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Parametric Model Discrimination for Heavily
Censored Survival Data

A. Daniel Block and Lawrence M. Leemis

Abstract—Simultaneous discrimination among various para-
metric lifetime models is an important step in the parametric
analysis of survival data. We consider a plot of the skewness versus
the coefficient of variation for the purpose of discriminating
among parametric survival models. We extend the method of
Cox & Oakes from complete to censored data by developing an
algorithm based on a competing risks model and kernel function
estimation. A by-product of this algorithm is a nonparametric
survival function estimate.

Index Terms—Competing risks, distribution selection, kernel
functions.

ACRONYM!
APPL  a probability programming language
CDF  cumulative distribution function
HF hazard function
MP mercaptopurine
PDF probability density function
PP probability-probability
QQ quantile-quantile
SF survivor function

NOTATION
A min{S, R/1.34}
C; censoring time ¢
b; censoring indicator variable ¢
f (y) kernel density estimate
fx,(t) PDF associated with crude lifetime j
5 coefficient of variation
o estimated coefficient of variation
Y3 skewness
3 estimated skewness
h smoothing parameter
hy, (t) HF associated with net lifetime j
K shape parameter for the Weibull distribution
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IThe singular and plural of an acronym are always spelled the same.

Ay crude lifetime failure rates

7 population mean

n sample size

u probability of failure from risk j

j estimated probability of failure from risk j
interquartile range

o population standard deviation

S sample standard deviation

* denotes right-censored observation

Sx,(t) SF associated with crude lifetime j

T lifetime

t; failure time ¢

w kernel function

T min{c¢;, t; }

X; crude lifetime associated with risk j

Y1,Y2,...,Yn data values

Y; net lifetime associated with risk j

1. INTRODUCTION

WELL-KNOWN technique for choosing a probability

model to approximate survival data is to plot the standard-
ized third moment (skewness) versus the coefficient of variation
[6]. Their plot gives the trajectory of the population skewness
versus population coefficient of variation for several popular
parametric lifetime models (e.g., Weibull and log-logistic). The
sample skewness, and the sample coefficient of variation can
be plotted for a data set containing no censored data values.
The proximity of the sample point to the population distribu-
tion values can be helpful in ruling in or ruling out particular
parametric distributions as potential survival models.

This technique is superior to many of the standard exploratory
data techniques for survival data (such as QQ plots, PP plots,
probability plots, histograms, density function estimation via
kernel functions, and empirical cumulative distribution function
estimation via the Kaplan-Meier product-limit estimate) in the
sense that several competing models are easily viewed simulta-
neously. The weaknesses of this technique are (a) it considers
only second and third moments which, for example, might do a
poor job of detecting appropriate tail behavior; and (b) it is not
easily adaptable to right-censored data sets. The focus of this
paper is overcoming the second weakness. We limit our discus-
sion to survival models.

0018-9529/$25.00 © 2008 IEEE
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Cox & Oakes’ [6] technique is extended here to allow the
calculation of these statistics in the presence of heavy right cen-
soring. Censored data is common in survival analysis. Recent
work in the area includes [12], [13], [15], [17], [18], [21], [23],
[25], [26]. While data sets with light censoring (as in Cox &
Oakes’ example with the cancer data from [2]) may be handled
in a variety of ways (e.g., doubling censoring times or treating
them as failures) without introducing significant error, heavily
censored data leaves a data analyst with only heuristic methods
that will significantly influence the position of the sample point.
In this paper, we will present an analytical approach for plotting
a point on the Cox & Oakes graph regardless of the fraction of
censored observations in the data set.

Our approach assumes a random censoring scheme, where the
censoring times and the failure times are independent random
variables. Treating censoring and failing as risks allows us to an-
alyze the data set using a competing risks framework. We then
treat the censored observations as coming from one distribu-
tion, and the failures as coming from a second distribution. We
use kernel estimation to create empirical density functions for
these two data sets. Using a mathematically tractable distribu-
tion for the density function, the competing risks model is used
to estimate the failure time distribution as if censoring were not
present. Because the failed & censored data are observed in the
presence of another risk, these random variables represent crude
lifetimes. A crude lifetime [8] is the lifetime of an observation
in the presence of other risks (also called a cause-specific distri-
bution or cause-specific lifetime). Competing risks models are
surveyed more recently in [7] and [19]. The goal of this paper
is to find an estimate of the net lifetimes of the failure time dis-
tribution (i.e., when no censoring is present). The net lifetime
is the lifetime of an observation only at risk of failing by one
cause. We will use the crude lifetimes and statistical methods to
“eliminate” the presence of the censoring risk. The result will be
the distribution of the net lifetime of the time to failure, which
can then be treated as any other distribution of observed failures.
The sample skewness and sample coefficient of variation associ-
ated with this distribution will then be plotted on the graph. The
proximity of this point to curves associated with well-known
parametric survival models (such as the Weibull distribution)
can be used to provide a list of potential models for data fitting
purposes.

