and sustainability. Decisions made at various levels of 
the company (strategic, tactical and operational) will undoubtedly steer the company closer or further 

towards that objective. However, the strategic problem of determining the fleet size and mix remains the most 
impactful due to the magnitude of the investments made and the fact that all tactical and operational decisions would 
be of little value if the strategic choices are faulty (Pasha, Hoff, & Hvattum, 2016).  
 
Major research contributions have been made in the past few decades in addressing the problem of fleet size and mix 
(FSM). The models spanned deterministic and stochastic environments, as well as single or multi-modal fleet planning 
decisions. Research into FSM has naturally combined elements of the problem with the classical VRP and yield 
management problems. This is quite reasonable given the strong inter-dependence among FSM, fleet deployment, and 
fleet inventory control (Baykasoglu, Subulan, Tasan, & Dudakli, 2019).  
 
The literature in the FSM problem is quite extensive despite an apparent shortage in applications addressing rental car 
companies. The review of such literature can be classified into whether the environment considered is deterministic 
or stochastic; in addition to whether the planning horizon is single or multi-period. Furthermore, the majority of the 
literature surveyed used cost minimization as the main objective of the optimization (Martins, Nunes, Joao, & Ferreira, 
2019). Other factors have also been considered such as quality of service, but rarely profit or revenue maximization. 
 
Within the deterministic, single mode context, (Wu, Hartman, & Wilson, 2005) developed an integrated model for 
fleet sizing in the truck-rental industry. Using a time-space network, a two-phase solution approach comprising 
Bender’s decomposition and Lagrangian relaxation was devised. (Lee, Kim, Kang, & Kim, 2008) applied a heuristic 
using Tabu search and set partitioning to a FSM problem coupled with vehicle routing decisions. (Loxton & Lin, 
2011) constructed a FSM problem with one or multiple types of vehicles proposing a cost minimization algorithm 
based on dynamic programming and the golden-section method. A similar approach was followed by (Liu & Lu, 2012) 
who developed a hybrid heuristic method that incorporated the vehicle type information into the model. (Jabali, 
Gendreau, & Laporte, 2012) proposed a continuous approximation (CA) model on a circular grid to minimize the total 
cost of the FSM. Building on this work, (Nourinejad & Roorda, 2017) determined the optimal fleet to minimize total 
cost using CA on a rectangular grid. A variation of the problem that included a mix of new and old reusable items was 
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introduced by (Gonzalez & Epstein, 2015) to maximize the expected present value of the fleet. A more integrated 
view of the problem was studied by (Konur & Geunes, 2019) whereby districting, fleet composition and inventory 
planning were simultaneously taken into account. The authors formulated a mixed integer nonlinear program that was 
solved using a column generation based heuristic approach. 
 
Extending the deterministic model to the multi-period case, (Salhi, Wassan, & Hajarat, 2013) formulated a FSMVRP 
problem with backhauls as an ILP. Optimal solutions for small instances were generated, while a set partitioning 
problem-based heuristic was proposed for the general case. A more explicit multi-period model was proposed by 
(Mardaneh, Lin, & Loxton, 2015) to determine the optimal fleet mix and the corresponding vehicle routes at minimal 
cost. The formulated MILP was solved via a decomposition heuristic that optimizes the vehicle routes at the first stage, 
then the corresponding optimal fleet mix was determined using dynamic programming and golden section search 
heuristics. Incorporating a sell option, (Du, Brunner, & Kolisch, 2016) generated a multi-period fleet investment 
schedule that minimizes fleet composition cost. A variant of the FSMVRP that incorporated backhauls where delivery 
and pick-up customers are served from a central depot was studied by (Belloso, Juan, & Faulin, 2017). The authors 
proposed an algorithm that uses several biased-randomized processes to select the vehicle type, then sorting the 
savings list and defining the least costly number of routes. (Borthen, Lonnechen, Wang, Fagerholt, & Vidal, 2018) 
adapted the hybrid genetic search with adaptive diversity control algorithm developed by (Vidal , Crainic, Gendreau, 
Lahrichi, & Rei, 2012) to solve an offshore supply vessel planning problem where voyages may span multiple time 
periods.  
 
