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Chapter 1

Introduction

I was standing under a large tree on a pleasant and still day several years ago. The stillness was
interrupted by a large branch, about six inches in diameter, crashing to the ground about ten feet
from where I was standing. I walked away knowing that I was just feet away from a major, random
catastrophe. We live in a world of events that occur at random, and probability is a way of measuring
and predicting this randomness. Consider the following examples:

e a reliability engineer contemplates the number of spare parts needed to support a fleet of
mining trucks;

e an actuary analyzes data compiled in life tables to determine appropriate premiums for term
life insurance policies;

¢ a medical doctor decides what action to take based on two tests—one with a positive result
and one with a negative result;

¢ a college student scans the sky to help determine whether to take an umbrella to class;

¢ a toddler slowly reaches up toward the counter to grab a forbidden cookie, contemplating
likely outcomes;

e a young mother sends her child off to kindergarten for the first time, wondering if the school
has adequate evacuation plans if it is hit by a meteor.

Each of these people, in one fashion or another, at one level of sophistication or another, and at one
level of rationality or another, is assessing probabilities. The notion of probability is very intuitive,
and all of us make dozens of decisions every day based on probability assessments.

The purpose of this book is to hone your already-intuitive probability notions into a mathematical
framework. In this way, when you are confronted with a complex problem involving probability, you
will be able to confidently use this framework to craft a solution.

Although intuition typically works well when it comes to probability, it occasionally breaks
down. The following two examples are probability questions whose solutions defy intuition.

Example 1.1 The “birthday problem” is usually stated along the following lines:

If 40 people are gathered in a room, what is the probability that two or more
people have the same birthday?

The year that the 40 people were born is not considered in this problem. People typically
guess too low when asked to estimate this probability. One of the more common guesses
that I encounter is 40/365. The probability is about 0.89, so it is very likely that one or
more birthdays will match in a room of 40 people. This problem will be solved using
complementary probabilities and the multiplication rule in Chapter 2.



Example 1.2 The second problem is alternatively called the “car and goats” problem,
the “Monty Hall” problem, or the “Let’s Make a Deal” problem after the popular tele-

vision game show.

Suppose you're On a game show and you're given the choice of three doors.
A car is placed behind one door; goats are placed behind the other two doors.
The car and the goats Were placed randomly behind the doors before the
show. The rules of the game show are as follows: After you have chosen
a door, the door remains closed for the time being. The game show host,
Monty Hall, who knows what is behind the doors, now has to open one of
the two remaining doors, and the door he opens must have a goat behind it.
If both remaining doors have goats behind them, he chooses one randomly.
After Monty Hall opens a door with a goat, he will ask you to decide whether
you want to stay with your first choice or to switch to the last remaining door.
Imagine that you chose Door 1 and the host opens Door 3, which has a goat.
He then asks you: Do you want to switch to Door Number 27 Is it to your
advantage to change your choice?

The intuitive answer to this question is that there is no advantage (o switching doors.
The car is behind one door and the second goat is behind the other door, so the two
results are equally likely. This problem was stated in a slightly different form in a letter
to Marilyn vos Savant’s Ask Marilyn column in Parade magazine in 1990. The solution,
which states that changing doors doubles the probability of getting the car from 1/3 to
273 created a barrage of about 10,000 letters, nearly 1000 of which came from PhD’s,
stating that the solution was WIOng. We will use Bayes” Rule in Chapter 2 to show that
her solution was indeed correct.

The next section gives a sampling of a few more probability questions that will appear sub-
sequently in the book, along with some pointers toward one of the most common applications of
probability: the analysis of data using statistical techniques.

1.1 Applications

Probability is a branch of mathematics that describes experiments whose outcome can’t be predicted
with certainty prior to performing the experiment. It was first studied by Blaise Pascal and Pierre de
Fermat in the 17th century and applied to gambling games. Here is an example of such a gambling
game.

Example 1.3 Toss a pair of dice 24 times. You win if you roll double sixes at least
once. Find the probability of winning.

This problem can be easily solved using the tools provided in this book. There are
certain assumptions that can be made, for example, the dice are fair and the rolls are
independent. Once these assumptions are made, the axioms and results provided in
Chapter 2 will yield a solution to this problem of

P(winning) = 1 — P(losing)

1 — P(tossing no double sixes)

24
(%
36

0.4914.

R

The fact that the probability is close to 0.5 will draw gamblers to the game; the fact that
the probability is slightly less than 0.5 assures that the house will draw revenue from
the game in the long run.
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The questions that can be addressed via probability techniques apply to many important ap-
plied fields beyond gambling games. Application areas include genetics, actuarial science, casualty
insurance, meteorology, stock market analysis, economics, quality control, reliability, medicine,
biostatistics, marketing, strength of materials, human factors, and sociology, just to name a few.

To illustrate the variety of problems that can be addressed using the tools of probability, two
more simple examples are presented below.

Example 1.4 Find the probability of dealing a five-card poker hand containing a full
house from a well-shuffled deck of playing cards.

Questions of this nature also require assumptions. For example, assume that we are
playing with a full deck and that all of the possible shufflings are equally likely. Again,
using the techniques from Chapter 2, the probability of dealing a full house (three cards
having one denomination and two cards having another denomination) is

DDEE)  13-12:4.6 3744 6
P(full house) = _ _ _ N
(full house) & 7,598 960 — 2,598,960 — a7g5 = 000144

The binomial coefficient (’:) will be defined in the next section. So with a probability
of dealing a full house being just a bit over 1 in 1000, one can conclude that this will
not occur often.

Leaving the realm of gambling games, we now switch from working with problems involving
discrete outcomes to a problem involving a continuous outcome,

Example 1.5 Probability problems involving sums of random quantities often arise. In
this example, let X;, X2, ..., X0 be independent random variables that are uniformly
distributed between O and 1. That is, each of the random variables assumes a con-
tinuous value between 0 and 1 with equal likelihood. Most calculators and computer
programs have a random number generator capable of producing such numbers. Find
the probability that their sum lies between 4 and 6, that is,

10
P(4< ZX,<6).

i=1

A well-known approximation known as the central limit theorem (introduced in Chap-
ter 8) yields only one digit of accuracy for this particular problem. Another approxima-
tion technique known as Monte Carlo simulation requires custom computer program-
ming, and the result is typically stated as an interval around the true vatue. This problem
can also be solved exactly using some of the techniques and software provided in this

text yielding
10
655177
P (4 & i);lxi < 6) S ~().7222.

Notwithstanding the obvious benefit of probability calculations to a gambler, a more significant
application of probability theory lies in the field of inferential statistics, which has the goal of draw-
ing inferences (conclusions) about the population from which a data set was drawn. The field of
statistics was first studied as numerical data was collected on political units (for example, a census).
This has eventually evolved into what is now known as “political science.” The following examples
illustrate the graphical and numerical analysis of a data set using standard statistical techniques. The
letter n is used nearly universally to denote the sample size, which is the number of data values
collected.
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Example 1.6 (Ball bearing failure times) Consider the data set of n = 23 ball bearing
failure times (measured in 100 revolutions):

17.88 28.92 33.00 41.52 4212 45.60 48.48 51.84
5196 54.12 55.56 67.80 68.64 68.04 68.88  84.12
93.12 98.64 105.12 105.84 127.92 128.04 173.40.

There are several things that one can do to analyze such a data set. Computing certain
numerical measures that summarize a data set is common, particularly with large data
sets. The two most commonly used sample statistics are the sample mean and the sam-
ple variance. Using the notation xj, X2, - . -, Xp to denote the data values, the formulas
for the sample mean X and sample variance s are
f*li"x-—7222 and o= i(x‘——i)2:14054
—nizll— ' n—1:= l o

The sample mean is a measure of the central tendency of a data set; the sample variance
is a measure of the dispersion of a data set. The sample mean has the same units as
the data values. The positive square root of the sample variance, known as the sample
standard deviation, s =37.49 for this data set, also has the same units as the data values.
These two quantities are random in the sense that a data setof n = 23 other ball bearings
would produce ditferent values for % and s2. These quantities are (0 be distinguished
from the population mean and the population variance 62, which would be obtained
if we sampled the entire population of ball bearings.