II. LITERATURE REVIEW

Because several methodologies are used in the algorithm that
plots the sample skewness versus the sample coefficient of vari-
ation, we discuss their literature in the following subsections:
Cox & Oakes’ Methodology, Kernel Functions, Competing
Risks.

Cox & Oakes’ Methodology: Section 2.4 of [6] outlines four
methods for plotting or tabulating data to select a parametric
survival distribution. One of these methods (illustrated on page
27) is a plot of the standardized third moment (skewness) y3 =
E[((T — p)/o)?] versus the coefficient of variation v = o/p,
where p and o are respectively the mean and standard deviation
of the lifetime 7. Cox & Oakes plot y3 versus -y for several

log-logistic

skew

—1

Fig. 1. Cox & Oakes graph with three heuristic methods employed for the
6-MP treatment group remission times.

popular distributions. Their graph is replicated in Fig. 1 using
APPL (A Probability Programming Language) code given in
Appendix A. The code has been modified & augmented from
[9]. APPL is described in [11].

The exponential distribution occurs at the intersection of the
Weibull and gamma curves at v = 1, and y3 = 2. As stated ear-
lier, Cox & Oakes “reasonably extrapolate” the light censoring
in their example data set. Had the censoring been heavier, how-
ever, their analysis would have been unable to attain objective
results. The square, diamond, and cross in Fig. 1 are from the
heavily-censored 6-MP treatment group from [10]:

6,6,6,6%,7,9*,10,10%, 11*,13, 16, 17*,19*,
20%,22, 23, 25*, 32", 32, 34*, 35*.

In this data set, there are n = 21 individuals at risk, 12 of which
are right-censored as indicated by an asterisk. The points on
the graph, starting from the left, treat the censored observations
heuristically as follows.
1) Censored observations are treated as failures (square).
2) Censored observations are doubled, then treated as failures
(diamond).
3) Censored observations are quadrupled, then treated as fail-
ures (cross).
The considerable scatter in these three points gives sufficient
impetus to search for a parameter-free technique for plotting
skewness versus the coefficient of variation for a given data set.
A goal of this paper is to devise an algorithm based on nonpara-
metric methods that will handle randomly right-censored data,
and not require parameters from an analyst.
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Kernel Functions/Density Estimation: Bowman & Azzalini
[4] give an excellent introductory framework for density estima-
tion. They define a kernel density estimate as

n

A 1

fly)==> wly—wish),

n -
1=1

where w, known as a kernel function, is a probability density
function whose variance is controlled by the smoothing param-
eter h; and y1,y2, . . ., yp are the data values. The primary issue
then becomes the choice of the kernel function. For their ex-
ample kernel function, Bowman & Azzalini use the Gaussian
distribution at y — y; with mean 0, and standard deviation h.

Section 3.4 of [22] gives comprehensive coverage on the topic
of choosing the smoothing parameter . Because density esti-
mation is not a central topic of this paper, we will choose an
h for use in the remainder of this work. Silverman gives two
“quick ways of choosing” the smoothing parameter based on the
properties of the sample data. The first is by = 0.79Rn~1/5,
where R is the sample interquartile range; and the second is
hy = 0.9An~Y%, where A = min{S, R/1.34}, and S is
the sample standard deviation. Based on the discussion in Sil-
verman, we will choose hs, although this choice will have little
influence on our results. Biswas & Sundaram [1] apply kernel
functions to survival analysis.

Competing Risks: Treatment of censoring as a risk for use
in a competing risks model is mentioned in [8], [14], [20], and
[24]. The articles of primary interest involve risk elimination,
and net/crude relationships.

Williams & Lagakos [24] address a common assumption in
many censoring models which states that the survival mecha-
nism and the censoring mechanism are independent. They give
examples when this is an invalid assumption, and then examine
the consequences of survival times and censoring times being
dependent. They also discuss the testability of a data set for
censoring influences on the survival mechanism. Where appli-
cable, they give statistical tests that may be performed. Framed
in the context of this paper, they discuss situations where the
crude lives of the observed data failing from different causes are
dependent. Here, however, we will assume that the remaining
longevity of an observation has no influence on its “surviving”
censoring.

