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ABSTRACT

Despite the great effort and achievements made towards understanding proton spin struc-
ture in the past few decades, a complete picture is still elusive. Parton distribution func-
tions (PDFs), which in quantum chromodynamics (QCD) encode the momentum and
helicity distributions of quarks and gluons inside a proton, provide the means by which
to quantify the proton structure information. Being inherently nonperturbative, PDFs
have to be extracted from unpolarized and polarized lepton-hadron and hadron-hadron
scattering data. In particular, experiments that measure unpolarized and polarized jet
observables can provide insight into the momentum and helicity distributions of gluons,
which have generally been more difficult to determine reliably than those of quarks.

In the past, extraction of the spin-averaged and spin-dependent (or helicity) PDFs has
been performed in separate analyses. In this thesis, we perform the first simultaneous
extraction of both types of quantities from deep-inelastic scattering (DIS), Drell-Yan and
single jet observables, within the Monte Carlo global QCD analysis framework developed
by the Jefferson Lab Angular Momentum (JAM) Collaboration. The results from this
work indicate that the gluon helicity distributions depend rather strongly on the theory
assumptions on which the global analysis is based, which calls for the need of measurements
with higher precision.

As an application of the new simultaneous JAM analysis, we perform an impact study
for future Electron-Ion Collider (EIC) data with parity-conserving and parity-violating
polarization asymmetries on quark and gluon helicity distributions in the proton. The
extrapolation of structure functions from the current data is studied for the first time in
the context of the impact study. Theory assumptions, such as SU(2) and SU(3) flavor
symmetries, are also studied to give a more thorough understanding of the impact of EIC
pseudodata on proton spin structure.



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Perturbative QCD and factorization . . . . . . . . . . . . . . . . . . . . 3

1.2 History of proton spin structure . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 High energy scattering observables . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Deep-inelastic scattering . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Unpolarized DIS . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Polarized DIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 EIC observables . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Drell-Yan process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Jets in proton-proton collisions . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Jets in unpolarized collisions . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Jets in polarized collisions . . . . . . . . . . . . . . . . . . . . . 26

2.3.3 Jet algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Observables in Mellin space . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Parton distribution functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

i



3.1 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 DGLAP evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Positivity constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Aspects of fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Bayesian approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Likelihood function . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.2 Multi-step strategy . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Monte Carlo technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Unpolarized datasets . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.2 Polarized datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.3 EIC observables . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Results from JAM global QCD analysis . . . . . . . . . . . . . . . . . . . . . 62

5.1 Analysis of spin-averaged PDFs . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Analysis of spin-dependent PDFs . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Quality of fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.2 Spin-dependent PDFs and theory inputs . . . . . . . . . . . . . 80

5.2.3 Fits with JAM17 gA and a8 . . . . . . . . . . . . . . . . . . . . 86

5.3 Analysis of jet observables . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Renormalization and factorization scales . . . . . . . . . . . . . 88

5.3.2 Cuts on pT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Extraction of helicity basis PDFs . . . . . . . . . . . . . . . . . . . . . 92

5.5 EIC impact study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5.1 Constraints from ALL pseudodata . . . . . . . . . . . . . . . . . 98

ii



5.5.2 Constraints from AUL pseudodata . . . . . . . . . . . . . . . . . 103

6 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Future of global QCD analysis . . . . . . . . . . . . . . . . . . . . . . . 111

APPENDIX A
Partonic jet tree level diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

iii



ACKNOWLEDGMENTS

First and foremost, I would like to thank my former advisor Joshua Erlich, who had been
very patient with the steps I made, and very supportive regarding the course and research.
When I found out that I was not suited for research in high energy theory, he also kindly
helped me to find new directions. I will be always grateful for his advising and kindness.

Then, I would like to thank my advisor Wally Melnitchouk, for his fully hearted support,
both academically and personally. As an advisor, he not only mentored me doing research,
but also gave me confidence when I have doubts. The experience working with Wally is
encouraging and insightful, which I will always value.

I would also like to thank Nobuo Sato for his patient tutorials and helpful suggestions
during my time as a graduate student. What I can learn from him is beyond knowledge
and I will always appreciate the opportunity working with him.

Thanks to all other members of the JAM Collaboration who have helped make this work
possible, and to the members of my defense committee for their feedback and suggestions.

Thanks to my friends and family, especially my parents, for their support during my
studies. Especially, my mother has always been the greatest support to me in the hardest
times.

It has been three years since I saw my whole family last time, the town where I was born,
raised and taught, has changed so much that many places in my childhood memories are
no longer there. However, I still can not wait to see with my family and take a walk to
the places where I used to play as a child. Nor could I wait to give a hug to our dog, who
may have been wondering where I was all these years.

iv



To my parents, Shangjun and Xia.

v



LIST OF TABLES

3.1 Parameter ranges for the spin-averaged PDFs . . . . . . . . . . . . . . . . 38
3.2 Parameter ranges for the spin-dependent PDFs . . . . . . . . . . . . . . . . 40

4.1 �2 for the EIC baseline fits . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Estimation of uncorrelated systematic uncertainties for AUL . . . . . . . . 61

5.1 Steps in JAM global QCD analysis for unpolarized fits . . . . . . . . . . . 63
5.2 �2 for JAM unpolarized fits . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Scenarios for theory inputs in extracting the spin-dependent PDFs . . . . . 74
5.4 �2 for JAM polarized fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 �2 for the two �g solutions with positivity constraints . . . . . . . . . . . 83
5.6 Truncated moment

´
�g integrated from 0.01 . . . . . . . . . . . . . . . . 85

5.7 Truncated moment
´
�g integrated from 0.05 . . . . . . . . . . . . . . . . 85

5.8 �2 for unpolarized jet observables with varying µR,F . . . . . . . . . . . . . 88
5.9 �2 for polarized jet observables with varying µR,F . . . . . . . . . . . . . . 89
5.10 �2 for unpolarized jet observables with and without pT cut . . . . . . . . . 91
5.11 Scenarios for the EIC impact study . . . . . . . . . . . . . . . . . . . . . . 98

vi



LIST OF FIGURES

2.1 DIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Drell-Yan process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Collinear enhancement in jet production. . . . . . . . . . . . . . . . . . . . 24
2.4 Hadronic jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Mellin contour for the integration in complex plane . . . . . . . . . . . . . 32

4.1 Multi-step strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Kinematics of unpolarized datasets . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Kinematics of polarized datasets . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Kinematics of EIC pseudodata . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 Projected ALL and AUL at EIC kinematics . . . . . . . . . . . . . . . . . . 60

5.1 Fit to proton F2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Fit to deuteron F2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Fit to reduced cross section at HERA with

p
s = 318 GeV . . . . . . . . . 67

5.4 Fit to reduced cross section at HERA with other
p
s values . . . . . . . . . 68

5.5 Fit to DY data at E866/NuSea with pp and pd collisions . . . . . . . . . . 69
5.6 Fit to unpolarized jet observables from Tevatron and RHIC . . . . . . . . . 70
5.7 Spin-averaged PDFs before and after inclusion of jets . . . . . . . . . . . . 71
5.8 Spin-averaged PDFs before and after inclusion of STAR jets . . . . . . . . 72
5.9 Comparison of spin-averaged PDFs with other groups . . . . . . . . . . . . 73
5.10 Fit to proton A1 and Ak . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.11 Fit to deuteron A1 and Ak . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.12 Fit to neutron An

1
and 3

He Ah
1

and Ah
k . . . . . . . . . . . . . . . . . . . . 79

5.13 Fit to polarized jet observables from STAR and PHENIX . . . . . . . . . . 80
5.14 Spin-dependent quark PDFs fitted with varying theory inputs . . . . . . . 81
5.15 Spin-dependent gluon PDF fitted with varying theory inputs . . . . . . . . 82
5.16 Moments of spin-dependent PDFs with varying theory inputs . . . . . . . . 84
5.17 Spin-dependent PDFs with different SU(2/3) values . . . . . . . . . . . . . 87
5.18 Spin-averaged PDFs with A1 µR,F . . . . . . . . . . . . . . . . . . . . . . . 89

vii



5.19 Spin-dependent PDFs with A1 µR,F . . . . . . . . . . . . . . . . . . . . . . 90
5.20 Spin-averaged PDFs with and without pT cut . . . . . . . . . . . . . . . . 91
5.21 Helicity basis from simultaneous fits . . . . . . . . . . . . . . . . . . . . . . 92
5.22 Demonstration of ROC and AUC . . . . . . . . . . . . . . . . . . . . . . . 94
5.23 AUC plot for the helicity basis . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.24 Impact of EIC projected Ap

LL data on gp
1

. . . . . . . . . . . . . . . . . . . 99
5.25 Impact of EIC projected Ap

LL and Ad
LL data on gn

1
. . . . . . . . . . . . . . 100

5.26 Uncertainty ratios for truncated moments with and without EIC Ap
LL . . . 101

5.27 Uncertainty ratios for truncated moments with and without EIC An
LL . . . 102

5.28 Uncertainty ratios for truncated moments with and without EIC Ap
UL . . . 104

A.1 Partonic jets (qq, qq0 and qq0 channels) . . . . . . . . . . . . . . . . . . . . 114
A.2 Partonic jets (qq channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.3 Partonic jets (qg channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.4 Partonic jets (gg channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

viii



PROTON SPIN STRUCTURE FROM SIMULTANEOUS MONTE CARLO

GLOBAL QCD ANALYSIS

1



CHAPTER 1

Introduction

Ever since the discovery of the nucleus by Rutherford, a great amount of effort has been put

into understanding the basic constituents of our universe. Experiments quickly revealed

that the nucleus consists of protons and neutrons, or nucleons, which led to the discovery of

the strong force that binds the positively charged protons within the tiny space of a nucleus,

overcoming the large repulsion caused by the electromagnetic force. Particle scattering

experiments in the following decades with higher energies unraveled the substructure of

nucleons, revealing that quarks, bound by gluons that mediate the strong force, form the

protons and neutrons. Studies of the strong force and bound states of quarks followed,

and this great endeavor led to quantum chromodynamics (QCD), a theory that can in

principle describe the dynamics of quarks bound by gluons, and the formation of nuclei.
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1.1 Perturbative QCD and factorization

QCD describes the dynamics of quarks and gluons (referred to as partons), however, the

applicability of the description is limited by the energy scales, which leads to the topic of

this section. First, we need to look at two basic concepts in QCD, asymptotic freedom

and confinement. The quark-gluon coupling constant gs, or, as more commonly used in

QCD, the strong coupling ↵s ⌘ g2s/(4⇡), is the key to understanding the two concepts. ↵s

depends on the number of active flavors Nf , and in its lowest order can be written as

↵s ⇡
12⇡

(11CA � 4NfTR) ln(µ2

R/⇤
2)
, (1.1)

where CA and TR are SU(3) color factors [1]. Scale dependence arises from the renormal-

ization scale µR, which is associated with the regularization of ultraviolet divergences, and

from ⇤, which is a QCD constant of integration.

In particle scattering processes, µR is usually set to be proportional to the momentum

transfer, Q. In the region where µR ⇠ Q � ⇤, the strong coupling ↵s becomes small, and

quarks can be treated as free particles inside the nucleon, which is known as asymptotic

freedom. This forms the basis of perturbative QCD (pQCD), in which hard scattering

processes can be described in terms of systematic expansions in powers of ↵s.

In the region where Q is comparable to ⇤, ↵s becomes large and perturbation theory is

no longer applicable. The quarks are also confined by the large coupling, and this leads to

the second concept which is confinement, the reason why quarks are not observed directly.

This region is called the nonperturbative region, and has been studied by the community

with great endeavor, including this work.
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To access the inner structure of the nucleon, high energy lepton-nucleon and nucleon-

nucleon collisions are measured at particle accelerator facilities. However, because detec-

tors can only detect bound state hadrons, rather than quarks, inevitably the computation

of cross section receives contributions from the nonperturbative (i.e. low-Q) part.

Factorization allows us to calculate cross sections by separating the contributions from

perturbative and nonperturbative regions [2]. To illustrate the idea, we take deep-inelastic

scattering (DIS) as an example. In DIS, a lepton is scattered from a nucleus and when the

momentum transfer Q from the lepton to the nucleus is large, the cross section, at leading

power in 1/Q2, can be approximated as a convolution of a hard scattering cross section,

d�̂DIS

fi
, and a soft, nonperturbative function, fi,

d�DIS
�
x,Q2

�
=

X

i

ˆ
1

x

d⇠

⇠
fi

✓
x

⇠
, Q2

◆
d�̂DIS

fi

�
⇠, Q2

�
. (1.2)

Here d�̂DIS

fi
is interpreted as the cross section for the incoming lepton scattering off a

parton of flavor i inside the nucleon, i.e., the partonic cross section, and can be calculated

perturbatively to a given order in ↵s. The nonperturbative function fi(x) is interpreted as

the probability of parton i carrying a fraction x of the nucleon’s longitudinal momentum,

and is often referred to as the parton distribution function (PDF). The total cross section

is then obtained by integrating over all momentum fractions and summing over all flavors.

Cross sections for other high energy processes, such as Drell-Yan (production of lepton pairs

from the annihilation of quarks and anti-quarks from two colliding hadrons, abbreviated as

“DY” below) and single jet (collimated high-energy particles produced from proton-proton

4



or proton-antiproton collisions) production, can be factorized in a similar manner,

d�DY
�
xF , Q

2
�
=

X

i,j

ˆ
dxi

ˆ
dxj fi

�
xi, Q

2
�
fj
�
xj, Q

2
�
d�̂DY

ij!ll

�
xi, xj, Q

2, . . .
�
,

d�jets
(pT , ⌘) =

X

i,j

ˆ
dxi

ˆ
dxj fi

�
xi, Q

2
�
fj
�
xj, Q

2
�
d�̂jets

ij!jetX (xi, xj, pT , . . .),

(1.3)

where xi and xj are the momentum fractions carried by partons of flavor i and j in the

two colliding hadrons, ⌘ and pT are the rapidity and transverse momentum of the detected

jet, respectively, and d�̂DY

ij!ll
and d�̂jets

ij!jetX are the partonic cross section for the Drell-Yan

and single jet production processes. Although the partonic cross sections d�̂ are different

for different processes, the PDFs fi(x,Q2
) are universal, which enables a global analysis of

world data to be performed in order to extract a universal solution for the PDF.

Factorization and universality are very useful in extracting the nonperturbative PDFs from

experimental data, and significant progress has been made during the past few years [3–6].

Apart from momentum distributions, efforts have been made to determine the spin struc-

ture of the proton by extracting spin-dependent PDFs (�f) [7, 8]. Importantly, however,

momentum distributions (i.e. spin-averaged PDFs) and spin-dependent distributions have

not yet been studied simultaneously, despite the fact that they are different linear com-

binations of same quantities, with f = f "
+ f # and �f = f "

� f #, where f " (f #) is the

parton distributions with spin aligned (anti-aligned) with the proton spin. In this thesis,

a simultaneous global analysis of spin-averaged and spin-dependent PDFs is presented for

the first time.

It is worth mentioning that, although this thesis focuses on the extraction of the proton

PDFs, the neutron PDFs can be obtained via isospin symmetry, i.e., up
= dn, up

= d
n,

where the superscripts p and n denote the proton and neutron, respectively.
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1.2 History of proton spin structure

The first precision measurement of proton spin structure performed by the European Muon

Collaboration (EMC) [9] with polarized DIS found that the net contribution from quarks

to the proton spin at the scale Q2

EMC
= 10.7 GeV

2 was �⌃(Q2

EMC
) ⇠ 0.1, where �⌃

is the first moment of quark helicity distributions. The result was very different from

the prediction made by Ellis and Jaffe [10], which is �⌃(Q2

EMC
) ⇠ 0.6, by assuming zero

contribution from strange quark polarization. The question then remains: what is carrying

the rest of the proton spin? The discovery that quarks carry such a small fraction of the

proton spin was originally termed the “proton spin crisis”, and more recently has been

known as the “proton spin puzzle”.

In attempting to explain the EMC result, Hatsuda and Zahed [11] found that with a

consistent treatment of the U(1) axial anomaly, the quark spin �⌃ observes a large can-

cellation, and thus gives a better agreement with the aforementioned EMC measurement.

Altarelli and Ross [12] attributed the cancellation to the gluon anomaly and argued that

the EMC measured quantity should be interpreted as �⌃�↵s�G/(2⇡), with �G the first

moment of the gluon helicity distribution. Fritzsch [13] later interpreted the small value

of the quark spin as a gluon helicity term by considering the nucleon matrix element of

the axial baryonic current in the chiral limit. Many other theoretical interpretations were

proposed, summaries of which can be found in the review articles in Refs. [14–16].

Following the EMC measurement, the Spin Muon Collaboration (SMC) extracted for the

first time the x-dependent spin distributions for up and down valence quarks, as well as

the nonstrange sea quarks using semi-inclusive DIS (SIDIS) measurements [17, 18]. Later,

the high-precision SIDIS measurements at HERMES [19] and COMPASS [20, 21] for ⇡±

and K± production from deuteron and/or hydrogen targets, together with single-inclusive
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e+e� annihilation (SIA) and polarized DIS data, were used in the JAM17 analysis [8] for

the first simultaneous determination of the fragmentation functions and spin-dependent

PDFs. In particular, the strange spin distribution, �s+ = �s + �s, was found to be

consistent with zero, and thus could not account for the total proton spin budget.

Knowing that the quark spin is not the whole story of the proton spin, measurements

of observables that are sensitive to gluon spin then followed. One such observable is jet

production in polarized proton-proton or proton-antiproton collisions. Such measurements

were performed at the Relativistic Heavy Ion Collider (RHIC) by the STAR [22–26] and

PHENIX [27] collaborations. They are expected to be an ideal source of information on

the gluon spin contribution �G because the gluon PDF enters at lowest order in the jet

production cross section. However, to date no compelling evidence has been found in

global QCD analyses to suggest that gluons make up the remainder of the proton spin

after the quark contribution is accounted for [7, 28].

What is missing from the above discussion, on the other hand, is the orbital angular

momentum of quarks and gluons. Although other sum rules like Ji’s sum rule [29] are

available, according to Jaffe and Manohar [30], the proton spin can be decomposed as

1

2
=

1

2
�⌃(µ) +�G(µ) + LQ+G(µ), (1.4)

where �⌃ and �G are quark + antiquark helicity and gluon helicity, respectively, and

LQ+G is the parton orbital angular momentum. Note that all terms depend on the renor-

malization scale, µ. Interest in the proton spin has therefore expanded to include the orbital

angular momentum of quarks and gluons that may make up a portion of the proton spin.

The orbital angular momentum is encoded in the transverse momentum dependent (TMD)
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distributions which, as the name suggests, depend on the quark transverse momentum kT ,

as well as in the generalized parton distributions (GPDs) that depend on the transverse

spatial distance b. Since the extraction of TMDs and GPDs from experimental data in

global QCD analyses is still in its infancy, information on these distributions is usually

supplemented by calculations from lattice QCD [31, 32].

Presently, as the detailed physics plans for the Electron-Ion Collider (EIC) are being

assessed [33], more opportunities are being opened up for studying the proton spin decom-

position. With its high luminosity, high beam polarization, and unprecedented kinematic

coverage, the EIC can not only access more observables, but also with smaller statistical

uncertainties. This will allow more precise determination of helicity PDFs, as well as TMD

and GPDs. Combining with the collinear helicity PDFs, the transverse momentum and

spatial distributions will help us complete the picture of the proton spin decomposition.

The focus of this thesis will be on the collinear distribution functions, namely the spin-

averaged and spin-dependent PDFs. Accessing such distributions requires global analysis

of world data, such as DIS, Drell-Yan and jet production, and in the case of �f , polarized

DIS and jets are needed. In particular, we will be interested in extracting the gluon

helicity PDF �g from jet production data in polarized hadron-hadron collisions. Although

the impact of polarized jet data on �g has been studied previously by several groups,

such as DSSV [7, 28], a number of theoretical assumptions have been made in these

analyses, which could lead to biased results and need to be revisited. In particular, in this

work various theory assumptions, such as SU(2) and SU(3) flavor symmetry, positivity

constraints (requiring that |�f |  |f | for each flavor) are tested and their biases are

studied. Moreover, we also present in this work the first simultaneous extraction of spin-

averaged and spin-dependent PDFs. With its consistent treatment of both types of PDFs,

we will argue that a simultaneous analysis represents a new paradigm that will define the
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future of PDFs extraction.