In addition to summarizing the data set with numerical values such as X and s, there
are also some graphical procedures that can be applied to a data set. A histogram is
useful for determining the shape of a probability distribution; it is the statistical analog
of a function to be introduced in Chapter 3 known as a probability density function. A
histogram for the ball bearing lifetimes is shown in Figure 1.1. The horizontal axis i8
the failure time and the vertical axis is the number of ball bearing failure times that fall
in each of the cells of width 20. The histogram reveals a clumping of the data around
50 million revolutions and also reveals that the largest of the ball bearing failure times,
173.40 million revolutions, lies significantly to the right of the others. The data set ap-
pears to come from a population with a single mode (peak) near 50 million revolutions.
Issues associated with a histogram include choosing the number of cells and cell bound-
aries, which are arbitrary decisions made by the data analyst. Unfortunately, histograms
are not good graphical instruments for comparing two or more distributions.

0 50 100 150 200

(o))

I
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<

Figure 1.1: Histogram of ball bearing failure times.
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Statistical packages are useful time-saving tools that can quickly perform numerical
calculations and produce graphical displays associated with a data set. This text will use
the statistical programming language R for such calculations and displays. R is available
for free download on the web and is a powerful package that provides useful graphics,
programming capability, and numerical calculations. It is becoming a standard that
is used by statisticians. The code to compute the sample mean, compute the sample
variance, and display the histogram for the ball bearing failure times is given below.

bearings = c(17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84,
51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12,
93.12, 98.64, 105.12, 105.84, 127.92, 128,04, 173.40)

mean (bearings)

var (bearings)

hist (bearings)

The ball bearing data illustrates what statisticians refer to as a univariate data set, since only a
single variable has been collected on each ball bearing sampled. Many data sets involve collected
pairs of data values, resulting in a bivariate data set, as illustrated by the following two examples.

Example 1.7 (Old Faithful Geyser eruptions) A data set of n = 299 data pairs, (x;, y;),
i=1,2,...,299, has been collected on the waiting time x; and the eruption duration y;
at the Old Faithful geyser in Yellowstone National Park in Wyoming. All observations
are recorded in minutes. The data pairs are plotted in Figure 1.2. The data set exhibits
some rather unique characteristics. First, there is an unusual clumping of the eruption
duration around 4 minutes, which could be a natural phenomenon or could be due to
rounding by those who collected the data. Second, there appears to be a tri-modal joint
distribution of the (x;, y;) pairs. Look carefully at the scatterplot in Figure 1.2 to see if
you can spot the three modes.

duration
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Figure 1.2: Geyser data.

Scatterplots like this are easily generated in R. The R command
plot (faithful$waiting, faithfulSeruptions)

generates a scatterplot for a similar data set that is pre-loaded into R. The first argument
to the plot function, the vector faithfulS$waiting, contains the waiting times for
plotting on the horizontal axis; the second argument, the vector faithful Seruptions,
contains the associated eruption times for plotting on the vertical axis.
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Example 1.8 (Automobile warranty claims) As a second example of a bivariate data
set, consider one particular make and model of an automobile that has a warranty that
expires after 3 years or 36,000 miles, whichever occurs first. Warranty claim times
(measured in both mileage and age in years) for a bivariate sample of size n = 260 are
plotted in Figure 1.3.

age (years)

3 """""""""""""""""""""""""""""""" ;.
2 ; Ry
v z v |

1 l:. - E
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0 I‘_.’——/__é‘ miles

0 36000

Figure 1.3: Scatterplot of warranty claim times.

The scatterplot of mileage and age reveals a significantly different pattern from the
geyser data. First, we know the boundaries of the support, or the allowable values
for the data pairs: they must fall in the rectangle with opposite corners at (0,0) and
(36000, 3). Second, there is a clustering of the data near the origin that corresponds
to cars with problems that appear soon after being purchased. Third, there is what
statisticians refer to as a positive sample correlation between the mileage and the age
of an automobile that is taken to the dealer for a warranty claim. The two measures that
reflect the aging of the automobile tend to increase together, resulting in (x;, yi) pairs
that tend to be on the same sides of their means ¥ and § more often than not. Fourth, if
the histograms of the x; and y; values are plotted separately, as in Figure 1.4, one can

80 80

60 60

40 40

” II|| ik

0 0 .
0 12000 24000 36000 0 1 2 3

Figure 1.4: Histograms of warranty claim times (mileage on left; years on right).
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clearly see the early failures on both histograms. The histogram on the left (mileage),
however, also has a mode near 36,000 miles that corresponds to drivers being aware
of a warranty expiring after 36,000 miles, The histogram on the right (age in years)
does not have a second mode near 3 years because drivers are less aware of the 3-year
anniversary of their purchase. In this case, the two histograms confirm our intuition
about automobile owners and expiring warranties. The notion of the distribution of
one of two variables (ignoring the other variable) will be developed in Chapter 6 as a

marginal distribution.

The previous two examples have presented bivariate data sets for the Old Faithful geyser data
and the car warranty claim data. When there are more than two data values collected, histograms
and scatterplots can become problematic. A boxplot is a more compact way of looking at the shape
of the distribution, as illustrated in the following example, where four data values are collected on

each observational unit.

Example 1.9 (Cork deposits) The weights of cork deposits (in centigrams) of n = 28
trees is collected in the four directions: north, east, south, and west. The data is given

in Table 1.1.
N | E S w
72166 | 76 | 77
60 | 53] 66 | 63
56 | 57| 64 | 58
41 129 | 36 | 38
32 132 35 | 36
30[35] 34 | 26
39 |39 | 31 |27
42 143 31 |25
371401 31 | 25
33129 27 | 36
32 30| 34 | 28
63 (45| 74 | 63
54146 | 60 | 52
47 151 52 |43
91179100 | 75
565168 | 47 | 50
79165 | 70 | 61
81 80| 68 | 58
78155 | 67 | 60
46 | 38 | 37 | 38
39 |35 34 | 37
32130 30 | 32
60 | 50 | 67 | 54
35137 | 48 | 39
39136 39 | 31
50 (34| 37 | 40
43 | 37| 39 | 50
48 | 54 | 57 | 43

Table 1.1: Cork deposit weights.

A casual inspection of this data set reveals a positive correlation among the cork deposits
in the four directions. Check out the tree with the spectacular 100 centigrams of cork
deposits on its south side. All four of its cork deposit weights, that is (91, 79, 100, 75),
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dominate all of the deposits on the two trees above it on the list and the two trees below
it on the list. In other words, when one of the four directions tends to have heavier cork
deposits, the other directions are more likely to also have heavier cork deposits. The
notion of positive correlation between the deposits captured in the four directions can
be captured in a 4 x 4 correlation matrix, which for this data set is

1.00 0.89 0.90 0.88
0.89 1.00 0.83 0.77
090 083 1.00 0.92
0.88 0.77 092 1.00

The rows and columns of this matrix can be thought of as N, E, S, and W, rather than
the usual 1, 2, 3, and 4. This is a symmetric matrix, so values on the opposite side of
the diagonal are equal. The diagonal elements are all 1.0 and imply that there is perfect
positive correlation between the data in each direction and itself. The off-diagonal
elements are the correlations between the different directions. Consider the (1,2), or
more exactly, the (N, E) element of the matrix, which has the value 0.89. This value
indicates that there is a high positive correlation (all correlations must fall between —1
and 1) between the weights of the cork deposits in the north and east directions. In
other words, the deposits in the north and east directions tend to be on the same sides
of their means together. Another question that comes to mind is how the cork deposits
in each direction vary individually. A histogram is not a good graphical device for
comparing four distributions, but a boxplot can be used to compare several distributions
simultaneously. The four boxplots displayed side-by-side in Figure 1.5 capture the
essence of the four distributions for comparison. For each of the four directions, the
middle half of the distribution is displayed vertically in a box. In other words, the top
and the bottom of the box are the estimates of what is known as the 25th percentile and
the 75th percentile of the probability distribution. Thus, the quartiles of a distribution
are apparent from a boxplot. The horizontal line in the middle of the distribution shows
the sample median or the middle value of the data set. This is an estimate of the 50th
percentile of the distribution. For a data set with an odd sample size n, this is just
the middle value of the sorted data values. For an even sample size n, the two middle
values are averaged. The fact that the median tends to fall consistently in the lower
half of the box in all four directions indicates that the distribution of cork deposits is
a non-symmetric distribution. The shortest box is associated with the weights of the
deposits taken from the eastern side of the tree and the tallest box is associated with

100 1 -

g0 | | =

40 ,‘ !

