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A statistic is a number that is calculated from a sample consisting of data values. One simple
example of a statistic is the sample mean. The study of statistics concerns gathering data, analyzing
data, drawing conclusions from data, and making decisions from data. Statisticians use mathematical
techniques and algorithms to collect, display, and analyze data. Many of their methods rely on
probability, so the study of statistics can be thought of as probability applied to data.

Sometimes, you just need to present data in a way that allows you to reach an obvious conclusion.

In other cases, sophisticated mathematical models are required in order to draw a conclusion from a
data set. We begin with the first case.

-

1.1 Statistical Graphics

Assuming that data values have been collected in a reasonable fashion (more detail will be provided
later about what constitutes “reasonable’), statisticians face the challenge of how to present the data
values in a fair, intuitive, and revealing fashion. The graphical display of a data set consists of tablcs
and figures that highlight key features that address a relevant question of interest.

We begin with a simple example of placing a data set of just five observations in a table in order
to compare the populations of five countries.

Example 1.1 A data set consisting of the populations of five countries in the year 2000
taken from the appropriate Wikipedia website is displayed in Table 1.1. Although it con-
tains all of the information required to compare the populations, Table 1.1 is a dreadful
presentation of this data set for the following reasons.

o The populations are placed horizontally. Although this takes up less vertical space
on the page, it makes visual comparisons more difficult. Aligning the populations
vertically on the decimal point is a better approach.

Country: “ China ‘ Indonesia | Montenegro l Serbia l U.S.A.
Pop.: || 1,242,612,266 | 206,264,595 | 620,145 | 9,778,991 | 281,421,906

Table 1.1: Populations in 2000 (presented poorly).
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e The countries are sorted alphabetically even though the interest is in comparing
population sizes; it would have been more helpful to sort them by decreasing
population size.

e The bland monospace font is hypnotizing for the reader and obscures rather than
accentuates the population sizes.

e There are lots of lines separating the fields in the table; it is better to use fewer -
lines. o

e Unnecessary extra ink (such as the colons after the row labels) should be avoided.
Abbreviating the population label is not helpful.

e Using all of the digits on population is distracting and makes comparing the pop-
ulations more difficult. Does the value in the ones digit really matter?

So how can this table be improved? We can improve Table 1.1 by addressing each of the

six points above. Table 1.2 is a second attempt at displaying the five data values which,
hopefully, you find to be a more intuitive way of presenting the data with the goal of
comparing populations. One can easily and immediately see that China has the largest
population with over one billion people, followed by the others in decreasing population .
size. The data values are arranged vertically, aligned on the decimal point, and sorted

by population size; fonts have been altered, unnecessary ink has been removed, and
distracting digits have been removed by presenting the populations in millions. The
essence of the population data set is easily and quickly gleaned from Table 1.2 by using
common-sense principles to redesign the table.

Country Population (millions)
China 1,242.6
U.S.A. 2814
Indonesia 206.3
Serbia 9.8
Montenegro 0.6

Table 1.2: Populations in 2000.

The display of data in an accurate, meaningful, and intuitive fashion is as much an art as it is a
science. What constitutes a “good” table is a matter of preference. The two tables from Example 1.1
have illustrated a bad presentation and a good presentation. The key step in this process is placing
yourself in the reader’s position and thinking of ways to simplify the presentation of the data to
illuminate the aspect of the data that is of interest.

Presenting data in tables, however, is not the only option. The graphical presentation of data
provides a much more efficient way to convey the message a data set provides.

The practice of presenting data in graphical form is a field known as statistical graphics. One
of the early pioneers in the field was William Playfair (1759-1823), who published the Commercial
and Political Atlas in 1786. His atlas contained graphs that described imports and exports of England
and Wales with their trading partners. Before the publication of Playfait’s atlas, graphs were rare;
after his publication, graphs began to appear with increasing regularity. More recent leaders in the
field include William S. Cleveland, Edward R. Tufte, and John W. Tukey. Their books are listed
in the preface and are recommended reading materials if this brief overview of statistical graphics
given here sparks some interest on your part.
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Contemplating how one should construct a graph in order to display quantitative information
will help you think about data, which is at the core of statistical practice. Visualizing the data set
via a graph is often the first view we get of a data set after the data is collected. It provides a first
impression that often guides the next step, which might be using a statistical inference technique to
draw a conclusion from the data. The graphs that will be produced in this section are drawn in the
free statistical package called R, but there are many other tools available for constructing statistical
graphics.

Do not prioritize fancy fonts, color, shading, or highlighting when it comes to statistical graphics.
The best graphic is often a simple plot which conveys only the appropriate information in the data
set. One overriding principle established by Tufte is to maximize the data-ink ratio. Make every bit
of ink that you place on a graphic count. Use as little ink as possible to provide as much explanation
as is necessary. Do not decorate your graphics with what has come to be known as chartjunk, which
conveys no information, but is simply a misguided attempt to make the graphic more attractive.
Display the data succinctly and clearly, bringing the key information contained in the data set to
prominence in your graphic.

There are dozens of decisions that must be made when constructing a graph to display data.

Human vision and perception considerations should drive all decisions. A sampling of the related
questions includes the following.

e Aspect ratio. Is there a reason (by virtue of the meaning of the scales) that the plotting arca
should be a square? If not, is a tall thin graph (portrait orientation) more appropriate, or is a
short wide graph (landscape orientation) more appropriate?

¢ Axes. Should axes be included? Does one of the variables naturally belong on the horizontal
axis? Should axes be included on just the bottom and left sides of the plot, or should they be

included on three or all four sides of the plot? Should the axes intersect or should there be a
gap between them?

e Scales. Should the scales on the axes be linear? Should a logarithmic scale for an axis be
used? Should a square root scale for an axis be used? Where should the scales begin and end?
Is it helpful to have zero included on the scale? (This is not an option for a logarithmic scale.)
Should a break be placed on a scale in order to include zero?

o Axis labels. Should the axis labels be in the same font style as the manuscript text? Should
the axis labels be the same font size as the manuscript text? Should the labels be placed at
the ends of the axes or in the center of the axes? Should the vertical axis label be displayed
parallel to the axis or rotated clockwise 45° or 90° for easier reading?

o Tick marks and tick labels. Should the tick marks extend into the plotting area or out of the
plotting area? How many tick marks should be included on each axis? Should all tick marks
be the same size? How long should the tick marks be? Should all tick marks be labeled?
Should the tick mark labels be in the same font style as the manuscript text? Should the tick
mark labels be the same font size as the manuscript text? Should the tick mark labels for the
vertical axis be displayed parallel to the axis or rotated clockwise 90° for easier reading?

o Plotting area. What symbol is appropriate for plotting a point? Is a legend necessary to
describe the meaning of the plotted symbols? What should be done if two points fall on top
of one another? Should points be connected with lines? Is placing text in the plotting arca
helpful? Should reference lines be included in the plotting area? If so, should they be solid,
dotted, or dashed? Should the elements placed in the plotting area be black, gray, or colored?
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Every graph that you construct must answer these questions. The first example of a statistical graphic
comes from sports.

Example 1.2 March Madness occurs every spring when a 64-team single-elimination
tournament is used to determine the best college basketball team in the United States,
One game, which some consider to be the greatest basketball game ever played, oc-
curred in the East Regional final game of the men’s tournament on March 28, 1992
between the Blue Devils of Duke and the Wildcats of Kentucky. Duke prevailed 104
103 in an overtime victory, winning on a last-second shot by Christian Laettner. The
game featured perfect shooting for Laettner (10 for 10 from the field and 10 for 10
free throws for 31 points), five lead changes in the last 31.5 seconds, and both teams
shooting 63% from the field in the second half and overtime. ESPN sportswriter Gene
Wojciechowski wrote a book about this game titled The Last Great Game. Table 1.3
contains the box score for those who played in the game.

s
.

Duke Kentucky
Christian Laettner 31 | Jamal Mashburn 28
Bobby Hurley 22 | Sean Woods 21
Thomas Hill 19 | Dale Brown 18
Brian Davis 13 | John Pelphrey 16
Grant Hill 11 | Richie Farmer 9
Antonio Lang 4 | Gimel Martinez 5
Cherokee Parks 4 | Deron Feldhaus 5
Marty Clark 0 | Aminu Timberlake 1

Nehemiah Braddy 0
Travis Ford 0
Andre Riddick 0
Total 104 | Total 103

Table 1.3: Duke vs. Kentucky box score.

The box score is helpful for knowing the final score and how points were distributed
among the players, but it does not give you any indication of the dynamic, or time-
dependent, aspect of the game. Was the game a see-saw battle with many lead changes,
or did one team build a big lead and the other battled back? Did one team score a large
portion of their points with three-point shots? The box score does not answer these
questions; so, we must design a statistical graphic that includes the answers.

The first question concerns the axes on the graphic. One plot that might be of interest
is scoring over time. We follow the standard practice of placing time on the horizontal
axis. Now we move to the vertical axis. One measure of scoring which allows the
viewer to easily capture the flow of the game is to plot the difference between the scores.
The step function moves upward for a Duke score and downward for a Kentucky score;
so whenever the difference lies above zero, Duke is leading. The fact that the basketball
hoops are swapped at halftime is not particularly relevant.

Four more elements are added to the statistical graphic to help the viewer. First, a bit of
shading helps highlight the area between the function and the horizontal line associated
with a tied game, which helps the reader see how long a lead is held. Second, vertical
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lines are added at ¢ = 20 minutes (halftime) and ¢ = 40 minutes (end of regulation).
Third, small dots are added at each scoring time. Finally, vertical axes on both the left
and right sides of the graphic make the differences in scores easier to determine.

After some experimentation, the landscape orientation of the plotting area looked the
best; the final graphic is shown in Figure 1.1. Several conclusions can be quickly drawn
from this statistical graphic that are not apparent from the box score.

Kentucky scored first with a 3-point shot.

Kentucky built a lead of 8 points early in the first half.
Duke lead by 5 points at halftime.

L 2

The two longest scoring droughts occurred early in the second half.
Duke built their lead to 12 midway through the second half.

Kentucky brought the game back to within 1 point with a 9 point scoring run,

There was a scoring frenzy at the very end of the game, which is often the case in
a close game because of deliberate fouling, which stops the clock.

e Duke won the game on a buzzer shot.

The small dots on the plot allow the viewer to see the difference between two consecu-
tive successful free throws (such as those by Duke midway through the overtime period)
and a two point shot (such as that by Kentucky just prior to the successful free throws).
The statistical graphic can be enhanced by labeling the times of key events (such as a
key player fouling out) that might influence the momentum of the game.

12 - 12
9 - -9
6 - 6
3 - - 3
0 A - 0
3 A -3
6 1 - 6
9 41 Kentucky -9
15 - ielad | ! . L 19
0 20 40 45

elapsed time (minutes)

Figure 1.1: Duke vs. Kentucky, March 28, 1992.

The statistical graphic for the scoring in a basketball game allows one to glean the flow of the
scoring for an entire basketball game in a glance. Would this type of graphic work for all sports?
Consider football, where 1, 2, 3, or 6 points can be scored at a time. You could still produce the same
statistical graphic for the scoring as we did for the basketball game, but football has other strategic
elements (for example, field position) that are not captured with the single graphic alone.
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The basketball graphic portrays quantitative variables on both the horizontal and vertical axes.
QOccasions arise when one of the variables is quantitative, but the other is qualitative, as is the case
in the next example. This example also illustrates the case in which a statistical graphic is employed
to help solve a mystery.

Example 1.3 The !Kung hunter-gatherers of Botswana and Namibia have long inter-

. vals between births, typically between 3 and 4 years, despite being a noncontracepting
and nonabstinent population. Speculations linked the birth spacing to nutritional infer-
tility, because the !Kung diet is sometimes low in calories, but no direct data had been
collected to support this hypothesis.