1.3 Outline

The organization of the rest of this dissertation is as follows: in Chapter 2, we will describe

the theory of the observables used in this work, including unpolarized and polarized DIS,

parity-conserving and parity-violating polarization asymmetries from the EIC, unpolar-

ized Drell-Yan, and jet production in unpolarized and polarized hadron-hadron collisions.

Then, in Chapter 3, basic concepts of parton distribution functions are elaborated. For

example, the Mellin transform is applied to PDFs in order to make the PDF scale evolution

more efficient. PDF sum rules are also introduced in this chapter, which offer additional

theory constraints on the PDF determination. In Chapter 4, the fitting process is out-

lined, including Bayesian inference, Monte Carlo sampling, as well as the treatment of

experimental data sets. We also describe various ways employed to increase the speed of

the fits. The results of the fits are presented in Chapter 5, which is divided into five parts.

The first part shows the result of the analysis of the spin-averaged PDFs, while the second

part focuses on the spin-dependent PDFs and their dependence upon theory assumptions,

especially for �g. After a brief complementary study on jet observables in the third part,

the fourth part shows the results from the simultaneous analysis of spin-averaged and spin-

dependent PDFs. The last part uses the PDFs extracted from the existing data to perform

an impact study of future parity-conserving and parity-violating polarization asymmetries

planned to be measured at the EIC. Chapter 6 summarizes the results and discusses future

extensions of the PDF analysis reported in this thesis.
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CHAPTER 2

High energy scattering observables

The theoretical basis of global QCD analysis is collinear factorization, whose application to

DIS, Drell-Yan and jet observables will be discussed in this chapter. We will also describe

the Mellin transformation and the practical benefit of utilizing this method in global QCD

analysis.

2.1 Deep-inelastic scattering

Deep-inelastic scattering is the scattering of a lepton from a hadron, with the hadron being

a fixed target or a beam colliding with the lepton. This section is divided into two parts,

the first part is focused on the unpolarized DIS observables, while the second part will

extend the topic to polarized DIS observables.
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2.1.1 Unpolarized DIS

Consider a high-energy lepton scattering from a hadron, with the momenta of incoming

and outgoing leptons labeled by kµ and k0µ, respectively, the momentum of the struck

hadron (assumed hereafter to be a proton) labeled by P µ, and the momentum transfer

given by qµ ⌘ kµ
� k0µ, as shown in Fig. 2.1.

p

X

l

l0
k

k0

q

P

P 0

FIG. 2.1: Deep-inelastic charged lepton-hadron scattering with a single photon exchange,
with p denoting the proton, and l and X representing the lepton and undetected particles,
respectively. The momentum q is spacelike.

The differential cross section can be written as a contraction of a symmetric (S) leptonic

tensor LS
µ⌫ and a symmetric hadronic tensor W µ⌫

S ,

d
2�

dx dy
=

2⇡y↵2

Q4
LS
µ⌫W

µ⌫
S , (2.1)

where ↵ = e2/(4⇡) is the electromagnetic fine structure constant, the variables x and y

correspond to the Bjorken scaling variable and inelasticity, respectively, defined as

x ⌘
Q2

2P · q
=

Q2

2M⌫
, y ⌘

P · q

P · k
=
⌫

E
, (2.2)
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with Q2
⌘ �q2 the four-momentum transfer squared and ⌫ ⌘ P ·q/M = E�E 0 the energy

transfer, using the momenta defined in the proton rest frame

P µ
= (M, 0, 0, 0),

kµ
= (E, 0, 0, E),

k0µ
= (E 0, E 0

sin ✓ cos�, E 0
sin ✓ sin�, E 0

cos ✓),

(2.3)

where M is the mass of the proton, and E and E 0 are the energies of the incoming and

outgoing leptons, respectively, which are taken to be massless. For the process in Fig. 2.1,

the symmetric leptonic tensor with single photon exchange can be determined completely

within QED

LS
µ⌫ = 2

�
kµk

0
⌫ + k⌫k

0
µ � gµ⌫k · k0�. (2.4)

The hadronic tensor that describes the interaction between the photon and the nucleon

cannot at present be computed from first principles. However, from electromagnetic cur-

rent conservation qµW
µ⌫
S = 0 and parity conservation, we can write

W µ⌫
S =

✓
qµq⌫

q2
� gµ⌫

◆
F1

�
x,Q2

�
+

✓
P µ

+
qµ

2x

◆✓
P ⌫

+
q⌫

2x

◆
F2(x,Q2

)

P · q
, (2.5)

where F1(x,Q2
) and F2(x,Q2

) are the structure functions that characterize the structure

of hadrons as “seen” by the virtual photon. The structure functions can be expressed by a
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series expansion in powers of 1/Q2. For F1, we have

F1

�
x,Q2

�
=

1

2

X

q

e2q
��
CDIS

1,q ⌦ q+
��
x,Q2

�
+
�
CDIS

1,g ⌦ g
��
x,Q2

��
+O

✓
1

Q2

◆
,

F2

�
x,Q2

�
= x

X

q

e2q
��
CDIS

2,q ⌦ q+
��
x,Q2

�
+
�
CDIS

2,g ⌦ g
��
x,Q2

��
+O

✓
1

Q2

◆
,

(2.6)

where eq is the electric charge of quark with flavor q, CDIS

1,q and CDIS

1,g (CDIS

2,q and CDIS

2,g ) are

the hard scattering coefficients for F1 (F2) of DIS, and q+ = q+q. Both the hard scattering

coefficients and the PDFs depend on a renormalization scale µR that regulates ultraviolet

divergences. The scale is usually set to the hard scale as in Eq. (2.6), but can be varied

to estimate the theoretical uncertainty.

The symbol ⌦ in Eq. (2.6) represents the convolution integral

⇥
C ⌦ f

⇤
(x,Q2

) =

ˆ
1

x

C
�
⇠, Q2

�
f

✓
x

⇠
, Q2

◆
d⇠

⇠
. (2.7)

Notice that Eq. (2.6) is true to all orders of perturbative QCD, because the expansion in

orders of ↵S is implicit for the hard scattering coefficients,

CDIS

1,q

�
x,Q2

�
= CDIS,(0)

1,q

�
x,Q2

�
+
↵S(Q2

)

4⇡
CDIS,(1)

1,q

�
x,Q2

�
+O

�
↵2

S

�
, (2.8)

and similarly for CDIS

1,g , CDIS

2,q and CDIS

2,g .
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At leading order, the structure functions are related to the PDFs by [34]

F2(x) = 2xF1(x) = x

✓
4u+

(x)

9
+

d+(x) + s+(x)

9

◆
, (2.9)

when considering only the three light flavors. The gluon sensitivity, however, appears only

at higher orders, which is therefore suppressed by the strong coupling constant.

For the unpolarized DIS process, we include proton and/or deuteron F2 measurements

from BCDMS [35], SLAC [36], and NMC [37], as well as F d
2
/F p

2
measurements from NMC

[38], with cuts W 2
= M2

+Q2
(1� x)/x > 10 GeV

2 and Q2 > m2

c , where mc ⇡ 1.27 GeV is

the mass of charm quark. With the same cuts, we also include the reduced proton neutral

current and charged current cross sections from the combined H1 and ZEUS analysis from

HERA [39].

2.1.2 Polarized DIS

For polarized DIS interactions, the differential cross sections can be written in a similar

manner as a contraction of an antisymmetric (A) leptonic tensor LA
µ⌫ and an antisymmetric

hadronic tensor W µ⌫
A

d
2
��

dx dy
=

2⇡y↵2

Q4
LA

µ⌫W
µ⌫
A
, (2.10)

with kinematic variables defined as in Section 2.1.1. The antisymmetric leptonic tensor in
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this case is given by

LA
µ⌫ = �2ı�✏µ⌫↵�k

↵k0�, (2.11)

where ✏µ⌫↵� is the antisymmetric Levi-Civita tensor, and � = ±1 represents the helicity of

the incoming lepton.

The antisymmetric hadronic tensor W µ⌫
A can be written in terms of the polarized structures

represented by g1(x,Q2
) and g2(x,Q2

)

W µ⌫
A = ı✏µ⌫↵�

q↵S�

P · q
g1
�
x,Q2

�
+ ı✏µ⌫↵�

q↵
P · q

✓
S� � P�

S · q

P · q

◆
g2
�
x,Q2

�
, (2.12)

where S� is the nucleon spin four-vector, and we follow the convention that S2
= �M2

and S · P = 0, and for the polarized structure functions, we have

g1
�
x,Q2

�
=

X

q

e2q
2

��
�CDIS

1,q ⌦�q+
��
x,Q2

�
+ 2

�
�CDIS

1,g ⌦�g
��
x,Q2

��
+O

✓
1

Q

◆
, (2.13)

where �CDIS

1,q and �CDIS

1,g are the hard scattering coefficients for polarized DIS, and �q+ =

�q+�q. Notice that Eq. (2.13) is true to all orders of perturbative QCD as well, because

the expansion of ↵S is implicit in the hard scattering coefficients

�CDIS

1,q

�
x,Q2

�
= �CDIS,(0)

1,q

�
x,Q2

�
+
↵S(Q2

)

4⇡
�CDIS,(1)

1,q

�
x,Q2

�
+O

�
↵2

S

�
, (2.14)
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and similar for �CDIS

1,g . At leading order, the structure functions are simplified to

g1
�
x,Q2

�
=

1

2

✓
4�u+

(x)

9
+

�d+(x) +�s+(x)

9

◆
,

g2
�
x,Q2

�
= �g1

�
x,Q2

�
+

ˆ
1

x

g1
�
z,Q2

�1
z
dz +O

✓
1

Q

◆
,

(2.15)

where g2 is given by the Wandzura-Wilczek relation [40]. Again, there is no sensitivity to

the polarized gluon distribution �g at leading order from polarized DIS.

In experiments with polarized beams or targets, the quantity that is usually measured

is the polarization asymmetry, which is a ratio of spin-dependent cross sections to spin-

averaged cross sections. For the case of polarized DIS, the asymmetry can be expressed in

terms of the spherical angles ✓ and � that describe the target polarization relative to the

virtual photon three momentum #–q ,

A =
�"

� �#

�" + �# =

p
1� ✏2A1 cos ✓ +

p
2✏(1� ✏)A2 sin ✓ cos�

1 + ✏R
, (2.16)

where �"#
⌘ d

2�"# / dx dy are the cross sections in Eq. (2.10) with lepton helicity �(") = +1

or �(#) = �1, �"
� �#

= d
2
�� /(dx dy) in (2.10) and �"

+ �#
= d

2� /(dx dy) in (2.1). The

variables ✏ and R are defined as

✏ =
2(1� y)� 1

2
�2y2

1 + (1� y)2 + 1

2
�2y2

, R =
(1 + �2)F2 � 2xF1

2xF1

, (2.17)

where �2 = 4M2x2/Q2, which is small in Bjorken limit where Q2
! 1 with x fixed. The

variable R is the ratio of longitudinal to transverse photon absorption cross sections and

✏ is the ratio of longitudinal to transverse virtual photon polarizations.
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The polarization of the proton target can be adjusted to be parallel (*) or perpendicular

()) to the lepton beam, so that the asymmetry in Eq. (2.16) can be separated into

longitudinal and transverse spin asymmetries,

Ak =
�#*

� �"*

�#* + �"* = D(A1 + ⌘A2),

A? =
�#)

� �")

�#) + �") = d(A2 � ⇣A1),

(2.18)

where the photon polarization factors D, d, ⌘ and ⇣ are

D =
y(2� y)(2 + �2y)

2(1 + �2)y2 + (4(1� y)� �2y2)(1 +R)
,

d =

p
4(1� y)� �2y2

2� y
D,

⌘ = �
4(1� y)� �2y2

(2� y)(2 + �2y)
, ⇣ = �

2� y

2 + �2y
,

(2.19)

and the virtual photoproduction asymmetries A1 and A2 that appear in Eqs. (2.16)

and (2.18) can be expressed by spin-averaged and spin-dependent structure functions

A1 =
g1 � �2g2

F1

, A2 = �
g1 + g2
F1

. (2.20)

Due to the suppression of � when Q2
� M2, we will only fit A1 or Ak measurements.

Specifically, we include fixed target polarized DIS proton, deuteron and helium A1 and/or

Ak measurements from EMC [41], SMC [42, 43], COMPASS [44–46], SLAC [47–52], and

HERMES [53, 54], with the same cuts on Q2 and W 2 as for unpolarized DIS data sets,

as in Refs. [8, 55]. Details of the observables from different collaborations are listed in

Table 5.4.
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2.1.3 EIC observables

As the world’s first polarized lepton-hadron (and lepton-nucleus) collider, the Electron-Ion

Collider (EIC) will explore uncharted territory in spin physics [56], extending the kinematic

coverage in both Bjorken-x and momentum exchange Q2. While the kinematic coverage

will be discussed in detail later in Section 4.4.3, this section will focus on the observables

from the impact study [57], namely the parity-conversing (ALL) and parity-violating (AUL)

polarization asymmetries can be studied at the EIC.

The parity-conversing polarization asymmetry is defined in Eq. (2.18) as Ak, and for EIC

impact study, it is named after the polarization directions as the double longitudinal spin

asymmetry ALL.

At typical EIC kinematics, one can take M2
⌧ Q2, in which case �2 = 4M2x2/Q2

! 0

and ALL simplifies to

ALL =
y(2� y)

y2 + 2(1� y)(1 +R)

g1
F1

, (2.21)

which is proportional to g1. According to Eq. (2.15), the leading order contribution from

individual quark flavors �q+ = �q +�q is proportional to the square of their charges, so

that proton measurements mostly determine the �u+ distribution. In order to constrain

the �d+ flavor one needs other hadrons, such as deuterons or 3
He nuclei, which are more

sensitive to the down quark helicity distribution via the neutron structure function gn
1
,

which at leading order is given by

gn
1
⇡

4�d+ +�u+
+�s+

18
. (2.22)
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Another novel observable that can be studied at the EIC is the parity-violating asymmetry

that involves the scattering of unpolarized leptons from longitudinally polarized hadrons,

AUL =
�*

� �+

�* + �+ , (2.23)

where * (+) denotes the spin of the hadron along (opposite to) the beam direction. In

this asymmetry the parity-conserving contributions from photon exchange and the vector-

vector part of Z-boson exchange cancel exactly in the numerator, leaving the dominant

contribution from the interference of photon and the axial-vector part of Z-boson ex-

change [58]. Neglecting the diagonal Z-exchange contributions and taking M2
⌧ Q2, the

parity-violating asymmetry can be written in terms of the spin-dependent interference �Z

structure functions g�Z
1,5 [59],

AUL =
GFxQ2

2
p
2⇡↵

 
geAY

�g�Z
1

+ geV Y
+g�Z

5

xy2F1 + (1� y)F2

!
, (2.24)

where GF is the Fermi constant, ↵ is the fine structure constant, geV = �
1

2
+2 sin

2 ✓W and

geA = �
1

2
are the vector and axial-vector couplings of the electron to the Z boson, and ✓W

is the weak mixing angle. The kinematic factors in the numerator of (2.24) are given by

Y ±
= 1± (1� y)2.

At leading twist, the polarized �Z interference structure functions can be written in terms
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of the helicity PDFs as [59],

g�Z
1

�
x,Q2

�
=

X

q

eqg
q
V

��
�C1,q ⌦�q+

��
x,Q2

�
+ 2(�C1,g ⌦�g)

�
x,Q2

��
,

g�Z
5

�
x,Q2

�
=

X

q

eqg
q
A

�
�C5,q ⌦�q�

��
x,Q2

�
,

(2.25)

where �q� = �q��q is the difference of quark and antiquark helicity PDFs, and the weak

vector and axial-vector quark couplings are gu,cV =
1

2
�

4

3
sin

2 ✓W , gd,sV = �
1

2
+

2

3
sin

2 ✓W ,

and gu,cA =
1

2
= �gd,sA , respectively. The contribution from the g�Z

5
structure function to

AUL is suppressed by the factor geV (⇡ �4%) and is generally negligible in the x . 10
�2

region. The g�Z
1

structure function thus provides an independent linear combination of

helicity PDFs, which, when combined with the electromagnetic g1 structure function, can

allow cleaner flavor separation. For illustration, taking sin
2 ✓W ⇡

1

4
we can write g�Z

1
for

the proton in the leading order approximation in terms of the quark singlet combination,

g�Z,p
1

�
x,Q2

�
⇡

1

9
�⌃

�
x,Q2

�
=

X

q

�q+. (2.26)

In particular, this combination of helicity PDFs involves the s quark on equal footing

with the u and d quarks, making parity-violating DIS an exciting process for extracting

the strange helicity distribution, to which existing polarized fixed target data have little

sensitivity [8]. Furthermore, as a purely inclusive process, parity-violating DIS provides

constraints on the flavor separation of PDFs, that are independent of semi-inclusive DIS

(SIDIS) observables which rely on flavor tagging [60, 61], and thus allow for new opportu-

nities to test and validate the universality of PDFs.
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2.2 Drell-Yan process

The Drell-Yan process [62] occurs in the collision of two hadrons (assumed as protons

hereafter), where a quark from one proton annihilates with an antiquark from the other

proton, creating a virtual photon or Z boson, which later decays into a detected lepton-

antilepton pair. The leading order diagram is shown in Fig. 2.2.

p1
X

p2
X

l

l

q

�

qi

qi

P1

P2

k

k0

FIG. 2.2: The Drell-Yan process: p1 and p2 represent the two colliding protons, qi and qi
represent a quark and antiquark of the same flavor i, l and l represent the produced lepton
and antilepton, and X represents undetected particles. The momentum q is timelike.

Assuming the protons carry momentum P1 and P2, respectively, the quark and antiquark

will carry momentum pa ⌘ xaP1 and pb ⌘ xbP2, with xa and xb being the longitudinal

momentum fractions carried by the quark and antiquark, respectively. With Q2
⌘ q2 and

x ⌘ Q2/S = Q2/(P1 + P2)
2, the differential cross section can be written generally as [63]

� =

X

q

ˆ
1

0

dxa

ˆ
1

0

dxb

ˆ
1

0

dz fq
�
xa, Q

2
�
fq
�
xb, Q

2
�
�̂qq!ll

�
z,Q2

�
�(x� zxaxb), (2.27)
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where �̂qq!ll is the partonic level differential cross section, fq and fq are the PDFs of the

annihilating quark and antiquark from the two protons, respectively, and the sum goes

over all quark flavors.

The kinematic variables that are usually used to describe Drell-Yan events are Feynman-x

(xF ) and the dilepton mass (M), defined as

xF ⌘ xa � xb, M2
= Q2

= xaxbS, (2.28)

where we assume the massless limit of P 2

1
= P 2

2
= 0. At leading order, the cross section is

given by [64]

M3
d
2�

dM dxF
=

8⇡↵2

9(xa + xb)

X

q

e2qxaxb(fq(xa)fq(xb) + fq(xa)fq(xb)), (2.29)

where the sum goes over all quark flavors, and eq is the corresponding electric charge.

When xa � xb, the Drell-Yan process is a very good probe of the d/u asymmetry. This

can be seen by considering the leading order cross sections for proton-proton (pp) and

proton-neutron (pd) collisions,

�pp
/

4

9
u(xa)u(xb) +

1

9
d(xa)d(xb),

�pn
/

4

9
u(xa)d(xb) +

1

9
d(xa)u(xb),

(2.30)

which are simplified in the region 0.1 . x . 0.5, where empirically u(x) � u(x),

d(x) � d(x) and the strange distribution is negligible compared to the up and down
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PDFs. Therefore, for the ratio one has

�pd

2�pp
⇡
�pp

+ �pn

2�pp
⇡

1

2

1 +
1

4

d(xa)

u(xa)

1 +
1

4

d(xa)

u(xa)

d(xb)

u(xb)

✓
1 +

d(xb)

u(xb)

◆
, (2.31)

and since d(x) ⌧ 4u(x), one recovers the simple relation

�pd

2�pp
⇡

1

2

✓
1 +

d(x2)

u(x2)

◆
. (2.32)

In our analysis, we include pp and pd Drell-Yan data from the Fermilab E866 experi-

ment [65], with a cut of Q2 > 36 GeV
2.