Figure 1.5: Boxplot of cork deposits in the four directions.
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weights of the deposits taken from the southern side of the tree. This implies that the
variability of the weights is greater on the southern side of the tree, even though the
medians appear to be nearly identical. Finally, the whiskers in a boxplot extend to the

smallest and largest data values, although this convention is not universal. The upward
whisker in the southern direction extends to 100.

The R code to read the data from an external data set into an array named cork, calculate
the correlation matrix, and generate the boxplot is given below.

cork = read.table("cork.dat™)
cor {cork)
boxplot (cork, names = c("N", "E", "M, "H"))

Statisticians often encounter problems where a function needs to be fit to a data set. The simplest
function to fit is a line. The next example illustrates a line being fit to data.

Example 1.10 (U.S. House of Representatives turnover) The average turnover percent-
ages for the 12 decades following the end of the Civil War (these percentages are the
averages of the five turnover percentages for elections held during the decade) are given

in Table 1.2.

Decade | Mean turnover percentage
1870 50.3
1880 40.6
1890 40.8
1900 239
1910 28.5
1920 21.1
1930 26.3
1940 222
1950 14.6
1960 15.2
1970 16.6
1980 12.9

Table 1.2: U.S. House of Representatives turnover percentages.

It is clear that there is a downward trend in the data over time. It appears to be increas-
ingly difficult to vote incumbent politicians out of office. Tt is impossible to fit a single
line that will pass through all of these data values simultaneously, so we attempt to find
the best line possible. One criterion for determining this best line is to find the least
squares line that minimizes the sum of the squared vertical deviations between the line
and the data points. Thus, the model for what is known as a simple linear regression is

Y =a+bX,

where X is the decade and Y is the turnover percentage in this particular setting. The
slope and intercept of the regression line can be calculated by hand or by using any stan-
dard statistical package. Using the integers 1,2, ..., 12 to denote the n — 12 decades,
the slope and intercept of the regression line are » = —3.03 and a = 45.78. The inter-
pretation of slope is that the turnover percentage is decreasing by about 3% per decade
on average. Two possible explanations for this decrease are the power of incumbency
and the rise of the “career politician.” A scatterplot of the data and the associated re-
gression line is shown in Figure 1.6. The lengths of the vertical distances between the
data points and the regression line are known as the residuals.



10 Chapter 1. Introduction
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50 7

40

30 A

20

10 -

o 2 4 6 8 10 12

Figure 1.6: U.S. House of Representatives turnover percentages.

The R code to generate this figure is

decade 1:12

turnover = c(50.3, 40.6, 40.8, 23.9, 28.5, 21.1,
26.3, 22.2, 14.6, 15.2, 16.6, 12.9)

plot (decade, turnover)

req = glm(decade, turnover)

abline (reg$coef)

I

The first staternent sets the R vector decade to the first 12 positive integers. The second
statement assigns the 12 turnover percentages o the vector turnover. The 12 data pairs
are then plotted using the plot statement. The glm function (for general linear model)
performs the linear regression, and the least squares line is plotted using abline after
extracting the regression coefficients (that is, a and b).

Before introducing probability in the next chapter, two important mathematical tools will be
introduced that are often used in solving probability problems. These tools are counting techniques
and set theory.

1.2 Counting

In many problems that arise in probability and statistics, it is useful to list (enumerate) or count the
number of outcomes of an experiment. Counting is easy when there are only a handful of outcomes
to count;, when there are thousands or millions of outcomes, a more systematic approach is required.

Enumeration involves listing all of the possible outcomes (o an experiment. Tree diagrams can
be helpful, as will be seen in the following example.

Example 1.11 Imagine the unimaginable: The Chicago Cubs and the Chicago White
Sox are playing in the World Series. The best-of-seven series is tied at two games
apiece. What are the possible outcomes to the series?

The question is not asking for the number of possible outcomes, but rather a list of
the possible outcomes. This will be accomplished using a tree diagram illustrated in
Figure 1.7. The tree diagram reveals six possible endings to this particular World Series,
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<=———— six—game series

<——— seven-game series

Figure 1.7: World Series outcomes.

two of which correspond to a six-game series and four of which correspond to a seven-
game series, where C denotes a Cub victory and S denotes a Sox victory.

We now turn to counting techniques (or combinatorics or combinatorial methods), which are
used when enumerating is cumbersome or infeasible. The field originated with a thirteenth-century
Catalan missionary named Ramon Llull. We’ll consider the following three technigues and some
variations.

1. The multiplication rule,
2. Permutations (which is a special case of the multiplication rule).

3. Combinations.

Multiplication rule

We begin the discussion of counting techniques with the multiplication rule. The multiplication
rule is also known as the fundamental theorem. of counting, the basic principle of counting, the
counting rule for compound events, and the rule for the multiplication of choices.

Theorem 1.1 (Mumphcamon rule) Assume that there are r deczsmns to-be made: If there are ny
ways to make demsmn 1, n3 ways to make demsmn 2 o ,‘n, ways ;qmake{decxsmn r, then there.
are mymy . . .ny ways to make all decisions. - : o . : i

Proof To show why the multiplication rule holds, consider the case of r = 2 decisions.
In this case, all of the potential outcomes can be displayed in the ny x ny matrix given
below. The rows represent the choices associated with decision 1; the columns represent
the choices associated with decision 2.

Choice 1 | Choice 2 | --- | Choice ns

Choice 1
Choice 2

Choice n,

Thus, for r = 2, there are n; x ny ways to make both decisions. To proceed from r — 2 to
r = 3 decisions results in a rectangular solid consisting of ny x 1y x n3 cubes associated
with the various ways of making the r = 3 decisions as illustrated in Figure 1.8.

The more general result for r decisions continues to follow this pattern, and is proved by
induction. Assume that the theorem holds for r decisions. To show that this implies that
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Figure 1.8: Multiplication rule justification for r = 3.

the theorem holds for 7+ 1 decisions, each of the nyn2 ... ny Ways to make the r decisions
is matched with one of the r,,| ways to make decision r+ 1, resulting in nyAy .. Apyy
total ways to make the r+ 1 decisions, thus proving the theorem by induction. O

Theorem 1.1 is applied to two simple counting problems involving coins and dogs. In each
example, the number of choices for each decision is constant, that is,ny=ny =--+="ny.

Example 1.12 How many different sequences of heads and tails are possible in 16
tosses of a fair coin?

Each of the 16 tosses can be considered a “decision” in terms of Theorem 1.1 with two
possible outcomes: heads and tails. Since there are r = 16 tosses, there are

2.2.2. ... .2=21%=65536
—_—
16

different sequences.
This problem is easily generalized to similar settings. Two such settings are

e the number of ways to answer a 16-question T/F test,
e the number of integers that can be stored on a 16-bit computer.

Example 1.13 How many ways can a mother give away 8 dogs to her 3 children?

In this example, Mom has r =8 decisions on her hands, one for each dog. Furthermore,
each decision can be made in three ways. Thus, there are

Fido Inky Suzy Spot
8
30303 T3 =38 = 6,561

8
different ways for her to give away her 8 dogs to her 3 children.

As illustrated in the next two examples, occasions arise when the n; values in the multiplication
rule are not all identical.

Example 1.14 How many ways can a family of 5 line up for a photograph?