Harvard anthropologists Melvin Konner and Carol Worthman investigated the unusu-
ally long birth spacings. Figure 1.2 shows one daylight cycle of interaction between
a mother and her 14-day old son. As in the previous statistical graphics, the horizon-
tal axis is time, which runs over the daytime interactions from 7:30 AM to 7:30 PM.
The dependent variable here is not quantitative—it is one the following states: nursing,
sleeping, holding, and crying. Furthermore, some of these states can occur simultane-
ously. For this reason, the states are labeled on the left using a text string and their
durations are indicated by bars. Gaps between the bars imply that the state is not occur-
ring. Nursing is placed at the top because it plays a central role in the conclusion that
was drawn by Konner and Worthman.

nursing il moImorn minoor my 1 aoonee fon OO0 M

sleeping 11 O (1 Cac=1a iy O
holding i1 O 0 13 1
crying I | I I

7:30  8:30 9:30 10:30 11:30 12:30 1:30 2:30 3:30 4:30 5:30 6:30 7.30
AM i PM
1me

Figure 1.2: 'Kung mother and baby daytime interactions.

The first thing that jumps out from the data (particularly to a Western mother) is the high
frequency of nursing bouts. During the daytime hours when recordings were collected,
there were 46 such bouts. This corresponds to a nursing bout every 15 minutes on
average for this baby. There was a nursing bout every 13 minutes on average for all
of the babies that they observed. Blood samples were also drawn daily on the nursing
mothers. Konner and Worthman used the following logic to reject the conclusion that
the low-calorie diet alone produced the long birth spacings: (1) nursing results in the
release of the hormone prolactin, (2) prolactin has a half-life in the plasma of 10 to 30
minutes, (3) prolactin has an antigonadotrophic effect, which means that the mother will
be less fertile if the prolactin level is high enough. So these frequent nursing bouts result
in an elevated level of prolactin that results in the infertility of the mother. It is only late
into the second year of life, when the baby’s separations from the mother are longer as
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the baby spends more time playing, that the mother once again becomes fertile. The
investigators used the statistical graphic, blood tests, and some biochemistry to draw
their conclusion.

The statistical graphics in the previous two examples have had time on the horizontal axis. The
next example considers a plot that shows the relationship between two categorical variables.

Example 1.4 All of the statistical graphics presented thus far have been prepared in
the R language, which is open-source software. In this example, the R code required to
produce the statistical graphic is presented, which only requires a single line of code.
R has a built-in data set named HairEyeColor, which gives counts of the hair and
eye color of 592 statistics students at the University of Delaware. The hair color is
classified into four levels: black, brown, red, and blond. The eye color is also classified
into four levels: brown, blue, hazel, and green. (The gender of the students was also
collected, but will be ignored in the statistical graphic created here.) The hair color and
eye color are known to statisticians as categorical variables. One way to investigate
the relationship between hair color and eye color is a mosaic plot, which can be used to
visualize the relationship between two or more variables. The single R command given
below produces a mosaic plot of the hair and eye color data.

mosaicplot (* Hair + Eye, data = HairEyeColor)

The mosaic plot is shown in Figure 1.3. The four hair colors are depicted horizontally;
the four eye colors are depicted vertically. The areas of each rectangle are proportional
to the counts of each combination of hair and eye color. For example, there are only 5
students in the statistics class with black hair and green eyes, so that rectangle has the
smallest area. At the other extreme, there are 119 students with brown hair and brown

Black Brown Red Biond
S :_;’ g el < A e ¥ [ - l
Brown |
[0
S
Lu
Blue
e [l =
Green L .

Hair

Figure 1.3: Mosaic plot of hair and eye color.
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' eyes, so that rectangle has the largest area. Clearly, based on the mosaic plot, hair color
- and eye color are related. If someone has blond hair, their eyes are most likely blue. If
“.. someone has black hair, their eyes are most likely brown.

Some statistical graphics don’t require axes. Word clouds, which require no axes at all, are useful
for showing frequencies of words in a text. They can also be used to quickly compare relative sizes
of populations, relative number of search engine words, etc.

Example 1.5 A word cloud (also known as a wordle, tag cloud, or weighted list) uses
the frequency of interesting words to give the viewer a quick visual overview of the
content of a book, article, speech, or document. The words are packed as densely as
possible into the cloud. Rotating some of the words so that they appear vertically allows
the words to be packed more densely. The font size used on the three word clouds that
follow is proportional to the frequency of the occurrence of the word in each text, I have
arbitrarily chosen the top 50 “interesting” words in the three word clouds illustrated
. here. (This is a subjective process, but I left out words like “the,” “is,” “at,” and “may.”)

The Bible is divided into two parts: the Old Testament and the New Testament. I have
used the 39 books for the Old Testament and the 27 books for the New Testament that

. are in common use by the Catholic, Protestant, Greek Orthodox, and Russian Orthodox
churches, translated into the King James Version. The two different versions of the

~ word “Lord” were counted together, making it the most frequent word in the text. The
- word cloud in Figure 1.4 contains the 50 most frequent interesting words that appear.
. By just viewing this graphic for a few seconds, it is easy to see what is emphasized in

the text.
fathers Moses

M people = MNan -

E w father Place David Christ Iame

5 giheard @ E % q) Jfgl\,lfslalem called t’inallhd’
e SJudah &S — = g EgyPt  therefore e
2 ki o 52 hand  heat ")
_8 sent ng —q offcrmg ag alnsl‘lt cc

s, eat eV,

Figure 1.4: Word cloud of the Bible.

As a second contrasting example, Figure 1.5 contains a word cloud of the top 50 most
frequent interesting words in William Shakespeare’s play Hamlet. Several words appear
(for example, “Denmark,” “England”) that could not have appeared in the first word
cloud.
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Denmark
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Figure 1.5: Word cloud of William Shakespeare’s Hamlet.

The previous two word clouds are in stark contrast to the one for Mark Twain’s The
Adventures of Huckleberry Finn in Figure 1.6. Several of the words (for example,

“reckon,” “warn’t,” “ain’t,” “dey,” “knowed”) were common in the deep south at the
time the book was written. The words “raft,” “canoe,” “river,” and “woods” reflect the
book’s setting along the Mississippi River.

My hope is that these examples have conveyed the value of well-constructed statistical graph-
ics. Their value is enormous in terms of both taking a first look at a data set for a statistician and
communicating the information in a data set to non-statisticians. The following example includes

home mlnute
4 Why warn’t;
"q rlverhand raft
three Y *o_g, O woods

work 3 p eop le house H
o v-d trouble =+ B Ieft knowed®

g()t"’“ly ™ men C: king enf

q= ok Qtday =
mone OWIl

yfé‘fﬁ‘ék E duke = d

ZOne: 800

Figure 1.6: Word cloud of Mark Twain’s The Adventures of Huckleberry Finn.

prett
hea
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the R code necessary to produce some elementary statistical graphics that can be applied to a single
data set of n values drawn from a univariate population. In this case the data set consists of # = 100
experimental estimates of the speed of light.

Example 1.6 We now know that the speed of light in a vacuum, oftentimes denoted by
the constant ¢ in Einstein’s famous E = mc? formula, is 299,792.458 kilometers per sec-
ond. The speed of light is slightly slower for light traveling through air—approximately
90 kilometers per second slower based on the refractive index of air. The speed of light
in air also depends on the temperature and pressure of the air, so it is difficult to pin
down one value. Before modern science emerged, many believed that the speed of light
was infinite, meaning that light transmitted instantaneously. Galileo Galilei was one of
the first to believe that the speed of light was finite. The first effort to determine the
exact value of ¢ was performed by Danish astronomer Ole Rgmer in 1676, using the
difference in the periods of Jupiter’s innermost moon when the earth was approaching
and receding from Jupiter. Christiaan Huygens combined Rgmer’s observation with an
estimate of the diameter of the Earth’s orbit to produce the first estimate of ¢, which was

low by 26%. In 1879, Albert Michelson conducted experiments using a device with a

rotating mirror (called an interferometer) to estimate the speed of light in air. These

experiments resulted in the data set shown in Table 1.4, Each data value is the amount

in excess of 299,000 kilometers per second. Each data value given is the average of ten

experiments conducted by Michelson. The order of observation is given row-wise.

850 740 900 1070 930 850 950 980 980 830
1000 980 930 650 760 810 1000 1000 960 960
960 940 960 940 880 800 850 880 900 840
830 790 810 880 880 830 800 790 760 800
880 880 880 860 720 720 620 860 970 950
880 910 850 870 840 840 850 840 840 840
890 810 810 820 800 770 760 740 750 760
910 920 890 860 880 720 840 850 850 780
890 840 780 810 760 810 790 810 820 830
870 870 810 740 810 940 950 800 810 870

Table 1.4: Estimates of the speed of light in air (add 299,000 km/sec to each value).

The data displayed in Table 1.4 are rather unwieldy. Since the order that the observa-
tions were collected is not of particular interest, perhaps the data is better presented in
sorted order, as in Table 1.5. This display is much more helpful to the reader. Clearly,
the observations range from 299,620 kilometers per second to 300,070 kilometers per
second, with the majority of the data values falling between 299,800 kilometers per
second and 299,900 kilometers per second.

Although this second table is an improvement over the first, it is still rather difficult
for the reader to intuit the shape of the probability distribution associated with this data
set, even by spending significant time staring at the table of sorted observations. One
crude, text-based graphic that can help determine the shape of the probability distribu-
tion is known as a stem-and-leaf plot. These plots were popularized in the 1970s, when
monospace fonts (all numbers and letters use the same amount of horizontal space like
this) were common on computer terminals and hard copy. A vertical line separates the
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620 650 720 720 720 740 740 740 750 760
760 760 760 760 770 78 780 790 790 790
800 800 800 800 800 810 810 810 810 810
810 810 810 810 810 820 820 830 830 840
840 840 840 840 840 840 840 850 850 850
850 850 850 38350 850 860 860 860 870 870
870 870 830 880 880 830 880 830 880 880
880 880 890 890 890 900 900 910 910 920
930 930 940 940 940 950 950 950 960 960
960 960 970 980 980 980 1000 1000 1000 1070

Table 1.5: Estimates of the speed of light in air (add 299,000 km/sec to each value).

stem values, which fall to the left of the line, and the leaf values, which fall to the right
of the line. The first step in constructing a stem-and-leaf plot is to sort the data in as-
cending order, as in Table 1.5. The next step is to determine the meaning of the stem
values. For the speed of light data, this will be the leftmost digit of the data values from
Table 1.5 for the first 96 sorted observations, then 10 for the last four observations. The
last step is to create a leaf entry for each data value. For the speed of light data set, we
ignore the rightmost digit for each data value (because it is always zero) and use the
tens digit of each entry as the leaf. The results of this process for the speed of light data
are shown in Figure 1.7. There must be the same amount of horizontal space allocated
to each leaf value for the shape of the probability distribution to be meaningful. The
stem-and-leaf plot is one of the few statistical graphics in which the data set can be
reconstructed from the plot. The stem-and-leaf plot can be viewed as an estimate of the
probability density function of Michelson’s observations as follows. Rotate your book
90° counterclockwise and look at the leaf values that are above the (now horizontal)
line. These leaf values form a crude digital histogram by displaying the various cell
frequencies. Not surprisingly, the speed of light estimates have a bell-shaped distribu-
tion, centered around the sample mean % = 852, which is slightly higher than the known
population mean of approximately u = 792. The spread of the probability distribution
associated with the observations is partially explained by the error in the measuring
device used in the experiment in the late 1800s.

The following two lines of code in R are used to produce a stem-and-leaf plot similar
to the one in Figure 1.7.

x = scan("michelson.d")

stem(x)
6125
7 | 222444566666788999
8 | 00000111111111 12233444444445555555566677778888888888999
9 | 001123344455566667888
10 | 0007

Figure 1.7: Stem-and-leaf plot of the estimates of the speed of light in air.
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The data set is stored in a file named michelson.d and is read into the vector of length
n = 100 by R’s scan function. Figure 1.8 shows the stem-and-leaf plot produced by
the stem function. The stem function decided that the five cells in the stem-and-leaf
plot plotted by hand in Figure 1.7 were not adequate, and decided internally to plot ten
cells instead. I added a legend on the left that describes the meaning of the smallest
and largest data values. This common practice helps the viewer interpret the values in
the plot. Typing help (stem) at the command prompt in R gives the options associated
with the stem command.