Prentice & Kalbfleisch [20] address three main issues: in-
fluence of regression coefficients on some, but not all failure
causes; the interrelation between failure types; and the estima-
tion of failure rates for one cause given the removal of some
or all of the other causes. Starting from the assumption that
the cause-specific hazard function is the only truly estimable
portion of the competing risks model, they build models to ad-
dress these three issues. While the first two issues are not rel-
evant to this paper, the third is. They raise a list of concerns
regarding cause-removal methods, and write about the most im-
portant concern: “In effect, the stochastic mechanism gener-
ating failures is assumed to continue beyond latent failure times
for causes that have been removed until the smallest operative
failure time is reached.” The authors do not present a quantita-
tive model. Their concerns were raised in response to [5], and do
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not affect our technique. Finally, the authors deal with censoring
as a cause of failure. They abandon their previous concerns of
cause removal stating “the marginal distribution that arises from
the elimination of censoring is clearly the relevant target of esti-
mation.” This is, of course, the very goal of this paper. They do,
however, cite Williams & Lagakos [24], and raise the issue of
the independence of survival and censoring; we will avoid this
issue.

Kalbfleisch & Mackay [14] extend the work of [24], and show
that the constant-sum condition is equivalent to a simple rela-
tionship between hazard functions.

David & Moeschberger [8] formulate a mathematical model
for competing risks in their monograph. They mention the no-
tion of treating censored data as a risk in their first chapter. Their
main work, as it pertains to this paper, is in the area of net versus
crude lifetimes.

Leemis [16] also discusses the relationships between net and
crude lifetimes. Section 5.1 steps through the various lifetimes,
and ends with an equation that will be central in making the an-
alytical connection between net and crude lifetimes. This equa-
tion is proved in Leemis’ Appendix C, and states that, under the
assumption of independent risks,

i fx;(t)
hy,(t) = ="
)J( ) Ele ﬂ'iSXq- (t)

where Y; represents the net lifetime associated with risk j, X ;
represents the crude lifetime associated with risk j, 7; is the
probability of failure from risk j, and f, S, and h denote the
probability density, survivor, and hazard functions, respectively.
The details on computing hy;, (t) are given in Appendix B. More
recent references in the competing risks literature are given by

[3].

ey

III. A PARAMETRIC EXAMPLE

Although the main emphasis of the work here is nonpara-
metric, the following parametric example demonstrates the cal-
culation of the net lifetime of a failure distribution. For this ex-
ample, we make the assumption that both the failure times and
censoring times are exponentially distributed random variables
with different rates. For illustration, we will turn to the 6-MP
treatment group data set discussed earlier [10]. Using competing
risks terminology, risk 1 corresponds to censoring, and risk 2
corresponds to failure. In the 6-MP data set, there are n = 21
patients on test, and the number of observed failures (leukemia
remissions) is 7 = 9. Using maximum likelihood, the failure
rate associated with the first crude lifetime is

n—r 12
Yip=oTi 250
where 6; = 0 denotes a censored observation, z; = min{¢;, ¢; },
c; is the censoring time for patient ¢, and ¢; is the failure time
for patient 7 (¢ = 1,2, ..., n). The failure rate associated with
the second crude lifetime is

Ax, =

5\ - T - 9
o s =1 i - 109°
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where §; = 1 denotes an observed failure (i = 1,2,...,n). We
estimate 71, and 7o as

n-—r 12

no 21 =

and

SHE
O
—

Because of our exponential assumption

fX1 (f) = )\Xlei)\xlt, SX1 (t) = 675‘X1’57
Fet) e et () = o

for ¢ > 0. Using (1), we compose the hazard function for the
net lifetime of the failure data

7r2fX2 (t)

o, (1) = 5%, () + 128, (1)

for ¢ > 0, which is estimated by

NN Y 27 _—9t/109
7T2)\X2€ X2 109 ¢ /

iLY (t) = =
: = = — — s
2 Ale,)\xlt A26,AX2t Qe—12t/250 4 3,—9t/109

for ¢ > 0. The probability density function of the net lifetime
associated with failure is

fY2 (t) = hYz (t)67 fo hy, (‘r)cl‘r7
and is estimated by
Fra(t) = by (1)e™ Jo P27,

for ¢ > 0. This estimated probability density function of the net
lifetime of the failure data can be used to calculate the skewness,
and coefficient of variation of the failure data. These statistics
are (4,3) = (1.40,2.55). In the remainder of the paper, we de-
velop a nonparametric method in order to avoid the assumption
of exponentiality for the failure time and the censoring mech-
anism. Computation will be greatly simplified with the help of
APPL.