2.3 Jets in proton-proton collisions

A jet is a collimated spray of hadrons detected in high-energy particle reactions, and is a

manifestation of collinear enhancement. To see this, consider the illustration in Fig. 2.3,

where the propagator of the gluon line is

1

(p1 + p2)
2
=

1

2E1E2(1� cos ✓)
(2.33)

in the massless limit, p2
1
= p2

2
= 0, where p1 = (E1,

#–p1), p2 = (E2,
#–p2), and ✓ is the angle

between #–p1 and #–p2.

By having cos ✓ approaching 1, the amplitude for collinear emissions is enhanced. At the

detector level, the collinear enhancement is manifested in the form of a collimated spray

of energetic particles, known as a jet.
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p1 + p2
p1

p2

FIG. 2.3: Collinear enhancement in jet production.

2.3.1 Jets in unpolarized collisions

Jet production occurs when two protons (or other hadrons) collide, with a parton from one

proton interacting with a parton from the other proton, producing quarks and/or gluons,

which later hadronize into a collimated spray of energetic particles that are detected.

Illustrated in Fig. 2.4 is the process for single jet production, where �̂ab represents the

partonic interactions which will be given in more detail in Appendix A.

�̂ab

p1
X

p2
X

X

jet

xaP1

a

xbP2

b

P1

P2

pjet

FIG. 2.4: Single jet production, p1 and p2 represent the two colliding protons, �̂ab in
the blob stands for the partonic level interactions, jet represents the detected jet and X
represents undetected particles.

Assuming the protons carry momentum P1 and P2, respectively, the partons from the

two protons will carry momentum pa ⌘ xaP1 and pb ⌘ xbP2, with xa and xb being the

24



longitudinal momentum fractions carried by the two partons a and b, respectively. The

detected jet would carry momentum pjet, with its transverse momentum being pT and

pseudorapidity ⌘ = � ln
�
tan

✓
2

�
, where ✓ is the angle between the proton beams and

detected jet.

The differential cross section can be written as

d�

dpT d⌘
=

X

a,b

ˆ
dxa

ˆ
dxb fa(xa, µF )fb(xb, µF ) d�̂ab!jetX

�
xa, xb, p

jet, µF,R; r
�
, (2.34)

where µF and µR are the factorization and renormalization scales that are used in regu-

lating the infrared and ultraviolet divergences, running of strong coupling constant ↵s and

evolution of PDFs. They are usually chosen to be pT , but can be varied to estimate the-

oretical uncertainties. The functions fa and fb are PDFs for partons a and b respectively.

Finally, d�̂ is the partonic differential cross section for inclusive single jet production, it

depends on parton momenta pa ⌘ xaP1 and pb ⌘ xbP2, jet momentum pjet, factorization

and renormalization scales µF and µR, and jet radius r which will be discussed in Sec. 2.3.3

below. Further manipulations of the expression (2.34) will be discussed later in Sec. 2.3.2.

According to Figs. A.3 and A.4, the single jet production process is sensitive not only

to quark distributions, but also to gluon distributions at tree level. This makes the jet

observable a very good probe of the gluon structure of the nucleon.

For unpolarized single jet production, we include measurements of single jet cross sections

in pp collisions from D0 [66] and CDF [67] at Fermilab, and in pp collisions from STAR

[22] at RHIC.
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2.3.2 Jets in polarized collisions

The double longitudinal spin asymmetry Ajet

LL for single inclusive jet production with po-

larized pp collisions is defined as

Ajet

LL =
�++

� �+�

�++ + �+� ⌘
d��

d�
, (2.35)

where �++ and �+� are the inclusive jet cross sections when the two colliding proton beams

have equal and opposite helicities, respectively. The numerator in Ajet

LL can be written in

factorized form in terms of the perturbative hard-scattering cross section d��̂ab!jetX and

spin-dependent PDFs �f(x, µF ),

d�� =

X

a,b

ˆ
dxa

ˆ
dxb �fa

�
xa, µ

2

F

�
�fb

�
xb, µ

2

F

�
d��̂ab!jetX

�
xa, xb, p

jet, µ2

F,R; r
�
, (2.36)

where the sum goes over all the partonic reactions a + b ! jet +X that contribute, and

the variables xa, xb, pjet, µR, µF and r are the same as in Eq. (2.34).

The measurements are typically given differential in the jet transverse momentum pT and

jet pseudorapidity ⌘, introducing the kinematic variables

V = 1�
pT e⌘
p
S
, W =

p2T
SV (1� V )

, (2.37)

where S ⌘ (P1 + P2)
2 is the hadronic center of mass energy squared. Correspondingly, the
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partonic level kinematic variables are

s ⌘ (pa + pb)
2
⌘ (xaP1 + xbP2)

2,

t ⌘
�
pa � pjet

�2
⌘
�
xaP1 � pjet

�2
,

u ⌘
�
pb � pjet

�2
⌘
�
xbP2 � pjet

�2
,

v ⌘ 1 +
t

s
, w ⌘

�u

s+ t
,

(2.38)

where xa and xb can be expressed as

xa =
VW

vw
, xb =

1� V

1� v
. (2.39)

With change of variables [68], one can therefore write Eq. (2.36) as

d��

dpT d⌘
=

2pT
S

X

a,b

ˆ V

VW

dv

v(1� v)

ˆ
1

VW/v

dw

w
�fa(xa, µF )�fb(xb, µF )

⇥

 
d��̂(0)

ab!jetX (s, v)

dv
�(1� w) +

↵(µR)

⇡

d��̂(1)

ab!jetX (s, v, w, µF , µR; r)

dv dw

!
.

(2.40)

The denominator of the asymmetry in Eq. (2.35), which is nothing but the unpolar-

ized single jet production cross section, can be manipulated in a similar manner, with

�f(x, µ2

F ) ! f(x, µ2

F ). Since in Ajet

LL the numerator and denominator depend on the spin-

dependent and spin-averaged PDFs, respectively, in principle we should extract f(x, µ2

F )

and �f(x, µ2

F ) simultaneously, and this will be discussed later in Section 5.4.
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We integrated the Fortran code provided in Ref. [68] for the calculation of jet cross sections

in unpolarized and polarized collisions, with the double counting in final state partons

corrected [69, 70].

For the fit we include polarized jet production data in polarized pp collisions from the

STAR [22–26] and PHENIX [27] collaborations at RHIC. We do not include the data

presented in Ref. [71], which has been superseded by an updated analysis in Ref. [23].

2.3.3 Jet algorithms

In particle detectors, events are recorded as pT values in the ⌘–� plane, where ⌘ and � are

the pseudorapidity and azimuthal angles of the detected particles. It is then important to

find the actual jet observation among the thousands of overserved events. Because a jet

usually contains many hadronized particles, jet algorithms are designed to cluster together

the particles that belong to a jet. Although many types of algorithms exist, they can be

classified into seeded and seedless algorithms.

A seeded algorithm, like the midpoint cone algorithm [72], consists of two main parts. The

first part involves constructing a list of proto-jets, with the following steps:

1. start with a list of events ordered by pT , from high to low;

2. create an empty list of proto-jets;

3. from the events outside of proto-jets, use the one with the highest pT as the seed;

4. compute the distances ri between the seed and all the events (numbered by i);

5. collect all the events that have a distance ri < R;

6. recompute the jet axis of collected events and use it as the new seed;

7. repeat from step 4 until a stable jet axis is obtained;

8. declare the collected events as a proto-jet and put into the proto-jet list;
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9. repeat from step 3 until the all the events are in at least one proto-jet.

The next part would be to check if there are any proto-jets that overlap with each other.

If the answer is no, then one can claim all proto-jets as jets and the algorithm is finished.

If the answer is yes, then one proceeds with the steps:

1. compute the overlapping energy of the two proto-jets;

2. test whether it exceeds a threshold fraction of the smaller proto-jet;

(a) if yes, then merge the two proto-jets;

(b) if no, then split the overlapping events by their distances to the two proto-jets’

axes;

3. repeat from step 1 until no proto-jets overlap;

4. declare all proto-jets as jets, and the algorithm is finished.

The distance ri between the seed and ith event is defined as ri =
q
(⌘i � ⌘s)

2
+ (�i � �s)

2,

where ⌘i,s and �i,s are the pseudorapidities and azimuthal angles of the ith event (or seed).

Parameter R is usually chosen to be of order 1, and the threshold fraction is usually chosen

to be 50%.

The midpoint cone algorithm is infrared safe (up to NLO) and collinear safe, meaning

that the jets do not change when adding a soft particle or substituting one particle with

two collinear particles. The midpoint cone algorithm was used by the D0 [66] and STAR

[22, 23] collaborations. The PHENIX [27] measurement, however, employed a cone jet

algorithm without splitting or merging of overlapped proto-jets.

Seedless algorithms, such as kT [73] and anti-kT [74] algorithms, are recursive algorithms

and can be described by the following:
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1. start with a list of events;

2. compute the distance between the beam (B) and each event i as diB = E2p
T,i,

defined by the transverse energy ET,i of event i raised to the power of 2p = ±2;

3. for each pair of events i and j, also compute dij = min
�
E2p

T,i, E
2p
T,j

�
r2ij/R

2;

4. find the smallest among diB and dij, label it as dmin;

5. if dmin is a dij, merge events i and j into a new event;

6. if dmin is a diB, claim event i a jet and remove from list;

7. repeat from step 2 until there are no more events.

In a similar manner as for the midpoint cone algorithm, here rij is defined by rij =
q

(⌘i � ⌘j)
2
+ (�i � �j)

2, R is usually chosen to be of order 1, and p = ±1 for the kT

and anti-kT algorithms, respectively. Also, the transverse energy ET,i is defined as ET,i ⌘

Ei sin ✓i, with Ei being the total energy of event i and ✓i the angle between event i and

hadron beams.

The kT algorithm tends to cluster low energy events first and is used by CDF [67]. In

contrast, the anti-kT algorithm tends to cluster high energy events first and is used by

STAR [24–26]. Both algorithms are infrared and collinear safe.

2.4 Observables in Mellin space

Since PDFs are extracted numerically from experimental data through global QCD anal-

ysis involving significant computational resources, it is beneficial to improve the speed of

evaluating cross sections by reducing the computational complexity (which we will also

discuss in Section 3.2). In this section we introduce the Mellin transform, a method that

can help us achieve faster numerical computations [75]. The Mellin transform of a function
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f(x) is defined as

f(N) =

ˆ
1

0

f(x)xN�1
dx , (2.41)

where N is a complex number. When N is an integer, in particular, f(N) is called the

Nth Mellin moment of f(x).

An observable O(x,Q2
) that is defined by a single convolution integral in x space, such as

in Eqs. (2.6) and (2.13), becomes a simple product in Mellin space,

O
�
N,Q2

�
=

X

i

Hi

�
N,Q2

�
fi

�
N,Q2

�
, (2.42)

where Hi is the generic hard scattering coefficient and fi is the nonperturbative function,

both in Mellin space, the sum goes over all parton flavors.

To compare with the experimental data, O(N,Q2
) has to be converted back to x space

with the inverse Mellin transform, which can be performed by a contour integral in the

complex plane,

O
�
x,Q2

�
=

1

2⇡ı

˛
dN x�N

O
�
N,Q2

�
. (2.43)

In practice, the contour is taken as the lines shown in Fig. 2.5. The upper part of the

contour is defined as N = c + zeı�, where c is on the real axis and is fixed to the right

of the rightmost pole of O(N,Q2
), and � is usually chosen to be 3⇡/4 for the integral to

quickly converge, parameter z is a positive real number. The lower part of the contour is
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a mirror reflection of the upper part with respect to the real axis.

x

ıy

�

N = c+ zeı�

c

FIG. 2.5: Mellin contour for the integration in complex plane.

The integral can then be expressed in terms of the variable z,

O
�
x,Q2

�
=

1

⇡

ˆ 1

0

Im
�
eı�x�N

O
�
N,Q2

� 
dz , (2.44)

where the symmetry with respect to the real axis is applied. To evaluate the integral over

z, numerically we use the Gaussian quadrature sum

O
�
x,Q2

�
=

1

⇡

X

l

wl Im
�
eı�x�NlO

�
Nl, Q

2
� 

=
1

⇡

X

l

wl Im

(
eı�x�Nl

X

i

Hi

�
Nl, Q

2
�
fi

�
Nl, Q

2
�
)
,

(2.45)
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where wl is the Gaussian weight for the lth Gaussian node zl and Nl = c + zleı�. The

advantage of this method is that the computationally expensive coefficients Hi(Nl, Q2
)

can be pre-calculated and stored in the so-called “Mellin tables”. Later, the Mellin tables

can be loaded and summed with the PDFs (in Mellin space) to quickly produce the cross

sections (in Mellin space).

For the scenarios where there are two variables in x space (Eq. (2.27)), we would use the

double Mellin method [75]. The Mellin transform for an observable O(x1, x2, Q2
) that

convolutes with two nonperturbative functions f1(x) and f2(x) is given by

O
�
N,M,Q2

�
=

X

i,j

Hi,j

�
N,M,Q2

�
f1,i

�
N,Q2

�
f2,j

�
M,Q2

�
, (2.46)

where Hi,j is the double Mellin version of the hard scattering coefficient. Returning back

to x space follows naturally with the double Mellin inversion

O
�
x1, x2, Q

2
�
=

1

(2⇡ı)2

‹
dN dM x�N

1
x�M
2

O
�
N,M,Q2

�
. (2.47)

Analogously, by defining N = cn + zneı�n and M = cm + zmeı�m , and performing a single

Mellin inversion twice, we have

O
�
x1, x2, Q

2
�
= �

1

2⇡2
Re

 ˆ 1

0

dzn

ˆ 1

0

dzm x�N
1

⇥
�
eı(�n+�m)x�M

2
O
�
N,M,Q2

�
� eı(�n��m)x�M⇤

2
O
�
N,M⇤, Q2

���
.

(2.48)
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As in the single Mellin scenario, we evaluate the integral with Gaussian quadrature,

O
�
x1, x2, Q

2
�
= �

1

2⇡2
Re

X

i

wi

X

j

wjx
�Ni
1

⇥

⇣
eı(�n+�m)x

�Mj

2
O
�
Ni,Mj, Q

2
�
� eı(�n��m)x

�M⇤
j

2
O
�
Ni,M

⇤
j , Q

2
�⌘�

,

(2.49)

where the inner sum over j is taken first, and wi and wj are the Gaussian weights. Typically,

N and M take the same contour, so that cn = cm and �n = �m.

The Mellin transform is also useful in evaluating DGLAP evolution, which will be discussed

in Section 3.2.
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CHAPTER 3

Parton distribution functions

In the previous chapters, we saw that the high-energy scattering observables in QCD can

be described by hard scattering coefficients and soft nonperturbative functions, with the

soft nonperturbative functions having to be extracted through global QCD analysis. In

this chapter, we will discuss how to parameterize those soft nonperturbative functions,

namely the PDFs. A good parameterization of PDFs is a balance between flexibility and

complexity, meaning the PDFs are sufficiently flexible to describe the data, but also not

too complex that the computation takes too long.

This chapter will also discuss the scale dependence of the PDFs, using the DGLAP evo-

lution equations. Some of the theoretical constraints on PDFs will also be presented,

including number and momentum sum rules for spin-averaged PDFs, SU(2) and SU(3)

flavor symmetries for spin-dependent PDFs, and positivity constraints.
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3.1 Parameterization

For the parameterization of the spin-averaged and spin-dependent PDFs we use the stan-

dard form with a generic template function at the input scale µ0,

T(x, µ0;a) =
a0
N

xa1(1� x)a2
�
1 + a3

p
x+ a4x

�
, (3.1)

where a = {a0, · · · , a4} denotes the set of parameters to be fitted, and the normalization

constant N is defined by Euler beta functions

N = B(a1 + n, a2 + 1) + a3B

✓
a1 + n+

1

2
, a2 + 1

◆
+ a4B(a1 + n+ 1, a2 + 1), (3.2)

which is the nth moment (defined by Eq. (2.41)) of the bare function. This form is chosen

to maximally decorrelate the overall normalization parameters from the parameters that

determine the shape of the PDFs in x.

For the spin-averaged PDFs, we parameterize the valence distributions uv = u � u and

dv = d� d and the gluon distribution g each using a single template function from (3.1).

For the sea quark and antiquark distributions, in order to allow greater flexibility we use

two template functions, each parameterized independently,

q(x, µ0) = S(x, µ0) + q0(x, µ0), (3.3)

with a flavor-independent term S that is more singular (more negative a1 values) and
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thus dominates the x ! 0 behavior, and a flavor-dependent part q0 that allows for a

nonperturbative origin of the sea (with less negative a1 value). This form is used for the

antiquark u and d PDFs, as well as the strange and antistrange distributions.

The parameter a0 of the gluon PDF is fixed by the momentum sum rule, while the a0 for

the uv, dv, and s0 are fixed by the valence number sum rules,

ˆ
1

0

x
�
g(x) + u+

(x) + d+(x) + s+(x)
�
dx = 1,

ˆ
1

0

uv(x) dx = 2,

ˆ
1

0

dv(x) dx = 1,

ˆ
1

0

(s0(x)� s0(x)) dx = 0,

(3.4)

where q+ = qv + 2q for q = u, d and s+ = s + s. The value of n is chosen to be 2 for the

normalization N in Eq. (3.2), so that a0 corresponds to the second moments which are

used in the momentum sum rule (3.4). The parameters a3 and a4 are fixed to be zero for

the s0, s0 and S components, but are free to vary for the valence, gluon, and other sea

quark distributions.

The parameter ranges for the spin-averaged PDFs are summarized in Table 3.1. Con-

straints are not set for parameters a0 of uv, dv and g because they are fixed by the number

or momentum sum rules (3.4), while a0 is set to be greater than 0 for other flavors to

ensure that PDFs are generally positive. The first full moments are required to be finite

by setting a1 > �1 for the flavors that are used in the number sum rules, which are all

the flavors except S and g. This limit is further enforced to a1 > �0.5 for uv, dv, s0 and

s0 so that they dominate the high-x region, leaving the-low x region to the universal sea

distribution S, which is more singular. The gluon distribution, however, is not bounded

by the number sum rule, and therefore a more generous lower limit of �1.9 is set for a1 to

ensure its second full moment still exists for the momentum sum rule. The a1 parameter
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TABLE 3.1: Parameter ranges for the spin-averaged PDFs

a0 a1 a2 a3 a4

g (�1,1) [�1.9, 1] [0, 10] [�10, 10] [�10, 10]

uv (�1,1) [�0.5, 1] [0, 10] [�10, 10] [�10, 10]

dv (�1,1) [�0.5, 1] [0, 10] [�10, 10] [�10, 10]

u0 [0, 1] [�1, 1] [0, 10] [�10, 10] [�10, 10]

d0 [0, 1] [�1, 1] [0, 10] [�10, 10] [�10, 10]

s0 [0, 1] [�0.5, 1] [0, 10]

s0 [0, 1] [�0.5, 1] [0, 10]

S [0, 1] [�1.9,�1] [0, 10]

of the universal sea distribution S is set within �1.9 and �1 to ensure its dominance in

the low-x region. The lower limits for a2 of all flavors are set to 0 to avoid divergences at

x = 1. The remaining limits are set to be large enough so that there is no edge effect.

For the spin-dependent PDFs, the same template (3.1) is used, with the exception that n

is chosen to be 1 for the normalization N in Eq. (3.2) so that a0 maximally corresponds

to the first full moments that are used in the SU(2) and/or SU(3) flavor symmetries.

The helicity valence flavors �uv = �u��u and �dv = �d��d are parameterized with

a single shape, while the helicity gluon and sea/antiquark distributions are parameterized

each with two shapes for more flexibility

�u = �d = �s = �s = �s0 +�S1,

�g = �g0 +�S2,
(3.5)

where we set the sea distributions equal (since there is no sensitivity to individual flavors).

The a3 and a4 parameters are fixed to zero for all flavors, with all other parameters free.
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The a0 normalization parameter for the valence �uv and/or �dv PDFs are fixed by fitting

to the triplet and octet axial vector charges gA and a8 with uncertainties taken into account,

using the first moments of �q+ = �qv + 2�q for �q = �u,�d and �s+ = �s+�s,

ˆ
1

0

�
�u+

�
x,Q2

�
��d+

�
x,Q2

��
dx = gA,

ˆ
1

0

�
�u+

�
x,Q2

�
+�d+

�
x,Q2

�
� 2�s+

�
x,Q2

��
dx = a8.