6 | 2 =299,620 km/sec 2

5

222444

566666788999
000001111111111223344444444
5555555566677778388888888999
0011233444

55566667888

000

7

[ B B Ve B Vs B0 R~ < BENS BN B W@

[EN

10 | 7 = 300,070 km/sec

Figure 1.8: Another stem-and-leaf plot of the estimates of the speed of light in air.

Another common statistical graphic that captures the shape of the probability distribu-
tion of a data set is the histogram. Compared with the stem-and-leaf plot, the histogram
is a bit more aesthetically pleasing and allows greater flexibility in choosing the cells
that contain the data values. Unlike the stem-and-leaf plot, however, you are not able to
recreate the data values from a histogram. The R statements

X = scan({"michelson.d")
hist {x)

produce a histogram of the data values, which is plotted in Figure 1.9. The units on

30 1
25 -
20
15
10 1

600 700 800 900 1000 1100

Figure 1,9: Histogram of speed of light estimates (km/sec over 290,000) in air.
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the horizontal axis are the speeds in excess of 290,000 kilometers per second and the
units on the vertical axis are the counts of observations falling into the cells (600, 650],
(650,700, ..., (1050, 1100). The units on the vertical axis are the number of observa-

- tions falling in each bin. Since the histogram is the statistical analog of the probability
mass function or probability density function f(x), some statisticians prefer to alter the

. vertical axis units so that the area under the histogram is one, just as it is for f(x). Sim-
ply add the probability = TRUE option in the call to hist to alter the vertical scale
in this fashion. This allows the analyst to superimpose a hypothesized probability den-
sity function on top of such a histogram to illustrate a potential population probability
distribution that might have produced such a data set.

The main strength of the histogram is that it is one of the better ways of assessing the shape of a
probability distribution. This shape can lead to a short list of probability models for the population
distribution. Histograms also have several weaknesses. The first weakness concerns the arbitrary

grouping of observations into cells. Choosing the number of cells and cell boundaries for a histogram
is rather important for the following reasons.

e Choosing too few cells can mask important features of the data set. The default number of
cells was chosen by R in Figure 1.9. Sturges’s rule suggests using 1 +log, n cells.

¢ Choosing too many cells can highlight the natural random sampling variability (that is, the
chance fluctuations in the data associated with a finite sample size) rather than the shape of
the parent probability distribution.

Even if you choose the right number of cells, shifting the cells slightly to the left or the right can
cause subtle or even dramatic differences in the shape of the histogram. For the aesthetics of the
histogram, it is preferable to have round numbers as the cell boundaries. The number of cells should
increase with the sample size because random sampling variability is less pronounced for larger data
sets.

The second weakness associated with histograms is that they are notoriously bad at comparing
multiple populations; they do not stack well. One exception to this is the case of two populations,

where the two histograms can be placed side-by-side. This case is illustrated in the following exam-
ple.

Example 1.7 Demography is the statistical study of human populations. One aspect of
human populations that can be summarized by two histograms is the age distribution for
a particular sub-population. A population pyramid or age structure diagram consists
of two histograms rotated 90° and placed side-by-side. These diagrams illustrate the
longevity, birth rate, and probability distribution of the ages of the population by gender,
race, etc. When two population pyramids are compared for the same sub-population at
two different points in time, they reveal population dynamics due to various factors such
as medicat advances or immigration.

Figure 1.10 contains a population pyramid for France on January 1, 1960 using data
from wiw . insee . £r. There are 100 ages plotted on the vertical axis, and corresponding
male populations on the left and female populations on the right, in thousands, on the
horizontal axis. The most pronounced features of this statistical graphic are the nearly-
symmetric dents in the populations that achieve their lowest level at ages 19 and 44.
These dents cannot be attributed to random sampling variability because the sample
size is so large. So what cansed the dents?
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Figure 1.10: Population pyramid for France, January 1, 1960.

Using the birth year on the right-hand vertical scale, it can be concluded that the tragic
effects of two world wars fought on French soil are the cause of the dents in the pop-
ulation pyramid. The durations of World War I (1914-1918) and World War II (1939~
1945) coincide with the dents. There was a decreased birth rate during the wars, and a
post-war baby boom after each war. Both male and female births are affected equally
by the decline and subsequent bump in the birthrate. Looking more closely at the el-
derly population at the top of the graphic also indicates that there are significantly more
elderly women than men. Could this be due to the increased longevity that women have
over men, or are other factors at play? France sustained 1.7 million casualties in World
War I and 600,000 casualties in World War II. These casualties would also account for
some of the difference between the male and female population sizes. If you would like
to see population pyramids for all countries for any year between 1950 and 2100, visit
populationpyramid.net.

Population pyramids are useful ways of summarizing the age distribution of a population. Some
extensions are listed below.

e Although a matter of taste, the gray grid lines inside of the pyramid could be removed, giving
more emphasis to the shape of the two histograms.

e Labels are often added to a population pyramid to explain features of the pyramid (for exam-
ple, dents).

¢ Population pyramids can be viewed over time, giving a dynamic sense as to how population is

changing over time. In the case of the population pyramid of France on January 1, 1960, the
dents would float upward as time advances.



Section 1.1. Statistical Graphics 15

® The two sides of the pyramid are not limited to male and female populations. The left side
could be for left-handed individuals and the right side could be for right-handed individuals.

Likewise, the vertical axis need not be age for constructing a pyramid of this type. The vertical
axis could be SAT scores for a cohort of students applying to a particular university.

The horizontal axis on most population pyramids is the population size, as in the previous
example. But this need not be universally true. If the histogram on the left corresponds to
the population (both male and female) in Europe, and the histogram on the right corresponds
to the population (both male and female) in New Zealand, then it makes sense to use percent

of population on the horizontal axis in order to assess the difference between the two age
distributions.

Histograms are not an appropriate vehicle for comparing more than two populations simultane-
ously. A box plot (also known as the box and whisker plot) is a convenient statistical graphic for

comparing multiple data sets simultaneously. Five numbers are used to summarize a data set in a
box plot:

o the sample minimum (the smallest observation),

the first quartile (the sample 25th percentile),

the second quartile (the sample 50th percentile, also known as the sample median),

the third quartile (the sample 75th percentile),

the sample maximum (the largest observation).

Like the stem-and-leaf plot and the histogram, a box plot is “nonparametric” or “distribution-frec”
in the sense that no assumptions are made about the population distribution from which the data was
drawn. Box plots can be drawn horizontally or vertically. A scale is typically included near the box
plot. Returning to the speed of light data set, a box plot can be drawn with the R commands

x = scan{"michelson.d")
boxplot (x)

which display the vertically-oriented box plot shown in Figure 1.11. The vertical axis displayed is
the data values in km/sec in excess of 290,000 km/sec.

The difference between the third quartile and the first quartile, which captures the middle 50%
of the data, is known as the intergquartile range and is often abbreviated IQR. The interquartile range
is a measure of the dispersion, variability, or spread of the data values. In a box plot, this is the
height of the box when the box plot is arranged vertically as in Figure 1.11.

The symmetry of the data set is also apparent from the box plot. If the sample median (the
middle line in the box) is about the average of the two ends of the box and is also about the average
of the two extreme observations, then it is reasonable to conclude that the data set was drawn from a
nearly symmetric distribution, and therefore the population skewness of the population probability
distribution is approximately zero.

The box plot described here is the most common, but there are several variations on box plots.
Although the ends of the boxes are universally the first and third quartiles, the whiskers that extend
from the box do not always extend to the extremes. One common practice is to let the whiskers
extend to a certain sample percentile, then include data values beyond this percentile wi.lh do'ts.
Another practice is to place a notch in the box around the sample median value to indicate its
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Figure 1.11: Box plot of the estimates of the speed of light in air.

precision. Still another practice is to let the width of the box reflect the sample size. More detail is
given on most websites that describe box plots.

The real value of a box plot is not in just describing a single data set, as in Figure 1.11, but rather
in comparing two or more data sets. The following example illustrates such a comparison.

Example 1.8 The average daily maximum temperature (in degrees Fahrenheit) for three
U.S. cities (Monterey, California; Portland, Oregon; New York City, New York) in the
year 2000 is given in Table 1.6.

| Jan Feb Mar Apr May Jun Jul  Aug Sep Oct Nov Dec
Monterey | 584 61.0 61.7 655 66.1 688 648 682 738 657 61.1 623
Portland 45.1 502 539 64.1 660 764 784 786 739 632 495 455
New York | 379 437 549 582 716 788 790 786 729 644 509 372

Table 1.6: Average maximum temperature in three cities in 2000.

Plotting the temperatures for the three cities over time would be cluttered because the
curves would intersect one another at several points in time. A more elegant statistical
graphic is to compare box plots of the data for the three cities. Although the time depen-
dency is lost, the extreme values and quartiles are easily compared. The R statements

m

c(58.4, 61.0, 6Ll.7, 65.5, 66.1, 68.8, 64.8, 68.2, 73.8, 65.7, 61.1, 62.3)
p = c(45.1, 50.2, 53.9, 64.1, 66.0, 76.4, 78.4, 78.6, 73.9, 63.2, 49.5, 45.5)

n = c¢(37.9, 43.7, 54.9, 58.2, 71.6, 78.8, 79.0, 78.6, 72.9, 64.4, 50.9, 37.2)
boxplot (m, p, n)

1]

produce a plot similar to that shown in Figure 1.12, where the three box plots are ori-
ented horizontally. Since there are n = 12 data values for each city, the sample median
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Figure 1.12: Box plots for the monthly average high temperature for three U.S. cities.

is calculated by averaging the two sorted middle values. One immediate conclusion that
can be drawn from the box plots is that the sample medians are all quite close. The dif-
ference between the highest sample median (Monterey) and the lowest sample median
(New York City) is less than four degrees. Even though the central tendency is nearly
the same, the variability is drastically different. Monterey, California has one of the
world’s best climates, as reflected by both the top box plot and the associated housing
prices. Portland is next in terms of variability, followed by New York City, whose res-
idents endure the harshest winters and hottest summers of the three cities, What is the
cause of the difference in variability? The earth’s rotation gives cities on the west coast
the advantage of warmer winters and cooler summers because of the damping effect on

the temperature of the air that passes over the Pacific Ocean. The effect of the Atlantic
Ocean on temperatures in New York City is minimal.

Box plots provide a way of comparing multiple probability distributions simultaneously. They
also provide a way of describing a probability distribution that avoids the binning of data (that is,
placing data values into cells) that is present in histograms. There is another statistical graphic that
avoids binning data. The empirical cumulative distribution function is the statistical analog of the
cumulative distribution function. The empirical cumulative distribution function is a step function
with upward steps of height 1/ at each data value.

Another way of thinking about why the empirical cumulative distribution function is a reasonable
estimate of F(x) is as follows. If you just had the data values x, x, ..., ¥, and wanted to generate
a “best guess” for f(x), one option is to create an empirical probability mass function f(x) that has
mass 1/n at each data value. (Statisticians use the hat, or caret, above f to indicate that f(x) is an
estimator of f(x).) This works fine if each of the data values is unique. If there are d values that
are tied, then there will be a mass value of d/n at the tied value. Now what would the empirical
cumulative distribution function F(x) associated with this empirical probability mass function look
like? It would be exactly the one described above. It would have an upward step of height 1/n at
each unique data value and an upward step of height d /n when there are d tied data values.

The good news about the empirical cumulative distribution function is that no binning is re-
quired, which means that an empirical cumulative distribution function is unique for a particular
data set. The bad news is that its shape is not quite as distinctive as the histogram.
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Example 1.9 Returning to Michelson’s n = 100 estimates of the speed of light mea-
sured in excess of 290,000 kmy/sec, the empirical cumulative distribution function can
be plotted with the R function plot .ecdf as shown in the code below.

x = scan{"michelson.d")
plot.ecdf(x, verticals = TRUE, pch = "")

The empirical cumulative distribution function is plotted in Figure 1.13. There are
several options for displaying the empirical cumulative distribution function, and the

one displayed here has the vertical risers included on the steps. Some prefer these risers

left off because the step function, after all, is still a function. This is largely a matter of
personal taste.