IV. METHODOLOGY

This section details the steps involved in extracting a survival
distribution estimate from the observed failure & censoring
times. We will use the following eight-point data set in our
examples.

z = [0.25%,0.25,0.35%,0.45*,1.00, 1.15*, 1.25,1.35],

where an asterisk indicates a right-censored observation. The
data could also be described as

x =[0.25,0.25,0.35,0.45,1.00,1.15, 1.25, 1.35],
6 = [07 17 07 07 1707 17 1]7

where z; = min{¢;, ¢; }, ¢; is the failure time, ¢; is the censoring
time, and 6; is 1 when x; = ¢;, and 0 when x; = ¢;. The random
variables for failure times and censoring times are assumed to
be mutually independent.

To verify the correctness of our method and the CalcNetHaz
algorithm, we will work through two small examples.

The Gaussian distribution was an obvious choice for a kernel
function. There are, however, several issues that preclude its
use. The first issue is the range of support. Establishing a
Gaussian kernel around any data value will include negative
support values, which is an impossibility in lifetime data anal-
ysis because negative lifetimes never occur. The second issue
is the intractability of the cumulative density function (CDF).
While APPL was able to plot a (rather complicated) CDF, it was
unable to calculate the coefficient of variation or the skewness.

We will instead use the PDF of the uniform, and triangular
distributions as kernel functions. These distributions allow for
simple, tractable CDF, and allow us to exploit APPL’s piecewise
function processing capability. We have avoided the problem of
negative lifetimes with these distributions by carefully choosing
our example data values and A so as to avoid negative support
for the kernel function.

A. Uniform Kernel Function

Our method treats censored and observed data as coming
from two different distributions. For simplicity in formulating,
implementing, and testing our algorithm, we split the data into
[0.25, 0.35, 0.45, 1.15], and [0.25, 1.0, 1.25, 1.35] where the
first list contains the censoring times, and the second list con-
tains the failure times. These data values were chosen arbitrarily
with preference given to ease of verification by hand. According
to the chosen method for calculating the bin width discussed in
[22], we calculate h as h = 0.9sn~1/5, where s is the sample
standard deviation of the four values. For the first list, h =
0.241; and for the second, h = 0.294. We will, however, sim-
plify by using an h = 0.25 for our calculations in order to ease
arithmetic, and simplify verification. The first step is to create
the two random variables with APPL:

h := 0.25;

Cl := UniformRV(0.25 — h,0.25 + h);

C2 := UniformRV(0.35 — h,0.35 + h);
( );

)

C3 := UniformRV(0.45 — h,0.45 4+ h);
C4 := UniformRV(1.15 — h,1.15 + h);
X1 := Mixture([1/4,1/4,1/4,1/4],[C1,C2,C3,C4]);

F1 := UniformRV(0.25 — h,0.25 + h);

F2 := UniformRV(1.0 — h, 1.0 + h);

F3 := UniformRV(1.25 — h,1.25 + h);

F4 := UniformRV(1.35 — h,1.35 + h);

X2 := Mixture([1/4,1/4,1/4,1/4],[F1,F2,F3,F4]);

_ At this point, APPL has created two density functions:
fx,(t), and fx,(t). The kernel functions for these density

functions are uniformly distributed, and centered at the obser-
vation with a width of 2h. This APPL code returns the kernel
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Fig. 2. Uniform kernel density estimate for the crude censoring time X .

function estimate for the crude censoring time probability
density function as

(1/2 0<t<0.1
1 0.1<t<0.2
R 3/2 02<t<0.5
fx,(®)=4¢1 0.5<t<0.6
1/2 06<t<0.7
0 0.7<t<09
(1/2 09<t<14.

Similarly, this APPL code returns the kernel function estimate
for the crude failure time as

(1/2 0<t<0.5
0 0.5<t<0.75
1/2 075 <t< 1.0
=41 10<t<11
3/2 11<t<1.25
1 1.25<t< 1.5
(1/2 1.5<t<1.6.

Unless otherwise noted, all of the following plots were created
using APPL’s PlotDist command. Fig. 2 is a plot of fx, (),
and Fig. 3 is a plot of fx, (t).

To call the CalcNetHaz procedure, we must first compute
a mixture of these density functions. This mixture will serve
as the denominator 1Sy, (t) + m2Sx, (t) in the calculation of
hy, (t). The ; values come from the competing risks discus-
sion, and are the probability of failing due to the :th risk. In our
example, four of the observations “fail” by censoring, and the
other four are observed failures. Therefore, 77 = 7 = 0.5.
In general, for a data set with n items on test, and r observed
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Fig. 3. Uniform kernel density estimate for the crude failure time X>.

failures, 71 = ((n — r)/n), and 72 = (r/n). With APPL’s
Mixture procedure, we compute this denominator as a mixture
of density functions, and convert it to a survivor function before
passing it to CalcNetHaz.

X12 := Mixture([1/2,1/2], [X1,X2]);

This probability density function fx,, () has the following
mathematical form, and is plotted in Fig. 4.