(3.6)

The axial charges are given by the standard values gA = 1.269(3) and a8 = 0.586(31)

[76], or gA = 1.24(4) and a8 = 0.46(21) extracted by fitting spin-dependent PDFs and

fragmentation functions (FFs) with polarized inclusive and semi-inclusive DIS, and single-

inclusive e+e� annihilation data simultaneously in JAM17 [8]. Unlike the spin-averaged

scenario, where the sum rules are imposed by strict relations, the sum rules in (3.6) are

restricted by including the central values and uncertainties of gA and a8 as data points.

The parameter ranges for the spin-dependent PDFs are summarized in Table 3.2. Since

helicity PDFs are differences of parton distributions, they are not bound to be positive,

and therefore the range of a0 is set to be [�10, 10] for all flavors. To ensure that the first

full moments are finite in the sum rules (3.6), the lower limit of a1 is set to be �0.99. The

lower limits of a1 are further enforced to be �0.5 for �g, �uv, �dv and �s0, making sure

that �S1 and �S2 will dominate the low-x region. The lower limits for a2 for all flavors

are set to 0 to avoid divergences at x = 1. The remaining limits are set to be large enough

so that there are no edge effects.

Both the spin-averaged and spin-dependent PDFs are parameterized at the input scale

µ2

0
= (1.27)2 GeV

2, which is slightly below the charm mass (mc = 1.28 GeV) that we

adopt from the PDG [77].
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TABLE 3.2: Parameter ranges for the spin-dependent PDFs

a0 a1 a2

�g [�10, 10] [�0.5, 2] [0, 10]

�uv [�10, 10] [�0.5, 2] [0, 10]

�dv [�10, 10] [�0.5, 2] [0, 10]

�s0 [�10, 10] [�0.5, 2] [0, 10]

�S1 [�10, 10] [�0.99, 2] [0, 10]

�S2 [�10, 10] [�0.99, 2] [0, 10]

3.2 DGLAP evolution

The spin-averaged and spin-dependent PDFs are parameterized at the input scale µ2

0
, and

in order to evolve them to the experimental scales, we use the DGLAP evolution equations

[78]. In x space, the evolution equations for the spin-averaged quark and gluon PDFs are

given by

dqi(x, µ2
)

d ln(µ2)
=
↵s(µ2

)

2⇡

ˆ
1

x

dy

y

✓
qi
�
y, µ2

�
Pqq

✓
x

y

◆
+ g

�
y, µ2

�
Pqg

✓
x

y

◆◆
,

dg(x, µ2
)

d ln(µ2)
=
↵s(µ2

)

2⇡

ˆ
1

x

dy

y

 
g
�
y, µ2

�
Pgg

✓
x

y

◆
+

 
X

i

q+i
�
y, µ2

�
!
Pgq

✓
x

y

◆!
,

(3.7)

where Pqq, Pqg, Pgq and Pgg are the quark to quark, gluon to quark, quark to gluon, and

gluon to gluon splitting functions, respectively, and qi, qi and g are the PDFs for quark of

flavor i, antiquark of flavor i, and the gluon, and finally q+i = qi + qi. Using the definition

of Mellin convolution (2.7), the above equations can be more compactly written as

dqi(x, µ2
)

d ln(µ2)
=
↵s(µ2

)

2⇡
(qi ⌦ Pqq + g ⌦ Pqg),

dg(x, µ2
)

d ln(µ2)
=
↵s(µ2

)

2⇡

 
g ⌦ Pgg +

X

i

q+i ⌦ Pgq

!
.

(3.8)
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Solving these convoluted integro-differential equations can be highly nontrivial and compu-

tationally expensive [79–81]. By transforming to the Mellin space, however, the convolution

is simplified to products,

dqi(N,µ2
)

d ln(µ2)
=
↵s(µ2

)

2⇡
(qiPqq + gPqg),

dg(N,µ2
)

d ln(µ2)
=
↵s(µ2

)

2⇡

 
gPgg +

X

i

(qi + qi)Pgq

!
,

(3.9)

and can be solved by the strategy presented in Ref. [82].

Similarly for the spin-dependent PDFs, we have in Mellin space the DGLAP equations

d�qi(N,µ2
)

d ln(µ2)
=
↵s(µ2

)

2⇡
(�qi�Pqq +�g�Pqg),

d�g(N,µ2
)

d ln(µ2)
=
↵s(µ2

)

2⇡

 
�g�Pgg +

X

i

(�qi +�qi)�Pgq

!
,

(3.10)

which can also be solved as discussed in Ref. [82]. The heavy quark mass thresholds for the

evolution of the PDFs and ↵s within the zero-mass variable-flavor-number-scheme (ZM-

VFNS) [83] are chosen from the PDG values mc = 1.28 GeV and mb = 4.18 GeV in the

MS scheme [77].

The splitting functions in leading order and next-to-leading order are given in Ref. [84].

3.3 Positivity constraints

One of the important theory assumptions that will be tested are the positivity constraints.

In the naïve parton model, the spin-averaged PDFs are positive because they are inter-
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preted as the sum of the number densities of partons with parallel (f ") and antiparallel (f #)

polarizations with respect to the parent hadron (proton). The spin-dependent PDFs, being

the difference between f " and f #, should be bounded by the corresponding spin-averaged

distributions [85].

However, the naïve parton model can only be recovered in the asymptotic limit. At

any finite scale Q2, it receives non-negligible perturbative corrections. Therefore, a more

reliable positivity bound should only be derived from the requirement that any measurable

physical cross sections have to be positive.

A brief derivation of the positivity constraints will be presented here; for a more detailed

description, see Ref. [85]. In the Bjorken limit, the photoproduction asymmetry A1 for a

transverse virtual photon and a longitudinally polarized nucleon, as in Eq. (2.20), is

A1

�
x,Q2

�
=
�1/2 � �3/2
�1/2 + �3/2

=
g1(x,Q2

)� �2g2(x,Q2
)

F1(x,Q2)
⇡

g1(x,Q2
)

F1(x,Q2)
, (3.11)

where g2 is neglected due to the presence of �2 = 4M2x2/Q2 when M2
⌧ Q2, and the

subscripts for � denote the total angular momentum of the photon-nucleon pair along

the incoming lepton’s direction. The absolute value of the numerator therefore has to be

bound by that of the denominator because both �1/2 and �3/2 are observables, which then

gives us

��g1
�
x,Q2

��� 6
��F1

�
x,Q2

���. (3.12)
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At leading order, we know from Eqs. (2.9) and (2.15) that

F1

�
x,Q2

�
=

1

2

X

i

e2i
�
fi + f i

��
x,Q2

�
,

g1
�
x,Q2

�
=

1

2

X

i

e2i
�
�fi +�f i

��
x,Q2

�
,

(3.13)

where i goes over all quark flavors. Therefore we have

�����
X

i

e2i
�
�fi +�f i

��
x,Q2

�
����� 6

�����
X

i

e2i
�
fi + f i

��
x,Q2

�
�����. (3.14)

Furthermore, this bound has to be satisfied for any choice of target (hence for any quark

and antiquark combination), as well as for charged-current scattering. This relation must

therefore be true for any quark flavors at leading order,

���fi
�
x,Q2

��� 6
��fi
�
x,Q2

���,
���f i

�
x,Q2

��� 6
��f i

�
x,Q2

���. (3.15)

The positivity bound for gluon distributions can be similarly derived from the inclusive

Higgs production in gluon-gluon scattering [85], and gives

���g
�
x,Q2

��� 6
��g
�
x,Q2

���. (3.16)

Two caveats for the positivity constraints (3.15) and (3.16) follow. First, the bounds

are only true at leading order, while at next-to-leading and higher orders, more careful

treatments are needed. Second, the constraints are derived from physical observables,
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which means for the kinematic regions that are not covered by available data, they are

less justified to be used for constraining the helicity PDFs.

This is why we would like to test and confront the justification of positivity constraints.

Before doing that, however, we need to discuss how to impose the constraints. After some

exploration, we found that the optimal numerical implementation of positivity constraints

is as follows:

1. compute fi(x, µ2

0
) and �fi(x, µ2

0
) for all x 2 X and all flavors i;

2. calculate f "
i (x, µ

2

0
) and f #

i (x, µ
2

0
) at the above values;

3. if a value is negative for any flavor at any x, it is added to two arrays distinguishing

f " and f #;

4. the arrays are multiplied by a factor of 150 and returned as residuals.

Here, µ2

0
= (1.27)2 GeV

2 is the input scale, and X is an array consisting of the points

0.005, 0.01, and 100 more points evenly distributed between 0.1 and 0.9. Denser points

are chosen at high x for the array X because positivity bounds tend to be violated 2this

region. The multiplicative factor of 150 is used to make sure the violation to positivity is

not too small such that the fitter will ignore it. The returned residuals will be minimized

in the same way as for the residuals from cross sections.

Positivity is imposed only at the input scale µ0 because once positivity is satisfied at a

lower scale, it will be preserved by the DGLAP equations to higher scales [85].
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CHAPTER 4

Aspects of fitting

In the previous chapters, we have seen that high-energy scattering observables can be de-

scribed in QCD by hard scattering coefficients and soft nonperturbative functions, with

the soft nonperturbative functions extracted from experimental data through global QCD

analysis. In this chapter, the discussion will focus on the practical aspects of global QCD

analysis, including optimization of fit parameters, estimation of uncertainties, enhance-

ment of computational speed, and the treatment of experimental observables.

The methodology that will be elaborated in this chapter is the Monte Carlo Bayesian ap-

proach developed by the JAM collaboration. Starting with the spin PDF analysis known as

JAM15 [55], the JAM collaboration developed an iterative Monte Carlo (IMC) procedure

for analysing both leading and higher twist quark helicity distributions using Jefferson Lab

and global DIS data. Following this, the JAM16 [60] analysis extracted for the first time

fragmentation functions (FFs) from single-inclusive e+e� annihilation (SIA) using Monte

Carlo methods. Later in the JAM17 [8] study, spin-dependent PDFs and FFs were for the

45



first time fitted simultaneously, with emphasis on the impact of semi-inclusive DIS (SIDIS)

data on sea quark helicity. With the JAM19 [61] and JAM20-SIDIS [86] global analyses,

spin-averaged PDFs and FFs were fitted simultaneously, focusing on the impact of ⇡± and

K± production and SIDIS data. The present work features the reliable extraction of the

gluon helicity via the inclusion of unpolarized and polarized single jet production data

from the Tevatron and RHIC, and is the first-ever simultaneous analysis of spin-averaged

and spin-dependent PDFs.

4.1 Bayesian approach

The key objective of a global QCD analysis is to obtain an accurate description of the

experimental data within the given model. In statistics, this is equivalent to finding

the probability ⇢ of obtaining different sets of model parameters a in the fits given the

knowledge of data, written in Bayes’ formula

⇢(a|data) =
1

Z
L(data|a)⇡(a), (4.1)

where Z is the “evidence” parameter and acts as the normalization factor

Z =

ˆ
L(data|a)⇡(a) dna , (4.2)

and n is the dimension of a. The function ⇡(a) is the prior probability distribution, and

L(data|a) is the Gaussian likelihood function. The prior probability distribution ⇡, as

its name suggests, is the distribution of the parameters before knowledge of the data.

The likelihood function, on the other hand, encodes the probability that the data can be
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inferred from the prior distribution. In the context of JAM analysis, the prior distribution

is initially set to a flat distribution to avoid bias in the parameter choices. At the same

time, boundaries are set so that the parameters do not cross into unphysical regions.

The rest of this section will discuss the likelihood function that is used for optimizing the

parameters, and the multi-step strategy that we develop for increasing the efficiency of

fits.

4.1.1 Likelihood function

The Gaussian likelihood function is defined in terms of the �2 function as

L(a, data) = exp

✓
�
1

2
�2

(a, data)

◆
. (4.3)

For uncorrelated uncertainties ↵i only, the �2 function can be defined as

�2
(a, data) =

X

e,i

✓
de,i � te,i(a)

↵e,i

◆2

, (4.4)

where de,i is the ith data value from experiment e, and ↵e,i and te,i are its corresponding

uncorrelated uncertainty and theoretical prediction, respectively. However, many experi-

ments provide elaborate analysis of data with correlated uncertainties and normalization
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uncertainty, which requires the �2 function to be generalized as

�2
(a, data) =

X

e

 
X

i

✓
de,i �

P
k re,k�e,k,i � te,i(a)/Ne

↵e,i

◆2

+

X

k

r2e,k +

✓
1�Ne

�Ne

◆2
!
.

(4.5)

While de,i, ↵e,i and te,i are as in Eq. (4.4), the correlated uncertainties �e,k,i and normal-

ization parameter Ne modify the theory by additive and multiplicative shifts, respectively.

The normalization parameter Ne is usually associated with the uncertainty in measur-

ing the luminosity. The parameters re,k control the amount of additive shifts of the

data introduced by the point-by-point correlated systematic uncertainties �e,k,i of type

k. While the values of re,k can be fitted, in practice they are computed analytically via

@�2
(a, data)/@re,k = 0 [87], which reduces the number of fitting parameters and allows

more efficient computation of the �2. Gaussian penalties for re,k are included with
P

k r
2

e,k,

and for Ne we use a penalty with the quoted experimental normalization uncertainty �Ne.

4.1.2 Multi-step strategy

In the JAM global QCD analysis, a “multi-step strategy” is implemented in order to

efficiently scan the parameter space by sequentially including a subset of the datasets in

each step. The minimization algorithm starts with prior samples (initial guess parameters)

drawn from a flat distribution within the physical region of the parameters, and uses the

flat distribution to obtain the posteriors for the selected datasets. These posteriors are then

used as priors for the next iteration, where the data from the previous step are augmented

with addition of new datasets. This procedure is repeated until all the datasets have been

included. This strategy is designed to increase the efficiency of scanning the parameter
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FIG. 4.1: Illustration of multi-step strategy, where “pPDFs” means the polarized PDFs.

space by avoiding feeding too many datasets into the fitter at once.

While different approaches can be employed in designing which datasets are utilized at

each step, our strategy is based on first including datasets that have less numerical com-

plexity, and systematically adding those that are more numerically expensive. At the same

time, in the early steps, we include only the datasets that capture the gross features of the

underlying physics, and restrict the flexibility of the PDFs by only fitting with the param-

eters a0, a1 and a2 in the template (3.1). In later steps, those datasets that require finer

details such as flavor separation will be included, and the parameters a3 and a4 released,

if applicable.

Employing this strategy, in this work we fit first the spin-averaged PDFs using fixed target

DIS data, after which HERA collider DIS data are included, followed by Drell-Yan, and

inclusive jet production in hadronic collisions from the Tevatron and RHIC. At this point,

the parameters of the spin-averaged PDFs are fixed, and spin-dependent PDFs are then

fitted using first the polarized DIS data, then RHIC jet data from polarized pp scattering.

At the final step, both spin-averaged and spin-dependent PDFs are released and fitted

simultaneously with all the data from previous steps. A summary of the multi-step strategy

is shown in Fig. 4.1.
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4.2 Monte Carlo technique

The prior samples in Fig. 4.1 are drawn by Monte Carlo random sampling, respecting the

parameter ranges summarized in Tables 3.1 and 3.2. Starting from N randomly drawn

points in the parameter hyperspace, we propagate them through multiple steps to find the

best description of the observables by minimizing �2.

For each �2 minimization of the N samples, the data are distorted by adding a Gaussian

noise within the quoted uncorrelated uncertainties,

e�i = �i +Ri↵i, (4.6)

where �i is the ith experimental data point, ↵i is its corresponding quadrature sum of

all uncorrelated uncertainties, and Ri is a random number distributed with probability

density e�R2
i /2/

p
2⇡. The confidence region of the parameters is estimated by drawing

the posterior distribution from the aforementioned Monte Carlo random samples (prior

distribution), using the Gaussian distorted data.

From the ensemble of parameters {a} of dimension N drawn from the posterior distribu-

tion, one can compute the expectation values and variances for any generic observable O

(either a PDF at a given x and Q2, or a cross section computed as a function of PDFs),

E(O) =
1

N

NX

k=1

O(ak),

V(O) =
1

N

NX

k=1

(O(ak)� E(O))
2,

(4.7)
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where the variance gives the 1� confidence interval for the observable O. The Bayesian

“master formulas” (4.7) provide the most robust determination of PDF uncertainties avail-

able within the global QCD analysis paradigm, without the need for introduction of ad-

ditional ad hoc prescriptions, such as tolerance factors, which are sometimes employed in

single-fit analyses to account for tensions between datasets [88].

4.3 Optimization

In order to perform the fit efficiently, we employ an additional method to maximally

optimize the fitting process, as described in the following.

Based on the observation that the cross section values calculated at a sufficient number

of points can be interpolated to find the values at the uncalculated points, we implement

the interpolation.

Firstly, a grid is chosen carefully such that it covers the experimental kinematics with

sufficient density, while still having a number . 50% of the experimental points. Then

the observables are only computed at the points in that grid and the computed values are

used to interpolate the actual experimental values.

For unpolarized DIS, DY and polarized DIS, we sample kinematic points in the ln x-lnQ2

plane by distributing them relatively evenly, computing the cross sections at those sampled

points during each fit, and using interpolation to determine the cross sections at the

experimental kinematic points. We also make sure that the experimental kinematics are

contained within the sampled grid to avoid complications with extrapolation.

As for unpolarized jet observables, however, the cross sections can extend many (⇠ 8)

orders of magnitude and change rapidly for Tevatron kinematics [66, 67], so that interpo-
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lating the whole kinematic plane is impractical. Instead, we compute the cross sections

at every other pT point within each rapidity bin, and interpolate the remaining points.

Again, to avoid complications of extrapolation, we make sure that the lowest and highest

pT points are always computed. For polarized jet observables, we use the same method as

for unpolarized jets to interpolate ALL.

The interpolation reduces the computation time by roughly 70% for DIS and DY and 40%

for unpolarized and polarized jets, while only introducing errors that are one to several

orders of magnitude smaller than the experimental uncorrelated uncertainties.

4.4 Experimental data

In this section, we will discuss the treatment of experimental data, including kinematic

cuts and uncertainties.

4.4.1 Unpolarized datasets

The kinematic coverage of unpolarized datasets is shown in Fig. 4.2.

For unpolarized inclusive DIS, we apply the cuts W 2 > 10 GeV
2 and Q2 > m2

c , where

mc ⇡ 1.27 GeV is the mass of charm quark, in order avoid power corrections, as well as

offshell effects which are expected to be important only at high x. With the above cuts,

we include proton and/or deuteron F2 measurements from BCDMS [35], SLAC [36], and

NMC [37], as well as F d
2
/F p

2
measurement from NMC [38]. With the same cuts, we also

include the reduced proton neutral current and charged current cross sections from the

combined H1 and ZEUS analysis at HERA [39].

The treatment of the correlated uncertainties for DIS datasets is straightforward. The
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FIG. 4.2: Kinematic coverage of the unpolarized datasets used in this analysis, including
unpolarized fixed-target DIS from BCDMS (black upward triangles), NMC (golden ;)
and SLAC (blue downward triangles), DIS collider data from HERA (green solid circles),
DY data from pp and pd collisions at Fermilab (magenta diamonds), and jet production
in unpolarized pp scattering at the Tevatron (cyan stars) and pp scattering at RHIC
(crimson stars). The variable x here denotes Bjorken-x for DIS and Feynman-x for DY
and jet production, while the scale Q2 represents the four-momentum transfer squared for
DIS and DY, and transverse momentum squared for jets. The solid curve represents the
boundary for the maximum x attainable at fixed W 2

= M2
+Q2

(1� x)/x = 10 GeV
2.

fixed target data also provides normalization uncertainties, which are included in the fits

as in Eq. (4.5).

As for DY data, a cut of Q2 > 36 GeV
2 is applied to avoid the data points that have been

found to contradict DIS data, as discussed in Ref. [89]. For the fit, we include pp and

pd Drell-Yan data from the Fermilab E866 experiment [65], which has the J/ ,  0 and ⌥

resonance families already removed using dimuon mass cuts.

For jet production in unpolarized collisions, the data included are from D0 [66] and CDF

[67] collaborations at Fermilab, and STAR [22] at RHIC.
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The treatment of correlated, uncorrelated, and normalization uncertainties is as illustrated

in Eq. (4.5). However, the CDF data provide uncertainties that are only correlated within

each rapidity (⌘) bin. To account for this, we split such uncertainties into multiple columns,

with each column only having nonzero entries for one of the ⌘ bins.