F(x)
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Figure 1.13: Empirical cumulative distribution function for the speed of light data.

Similar to overlaying a probability density function on top of a histogram, one often overlays a
theoretical cumulative distribution function on top of an empirical cumulative distribution function.
This will be illustrated in the next chapter.

This next example is drawn from business and finance. It illustrates the benefit of a logarithmic
scale for displaying certain types of data sets.

Example 1.10 The Dow Jones Industrial Average (DJIA), also known as the Dow 30,
was devised by Charles Dow and was initiated on May 26, 1896. The average bears
Dow’s name and that of statistician and business associate Edward Jones. The DJIA is
the average stock price of 30 U.S.-based, publicly traded companies, adjusted for stock
splits and the swapping of companies in and out of the average so that it adequately
reflects the composition of the domestic stock market. These adjustments are made by
altering the average’s denominator for historical continuity, which is now much less
than 30. The value of the denominator is given every day in the Wall Street Journal.

The evolution of the DJIA is not a true reflection of the yield of the 30 stocks because
two important factors are not incorporated into the average. First, the average does not
factor in dividends that are paid by some of the 30 stocks. Second, the average does
not factor in inflation, which erodes the true return that a stock investment provides.
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If dividends were factored in, the DJIA would be much higher than it is presently; if
inflation were factored in, the DJIA would be much lower than it is presently.

This example develops statistical graphics associated with the DJIA that illustrate vari-
ous ways to view its evolution over time. The first is a plot of the average annual DJIA

closing values during the 20th century. This plot is generated with the R code given
below.

b4 1901:2000
y scan ("djia")
plot(x, y, type = "1")

!l

i

The file djia contains the 100 annual average closing values. The resulting graph is
shown in Figure 1.14. Data sets of this nature in which a response variable is plot-
ted over time are known as time series. Most economics and statistics departments at

universities offer classes titled “time series analysis” in which probabilistic models are
developed for describing a time series.

The DJIA had a sample mean closing value of 69.52 during 1901 and a sample mean
closing value of 10731.15 during 2000. The linear vertical scale that is used in Fig-
ure 1.14 obscures most of the variability of the DJIA during the first half of the century.
The graph can be made more meaningful by using a logarithmic scale on the vertical
axis. This is accomplished by adding the log = "y" parameter to the plot command
in the R code, resulting in the graph shown in Figure 1.15. Labels have been added to
help highlight events that might have influenced the DJIA.

The stock market crash in October of 1929 that initiated the Great Depression is much
more pronounced in Figure 1.15. The DJIA had peaked with a close of 381.20 on
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Figure 1.15: Dow Jones Industrial Average, 1901-2000.

September 3, 1929. The market bottomed out on July 8, 1932 when it closed at 41.20,
which corresponds to a loss of almost 90%. Each of the two World Wars fought during
the twentieth century was followed by a sustained bull market in the DIA. The top
marginal income tax rate was lowered from 70% to 28% and the federal budget was
brought into balance in the 1980s and 1990s, resulting in a prolonged growth in the
DIIA.

The next statistical graphic provides more detail associated with the DJIA during the
first year of the twenty-first century. The DJIA closed on December 29, 2000, the
last trading day of the century, at 10787.99. The DJIA closed on December 31, 2001
at 10021.57. This 7.1% decline is in part due to the terrorist attacks on the U.S. on
September 11, 2001. The 7.1% decline is an average for the 30 stocks. Some performed
better and some performed worse. The stocks that comprised the DJIA during 2001 are
given in Table 1.7. Their ticker symbols are given in parentheses. General Electric is
the only company that was in the original DJIA from its inception in 1886. A statistical
graphic can be devised that captures the following five pieces of information about the
30 stocks comprising the DJIA from December 29, 2000 to December 31, 2001:

the stock ticker symbol,
e the market sector,
¢ the absolute market capitalization (by including a legend),

the relative market capitalization,

o the one-year performance.

This graphic is shown in Figure 1.16. There are 30 rectangles for each of the 30 stocks
in the DJIA. The area of each rectangle is a monotonically increasing function of the
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Alcoa (AA) Allied Signal (ALD) American Express (AXP)
AT&T (T) Boeing (BA) Caterpillar (CAT)
Citigroup (C) Coca-Cola (KO) DuPont (DD)
Exxon (XOM) General Electric (GE) General Motors (GM)
- Hewlett-Packard (HPQ) Home Depot (HD) Intel INTC)
IBM (IBM) International Paper (IP) Johnson & Johnson (JNJ)
J.P. Morgan (JPM) Kodak (EK) McDonalds (MCD)
Merck (MRK) Microsoft (MSFT) 3M (MMM)
Philip Morris (PM) Procter & Gamble (PG) SBC Communications (SBC)
United Technologies (UTX) WalMart (WMT) Walt Disney (DIS)

Table 1.7: Dow Jones Industrial Average Companies in 2001.

market capitalization (that is, the value of the publicly-traded shares of stock). The
scale of the market capitalization is seen in the legend in the lower-right hand corner.
Thinner lines separate individual stocks. Thicker lines separate the stocks by sector,
and the sector labels are given outside of the large rectangle in italics. Each of the 30
rectangles contains a ticker symbol to identify the stock and the performance during
2001 as a percentage. Of the 30 stocks, 11 stocks increased throughout the year and 19
stocks decreased. The energy sector was the strongest throughout 2001; the financial
sector was the weakest throughout 2001, Rectangular-shaped plots of this nature have
generally replaced the more traditional pie diagram because of their ability to easily
capture additional information in the smaller rectangles.

materials consumer staples
AA | DD | IP KO PG WMT
+6% | -12% |-1%} -23% +1% +8%
information | HPQ | IBM INTC MSFT T | SBC | telecommunication
technology {-35% | +42% —2% +53%  |-18%| —18% | services
consumer DIS EK | GM HD MCD PM
discretonary | +28% |~25%| —-4% +12% | -22% +5% market
talization:
niustrials | ALD | BA |CAT GE MMM |UTx | CPTEREeR
-29% | -41% [+10% -16% ~2% |-18% $100 billion
AXP C JPM XOM INJ MRK $10b
—35%| -1% |-20%| +81% +13% | -37%
financials energy health care

Figure 1.16: Dow Jones Industrial Average component stocks performance in 2001.
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The applications of statistics span a wide range of disciplines. So far we have encountered data
sets associated with comparing population sizes, showing the dynamics associated with a basketball
game, solving a mystery concerning birth spacings, using a mosaic plot to visualize the relationship
between hair and eye color, displaying word frequencies in a book, analyzing estimates of the speed
of light in air, comparing the age distribution of men and women in France, comparing weather data
for three U.S. cities, and displaying stock market data. This section ends with one final example
that concerns the display of the estimate of a mixed discrete—continuous probability distribution.
Mixed discrete~continuous random variables occur, for example, in queueing (the waiting time for
a server), meteorology (the total rainfall in one day), and reliability (the lifetime of a product). In all
three of these examples, there is a non-zero probability that the random variable will assume a value
of zero, which accounts for a discrete portion of the probability distribution.

Example 1.11 A play-by-play account of the 2016 National Football League (NFL)
regular-season games contains the field position after n = 2593 kickoffs. Kickoffs are
further subdivided into those returned in the field of play and those with discrete cate-
gorical outcomes (safeties, touchbacks, out-of-bounds, and touchdowns). When a run-
back is attempted by the kickoff returner and the return is concluded in the field of play
(usually by tackling the kickoff returner but occasionally by a fumbie recovery), the
resulting field position is a continuous random variable with a support ranging from 0
to 100, measured as the distance from the return team’s end zone. The categorical out-
comes are associated with a discrete random variable with four mass values (0, 25, 40,
and 100). Table 1.8 highlights the division between the continuous (1047 observations)
and discrete (1546 observations) portions of the probability distribution and shows the
frequency of the various outcomes during the 2016 season.

Starting
Type Category ﬁe;l_d Frequency | Probability
position
Continuous | Returned in the field of play | (0,100) 1047 %;—3 =~ (0.404
Discrete End zone (return team) 0 3 55% 2(0.001
Touchback 25 1518 | B1820.585
Out-of-bounds 40 18 | 55 220.007
End zone (kicking team) 100 7 | 55 220.003
Total: 2593 | 2383 =1.000

Table 1.8;: NFL 2016 regular-season kickoff starting field positions.

Let the random variable X be the starting field position following a NFL kickoff dur-
ing the 2016 season measured in yards from the return team’s end zone (regardless
of whether a turn-over occurs). We wish to construct a statistical graphic that cap-
tures an estimate of the probability distribution of the starting field position X from
the n = 2593 data values. Since the probability distribution of X is a mixed discrete~
continuous random variable, a reasonable estimate of the contribution of the two parts
of the probability distribution is the finite mixture

1047 » 1546

Fx)= ﬁfc(x) + 59—3—f1)(x),
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where f¢(x) and fp(x) are

, _ 3/1546 x=0
. kernel density function A 1518/1546 =25
fc(x) = <{ of outcomes returned and fp(x)= 1871
in the field-of-play 8/1546 Fadl
7/1546 x=100

and the hats denote estimators. Figure 1.17 displays the estimator for the 2016 NFL
data. Even though a histogram would have worked perfectly fine for the estimate of
the continuous portion of X, using a kernel density function emphasizes the continuous
nature of the spotting of the ball on the field of play. Two different vertical scales (the
scale for the continuous portion is on the left, labeled PDF for probability density func-
tion, and the scale for the discrete portion is on the right, labeled PMF for probability
mass function) were necessary to avoid having the continuous portion crunched down
to the horizontal axis. The scales were selected to reflect the approximately 40/60 split
between the continuous and discrete portions of the probability distribution. A square
root scale on the discrete axis make is easier to differentiate between the three discrete-
but-unlikely outcomes. Two distinct modes are evident in the continuous portion. The
first—with a mode at the 22 yard-line—represents distances most often attained be-
fore a returner is tackled. The second—just past mid-field-—is a consequence of the 54
onside kick attempts during the 2016 season.

Well-designed statistical graphics are of benefit to statisticians and non-statisticians alike. They
display aspects of a data set that are often difficult to see by viewing the raw data or by viewing the
data in tables. Statistical graphics are capable of displaying multiple variables simuitaneously, and
it is often apparent from a display how the variables are related to one another.
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Figure 1.17: 2016 NFL regular season starting field position (yards into the field of play).
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1.2 Random Sampling, Statistics, and Sampling Distributions

Statistical graphics give you a toolbox of techniques that are useful for visually summarizing a
data set. Unfortunately, two knowledgeable people might draw opposite conclusions from a well-
designed statistical graphic. This begs for a mathematical framework, which draws from probability
theory, that can be used to remove personal opinion from the process. Two examples of questions
that can be addressed by statistics are given below.

e How long, on average, does a particular brand of 60-watt light bulbs last under commonly-
encountered environmental conditions?

¢ Should radiation or chemotherapy or both be used to treat a particular cancer?

There are lots of loose ends that have not been determined with these questions. Are the light bulbs
burned continuously? Are the light bulbs used in an optimal environment (like a living room) or a
high temperature or high vibration environment (like a rocket launch)? Are all people having the
cancer women with diabetes, high blood pressure, and low cholesterol of approximately the same
age? In order to answer the statistical questions, it is important to first pin down the details associated
with the setting.

Statistical models used to describe data behave in a similar manner to mathematical models in
economics, chemistry, or physics. A good model will be a close match to what is actually observed.
A bell-shaped histogram, for example, is evidence that a normal population probability model could
be an appropriate modeling assumption. The histogram would provide even more evidence, how-
ever, if there were n = 1000 observations producing the bell-shaped histogram rather than only
n = 20 observations.