(1/2 0<t<0.1
3/4 01<t<02
1 02<t<05
1/2 05<t<0.6
1/4 06 <t<0.7
0 0.7<t<0.75
fxn () =05fx, (t)+05fx, ()= 1/4 075 <t <09
1/2 09<t<1.0
3/4 1.0<t<11
1 11<t<1.25
3/4 1.25<t< 1.4
1/2 14<t<15
(1/4 15<t<1.6.

Referring back to (1) to calculate a net lifetime from the crude
lifetimes, the hazard function estimate for the net lifetime Y5
associated with the crude lifetime X5 is

2 sz (t)

hYz (t) = 7r15X1 (t) T 7I'QSX2 (t) .

The denominator has been calculated in Maple in its density
form, and can be converted to a survivor function with the APPL
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Fig. 4. Uniform kernel density estimate for X».

function SF. A call to CalcNetHaz with these three parameters
gives the net lifetime hazard function for the observed failures.

Y2 := CalcNetHaz(X2, SF(X12),0.5);

Because X is the crude lifetime distribution, and Y is the net
lifetime distribution, we now have

ilY (t) — _ 7r2fX2(t)A
: Wlle(t)—FWQSXQ(t)
= 0<t<0.1

4-—2t

10

10
Fo= 02<t<05
0 0.5 <t<0.75
T 0.75 <t < 0.9

20
- 2 09<t<1.0
40
12 1.1<t<1.25

4
oy 125<t<14

20
501 1l4<t<15
5
555 1.5 <t<1.6.

The functional form of this hazard function, as computed by
CalcNetHaz, has been verified by hand. Fig. 5 contains a plot of
hy, (t), which has a vertical asymptote at £ = 1.6. The following
additional APPL statements give the coordinates of a point that

-

0 02 04 06 08 1 12 14
X

Fig. 5. Uniform kernel hazard function estimate for net lifetime of observed
failures Y5.

TABLE I
4, AND 73 FOR DIFFERENT METHODS FOR HANDLING CENSORING

Method o 3

Increase censoring times by 0% 0.58 [ 0.55
Increase censoring times by 50% | 0.69 | 0.76
Increase censoring times by 100% | 0.76 | 0.80
Parametric (exponential) analysis | 1.40 | 2.55
Competing risks (uniform kernel) | 0.73 | 0.04

can be plotted on Cox & Oakes’ parametric model discrimina-
tion plot:

cv := Coef0fVar(Y2);

skew := Skewness(Y2);

These statements yield the point (¥,73) =
(0.3608,—1.2320). When this same technique is ap-
plied to the 6-MP treatment group data with he = 5.798 for
the censored data, and ho = 3.970 for the failure data, the
point obtained is (¥, v3) = (0.7338,0.0425). Table I compares
this point with the three points plotted in Fig. 1. There is
considerable difference between the heuristic approaches, the
parametric analysis, and the competing risks approach.

B. Triangular Kernel Function

This section follows the technique and data set from
Section IV-A, but uses the triangular distribution for the kernel
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function in the density estimation method. The APPL code
for calculating the kernel estimate for the PDF of the crude
lifetimes is

h := 0.25;

C1 := TriangularRV(0.25 — h,0.25,0.25 + h);

C2 := TriangularRV(O.35 —h,0.35,0.35 + h);
( )

C3 := TriangularRV(0.45 — h,0.45,0.45 + h);
C4 := TriangularRV(1.15 — h,1.15,1.15 + h);
X1 := Mixture([1/4,1/4,1/4,1/4],[C1,C2,C3,C4]);
F1 := TriangularRV(0.25 — h,0.25,0.25 + h);
F2 := TriangularRV(1.0 — h,1.0,1.0 + h);
F3 := TriangularRV(1.25 — h,1.25 1.25 + h);
F4 := TriangularRV(1.35 — h,1.35,1.35 + h);
X2 := Mixture([1/4,1/4,1/4,1/4],[F1,F2,F3,F4]);
The three parameters in TriangularRV are the minimum,
mode, and maximum. Again, fx, (¢), and fx, (¢) are the density
function estimates. Their kernel functions are now triangular

distributions centered at the observation, and have a width of
2h.

(4t 0<t<0.1
8t — 2 0.1<t<02
12t — ¢ 0.2<t<0.25
4+ 3 0.25 <t < 0.35
—4t+ ¥ 035<t<045
Fr () =< —12t+35 045<t<0.5
—-8t+2Z  05<t<06
—4t+ 2 06<t<07
0 0.7<t<0.9
4t - 18 09<t<115
[ —4t+Z  115<t<14.
(4t 0<t<0.25
24t 025<t<0.5
0 0.5<t<0.75
4t—3 0.75<t<1.0
fot)=141 1.0 < t < 1.10
-1 110<t<1.25
8 1.25 <t < 1.35
82 8t 135<t<15
(2 -4t 15<t< 16

These probability density function estimates are plotted in
Figs. 6 and 7.
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Fig. 6. Triangular kernel density estimate for crude censoring time .X; .
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Fig. 7. Triangular kernel density estimate for crude failure time X-.