Apart from the uncertainties, both CDF and D0 provide parton-to-hadron correction fac-

tors Cp!h which are obtained from Monte Carlo simulations [67]. These factors correct

the perturbative calculation, which is at the partonic level, to the hadronic level, and are

applied after the evaluation of the cross sections.

The RHIC unpolarized jet data were taken in different years (2003 and 2004), and are

therefore included as different datasets, with names STAR 2003 and STAR 2004.

4.4.2 Polarized datasets

The kinematic coverage of polarized datasets is shown in Fig. 4.3.

For polarized inclusive DIS, we apply the same cuts W 2 > 10 GeV
2 and Q2 > m2

c as for

the unpolarized case. With the above cuts, we include fixed-target polarized DIS proton,

deuteron and helium A1 measurements from EMC [41], SMC [42, 43], COMPASS [44–46],

SLAC [47–52], and HERMES [53, 54].

For the jet polarization asymmetries ALL, the data included are from the STAR [22–26]

and PHENIX [27] collaborations at RHIC.

As for the unpolarized data, the general treatment of correlated, uncorrelated, and nor-

malization uncertainties is illustrated in Eq. (4.5). For the STAR data, we use from [23]

the knowledge that an uncertainty in the relative luminosity measurement usually results

in a shift of the ALL data by an additive constant (fully correlated systemic uncertainty),
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FIG. 4.3: Kinematic coverage of the polarized datasets used in this analysis, including
spin-dependent fixed-target DIS from EMC (gray solid squares), SMC (magenta stars),
COMPASS (teal solid circles), HERMES (green :) and SLAC (golden upward triangles),
and jet production in polarized pp scattering from STAR (blue diamonds) and PHENIX
(orange 5). The variable x here denotes Bjorken-x for DIS and Feynman-x for jet produc-
tion in pp collisions, while the scale Q2 represents the four-momentum transfer squared for
DIS and transverse momentum squared for jets. The solid curve represents the boundary
for the maximum x attainable at fixed W 2

= M2
+Q2

(1� x)/x = 10 GeV
2.

and an uncertainty in the measurement of the polarization magnitude scales the magni-

tude of the ALL data (normalization uncertainty). We also treat the uncertainties that

are only weakly correlated as uncorrelated, so as not to underestimate the uncertainties,

in particular, for the STAR 2012 [23], 2015 [24] and 2021 [26] data.

4.4.3 EIC observables

The expected kinematic coverage of the EIC observables, compared with the available po-

larized world data, is shown in Fig. 4.4. As the world’s first polarized lepton-hadron (and

lepton-nucleus) collider, the EIC will extend the kinematic coverage in Bjorken-x down to

x ⇡ 10
�4, and in Q2 up to Q2

⇡ 10
3
GeV

2. The measurement of the polarization asym-

55



metry ALL at this facility will give us access to the g1 structure function at unprecedented

low values of x, and thus reduce uncertainties in spin-dependent PDFs at small parton mo-

mentum fractions. Furthermore, the wider Q2 coverage will allow scaling violations in the

g1 structure function to be determined more precisely, from which improved constraints

can be derived on the spin-dependent gluon distribution.

Furthermore, access to polarized deuteron and 3
He beams will allow separation of the

helicity into individual quark flavors, and significantly reduce the uncertainties on the

total helicity carried by quarks, �⌃, compared to proton data alone, which are mostly

sensitive to the u quark polarization.

With its high luminosity and hadron polarization compared to HERA [56], the EIC will also

be able to access entirely new observables, such as the parity-violating asymmetry AUL.

This observable, as discussed earlier in Section 2.1.3, can provide new linear combinations

of helicity PDFs that would enhance the flavor separation capabilities, in particular for

strange quark helicity distribution [57].

Baseline PDFs

The EIC data, unlike other available world data, have to be simulated from a baseline of

known PDFs. Therefore to begin with, we first need to obtain the unpolarized structure

functions F1 and F2 which appear in the denominators of the polarization asymmetries in

Eqs. (2.21) and (2.24). To this end, we follow steps 1 to 5 in Table 4.1, where the multi-

step strategy described in Section 4.1.2 is employed. For DIS fixed-target and HERA

data, cuts W 2
= M2

+ Q2
(1 � x)/x > 10 GeV

2 and Q2 > m2

c are applied; for DY a cut

Q2 > 36 GeV
2 is applied; and for single jet production data a jet transverse momentum

cut pT > 10 GeV is used. From the fitted spin-averaged PDFs we calculate the F1 and F2

structure functions, which are then kept fixed throughout the rest of the analysis of the
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FIG. 4.4: Kinematic coverage of data sets used in the EIC impact study [57], including
the available world data (gray solid circles) from Fig. 4.3, and projected EIC data for
polarized protons (red solid circles), deuterons and 3

He (blue open circles). The variable x
here denotes Bjorken-x for DIS and Feynman-x for jet production in pp collisions, while the
scale Q2 represents the four-momentum transfer squared for DIS and transverse momentum
squared for jets. The dashed curve represents the boundary for the maximum x attainable
at fixed W 2

= M2
+Q2

(1� x)/x = 10 GeV2. (Figure from [57].)

spin-dependent data for the EIC impact study.

To obtain a baseline for the helicity PDFs, we follow steps 6 to 7 in Table 4.1. Same

cuts on Q2 and W 2 for the polarized DIS datasets, and on jet transverse momentum pT

for the polarized jet datasets, are applied as for the unpolarized case. For the SU(2) and

SU(3) flavor symmetries, we consider two scenarios for ALL and AUL by imposing only

the SU(2) constraint, and also the SU(3) constraint in Eq. (3.6), with gA = 1.269± 0.003

and a8 = 0.586 ± 0.031 being the triplet and octet axial vector charges, respectively [76].

The baseline spin-averaged and spin-dependent PDFs determined from the global fit to the

existing data are then used to simulate the impact of the observables at the EIC, assuming

various scenarios for the theoretical inputs.
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step process particle Ndat PDF
�2/Ndat

SU(2) +SU(3)
1 DIS fixed target [35–38] p, d 1495 f 1.13
2 + DIS HERA [39] p 1185 f 1.30
3 + DY [65] pp, pd 250 f 1.05
4 + Tevatron jet [66, 67] pp 186 f 0.96
5 + RHIC jet [22] pp 10 f 1.24
6 pDIS [41–54] p, n, d, 3

He 365 �f 0.93 0.93
7 + polarized jet [22–25, 27] pp 45 �f 0.75 0.76

Total 3552 1.15 1.15

TABLE 4.1: Summary of �2 values and number of data points Ndat for the various processes
used in obtaining the baseline for the EIC impact study. The �2 shown for the unpolarized
fits (steps 1 to 5) are acquired at the final step (step 5), similarly for the polarized fits
(steps 6 and 7), where the �2 at step 7 are shown in the table. The two scenarios, SU(2)
only and plus SU(3), are available, of course, for the polarized fits only. The �2 is 0.024
for fitting gA in the SU(2) only scenario, and are 0.000 and 0.009 for fitting gA and a8
respectively in the plus SU(3) scenario. The STAR 2015 single jet production data [26] is
not included because the impact study is done before this data is available to public.

Estimation of statistical and systematic uncertainties

The absolute statistical uncertainties for the polarization asymmetries are determined

according to

�A ⇡
1p
L�unp

, (4.8)

where L is the estimated integrated luminosity for the specific process, and �unp is the

integrated unpolarized cross section in each (x,Q2
) bin. This approximation is valid as

long as the asymmetries are ⌧ 1. Assuming that the cross sections can be considered
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constant in each (x,Q2
) bin, the integrated unpolarized cross section can be written as

�unp =

ˆ
bin

dx dQ2
�
�"*

+ �#*�
⇡ �x�Q2

8⇡↵2

Q2sx2

✓
xyF1 +

1� y

y
F2

◆
, (4.9)

where �x and �Q2 are the intervals of the bins.

In the case of the ALL asymmetry, we assume a 2% uncorrelated systematic uncertainty

from the pion background, independent of the region of kinematics [90].

Since the predictions for ALL are based on the extrapolation of existing measurements that

are only available for x & 0.01, we consider three possible scenarios, which we denote by

“low”, “mid” and “high”, to better assess the effect of extrapolation on the EIC pseudodata

impact. The high and low pseudodata sets are generated by shifting the values of ALL in the

unmeasured region by ±1� CL, estimated from existing helicity PDF uncertainties, while

the mid set is generated using the central predictions. For each dataset, the uncertainties

are shifted in the same way as the observables.

For the ALL asymmetry, we consider the center of mass energies
p
s = 29, 45, 63 and

141 GeV for a proton beam with an assumed integrated luminosity of 100 fb
�1, while

for deuteron and 3
He beams we include

p
s = 29, 66 and 89 GeV and assume 10 fb

�1 of

integrated luminosity. Projected ALL data and their uncertainties are shown in Fig. 4.5 for

the mid scenario for proton, deuteron and 3
He beams. For the high (low) case that are not

shown in the figure, the small-x region of the asymmetry will be shifted slightly upwards

(downwards) by ±1� CL. The systematic uncertainties follow the shape of the asymmetry,

since they are estimated as a flat 2% error. The statistical uncertainties are similar for the

high and low cases, as �unp in Eq. (4.8) is well-constrained down to x ⇠ 10
�4.
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FIG. 4.5: Simulated absolute values of the longitudinal double-spin asymmetry ALL for
proton, deuteron, and 3

He beams and the parity-violating asymmetry AUL with a proton
beam at the EIC (blue bands), using the “mid” predictions with both SU(2) and SU(3)
assumptions from the baseline PDFs, along with estimated statistical (red bands) and
uncorrelated systematic (green bands) uncertainties. (Figure from [57].)

For the parity-violating AUL asymmetry, we use the values given in Table 4.2 for the

predicted systematic uncertainties from the pion background, which are dependent on

the electron beam energy E and pseudo-rapidity ⌘ = ln(x
p
s/Q). We consider the low,

mid and high scenarios, as for the ALL asymmetry, and include only proton beam data

at center of mass energies
p
s = 29, 45, 63 and 141 GeV, with an assumed integrated

luminosity of 100 fb
�1. The absolute values of the proton parity-violating asymmetry and

the corresponding uncorrelated statistical and systematic errors are shown in the lower

right panel of Fig. 4.5. Note that estimates of correlated systematic uncertainties are not

included in the EIC impact study. Potential overall normalization errors will not affect the
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analysis, as the pseudodata are generated using the baseline PDFs described in previous

section.

�⌘ E = 18 GeV E = 10 GeV E = 5 GeV
(�3.5,�2.0) 0.02 10

�3
10

�5

(�2.0,�1.0) 0.8 0.4 0.1
(�1.0, 0.0) 1 8 5
(0.0, 1.0) 10 10 10

TABLE 4.2: Relative uncorrelated systematic uncertainties for AUL from the pion back-
ground, for various electron beam energies E and pseudo-rapidity intervals �⌘ [90].
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CHAPTER 5

Results from JAM global QCD analysis

Using the Bayesian approach and Monte Carlo framework, we have successfully performed

the first simultaneous extraction of spin-averaged and spin-dependent PDFs from available

deep-inelastic scattering, Drell-Yan and single jet observables. First a fit with unpolarized

data from DIS, DY and jet data was performed, providing the foundation for further

analysis of polarized observables, which are mostly asymmetries and involve unpolarized

cross sections in their denominators. Along with fitting unpolarized data, we have carefully

examined the impact that unpolarized jet data can have on the PDFs, where the RHIC

unpolarized jet data [22] were included for the first time ever in a global QCD analysis.

Following this, we analyzed the impact that various theory inputs, including SU(2) and

SU(3) flavor symmetries and positivity constraints, can have on the helicity distributions

of quarks and gluons. Finally, a series of simultaneous analyses were performed with the

first consistent extraction of PDFs in a helicity basis.

As an application of the above results, we also performed an EIC impact study using the
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baseline PDFs from the JAM analysis. By critically examining the low-x extrapolation

of helicity PDFs in the unmeasured region, we assessed the impact that the EIC parity-

conversing and parity-violating asymmetries can have on our current knowledge of helicity

PDFs with adequately minimized bias.

5.1 Analysis of spin-averaged PDFs

Applying the multi-step strategy illustrated in Fig. 4.1, for the unpolarized fits we devel-

oped a set of 5 steps that fit our practical needs (Table 5.1). Firstly, we start with DIS

fixed target data, which carves out a rough shape for the PDFs. In the second step, the

DIS collider data from HERA are added to further constrain the uncertainties of the PDFs,

particularly at low x. The third step then adds DY data that provide constraints on the

flavor separation of PDFs. Lastly, we include the jet data in two steps (first Tevatron and

then RHIC jets), because as the first global QCD fit to include the RHIC unpolarized jet

data, we would like to determine what impact the RHIC unpolarized jet data have on the

PDFs.

The resulting �2

dat
⌘ �2/Ndat (Ndat is the number of data points) values for the unpolarized

world data are listed in Table 5.2. Overall, the fit gives a reasonable �2

dat
of 1.18 for a

total of 3,130 data points. The agreement of the fit with each of the experimental datasets

step DIS fixed target DIS HERA DY Tevatron jets RHIC jets
1 4

2 4 4

3 4 4 4

4 4 4 4 4

5 4 4 4 4 4

TABLE 5.1: Steps in JAM global QCD analysis for unpolarized fits
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is further illustrated in Figs. 5.1 to 5.4 for DIS, Fig. 5.5 for DY and Fig. 5.6 for jet

observables. Afterwards, we will discuss the spin-dependent PDFs as well as the impact

of jet observables.

experiment reference observable reaction Ndat �2/Ndat

NMC [37] F2 µp 273 1.68
NMC [38] F d

2 /F
p
2 µp, µd 174 0.97

SLAC [36] F2 e�p 218 0.96
SLAC [36] F2 e�d 228 0.74
BCDMS [35] F2 µp 348 1.16
BCDMS [35] F2 µd 254 1.10
HERA (318 GeV) [39] �NC

r e+p 402 1.52
HERA (318 GeV) [39] �NC

r e�p 159 1.63
HERA (318 GeV) [39] �CC

r e+p 39 1.34
HERA (318 GeV) [39] �CC

r e�p 42 1.02
HERA (300 GeV) [39] �NC

r e+p 75 1.12
HERA (251 GeV) [39] �NC

r e+p 259 1.01
HERA (225 GeV) [39] �NC

r e+p 209 1.09
E866/NuSea [65] M3 d2� / dM dxF pp 121 1.15
E866/NuSea [65] M3 d2� / dM dxF pd 129 0.90
D0 [66] d2� / d⌘ dpT pp 110 0.89
CDF [67] d2� / d⌘ dpT pp 76 1.11
STAR (2003) [22] d2� /2⇡ d⌘ dpT pp 5 4.94
STAR (2004) [22] d2� /2⇡ d⌘ dpT pp 9 1.05
total 3,130 1.18

TABLE 5.2: Inclusive DIS, DY and single jet production data used in this analysis, in-
dicating the observables fitted, the reactions, number of data points in each experiment
(Ndat) and respective �2/Ndat values. The �2 are computed by Eq. (4.5) using the average
of theory predictions from all the replicas. The quantities in the parentheses of HERA
experiments are the values of

p
s, center of mass energies. Observables �NC

r
and �CC

r
rep-

resent the reduced neutral-current and charged-current cross sections respectively. STAR
(2003/2004) means the unpolarized single jet production data taken by STAR collabora-
tion at RHIC in the year 2003/2004.

The �2

dat
values shown in Table 5.2, as well as the fits to data in Figs. 5.1 to 5.6 below,

are obtained from the last step (fifth step) of the unpolarized fit.
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Following the steps in Table 5.1, unpolarized DIS fixed target data are the first to be fitted,

which include the proton F2 and the deuteron to proton ratio F d
2
/F p

2
data from NMC [37],

as well as the proton and deuteron F2 data from SLAC [36] and BCDMS [35].

Shown in Fig. 5.1 are the fits to proton F2 data from NMC, SLAC and BCDMS. Overall,

they can be described quite well in the JAM global fit, with �2

dat
of less than or slightly

above 1. Only the NMC proton F2 dataset shows a slightly worse agreement of �2

dat
⇡ 1.6.

This lack of good agreement for NMC is also found in other global QCD analyses, such as

in the CJ15 [91] and NNPDF3.1 [92] fits.
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FIG. 5.1: Proton F2 from the NMC [37] (red stars), SLAC [36] (green upward triangles) and
BCDMS [35] (blue solid circles) collaborations. Data points at di�erent x are multiplied
by factors of 2i to be displayed separately. The data are compared with F p

2
from the JAM

global analysis (solid curves of corresponding colors) that are obtained from the average
of all Monte Carlo replicas.
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The first step also includes the deuteron F2 data from SLAC [36] and BCDMS [35], and

deuteron to proton ratio F d
2
/F p

2
data from NMC [38], which are shown in Fig. 5.2. These

data are also well described by the JAM global fits, with all �2

dat
less than or slightly

above 1.
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FIG. 5.2: Deuteron F2 from the SLAC [36] (green upward triangles, left panel) and BCDMS
[35] (blue solid circles, left panel), and F d

2
/F p

2
from NMC [37] (red stars, right panel)

collaborations. Data points at di�erent x are multiplied by factors of 2i to be displayed
separately. The data are compared with F d

2
(or F d

2
/F p

2
) from the JAM global analysis

(solid curves of corresponding colors) that are obtained from the average of all Monte
Carlo replicas.

Having acquired an overall good fit in the first step, we proceed to the second step where

the HERA collider data [39] are considered.

Shown in Fig. 5.3 are the fits to the reduced neutral-current and charged-current cross

sections �r from HERA at center of mass energy
p
s = 318 GeV. Overall, a slightly worse

agreement is found for the fit, with �2

dat
roughly between 1.3 and 1.6. The reduced charged-

current cross section from e�p collisions, on the other hand, exhibits a better agreement,
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with �2

dat
only slightly above 1.
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FIG. 5.3: The reduced neutral-current (left panel) and charged-current (right panel) cross
sections �r from HERA [39] at the center of mass energy

p
s = 318 GeV. Shown on

the left panel are the reduced neutral-current cross sections from e+p (black solid dots)
and e�p (red diamonds) collisions. On the right panel, the reduced charged-current cross
sections from e+p (blue hollow triangles) and e�p (green hollow squares) collisions are
shown. Data points at di�erent x are multiplied by factors (2i and 5

i for the left and right
panels respectively) to be displayed separately. The data are compared with fits from
the JAM global analysis (solid curves of corresponding colors) that are obtained from the
average of all Monte Carlo replicas.

Besides the data at center of mass energy
p
s = 318 GeV, the second step also contains

measurements of the reduced neutral-current e+p cross sections at
p
s equal to 225, 251

and 300 GeV by HERA [39], which are shown in Fig. 5.4. An overall good agreement with

the JAM global fits is found in this case, with �2

dat
only slightly above 1.
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In the third step, we add DY cross section data from E866/NuSea [65], which are shown

in Fig. 5.5. The JAM global fits are in good agreement with the DY data as well, with

�2

dat
less than or slightly above 1.
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FIG. 5.5: Ratio of data over theory for DY cross sections from E866/NuSea [65], with pp
(red solid dots) and pd (green upward triangles) collisions. The theory values are obtained
from the average of all Monte Carlo replicas, and the error bars indicate the range of the
ratio spanned by the uncorrelated uncertainties of the data. The Q2 ranges (in GeV

2) are
indicated for each panel.

One thing that needs to be mentioned is that, after the inclusion of the DY lepton-pair

production data, we find that it becomes necessary to release the parameters a3 and a4

(see the template function in Eq. (3.1)) for the parametrized distributions g, uv, dv, u0

and d0 (see Table 3.1). This improves the �2

dat
for the DY pp collision data from around

1.3 to 1.1, and in particular for pd collision data from around 2.3 to 0.9, indicating the

sensitivity of the DY data to certain finer details of the PDFs, especially via the u and d

distributions.
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FIG. 5.6: Fit to single jet production cross sections from D0 [66] and CDF [67] at the
Tevatron, and STAR [22] at RHIC. Since they have overlapping kinematics, the STAR
2003 and 2004 data are shown in the same panel (bottom left). Di�erent pseudorapidity ⌘
bins are marked by colors and scaled by factors for D0 and CDF for clarity. The ⌘ bins are
obtained using their absolute values for CDF and D0 data, and actual values for STAR.
(Note the extra factor 2⇡ in the STAR cross section data.) The data (filled circles) are
compared with fits from the JAM global analysis (solid curves of corresponding colors)
obtained from the average of all Monte Carlo replicas. The theory curves are plotted with
yellow bands to show 1� uncertainties, which are barely visible. For STAR 2003 and 2004
data, ratios of data to average theory (filled circles) are shown to illustrate the fit quality,
with yellow bands showing the 1� uncertainty of the ratios of theory from each replica and
the average theory.
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The focus of this thesis is the impact of jet observables, in both unpolarized and polarized

collisions, on the spin-averaged and spin-dependent PDFs. For the unpolarized jet observ-

ables discussed in this section, the JAM global fit to Tevatron [66, 67] and RHIC [22] jet

data is presented in Fig. 5.6.