The photographer has r = 5 decisions to make. The first decision is whom to place on
the left (which can be done five ways); the second decision is whom to place next to the
person on the left (which can be done four ways), etc. Thus, there are

5.4.3.2-1=5!=120

different ways to line up the family for the photograph.
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Example 1.15 How many ways can a family of 5 that consists of 3 men and 2 women
line up for a photograph so that men and women alternate?

There are again r = 5 decisions for the photographer, but the decisions are restricted by
gender, so we expect a lower count of outcomes than in the previous example, There is
a choice of one of the 3 men to place on the left, a choice of 2 women to place next to
him, etc. Continuing in this fashion yields a total of

M W M W M

AN AN A A
3.2 -2 -1 -1 =12

different ways to line up the family members in the restricted fashion.

As a foreshadowing of the introduction of probability in Chapter 2, the previous two examples
will be used to determine the probability that men and women alternate when the family of five
sits for the photograph in a random order. Using the previous two examples, this probability is
P(men and women alternate) = 12/120 = 1/10 assuming that all of the 120 possible orderings are
equally likely. More details concerning the calculation of probabilities are given in Chapter 2.

Example 1.16 How many ways are there to arrange the letters in “dynamite™?
There are r = 8 decisions to be made, so there are

8:7-6-...-2-1=8!'=40,320
different ways to arrange the letters.

Example 1.17 How many ways can 3 men, 4 women, and 2 children arrange them-
selves in a row of nine chairs if

(a) the children insist on sitting together?
(b) the children insist on sitting on the leftmost and rightmost chairs?
(c) the men, women, and children must sit next to one another?

If there were no restrictions, there would be 9! = 362, 880 different ways to line up the
r =9 people. Since each part of this question places a restriction on the ordering, the
number arrangements must be less than 362, 880.

(a) When the children insist on sitting together, classify the people as 2 children and 7
adults. There are 2! ways to arrange the children. Since the leftmost child can
occupy any one of 8 positions and there are 7! ways to arrange the adults, there
are a total of

21.8.71=2-8-5040 = 80,640
different arrangements with the children sitting together.
(b} When the children insist on sitting on the leftmost and rightmost chairs, there

are 2! ways to arrange the children at the extremes and 7! ways to arrange the
adults in between them, so there are a total of

2171 =2-5040 = 10,080

different arrangements with the children sitting at the extremes.

(c) If the men sit in the three leftmost chairs, the women sit in the next four chairs,
and the children sit in the two rightmost chairs, there are 3! -4!-2! arrangements.
Since there are 3! arrangements of the men, women, and children as groups, there
are

31.31.41.21=6-6-24-2 =1728

different arrangements with the men, women, and children sitting next to one
another.
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Example 1.18 Cindy shuffles a deck of playing cards. Is it likely that she is the first
person in history to achieve this particular ordering of the cards?

This is another of those problems that defies intuition. Of all of the people in history,
almost surely someone must have attained the same shuffle as Cindy. First of all, by the
muitiplication rule, there are

521 = 80658175170943878571 660636856403766975289505440883277824000000000000

different shufflings. Yikes! Perhaps Cindy’s shuffle is likely unique after all. To address
the likelihood of her shuffle being unique, some back-of-the-envelope calculations are
required. The world population is about seven billion people. Approximately half of
the people that have ever lived are currently alive, so assume that 14 billion people have
lived through the ages. Now assume that everyone lives 100 years on average (dubious),
and shuffles a deck of cards ten times a day on average (even more dubious), then there
have been a total of a mere

14000000000 - 100 - 365 - 10 = 5110000000000000

total shuffles. Hence Cindy’s shuffle is almost certainly unique. Every shuffle of a deck
of cards is almost always making playing-card history.

Although simple to state and use, the multiplication rule is a surprisingly versatile tool for ad-
dressing counting (combinatorics) problems. There is a special case of the multiplication rule that
arises so often that it gets special treatment here. The obiject of interest is known as a permutation.

Permutations

The notion of whether a sample is taken with or without replacement is a critical notion in
combinatorics and probability. When a sample of size r, for example, is selected at random and
with replacement from a set of n distinct objects, there are n” different ordered samples that can be
taken. On the other hand, when the items are selected without replacement, the ordered items that
are selected are a permutation.

is an arrangement of  objects selected from a set of 7 objects with-

One key question to be addressed in a counting problem is whether the ordering of the objects is
relevant. If the ordering is relevant, then using permutations might be appropriate.

Example 1.19 List the permutations from the set {a,b,c} selected 2 at a time.

Applying Definition 1.1 withn =3 and r = 2 yields the 6 ordered pairs:

(a,b) (b,a)
(a,c) (c,a)
(b,c) (c,b).

positive integer, and 0!
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Proof Consider the following two cases based on the value of . Case I: When r = 0,
there is only one way to choose the sample (don’t select any items), and

n! ]
(n—0)!
Case II: When r =1, 2, ... n, the multiplication rule with r decisions yields
1 2 1 n
f-(nf )-(n— 2 coen=r41) = )i
r factors
which establishes the resuit. 0

The proof shows that finding the number of permutations is just a special case of the multiplica-
tion rule.

Example 1.20 How many ways are there to pick a president, vice-president, and trea-
surer from 7 people?

The “objects” from the previous definition are the n — 7 candidates, and there are r = 3
of them being selected. The fact that sampling is performed without replacement is
implicit in the problem statement in that one person could not occupy all three positions.
Furthermore, the fact that order is relevant in their selection is implicit in the problem
statement in that they are given distinct titles (president, vice-president, and treasurer).
Thus, there are
7! 7!
7731 4l =7-6-5=210

permutations associated with filling the three positions. The 7-6-5 part of the equa-
tion serves as a reminder that this question could have been addressed directly by the
multiplication rule.

Example 1.21 A ship has 3 stands and 12 flags to send signals. How many 3-flag
signals can be sent?

Again, implicit in the statement of the problem is the fact that the 12 flags are distinct.
Furthermore, to send a 3-flag signal requires sampling without replacement from the 12
flags. Proceeding with n = 12 and r = 3, there are

12! 12!

different signals.

Example 1.22 In the previous example, what if one or two flags also constitute a sig-
nal?

In this setting, the number of signals should simply be summed. Proceeding with r = 12
and r =1, 2, 3, there are

12! + T + e 124+ 132 4 1320 = 1464
11w o9 -

different signals that can be sent.
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Example 1.23 How many ways are there to drive, in sequence, to four cities from a
starting location?

Assuming that the starting location differs from the four cities, there are n = 4 objects
(the cities) and all r = 4 of them must be selected. Thus, there are

4! 24

different ways to drive to the four cities.

There are two minor tweaks that can be performed on permutations that are often useful in
solving combinatorics problems: circular permutations and nondistinct permutations.

1. Circular permutations: Consider the placement of n objects in a circle.

Theorem 1.3 The number of permutations of r distinct objects arranged in a circle is (n—1)!

Proof Fix one object’s position and use the multiplication rule with n— 1 decisions
to conclude that there are

m—1)-(n—2) ... - 1=(n—1)!
different ways to arrange the objects in a circle. O

Example 1.24 How many ways are there to seat 6 people around a round table for
dinner?

There are n = 6 objects (the diners!) to place around the table. There are
51 =120

ways to order them around the table.

Care should be taken when interpreting the solution to the dinner table question.
The only thing that matters in the particular seating is who is on your left and who
is on your right when considering a circular permutation. For example,

e What if all diners shift one chair clockwise? This would rot be a new circular
permutation.

e What if one seat is a blue throne and it matters who is sitting in the blue throne?
In this case a clockwise shift does resultin a new circular permutation, so there
are 6! = 720 circular permutations in the blue throne setting.

e What if the order of seating is reversed (clockwise vs. counterclockwise)?
This is indeed a new ordering.

Example 1.25 How many circuits can a traveling salesman make of n cities? A
reverse route is not considered a unique path.
Assuming that the traveling salesman is beginning at one of the cities, there are
(n—=1)! n!
2 2n

different routes. Dividing by two prevents double counting reverse circuits. The
spectacular factorial growth in this quantity is shown in Table 1.3
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13]4] 8 | 10 | 15 | 50
nt/(2n) | 1] 3] 2520 | 181,440 | 43,589, 145,600 | ~ 1062

Table 1.3: The number of traveling salesman routes.