We have thus far avoided the question of how data values are collected. Now is the time to
address that question. There are many different sampling mechanisms that can be used to cull the
data. To keep the mathematics simple initially, we assume that univariate data is being collected
on n subjects. This leads to the following definition of a random sample.

Definition 1.1 Let X;, X5, ..., X, be mutually independent random variables, each with the same
but possibly unknown probablhty distribution described by fy(x). Realizations of the random
variables Xj, X5, ..., X, constitute a random sample.

There are several loose ends associated with the definition of a random sample that are outlined
below.

o The integer n is known as the sample size.
e Some textbook authors refer to a random sample as a simple random sample (SRS).

e Mutually independent random variables, each with the same probability distribution, are often
described using the abbreviation iid for “independent and identically distributed.”

e Definition 1.1 implies that the joint distribution of the random sample can be found by
Fx, %2, 0 2n) = fx (1) fx (x2) - - - fx (%n).

e Definition 1.1 applies equally well to random sampling from discrete populations, continuous
populations, and mixed discrete—continuous populations.



Section 1.2, Random Sampling, Statistics, and Sampling Distributions 25

The random sampling of vectors, that is, multivariate random variables, is considered in an
advanced course.

The assumption of mutual independence implies that each value must be sampled in a manner
so that it is not influenced by any of the other values.

Taking a “random sample” in industrial applications oftentimes requires significant effort. If
a farmer delivers a truckload of potatoes to a potato chip company, the n potatoes sampled for

quality should be selected from random positions in the truck, perhaps generated by a random
number generator.

Beware of selection bias. The famous headline “Dewey Defeats Truman” from the Chicago
Tribune after the 1948 U.S. Presidential election was partially based on polling. If these
polls were conducted by phone and more Republicans had phones than Democrats, then the
estimate of the probability of Dewey defeating Truman would be biased.

Beware also of response bias. Questions like “Do you use LSD?” or “Did you cheat on the

French exam?” might not yield an honest response, which would lead to a biased estimator of
the associated probabilities.

Count the costs associated with collecting data. Sometimes a simple survey question can pro-
duce a data value cheaply. On the other hand, automobile safety data might involve crashing
a vehicle into a wall to obtain data. Destructive testing destroys a test unit; nondestructive
testing retains a test unit.

Many statisticians follow the convention that
X17X25 ---aXn

are the data values in the abstract-—they are random variables and hence described by upper-

case letters. Realizations of these random variables that assume specific numerical values,
however, are denoted by

X1y X2y neuyXps

This convention will be followed in this text.

e The data values xy, x2, ..., X, are known as a “data set.”

Once a random sample has been collected, there are two potential next steps. The first is to

construct one or more statistical graphics, as introduced in the previous section. The second is to
compute one or more statistics, which are defined next.

Definition 1.2 Consider the data values X1, X3, ..., X,. A statistic is some function of the data
values that does not depend on any unknown parameter(s).

The key to this definition of a statistic is that no unknown parameters are involved. So, for
example, the expressions

Xi+Xp+-- 4 X, Xy +Xn) L
n nX(l) ———-—-—-——2 HX,'
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are all statistics because they do not involve any unknown parameters. (Recall that the order statistic
X(1) is the smallest member of a data set and the order statistic X, is the largest member of a data
set.) On the other hand, the expressions

X—u X7 —u
o/+/n S/v/n

are not statistics because they involve the unknown parameters y, G, and 6.

This is an appropriate time to delineate the difference between probability and statistics. Fig-
ure 1.18 contains two ovals. The larger oval on the left represents the population. As one particular
instance, the population might consist of the weight, in pounds, of every person in the world. The
smaller oval on the right represents a sample of n values taken from the population. Using the current
instance, the sample might be the weights of n people sampled at random and without replacement
from the population. Populations and samples are fundamentally different entities:

0-X)

= | e

e the population in the left-hand oval is often described by parameters, such as the population
mean y and the population variance 2, which are fixed constants;

e the sample in the right-hand oval can be described by statistics, such as the sample mean X
and the sample variance §2, which are random variables that vary from one sample to the next.

The arrow that points to the right represents the application of probability theory. Here is a typical
probability problem:

Ten people crowd into a small elevator. Their weights, in pounds, are mutually in-
dependent and identically distributed normal random variables, each with population
mean u = 140 pounds and population standard deviation ¢ = 30 pounds. What is the
probability that the elevator capacity of 1500 pounds is exceeded?

For this particular probability problem, the information about the population probability distribution,
which is N(140, 900), is known. The question asks about a sample statistic X; + X5 + -+ -+ Xj0,

population

probability

statistics

described by described by
parameters like statistics like
i, o2 X, S2

Figure 1.18: The difference between probability and statistics.
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where X; is the weight of the ith person on the elevator. More specifically, the question asks for
P(X1+X2+---+Xjo > 1500). Referring back to Figure 1.18, knowledge about the probability
distribution of the population is used to answer a question concerning a statistic calculated from a

sample. The arrow that points to the left represents the application of statistical theory. Here is a
typical statistics problem:

Ten people crowd into a small elevator. Their weights are x; = 220, x; = 107, x3 = 155,
..., x10 = 129 pounds. If nothing is known about the population probability distribution
of the weights, give estimates of the population mean y and the population variance o2
along with some indication of the precision of the estimates.

In this particular setting, nothing is known about the population of weights. Questions are being
asked about the population based only on the ten data values. Referring back to Figure 1.18, the
data values in the sample are being used to answer questions about the population. This process is
often referred to as statistical inference because a conclusion is being inferred about the population
based on the sample. In some settings, it might be reasonable to assume that the ten values constitute
a random sample.

The interest in computing a statistic is oftentimes to gain information about some unknown
parameter. For example,

e the sample mean X is often used to estimate the population mean g,

o the sample median M is often used to estimate the population median xo 5,

e the sample variance S2 is often used to estimate the population variance 62,

e the sample proportion p is often used to estimate the population proportion p.

An important distinction should be made between statistics and the quantities that they are estimat-
ing: the statistics (like X and S) are random variables, but the parameters that they are estimating
(like 4 and ©) are constants, which are typically unknown. Statistics take on different values from
one sample to the next; population parameters assume just a single value. The sample mean X and
the sample variance S2 are formally defined in the next two sections.

Since a statistic is a random variable, its probability distribution is often of interest. The prob-
ability distribution of a statistic is called its sampling distribution. The following three examples
concern a single random experiment—rolling a fair die five times—and highlight the probability
distribution of three different statistics that can be gleaned from the five data values. The sample

size n = 5 is rather small, but the simplicity of this setting allows us to calculate exact sampling
distributions of the statistics.

Example 1.12 Consider the random variables X, X5, X3, X4, X5, which are the out-

comes of five rolls of a fair die. What is the sampling distribution of the statistic X, the
sample mean?

The way that the data is collected (rolling a fair die five times) indicates that the five
random variables are mutually independent, so the five values constitute a random sam-
ple. The first step in finding the probability distribution of the sample mean X is to

determine the support (possible values) of the random variable X. Since the numerator
of

X1 +Xo0+X3+X4+ X5
5

X=
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can assume the values 5, 6, ..., 30, the support of X is
6 7 29
4= A s s B e

? 5 »
The next step is to determine the probabilities associated with each element in the sup-
port. Begin with X = 1. There is only one way to achieve a sample mean of 1, which is
the outcome (X1, X», X3, X4, Xs5) = (1,1, 1,1, 1), s0

- 1
PX=1)= &
Now consider X = 6/5. This value for X can only be achieved with 4 ones and a single
2, for example the outcome (X;, X», X3, Xy, X5) = (1,2, 1, 1, 1). Since the 2 can occur

on any one of the five rolls,
_ 6 5
Pl X==]|=—.
( 5 ) 6

Next consider X = 7/5. There are two ways to achieve this sample mean: 4 ones and a
single 3, or 3 ones and 2 twos, So the probability that X =7/5 is

L 17 5 10 15
P(X—g) “FE 6
because there are (g) = 10 ways to place the 2 twos in the sequence of five rolls. One
way to proceed is to continue in this fashion, which is a mind-numbing exercise. A
much more efficient way to proceed is to use the following APPL code to calculate the
probability mass function of X.

X := UniformDiscreteRV(l, 6);
Y := ConvolutionIID{(X, 5);

g := [[x ->x / 5], [5 30}};
Xbar := Transform(Y, qg);

This code returns the symmetric probability mass function for X as

[ 1/7776 x=1

5/7776 x=6/5

15/7776 x=1/5

fx(x)=19 35/7776 x=8/5
| 1/7776 x=6.

The probability mass function is plotted in Figure 1.19. Even though the sample size
of n = 5 is quite small, the effects of the central limit theorem are already being seen in
the somewhat beli-shaped probability mass function.

In a statistical setting, you typically get only one instance of the statistic X. For example,
if one rolls a fair die five times, they might get

Xx1=2,0=6,x3=1,x4=3,x5=2,
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i fx(x)
e 0.1
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Figure 1.19: Sampling distribution of the sample mean.

which corresponds to £ = 14/5 = 2.8. Knowing where X = 2.8 falls in the sampling
distribution of X can be helpful in drawing conclusions concerning these particular
rolls of the fair dice.

Here is one particular instance. Let’s say a dice manufacturer claims that their dice are
fair. Your friend, on the other hand, claims that the dice are loaded and producing too

many sixes. As a budding statistician, you decide to purchase a die and roll it five times.
If the results of your random experiment are

X1 =6,x=6,Xx3=06,x4 =6,x5 =6,

you would certainly side with your friend. But could the die indeed have been fair as
the manufacturer claimed? Possibly, but your work on determining the sampling dis-
tribution of X under the assumption that the manufacturer is telling the truth indicates
that the outcome that you achieved occurs only one time in 7776, making the manu-
facturer’s claim seem rather dubious. We may reject the “null” hypothesis that the die

is fair because the likelihood of observing all sixes is extremely small if the die were
indeed fair.

As a thought experiment, what would be our conclusion if we rolled all fours? It is
for situations like this in which different statistics become valuable tools to support or
refute variouns types of hypotheses.

The next example considers that same random experiment, rolling a fair die five times, but this
time uses a different test statistic.

Example 1.13 Consider again the random variables X, X7, X3, X4, X5, which are the
outcomes of five rolls of a fair die. What is the sampling distribution of the statistic
Xs) =max{X), Xa, ..., Xs}?

The fifth order statistic satisfies the definition of a statistic because it is a function of
the data alone and does not involve any unknown parameters. As before, the first step

in determining the sampling distribution of the statistic is to determine its support. The
largest of five rolls of a fair die has support

A={x|x=1,2,3,4,5,6}.
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The next step is to assign probabilities to each of the six values in the support. The only
way to obtain a maximum of one is to roll 5 ones, so

|

P(X(5) = 1) =PX)=X=X3=X4=Xs=1)= &
There are multiple ways for the largest value rolled to be a two. One way is to roll all
twos (and there is only one way to do so) and the other ways are various sequences of
ones and twos. Using combinations to count all of the possibilities associated with the
largest outcome being two gives
P (X =2) = D+D+@+)+()  1+5+10+10+5 31
== 6° - 6° ~ 7776

One can continue in this fashion or use the APPL code given below to calculate the
probability mass function of X(s.

X
¥ &

UniformDiscreteRV (1, 6);
MaximumIID (X, 5);

This code returns the probability mass function for X(s) as

(17776 x=1

31/7776 x=2

) 2117776 =i

Fr®) =1 7817776 x=4
2101/7776 x=35

| 4651/7776 x=6.

This probability mass function is plotted in Figure 1.20. Not surprisingly, the most
likely maximum is X5y = 6.

fX(5) (x)
0.6 1

0.4 1

0.2 1

0.0-;

Figure 1.20: Sampling distribution of the sample maximum.