Research directed to the FSM problem in the stochastic case remained limited due to its complexity. The majority of 
the literature presented heuristic solution approaches to the problem. For instance, a stochastic fleet composition 
problem was proposed by (Loxton, Kok, & Teo, 2012) to minimize the operating cost of a new vehicle fleet. The 
problem was solved using a heuristic comprised of an algorithm that combined dynamic programming and golden 
section method. Pasha et al. (2016) presented simple heuristics incorporating tabu search to determine the optimal 
fleet composition. The uncertainty in the demand was simply represented by varying demand levels during the 
planning horizon. A simulation-based optimization approach was adopted by (Turan, Elsawah, & Ryan, 2020) to solve 
a strategic fleet renewal problem under uncertainty. The simulation-based approach that uses a genetic algorithm was 
used to search effectively for an optimal solution among a large set of feasible renewable strategies.   
 
The fleet mix and composition problem I address in this paper diverges from the existing literature on two important 
factors: the objective function used, and the nature of the business to which the model is applied. Firstly, and as evident 
from the literature review above, most research used a cost minimization objective. This is warranted due to the fact 
that the primary objective of the vehicles is not revenue generation, but rather a cost to me minimized within a bigger 
VRP problem. Secondly, the car rental business depends on the fleet for revenue generation. In fact, the fleet is the 
primary revenue generator for this type of firms. Additionally, the value of the service provided depends greatly on 
the fleet mix and composition when it comes to rental rates or customer satisfaction.  
 

PROBLEM STATEMENT AND MODEL DEVELOPMENT 
 

Rental car companies depend on the fleet of vehicles to generate most of their income. The decision on the fleet size 
and mix is strategic and vital to the company’s long-term success and sustainability. Constrained by a limited 
investment budget, the company must decide on the optimal fleet composition that will maximize its payoff during a 
predetermined planning horizon. There are different types and models of vehicles with different purchasing, leasing 
and maintenance costs, and different rental rates. While the lease cost for the vehicles remains constant, the rental 
rates and the resale value for the various types of vehicles decrease over time as the vehicle ages. On the other hand, 
the maintenance costs increase over the usability life of the vehicle. The problem is further complicated by the 
uncertain nature of the demand and by the fact that a sale realization occurs solely when both the demand arises, and 
the vehicle is available simultaneously. The objective is to determine the optimal fleet size and mix to maximize the 
company’s returns over a predetermined planning horizon. As mentioned earlier, this is different from the majority of 
the literature which focused on cost minimization. The primary constraints are the budget, the storage (parking) space, 
the ceiling on the financing amount, and the minimum and maximum number of vehicles of each type set by the 
company. The decision on the minimum and maximum numbers are dependent on the company’s business level 
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strategy. In particular, for a broad differentiation strategy, the company will choose to keep vehicles that would cover 
the majority of the demand categories (market segments).  
 
For the proposed model, the demand is aggregated over the planning horizon. This is a common practice for strategic 
decision making (Du et al., 2016). The current purchasing prices and the lease rates of the vehicles are known with 
certainty. However, the rental rates, the maintenance costs and the resale values are uncertain. The latter costs are 
estimated based on a fixed decreasing pattern for the rental rates and the resale values, and a fixed increasing pattern 
for the maintenance costs. The following notation is introduced and used throughout the manuscript for I vehicle 
models and J types: 
 
xij:  number of vehicles of model i, type j 
M:  Maximum number of vehicles 
Pij: Purchasing price of vehicle model i, type j 
Dij: Downpayment for vehicle model i, type j 
Rij: Resale value of vehicle model i,type j 
rij: estimated rental return from vehicle model i, type j 
lij: lease cost of vehicle model i, type j 
mij: maintenance cost of vehicles model i, type j 
 
The return maximization linear programming model to maximize the net return over the planning horizon thus 
becomes: 
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Where 𝐵 is the initial available budget, 𝑚𝑖𝑛"%and 𝑚𝑎𝑥"%are the minimum and maximum of each type of vehicle. 
Additionally, due to parking space limitations, the total number of vehicles could not exceed M. Furthermore, the 
second constraint refers to the maximum amount that could be financed through financial institutions. 
 

CASE STUDY 
 
The model is applied to the case of a rental car company in the Sultanate of Oman. The company prefers to use one 
vehicle brand (Toyota in this case) due to its reputation of durability and reliability, and for the maintenance team 
efficiency. Additionally, the company’s management initial business level strategy is that of broad differentiation, i.e., 
having a minimum number of vehicles to cater to most demand segments in the Omani market., the minimum is set 
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for the model and not the type (different variations of the same model are assumed similar). A maximum is set for the 
higher range vehicles as these are costlier and the corresponding demand is assumed to be limited. The resale value 
of the car is a function of its original price, typically a vehicle loses 10% of its value for each year of service. This 
percentage is slightly higher for the higher-end vehicles though, as these tend to lose value faster in the first few years 
of operation. The rental rates also drop by about 10% after each year of usage. The starting rates have been determined 
by considering the median rates for similar cars in the market. 
 