Even if you are going around town to run just 8 errands, you have plenty of options.
If you need to run 15 errands, for example, there are over 43 billion routes. Find-
ing the shortest of all of these routes is known as the traveling salesman problem,
which is a classic optimization problem in a field known as operations research.
The problem is faced daily by package delivery companies. It is particularly diffi-
cult to solve because of the factorial growth in the number of routes.

2. Nondistinct permutations: In a typical permutation counting problem, all of the n objects
are distinct. We now consider the possibility of just r distinct types of objects.

Theorem 1.4 The number of nondistmct permutations of n Ob_]ECtS of Wthh ny are of the first
type, n; are of the second type, .:.,n, are of the rth type, is .

‘n!
nglm! o il

where ny +m+ -« -+ n,=n,

Proof Let A be the number of nondistinct permutations. We want to show that

n!
A= ————
ny!m!...n!

If all n objects were distinct, the number of permutations is n! or, by the multipli-
cation rule, the number of permutations is ny!n3!...n!A. Equating and solving
for A yields the desired result. U

Example 1.26 Consider the case of

n=9r=3n=4n=2,n3=3.

The number of ways to order the objects
ajarazashibacicicy

when the a, b, and ¢ objects can’t be distinguished from one another by their sub-

scripts is
9! 362,880

43121 24.6-2

Example 1.27 How many ways are there to arrange the letters in the word “door”?

= 1260.

There are n = 4 objects (the letters) and r = 3 of them are distinct. Thus, there are

4! 24
=— =12
12! 2
different arrangements. In the denominator, 2! accounts for swapping the two in-
distinguishable o letters.
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Example 1.28 How many ways arc there to arrange the letters in “puppet”™?
Proceeding with the n =6 objects with r =4 distinct letters (p, u, e, t), there are

6! 720 6
6

different arrangements.

Example 1.29 How many ways are there to arrange the letters in “wholesome™?

In the word wholesome, there are n = 9 letters, r = 7 of which are distinct, leading

to
91 362,880
= =7 =90,720
202! 4 X
different arrangements.

Example 1.30 How many ways are there to line up identical twins and identical
triplets for a photo if identical-looking people are nondistinct?
There are n = 5 people to line up with just r =2 distinct looks. Since there are
ny = 2 twins and np = 3 triplets, there are
5t 120
231 12

different ways to line up the five.

10

This ends the discussion of permutations and two spinoffs (circular permutations and nondis-
tinct permutations). We now switch to a discussion of combinations, which are closely related to
permutations.

Combinations

In some situations, we are interested in the number of ways of selecting r objects without con-
sidering the order that they are selected (for example, a poker hand). These are called combinations
and are a special case of nondistinct permutations when there are two types of objects.

Definition 1.2 A set of r objects taken from a set of n"objeét_s. wiﬂ}dﬁt replacement isa combinﬂ
tion. i e R U Thm g R,

Example 1.31 List the combinations of 2 elements taken from {a,b,c,d}.
Since the order is not relevant, there will be fewer combinations than permutations:
{a,b},{a, c},{a,d}, {b,c} {b.d}, {c, d}.

The number of combinations of r items selected from n items arises so often in combinatorics
and probability that it gets its own symbol, as will be seen in the following theorem. The expression

()

is called “n choose r.”

hout replacement from n distinct
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Proof This result can be proved in two different fashions. First,

()=

which is just the formula for the number of permutations divided by r! to account for
the number of ways to order the r objects selected.

A second way to prove the theorem is to think of the two groups of objects (those
selected and those not selected) as two different types of indistinguishable items. Using
the result concerning the number of nondistinct permutations,

O :

”l! nz!

We now illustrate the application of Theorem 1.5.

Example 1.32 How many ways are there to pick a committee of three people from
seven “volunteers”™?

This question differs fundamentally from the earlier example involving the selection of
a president, vice-president, and treasurer from a group of seven people. The fact that
titles were being assigned to the three people selected meant that order was important.
In this case, the committee selection process makes no implication with respect to the
order that the members are selected, so using combinations is appropriate. Since r =3
people are being selected from the larger group of n = 7 people, there are

7 7 7-6-5
(3) S T332 0

different committees that can be formed.

Example 1.33 How many ways can a five-card hand be dealt from a standard deck of
playing cards?

There are r = 5 cards to be selected from the n = 52 cards in the deck. Since the order
in which the cards are dealt is not relevant, combinations should be used to solve the
problem. Using Theorem 1.5, there are
52\ 52! 52:.51-50-49-48
5/ 47151 5.4.3.2.1
different five-card hands that can be dealt.

=2,598,960

Example 1.34 How many ways are there to answer a 10-question true/false test with
exactly two true answers?

One way of thinking about this problem is to consider all of the 2!0 = 1024 different
sequences of 10 answers: T (for true) and F (for false). Consider dealing out the two
positions for the T responses. Table 1.4 lists the responses associated with exactly two T
responses, along with the positions of the T responses. The order that the two positions
are selected is not relevant (for example, choosing positions 1 and 2 for the T responses
is identical to choosing positions 2 and 1 for the T responses).

Proceeding using the selection of r =2 positions for the T responses of the n = 10
positions means that there are
10 10! 10-9
(5)-5 -2

2] 821 241

different ways of answering the true/false exam with exactly two true responses.
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Answers Positions of the T responses
TTFFFFFFFF 1,2
TFTFFFFFFF 1,3
TFFTFFFFFF 1,4
FFFFFFFFTT 9,10

Table 1.4: Ten question true/false test responses.

Example 1.35 A ship has 3 stands and 12 flags to send signals. How many signals
can be sent if one, two, or three flags constitute a signal and the stand(s) selected are
relevant?

The problem implies that a red flag in stand 1 and a blue flag in stand 2 constitute a
different signal than a red flag in stand 2 and a blue flag in stand 3. The solution to this
problem requires the use of both combinations and permutations. Combinations are
used to pick the stands, then permutations are used to place the flags in order in those
stands. There are

3\ 120 3\ 120 [3) 12!
i ks —=1 - 36+396+ 1320 = 1752
(1) 11!+(2> 10!+<3> 91 396+ 13

different signals that can be sent. The three quantities being added in the solution cor-
respond to one-flag, two-flag, and three-flag signals.

Example 1.36 How many ways can 14 people split into two teams of seven for a game
of ultimate frisbee?

Since the question concerns teams, the order of selection is not relevant, which implies
that combinations should be used here. There are

(5) _
5= 1716

different ways to split the 14 people into two teams of seven. Division by two avoids
double counting identical teams.

These examples illustrate the wide variety of problems that can be addressed using combinations.
Combinations also have a number of interesting mathematical properties which will be given in an
outline format below.

1. The well-known binomial theorem can be used to expand quantities such as
(x4 ) = 1 + 43y 4 6x%y% +4xy + 1y,

The coefficients in the expansion (namely 1,4,6,4,1 in this case) happen to correspond to the
number of combinations. For this reason () is often referred to as a “binomial coefficient.”
The general statement of the binomial theorem is

)xnryr

n
x+y)" =Y (
r=0
2. There are several miscellaneous results that are associated with the binomial coefficients. Here
are a few such results, stated without proof.

~ S
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(a)

(b)

©)

Symmetry: (Z):(ﬂn ),forr0,1,...,n;andnisapositiveinteger
—r
() () C)
= +
r r r—1
i m n _(m+n
SN/ \k—r B k

3. The binomial coefficient (n) is defined to be O when r < Q or r > n.
Ia

4. Pascal’s triangle, which is given by

consists entirely of binomial coefficients (notice the 1, 4, 6, 4, 1) in the fifth row corresponding
to the coefficients in the expansion of (x +y)*. Some other interesting tidbits about Pascal’s
triangle are listed below.

The row number is determined by n and the position in the row is determined by r.

Each row determines the subsequent row. Each entry that is not on the boundary of the
triangle is the sum of the two closest entries in the previous row. This is equivalent to
the result in 2(b) above.