The previous two examples have illustrated two different statistics, the sample mean and the
sample maximum, associated with the same random experiment. The next example introduces a

new, and somewhat more obscure statistic, the sample range, which is used in a field known as
statistical quality control.
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Example 1.14 Consider once again the random variables X1, X7, X3, X4, X5, which are
the outcomes of five rolls of a fair die. What is the sampling distribution of the statistic
R =max{Xj, X3, ..., Xs} —min{Xy, X, ey X512

The sample range R = X(5) — X(y) satisfies the definition of a statistic given in Defini-
tion 1.2 because it is a function of the data only and does not involve any unknown
parameters. As before, the first step in determining the sampling distribution of the

statistic is to determine its support. The difference between the largest outcome of the
five rolls and the smallest outcome of the five rolls has support

A=1{x|x=0,1,2,3,4,5}.

The next step is to assign probabilities to each of the six values in the support. The only
way to obtain a sample range of R = 0 is to roll five identical values, so

6

PR=0)=PX =X=X3=X=X5)= &
There are multiple ways to obtain a sample range of R = 1. Examples include the
outcomes (Xla X2, X3, X4aX5) = (11 1, 1: 2, 1) and (X1:X2a X3, X47X5) = (45 5, 43 3, 4)
Using combinations to count all of the possibilities associated with a sample range of
R =1, we obtain

5 5 5 5 0
NP B2 EXO R I Y

One can continue in this fashion or use the APPL code given below to calculate the
probability mass function of R.

X
R :

UniformbPiscreteRvV(l, 6);
RangeStat (X, 5);

This code returns the probability mass function for R as

([ 6/7776 x=0
150/7776 x=1

) 720/7776 x=2

o) =9 1710/7776 x=3
2640/7776 x=4

| 2550/7776 x=5.

Some might prefer the notation fgr(r) for this probability mass function, but we use
fr{x) to have a consistent index x with the previous two examples. This probability
mass function is plotted in Figure 1.21.

The previous three examples have illustrated three statistics and their associated sampling dis-
tributions. One key insight here is that when a random experiment is conducted, we get to calculate
just one instance of the test statistic. The importance of the sampling distribution is to let you know
whether the value of the statistic that you observe is common or rare. For example, if you roll a fair
die five times and get all ones, then the three statistics give

x=1 X(5)=1 r=40.
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fr(x)
0.4 7

0.3 1
0.2 1

0.1 1

Figure 1.21: Sampling distribution of the sample range.

Looking at the three sampling distributions from the previous three examples, the values of these

particular three statistics correspond to very unlikely events because the sampling distributions tell
us

_ 1 1 6
PR =1)= oz P(Xs)=1) = 7¢ P(R=0)=—.

Different statistics are used to detect different types of “rare” events. For example, if you roll a fair
die five times and get all sixes, then the three statistics are

=6 x5 =06 r=0.

Looking at the three sampling distributions from the previous three examples, X = 6 and 7 = 0 are

extraordinarily unlikely events, but x(sy = 6 occurs quite often. The sampling distributions tell us
that 1 4651 6
X =6) = —— =6) = —— P(R=0)= —.
P =6) = 5575 P(Xs)=6) = 7775 (R=0)= 7776
The take-away message here is that certain types of statistics can be selected to detect one particular
type of rarity over another. Finally, to consider a sequence of rolls that is a bit more mainstream, the

rolls (x1,x2, %3, x4, %5) = (1,4, 5, 2, 4) result in the three statistics
£=32 x5y =5 r=4.

Looking at the graphs of the three sampling distributions from the previous three examples, none of
these statistics point to this particular outcome as particularly rare because

_ 735 2101 2640
P(X=32)= F7ag = 0.09 P(Xis5=35)= g =0.27 P(R=4)=—=c =034,

The next two sections introduce two broad classes of statistics that arise in many statistical
problems. The first class consists of statistics that reflect the central tendency of the population
probability distribution. The second class consists of statistics that reflect the dispersion of the
population probability distribution. Having estimates of the central tendency and the dispersion is
important because they allow a statistician to quantify both the center of the population probability
distribution and how far from that center one can expect random variables to stray.
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1.3 Estimating Central Tendency

As indicated in the previous section, statistics can be defined to estimate certain characteristics
of a population distribution. One aspect of a population that is nearly always of interest is the
central tendency of the population distribution. Several statistics that reflect this central tendency
are formally defined in this section. We begin with the sample mean.

Sample mean

The sample mean is the most intuitive measure of central tendency. People naturally average
data values in order to get a sense of the center of a probability distribution,

Definition 1.3 Let x;,x, ..., %, be experimental values associated with the random variables
Xy,Xs,...,X,. The sample mean is B ‘

n

Y xi.o

i=1 :

X=

-

As indicated previously, X is used in the abstract when there are no specific data values. When
specific data values have been collected, the lower case version £ is used to denote the sample mean.
The sample mean is sometimes called the sample arithmetic mean.

Example 1.15 Ten kindergarten children from ten different families are polled to find
the number of children that are in their family. The resulting values, x1, x2, ..., X1 are

3. 1: 9, 1582, 15 Ldnle
Calculate the sample mean.
The sample mean is

3+1+5+14+3+4+2+414+14342 22

0 =15 = 2.2 children.

This calculation is straightforward and can be conducted in R with the statements given
below.

A==

x=c¢(3, 1, 5 1, 3, 2, 1, 1, 3, 2)
mean {x)

Of course, polling ten different children would most likely result in a different sample

mean. The experimental sample mean X given above is one instance from the sampling
distribution of the random variable X.

Another way of thinking about a sample mean is to consider it to be a special case of a weighted
average, in which each of the data values is given a weight of 1/n. If the data values constitute a
random sample, then there is no reason to give more weight to one value over another. Returning to
the kindergarten sibling data from the previous example, the sample mean could be written as

34 1+541+34241+14342 4 2 3 1
S T DRI SULATY SO
10 TR TR T IRART:

This way of thinking emphasizes the fact that the sample mean is a weighted average, where the
weights reflect the relative frequency of a particular data value, Compare the expression on the

X =
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far right with the formula for the population mean E[X] for a discrete probability distribution from
probability theory:

E[X]= ;ﬁ(ﬂ,

where A is the support and f(x) is the probability mass function. The weights 4/10, 2/10, 3/10,
and 1/10 play the role of f(x) from probability theory.

There is still another way to think about the sample mean. In order to develop this formulation,
the notion of an empirical probability distribution must be defined.

Definition 1.4 Let x1,x2,...,x, be experimental values associated with the random variables
Xi, Xz, ..., Xy. The empirical probability distribution associated with x1, x, ..., X, is the discrete
probability distribution defined by assigning probability 1/xa to each x; value.

This empirical probability distribution can be expressed as either an empirical probability mass
function, denoted by f(x), or an empirical cumulative distribution function, denoted by F (x), which
are defined next. The empirical cumulative distribution function was introduced in the statistical
graphics section as a way to avoid binning observations into cells when constructing a histogram.

Definition 1.5 Let x1,x7,...,x, be experimental values associated with the random variables
X1, X, ..., X,. The empirical probability mass function associated with x1, x2, ..., X i$
.. number of x; equal to x
flx)= ‘ :
n
The empirical cumulative distribution function associated with xy,x, ..., x, is
~ . number of x; less than or equal to x
F(x)= ' " : :

The empirical probability distribution, regardless of whether it is expressed in either of its equivalent
forms as f(x) or F (x), is our best guess for the population probability distribution based on the data
values x1, x2, ..., X,.

Let’s return to the discussion of the sample mean. The empirical probability distribution associ-
ated with the data set has a population mean, which is typically called the “plug-in estimator of the
population mean.” Using the formula for the population mean from probability, the formula for the
plug-in estimator of the population mean is

,\ A 1 ¢
A=Y xf(x)= - Y x,
a i=1

where .4 is the support of the population distribution. This is, once again, the formula for the sample
mean.

So, regardless of whether you simply use the defining formula, think of the sample mean as a
weighted average, or use the plug-in estimator of the population mean, the same value results for the
sample mean.

Since the sample mean X is a random variable, we can calculate its sampling distribution. This
sampling distribution depends on the population probability distribution from which the data values
are drawn. The two examples that follow consider the sampling distribution of the sample mean for
observations drawn from a discrete population and a continuous population,
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Example 1.16 Let X;, X5, ..., X, be a random sample from a Poisson(A) distribution,
where A is a positive unknown parameter. What is the sampling distribution of X?

One could easily envision a real-world scenario in which averaging observations sam-
pled from a Poisson population could occur, for example,

e averaging the number of customers that arrive to a drive-up window at a fast food
restaurant during the lunch hour for five consecutive weekdays,
e averaging the number of potholes per mile on a particular stretch of highway, and

e averaging the number of web hits per day at a popular website during February.

The first step in finding the probability distribution of the sample mean X is to determine
the support of the random variable X. The Poisson population distribution has support
on the nonnegative integers, so the numerator of

X+ X+ +X,

X =
n
can also assume the values 0, 1,2, ... . Therefore, the support of X is
12
A= {x X=10, =, —,...}.
nn

The next step is to determine the probabilities associated with each element in the sup-
port. The random variable X; has probability mass function

xxe—k
x!

fx,(x) = x=0,1,2,...

fori=1,2,...,n The numerator in the sample mean

Xi+Xo 4+ X,
n

X =

consists of the sum of mutually independent and identically distributed Poisson(A) ran-
dom variables because Xi, Xz, ..., X, is a random sample. Using a result from prob-
ability theory that can be proved by the moment generating function technique, the
numerator X + X, + - -+ +X,, is Poisson(nA) with probability mass function

( n)»)x ewnh

FxpxptaX, () = S

x=0,1,2,....

Finally, dividing the numerator of X by n gives the probability mass function

(nl)nxeﬁnk B
M(nx)‘ x=0,

fz(x) =

b

)=
sl

g v

by the transformation technique.

Now consider the sampling distribution of X for a particular sample size n and a partic-
ular population mean A, say n =5 and A = 2. Figure 1.22 is a graph of the probability
mass function of the first seven support values of the population from which the data
values are drawn, that is, a Poisson(2) distribution. The graph of fx(x) continues to
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T Jx(x)
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Figure 1.22: Population probability mass function.

decline as x increases. Using the formula for f3(x), the probability mass function of X

15
105%¢—10 12

fo(x)=—(5—;)—!“ =025

Figure 1.23 is a graph of the probability mass function of the sampling distribution
of the statistic X when n = 5 and A = 2. The horizontal scales are identical, but the
vertical scales differ on the two graphs. There are four observations that can be made
concerning these two probability mass functions:

e Both the probability distribution of X; and the probability distribution of X have
the same expected value: E [X;] = E[X| = 2 in this particular example. As will be
seen subsequently, this result, stated more generally as E[X ] = u, is true for any
population distribution that has a finite population mean.

e The population variance of the sampling distribution of X is less than the popu-
lation variance of the population distribution. Although X; and X have the same

fz(x)
0.15 1

0.101

0.05 7

;\‘

“li...._ x

0o 1 2 3 4 5 6

Figure 1.23: Probability mass function (sampling distribution) of the sample mean.
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population mean, averaging the n = 5 observations decreases the population vari-
ance of X relative to X;.

e The support of X is finer than the support of X;. The data values can assume the
values 0, 1, 2,..., but the sample mean can assume the values 0, 1/5,2/5,... .

* Even though the sample size is only n = 5, the central limit theorem is evident in
the distribution of X as it has more of a bell shape than the population distribution.
The limiting distribution of X in this example is normal.

The sampling distribution of X when the data values are drawn from a continuous population is
determined in a similar fashion, as illustrated in the next example.

Example 1.17 LetXp, X», ..., X, be arandom sample from a gamma(A, «) distribution,
where A and x are positive unknown scale and shape parameters. Find the sampling
distribution of X, Also find P(X < 2) for a sample size of n =4 when A =1 and x =3.

The probability density function of X; sampled from a gamma(A, k) population is

Axxx:—le—kx
(x) = ———— 0
fx,(x) ) x>
fori=1,2,...,n The corresponding moment generating function is
}\’ K
My (t)=| — r<h
% (1) (K“t)
fori=1,2,...,n. Since the observations are a random sample, Xi, X3, ..., X, are

mutually independent and identically distributed random variables. Hence, the moment
generating function of X is

Mz(t) = E[etx]
_ E[et(X1+X2+---+Xn)/n]

= My ixp+tx,(2/10)
M, (t /)M (¢ 1) ... My 1 /)

(=) () ()

nK
= (n;ﬂit) t < nh.