The lease cost is a fixed percentage of the initial vehicle price, typically with an APR of around 3% to 5% depending 
on the lease duration. In the case at hand, the duration of the lease is taken as the planning horizon of five years. The 
maintenance cost is dependent on the age and the frequency of usage of the vehicle. To simplify the exposition, the 
initial maintenance cost is assumed to average 5% of the vehicle price and increases at 10% annually. The demand for 
rental cars is highly volatile and seasonal in Oman. With Oman’s strategic initiative to promote tourism, the demand 
is expected to increase. However, the recurring geo-political tensions in the region tend to have a negative effect on 
the growth and stability of the demand. Nonetheless, and for ease of exposition, the demand is aggregated and 
estimated as a percentage of days a vehicle is used during the planning horizon. Different models and types have 
different usage percentages, with higher-end vehicles having a lower usage ratio. For this reason and due to the 
limitation on the parking space available at the company’s facility, the maximum number of vehicles is initially set at 
20, with the management willing to consider a bigger lot, or multiple lots, if deemed economically attractive. 
 

SOLUTION PROCEDURE AND RESULTS ANALYSIS 
 
The above formulated model could be solved with requiring integer decision variables. This would render the problem 
a mixed integer program and would unnecessarily increase the solution burden. The choice of a linear programming 
formulation allows for an insightful sensitivity analysis given the strategic nature of the problem where many of the 
management decisions can still be modified if they are deemed scientifically sound. The linear program is solved with 
the data provided in Table A.1 (appendix A) using an Opensolver ® freeware run on Excel ® 2016. The initial results 
are summarized in the following table (Table 1). 
 
 

Table 1. Optimal Fleet Composition 
Vehicle Model Optimal number 

Toyota Corolla 2019 3 
Toyota Land Cruiser 2019 1 
Toyota Fortuner 2019 1 
Toyota Hilux 2019 1 
Toyota FJ Cruiser 2019 1 
Toyota Camry 2019 3 
Toyota Sequoia 2019 0 
Toyota Aurion 2019 0 
Toyota Avanza 2019 0 
Toyota Coaster 2019 2 
Toyota Hiace 2019 2 
Toyota Innova 2019 0 
Toyota Land Cruiser Pick Up 2019 1 
Toyota Land Cruiser Prado 2019 1 
Toyota Previa 2019 0 
Toyota Prius 2019 0 
Toyota Rav4 2019 2 
Toyota Yaris 2019 2 

 
 
The above results correspond to an initial budget of 50,000 OMR, a finance ceiling of 500,000 OMR and a 20-slot 
parking limit. The maximum expected return is 594,024 OMR with a total fleet size of 20 vehicles. This immediately 
points to the fact that the main binding constraint is the parking space limit set at 20. A further inspection of the 
sensitivity analysis report provides the evidence: the shadow price of the parking constraint is the only positive value. 
All other binding constraints have negative shadow prices. This is quite counter intuitive as one would expect that, in 
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a return maximization case, the higher the number of vehicles, the more return that is generated. The other recurring 
observation is that the top type of each model has been selected for all models except the Hiace model. A quick look 
at the data indicates that the lowest priced type of this particular model has the highest rental fare per day. This could 
be a data error, but it could simply be a manifestation of supply versus demand as this type is the most popular among 
customers. 
 
By relaxing the parking space limit, the financing ceiling constraint becomes binding with a positive shadow price of 
6.2 OMR. This provides us a priority ranking of the key constraints: budget, finance ceiling and parking space limit. 
With the current minimum number of vehicles required, the lowest feasible financing amount is 200,000 OMR. It is 
noteworthy that the parking space limit is due to the availability of commercial space. However, if it is deemed 
economically desirable, the company might consider having multiple storage locations for the vehicles as opposed to 
a central parking facility.  

 
CONCLUSION AND FUTURE RESEARCH 

 
In this paper, a fleet composition linear programming model was developed and solved. The key features of the model 
are its ability to incorporate a number of industry-specific constraints such as treating the vehicles as the primary 
revenue generators as opposed to being a cost within a bigger VRP problem. Additionally, the resale value, the 
maintenance and lease costs are taken into consideration to provide the management with a clearer perspective relative 
to their strategic priorities. The sensitivity analysis indicated that the parking space available for storage of the vehicles 
represents the primary constraint, followed by the finance amount ceiling.  
 