.« [(n
The row sums are powers of 2, that is, Z ( =2",
r
r=0

The sums of the first n diagonal elements are n, n(n+1)/2, n(n+1){(2n+1)/6, ... due
to constant, linear, quadratic, ... growth of the diagonal elements.

The Fibonacci sequence 1, 1,2, 3,5, 8, 13, ... can be found in the triangle. See if you
can find a way to determine these values.

Replacing odd numbers in the triangle by 1 and even numbers by 0 yields the “Sierpinski
gasket.”

Try replacing each element modulo 3.

If the digits of the first five rows are concatenated, they yield the powers of 11.

5. The binomial theorem can be extended to the “multinomial theorem” to handle the expansion

J1y o

of expressions like (x+y+2)®. The coefficient for x]"x5? .. .x,* when expanding (x| +x, +
cexg )" is

( ; > =
my, My, ..., By myptma!. . my!

6. Combinations are a special case of partitioning. Consider the following two examples.

Example 1.37 How many ways are there to deal a five-card poker hand?

This problem was encountered earlier and solved using combinations. The problem
can also be considered as a partitioning problem. Dealing five cards from a 52-card
deck is equivalent to partitioning the deck into five cards (those selected for the
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hand) and 47 other cards (those not selected for the hand), as shown below. The
bar is used to denote the partitioning position.

12345[(67 ... 51352
—_—— N—.————
r here n—r here

The next example moves from partitioning a set of objects into two groups to partitioning a
set of objects into three groups.

Example 1.38 You have a one, five, twenty, and hundred dollar bill to invest in
three stocks: AT&T, Boeing, and Coke. How many ways are there to invest 2 bills
in AT&T, 1 bill in Boeing, and 1 bill in Coke?
Let

e () denote the one dollar bill,

e F denote the five dollar bitl,

o T denote the ten dollar bill,
H denote the hundred dollar bill,

and let

e a bill to the left of the bars corresponds to an investment in AT&T,
e a bill between the bars corresponds to an investment in Boeing,
e a bill to the right of the bars corresponds to an investment in Coke.

The 12 possible investment strategies are enumerated below. The bars again repre-
sent the partition.

OF|T|H OF \H|T OT|F|H OT|H|F
OH|F|T OH|T|F FT|OH FT\H|O
FH|O|T FH|T|O TH|O|F TH|F|O

These two examples lead to a more general result which is stated without proof.

Theorem 1.6 The number of Ways of partitwnmg a set of n mstmct objects mto k subsets thh m

‘where my+ny+ - Emg=n.

The previous example concerning the number of investment strategies is solved using Theo-
rem 1.6 withn=4,k=3,n =2,n; =1, and n3 = 1 yielding
41

21

different investment strategies.

Example 1.39 The Glen family consists of 9 people. How many arrangements are
there for them to watch the nightly news seated on four sofas: one that seats three
and the others seat two?

Implicit in the problem statement is that the position (for example, left, right, mid-
dle on the big sofa) occupied by one of the Glens on a particular sofa is not relevant
in terms of TV viewing arrangements. Applying Theorem 1.6 with n =9 family
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members being partitioned onto k = 4 sofas withn; =3,n, =2, n3 =2, and ny =2
family members occupying each sofa, there are

9 9!
(3,2, 2,2) 3N —1560

different TV viewing arrangements. Assuming that the Glens have no better form
of amusement, they could go over 20 years swapping different TV viewing ar-
rangements each night.

The alert reader will have noticed that nondistinct permutations and partitioning problems both

use
n!

nplnat. !’

The following two examples illustrate how these two approaches are actually solving fundamentally
identical problems.

Example 1.40 (Nondistinct permutations) How many ways are there to arrange the
letters in the word “bib™?

The b’s in “bib™ are considered nondistinct so that swapping the b’s does not correspond
to a new ordering. Enumerating the outcomes yields

bbi
bib
ibb

and the formula from Theorem 1.4 for nondistinct permutations yields

3!

T

different orderings. The “indistinguishable objects” here are the b’s.

Example 1.41 (Partitioning) Preston, Jill and Gretchen are sisters. How many ways
are there to sleep the three girls in a double and single bed?

Let P, J, and G denote the three girls. Also, place the two girls in the double bed on
the left of the bar and the girl in the single bed on the right of the bar. Enumerating the
outcomes yields

PJ|G

PG|J

GJ|P

Using Theorem 1.6 for partitioning problems, there are

3!
o

different orderings. The “indistinguishable objects™ here are the two girls in the double
bed. The problem of sleeping the sisters in the beds is fundamentally the same as the
ordering of the letters in the word “bib.”

We close this section with one final unifying example that stresses the importance of the fol-
lowing two questions associated with a counting problem. (a) Is the sampling performed with
replacement or without replacement? (b) Is the sample considered ordered or unordered?
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Example 1.42 How many ways are there to select 4 billiard balls from a bag containing
the 15 balls numbered 1,2, ..., 157

The question as stated is (deliberately) vague. It has not been specificd whether

o the billiard balls are replaced (that is, returned to the bag) after being sampled, and

e the order that the balls are being drawn from the bag is important.

So there are really 2 x 2 = 4 different questions being asked here. The answers to these
guestions are given in the 2 X 2 matrix below.

Without replacement

With replacement

Ordered sample

15-14-13-12

15-15-15-15

Unordered sample

These simplify to

(¥)

(4)

Without replacement | With replacement
Ordered sample 32,760 50,625
Unordered sample 1365 3060

There are several observations that can be made on the numbers in this 2 X 2 matrix.
First of all, the entries in column 2 are always greater than the corresponding entries in
column 1. This is because sampling with replacement allows for more possible draws
due to the fact that the size of the population from which a draw is made remains con-
stant rather than diminishing. Secondly, the entries in row 1 are always greater than
the corresponding entries in row 2. This is because the count of ordered draws (permu-
tations) will always exceed the corresponding number of unordered draws (combina-
tions).

A further explanation of the lower-right entry of the matrix might be needed. Con-

sider 15 bins and 4 balls, where () denotes a billiard ball. One draw of 4 balls is
depicted below.

| OO |

| O | IS
1 2 3 4

5 14 15

This arrangement of bins and markers corresponds to the unordered draw 2, 2, 4, 15
taken with replacement from the bag. We need to count the number of arrangements
of 14 dividers plus 4 balls, or a total of 18 objects. Since the ()’s are indistinguishable,

there are
18
4

different orderings (the outer walls are ignored).

The previous example has highlighted two important issues that arise in combinatorial problems:
order and replacement. These concerns lead to a generic class of problems known as “‘urn models”
in which objects are drawn sequentially from an urn. This has been an unusually long section, so it
ends with an outline of the topics considered, and their associated formulas.

1. Multiplication rule: niny...n,
n!

(n—r)!

2. Permutations:
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(a) Circular permutations: (n— 1)!
n!

(b) Nondistinct permutations: —————
mln!. . .n,!

3. Combinations (binomial coefficients): (n) =
r

1.3 Sets

Sets are often used in solving probability problems. The German mathematician Georg Cantor is
generally credited with creating set theory. We provide a brief review of set theory here, and begin
with basic definitions,

Definition 1.3 A set is a collection of objects (elements). ' ' |

Upper-case letters are typically used to denote sets, for example, A, B. The notion of a set is a
very general one, as will be seen in the example below.

Example 1.43 Consider the following four sets.

= {1,2,...,100}

= {x|xis apositive integer less than 101}
{Bulls, Trailblazers}

= {(x,y)0<x<1,0<y<2}

DA® >
I

The elements of sets A and B are integers; the elements of set C are the names of
basketball teams; the elements of set D are points in the interior of a rectangle in the
Cartesian coordinate system. Sets B and D are defined by what is known as the set-
builder notation, and the bar is read as “such that.”” Thus, the definition of B is read as
“the set of all values x such that x is a positive integer less than 101.” The sets A and B
have identical elements, and their equality is written as A = B.

Definition 1.4 If an object belongs to a set, it is said 't(_) be an element of the set. The notation €is
used to denote membership in a set.