A good overall agreement with the JAM global fits is found in this case, with �2

dat
only

slightly above 1, except for the STAR 2003 data taken at RHIC (�2

dat
= 4.94). We find that

the significantly larger �2

dat
of the fits to STAR 2003 data is caused by the tension between

the lowest-pT (5.5 and 6.8 GeV) and slightly higher-pT (8.3 to 12.6 GeV) measurements.

Now let us discuss the impact of jet observables on the spin-averaged PDFs. Given that the

PDFs are already well constrained by the DIS and DY data, we do not expect a significant

difference between the PDFs before and after the inclusion of jet data, and this is indeed

borne out overall in the results shown in Fig. 5.7.
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FIG. 5.7: Comparison of spin-averaged PDFs before (blue bands) and after (gold bands)
the inclusion of the jet data from Tevatron [66, 67] and RHIC (STAR) [22]. The PDFs are
plotted at Q2

= 10 GeV
2.

In Fig. 5.7, a small reduction of uncertainties in d� u and s+ s is found. The strangeness

s + s is also shifted upward at high x (& 0.5). This is due to the indirect effect from the
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jet’s gluon sensitivity via the momentum sum rule.

The inclusion of RHIC jet data from unpolarized collisions [22] has no discernible effect

on the PDFs obtained from fitting the Tevatron jets [66, 67], as shown in Fig. 5.8.
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FIG. 5.8: Comparison of spin-averaged PDFs with jet data from the Tevatron [66, 67] only
(blue bands) and with the addition of STAR [22] jet data (gold bands). The PDFs are
plotted at Q2
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2.

Finally, a comparison of the unpolarized PDFs extracted in the present analysis with those

of several other global QCD analysis groups is shown in Fig. 5.9. Overall, a good agreement

between our PDFs, labelled “JAM”, and those from previous analyses is found for the uv,

dv and g distributions.

The light antiquark asymmetry d � u of CSKK [93] is different from those of the other

groups (including JAM) because CSKK did not include the DY fixed target data [65] that

favors a positive asymmetry peaking at x ⇡ 0.1. The discrepancy between the CSKK d/u

ratio and those from the other groups (including JAM) can also be accounted for by the

absence of DY fixed target data in their analysis.

The JAM d�u also has a larger uncertainty and favors smaller values when compared with
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the other groups (except CSKK). This may be due to the inclusion in the other groups’

analyses (except for JAM19 [61]) of the collider W -boson production charge asymmetry

data that EW sensitive to the light antiquark distributions. Our d � u differs from the

earlier JAM19 fit mostly because the NMC F d
2
/F p

2
dataset [38] is corrected in this analysis

by an inclusion of a normalization uncertainty, which significantly reduces the magnitude

of the asymmetry across most values of x. On the other hand, our current analysis is not

particularly focused on refining the d � u asymmetry, and further discussion of this will

be left for future unpolarized JAM analyses.

For the strange quark PDF s+s, the JAM19 fit gives a discernibly smaller result compared

with those of the other groups (including this analysis). This is understood as being caused

by the suppression from the inclusion of semi-inclusive DIS (SIDIS) and single-inclusive

e+e annihilation (SIA) K production data, as extensively discussed in Ref. [61]. The

upward shift in the strangeness PDF at high x was discussed earlier in connection with

Fig. 5.7.

xuv

xdv

0.0

0.2

0.4

0.6 d/u

Q2 = 10 GeV2

0.0

0.2

0.4

0.6

0.8

1.0

x
≥
d + u

¥

0.0

0.2

0.4

0.6

x
≥
d ° u

¥

0.01 0.1 0.5
x

°0.05

0.00

0.05

0.10

x (s + s)

JAM

JAM19

0.01 0.1 0.5
x

0.0

0.2

0.4

xg NNPDF3.1

MMHT14

CSKK

0.01 0.1 0.5
x

0

1

2

3

4

FIG. 5.9: Comparison of spin-averaged PDFs with JAM19 [61], NNPDF3.1 [92], MMHT14
[94] and CSKK [93]. The PDFs are plotted at Q2

= 10 GeV
2.
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5.2 Analysis of spin-dependent PDFs

Now that we have a reliable baseline of the spin-averaged PDFs, the next step is to extract

the spin-dependent PDFs by fitting the polarized DIS data and single jet production data

from polarized pp collisions. Similar analyses have been performed by the DSSV [7] and

NNPDF [95] groups. In those analyses, however, theory inputs including SU(2) and SU(3)

flavor symmetries, as well as PDF positivity constraints, have been imposed in order to

compensate for the lack of kinematic coverage in both x and Q2 when compared with the

unpolarized world data (see Figs. 4.2 and 4.3). Given the debate about the role of SU(3)

symmetry breaking in the proton spin decomposition [96] and the considerations on the

positivity constraints discussed in Section 3.3, it is crucial to understand the roles that

these and other theory inputs may play in the extraction of spin-dependent PDFs. To this

effect, we consider three scenarios, listed in Table 5.3, which will enable us to explore the

impact of the various assumptions on the analysis.

scenarios SU(2) SU(3) positivity constraints
A 4

B 4 4

C 4 4 4

TABLE 5.3: Scenarios for various theory inputs in the extraction of spin-dependent
PDFs, with the axial charges are given by the standard values gA = 1.269(3) and
a8 = 0.586(31) [76].

In this section we first present results for the �2 values for the polarized world data that

are included in this analysis, and discuss the quality of the fits by showing the agreement

between the fitted JAM results and the experimental data. Following this, we consider

the fitted spin-dependent PDFs for the scenarios A (assuming SU(2) symmetry only), B

(assuming both SU(2) and SU(3) symmetry), and C (SU(2) and SU(3) symmetry and

positivity of the PDFs), as summarized in Table 5.3. Finally, we present fits using gA and
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a8 values extracted in the JAM17 analysis [8], as a proxy for the inclusion of polarized

semi-inclusive DIS data that constrained the flavor decomposition in that analysis.

5.2.1 Quality of fits

The resulting �2

dat
⌘ �2/Ndat for the polarized world data are listed in Table 5.4, split by

the three scenarios of Table 5.3. For the different scenarios, the fits give overall �2

dat
of 0.94

to 0.98 for a total of 426 data points from the polarized DIS and jet data. For scenario B,

the agreement of the fit with each experimental datasets is further illustrated in Figs. 5.10

to 5.12 for polarized DIS data, and in Fig. 5.13 for polarized pp ! jet data. For the other

two scenarios A and C, their fitted values are very similar to those found for scenario B,

and will not be shown explicitly, but described by comparing with Figs. 5.10 to 5.13.

For the polarized fits, we follow the same steps as in Fig. 4.1, i.e., fit first the polarized

DIS data and then the polarized pp ! jet data. Shown in Fig. 5.10 are the fits to proton

A1 from EMC [41], SMC [42, 43] and COMPASS [44, 46], and proton Ak from SLAC [47,

49, 51] and HERMES [54]. Overall, they show a good agreement with the JAM global fit,

with �2

dat
of less than or slightly above 1. Only the SMC [43], COMPASS [44] (scenario C

only) Ap
1
, and SLAC E155 [51] Ap

k fits show a slightly worse agreement, with �2

dat
between

⇡ 1.2 and 1.4.

The Ap
1

and Ap
k plot for scenario A has almost exactly same central values as in Fig. 5.10,

but with slightly larger error bands at x & 0.5. The same plot for scenario C, in contrast,

has slightly lower central values and much narrower error bands for x & 0.5. This is due to

the suppression (see Fig. 5.14) of the �s+ and especially �u+ PDFs (see the leading order

g1 expression in Eq. (2.15)) in the valence region (x & 0.5) by the positivity constraints.
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experiment reference observable reaction Ndat
�2/Ndat

A B C
EMC [41] A1 µp 10 0.28 0.28 0.28
SMC [42] A1 µp 11 0.33 0.30 0.36
SMC [43] A1 µp 7 1.41 1.41 1.33
SMC [42] A1 µd 11 1.63 1.62 1.68
SMC [43] A1 µd 7 0.63 0.63 0.64
COMPASS [44] A1 µp 11 1.01 1.07 1.25
COMPASS [46] A1 µp 35 0.91 0.93 0.90
COMPASS [45] A1 µd 11 0.43 0.46 0.60
SLAC (E80, E130) [47] Ak e�p 10 0.76 0.78 0.79
SLAC (E143) [49] Ak e�p 39 0.81 0.80 0.82
SLAC (E155) [51] Ak e�p 59 1.28 1.28 1.37
SLAC (E143) [49] Ak e�d 39 1.08 1.08 1.17
SLAC (E155) [52] Ak e�d 59 0.99 0.98 0.96
SLAC (E142) [48] A1 e�h 4 0.91 0.92 0.40
SLAC (E154) [50] Ak e�h 15 0.38 0.37 0.66
HERMES [53] A1 e+n 5 0.13 0.13 0.10
HERMES [54] Ak e+p 16 0.59 0.57 0.59
HERMES [54] Ak e+d 16 1.03 1.02 1.10
STAR (2003) [22] ALL pp 6 1.52 1.52 1.51
STAR (2005) [23] ALL pp 10 1.12 1.12 1.12
STAR (2006) [23] ALL pp 9 0.34 0.35 0.36
STAR (2009) [24] ALL pp 22 0.83 0.82 0.93
STAR (2012) [25] ALL pp 14 1.59 1.55 1.53
STAR (2015) [26] ALL pp 22 1.07 1.10 1.08
PHENIX (2005) [27] ALL pp 8 0.60 0.60 0.61
total 456 0.94 0.94 0.98

TABLE 5.4: Polarized inclusive DIS and single jet production data used in this analysis,
indicating the observables fitted, the reactions (with h stands for 3

He), number of data
points in each experiment (Ndat) and respective �2/Ndat values for the scenarios A, B
and C (see Table 5.3). The �2 are computed by Eq. (4.5) using the average of theory
predictions from all the replicas. Data presented as neutron A1 are obtained from a 3

He

target [53]. The numbers in parentheses for STAR and PHENIX data indicate the years
when the data were recorded. The �2 values for the fitted gA in Eq. (3.6) are 0.014, 0.001
and 0.070 for scenarios A, B and C, respectively, while the �2 of fitting a8 in Eq. (3.6) are
0.000 and 2.647 for scenarios B and C, respectively.
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FIG. 5.10: Proton A1 (left panel) from EMC [41] (green upward triangles), SMC [42,
43] (blue solid circles) and COMPASS [44, 46] (red stars), and proton Ak (right panel)
from SLAC [47, 49, 51] (green upward triangles, blue solid circles and black solid circles
for E143, E155 and E80E130, respectively) and HERMES [54] (red stars) collaborations.
Data points in di�erent Q2 bins are added by integers i for clarity, with purple dotted lines
indicating the actual zeros. The data are compared with Ap

1
and Ap

k from the JAM global
analysis (solid curves with bands indicating 1� uncertainties) that are obtained from the
average of all the Monte Carlo replicas.

Next shown in Fig. 5.11 are the fits to the deuteron A1 from SMC [42, 43] and COMPASS

[45], and deuteron Ak from SLAC [49, 52] and HERMES [54]. Overall, they show a good

agreement with the JAM global fit, with �2

dat
of less than or slightly above 1. Only the

SMC [42] Ap
1

fit shows a slightly worse agreement with �2

dat
⇡ 1.6.

The Ad
1

and Ad
k plot for scenario A has almost exactly same central values as in Fig. 5.11,

except that it has slightly larger uncertainty bands for x & 0.5. Unlike the proton case,

the same plot for scenario C has central values that are more similar to those in Fig. 5.11

but with smaller error bands. This can be understood from the suppression (see Fig. 5.14)

of the �d+ due to positivity constraints being less dramatic than that of �u+.

77



0.01 0.1 x

0

1

2

3

4
Q2 > 40 GeV2 (i = 4)

20 < Q2 < 40

10 < Q2 < 20

5 < Q2 < 10

m2
c < Q2 < 5 (i = 0)

Ad
1

(+ i)

COMPASS

SMC

JAM

0.02 0.1 0.5 x
0

1

2

3

4

5

6

7

8

9

Q2 > 20 GeV2 (i = 9)

15 < Q2 < 20

10 < Q2 < 15

7 < Q2 < 10

5 < Q2 < 7

4 < Q2 < 5

3 < Q2 < 4

2 < Q2 < 3

m2
c < Q2 < 2 (i = 0)

Ad
k (+ i)

HERMES

SLAC E143

SLAC E155
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are obtained from the average of all the Monte Carlo replicas.

Finally, the fits to neutron A1 from HERMES [53] and 3
He A1 (left panel) from SLAC

E142 [48], along with 3
He Ak from the SLAC E154 [50] experiments are shown in Fig. 5.12.

An overall good agreement with the JAM global fit is found with �2

dat
of less than 1.

The An
1
, A3

He

1
and A

3
He

k results for scenarios A and C are almost identical for both central

values and uncertainty bands as in Fig. 5.12.

Now let us change our focus to the jet observables in polarized pp scattering and their im-

pact on spin-dependent PDFs. Firstly, we present the JAM global fit to the STAR [22–26]

and PHENIX [27] jet double longitudinal spin asymmetries ALL in Fig. 5.13 for scenario B.

An overall good agreement with the JAM global fit is found with �2

dat
less than 1. Only

the fits to the STAR 2003 [22] and 2012 [25] data show slightly worse agreement, with
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�2

dat
⇡ 1.5, which is likely due to the outliers in the experimental data.

The ALL plot for scenario A, compared to Fig. 5.13, has slightly higher central values

and moderately wider uncertainty bands at pT & 30 GeV, due to the relatively large

uncertainties (see Figs. 5.14 and 5.15) of all the helicity PDFs in the absence of SU(3)

flavor symmetry. The same plot for scenario C has visibly lower central values when

compared to Fig. 5.11, and much narrower error bands for pT & 30 GeV. This is caused

by a significant suppression (see Fig. 5.15) of the �g solution space as a result of the

positivity constraints.
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FIG. 5.13: Fit to jet double longitudinal spin asymmetries ALL measurements from STAR
[22–26] and PHENIX [27] collaborations at RHIC. Each subplots show the collaborations,
year of data taken and pseudorapidity ⌘ or |⌘| bins. The data (solid dots) are compared
with fits from the JAM global analysis (solid curves with bands indicating 1� uncertainties)
that are obtained from the average of all Monte Carlo replicas.

5.2.2 Spin-dependent PDFs and theory inputs

Knowing that the polarized world data are well fitted, we now focus on the spin-dependent

PDFs and how they are affected by the theory inputs. Recall that SU(3) flavor symmetry

provides an extra constraint on the �s+ distribution via Eq. (3.6), while the positivity con-

straints should mainly affect the helicity distributions at high x, where the spin-averaged

PDFs are closer to zero and will thus exert more suppression on the helicity PDFs.

For the light quark helicity distributions in Fig. 5.14, we indeed find that this matches

with the above expectations. All the quark helicity distributions, especially �s+, have
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significant reduction in their uncertainties from the SU(3) flavor symmetry constraint. The

positivity constraints, on the other hand, reshape �u+, and in particular �d+, discernibly,

and further reduce significantly (on top of the reduction from the SU(3) constraint) the

uncertainty of �s+. The distortion of the shapes of �u+ and �d+ comes mainly from

their antiquark parts, namely �u and �d. This is because we set �u = �d = �s = �s

back in Eq. (3.5), and the changes in �s propagate to the �u+ and �d+ distributions.

The absolute values of �d+ are smaller than those of �u+, and thus the distortion is more

discernible for �d+.

One point we would like to stress is that a significant bias exists on the strange helicity

distribution, since its uncertainty is very strongly constrained by both the SU(3) flavor

symmetry and the positivity assumptions.

x¢u+

0.0

0.1

0.2

0.3

0.4

x¢d+

Q2 = 10 GeV2

°0.20

°0.15

°0.10

°0.05

0.00

0.05

x¢s+

0.01 0.1 0.5

x

°0.2

°0.1

0.0

0.1

0.2

SU(2)

+SU(3)

+pos.

FIG. 5.14: Spin-dependent quark PDF fitted with varying theory inputs as listed in Ta-
ble 5.3, plotted at Q2

= 10 GeV
2. The scenarios A, B and C are colored as yellow, blue

and red bands, respectively.
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For the gluon distribution �g, we first notice from Fig. 5.15 that there are two distinct

solutions for scenarios A and B, with one being mostly above zero (“positive”) and the

other mostly below zero (“negative”). Despite the differences in sign and shape (especially

at high x), the two �g solutions can describe the data equally well. This can be seen

from Table 5.4 by comparing the �2/Ndat values for the fits of scenarios A and B (which

contain both “positive” and “negative” solutions) with those of scenario C (which does not

have the “negative” solution), all of which give �2/Ndat values below 1. The reason why

the “negative” solution can give an equally good description of the data as the “positive”

solution is the large cancellation that occurs between the contributions to the jet double

longitudinal spin asymmetry from the qg and gg channels when �g is negative.
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FIG. 5.15: Spin-dependent gluon PDF fitted with varying theory inputs as listed in Ta-
ble 5.3, plotted at Q2

= 10 GeV
2. The scenarios A, B and C are colored as yellow, blue

and red bands, respectively.
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As for the effect of theory assumptions, we find that the addition of SU(3) flavor sym-

metry has an indirect effect of mildly reducing its uncertainty. However, the positivity

constraint, apart from reducing the uncertainty of �g at high x, also eliminates the “nega-

tive” �g solution entirely (see Fig. 5.15). This is because, in order to satisfy the positivity

constraints, the shape of the “negative” solution becomes distorted and consequently fails

to describe the jet ALL data (see Table 5.5), giving very large �2/Ndat values. Based on

this observation, we remove the “negative” �g solution from the Monte Carlo replicas for

scenario C.

experiment Ndat

�2/Ndat

“positive” “negative”
STAR (2003) [22] 6 1.51 1.53
STAR (2005) [23] 10 1.12 0.91
STAR (2006) [23] 9 0.36 2.92
STAR (2009) [24] 22 0.92 7.56
STAR (2012) [25] 14 1.53 3.31
STAR (2015) [26] 22 1.08 11.85

PHENIX (2005) [27] 8 0.61 0.59

TABLE 5.5: Table of �2 for the two �g solutions for the scenario C, indicating the number
of data points in each experiment (Ndat) and respective �2/Ndat values for the “positive”
and “negative” �g solutions.

In addition to the scenarios A, B and C covered in Table 5.3 and shown in Figs. 5.14

and 5.15, we also explored other possibilities, such as SU(2) plus positivity constraints.

We found in this case that the resulting spin-dependent PDFs (not shown in this thesis)

were very similar to those from the scenario C. Therefore, wen find that the order of

imposing the SU(3) flavor symmetry and the positivity constraints does not change our

observations in connection with Figs. 5.14 and 5.15.

Another way to visualize the impact of theory inputs on the spin-dependent PDFs is to
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plot the histograms of truncated moments, defined as

ˆ
�q+ ⌘

ˆ
1

0.01

�q+ dx ,

ˆ
�g ⌘

ˆ
1

0.01

�g dx , (5.1)

where �q+ = �q + �q for u, d and s, and 0.01 is chosen to be the lower limit of the

integral because it is roughly the smallest x value to which polarized data have sensitivity

(see Fig. 4.3). The reduction of the uncertainties by imposing the SU(3) flavor symmetry

is clearly significant for all the light quark distributions (from yellow to blue bands in

Fig. 5.16). As for the �g truncated moments, we can clearly see the two solutions for the

scenarios A and B in Fig. 5.16, and the mild reduction of uncertainties after imposing the

SU(3) flavor symmetry. The �g solution that gives negative
´
�g values is then eliminated

by the positivity constraints.
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The values and uncertainties of the truncated moment
´
�g as defined in Eq. (5.1) are

shown in Table 5.6. Putting uncertainties in the x ! 0 extrapolation aside, these values

would enter the proton spin decomposition (1.4) as the �G term. With the contributions

from the “positive” and “negative” solutions differing substantially, the proton spin sum

would imply rather different resulting values of the orbital angular momentum LQ+G for

the different cases. Future studies of �g with data that have more sensitivity, as well as

of the extraction of the LQ+G term from generalized parton distributions, will be needed

to more precisely determine the polarization of gluons in the nucleon and the proton spin

decomposition.