The model assumes a deterministic aggregate demand, which is quite common in strategic planning (Turan et al., 
2020). However, the uncertainty is taken into account in the form of a fixed percentage of usage of the vehicles within 
a given period of time. Additionally, the return is calculated without the fixed operating costs (staff salaries, facility 
rental and operating costs, management cost, etc.), and thus the return calculated may provide an upper limit on what 
the return on the investment would be if the management is considering other investment alternatives within the same 
domain, such as a logistics services offering. Consequently, future research will address these limitations by including 
additional costs incurred in the business model, as well as considering the uncertainty in the demand explicitly. 
Another venue that will be investigated is the translation of the strategic plan for the fleet composition to more tactical 
and operational plans, in particular if the company opts for multiple parking and vehicle storage locations. 
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APPENDIX A 
 
 

Table 2. Model Data 

Vehicle model Type Price 
(OMR) 

Resale Value 
(OMR) 

Rental rate / 
day (OMR) APR (%) 

Toyota Corolla 2019 

1.6L SE+ 6,300 2520 18.4 4% 
2.0L SE+ 6,700 2680 19.3 4% 
1.6L Limited 7,000 2800 20.8 4% 
2.0L Limited 7,500 3000 23.0 4% 

Toyota Land Cruiser 
2019 

4.0L EXR 20,000 8000 53.3 4% 
4.0L Safari 20,000 8000 55.0 4% 
4.6L EXR 21,600 8640 56.3 4% 
4.0L GXR GT 26,900 10760 58.0 4% 
4.6L VXR 28,700 11480 60.0 4% 
4.6L GXR GT 29,000 11600 61.3 4% 
5.7L EXR 31,500 12600 63.0 4% 
5.7L VX.R White Edition 36,000 14400 65.0 4% 
5.7L VXR 36,000 14400 70.0 4% 
VX White Edition 36,000 14400 73.0 4% 

Toyota Fortuner 2019 
2.7L EXR 11,000 4400 37.0 4% 
4.0L GXR 13,100 5240 39.0 4% 
4.0L VXR 14,700 5880 44.0 4% 

Toyota Hilux 2019 

2.7L Double Cab GL M/T (4x2) 8,900 3560 35.0 4% 
2.7L Double Cab GLX (4x2) 8,900 3560 38.0 4% 
2.7L Double Cab GLX M/T (4x2) 8,900 3560 40.0 4% 
2.0L Double Cab 4x2 9,300 3720 30.0 4% 
2.0L Double Cab 4x2 (Top Spec) 9,300 3720 32.0 4% 
2.0L Single Cab 4x2 9,300 3720 25.0 4% 
2.0L Single Cab 4x2 (Top Spec) 9,300 3720 27.0 4% 
2.4L Double Cab 4x4 9,300 3720 40.0 4% 
2.4L Double Cab DLS M/T (4x2) 9,300 3720 42.0 4% 
2.7L Double Cab GL (4x4) 9,300 3720 45.0 4% 
2.7L Double Cab GL M/T (4x4) 9,300 3720 47.0 4% 
2.7L Double Cab GLS (4x4) 9,300 3720 49.0 4% 
2.7L Double Cab GLX (4x4) 9,300 3720 50.0 4% 
2.7L Double Cab GLX M/T (4x4) 9,300 3720 52.0 4% 
2.7L Single Cab 4x2 9,300 3720 35.0 4% 
2.7L Single Cab GLX (4x4) 9,300 3720 37.0 4% 
4.0L Double Cab TRD (4x4) 9,300 3720 40.0 4% 
2.4L Double Cab 4x4 (Top Spec) 10,000 4000 45.0 4% 
2.7L Double Cab 4x4 10,200 4080 38.0 4% 

Toyota FJ Cruiser 2019 

4.0L EXR 11,500 4600 40.0 4% 
4.0L GXR 14,500 5800 42.0 4% 
4.0L VXR 15,500 6200 45.0 4% 
4.0L Extreme 16,500 6600 50.0 4% 

(Table 2 continued on next page)  
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(Table 2 continued) 

Vehicle model Type Price 
(OMR) 

Resale Value 
(OMR) 

Rental rate / 
day (OMR) APR (%) 