Example 1.44 Using the sets defined in Example 1.43,

2
17¢A 9chB (§,1>6D Cubs € C.

The notation € is read as “is a member of”” The notation ¢ is read as “is not a member
of”

Definition 1.5 If every element of the sét:A; is also an element of the set Ay, then A; is a subset
of Ay. The notation C is used to denote the subset relationship.

The subset symbol C from Definition 1.5 allows for the two sets A; and A; to be equal. For
any set A, for example, A C A. If A; is a subset of Ay, but A is not allowed to equal A, then the
relationship between Ay and A, is known as a proper subset.
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Example 1.45 The natural numbers N, also known as the positive integers, are a subset
of the integers Z, which are a subset of the rational numbers Q, which are a subset of
the real numbers R, which are a subset of the complex numbers C. These relationships

are compactly stated as
NCcZcQcRcC

Venn diagrams are a useful tool in set theory and in probability for sorting out the relationships
between various sets. An example of a Venn diagram containing the sets A and B is shown in
Figure 1.9.

Figure 1.9: Venn diagram.

The external rectangle that is drawn outside of the two sets A and B is often called the universal
set, and it contains all possible clements under consideration. If it is assumed that A C B, then the
Venn diagram can be modified as in Figure 1.10.

Figure 1.10: Venn diagram for A C B.

Example 1.46 When there are several subsets involved in a particular application, we
often use subscripts, rather than individual letters to denote the sets. Thus, the relation-
ship between

A ={x|0<x<1}

and
AQZ{X|O<X<5}

can be described by

Al CAs.

. The notation 0 is used to denote

Example 1.47 List the subsets of {a, b, c}.

By the multiplication rule, there are 23 = 8 such subsets because there are three deci-
sions to be made (whether to include or not include each element in the subset), and
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each decision can be made in two ways, The subsets are

0, {a}, {b},{c}, {a, b}, {a,c}, {b, c},{a, b, c}.

To generalize, by the multiplication rule, there are always 2" subsets of any set contain-
ing n clements.

This completes the statement of some basic definitions in set theory. We now define the opera-
tions that can be applied to a set. We consider just three: union, intersection, and complement.

Definition 1.7 (Union) AUB = {x|x € A orx € B}

The meaning of “or” in Definition 1.7 is not exclusive: the elements in A U B are in A alone, B
alone, or in both A and B simultaneously. A Venn diagram with the union of A and B shaded is given
in Figure 1.11

Figure 1.11: Venn diagram for A U B.

The notion of the union of two sets generalizes naturally to more than two sets.

Definition 1.8 A; UA;U ... = {x|x € A; ot x € Ay or ...}, which applies to a finite or infinite
number of sets. L L TR

Example 1.48 For the sets

A = {x|0<x<1}
Ay = {x|0<x<5}

find the union of A and A».

Since A| C Aj, the union of A and A5 is just A, so

AjUA> = A,

Example 1.49 Let
Av={k, k+1,k+2, ...k}

fork=1,2,.... Find the union of A3, A4, and As.

Since the three-way union is all of the elements in Az, A4, or As,

AsUA4UAs = {3,4,...,25).

The next set operator to be introduced considers elements that belong to one set and a second
set.

Definition 1.9 (Intersectio)) ANB=(x[x€Aandx€B) =
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Figure 1.12: Venn diagram for AN B.

A Venn diagram with the intersection of A and B shaded is given in Figure 1.12. The notion of
the intersection of two sets also generalizes naturally to more than two sets.

Deﬁn’it_ion 110 A;NAzN...=(x]|x € A1,x € Az,...}, which applies to a finite or infinite number
of sets. ~ i ‘

Both union and intersection are symmetric operators, for example, ANB =BNA and AUB =
BUA.

Example 1.50 For the sets

A

= {(xy)]F+y* <16}
B

{(0,0), (1, 1), (2,4),(3,9), (4,16), ...}

find the intersection of A and B.

Since only the first two ordered pairs fall in the circle with radius 4 centered at the
origin,

ANB= {(O’ 0)7 (17 1)}

Definition 1.11 If AN B = 0, then A and B are disjoint or mutually exclusive.

A Venn diagram for the disjoint sets A and B is given in Figure 1.13

A B

O

Figure 1.13: Venn diagram for disjoint sets A and B.

The final operation on a set that we present here is complement, which corresponds to the ele-
ments outside of a particular set.

Definition 1.12 (Complement) A’ = {x|x ¢ A}

A Venn diagram with the complement of A shaded is given in Figure 1.14
Example 1.51 Let the set A be the set of all real numbers on the open interval (0,1),
that is

A={x|0<x< 1}
|
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Figure 1.14: Venn diagram for A’.

Find A’.

Assuming that the universal set is the set of real numbers, the complement of A must be
all of the real numbers not in the open interval (0, 1), that is

A'={x|x<0orx>1}.

There are a number of comments on the small portion of set theory presented here that are given
below in outline form.

1. Many authors use A*, A¢, or A for complement, so the choice of A’ used in this book is not
universal. The symbols U and M are fairly universal.

n n n n
2. Many authors use the shorthand U and ﬂ which parallels the use of Z for sums and H
i=1 =1 i=1 =l
for products. So, for example,

4
AlUAYUA3UA, = U A;.

i=]

3. There are more operations on sets than the three presented here. One such operator which has
applications in computer science is the exclusive or operator. The exclusive or of the sets A
and B is denoted by A & B and includes all elements that are in set A or in set B, but not both.
Figure 1.15 contains a Venn diagram for A & B.

A

Figure 1.15: Venn diagram for A © B.

4. DeMorgan’s laws are given by
!
n
Uai ) =N A
i=1 i=1
and

! n
A | =4

i=1 i=1
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5. The distributive laws are given by
A1N(A2UA3) = (A1NA2) U (A1 NA3z)

and
A1U{A2NA3) = (A1 UA)N{A| UA3).

Venn diagrams associated with sets can be useful for unscrambling befuddling counting prob-
lems, as illustrated in the following two examples.

Example 1.52 Of 100 boomers polled, 85 said they like Elvis, 62 said they like Zappa,
and 5 said that they don’t like either. How many of them like both Elvis and Zappa?

Let E be the set of boomers who like Elvis; let Z be the set of boomers who like Zappa.
As shown in Figure 1.16, the 5 who said that they didn’t like Elvis or Zappa are placed
outside the sets E and Z. This leaves 95 for the remaining unfilled slots. Letting the
cardinality function N(-) be a function that counts the number of elements in a set, the
relationship between the three remaining blank spots on the Venn diagram is

N(E)+N(Z)—N(ENZ) = 95.
Since N(E) = 85 and N(Z) = 62, there are
N(ENZ) =52

of the 100 that like both Elvis and Zappa. The remaining numbers have been placed
into Figure 1.16.

Figure 1.16: Venn diagram for counting fans.

Example 1.53 How many of the first 1000 positive integers are multiples of neither 6
nor 97

There are 166 multiples of 6, which are
6,12, 18, ...,99

because 166 - 6 = 996. Likewise, there are 111 multiples of 9, which are
9,18,27,...,999

because 1119 = 999. An integer is a multiple of both 6 and 9 if it is a multiple of the
least common muitiple of 6 and 9, which is lcm(6,9) = 18. The 55 integers between 1
and 1000 that are multiples of both 6 and 9 are

18, 36, 54, ...,990

because 55- 18 = 990. Letting the set A denote the multiples of 6 and the set B denote
the multiples of 9, the Venn diagram in Figure 1.17 shows the counts of the various
numbers of integers in the four regions partitioned by the sets A and B.

To answer the original question, there are 778 integers between 1 and 1000 that are
multiples of neither 6 nor 9.
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1.4

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

778

Figure 1.17: Venn diagram counting multiples.

Exercises

Each of the following questions has the same answer: 232, Write two more questions, (d)
and (e), that also have 232 as an answer.

(a) How many ways are there to answer a 32-question true/false test?

(b) How many integers can be represented on a 32-bit computer (ignoring the sign bit)?