A B C
“positive” 0.37± 0.20 0.41± 0.08 0.37± 0.09

“negative” �0.79± 0.15 �0.83± 0.08

combined 0.02± 0.57 0.20± 0.47

TABLE 5.6: Values and uncertainties of the truncated gluon moment
´

1

0.01 �g dx for the
scenarios listed in Table 5.3. For scenarios A and B which contain both the “positive” and
“negative” �g solutions, their values are shown both separately and combined.

To compare with the DSSV14 [7] extracted truncated moment of �g which is integrated

from 0.05 to 1, in Table 5.7 we also present the corresponding JAM extracted values and

uncertainties.

A B C
“positive” 0.21± 0.15 0.26± 0.03 0.24± 0.03

“negative” �0.57± 0.12 �0.60± 0.03

combined �0.02± 0.39 0.12± 0.32

TABLE 5.7: Values and uncertainties of the truncated gluon moment
´

1

0.05 �g dx for the
scenarios listed in Table 5.3. For scenarios A and B which contain both the “positive”
and “negative” �g solutions, their values are shown both separately and combined. The
values shown in this table are to be compared with the widely quoted DSSV14 [7] results
that is roughly 0.2± 0.05.
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Despite the uncertainties in scenario A, the “positive” solutions from scenarios A, B and

C all have a good agreement with the DSSV14 result (⇡ 0.2 ± 0.05). The “negative”

solution which is eliminated by the positivity constraints, however, gives values that are

significantly different from the DSSV14 result in scenarios A and B. This indicates once

again that the positivity constraints can introduce significant bias.

5.2.3 Fits with JAM17 gA and a8

As has been previously discussed and shown in Fig. 5.14, the strange helicity distribution

�s+ is currently constrained mainly by theory inputs rather than experimental data. In

order to constrain �s+ from experiment, adding polarized semi-inclusive DIS (SIDIS)

data in a global QCD analysis would be optimal. To investigate the practicality of various

options, we adopt here gA = 1.24(4) and a8 = 0.46(21) obtained in the JAM17 analysis [8]

as a proxy for including the polarized SIDIS data. The JAM17 gA and a8 are used for

this purpose because rather than imposing SU(2) and SU(3) flavor symmetries with the

standard values of gA and a8, JAM17 extracted the purely data driven gA and a8 values

and uncertainties by fitting simultaneously the spin-dependent PDFs and fragmentation

functions (FFs) with the polarized inclusive DIS and SIDIS, and e+e� SIA data.

Using the JAM17 gA and a8 values, we find no discernible difference in the �u+, �d+

or �g PDFs (shown in the right panel of Fig. 5.17) when compared with scenario B in

Figs. 5.14 and 5.15. On the other hand, as shown in the left panel of Fig. 5.17, the �s+

PDF expands its solution space from the less restrictive gA and a8 values and uncertainties.

This is expected because the JAM17 gA is not too different from its standard value and

uncertainty, while the JAM17 a8 value and uncertainty are somewhat further away.
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using the standard (or nominal, yellow lines) and JAM17 (blue lines) gA and a8 values,
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2.
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5.3 Analysis of jet observables

In previous sections, the renormalization and factorization scales µR and µF have been set

to 0.5 pT , even though other choices, such as µR,F = pT and µR,F = 2 pT , are also possible.

Moreover, the tension in the STAR 2003 unpolarized jet data [22] was also only briefly

mentioned. In this section, we discuss in more detail the justification for the choices we

made in previous sections and show that they are indeed optimal.

5.3.1 Renormalization and factorization scales

From a theoretical point of view, the physical cross sections should not depend on the

renormalization or factorization scales µR or µF . At any fixed, finite order in ↵s, however,

the calculation may depend slightly on the choice of µR and µF , which should decrease

with increasing order of perturbative correction. Therefore, the differences in cross sections

from varying µR and µF are usually taken as an estimation of theoretical uncertainties. In

analyses of jet data, the scales µR and µF are generally chosen to be 0.5 pT , pT or 2 pT at

every data point, with pT being the jet transverse momentum at that point. In Table 5.8

we show the fit qualities for the three choices listed above.

D0 CDF STAR 2003 STAR 2004
µR,F = 0.5 pT 0.89 1.11 4.94 1.05
µR,F = pT 0.87 1.14 6.11 1.14
µR,F = 2 pT 0.89 1.19 5.42 1.23

TABLE 5.8: Fitted �2/Ndat values with di�erent µR,F choices, for unpolarized jet ob-
servables from D0 [66], CDF [67] and STAR (2003/2004) [22] collaborations, where Ndat

represents the number of data points in each experiment. The �2 values are computed
from Eq. (4.5) using the average of theory predictions from all replicas.

Based on the quality of the fits in Table 5.8, the renormalization and factorization scales

are chosen to be µR = µF = 0.5 pT . As mentioned before, at a finite order in ↵s the
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physical cross sections could depend mildly on the choices of µR and µF . However, as

observed in Fig. 5.18, the difference in the PDFs are very small.
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FIG. 5.18: Comparison of spin-averaged PDFs with di�erent choices of µR and µF , plotted
at Q2

= 10 GeV
2. The PDFs with choices of µR,F equal to 0.5 pT , pT and 2 pT are plotted

by blue, yellow and red bands, respectively.

For the jet production data in polarized pp collisions, varying the renormalization and

factorization scales only makes marginal differences in �2 (see Table 5.9). We therefore set

µR = µF = 0.5 pT for jet production data in both unpolarized and polarized pp collisions.

STAR
PHENIX

2003 2005 2006 2009 2012 2015
µR,F = 0.5 pT 1.52 1.12 0.35 0.82 1.55 1.10 0.60
µR,F = pT 1.52 1.14 0.35 0.82 1.55 1.08 0.60
µR,F = 2 pT 1.52 1.13 0.36 0.82 1.54 1.10 0.60

TABLE 5.9: Fitted �2/Ndat values with di�erent µR,F choices, for polarized jet observables
from STAR [22–26] and PHENIX [27] collaborations, where Ndat represents the number
of data points in each experiment. The �2 are computed by Eq. (4.5) using the average of
theory predictions from all the replicas.

As in the spin-averaged case, the spin-dependent quark and gluon PDFs are mostly insen-

sitive to the variations of µR and µF . For µR,F = 2 pT and µR,F = 0.5 pT , the uncertainty

89



bands on the quark PDFs at high x are larger due to outliers and are therefore not signif-

icant.
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FIG. 5.19: Comparison of spin-dependent PDFs with di�erent choices of µR and µF ,
plotted at Q2

= 10 GeV
2. The helicity quark distributions (�u+, �d+ and �s+) with

choices of µR,F equal to 0.5 pT , pT and 2 pT are plotted by blue, yellow and red bands,
respectively, while the helicity gluon distributions are plotted by lines of corresponding
colors to show clearly the two solutions.

5.3.2 Cuts on pT

As discussed in Section 5.1, the tension between the STAR 2003 lowest-pT (5.5 and

6.8 GeV) and slightly higher-pT (8.3 to 12.6 GeV) measurements results in a large �2

dat

for the STAR 2003 unpolarized jet dataset [22]. To resolve the tension, we place a pT cut

at 10 GeV, leaving the STAR 2003 data with only the points above 10 GeV. By doing

this, the tension can be resolved and the �2

dat
for the STAR 2003 data would improve.
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Indeed, a huge improvement in �2

dat
is found for the STAR 2003 data after the inclusion

of the pT cut, as shown in Table 5.10. The �2

dat
for the D0 [66] and CDF [67] data are

almost identical as the lowest pT values accessed by D0 and CDF are 54.5 and 58 GeV,

respectively. The �2

dat
for the STAR 2004 [22] data is only slightly affected.

no cut pT > 10 GeV

D0 0.89 0.89
CDF 1.11 1.10

STAR 2003 4.94 0.02
STAR 2004 1.05 1.19

TABLE 5.10: Fitted �2/Ndat values with and without the pT cut, for unpolarized jet
observables from D0 [66], CDF [67] and STAR 2003 and 2004 runs [22]. The �2 values are
computed from Eq. (4.5) using the average of theory predictions from all replicas.

Despite the significant reduction in �2

dat
for the STAR 2003 unpolarized jet data, the PDFs

are essentially unaffected (see Fig. 5.20). As discussed in connection with Fig. 5.8, since

the RHIC unpolarized jet data have no discernible impact on the PDFs, removing 5 points

from this dataset as a result of the pT cut has negligible effect on the PDFs.
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= 10 GeV
2.
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5.4 Extraction of helicity basis PDFs

Now that good agreement has been achieved in fitting both the unpolarized and polarized

world data (see Tables 5.2 and 5.4), we are in the position to complete the last remaining

step in Fig. 4.1, which is the simultaneous extraction of spin-averaged and spin-dependent

PDFs from the combined datasets. By performing a simultaneous analysis, we can extract

for the first time the helicity dependent PDFs, with spins parallel (f ") and antiparallel

(f #) to the proton spin, with a consistent treatment of uncertainties. Before showing the

results, however, let us first recall that we have set up three different scenarios A, B and

C in Table 5.3 in order to study the impact of theory inputs on the extraction of spin-

dependent PDFs. Consequently, the extracted helicity basis will be also presented for all

three scenarios A, B and C.
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FIG. 5.21: Helicity basis PDFs f " (blue) and f # (red) are plotted for flavors u, d, s and
g, respectively from top to bottom row, at Q2

= 10 GeV
2. Scenarios A, B and C (see

Table 5.3) are shown in the left, middle and right columns, respectively.
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The helicity basis PDFs f " and f # are presented in Fig. 5.21. It is can be immediately

inferred from Fig. 5.21 that imposing SU(3) assumption reduces the uncertainties of the

helicity basis PDFs for all the light quark flavors, as a result of the extra constraint provided

by a8 in Eq. (3.6). The addition of positivity constraints, on the other hand, suppresses

uncertainties mostly in the high-x region, and forces the helicity basis PDFs to remain

positive.

As a consequence of the decreasing uncertainties, from the left column to the right in

Fig. 5.21 the two helicity basis PDFs f " and f # tend to become more distinguished from

each other. Such tendencies, however, are difficult to identify directly in Fig. 5.21, so

in order to more quantitatively delineate the different behaviors we will make use of an

“AUC plot”. Before looking at the specific AUC plot for the helicity PDFs, however, let us

demonstrate how an AUC plot works with a simple example.

AUC stands for area under the curve of ROC, while ROC means receiver operating char-

acteristic curve. In Fig. 5.22, the left column shows two Gaussian distributions N1 and N2

with different central values µ1 and µ2, which need to be discriminated from each other.

The right column of Fig. 5.22 plots the cumulative integration values of N2 versus those

of N1, defined as

ˆ x

�1
N1,2 dx =

ˆ x

�1

1
p
2⇡�

exp

 
�
(x� µ1,2)

2

2�2

!
dx , x 2 (�1,1). (5.2)

As shown in the first row of Fig. 5.22, when the two distributions N1 and N2 overlap

entirely with each other, their cumulative integration values are of course identical and

therefore give a diagonal line in the
´ x
�1 N2 dx versus

´ x
�1 N1 dx plot (the ROC). In the

second row, where the second distribution starts to deviate from the first one, however,
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FIG. 5.22: Demonstration of ROC (receiver operating characteristic curve) and AUC (area
under the curve of ROC): the left column shows two Gaussian distributions (blue solid and
orange dashed curves) needed to be discriminated from each other, and the right column
shows the corresponding ROC curves and AUC values.

the ROC is also bent away from the diagonal, because
´ x

�1 N2 dx reaches its maximum

value slower than
´ x
�1 N1 dx. In the last row of Fig. 5.22, where the two distributions are

almost completely discriminated from each other, the ROC deviates substantially from the

diagonal for the same reason.

To quantify the deviation of the ROC from the diagonal, the AUC is calculated along

with the plots. When the ROC is curved away from the diagonal, the AUC also deviates

from 0.5 and approaches 1. Of course, the ROC could be curved downwards if N2 (orange

dashed curve) is instead shifted to the left, and in this case the AUC also deviates away

from 0.5, but towards 0 (which still indicates a better discrimination). In this sense, the
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1�AUC is usually used when AUC is less than 0.5, in order to keep the figures intuitive.

For our binary classification problem (discriminating f " from f #), the AUC plot is made

to represent the quality of discrimination as a function of parton momentum fraction x,

and for all scenarios A, B and C, as shown in Fig. 5.23. Following the discussion above,

we use the 1� AUC when the AUC is less than 0.5.
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FIG. 5.23: AUC (area under the curve of ROC) is plotted for u, d, s and g at Q2
= 10 GeV

2.
Scenarios A, B and C are colored yellow, blue and red respectively. The more the AUC
value approaches 1, the better one can discriminate between f " and f #. On the contrary,
the more it approaches 0.5, the harder one can discriminate.

Having explained the meaning of an AUC plot, we next discuss the implications of Fig. 5.23.

Firstly, we note that the discrimination between u" and u# is not improved significantly

from the theory inputs, which can be understood since both the spin-averaged and spin-

dependent u distributions are already very well constrained from experiment. The dis-

crimination between d" and d#, on the other hand, receives discernible improvement from

the SU(3) flavor symmetry, which results from the reduction of the uncertainty in the
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�d PDF (see Fig. 5.14). As for the s-quark helicity basis PDF, imposing SU(3) flavor

symmetry makes a large improvement to their discrimination in the data sensitive region

(0.01 . x . 0.5), resulting from the significant reduction of the uncertainty for �s+ (see

Fig. 5.14).

The positivity constraints make almost no improvement to the discrimination between u"

and u# or d" and d# because the helicity basis PDFs of both flavors are already very well

separated from each other, and the positivity constraints only reduce their uncertainties.

For the s-quark helicity PDFs, on the other hand, one may expect that given the significant

reduction of the uncertainty in �s+ (see Fig. 5.14) and the less well discriminated s" and s#

in scenario B (see Fig. 5.23), the positivity constraints should have discriminated between

s" and s# much better. However, because the spin-averaged strange distributions are less

well constrained at high x (see Fig. 5.9), the reduction of the �s+ uncertainty does not

result in better discrimination between s" and s#.

The situation for the gluon distributions has already been discussed extensively in the

previous sections; now it is represented by another format in Fig. 5.23. Starting with

scenario A, Fig. 5.23 shows that g" and g# can hardly be separated from each other. For

scenario B, the reduction of the �g uncertainties (see Fig. 5.15) improves discernibly the

discrimination power. Finally, in scenario C, the discrimination is fully established in

the experimentally measured region (0.01 . x . 0.5, see Fig. 4.3), mainly because the

positivity constraints eliminate one of the �g solutions. This brings us back to one of

the themes of this work, namely, to study the impact of theory inputs on the extraction

of spin-dependent PDFs. What we can infer from the above studies is that the theory

inputs, including SU(3) flavor symmetry and positivity constraints, can place significant

bias on the extracted parton distributions that are less well constrained by experimental

data, namely �s and �g.
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A final observation that we would like to make from Fig. 5.23 is that the quality of the

discrimination degrades for all the parton flavors below around 10
�2 to 10

�3 as a result

of the limited kinematic coverage of the polarized world data. Fortunately, the planned

Electron-Ion Collider (EIC) will expand the kinematic coverage for polarized lepton-hadron

(and lepton-nucleus) collisions, which should provide stronger experimental constraints on

the helicity-dependent distributions. An impact study was conducted recently to assess

the improvements in the determination of polarized PDFs (as well as unpolarized PDFs

and other types of distributions) from future EIC data, summarized in the EIC Yellow

Report [33]. In the next section we will discuss the potential impact of EIC data in more

detail.

5.5 EIC impact study

As an application of our new JAM analysis, we will present in this section the impact

study for future Electron-Ion Collider (EIC) data, and in particular the results of simula-

tions including the parity-conserving ALL and parity-violating AUL polarization asymmetry

pseudodata and their impact on the quark and gluon helicity distributions. As discussed

in Section 4.4.3, we consider a total of 6 scenarios for the ALL and AUL pseudodata, for

each of the low, mid and high extrapolations below x ⇠ 0.01, and for both scenarios A

and B listed in Table 5.3.

In the following we first present results for the constraints on the spin-dependent PDFs

from the EIC simulated ALL asymmetry in Section 5.5.1, before discussing the constraints

from AUL in Section 5.5.2.
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scenario extrapolation SU(2) SU(3)
1 low 4

2 mid 4

3 high 4

4 low 4 4

5 mid 4 4

6 high 4 4

TABLE 5.11: Summary of the 6 scenarios considered in this analysis for the baseline PDFs,
with variations of the small-x extrapolation (“low”, “mid”, “high”) and use of standard
values gA = 1.269(3) and a8 = 0.586(31) [76].

5.5.1 Constraints from ALL pseudodata

The planned EIC experiments will extend measurements of ALL down to x ⇡ 2 ⇥ 10
�4,

which is almost 2 orders of magnitude smaller than the range of currently existing data.

In estimating the projected uncertainties on the data, a significant extrapolation of the g1

structure function is therefore necessary into the unmeasured region. The extrapolation

uncertainty is illustrated in Fig. 5.24 for the proton gp
1

structure function at Q2
= 10 GeV

2,

obtained from the JAM baseline results as described in Section 4.4.3. The uncertainty

on gp
1

for x . 10
�3 is quite large, reflecting the absence of constraints from available

measurements at low values of x.

The addition of EIC pseudodata leads to a dramatic reduction of the uncertainties, indi-

cated by the colored bands in Fig. 5.24, which represent extrapolations of gp
1

according

to the �1� (“low”), central (“mid”), and +1� (“high”) variations of Ap
LL. The estimated

uncertainties in this case are more comparable with the ones in the currently accessible

x region, suggesting the important constraints that can be anticipated from future EIC

measurements.

The impact of the EIC ALL pseudodata on the neutron gn
1

structure function is illustrated
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FIG. 5.24: Impact of projected Ap
LL data at EIC kinematics on the proton gp

1
structure

function at Q2
= 10 GeV

2, with the extrapolated baseline results (yellow band) compared
with those including the EIC data for the �1� (“low”, green band), central (“mid”, blue
band), and +1� (“high”, red band) uncertainties of Ap

LL, for the scenario of imposing both
SU(2) and SU(3). The extrapolation region (indicated by the arrow) is to the left of the
vertical dashed line at x ⇡ 7⇥ 10

�3. (Figure from Ref. [57].)

in Fig. 5.25 for the central (“mid”) scenario at Q2
= 10 GeV

2. From the figure one can

see that while the proton pseudodata provide some constraints on gn
1
, further constraints

are provided by the deuteron pseudodata, reducing the uncertainties by a factor of 2 � 4

depending on whether SU(3) is imposed or not. The same is observed if 3He pseudodata

are used instead of deuteron (not shown in the figure). This reduction of uncertainties on

gn
1

is correlated with a reduction of uncertainties on the �d PDF.

To assess the impact of the EIC pseudodata on the spin carried by quarks and gluons

in the proton, it is useful to consider truncated moments of the gluon and quark singlet
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FIG. 5.25: Impact of projected proton Ap
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2 for the “mid” scenario.

The extrapolated baseline results (yellow bands) are compared with those including EIC
proton (green bands) and proton plus deuteron (blue bands) asymmetry pseudodata, for
the case of not imposing SU(3) (left panel) and imposing SU(3) (right panel). (Figure
from Ref. [57].)

helicity PDFs, defined as

�Gtrunc

�
Q2

�
=

ˆ
1

xmin

�g
�
x,Q2

�
dx ,

�⌃trunc

�
Q2

�
=

X

q

ˆ
1

xmin

�q+
�
x,Q2

�
dx ,

(5.3)

where the sum extends over the quark flavors q = u, d and s, and in the present analysis

we take xmin = 10
�4. Comparing the truncated moments and their uncertainties from the

fits including the EIC proton Ap
LL pseudodata and those from the baseline set of PDFs, in

Fig. 5.26 we show the ratio of uncertainties �EIC/� for both the gluon �Gtrunc and quark

singlet �⌃trunc moment for all the scenarios listed in Table 5.11.