Toyota Camry 2019  

2.5L LE STD (204 HP) 9,000 3600 28.0 4% 
2.5L S 9,000 3600 20.8 4% 
2.5L S (178 HP) 9,000 3600 24.5 4% 
2.5L SE (178 HP) 9,000 3600 27.0 4% 
3.5L LTD (298 HP) 9,000 3600 30.0 4% 
3.5L SE (298 HP) 9,000 3600 32.0 4% 
3.5L SE+ (298 HP) 9,000 3600 35.0 4% 
3.5L Sport (298 HP) 9,000 3600 40.0 4% 
2.5L SE 9,700 3880 24.0 4% 
2.5L SE+ 10,500 4200 26.0 4% 
2.5L Limited 11,100 4440 30.0 4% 

Toyota Sequoia 2019 5.7L SR5 4x2 15,500 6200 45.0 4% 
5.7L Platinum 21,000 8400 50.0 4% 

Toyota Aurion 2019  3.5L Sport 11,900 4760 65.0 4% 
3.5L Grande 14,100 5640 55.0 4% 

Toyota Avanza 2019  1.5L SE 5,600 2240 45.0 4% 

Toyota Coaster 2019   
2.7L (23-Seater) 20,900 8360 95.0 4% 
2.7L SWB (20-Seater) 20,900 8360 100.0 4% 
4.2L (23-Seater) 21,500 8600 105.0 4% 

Toyota Hiace 2019   

3.5L GL STD Roof Panel Van (3-
Seater) 

8,900 3560 40.0 4% 

2.7L Panel Van High Roof LWB 9,900 3960 35.0 4% 
2.5L Commuter M/T 10,500 4200 35.0 4% 

Toyota Innova 2019   
2.7L SE 8,500 3400 38.0 4% 
2.7L SE+ 10,500 4200 40.0 4% 
2.7L Limited 10,900 4360 42.0 4% 

Toyota Land Cruiser 
Pick Up 2019   

4.0L Double Cab 12,500 5000 60.0 4% 
4.0L Hard Top 12,500 5000 55.0 4% 
4.0L Single Cab 12,500 5000 50.0 4% 

Toyota Land Cruiser 
Prado 2019   

(3 Door) 2.7L GXR 12,500 5000 44.0 4% 
2.7L EXR 13,100 5240 47.0 4% 
2.7L GXR 14,000 5600 48.0 4% 
2.7L VXR 15,500 6200 49.3 4% 
4.0L EXR 15,900 6360 51.4 4% 
4.0L GXR 17,400 6960 52.7 4% 
4.0L VXL 19,000 7600 54.0 4% 
4.0L VXR 19,500 7800 56.0 4% 

Toyota Previa 2019  2.4L S 11,500 4600 60.0 4% 
2.4L SE 13,000 5200 65.0 4% 

Toyota Prius 2019  Eco 9,300 3720 12.0 4% 
Iconic 10,200 4080 15.0 4% 

Toyota Rav4 2019  

2.5L (2WD) EX 9,200 3680 41.0 4% 
2.5L 4WD EXR 10,000 4000 42.5 4% 
2.5L 4WD GX 11,000 4400 44.0 4% 
2.5L (2WD) VX 11,500 4600 45.4 4% 
2.5L 4WD GXR 12,500 5000 47.5 4% 
2.5L 4WD VXR 13,500 5400 48.8 4% 

Toyota Yaris 2019  
1.3L SE 5,400 2160 13.9 4% 
1.5L SE 5,800 2320 15.4 4% 
1.5L SE+ 6,100 2440 18.3 4% 
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Table 3. Minimum and maximum number of vehicles per model 
Vehicle Model Min Max 

Toyota Corolla 2019 3 N/A 
Toyota Land Cruiser 2019 1 5 
Toyota Fortuner 2019 1 5 
Toyota Hilux 2019 1 5 
Toyota FJ Cruiser 2019 1 5 
Toyota Camry 2019 3 N/A 
Toyota Sequoia 2019 N/A 5 
Toyota Aurion 2019 N/A 5 
Toyota Avanza 2019 N/A 5 
Toyota Coaster 2019 N/A 5 
Toyota Hiace 2019 2 5 
Toyota Innova 2019 N/A 5 
Toyota Land Cruiser Pick Up 2019 1 5 
Toyota Land Cruiser Prado 2019 1 5 
Toyota Previa 2019 N/A 5 
Toyota Prius 2019 N/A 5 
Toyota Rav4 2019 2 5 
Toyota Yaris 2019 2 N/A 
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NOTES 