As in the uniform case, we compute a mixture of these density
functions to be the denominator of (1).

X12 := Mixture([1/2,1/2],[X1,X2]);
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1.4

Using (1) as before, we want to calculate the hazard func-
tion of the net lifetime for the observed failures. A call to
CalcNetHaz with these three parameters gives the hazard

1.24

0.8 1

PDF

0.6 1

0.4 1

0.24

0 02 04 06 08 1 12 14 16
X

Fig. 8. Triangular kernel density estimate for X;,.

The probability density function f x,, (t) has the following form,
and is plotted in Fig. 8.

lez (t) :0'5fX1 (t) + 0'5fX2 (t)

function for the net lifetimes for the observed failures.

Y2 := CalcNetHaz(X2,SF(X12),0.5);

If X is the crude lifetime distribution, and Y is the net lifetime
distribution for a random variable, the following hazard function

(At 0<t<01
6t— %  0.1<t<0.2
8t—2  02<t<0.25
u 0.25 < t < 0.35
—4t+ 1 035<t <045
—8t+ 2 045<t<0.5
—4t+ L 05<t<06
—2t+1 06<t<07
0 0.7<t<0.75

T)2-2  07m5<t<09
44-322  09<t<10
20—12  10<t<11
44—  11<t<115
i 115 <t < 1.25

20+ 125<t<1.35
—6t+9 135<t<14
—4t+ 3 14<t<15
(—2t+ 2 15<t<16.

results.
hy, (t) = — ma (1)

TS, (1) + m2Sx, (t)

=5 0<t<0.1
s 0.1<t<0.2
EES Eramrd 02<t<0.25
s L 0.25 <t < 0.35
St 0.35 < ¢ < 0.45
T 045 <t < 0.5
0 0.5 <t<0.75
T 0.75 < t < 0.9

T st s 0.9 <t< 10

sl s LO<t <11
e L1<t<115
B(1720) 115 < t < 1.25
o 125 <1< 135
RSN 135 <t < 14
S 14<t< L5

l 2% 1.5 <t <16

The functional form of this hazard function has also been ver-
ified by hand. It is plotted in Fig. 9. As in the uniform case,
hy, (t) has a vertical asymptote at 1.6. Using APPL, the coor-
dinates of this distribution on Cox & Oakes’ parametric model
discrimination plot are calculated as follows.

cv := Coef0fVar(Y2);

skew := Skewness (Y2) )

This calculation yields the point (¥, 3) = (0.3452, —1.3390).
Not surprisingly, this point is in reasonable proximity to the
point (0.3608, —1.2320) obtained with the uniform kernel.

V. MONTE CARLO SIMULATION ANALYSIS

The Monte Carlo analysis of our algorithm begins with a plot
of v3 vs. 4 for several parametric distributions which will serve
as a baseline to assess how well our algorithm adapts to censored
data values. The plot for various Weibull and log-logistic distri-
butions appears in Fig. 10. The points plotted are associated with
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Fig. 9. Triangular kernel hazard function estimate for the net lifetime of the
observed failures Y5.

a sample size of n = 1000 for each of four parametric distribu-
tions (one log-logistic, and three Weibull with shape parame-
ters 4, 2, and 0.8 from left to right). The plotted values cluster
around the correct point on the chart, but have considerable dis-
persion for such a large sample size. Not surprisingly, the dis-
persion associated with the skewness consistently exceeds the
dispersion associated with the coefficient of variation. Also, as
the shape parameter in the Weibull distribution decreases, the
points spread. Some of the parameter choices exhibit a positive
correlation between 4 and 3.

Appendix C contains a Maple implementation of a Monte
Carlo simulation of the method described here. Fig. 11 displays
points on the Cox & Oakes’ graph where the lifetimes are drawn
from a Weibull population with a shape parameter of 5, and were
calculated from data sets of n = 200 values. Computational
time requirements prevented the plotting of as many values as
in Fig. 10. The points cluster around the appropriate point on
the Weibull curve, although there are several points that fall sig-
nificantly to the southeast of the target. The smaller number of
items on test relative to the simulation illustrated in Fig. 10 re-
sults in a wider dispersion of the plotted values.