In the most general scenario, where only SU(2) symmetry is imposed via Eq. (3.6), the

impact of the Ap
LL EIC pseudodata on �Gtrunc is an ⇡ 60% reduction of the uncertainty

relative to the baseline fit uncertainty. For the quark singlet moment �⌃trunc, on the other
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FIG. 5.26: Ratio of uncertainties �EIC/� of the truncated moments of the gluon, �Gtrunc

(upper panel), and quark singlet, �⌃trunc (lower panel), distributions with and without
EIC data at Q2

= 10GeV
2, for scenarios of imposing only SU(2) (red bands), imposing

SU(2) and SU(3) (blue bands), and in addition restricting solutions to ones with negative
strangeness in valence region, �sv < 0 (green bands), using proton Ap

LL EIC data. The
ranges of the horizontal bands are obtained using uncertainties from the “low”, “mid” and
“high” scenarios in Fig. 5.24. (Figure from Ref. [57].)

hand, there is a much smaller, . 30%, reduction in the uncertainty, which is effectively

consistent with no reduction. The ranges of the horizontal bands in Fig. 5.26 are obtained

by considering the uncertainties from each of the “low”, “mid” and “high” ALL scenarios in

Fig. 5.24.

The impact of the EIC pseudodata can increase when additional assumptions are made

in the analysis. In particular, by imposing SU(3) symmetry via Eq. (3.6) the reduction of

uncertainties on �Gtrunc is enhanced from ⇡ 60% to as high as 80%� 90%, with an even

more dramatic improvement for the quark singlet moment. The reduction of the latter

can be understood from the fact that without the SU(3) constraint, both the �d+ and

�s+ flavors are less well determined, and therefore contribute more to the uncertainty of

�⌃trunc. The gluon distribution �g, and the corresponding truncated moment �Gtrunc, is
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FIG. 5.27: As for Fig. 5.26, but considering the impact of proton Ap
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LL

(left panel), proton Ap
LL and helium A

3
He

LL (right panel) EIC pseudodata on the truncated
gluon and quark singlet moments. (Figure from Ref. [57].)

less sensitive to SU(3) assumptions, hence the reduction in the uncertainty is more modest.

Note that our Monte Carlo analysis typically contains multiple solutions in parameter

space, giving rise to fits with different shapes for poorly constrained distributions, which

nevertheless yield essentially identical overall �2 values. This is especially relevant for the

strange quark helicity PDF, �s+, which can be either positive or negative at intermediate

x values, x ⇠ 0.1� 0.3, depending on whether the fit is constrained by semi-inclusive DIS

data or not [8]. Typically, solutions with positive strange helicity in the valence region

(“�sv > 0”) violate the SU(3) constraint, while the ones with negative strange helicity

are more consistent with SU(3). To avoid this violation, we consider in Fig. 5.26 also the

scenario of restricting to negative polarized strangeness in the valence region (“�sv < 0”).

For the proton Ap
LL pseudodata, however, the removal of the positive strange helicity

solutions does not lead to any reduction in the uncertainty, since in this case the positive

and negative �sv have a very similar effect on �⌃trunc and its uncertainties.

The effect of inclusion of ALL pseudodata for polarized deuteron and 3He beams is illus-

trated in Fig. 5.27. Here we observe an even clearer dependence of the impact for �⌃trunc
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on the theory assumptions made in the analysis. When only the SU(2) constraint is im-

posed, no discernible impact on the quark helicity is observed. After imposing SU(3), on

the other hand, the impact on �⌃trunc ranges from 20% � 75%, depending on the low-x

extrapolation scenario. If in addition the positive strange helicity solution is removed (due

to its relatively large violation of SU(3)), the impact on �⌃trunc becomes more significant,

with 60% � 90% reduction in the uncertainty, and which is also less dependent on the

extrapolation.

The impact on the gluon moment �Gtrunc from the inclusion of ALLv or A3
He

LL pseudodata

is similar to the effect of using proton Ap
LL data alone, with ⇡ 60% reduction in uncertainty

for the combined p + d or p+3He analyses. This can be understood from the fact that

the gluon contributes to the DIS asymmetry in essentially the same way for p, d or 3He

beams (appearing only at higher order in ↵s), so that addition of d or 3He pseudodata

does not improve the impact beyond what is already observed for p. The further addition

of SU(3) constraints or removal of �sv > 0 solutions does not significantly affect the

impact on �Gtrunc, since these constraints are largely indirect, with the overall reduction

of uncertainties in the range 60%� 90% in either the p+ d or p+3He scenarios.

As we have extensively discussed in Section 5.2.2, however, both the SU(3) and �sv < 0

constraints are less justified than the constraint from SU(2), so that for the scenario that

is least biased by theoretical input the impact of EIC ALL pseudodata is significant only

for the gluon truncated moment �Gtrunc and is negligible for �⌃trunc.

5.5.2 Constraints from AUL pseudodata

The impact of the simulation described in Section 4.4.3 for the parity-violating proton

single-spin asymmetry Ap
UL is shown in Fig. 5.28. Interestingly, the situation here is
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FIG. 5.28: As for Fig. 5.26, but for the proton parity-violating Ap
UL asymmetry. (Figure

from Ref. [57].)

somewhat inverted from that found for the ALL asymmetries in Figs. 5.26 and 5.27. In

particular, a strong impact is seen on the quark singlet truncated moment, with ⇡ 50%�

60% reduction in the uncertainty for all three scenarios considered. This result is in line

with the expectation that the g�Z
1

structure function provides the dominant contribution

to AUL (see Eq. (2.24)) and weights the different quark flavor contributions approximately

equally (see Eq. (2.26)). Given that the baseline strange quark helicity distribution has

weak constraints from existing data, the new AUL pseudodata are able to significantly

improve the uncertainties on �s+, and thus on the quark singlet moment, �⌃trunc.

On the other hand, no significant improvement is seen for the gluon truncated moment,

regardless of the scenario considered. Although the g�Z
1

interference structure function

is as sensitive to the gluon distribution as is the electromagnetic g1 structure function,

the relative errors on the parity-violating AUL asymmetry are much larger than those on

existing or projected ALL data (see Fig. 4.5). It is therefore not surprising that the EIC AUL

data are unable to provide significant new information on the gluon helicity distribution.
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In fact, because of statistical fluctuations and the fact that the optimization of �2 is

performed on the observables rather than on the PDFs, it is possible in multidimensional

fits such as the ones performed here to find an increase in PDF uncertainties in some

regions of kinematics with inclusion of additional data [33] (which does not occur at the

observable level).

Finally, we note that in the EIC Yellow Report [33], the scenario of using SU(2) and SU(3)

symmetry constraints from hyperon beta-decay was examined, and was found to have little

impact on the quark singlet and gluon moments. In the present, more robust analysis, the

addition of a second shape for some of the helicity PDFs and the inclusion of a wider range

of solutions for the gluon distribution give rise to an overall less well constrained baseline,

and thus to a stronger impact on the quark singlet moment �⌃trunc.
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CHAPTER 6

Conclusion and outlook

Although a complete theoretical description of hadron structure is currently very chal-

lenging due to the nonperturbative nature of bound state hadrons, factorization of the

perturbative and nonperturbative parts in high energy scattering processes allows infor-

mation on the hadron’s quark and gluon dynamics to be extracted from experimental data.

The results from global QCD analyses, such as those presented in this work, are therefore

extensively used to provide fundamental information on the composition and formation

of atomic nuclei. Since the functions that encode the nonperturbative nature of hadrons

are, via the QCD factorization theorems, universal, they can be determined from differ-

ent types of lepton-nucleon and nucleon-nucleon collisions that have sensitivity to various

aspects of hadron structure.

Ever since the original EMC result [9] that revealed a surprisingly small spin contribution

from the proton’s quark constituents, significant efforts have been devoted to understand-

ing the spin structure of the proton. The valence up and down helicity distributions in
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the proton have been the first to be constrained using polarized DIS data on protons,

deuterons and 3He nuclei measured at facilities around the world. Following this, mea-

surements of jet production in polarized pp collisions were performed to constrain the

gluon helicity distribution. By measuring polarized semi-inclusive DIS observables, sea

quark polarizations have also been better determined. Moreover, the future Electron-Ion

Collider will explore uncharted territory in spin physics, extend the kinematic coverage

in both Bjorken-x and momentum exchange Q2, and further deepen our understanding of

the proton spin structure.

6.1 Summary of results

The first part of the results is the analysis of spin-averaged PDFs. Overall, the unpolarized

world data are well described by the fitted theoretical predictions from JAM with an overall

�2

dat
= 1.18. As the first JAM analysis to include jet production data from unpolarized

pp and pp collisions, and the first ever global QCD analysis that included unpolarized jet

data from RHIC [22], we studied their impact on spin-averaged PDFs. We found that the

overall jet production data had only slight impact on the already highly constrained spin-

averaged PDFs, and that the RHIC unpolarized jet data provided no discernible additional

constraints on top of the Tevatron jets [66, 67]. Differences between the JAM PDFs and

those from other groups were also found, but were explained as mainly caused by choices

of datasets.

With a reliable baseline for the spin-averaged PDFs, we proceeded to the second part of

the analysis, which was the extraction of the spin-dependent PDFs from polarized world

data. In order to study the potential biases that may originate from theory inputs, we set

up three varying scenarios, with SU(2) symmetry only, SU(2) plus SU(3) symmetries, and
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SU(2) plus SU(3) plus positivity constraints. A good agreement between the polarized

world data and the JAM fitted values was obtained in general, with an overall �2

dat
of 0.94

to 0.98, depending on the various assumptions imposed. The JAM fitted asymmetries

plotted with the polarized experiment data also showed a good agreement between the

two.

For the spin-dependent PDFs, the uncertainties on the up and down distributions �u+ and

�d+ were found to be significantly reduced due to the SU(3) flavor symmetry constraint.

The positivity constraints then caused a rather smaller reduction of the uncertainties,

and a deformation of shapes because we set �u = �d = �s = �s. For the helicity

strange distribution �s+, however, significant bias was observed when both the SU(3)

flavor symmetry and positivity constraints changed drastically the shape, and reduced the

uncertainty of �s+. Lastly, the gluon helicity distribution �g was observed to contain

a solution that was mostly above zero (“positive”) and a solution that was mostly below

zero (“negative”). While only an indirect effect was found from the SU(3) flavor symmetry,

the positivity constraints completely eliminated the “negative” solution. It thus yielded a

net positive gluon polarization, which indicated a strong bias acting on the gluon helicity

distribution from the positivity constraints.

In addition to using the standard gA and a8 values and uncertainties [76], we also performed

a fit using the JAM17 extracted values and uncertainties [8] as a proxy for including

polarized SIDIS data. The only noticeable change observed in the spin-dependent PDFs

was an expansion of the solution space for �s+, which was expected because the SU(3)

flavor symmetry was less restrictively enforced by the JAM17 extracted a8, that had a

larger uncertainty.

The third part of our results was a brief survey of choices made in analyzing the jet
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observables. First we examined the choices of factorization and renormalization scales µR

and µF , where we found that µR,F = 0.5 pT was an optimal choice for minimizing the �2

dat

for unpolarized jet observables. We then demonstrated that with a pT cut at 10 GeV, the

tension between the STAR 2003 and 2004 datasets [22] in their overlapping kinematics

was resolved. Nevertheless, no perceptible impact on the spin-averaged or spin-dependent

PDFs was found due to the choices of factorization and renormalization scales or pT cut.

The fourth part of the analysis (and the last part of the JAM analysis on the real world

data presented in this work), was the first ever simultaneous analysis of spin-averaged and

spin-dependent PDFs. The unpolarized and polarized world data are all well fitted in

the simultaneous analysis, with an overall �2

dat
of 1.15 to 1.16, depending on the various

assumptions made. This analysis, for the first time ever, extracted quark and gluon PDFs

in the helicity basis, using a consistent treatment of uncertainties. In the measured region

of the available polarized world data (0.01 . x . 0.5), the up quark was found to have a

net positive polarization, while the down quark had a net negative polarization, both with

respect to the proton polarization. For the strange quark, the two helicity basis PDFs s"

and s# were less well separated from each other, due to the relatively large uncertainties of

both the spin-averaged and spin-dependent strange distributions. The gluon helicity basis

PDFs g" and g#, due to the presence of two �g solutions, were hardly distinguishable from

each other within the uncertainties. However, with the “negative” solution removed by the

positivity constraints, the two helicity basis PDFs were clearly separated from each other,

at the expense of sacrificing the data-driven nature of the global analysis.

From the analyses above, we conclude that the uncertainty bands and shapes of the light

quarks helicity basis depend discernibly, or in some cases significantly, on theory inputs,

namely the SU(3) flavor symmetry and positivity constraints, both of which can be de-

batable. Moreover, for gluon distribution, one of the two solutions that are very distinct
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from each other was completely ruled out when forcing it to comply with the positivity

constraints, despite the fact that it described the data just as well. Since we cannot justify

them on purely theoretical grounds, we conclude that significant bias exists when con-

straints such as SU(3) flavor symmetry and positivity are employed in the extractions of

spin-dependent PDFs.

The final part of the results was an application of the JAM analysis to the impact study

of projected parity-conserving and parity-violating polarization asymmetries at the EIC.

Although previously there have been several studies [97, 98] that assessed the potential

impact of the projected DIS data at EIC kinematics on the spin-dependent PDFs, in

our analysis [57] the uncertainties on the extrapolation of the projected EIC data into the

unmeasured region at low x was studied for the first time. Moreover, our analysis provided

for the first time a complete impact study of the parity-violating polarization asymmetry

AUL in the framework of a global QCD analysis.

For the parity-conserving polarization asymmetry ALL, the impact of the future EIC data

on the gluon truncated moment was found to be significant and only weakly dependent

on the theory inputs, while the impact on quark singlet truncated moment was largely

influenced by the theory inputs. For the parity-violating polarization asymmetry AUL,

the situation was inverted, with a less biased and more discernible impact found for the

quark singlet truncated moment, but a negligible impact observed for the gluon truncated

moment. The improvement in the impact on the quark singlet truncated moment stems

from the fact that the leading contribution from the g�Z
1

structure function weighted dif-

ferent quark flavors approximately equally. The gluon truncated moment, on the other

hand, was not better constrained because the relative errors on AUL are significantly larger

compared with those on existing or projected ALL data.
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6.2 Future of global QCD analysis

As more high precision experimental data become available, uncertainties for various sea

quark and gluon distributions are expected to decrease, and eventually a refined picture

of collinear spin structure of the proton will emerge. With the inclusion of jet production

data from polarized pp scattering, we were able to constrain greatly the helicity gluon

distribution. However, improvements can still be made towards constraining the sea quark

distributions. Specifically, polarized SIDIS data will help determine the weakly constrained

�s+ PDF in current global QCD analysis. Furthermore, measurements of the longitudinal

single-spin asymmetries in W± production from polarized pp scattering could provide

enhanced sensitivity to the light antiquark helicities, �u and �d. Lastly, with the future

EIC formally approved by the U.S. Department of Energy, previously unexplored kinematic

regions will be accessible, and a number of new observables will become available. As we

have presented in Chapter 5, both the parity-conserving and parity-violating polarization

asymmetries at EIC kinematics will help to constrain the helicity PDFs at x . 0.01. In

the future, all such observables will be included in the JAM analyses.

On the theoretical front, there are several enhancements that are necessary for the descrip-

tion of increasingly precise data. To improve the precision of perturbative calculations, one

can include the NNLO corrections to the jet formalism when the these become available

[99]. To describe DIS and DY observables at high x, resummation of large logarithms is also

necessary [100]. Finally, since in our analyses the zero-mass variable-flavor-number-scheme

(ZM-VFNS) [83] is used, special treatment of heavy quark mass effects will be needed to

describe heavy quark production. The ACOT renormalization scheme [101] is known to

describe well the HERA data at low Q2, where corrections proportional to M2/Q2 become

important. This is particularly useful in determining the FL structure function, which

vanishes at leading order and is thus more sensitive to higher order corrections.
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Apart from the addition of experimental observables and theoretical advances, global QCD

analysis also relies on the use of robust methodology. Although the single �2 minimization

approach has been successful in extracting nonperturbative structures in the past, such

techniques are not well suited for dealing with gigantic parameter spaces or thousands of

computationally expensive observable calculations. In this case, Bayesian inference and

Monte Carlo sampling have to be used for iteratively improving fits and thoroughly ex-

ploring the parameter space. Additionally, using fast numerical calculation methods, such

as Mellin space techniques and interpolation, the computational complexity is drastically

reduced, and studies of various scenarios such as those explored in this work are possible.

Employing these more advanced and robust methods, a reliable set of solutions can be

extracted with faithful error estimates. In the future, machine learning can be used to

produce the Mellin tables or even predict cross sections from kinematic variables, saving

considerable memory and CPU time resources.

The methodology of this analysis is based on the Monte Carlo framework developed in

recent years with the JAM15 [55], JAM16 [60] and JAM17 [8] analyses, and the multi-step

strategy devised in the JAM19 study [61]. The aim has been to construct a methodology

that is robust and reliable in extracting both the spin-averaged and spin-dependent PDFs

and estimating their uncertainties. Moreover, this work simultaneously extracted the spin-

averaged and spin-dependent PDFs, and its success was a unique test of the universality of

PDFs. Although the spin-dependent PDFs are not yet precise enough to receive significant

impact from the spin-averaged PDFs, it is certainly only a matter of time that simultaneous

analysis will become indispensable in the future once more high precision data become

available.
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APPENDIX A

Partonic jet tree level diagrams

Elaborating on the discussion in Section 2.3.1, we present in this appendix the tree level

diagrams for the partonic level interactions in single jet production, in particular, the �̂ab

part in Fig. 2.4.

There are in total 9 types of partonic interactions at tree level,

qq ! qq, qq0 ! qq0, qq0 ! qq0,

qq ! q0q0, qq ! qq, qq ! gg,

qg ! qg, gg ! qq, gg ! gg,

(A.1)

where q and q0 denote quarks of different flavors, and q and g represent antiquark and gluon,

respectively. Depending on the incoming partons, these interactions can be classified into

6 different channels, namely, the qq, qq0, qq0, qq, qg and gg channels.

Among the different types of interactions, some may contain s, t or u channels, with s, t
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and u being the Mandelstam variables. Therefore, to keep the discussion from becoming

lengthy and tedious, we will only show one such channel for each type of interactions for

illustration.

In Fig. A.1, we show the interactions from the first row of Eq. (A.1), where only the t

channel is shown.

q

q

q

q

pa pb

(a) qq ! qq

q

q

q0

q0

pa pb

(b) qq0 ! qq0

q

q

q0

q0

pa pb

(c) qq0 ! qq0

FIG. A.1: Tree level partonic interactions for single jet production, including qq ! qq,
qq0 ! qq0 and qq0 ! qq0 types, with only the t channel shown.

In Fig. A.2 we show all qq channel interactions, which is the second row of Eq. (A.1), and

again, only the s channel is shown.

q q

q q

pa pb

(a) qq ! qq

q q

q0 q0

pa pb

(b) qq ! q0q0

q q

g g

pa pb

(c) qq ! gg

FIG. A.2: Tree level partonic interactions for single jet production, including qq ! qq,
qq ! q0q0 and qq ! gg types, with only the s channel shown.

In Fig. A.3 we have the qg ! qg type of interaction. This time two figures are shown,

both from the t channel, but interacting via different types of vertices.

Finally, in Fig. A.4 we have gg ! qq and gg ! gg types of interactions. This time only
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q

q

g

g

pa pb

(a) qg ! qg

q

g

g

q

pa pb

(b) qg ! qg

FIG. A.3: Tree level partonic interactions for single jet production, including only qg ! qg
type, with only the t channel shown.

the t channels are shown (which is, however, not relevant for Fig. A.4c).

g

q

g

q

pa pb

(a) gg ! qq

g

g

g

g

pa pb

(b) gg ! gg

g

g

g

g

pa pb

(c) gg ! gg

FIG. A.4: Tree level partonic interactions for single jet production, including gg ! qq and
gg ! gg types, only t channel is shown (when applicable).

Interactions with QED couplings do exist, but with the electromagnetic fine structure

constant ↵ much smaller than the strong coupling constant ↵s, their contributions can be

neglected.
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