This moment generating function can be recognized as that of a gamma(nA, nk) random
variable.

Figure 1.24 is a plot of the population probability density function for A = 1 and k = 3.
The n = 4 data values are sampled from this population probability distribution. Since
X ~ gamma(nA, nK), A=1,x =3, and n =4,

X ~ gamma(4, 12).

Figure 1.25 contains a plot of the probability density function of the sample mean
X ~ gamma(4, 12). The horizontal scales in Figures 1.24 and 1.25 are identical, but
the vertical scales differ on the two graphs. The same effect as in the previous example
(when the random sampling was from a Poisson population) takes place here:
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fx(x)
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Figure 1.24: Population probability density function.

o The population probability distribution and the probability distribution of X have
the same central value, which in this case is E [X;] = E[X] =3.

¢ The probability distribution of X has a smaller population variance than the popu-
lation probability distribution.

e The probability distribution of X looks more bell-shaped than the population prob-
ability distribution because of the central limit theorem. The probability density
function of X is nearly symmetric. The limiting distribution of X is normal.

The final part of the question is to determine the probability that the sample mean is
less than 2 for sample size n = 4 and population parameters A = 1 and x = 3. One
way to calculate this probability is to integrate the probability density function over the
appropriate limits. Since X ~ gamma(4, 12),

_ /2 (nk)n!cxmc—l e—nkx 2 412x11 —dx
0 ax= |

P <2)= T() “Tazy

% ()
0.5 -

0.4 1
0.3 1
0.2
0.1

0.0- X

Figure 1.25; Probability density function (sampling distribution) of the sample mean.
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This integral can be computed by hand using integration by parts repeatedly or can be
calculated using a computer algebra system, giving the required probability as

412782941
155925

R can also be used to calculate the probability that the sample mean is less than 2. Using

the pgamma function, which returns the cumulative distribution function of a gamma
random variable, the single statement

PX<2)=1- e 8220.1119.

pgamma {2, 12, 4)

also returns P(X < 2) 22 0.1119. Notice that R switches the order of the parameters as
arguments relative to the convention gamma(A, ¥) used here.

Finally, to determine whether the derivation and associated numerical value are correct,
a Monte Carlo simulation experiment can be conducted to estimate the probability that
the sample mean is less than 2. The following R code generates one million sample
means and prints the fraction of those sample means that are less than 2.

nrep = 1000000
count = (
for (i in l:nrep) ({
xbar = mean(rgamma {4, 3, 1))
if (xbar < 2) count = count + 1
}
print (count / nrep)

After a call to set.seed (3) to initialize the random number stream, five runs of this
simulation yield the following estimates of P(X < 2):

0.1118 0.1119 0.1120 0.1117 0.1125.

Since these values hover about the analytic value P(X < 2) 2 0.1119, the Monte Carlo
simulation supports our analytic solution.

The two previous examples have shown that the probability distribution of the sample mean
depends on the probability distribution associated with the population. Every population probability
distribution that the data values are drawn from requires a separate derivation—some simple and
others quite intricate—to determine the probability distribution of X. One piece of good news is that
the expected value of X and the population variance of X can be computed with the same formulas
for practically all probability distributions. Assuming that Xj, Xa, ..., X, constitute a random sample
from some population distribution (discrete or continuous) with finite population mean u and finite

population variance 2, then the sample mean X has expected value

1 n
n™

n

= 2 L EXI= ) =

E[X|=E

and population variance

2

Iy xl=Llyvmi=l(ot) =
;i;.x;} _;ﬁi)z:“lV[Xl]_n2 (no®) = —.

viX]=V
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The first of these equations indicates that the sample mean X is on target for estimating the popula-
tion mean y. So the first equation addresses the accuracy of X in estimating . Since the expected
value of the sample mean is the population mean, statisticians say that X is an unbiased estimator
of u. (Unbiased estimators will presented formally in Chapter 2.) The second of these equations
indicates that the variability of the sample mean X decreases as n increases. So the second equation
addresses the precision of X in estimating y. The sample mean X is often said to be a more precise
estimator of u as the sample size increases. This constitutes a derivation of the following resuit.

Theorem 1.1 Let X, X5, ..., X, be a random sample from a population distribution with finite
population mean g and finite population variance 6. The sample mean X has population mean

E [X ] =4
and population variance )
- o
ViX] = —-

Having a good understanding of the behavior of X is important when drawing conclusions based
on sample means, as illustrated in the next example.

Example 1,18 The six states with the highest age-adjusted incidence of kidney cancer
in the United States in the years 2012-2016 are shown in Figure 1.26 using data from
the Centers for Disease Control website. If you happen to be reading this book and
live in one of those six states, you might be grabbing your belly right now and thinking
“Oh no, I am living in a kill zone, I need to move away!” But where should you move?
Figure 1.27 shows the six states with the lowest age-adjusted incidence of kidney cancer
in the United States in the years 2012-2016. It seems like any one of these states would
provide a much more hospitable home for your kidneys.

It is important to establish that the kidney cancer incidence rate is indeed a sample
mean X. Think of the kidney cancer status of each resident of a state as a Bernoulli ran-

"

Figure 1.26: Six states with the highest incidence of kidney cancer in 2012-2016.
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Figure 1.27: Six states with the lowest incidence of kidney cancer in 2012-2016.

dom variable X;, where X; = 0 corresponds to not being diagnosed with kidney cancer
in the years 2012-2016 and X; = 1 corresponds to being diagnosed with kidney cancer
in the years 2012-2016, for i = 1,2, ..., n, where n is the population of the state. The
sample mean X gives the estimated probability or incidence rate of kidney cancer for a
particular state. Epidemiologists typically express the incidence rate for a rare cancer
in terms of the number of cases per 100,000 in order to avoid writing too many leading
zeros. This change of scale does not change the fact that the incidence rate behaves like
an average from a statistical point of view.

So what is going on here? Are the states with the high kidney cancer incidence rates
really less safe, or are we being tricked by random sampling variability? Another sta-
tistical graphic can lend some insight. The kidney cancer annual incidence rates for
the states are plotted on the vertical axis against the population on the horizontal axis
(which uses a logarithmic scale) in Figure 1.28. The weighted annual incidence rate

rate
LA
22 1 >
MS KY
WV AROK
19 1 .
16 o
vI : CcO
. NV. .
3 WY me U .
500,000 5,000,000 50,000,000

Figure 1.28: Population versus annual kidney incidence rate per 100,000 in 2012-2016.
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for the entire U.S. over the five-year period is 16.7 incidences per 100,000 population,
indicated by the horizontal line on the plot. The average population of a state over the
five-year period is 6.4 million residents, indicated by the vertical line on the plot. The
six states with the highest and lowest kidney cancer incidence rates in 2012-2106 are
identified on the plot. One curiosity that appears immediately is that the states with high
and low incidence rates tend to, on average, be smaller states. The most populous states
don’t show up on either list.

So the fact that smaller states tend to appear more often on the list of states with high and
low kidney cancer incidence rates brings us back to the equation V[X' ] =02 /n. Smaller
states have a smaller value of n and are thus more susceptible to random sampling
variability of X and are thus more likely to show up on the high incidence rate and low
incidence rate lists. So it is quite possible that the six states with the highest and lowest
kidney cancer incidence rates are really no more or less risky than any others. Looking
at the data for subsequent years would help confirm whether or not there is a pattern
developing, or if the results are simply due to random sampling variability of X.

Professor Howard Wainer refers to V[X] = 6% /n as a “dangerous equation” in his book
Picturing the Uncertain World. He also considers kidney cancer incidence rates, but
this time by county rather than state. Some counties have just a few hundred residents,
so having no kidney cancers gives them a kidney cancer incidence rate of zero, which
could potentially wrongly classify them as “safe.” Having just a single kidney cancer
in a small county, however, could potentially wrongly classify them as “unsafe” A
large county with millions of residents will almost never be classified as safe or unsafe
because of the n in the denominator of V [X] = 62 /n. He cites several other examples
where the lack of knowledge concerning the effect of n on the population variance of X
“has led to billions of dollars of loss over centuries, yielding untold hardship.”

To visualize the effect of n on the sampling distribution of X in a Monte Carlo frame-
work, consider a random sample of » data values drawn from a N(10, 1) population.
Ten values of ¥ are plotted for n = 2, 4, 8, 16, 32, 64 in Figure 1.29, which has a loga-
rithmic horizontal axis. The R code to generate and plot the sample means follows. The
plot function sets up the axes, and the points function plots the points generated by

;
12 -
109 : f —+ i
8 ) ! f i i T 1 n
> 4 8 16 32 64

Figure 1.29: Monte Carlo experiment plotting  for several values of n.
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rnorm, Which generates random variates from a normal population. The two take-away
messages are immediate: (a) since X is an unbiased estimate of u, all averages have
an expected value of u = 10, and (b) extreme values of the sample mean wili occur at

the smaller sample sizes because the sample mean has a larger population variance for
smaller values of n,

set.seed(8)
plot (c(2, 64), c(10, 10), type = "1", xlim
ylim

]

c(2, 64),
c(8, 12), log = "x")

Il

nrep = 10
for (n in c(2, 4, 8, 16, 32, 64)) {
for (j in l:nrep) {
xbar = mean(rnorm{n, 10, 1))
points(n, xbar)

}

The previous example concerned cancer incidence rates, but could apply equally well to any
number of settings. Here are three examples.

e If a small high school has stellar average SAT scores, it could be that the high school is
particularly good or it could be that the high school is particularly small.

e If a small hospital has an unusually high infection rate for patients, it could be that the hospital
is careless with respect to sanitation or it could be that the hospital is particularly small.

e If your friend invests in just two stocks and brags about his average annual return, it could
be that he is a brilliant investor or it could be that the number of stocks he invested in is
particularly small.

The key take-away point of the previous example involving kidney cancer rates, stated in two
equivalent fashions, is

e the sample mean X is a more precise estimator of u for larger sample sizes
e small sample sizes can yield more extreme values of X than large sample sizes.

One last point should be made about the equation V[X] = 62/n from Theorem 1.1. Taking the
positive square root of both sides of this equation results in

o;
i
N/
which can be read as “the standard error of the sample mean is the ratio of the population standard
deviation to the square root of n” The term “standard error” here is synonymous with standard
deviation. This equation implies that if you want to halve the standard deviation of X, you must
quadruple the sample size n. Even more extreme, if you want to decrease the standard deviation
of X by a factor of 10, you must collect 100 times as many data values. The /n will appear in

the denominator of many expressions throughout this book and it will cause problems when lots of

precision is required and data values are expensive to collect. This relationship between n and oy is
an instance of the law of diminishing returns.

Oy =
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As a final example to conclude this subsection on the sample mean, consider the effect of sam-
pling dependent observations. The mutual independence assumption from the previous examples,
which was helpful in determining the sampling distribution of the sample mean, is lost because we
are no longer dealing with a random sample. The formula for X remains the same, but the calcu-
lation of the probability distribution of X is more difficult. The next example considers the case of
n = 2 dependent observations.

Example 1,19 Consider an experiment that consists of sampling a person at random
from the communrity and asking them the following two (somewhat personal) questions:

1. Are you a medical doctor?
2. Is your annual salary greater than $100,000?

The responses to these n = 2 questions are positively correlated because medical doctors
tend to have higher salaries than the general population. Let X; be 0 for “no” and
1 for “yes” to the first question. Likewise, let X» be 0 for “no” and 1 for “yes” to
the second question. The responses to the questions have now been defined as the
dependent random variables X; and X;. The sample mean is

- X1+Xp
X = .
2

Table 1.9 contains the joint probability mass function of the random variables X; and X,

where p1, p2, p3, and p4 are unknown probabilities that sum to one. What is the proba-
bility mass function of X?

2|01

0 PLop2
pP3 P4

[a—y

Table 1.9: Joint probability mass function for X; and X;.