VI. CONCLUSIONS, AND FURTHER WORK

Cox & Oakes’ parametric survival model discrimination plot
has been extended to the case of a right-censored survival data
set using kernel functions to estimate probability density func-
tions of the crude lifetime PDF, and a competing risks frame-
work to adjust for the effect of censoring. APPL and Maple
were used for numerical and analytical computations, as well
as for bookkeeping piecewise functions. This research work has
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Fig. 10. Complete data sets for Weibull with x = 4, 2, 0.8; and log-logistic
with K = 6.

log-logistic

skew

+

Fig. 11. Censored data sets for Weibull with shape parameter 5 with sample
size n = 200.

a practical significance in that it allows a modeler to simultane-
ously assess competing parametric models for their fit to a data
set consisting of censored observations.

Future work on this topic could proceed in several directions.
Other kernel functions could be used to obtain a scatter-plot of
skewness versus a coefficient of variation. Using the Weibull
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distribution with £ = [1/(1 — In(2))] = 3.25889 (where the
mode equals the median to give a bell-shaped kernel density
function estimate) would be a reasonable approximation to the
Gaussian distribution, and would prevent negative lifetime sup-
port. In addition, because the Weibull distribution has positive
support, there will be fewer piecewise segments to account for.
The influence that h has on a plotted point could also be inves-
tigated.

APPENDIX A

APPL CODE TO CREATE COX & OAKES’ GRAPH
unassign(‘kappa'):
lambda := 1:
X := GammaRV(lambda, kappa):
c := Coef0fVar(X):
s := Skewness(X):
GammaPlot := plot([c,s,kappa = 0.5..999],
labels = [“cv", “skew"]):
unassign(‘kappa'):
lambda := 1:
X := WeibullRV(lambda, kappa):
¢ := Coef0fVar(X):
s := Skewness(X):
WeibullPlot := plot([c, s, kappa = 0.7..50.7]):

unassign(‘kappa'):

lambda := 1:

Y := LogNormalRV(lambda,kappa):
¢ := Coef0fVar(Y):

S !

Skewness(Y):
LogNormalPlot := plot([c, s,kappa = 0.01..0.775]):

unassign(‘kappa'):

lambda := 1:

Y := LogLogisticRV(lambda, kappa):

¢ := Coef0fVar(Y):

s := Skewness(Y):

LogLogisticPlot := plot([c, s, kappa = 4.3..200.5]):
cnsrgrp := plot([[0.5849304,0.5531863]],

style = point,symbol = box):

cnsrgrpl5 := plot([[0.6883908,0.760566]],
style = point, symbol = cross):

cnsrgrp20 := plot([[0.7633863,0.8009897]],
style = point, symbol = diamond):

with (plots):

111 := textplot([0.17,3.3, “log — logistic"],
‘align = {ABOVE,RIGHT}'):

1nl := textplot(][0.59,3.3, “log — normal"],
‘align = {ABOVE,RIGHT}'):

wbl := textplot([1.2,3.3, “Weibull"], ‘align =
{ABOVE, RIGHT}"):

gml := textplot([1.3,2.44, “gamma"], ‘align =
{ABOVE, RIGHT}'):

plots[display]({111,1nl,wbl, gml,
GammaPlot,WeibullPlot, LogNormalPlot,

LogLogisticPlot, cnsrgrp, cnsrgrplb, cnsrgrp20},
scaling = unconstrained);

APPENDIX B
COMPUTATIONAL ISSUES

With our kernel density estimates being mixtures of large
numbers of random variables, even small data sets could result
in piecewise functions with an unmanageable number of seg-
ments. To assist in the computation of these functions, we turned
to the APPL programming language [11]. APPL is a Maple-
based programming language that allows for statistical manipu-
lations of piecewise random variables. In addition, APPL allows
for the creation, and combination of all types of standard random
variables (uniform, Gaussian, triangular, Weibull, etc.) we use
in our kernel functions. The flexibility of APPL will allow for
the efficient manipulation of many random variables.

Despite APPL’s comprehensive random variable handling
ability, the equation at the core of our analysis (1) has not
been implemented. This necessitated our devising an algorithm
(using the APPL language as a platform) that could perform
the implementation of (1) for random variables defined in a
piecewise manner. The Maple function CalcNetHaz calculates
hy,(t) for crude lifetimes defined in a piecewise manner. It
must be passed the APPL probability density function (PDF)
subprogram for the numerator fx,(t), a mixture of APPL
survival functions for the denominator, and the numerator’s ;.
The procedure CalcNetHaz returns the hazard function of the
time to failure using (1). The code used to check for

* the correct number of arguments;

¢ the correct format for the PDF of the numerator, and the

mixture of survivor functions in the denominator;

e the correct type (continuous) of random variables

)(17)(27 - ,Xk;
* the numerator given as a PDF, and the denominator as a
SF; and

e 0<m<1
is suppressed for brevity. Because the kernel estimate for the
failure & censoring distributions may be defined in a piecewise
fashion (e.g., for a uniform or triangular kernel), the procedure
accommodates piecewise distributions.