(c) How many sequences of successes and failures can be recorded when Michael shoots
32 free throws?

4
C t .
ompute ( 2)

A die is rolled four times consecutively. Find the number of possible outcomes if

(a) the order of the four outcomes is important,

(b) the order of the four outcomes is not important.

How many initial possible pairings are there for a single-elimination ping-pong tournament
involving » players, n =2, 4, 8?

How many triangles can be formed by connecting any three of ten distinct points that lie on
an ellipse?

Chip has 4 pennies, 3 dimes, and 5 quarters in his pocket. How many different positive
monetary values can he make with these coins? (Hint: Not all coins need to be used, but 0
cents is not a monetary value. He could, for example, make 30 cents with the three dimes.)

A license plate consists of two letters followed by three numbers.

(a) How many different license plates can be made?

(b) How many different license plates can be made if no two-character U.S. state abbrevi-
ations are allowed for the two letters?

Skip likes to use clichés. Here are some of his favorites

That’s the greatest thing since sliced bread.
This fog is as thick as pea soup.
An apple a day keeps the doctor away.

Irritated by his “habit,” several of Skip’s friends and relatives decide to limit him to only
three of his clichés per day. In an effort to keep his routine fresh, Skip vows to never use the
same set of three clichés from his repertoire for the rest of his life. If Skip plans on living
another 60 years (ignore leap years), what is the minimum size of his repertoire in order to
achieve his goal and use exactly three clichés each day?
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1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

How many arrangements of six people in a row of six chairs are possible if

(a) there are no restrictions on the ordering?
(b) Bill and Sarah must sit together?
(c) Bill and Sarah must sit apart?

(d) there are three men and three women and no two people of the same gender can sit next
to one another?

(e) there are four men and two women and the men must sit together?
(f) there are four men and two women and both the men and women must sit together?
(g) there are three married couples and the couples must sit next to one another?

Mr. Oliver North, Mr. Ray Southworth, Mrs. Mary Easterling, and Mr. Paul Westfield are
playing cards.

(a) They decide to play bridge. The game of bridge begins by dealing 13 cards to each
of the 4 players. How many different bridge deals are possible? Consider the players
distinct (for example, if Mr. North and Mrs. Easterling swap their cards, it is a different
deal).

(b) They decide to play poker. The game begins by dealing five cards to each person. How
many deals are possible if the players are considered distinct?

How many ways are there to line up 8 people in a line for a photograph in a row of chairs
if Rex and Laurie must sit next to one another and Bonnie and Clyde refuse to sit by one
another?

Logan has 100 indistinguishable one dollar bills that he would like to invest in 4 banks. How
many ways can he invest in these banks? (Hinz: one way of investing is $98 in the first bank,
$0 in the second bank, $2 in the third bank, and $0 in the fourth bank).

A committee must be chosen from 10 Republicans, 12 Democrats, and 5 Independents.
(a) How many committees of size three are possible if each member of the committee must
have the same political affiliation?

(b) How many committees of size two are possible if the committee members must have a
different political affiliation?

(c) How many committees of size five are possible that consist of two Republicans, two
Democrats, and one Independent?

52
Of the ( 5 ) = 2,598,960 different five-card poker hands, how many contain

(a) the two of clubs?

(b) four of a kind?

(¢) two pairs (for example, KK772 counts as a two pair hand, but KK777 does not, since
it is a full house)?

A laboratory has seven female and six male rabbits. Three females and three males will be
selected, then paired for mating. How many pairings are possible?

How many 6-digit numbers of the form d;dad3dadsde, which range from 000000 to 999999,
have the sum of the digits equal to 127 Use a combinatorics argument, then check your
solution by enumeration.

How many ways can 8 people be seated around a round table?
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1.18

1.19

1.20

1.21

1.22
1.23

1.24

1.25

1.26

1.27

1.28

Consider a sequence of n binary digits.

(a) How many sequences are possible?

(b) In how many of the possible sequences does the sum of the digits exceed j, where
j=0,1,2,....n—17

Use the binomial theorem to show that for any positive integer #,
" n
(—1) ( ) =0.
i=0 :

Expand:

(a) (x+ 2y3)4 using the binomial theorem,

(b) (x+y+3z)? using the multinomial theorem.
Check the results with the Maple expand function.

Use the binomial theorem to show that for any positive integer n,
i=0 \!

Find the number of trailing 0’s at the end of 100000! using a combinatorics argument.

A 12-digit number of the form d|dadsdsdsdedrdgdadiodi d)2 (these numbers range from
000000000000 to 999999999999 is said to be wonderful if

di+dr+ds+ds+ds+ds=dr+dg+do+dio+di +dia.
Prove that the number of wonderful numbers is even.

The game of FreeCell begins by dealing all of the cards from a standard deck into eight
columns of cards. Four of these columns contain seven cards and four of these columns
contain six cards. The order that the cards fall within a column is significant, but the order
of the columns is not significant. How many different deals are possible?

A father has nine identical coins to give to his three children.

(a) How many allocations are possible?
(b) How many allocations are possible if each child must receive at least one coin?

(¢) How many allocations are possible if each child must receive at least two coins?

There are # women who try out for a high school basketball team. Of the n, there are m that
make the team. Of the m, there are five that start in the first game. Assuming thatn > m > 5,
use two different combinatorial approaches to find the number of possible ways to select a
team and a starting lineup for the first game.

How many ways can a mother give ny identical coins to her np children? Assume that ny
and ny are positive integers satisfying n; > ny. She must give all of the coins away. (Hint: if
rny =5 and ny = 3, then giving three coins to the firstborn, two coins to the middle child and
no coins to the youngest is one possibility).

A family consists of » members. How many (pairwise) relationships are there between
members? :
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1.29

1.30
1.31

1.32

1.33

1.34

1.35

1.36

1.37
1.38
1.39
1.40

1.41

A restaurant offers 3 appetizers, 4 entrees, and 5 desserts. How many ways are there to place
an order for one appetizer, one entree, and one dessert?

How many ways can a seven-card hand be dealt from a standard 52-card deck?

Arthur, Ivah, Richard, Cindy, Larry, and Nancy need to cross a bridge at night. Exactly two
may cross at a time, and they must carry a flashlight. There is only one flashlight. Assume
that two people always cross the bridge and that one always returns with the flashlight. How
many ways are there to get everyone across? [lustration: Here is one sample sequence:
Arthur and Ivah cross, Arthur returns, Richard and Cindy cross, Richard returns, Larry and
Nancy cross, Larry returns, Arthur and Richard cross, Cindy returns, Cindy and Larry cross.

How many ways can a committee of 11 people be subdivided into four subcommittees con-
taining 4, 3, 2, and 2 people each?

A bag contains billiard balls numbered 1, 2, ..., 15. How many ways can three balls be
selected from the bag when the order of the selection is important?

The set A consists of all positive integers x from 1 to 15 inclusive such that ged(x, 15) = 1.
List the elements of A.

A 6-letter “word” is formed by selecting 6 of the 26 letters without replacement. Two exam-
ples of such words are

FRISBE and XEALRY.

Let A| be the set of all words beginning with X and A be the set of all words ending with Y.
Find the numbers of distinct words in

(a) Ay NAy,
(b) A UA5.

A prime number is a positive integer that has exactly two distinct divisors: 1 and itself. Let A
be the set of all prime numbers. Let B be the set of all even integers. Let C be the set of all
negative integers. Draw a Venn diagram that describes the relationship among the sets A, B,
and C.

Draw a Venn diagram with events A and B and shade A’ N B’.
Draw a Venn diagram with events A}, A, and A3 and shade A; N (A2 UA3).
Draw a Venn diagram with events A}, Ay, and A3 and shade (A ﬂA’z) UA;3.

If A and B are two events, use any of the set operations (for example, union, intersection,
complement) to describe the event that neither A nor B occurs.

Let the set A be the perfect squares in the first 30 positive integers. Let the set B be the prime
numbers in the first 30 positive integers. Find N(A’NB’), where N gives the cardinality
(number of elements) of a set.
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