The dependence between X; and X, indicates that the probabilities for each of the possi-
ble values for X needs to be assigned to the appropriate component probabilities. Since
the sample size of n = 2 is so small, there are only three different values for X:

e X =0, which corresponds to X1 = 0 and X5 =0,
e X = 1/2, which corresponds to X; =0 and Xo = 1, or X; = 1 and X; =0,

e X =1, which corresponds to X; =1 and X; = 1.

So the sampling distribution of X in this case is described by the probability mass func-

tion
y 251 x=0
fr(x)=4¢ p2+p3 x=1/2
D4 x=";

The sample mean is the most common statistical measure of central tendency. The sample
median is considered next.
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Sample median

The sample mean is the “gold standard” in terms of estimating the central tendency of a popula-
tion probability distribution and is used in a vast majority of applications in which central tendency
is of interest. Occasions arise, however, when the sample median is a better measure of central
tendency.

Definition 1.6 Let x;, x3,...,x, be experimental values associated with the random variables
X, X2, ..., X,. The sample median is ’

M= { X((n+1)/2) . I’t odd
(X(n/z) +X(n/2+1))/2 n even,

where X(1), X(2), ..., X(y) are the order statistics (the data values sorted into ascending order).

If » is odd, the sample median is just the middle sorted value; if » is even, the sample median is
the average of the two middle sorted vatues.

Economists frequently use the sample median, rather than the sample mean, when reporting
statistics concerning certain economic measures, such as incomes or house prices. To see why this
is the case, consider a small M.S. program in operations research that graduates just n = 5 students
in one particular academic year. The students assume positions in industry and report the following
annual salaries:

$71,000 $65,000 $74,000 $194, 000 $73, 000.

Now which would be a more accurate way to report the salary data in a recruiting brochure for the
new class of operations researchers: use the sample mean % = $95,400 or use the sample median
m = $73,000 as the measure of central tendency? The student who graduated and took a salary of
$194,000 might have joined a family business or had a lucrative overseas offering. The other four
salaries are fairly tightly clustered around the sample median m = $73,000. The one high salary
is a rarity, so it can either be considered an outlier or it can be an observation from a very long
right-hand tail of the population probability distribution. In either case, reporting the sample median
is the appropriate statistic to go in the brochure for next year. It gives the students the most accurate
assessment of what their salary will be when they finish the M.S. program.

Determining the sampling distribution of the sample median can vary from simple to very com-
plex. The two examples that follow span the two extremes.

Example 1.20 Let X;, X3, ..., Xo be a random sample from a U (0, 1) distribution. Find
the sampling distribution of the sample median.

Unlike the three examples associated with determining the sampling distribution of the
sample mean, this time the population distribution does not have any unknown param-
eters. The probability density function of X; drawn from a U (0, 1) population is

fr(x)=1 0<x<1
fori=1,2,...,9. The corresponding cumulative distribution function on the support
of X; is

Fx,(x) =x 0<x<1
for i =1,2,...,9. The observations are mutually independent and identically dis-

tributed random variables because they constitute a random sample. So the distribu-
tion of the sample median M, which is Xs) because n =9 is odd, can be found using
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I

++ the formula for the probability density function of the kth order statistic drawn from a

continuous population,

1!

fr (x) = (k— D! (n—k)! FEF @ ~Fxr a<x<b

for k=1,2,...,n, where a and b are the lower and upper limits of the support of
the population probability distribution. Applying this formula to our sample of n =9
observations from a U (0, 1) population gives

9t

5-1 9-5 4 4
<1-(1— =630x" (1 — 0 1.
(5_1)!(9~5)!x (1—x) (1 —x) <x<

Su(x) =

Notice that this probability density function is symmetric about x = 1/2. A Monte Carlo
simulation experiment can be used to support our analytic work. The following R code
generates 100 sample medians from 100 samples of size n = 9 drawn from a U(0, 1) -

- population distribution, plots a histogram, and overlays the histogram with the sampling -

distribution of the sample median derived above.

nrep = 100
medians = numeric (nrep)
for (1 in l:nrep) {
x = runif (9)
medians[i] = median(x)
}
hist (medians, probability = TRUE)
curve (630 * x ~ 4 * (1 - x) *~ 4, 0, 1, add = TRUE)

Executing this code after a call to set . seed (7) yields the graph shown in Figure 1.30.

For both the analytic values represented by the curve and the sample values represented
by the histogram, the effect of choosing the fifth largest of the nine values is to push -
the probability distribution away from the extremes at 0 and 1 toward the center of the

- distribution at 1/2. But are the histogram and the curve close enough to support our

analytic work? The problem illustrated here is that we chose only nrep = 100 repli- ¢
cations of the simulation experiment, resulting in a rather noisy histogram. Random

fu(x)
3 =

Figure 1.30: Sampling distribution of the sample median (100 replications).
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sampling variability applies to Monte Carlo simulation as well as to collecting data.
Figure 1.31 uses the same code, but this time with nrep = 200000. R chooses more
cells for the histogram because of the larger number of replications; the histogram is
much smoother this time. We now achieve a good match between the sampling distri-
bution of M and its estimate via Monte Carlo simulation. This time our analytic work
is supported by the simulation. The bell shape of the sampling distribution of M is not
due to the central limit theorem, but rather due to the choice of the middle order statistic
from a symmetric population probability distribution. Now that the sampling distribu-
tion of the sample median has been derived and supported by Monte Carlo simulation,
it is often of value to know the expected value and population variance of the statistic of
interest. The APPL statements below calculate the probability density function of the
sample median M and its expected value and its population variance.

X 1= UniformRV(0, 1);
M := OrderStat(X, 9, 5);
Mean (M) ;

Variance (M);

The statements yield

EM] = % anil VM) = ZSE'
Notice that the expected value of the sample median equals the population median (this
is 1/2 by inspection because of the symmetry of the U (0, 1) distribution). This is a good
property for an estimator to have because the estimator is “on target” for estimating the
population quantity. This property will be defined carefully in the next chapter, but for
now E[M|=E [X(5)] = 1/2 is stated in words as “the sample median is an unbiased
estimator of the population median.” The population variance of M is an indication of
how far the sample median might stray from its target. We want the population variance
of M to be as small as possible. One way to decrease the population variance of M is to
increase the sample size n.

So the sample median seems like a reasonable estimator of the population median.
But for this particular population distribution, the U(0, 1) distribution, the population

Jur(x)
3 -

Figure 1.31: Sampling distribution of the sample median (200,000 replications).
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median and the population mean both equal 1/2. Would it be better to use the sample
mean X to estimate the population median? One way to pin down the choice is to
consider the population variance of the estimates. From above, the population variance

of the sample median is i
1

ZZ;
but the population variance of the sample mean X by Theorem 1.1 is

VM) =

So the sample mean is more tightly clustered about the population median of 1/2 than
the sample median, and is therefore the preferred estimator of the population median for
this particular symmetric population distribution. This will not be the case in general.

The previous example had two factors which made the analytic work tractable: an odd value for
n and a particularly simple population distribution. In the next example, we remove both of those
advantages and see the extra work associated with an even n and a more complicated population
distribution.

Example 1.21 Let X), X3, ..., X be a random sample from a population having prob-
ability density function
flx)=2x 0<x<1.

Find the sampling distribution of the sample median.

As in the previous example, the population distribution does not involve any parameters.
In contrast to the previous example, there are two complicating factors at play in this
question: the even sample size n = 6 and the slightly more complicated population
- distribution. The even sample size implies that two adjacent order statistics will be
averaged in order to arrive at the sample median. As you will see, these two extra factors
create lots of extra work in deriving the sampling distribution of the sample median. The
problem provides a good review, however, of the joint distribution of order statistics and
the transformation technique. The random variable X; has probability density function

S () =2x 0<x<
~ fori=1, 2,...,6. The associated cumulative distribution function of X; on its support
is
N 2% _ 2
FX,.(x):/Odew=[w o =% 0<x<1
fori=1,2,...,6. Since n is even, the sample median is calculated by averaging X(3)

and X(4y. Unfortunately, X3 and X4 are dependent random variables. So we begin the
process of finding the probability density function of the sample median by finding the
joint probability density function of X(3) and X(4). Using the same heuristic argument
that gave us the probability density function of a single order statistic drawn from a
continuous population, the joint probability density function of two order statistics X
and X(;, which is Fx. %05 (X(i) %(jy) for i < j, is given by the expression

n!

DG =i o)) ) [FCx) = F )™ ) 1= F (e )]
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for a < x;) <x(; < b, where a and b are the lower and upper bounds on the support
of the population distribution. Applying this formula to the population distribution
described here, the joint probability density function of X(3) and X(4) is

6! g 0 y)
Fr e (5002 ¥0) = 7037 ) 2200 (1t = xln] 250 [1 G

for 0 < x3y <) < 1. This simplifies to

— 5 2 \2
Py Xy (330> %)) = 720035y 500) (1= %(s)) 0 <x(g) <X < 1.
Now the sample median by Definition 1.6 is the average of X(3y and X(4), that is,

X3 +X@)

M= >

To determine the probability density function of the sample median, we will use the
transformation technique, which requires a “dummy” transformation. So the transfor-
mation consists of ¥1 = g1(X3), X4)) = (X(3) + X(4)/2, the sample median, and the
dummy transformation ¥» = 22(X3), Xa)) = (Xa) ~X(3))/2 because these particular
functions can be solved in closed form for X(3) and X(4) and the associated Jacobian
is tractable. The fact that this is a linear transformation ensures that the Jacobian is
nonzero. The transformation

X@) T X(4) —*(3
3’136‘31(3‘(3)”‘(4)):_()_”2"'"(*l and ¥2 = 82(x(3), %)) = ()2 .

is illustrated in Figure 1.32 and is a bivariate one-to-one transformation from
A= {(x),%@) 10 <) <xe) <1}

to
B= {()H,Y?.) ly?- > 0: y2 <y < 1“‘)’2}-

" X(3) 0 - = Y1
0 1 0 1

Figure 1.32: The support of X(3) and X(4) and the support of ¥ and Y2.
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These functions can be solved in closed form for x(3) and x4 as

Cxpy =87 (L) =y -» and x4y =287 (1, ¥2) =1+
with associated Jacobian A ) ,
1 1

Applying the transformation technique, the joint probability density function of the
random variables Y] and ¥; is

T J= =2.

(0, y2) = 720001 —32)° (1 +y2) [1 - O +y2)2}2 12| (y1,32) € B,

which simplifies to

o ‘ 2
Fron (1, ¥2) = 1440(y1 — y2)°(v1 +32) [1~ (1 +32)?] (y1,y2) € B.

Integrating y, out of the joint probability density function gives the marginal distribution
of Y1, which is

Y1 2
fo 1440(y1 —¥2)> (1 +32) (1= (1 +32)%) " dya 0<yi<1/2
fYI (yl) == 1— 1 2
o /0 1440(y1 — y2)° (v1 +32) (1 — (31 +32)%) " dy2 1/2<y <1,
or
4(}797603,%1 _ 52700y? L 19720yz 0<y<1/2
le (yl) — _4079760);%1 + lsgsoysll _ zsgooyz +7680y?—
81240 y¢ + 48003 — 1924042 4 240y, - 1280 1/2 <y <1,

which is the probability density function of the sample median. Replacing ¥; with the
sample median M, this could also be written as fy(x), which is a probability density
function defined on the support 0 < x < 1. This derivation had so many opportunities
for a mathematical error that it is probably worthwhile conducting a Monte Carlo simu-
lation check of this sampling distribution of the sample median. The following R code
generates 200,000 sample medians for a sample of size » = 6 drawn from a population
distribution with cumulative distribution function

0 x<0
Fx(x) = { x? 0<x<i
1 x> 1.

The inverse cumulative distribution function is

Fol(w) = v O<u<l,

so random variates are generated via

x < /4,

where u is a random number, that is, a realization of a U(0, 1) random variable. The
code that follows places a sorted sample of n = 6 values into the R vector %, then
averages the two middle values to arrive at a sample median m.
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