CalcNetHaz := proc(num :: list(list),
denom :: 1ist(list),NumPI :: float)
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local retval, nsegn, i, j:

retval := [|:

nsegn := nops(num[2]):

i:=1:

for j from 2 by 1 to nsegn do
while denom[2][i] < num[2][j] do

retval =
[op(retval),unapply(simplify(

(NumPI*num[1][j —
1])/denom[1][i])(x), x)J:
i:=1i+1
end do:

end do:
return([retval, denom[2], [“Continuous”, “HF"]]):
end:

The first two arguments to CalcNetHaz are lists of three lists;
the last argument, 75, is a scalar. The first list in the first param-
eter’s three lists is of the numerator’s n — 1 density functions.
These correspond to the n breakpoints in the numerator. The
first list in the second parameter’s three lists is of the denom-
inator’s m — 1 density functions. These correspond to the m
breakpoints in the denominator. These breakpoints are found in
the second of the three lists. The third list contains the strings
“Continuous”, and either “PDF” or “SF” to denote the type of
distribution representation. For each of the segments, the algo-
rithm calculates a hazard function for the current segment based
on (1). The algorithm assumes that the denominator is a mix-
ture distribution involving the term in the numerator. We make
this assumption because, in (1), S x; in the denominator is de-
rived from fx; in the numerator (or vice-versa), and results in
denominator segment breaks that are a superset of those in the
numerator. After looping through each of the segments, the al-
gorithm returns the list of hazard functions along with the seg-
ment breaks of the denominator.

APPENDIX C
MONTE CARLO SIMULATION

n := 1000:
kappa := b:
for i from 1 to 80 do

r = 0:

X1 :=]

X2 =]

for k from 1 to n do
f := —log(UniformVariate())"(1/kappa):
¢ := —log(UniformVariate())"(1/kappa):

iff < c then
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r.=r+ 1

X2 := [op(X2),f]:
else

X1 := [op(X1),c]:

end if:

end do:

ifr<nandr > 0 then

dists := [|:
weights := [[:

R := describe[quartile[3]](X1) —
describe[quartile[1]](X1):

h:=0.79%Rx* (n—r)"(-0.2):
for j from 1 ton—rdo
weights := [op(weights),1/(n — 1)]:
if h > sort(X1)[1] then
fd := fopen(“mapsim2", APPEND):

fprintf(fd, “The following line
was padded:h = %gmin = %g\n",
h, sort(X1)[1]):

fclose (fd):
h := sort(X1)[1]:
end if:

dists := [op(dists),UniformRV(X1[j] —
h, X1[j] +h)]:

od:

f X1 := Mixture(weights,dists):
dists := [|:

weights := [[:

R := describe[quartile[3]](X2) —
describelquartile[1]](X2):

h:=0.79 %R (r"(—0.2)):
for j from 1 to r do
weights := [op(weights),1/r]:
if h > sort(X2)[1] then
fd := fopen(“mapsim2", APPEND):

fprintf(fd, “The following line
was padded:h = %gmin = %g \ n",
h, sort(X2)[1]):

fclose (fd):

h = sort(XQ) [1]:
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end 1if:

dists := [op(dists),UniformRV(X2[j] —
b, X2[j] + B)J:

od:
f X2 := Mixture(weights,dists):
f X12 := Mixture([(n—r)/n,r/n], [f-X1, £ X2]):

hy2 :=
CalcNetHaz(f X2,SF(f_X12),evalf(r/n)):

fY2 .= PDF(h_Y2):
mu := Mean(:f_YQ):

ExpValueXSqrd := ExpectedValue(f Y2 x— >
A9Y.
x"2):

sigma := sqrt(ExpValueXSqrd — mu"2):
Terml := ExpectedValue(f_Y2,x— > x"3):
Term2 := 3 * mu * ExpValueXSqrd:

Term3 := 2 * mu’3:

skew := (Terml — Term2 + TermS)/sigma/\B:
cov := sigma/mu:

fd := fopen(“mapsim2", APPEND):

fprintf(£d, “([%g, %gl], \n",Re(cov),
Re(skew)):

fclose (£d):
elif r = n then
skew := describe[skewness](X2):

cov =
describef[coefficientofvariation](X2):

fd := fopen(“mapsim4", APPEND):

fprintf(£d, “([%g, %gl], \n",Re(cov),
Re(skew)):

fclose (£d):
end if:

end do:
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